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ABSTRACT

ABSTRACT

Security is one of the most important properties of systems such as Internet of things, com-

munication networks, and computer systems. In these systems, some information (called

secret) should not be corrupted or acquired by unauthorized people (called intruders). Mo-

tivated by the concern of information security, in recent years many notions of secrecy have

been formulated, such as non-inference, anonymity, and opacity, etc. Among them, opacity

is proven capable of formulating some other security properties: for instance, non-inference

and anonymity. Opacity formalizes the absence of information flow, or more precisely, the

impossibility for an intruder to infer the truth of the secret based on its observation. In

discrete event systems (DESs), depending on the definition of secret, opacity is usually cat-

egorized as current-state opacity, initial-state opacity, and language-based opacity.

Limited by the sensors or communication, the evolution of a system may not be completely

detected by outsiders, including the intruder. Thus, it is important to have powerful DES

models that are capable of describing different observation structures of systems. Mean-

while, due to the state explosion problem, opacity analysis through enumerating all states is

not applicable to large scale systems. It is necessary to develop more effective verification

algorithms. Finally, given a system that is not opaque, another problem is how to design

controllers restricting the behavior of the system such that the controlled system is opaque

and maximally permissive.

This thesis focuses on the observation structures and opacity problems in DESs. The main

results of this research are briefed as follows.

1. Petri nets are a graphical and mathematical tool applicable to many systems and a

promising tool for describing and studying DESs. We propose two more general

classes of Petri nets: labeled Petri nets with outputs (LPNOs) and adaptive labeled

Petri nets (ALPNs), to better formalize and generalize current Petri net observation

structures. Compared with other Petri net models, the two classes of generators gen-

erally have the highest modeling power. Looking for bridges between the different

formalisms, we also present general procedures for the transformation between mod-

els and algorithms to convert one structure into another one if possible.

2. Current-state opacity, initial-state opacity and language-based opacity are formally

defined in the framework of Petri nets. Then we study their differences between the
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opacity properties in automata. Moreover, we generalize the notion of language opac-

ity to strict language opacity to deal with the case where the intruder is only interested

in a subset of transitions.

3. It has been shown that current-state, initial-state and language opacity verification

problems are decidable in finite systems. However, the decidability of current-state,

initial-state and language opacity verification problems in Petri net systems still re-

quires further investigation. In the thesis, we prove that current-state, initial-state and

language opacity verification problems in Petri net systems are undecidable. Namely,

there is no general algorithm that gives a correct answer to the question whether a giv-

en Petri net system is current-state (or initial-state, or language) opaque with respect

to a given secret or not. Therefore, one can focus on the opacity verification problems

in bounded Petri net systems.

4. For bounded systems, the existing methods of verifying opacity require enumeration

of the set of states consistent with an observation. Obviously, for large scale systems

the state explosion problem is unavoidable. Based on the notion of basis markings, we

propose a practically efficient approach to verifying current-state opacity and initial-

state opacity. Using the proposed approach, the exhaustive enumeration of the state

space can be avoided but only a small number of basis markings. All other markings

can be represented by a set of linear systems. By solving the integer linear program-

ming problems, current-state and initial-state opacity can be verified. Moreover, a

structure, called verifier, is constructed to analyze strict language opacity. Given the

nets modeling the plant and the secret, the verifier synchronizes the plant and the se-

cret keeping tracks of both sequences belonging to and not belonging to the secret. In

particular, thanks to the notion of minimal explanations there is no need to enumerate

all the secret/non-secret sequences. Therefore, the proposed approach is more efficient

than other methods.

5. Finally, given a system modeled with a finite automaton that is not current-state opaque

with respect to a given secret, we propose an approach to designing an optimal super-

visor that restricts the behavior of the system to ensure current-state opacity of the

controlled system. In other works, it is usually assumed that the set of events observ-

able by the intruder is included in the set of events observable by the supervisor, or

vice versa. Clearly, such an inclusion relation may not hold in general. Therefore, in

the thesis, we consider the case where the two sets of events are incomparable. A new
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structure, called augmented I-observer, is defined to compute the supremal sublan-

guage generated by the system that will not leak the secret. Based on the augmented

I-observer, a set of locally optimal supervisors can be synthesized such that the con-

trolled system is maximally permissive and current-state opaque with respect to the

given secret.

Finally, contributions of the thesis are summarized as conclusions, and future research on

observation structures of Petri nets and opacity problems in DESs is prospected.

Keywords: Discrete event system, Petri net, opacity, information security, au-

tomaton, supervisory control
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SOMMARIO

La sicurezza è un fondamentale requisito di sistemi quali l’Internet delle cose (Internet of

things), le reti di comunicazione e i sistemi informatici. In tali sistemi, alcune informazion-

i (dette segreti) non devono essere corrotte o acquisite da persone non autorizzate (dette

intrusi). Motivati da questa esigenza di sicurezza delle informazioni, negli ultimi anni nu-

merose nozioni di segretezza sono state formalizzate, quali la non-inferenza, l’anonimia,

l’opacità, etc. Tra queste, si è dimostrato che l’opacità è più generale di altre proprietà,

consentendo ad esempio di descrivere anche non-inferenza e anonimia. L’opacità implica

l’assenza di un particolare flusso di informazioni, o più precisamente, l’impossibilità per un

intruso di determinare la veridicità di un predicato che descrive il segreto sulla base delle sue

osservazioni. Nei sistemi ad eventi discreti (SED), a seconda della definizione di segreto,

l’opacità viene tipicamente classificata in opacità dello stato corrente (current-state opacity),

opacità dello stato iniziale (initial-state opacity), opacità del linguaggio (language-based

opacity).

L’evoluzione di un sistema non è solitamentedirettamentemisurabile da un osservatore es-

terno (compreso l’intruso) a causa delle limitazioni insite nei sensori e nei canali di comuni-

cazione, ma può solo essere parzialmente osservata. Nel caso dei sistemi ad eventi discreti

sono necessari modelli che consentano di descrivere precisamente diverse modalità di os-

servazione dei sistemi. Al contempo, a seguito del problema dell’esplosione dello spazio

di stato, l’analisi dell’opacità attraverso l’enumerazione di tutti gli stati non è applicabile a

sistemi di elevate dimensioni. È necessario sviluppare algoritmi di verifica più efficaci dal

punto di vista computazionale. Infine, dato un sistema che non è opaco, un ulteriore prob-

lema consiste nel progettare un controllore che ne restringa il comportamento in modo tale

che il sistema controllato sia opaco e massimamente permissivo.

Questa tesi si focalizza sulle strutture di osservazione e sui problemi di opacità nei SED. I

principali risultati della ricerca sono brevemente riassunti nei seguenti punti.

1. Le reti di Petri sono un formalismo grafico e matematico applicabile a molti sistemi

e uno strumento efficace per descrivere e studiare i SED. In questa tesi vengono in-

trodotte due classi di reti di Petri: le reti di Petri etichettate con uscite (labeled Petri

nets with outputs) e le reti di Petri etichettate adattative (adaptive labeled Petri nets),

al fine di meglio formalizzare e generalizzare le principali strutture di osservazione
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delle reti di Petri. Paragonate con altri modelli di reti di Petri, le due classi di gener-

atori hanno generalmente un più alto potere di modellazione. Allo scopo di definire i

legami tra i diversi formalismi, noi presentiamo anche delle procedure generali per la

trasformazione tra modelli e degli algoritmi che convertano, se possibile, una struttura

in un’altra struttura.

2. L’opacità dello stato corrente, l’opacità dello stato iniziale e l’opacità del linguaggio

sono definite formalmente nell’ambito delle reti di Petri. Successivamente, vengono

studiate le loro differenze rispetto alle proprietà analoghe riferite agli automi. Inoltre,

la nozione di opacità del linguaggio viene generalizzata al caso di opacità stretta del

linguaggio per affrontare il caso in cui l’intruso sia solo interessato ad un sottoinsieme

di transizioni.

3. È noto che la verifica dell’opacità dello stato corrente, dello stato iniziale e del lin-

guaggio sono problemi decidibili nei SED a stati finiti. Tuttavia, la decidibilità di tali

problemi nell’ambito delle reti di Petri richiedeva ulteriori indagini. In questa tesi è

stato dimostrato che tali probleminon sono decidibili per sistemi di reti di Petri arbi-

trari. Ossia, non esiste alcun algoritmo generale che fornisca la risposta corretta al

problema di stabilire se un dato sistema di rete di Petri è opaco rispetto allo stato cor-

rente (o allo stato iniziale, o al linguaggio). Pertanto, ha senso restringere l’attenzione

ai soli sistemi limitati.

4. Per i sistemi limitati, i metodi esistenti di verifica dell’opacità richiedono una enumer-

azione dell’insieme degli stati consistenti con una data osservazione. Ovviamente,

per sistemi di grandi dimensioni il problema dell’esplosione dello stato diventa in-

sormontabile. Traendo beneficio dalla nozione di marcatura di base, in questa tesi

viene proposto un metodo praticamente efficiente per la verifica dell’opacità dello s-

tato corrente e dello stato iniziale. Tale approccio consente di evitare l’enumerazione

esaustiva dello spazio di stato, limitando l’enumerazione ad un solo sottoinsieme del-

lo spazio di stato, ossia le marcature di base. Tutte le altre marcature possono poi

essere descritte a partire dalle marcature di base, attraverso un insieme di vincoli lin-

eari. Risolvendo un certo numero di problemi di programmazione lineare intera, è

possibile quindi verificare l’opacità dello stato corrente e dello stato iniziale. Inoltre,

la definizione di una struttura, detta verifier, consente di analizzare l’opacità stretta del

linguaggio. Date le reti che modellano il sistema e il segreto, il verifier sincronizza il

sistema e il segreto tenendo traccia di sia delle sequenze che appartengono al segreto
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che di quelle che non vi appartengono. In particolare, grazie alla nozione di spie-

gazioni minime, non vi è necessità di enumerare le sequenze segrete e non. Pertanto

l’approccio proposto si rivela più efficace di altri metodi in letteratura.

5. Infine, dato un sistema modellato mediante un automa a stati finiti non opaco rispetto

allo stato corrente e ad un dato segreto, viene proposto un approccio per progettare

un supervisore ottimo che restringe il comportamento del sistema al fine di assicu-

rare l’opacità del sistema controllato rispetto allo stato corrente. In altri articoli in

letteratura viene assunto che l’insieme degli eventi osservabili dall’intruso sia incluso

nell’insieme degli eventi osservabili dal supervisore, o viceversa. Chiaramente tale re-

lazione di inclusione può non valere in generale. Pertanto, in questa tesi si considera il

caso in cui i due insiemi non sono necessariamente comparabili. Una nuova struttura

della I-osservatore aumentato (augmented I-observer) viene definita per calcolare il

sottolinguaggio supremo generato dal sistema che non lascia trapelare il segreto. Sul-

la base dell’I-osservatore aumentato, è possibile sintetizzare un insieme di supervisori

localmente ottimi che garantiscono che il sistema controllato sia massimamente per-

missivo e opaco rispetto allo stato corrente e ad un dato segreto.

Infine, i contributi della tesi sono ricapitolati e sono indicate le linee di ricerca futura relative

alle strutture di osservazione delle reti di Petri e ai problemi di opacità nei SED.

Parole Chiave: Sistema a eventi discreti, reti di Petri, opacità, sicurezza dell’informazione,

automa, controllo supervisivo
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Chapter 1 Introduction

Chapter 1 Introduction

Cyberinfrastructures, ranging from Internet and mobile communication networks to

national defense and health service systems, are integrated into every aspect of our lives.

Motivated by the concern about cybersecurity, various notions of secrecy have been formu-

lated, such as noninterference [1, 2], anonymity [3] and opacity [4]. The notion of opacity

introduced in [5] for discrete event systems (DESs) formalizes the absence of information

flow, or more precisely, the impossibility for an intruder to infer the truth of the secret in-

formation. Besides describing secrecy of a system, opacity is proven capable of formulating

observability, diagnosability and detectability of a system [6]. Thus, opacity has a wide

range of application. Over the last decade, opacity problems in DESs have become a very

fertile field of research [7].

A discrete event system (or event-driven system), different from time-driven systems,

is a dynamic system with a discrete state space and piecewise constant state trajectories that

evolve in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of

physical events that determine a state transition. Many systems, particularly technological

ones (e.g., queueing systems, computer systems), are in fact discrete state systems. Note

that even if this is not the case, for many applications of interest a discrete-state view of a

complex system may be necessary.

Different models, like finite automata and Petri nets, are used for specification, verifi-

cation, synthesis as well as for analysis and evaluation of different qualitative and quantita-

tive properties of existing physical systems. In particular, Petri nets (PNs) are a graphical

and mathematical tool applicable to many systems and a promising tool for describing and

studying systems (e.g., information processing systems and automated manufacturing sys-

tems) that are characterized as being concurrent, asynchronous, distributed, parallel, nonde-

terministic, and/or stochastic. The issue of representing behavior of DESs using appropriate

modeling formalisms is a key issue for performing analysis and control of DESs.

In this thesis, we study, first the modeling of DESs using Petri nets. In particular,

we consider DESs where some events or states are unobservable. Then we study opaci-

ty problems in DESs. More precisely, opacity verification and enforcement problems are

considered. Given a DES that is modeled by a Petri net, the opacity verification problem

consists in determining whether the system is opaque with respect to a given secret or not.

On the other hand, the opacity enforcement problem consists in turning a system that is not

1
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opaque into opaque. In this chapter, we first present an overview on these two topics and

then we give a motivation for our studies. Finally, we describe the structure of the thesis and

its contributions.

1.1 Observation Structures for Petri Net Generators

The behavior of a logical, i.e., untimed, DESs can be described in terms of sequences

that specify the order of event occurrences. Such behavior can be represented by means of

a formal language whose alphabet is the event set of a DES and the event sequences are

words in that language. The issue of representing languages using appropriate modeling

formalisms is a key issue for performing analysis and control of DESs [8].

It is often assumed that the initial state of a system is known but the system dynamics

is not perfectly known due to partial observations provided by sensors. The set of events

is partitioned into two disjoint sets: observable events whose occurrences can be detected

by sensors and unobservable ones whose occurrences cannot be detected. In this thesis,

Petri net generators are considered, where the state is given by token distribution on places,

and events are represented by transitions. A classical Petri net generator to model system-

s with the aforementioned observation structure is the so called labeled Petri net (LPN).

LPNs have been adopted by many researchers to analyze and control a DES [5, 9–12]. In

[13–17] a more general model where state information may also be provided by sensors is

considered: in particular they assume that some places of a Petri net may be observable, i.e.,

the number of tokens that they contain can be measured. In this case, there are two types

of observations: labels of transitions and components of markings. Such a class of Petri

net generators is usually called partially observed Petri nets (POPNs) [16, 17]. This class

of generators is extended in [18] considering observations that are linear functions of the

marking and thus can model sensors that are not able to provide precise measurements of

the state components but only information such as the total amount of available resources

regardless of their distribution. However, this type of observation cannot describe affine or

general nonlinear functions of the marking.

To cover all cases of practical interest where complex observations are possible, it is

meaningful to better formalize and generalize current Petri net observation structures. More-

over, Ru and Hadjicostis [16] show that for any POPN there exists an observation equivalent

LPN. We believe that it is needed to study the conversion procedure among different classes

of Petri net generators for following reasons: finding a conversion procedure between two

different formalisms has a theoretical interest per se and in the literature several approach-
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es of this type have been proposed for models of concurrent systems (e.g., communicating

sequential processes, place/transition nets, process algebra) or performance models (e.g.,

stochastic Petri nets, queueing networks).

1.2 Opacity Problems in DESs

Opacity is a general information flow property that characterizes whether a given “se-

cret” behavior of a system cannot be inferred by an outsider, further called the intruder. It is

assumed that the intruder knows the structure of the system but only has partial observabili-

ty. Therefore, based on its observation, the intruder can estimate the behavior of the system.

The system is opaque with respect to a given secret if the estimate of the intruder never falls

in the secret. In other words, no matter what observing, the intruder always has uncertainty

about whether a secret behavior has occurred. In DESs, the secret can be a set of states or a

language. Depending on the definition of secret, opacity properties can be categorized into

two main classes: state-based opacity and language-based opacity.

Except the earlier work of Bryans, et al. [5] that is carried out in the framework of

Petri nets, most work related to opacity in DESs is studies in the framework of finite au-

tomata. In automata, different notions of opacity have been defined, such as current-state

opacity, initial-state opacity, k-step opacity, language opacity, strong language opacity, weak

language opacity, etc. [6, 19–22]. In the framework of automata two types of observation

masks have been investigated in the literature: static and dynamic [6, 23]. A mask is static if

the set of events that the intruder can observe is fixed. It is dynamic if the set of observable

events changes with the state or the trace of the system. Obviously, the dynamic mask is a

generalization of the static one. In [22], it is proven that in automata current-state opacity,

initial-state opacity, initial-and-final-state opacity, and language opacity are transformable

in polynomial time. In the thesis, we mainly study three opacity properties: current-state

opacity (CSO), initial-state opacity (ISO), and language opacity (LO).

• The secret is defined as a set of states. A system is current-state opaque if the intruder

is never able to establish if the current state of the system is within the set of secret

states.

• The secret is also defined as a set of states. A system is initial-state opaque if the

intruder cannot establish if the evolution of the system has started from a secret state.

• In the case of language opacity, the secret is defined as a language, i.e., a set of event
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sequences. A system is language opaque if the intruder cannot establish if the evolu-

tion of the system belongs to the secret.

Few similar opacity notions are defined in Petri nets [5], which extend the modeling power

of finite automata and provide structural and mathematical advantages of modeling and ana-

lyzing the system. It is worthwhile to formalize the notions of opacity that have been widely

studied in automata in Petri nets, and to further investigate the opacity problems.

Opacity problems consist in two aspects: opacity verification and opacity enforcement.

In the remainder of this section, we provide a comprehensive review on work considering

DESs and relating to the opacity problems.

1.2.1 Opacity Verification

The opacity verification problem is of determining whether a system is opaque with

respect to a given secret or not. It has been shown that current-state, initial-state and lan-

guage opacity verification problems are decidable in finite automata [24]. Nonetheless, the

current-state opacity verification problem in probabilistic finite automata and language opac-

ity in timed automata are undecidable [25, 26]. Bryans et al. [5] prove that for bounded Petri

nets current-state, initial-state opacity and language opacity verification problems are decid-

able. Moreover, some opacity verification problems in transition systems are undecidable,

as well as the B-initial-state opacity problem in Petri nets [24]. Decidability of opacity

verification problems in different systems is surveyed in [27]. However, the decidability

of current-state, initial-state and language opacity verification problems in Petri nets still

require further investigation.

Methods for verifying opacity are proposed by many researchers in the area of DESs

[5, 19, 22, 25, 28–30]. In a system modeled by a nondeterministic finite automaton (NFA),

the verification of both current-state opacity and initial-state opacity is PSPACE-complete [7,

28, 31], with respect to the number n of states in the NFA. To verify current-state opacity one

needs to convert the NFA into an equivalent deterministic finite automaton (DFA), which has

a complexity of O(2n) [19, 22]. Initial-state opacity in NFA can be verified by the method

proposed by Saboori and Hadjicostis [28]. In their approach a DFA called the trellis-based

initial-state estimator is constructed with a complexity of O(2n
2
). A state of the estimator

reached from the initial state following a wordw includes all pairs (initial state, current state)

of the NFA such that the current state may be reached from the corresponding initial state

observing w. As long as an initial-state estimator is built, there is no need to reconstruct it

when the secret changes. In their improved method [28], verifiers are introduced to study
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initial-state opacity. The verifier does not precisely estimate the initial state but only records

the possible current states and if such states are reachable from secret/non-secret states, and

hence the complexity is reduced to O(4n). Furthermore, Wu and Lafortune [22] show that

the observer of the corresponding reverse automaton can be used to estimate the initial state,

which further reduces the complexity of verifying initial-state opacity to O(2n). In [6], the

notions of strong language opacity and weak language opacity are defined in automata. It

is shown that strong language opacity can be verified in complexity of O(4n). Polynomial

algorithms to check weak language opacity of an automaton are proposed in [32]. On the

contrary, providing an efficient algorithm to check other language-based opacity is still an

open problem.

Petri nets have been proposed as a fundamental model for DESs in a wide variety of

applications. Many problems such as supervisory control, fault diagnosis, etc. have been

solved using Petri net models, providing efficient and well founded approaches [33–35].

Nevertheless, few works use this model to deal with opacity. Apart from the earlier work of

Bryans et al. [5, 24], so far no efficient opacity analysis method has been reported yet. For

bounded Petri nets we may construct its reachability graph (RG) that is an NFA, so that the

aforementioned approaches could be applied. However, constructing the RG will inevitably

suffer from the state explosion that also characterizes automaton models. The verification

of language-based opacity in Petri nets has never been discussed before, the only way to

solve the problem in bounded Petri nets was to construct the RG and apply the approach in

[6]. Moreover, there exist many practical cases where the intruder only cares about a subset

of transitions, which cannot be described by any existing language-based opacity directly.

As an example, in a defence system, the intruder may only care about the order and the

occurrence of some events rather than all the events. Therefore, it is meaningful to develop

a new notion of language-based opacity.

1.2.2 Opacity Enforcement

Given a system that is not opaque, the opacity enforcement problem consists in turning

the system into an opaque one. Approaches to opacity enforcement may rely on supervisory

control [36–40], dynamically restraining the observability of events [23], inserting additional

events in the output behavior of the system [41, 42] and the runtime validation technique

[30].

The authors of [23, 31] investigate the problem of synthesizing a dynamic observation

mask under which the system is current-state opaque (or language opaque). It is assumed

5



Doctoral Dissertation of XIDIAN UNIVERSITY

that the intruder knows not only the structure of the system but also the synthesized dynamic

observation mask. By reducing the problem to a safety two-player game problem, it shows

that the dynamic observation masks enforcing opacity can be computed in EXPTIME and

they can be finitely presented.

In [41], Wu and Lafortune propose the method of using insertion function. The inser-

tion function is a monitoring interface placed at the output of the system. It monitors the

system’s output behavior and inserts fictitious observable events to the output without inter-

acting with the system. To avoid causing suspicion, the modified output has to be consistent

with an existing behavior that does not reveal the secret. A finite structure called all inser-

tion structure is proposed to synthesize insertion functions enforcing current-state opacity.

In [42], assuming the intruder knows the implementation of the insertion function, the au-

thors further study the problem and propose an algorithm to compute the insertion function

that can be publicly known.

The aforementioned methods share the same idea of restricting the observability of the

intruder so that it is confused and the system is opaque. Therefore, the behavior of the

system would never be restricted. However, imposing dynamic observation functions or the

insertion functions may require extra costs as mentioned in [23, 43], or even impossible.

This leads us to supervisory control. Given a system that is not opaque with respect to a

given secret, the problem of opacity enforcement using supervisory control is to design an

optimal supervisor that restricts the behavior of the system such that the controlled system

is opaque and maximally permissive.

There is some related work on the design of supervisors to enforce opacity properties.

In [29], the authors consider enforcing language opacity and a set of intruders having d-

ifferent observations. They assume that all events are observable and controllable to the

supervisor, and showed that an optimal supervisor always exists. Considering the same lan-

guage opacity enforcement problem but with only one intruder, Dubreil et al. [37, 44] study

a more general case where the supervisor may observe a set of events different from the one

observed by the intruder in the presence of uncontrollable events. The authors of [39] pro-

pose methods for designing optimal supervisors to enforce two different opacity properties:

initial-state opacity and infinite-step opacity, with the assumption that the supervisor can

observe all events. More recently, the common assumption that all controllable events are

also observable [29, 37, 39, 44] is relaxed in [40] to enforce current-state opacity. However,

all these work [29, 37, 39, 40] assumes that the set of events observable by the intruder is

included in the set of events observable by the supervisor, or vise versa. Clearly, in practice,
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it is not always the case.

1.3 Organization and Contribution of the Thesis

The work of the thesis can be partitioned into two parts: Chapter 3, and Chapters 4 to

7, which relate to modeling of DESs and opacity problems in DESs, respectively, and the

two parts are not closely connected. The organization and main contributions of the thesis

are summarized as follows:

• Chapter 2. This chapter presents some basics on automata, Petri nets, and theory of

computation.

• Chapter 3. We consider in this chapter more general observation structures, by cor-

respondingly defining two new classes of Petri net generators: labeled Petri nets with

outputs (LPNOs) and adaptive labeled Petri nets (ALPNs). To compare the model-

ing power of different Petri net generators, the notion of observation equivalence is

proposed. Compared with other classes of Petri nets generators, ALPNs are shown to

be the class of bounded generators possessing the highest modeling power. Looking

for bridges between the different formalisms, we first present a general procedure to

convert a bounded LPNO into an equivalent ALPN or even into an equivalent labeled

Petri net (if any exists). Finally, we discuss the possibility of converting an unbounded

LPNO into an equivalent ALPN.

• Chapter 4. Definitions of current-state opacity, initial-state opacity, and language

opacity in automata have been recalled in this chapter. Furthermore, we formalize

the aforementioned opacity properties in labeled Petri nets (LPNs) and compare their

differences with ones in [5]. Finally, we define a new notion of language-based opac-

ity in Petri nets, called strict language opacity, which describes the scenario of the

intruder cares only a subset of transitions. Its relation with language opacity is also

studied.

• Chapter 5. The main contribution of this chapter consists in proving that current-state,

initial-state and language opacity verification problems are undecidable. All proofs

are carried out using reduction.

• Chapter 6. Novel approaches based on the analysis of basis reachability graph (BRG),

which is typically greatly smaller than the RG, are proposed to verify current-state

7
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opacity, initial-state opacity in LPNs. Moreover, if the secret is defined as the inter-

section of a series of generalized mutual exclusion constraints (GMECs), then current-

state opacity can be verified by solving a set of integer linear programming problems

(ILPPs) instead of exhaustively enumerating the unobservable reach of basis mark-

ings. If the incidence matrix is totally unimodular, then these ILPPs can be relaxed

to linear programming problems (LPPs). We show that if a certain assumption is sat-

isfied, initial-state opacity can be efficiently verified using the BRG. Otherwise, we

propose a modified BRG (MBRG) to verify initial-state opacity. A finite structure

called verifier is proposed to verify strict language opacity in LPNs under the as-

sumption that the intruder is interested in only observable transitions and the secret

is described by the generated language of a Petri net. Compared with other language

opacity verification approach, the proposed approach is of lower complexity. Finally,

we develop a MATLAB toolbox to implement most of the proposed algorithms.

• Chapter 7. We tackle the current-state opacity enforcement problem in the framework

of finite automata. No containment relation is assumed between the sets of events

observable by the intruder and by the supervisor. We call this general setting in-

comparable observations. Furthermore, we relax the assumption that all controllable

events are observable. A structure called augmented I-observer is constructed, and it is

shown that based on the augmented I-observer, the current-state opacity enforcement

problem with incomparable observations can be reduced to the problem of supervisory

control under partial observation. Thus, a set of locally optimal supervisors enforcing

current-state opacity can be synthesized.

• Chapter 8. We conclude the thesis and discuss the potential directions for future work.
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Chapter 2 Background

In this chapter we recall the formalism used in the thesis, namely automata and Petri

nets.

2.1 Automata

2.1.1 Automaton Models

Definition 2.1. A nondeterministic finite automaton (NFA) is a 5-tuple A = (X,E, δ, x0,

Xm), where X is a finite set of states, E is a set of events, δ : X × E ∪ {ε} → 2X is a

(partial) transition relation, x0 ∈ X is the initial state, and Xm ⊆ X is a set of marked

states. �

An automaton can be described by a graph in which each state corresponds to a node,

represented by a circle. The initial state is denoted by an arrow and a final state by a double

circle. We call ε the empty word. To be more general, there could be a set of initial states

X0 ⊆ X in A. Set E∗ is the set of finite strings composed of elements of E, including the

empty word. The transition relation δ can be extended to1 δ : X ×E∗ → 2X . We denote by

δ(x, σ)! the fact that σ ∈ E∗ is defined at x in A. If the transition relation in Definition 2.1

is a one to one function δ : X × E → X , then the automaton is called a deterministic finite

automaton (DFA). The transition function of a DFA can be extended to δ : X × E∗ → 2X

simply as: for all x ∈ X , δ(x, ε) = x and δ(x, σe) = δ(δ(x, σ), e) for σ ∈ E∗ and e ∈ E.

When there are no marked states, we write A = (X,E, δ, x0); when there is no initial state

is specified either, we write A = (X,E, δ). Throughout the thesis, we assume that all states

in an automaton are reachable from the initial state.
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Fig. 2.1 Nondeterministic finite automaton.

Table 2.1 Transition relation of the NFA in Fig. 2.1.
δ ε a b c

0 {0, 2} {1} - -
1 {1} - {3} -
2 {2} {4} - -
3 {1, 3} - - {3, 4}
4 {4} - {4} -

1For sake of simplicity, this procedure is not recalled here and we refer to [45] for details.
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Example 2.1. Fig. 2.1 shows the graphical structure of a NFA A = (X,E, δ, x0, Xm) with

X = {0, 1, 2, 3, 4}, E = {a, b, c}, x0 = 0, Xm = {4}. Its transition relation is given by

Table 2.1. Fig. 2.2 shows a DFA A = (X,E, δ, x0) with X = {0, 1}, E = {a, b}, and

x0 = 0. Its transition function is given by Table 2.2. �
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Fig. 2.2 Deterministic finite automaton.

Table 2.2 Transition function of the DFA in Fig. 2.2.
δ a b

0 1 -
1 1 0

Definition 2.2. Given an NFAA = (X,E, δ, x0, Xm), its generated language2 is defined as

L(A) = {σ ∈ E∗|δ(x0, σ)!}.

Its marked language is defined as

Lm(A) = {σ ∈ E∗|δ(x0, σ) ∩Xm 6= ∅}. �

Note that if A is a DFA, then Lm(A) = {σ ∈ E∗|δ(x0, σ) ∈ Xm}. The language

generated from a given state x ∈ X of an automaton A = (X,E, δ, x0, Xm) is defined

as L(A, x) = {σ ∈ E∗|δ(x, σ)!}. Generally, given a set of states Y ⊆ X , we define

L(A, Y ) =
⋃
x∈Y L(A, x) the language generated from states in Y .

The prefix closure of a language L ⊆ E∗ is defined to be the language

L = {σ′ ∈ E∗|σ′σ′′ ∈ L for some σ′′ ∈ E∗}.

If L = L, we say L is prefix-closed. Clearly, the generated language of A is always prefix-

closed.

Example 2.2. Consider the NFA in Fig. 2.1. Its generated language is L(A) = {ε, a, ab, abc,
abb, . . .}, which is prefix-closed. The marked language of A is Lm(A) = L(A) \ {ε}.
Consider the DFA in Fig. 2.2. Its generated language is L(A) = {ε, a, aa, ab, aab, . . .}.

LetE = {a, b, c} andL = {abb, abc}. The prefix closure ofL isL = {ε, a, ab, abb, abc}.
Clearly, L 6= L, and thus L is not prefix-closed. �

Let E ′ ⊆ E be a subset of E. The natural projection of E on E ′ is PE′ : E → E ′,

defined as:

PE′(e) =

{
ε, if e ∈ {ε} ∪ (E \ E ′);
e, if e ∈ E ′;

2Thus A is also called a generator.
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and it can be extended to PE′ : E∗ → E ′∗ in a recursive manner: PE′(σe) = PE′(σ)PE′(e),

where σ ∈ E∗ and e ∈ E. Given a language L ⊆ E∗, PE′(L) =
⋃
σ∈L PE′(σ). The

inverse projection of PE′ is denoted by P−1E′ : E ′∗ → E∗ and is defined as P−1E′ (w) = {σ ∈
E∗|PE′(σ) = w}. Thus, the projection operator PE′ removes all the events that are not in E ′

from a string, while its inverse projection associates to a sequence w the set of strings whose

projection on E ′ is w.

Projection PE′ projects all events in E \ E ′ to the empty word, which models that

the occurrence of events in E ′ cannot be detected. Thus events in E ′ (resp., E \ E ′) are

called observable (resp., unobservable) events, PE′ is also called an observation mask, and

w = PE′(σ) is called an observation of σ ∈ E∗.

Example 2.3. Let E = {a, b, c}, E ′ = {a, b} and σ = acbcbbc. The projection of σ on E ′

is PE′(σ) = abbb. Let w = ab ∈ E ′∗. Then P−1E′ (w) = {ciacjbck} with i, j, k ∈ N =

{0, 1, 2, . . .}. �

2.1.2 Operations on Automata

In this section, we introduce three operations on automaton used in the thesis: re-

verse automata, observer automata, and parallel composition. By operating on the automa-

ton/automata one can do some language operations or compose two or more automata, etc.

Reverse Automata

Given an automaton A = (X,E, δ), its reverse automaton Ar = (X,E, δr) is the

automaton obtained by reversing all arcs in A. Namely, given a state x and an event e ∈ E,

if x′ ∈ δ(x, e) holds in A then x ∈ δr(x′, e) holds in Ar. Furthermore, x′ ∈ δ(x, σ) holds in

A, if and only if x ∈ δr(x′, σ′) holds in Ar, where x, x′ ∈ X , σ ∈ E∗ and σ′ is its reverse.
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Fig. 2.3 DFA without specifying the initial state.
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Fig. 2.4 Reverse automaton of the DFA in Fig. 2.3.

Example 2.4. Consider the DFA A = (X,E, δ) in Fig. 2.3. Its reverse automaton Ar =

(X,E, δr) is shown in Fig. 2.4. We can see that in Ar, δr(1, acba) = 2, and δ(2, abca) = 1

in A. �
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Fig. 2.5 Two DFAs A1 (left) and A2 (right) in Example 2.5.
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Fig. 2.6 Parallel Composition between A1 and A2 in Fig. 2.5.

Parallel Composition

Parallel composition synthesizes several subsystems to an overall system. In this way,

the interaction between the various subsystems is modeled. For sake of simplicity, consider

two DFAs A1 = (X1, E1, δ1, x01, Xm1) and A2 = (X2, E2, δ2, x02, Xm2). The parallel com-

position of A1 and A2 is a DFA A1||A2 = (X1 ×X2, E1 ∪E2, δ12, (x01, x02), Xm1 ×Xm2),

where for (x1, x2) ∈ X1 ×X2 and e ∈ E1 ∪ E2

δ12((x1, x2), e) =

 (δ1(x1, e), x2), if e ∈ E1 \ E2 and δ1(x1, e)!
(δ1(x1, e), δ2(x2, e)), if e ∈ E1 ∩ E2, δ1(x1, e)! and δ2(x2, e)!
(x1, δ2(x2, e)), if e ∈ E2 \ E1 and δ2(x2, e)!

Example 2.5. Consider the two DFAs A1 and A2 in Fig. 2.5. Their parallel composition

A1||A2 is shown in Fig. 2.6. �

Parallel composition A1||A2 has the following properties:

1. For i = 1, 2, PEi
(L(A1||A2)) = L(Ai), and

2. PEi
(Lm(A1||A2)) = Lm(Ai),

where PEi
is the natural projection from E1∪E2 to Ei. We can see that the maximal number

of states of A1||A2 is |X1| × |X2|.
Observer Automata

Observer automata is an important tool in the study of opacity problems and we will use

them frequently in the rest of the thesis. An observer automaton is a deterministic version
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of a given NFA such that the generated and marked languages are correspondingly equiva-

lent. Thus, the observer automaton is also called the equivalent DFA, and the procedure of

computing the observer automaton is called determinization.

Definition 2.3. Given an NFA A = (X,E, δ, x0, Xm), a state x ∈ X and an event e ∈ E,

the unobservable reach (or ε-reach) of x is

Rε(x) = {x′ ∈ X|x′ ∈ δ(x, ε)},

the set of states that can be reached from x by empty word. The e-reach of x is

Re(x) =
⋃

x′∈δ(x,e)

Rε(x
′)

the set of states that can reach from x by strings starting with e and containing only one e

and empty word. �

Example 2.6. Consider the NFA in Fig. 2.1. Rε(3) = {1, 3} and Rε(4) = {4}. Rc(3) =⋃
x∈δ(3,c)Rε(x) = Rε(3) ∪Rε(4) = {1, 3, 4}. �

Given a NFA A = (X,E, δ, x0, Xm) and a subset E ′ ⊆ E of events, its observer

automaton A′ = (X ′, E ′, δ′, x′0, X
′
m) with respect to E ′ can be built following Algorithm 1.

We can see that each state of the observer automaton is a set of states in A, i.e., a

subset of X . Therefore, in the worst case the number of states of A′ is 2|X|. The important

properties of A′ are that:

1. A′ is a DFA.

2. PE′(L(A)) = L(A′).

3. PE′(Lm(A)) = Lm(A′).

4. x ∈ δ(x0, σ)⇔ x ∈ δ′(x′0, σ′), where σ ∈ E∗ and σ′ = PE′(σ).

Example 2.7. Consider the NFA in Fig. 2.1. Let E ′ = {a, b}. First, replace event c with

ε. x′0 = Rε(0) = {0, 2} ∩ Xm = ∅, and X ′ = {x′0}. Therefore, x′0 /∈ X ′m. At Step 8 of

Algorithm 1:

• Select B = x′0 and e = a. B′ = Ra(0) ∪ Ra(2) = {1, 4} ∩ Xm 6= ∅. Therefore,

δ′(x′0, a) = {1, 4} = x′1, X
′
m = {x′1} and X ′ = {x′0(old), x′1}.

13



Doctoral Dissertation of XIDIAN UNIVERSITY

Algorithm 1 Construction of the observer automaton
Input: A NFA A = (X,E, δ, x0, Xm) and a set E ′ ⊆ E
Output: The observer automaton A′ = (X ′, E ′, δ′, x′0, X

′
m) wrt E ′

1: Replace all events not in E ′ with ε;
2: x′0 := Rε(x0);
3: X ′ := {x′0};
4: if x′0 ∩Xm 6= ∅, then
5: X ′m := {x′0};
6: else
7: X ′m := ∅;
8: end if
9: while ∃B ∈ X ′ with no tag, do

10: for all e ∈ E ′ : ∃x ∈ B, δ(x, e)!, do
11: B′ :=

⋃
x∈B Re(x);

12: if B′ /∈ X ′, then
13: X ′ := X ′ ∪ {B′};
14: if B′ ∩Xm 6= ∅, then
15: X ′m := X ′m ∪ {B′};
16: end if
17: end if
18: δ′(B, e) = B′;
19: end for
20: Tag B “old”;
21: end while
22: Remove all tags.
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Fig. 2.7 Observer automaton of the NFA wrt E′ = {a, b} in Fig. 2.1.

• Select B = x′1 and e = b. B′ = Rb(1) ∪ Rb(4) = {1, 3, 4} ∩ Xm 6= ∅. Therefore,

δ′(x′1, b) = {1, 3, 4} = x′2, X
′
m = {x′1, x′2} and X ′ = {x′0(old), x′1(old), x′2}.

• SelectB = x′2. For e = b,B′ = Rb(1)∪Rb(3)∪Rb(4) = x′2. Therefore, δ′(x′2, b) = x′2.

We can go to Step 21 as all states in X ′ are tagged as “old”.

The obtained observer automaton A′ wrt E ′ is shown in Fig. 2.7. Clearly, A′ is a DFA,

PE′(L(A)) = L(A′) and PE′(Lm(A)) = Lm(A′). Let σ = abc. Then σ′ = PE′(σ) = ab. In

A′, δ′(x′0, ab) = {1, 3, 4}. Namely, the state reached by abc in A could be 1, 3, or 4. �

In [22] a special observer automaton is proposed: initial-state estimator. Given a NFA

A = (X,E, δ), its initial-state estimator Ae = (X,E ′, δe, x0) wrt E ′ ⊆ E is the observer
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automaton wrt E ′ of its reverse automaton Ar, where X ⊆ X and x0 = X .

Let A = (X,E, δ) be an NFA, Ae = (X,E ′, δe, x0) be its initial-state estimator wrt

E ′, and w ∈ E ′∗. There exists x ∈ X and σ ∈ E∗ such that δ(x, σ)! and PE′(σ) = w iff

δ(x0, w
′) = x is defined in Ae such that x ∈ x, where w′ is the reverse of w.

In words, the state reached by a word w′ in Ae is the set of states from which the word

w can be generated in A, where w′ is the reverse of w. This is the reason why Ae is called

the initial-state estimator of A.
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Fig. 2.8 Initial-state estimator Ae wrt E′ = {a, b}.

Example 2.8. Consider the DFA in Fig. 2.3 and let E ′ = {a, b}. Its initial-state estimator

wrt E ′, i.e., the observer of Ar wrt E ′, is shown in Fig. 2.8. Suppose w′ = aab. Then

δe(x0, w
′) = {1}. Therefore, the word baa is generated from state 1 in A. �

2.2 Petri Nets

2.2.1 Petri Net Models

Definition 2.4. A Petri net (PN) is a 4-tuple N = (P, T, Pre, Post), where P is a set of

places, graphically represented by circles; T is a set of transitions, graphically represented

by bars; Pre : P ×T → N and Post : P ×T → N are the pre- and post-incidence functions

that specify the weighted arcs directed from places to transitions and from transitions to

places, respectively. We denote them as m × n-dimensional matrices, where m = |P | and

n = |T |, and for instance Pre(p, t) = k denotes the arc with weight k from place p to t. The

incidence matrix of a net is denoted by C = Post− Pre. �

The input and output sets of a node x ∈ P ∪ T are denoted by •x and x•, respectively.

A Petri net N = (P, T, Pre, Post) is a state machine (resp., marked graph) if ∀t ∈ T ,

|•t| = |t•| ≤ 1 (resp., ∀p ∈ P , |•p| = |p•| ≤ 1). A Petri net is said to be acyclic if there are

no oriented cycles.
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A marking is a function M : P → N that assigns to each place a nonnegative integer

number of tokens, graphically represented by black dots. We denote a marking as a vector

M ∈ Nm, and the number of tokens in place p is denoted by M(p). A marking is also

presented as M =
∑

p∈P M(p) · p. A Petri net system 〈N,M0〉 is a net N with initial

marking M0.
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Fig. 2.9 Petri net system.

Example 2.9. Fig. 2.9 shows a PN system 〈N,M0〉 with M0 = 2p2 + p4 (or denoted as

M0 = [0 2 0 1]T ), P = {p1, p2, p3, p4}, T = {t1, t2, t3},

Pre =


1 0 0
0 2 0
0 1 0
0 0 1

 , and Post =


0 2 0
1 0 0
0 0 1
0 1 0

 .
Its incidence matrix is

C =


−1 2 0
1 −2 0
0 −1 1
0 1 −1

 .
Consider p2 and t2. The set of input transitions of p2 is •p2 = {t1}, and the set of output

transitions of p2 is p•2 = {t2}. The input places of t2 are •t2 = {p2, p3}, and the output places

of t2 are t•2 = {p1, p4}. The Petri net system is not acyclic because there are oriented cycles,

e.g., p1t1p2t2p1. �

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new

marking3 M ′ = M + C(·, t). We write M [σ〉 to denote that the sequence of transitions

σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote that the firing of σ yields M ′.

A marking M is reachable in 〈N,M0〉 if there exists a sequence σ such that M0[σ〉M .

Given a sequence σ ∈ T ∗, the function π : T ∗ → Nn associates with σ the Parikh vector

y = π(σ) ∈ Nn, i.e., y(t) = k if transition t appears k times in σ. If σ is enabled at M0, the

reachable marking of firing σ can be computed by M = M0 + C · π(σ).
3Given a matrix A, we use A(·, t) to denote the column corresponding to transition t.
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Fig. 2.10 RG of the PN system in Fig. 2.9.

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉,
denoted by R(N,M0). A Petri net system is bounded if there exists a non-negative integer

k ∈ N such that for any place p ∈ P and any reachable marking M ∈ R(N,M0), M(p) ≤ k

holds.

Given a bounded PN, its reachability set R(N,M0) can be graphically represented by

the reachability graph (RG) that is a directed graph whose nodes are reachable markings

and arcs are tagged by transitions in T . If M1[t〉M2 and M1,M2 ∈ R(N,M0), then M1 and

M2 are two nodes in the RG and there is an arc from M1 to M2 tagged with t.

Theorem 2.1. [46] Let 〈N,M0〉 be a PN system where N is an acyclic PN.

(i) If the vector y ∈ Nn satisfies the equation M0 + C · y ≥ ~0, there exists a firing

sequence σ firable from M0 whose firing vector is π(σ) = y.

(ii) A marking M is reachable from M0 iff there exists a nonnegative integer solution y

satisfying the state equation M = M0 + C · y.

Example 2.10. Consider the PN system in Fig. 2.9, which is not acyclic. At M0 only t3 is

enabled and the firing of t3 yields M1 = [0 2 0 1]T + [0 0 1 − 1]T = [0 2 1 0]T . Let

σ = t3t2t3, which is enabled at M0. Then y = π(σ) = [0 1 2]T and the reachable marking is

M = M0 + C · y = [2 0 1 0]T . The maximal number of tokens in a place is 2 and thus the

PN system is bounded. The RG of the PN system is shown in Fig. 2.10. �

Definition 2.5. Given a PN system 〈N,M0〉 and a markingM , we define the set of transition

sequences enabled at M as

L(N,M) = {σ ∈ T ∗|M [σ〉}.
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Furthermore, given a set of markings Y ⊆ R(N,M0), we define

L(N, Y ) =
⋃
M∈Y

L(N,M)

the set of transition sequences enabled at markings in Y . �

Example 2.11. Consider the PN system in Fig. 2.9. L(N,M0) = {t3, t3t2, t3t2t1, . . .}. Let

M = p1+p2+p4 and Y = {M0,M}. ThenL(N,M) = {t1, t1t3, t1t3t2, . . .} andL(N, Y ) =

L(N,M0) ∪ L(N,M). �

2.2.2 Labeled Petri Nets

Definition 2.6. A labeled Petri net (LPN) system is a 4-tuple G = (N,M0,Σ, `), where

〈N,M0〉 is a Petri net system, Σ is an alphabet (a set of labels), and ` : T → Σ ∪ {ε} is a

labeling function that assigns to each transition t ∈ T either a symbol from Σ or the empty

word ε. �

The set of transitions in an LPN system can be partitioned into two disjoint sets T =

To∪Tu, where To = {t ∈ T |`(t) ∈ Σ} is the set of observable transitions, whose occurrence

can be detected, and Tu = T \ To = {t ∈ T |`(t) = ε} is the set of unobservable/silent

transitions, whose occurrence cannot be detected.

Definition 2.7. Given a net N = (P, T, Pre, Post), and the set of unobservable transitions

Tu ⊆ T , the Tu-induced (or unobservable) subnet of N is the new net N ′ = (P, Tu, P re
′,

Post′), where Pre′ and Post′ are the restriction of Pre and Post to Tu. The net N ′ can be

thought as obtained from N removing all transitions in T \ Tu. The incidence matrix of N ′

is denoted as Cu = Post′ − Pre′. �
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Fig. 2.11 Labeled Petri net system.
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Fig. 2.12 Tu-induced subnet of the LPN in Fig. 2.11.
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Example 2.12. An LPN system G = (N,M0,Σ, `) is shown in Fig. 2.11 with Σ = {a, b},
`(t1) = a, `(t3) = b, and `(t2) = `(t4) = `(t5) = ε. Thus To = {t1, t3} and Tu = {t2, t4, t5}.
Its Tu-induced subnet N ′ is shown in Fig. 2.12. The incidence matrix of N ′ is

Cu =


0 0 1
−2 0 0
0 −1 0
1 1 −1

 .
Since there is no cycle in N ′, the Tu-induced subnet is acyclic. �

The labeling function can be extended to firing sequences ` : T ∗ → Σ∗, i.e., `(σt) =

`(σ)`(t) with σ ∈ T ∗ and t ∈ T . The labeling function of an LPN systemG = (N,M0,Σ, `)

can be classified as follows

• Free: if all transitions are labeled distinctly, namely a different label is associated to

each transition, and no transition is labeled with the empty word.

• Deterministic: if no transition is labeled with the empty word, and the following con-

dition holds: for all t, t′ ∈ T , with t 6= t′, and for allM ∈ R(N,M0) : M [t〉∧M [t′〉 ⇒
[`(t) 6= `(t′) ∨ [C(·, t) = C(·, t′)], i.e., two transitions simultaneously enabled may

not share the same label or the two markings reached from M by firing t and t′ are the

same. This ensures that the knowledge of the firing label `(t) is sufficient to recon-

struct the marking that the firing of t yields.

• λ-free4: if no transition is labeled with the empty word.

• Arbitrary: if there is no restriction posed on the labeling function.

Note that all types of labeling only depend on the structure of the net, i.e., not related

to M0, but for deterministic labeling that depends both on the structure and behavior of the

net. Clearly, PN systems can be regarded as a particular case of LPN systems, where the

labeling function is free and Σ = T . If it is not specified, all labeling functions considered

in the thesis are arbitrary.

Definition 2.8. Given an LPN system G = (N,M0,Σ, `) and a marking M ∈ R(N,M0),

we define the language generated from M as

L(G,M) = {w ∈ Σ∗|∃σ ∈ L(N,M) and `(σ) = w}.
4In the PN literature, the empty word is denoted λ, while in the formal language literature it is denoted ε. In the thesis

we denote the empty word ε but, to keep consistent with the PN literature, we still use the term λ-free for a non erasing
labeling function ` : T → Σ.
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In particular, L(G,M0) is called the the generated language5 of G. Furthermore, given a set

of markings Y ⊆ R(N,M0) of G, we define

L(G, Y ) =
⋃
M∈Y

L(N,M)

the language generated from markings in Y . �

Given a language, if there exists a free- (resp., deterministic-, λ-free-, arbitrary-) labeled

Petri net system that can generate the language, then the language is called a free (resp.,

deterministic, λ-free, arbitrary) Petri net language.

Given an LPN system G = (N,M0,Σ, `), and a word w ∈ Σ∗, the following definition

defines the set of transition sequences that may produce w, the set of markings reached after

w generated, and the set of markings from which w could be generated, respectively.

Definition 2.9. Let G = (N,M0,Σ, `) be an LPN system, w ∈ Σ∗ a word. We define

S(w) = {σ ∈ L(N,M0)|`(σ) = w}

as the set of firing sequences consistent with w,

C(w) = {M ∈ Nm|∃σ ∈ S(w) : M0[σ〉M}

as the set of markings consistent with w, and

I(w) = {M ∈ R(N,M0)|∃σ ∈ T ∗ : M [σ〉 and `(σ) = w}

as the set of markings generating w. �

Example 2.13. Consider the LPN system in Fig. 2.11. Letw = ab. Then S(w) = {t2t4t5t5t1t3,
t4t2t5t5t1t3, t2t5t4t5t1t3, t4t5t2t5t1t3, t2t5t1t4t5t3, . . .}, C(w) = {2p2 + p3, 2p3, p3 + p4, p3 +

p1, 2p2 + p4, 2p2 + p1, 2p4, p1 + p4, 2p1}, and I(w) = R(N,M0). �

2.3 Theory of Computation

We briefly review some concepts and results from the theory of computation that are

needed in the thesis. We refer the reader to [47] and [48] for more details.

5Thus G is called a Petri net generator.
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2.3.1 Decidability

A problem is described by giving i) a general description of its parameters, and ii) a

statement of what the solution is required to satisfy. An instance of a problem is obtained by

specifying particular values for all the problem parameters. In particular, a decision problem

is a problem whose solution is either “yes” or “no”. In other words, it is any arbitrary

yes-or-no question on an infinite set of inputs.

Algorithms are general, step-by-step procedures for solving problems. An algorithm is

said to solve a problem if that algorithm can be applied to any instance of the problem and

is guaranteed to output a solution for that instance. The Church-Turing thesis provides a

precise definition of algorithms, which also capture the computability of a function.

Definition 2.10. A problem is said to be decidable if it is possible to construct an algorithm

that always leads to a correct yes-or-no answer. �

In other words, for undecidable problems there is no algorithm that can be given at all to

solve them.

2.3.2 Problem Reduction and Complexity Classes

A reduction is a way of converting one problem (say Problem A) to another problem

(say Problem B) such that a solution to Problem B can be used to solve Problem A. Clearly,

if Problem A is reducible to Problem B6, then solving Problem A cannot be harder than

solving Problem B.

Problem reduction plays an important role in determining whether a problem is de-

cidable or not and later in classifying problems in complexity. In terms of decidability,

supposing Problem A is reducible to Problem B, we have the following conclusions:

• Problem A is not decidable⇒ Problem B is not decidable.

(Equivalently, Problem B is decidable⇒ Problem A is decidable.)

• Problem A is decidable,we cannot say anything about Problem B’s decidability.

To study computational problems, a powerful model, called Turing machine, was pro-

posed by Alan Turing in 1936. A Turing machine is a mathematical model of a general

computing machine. The Church-Turing thesis states that if a problem can be solved by an

algorithm, there exists a Turing machine that solves the problem.

6The complexity of reducing Problem A to Problem B should not be higher than that of solving Problem B.
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Fig. 2.13 Relation among complexity classes.

A complexity class is a set of problems of related complexity. Many complexity classes

can be defined by bounding the time or space used by the algorithm.

Definition 2.11. A problem is in

• class P, if it can be solved in polynomial time by a deterministic Turing machine;

• class NP, if it can be solved in polynomial time by a non-deterministic Turing machine;

• class PSPACE, if it can be solved by a deterministic Turing machine using polynomial

space;

• class EXPSPACE, if it can be solved by a deterministic Turing machine using expo-

nential space; �

The relation among complexity classes is shown in Fig. 2.13.

Definition 2.12. A problem is said to be NP-complete if i) it is in NP, and ii) any problem

in NP can be reduced to this problem in polynomial time. A problem is said to be NP-hard

if there exists a NP-complete problem that can be reduced to it in polynomial time. �

NP-complete or PSPACE-complete problems are considered to be intractable, i.e., there is

no known algorithm that can solve the problem efficiently.
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Chapter 3 Generalized Observation Structures for Petri Net
Generators

3.1 Introduction

In this chapter we study observation structures considered for Petri net generators. It is

known that labeled Petri nets describe the observation structure in which only the occurrence

of some transitions is observable, i.e., transitions in To. Two more general classes of Petri

net generators are considered: labeled Petri nets with outputs (LPNOs) and adaptive labeled

Petri nets (ALPNs).

• An LPNO can be thought of as a labeled Petri net endowed with additional state sen-

sors: an output function provides an observation that is an arbitrary function of the

current net marking. Therefore, in an LPNO there are two types of observations: even-

t observations generated by the labeling function and state observations generated by

the output function.

• An ALPN can be regarded as a labeled Petri net whose labeling function depends on

the current marking, i.e., the observation produced by a transition firing may change

as the net evolves.

We believe that each of these two classes of generators represents a useful modeling formal-

ism in the system design stage providing an intuitive way to capture the logical observation

structure (in terms of event and state sensors) needed to solve a control or optimization

problem.

To compare the modeling power among different classes of Petri net generators, the

notion of observation equivalence is proposed. Two Petri net generators are said to be

observation equivalent if i) they have the same net structure and, ii) for an arbitrary firing

sequence that occurs in the two generators, the state and sequence estimations reconstructed

the two observations are identical. We point out that the notion of observation equivalence

proposed in this chapter is not related to what the observer sees (e.g., the observed language)

but rather to what the observer can infer about the system’s dynamical evolution. Thus the

results presented herein are relevant to addressing a wide range of problems that are currently

investigated in the DES literature, such as state estimation,fault diagnosis or opacity [5, 11,

49].
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A class of Petri net generators (say Class A) is not observation equivalent to but strictly

observation weaker than another class (say Class B) means that there is no Petri net generator

in Class A that is equivalent to a Petri net generator in Class B. In other words, with the

same net structure the observation structure of generators in Class B can model sensors

that provide more accurate measures. Therefore, we say generators in Class B have higher

modeling power than those in Class A.

Ru and Hadjicostis [16] showed that for any partially observed Petri net there exists an

observation equivalent LPN. In the chapter, we generalize this result to the larger class of

LPNOs whose output function is an affine function, called labeled Petri nets with an affine

output function (LPNAFs). We also show that LPNOs and ALPNs have higher modeling

power than other classes of Petri net generators: LPNs and POPNs, and are not comparable

between them.

Finally, we restrict our attention to bounded Petri net generators that describe systems

with a finite state space. In this case we prove that any bounded LPNO can be converted into

an observation equivalent ALPN. This implies that ALPNs are the class of bounded Petri

net generators with higher modeling power. This motivates us to study the conversion from

bounded LPNOs into ALPNs. In particular, an algorithm to convert a bounded LPNO into

an observation equivalent ALPN is proposed. The algorithm relies on the vertex coloring

of a special graph and can be used to determine the ALPN with a minimal alphabet or,

if it exists, an LPN observation equivalent to the given bounded LPNO. A sufficient and

necessary condition for the existence of an LPN equivalent to a given bounded LPNO is also

developed. Finally, we show that in some cases the conversion is applicable to unbounded

LPNOs. Such a conversion procedure has its merit: if an automatic conversion procedure

from LPNOs to ALPNs is available, it is sufficient to derive approaches for analysis and

design of the most general class ALPNs rather than for each model. As a particular case,

in this conversion an LPN may be obtained and several results concerning this model have

already been presented in the literature [5, 9–12].

This chapter is organized as follows. Formal definitions of labeled Petri nets with

outputs and adaptive labeled Petri nets are presented in Section 3.2. In Section 3.3 we

formally state the notion of observation equivalence based on which the modeling power

between different classes of Petri net generators is compared. An algorithm that converts

a bounded LPNO into an observation equivalent ALPN is developed in Section 3.4 where

the number of labels of the observation equivalent ALPN is also discussed. Then in Section

3.5, a sufficient and necessary condition for the existence of the observation equivalent LPN
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to a bounded LPNO is reported, and the corresponding conversion algorithm is presented.

In Section 3.6 the conversion of unbounded LPNOs is studied. Finally, conclusions are

presented.

3.2 Petri Net Generators

3.2.1 Labeled Petri Nets (LPNs)

We consider the case in which an external agent (e.g., the supervisor in a supervisory

control problem, or the intruder in an opacity problem) that knows the initial marking and

the structure of the PN but observes the firing of transitions through a mask. A common

assumption is that of considering the mask as a projection from the set of transitions T to

an alphabet Σ which represents available sensors readings[11, 49, 50]. Such a mechanism

is illustrated in Fig. 3.1. The mask is possibly evasive, i.e., the output label assigned to a

transition may either be a symbol from the alphabet or the empty string ε to denote that the

firing of the transition does not produce an observable reading. A transition of the latter type

is said to be unobservable (or silent). Such an observation structure can be formalized as

labeled Petri nets (LPN), which has been defined in Definition 2.6. To be more clear, we

still recall its definition here and it is denoted as GL.

Definition 3.1. A labeled Petri net (LPN) is a generatorGL = (N,M0,Σ, `), where 〈N,M0〉
is a Petri net system, Σ is an alphabet, and ` : T → Σ∪{ε} is a labeling function that assigns

to each transition t ∈ T either a symbol from Σ or the empty word ε. �

Given a firing sequence σ, the corresponding observation generated by the observation

function is formally defined as follows.

Definition 3.2. Given an LPN GL = (N,M0,Σ, `), the observation function of GL is de-

fined as a mapping LL : T ∗ → Σ∗ that associates a firing sequence σ = t1t2 · · · tk with the

observation w = LL(σ) = `(t1)`(t2) · · · `(tk). �

For LPNs, its observation function is identical to the labeling function. Since we con-

sider more than one observation structures in this chapter, with a little abuse of notation, we

still define the observation function for LPNs.

P

NP

PSPACE

EXPSPACE

0

a

b

a

1 3

2 b
ε

ε

c

0

2

1

a a

b

c

a b

0,2
a b

b

0,
1,2

0,2 1
a

b

4

1,4
1,

3,4

p1 p2

p3

p4

t1

t2
t3

M0=2p2+p4

M1=2p2+p3

t3

M2=2p1+p4

M3=p1+p2+p4 M4=2p1+p3

M5=p1+p2+p3

t2

t1

t1

t3

t1t3

p1
p2

t1(a)

t2(ε)

t3(b)

2

2

p1

p2

p3

p4

t1(a)

t3(b)

t2(ε)

t4(ε)
t5(ε)

M0=2p2+p3

M1=2p3 M2=4p2

t3,yu1

t1,yu2

t3,yu2t1,yu1

c

0

2

1

a ac
a

0 1

a

b
b

2 2

p1

p2

p3

p4

t2(ε)

t4(ε)
t5(ε)

2

t3,yu1
t1,yu1t1,yu2

t3,yu2

yu1=[1 0 1]T

yu2=[0 1 1]T

M0,M2

M0

M0,M1

a a

b

a
bb

a

0

1

ab

2

4 6

b c

c

3

5

a

0

1

ab

2

4 6

b c

a

3

5

p1

p2

p3

p4 p5

t1(b)

t2(ε)

t4(c)

t3(c)

t5(ε)

a

1

b

0

b

c

(0,0)

(1,1)(1,0)

a b

c

c

a

0 1

(0,1)

t1

Plant
*T  *w

event
sequence

observed
word

0

0,2

0,1,
2
a

b
1

a

b

a a

0,1,
2

0,2

1

0

a

b

ab
b

a
a

Mask

Fig. 3.1 Observation mask.

25



Doctoral Dissertation of XIDIAN UNIVERSITY

4

p1 p2

3

p1

t1(a)

p2

p3
p4

t2(b)

t3(b)

t4(a)

f(M)=2M(p2)+1.5M(p3)

t1(a)

t2(a)

p1
p2t1(ε) t2(ε)

f(M)=min{M(p2),1}

p1t1(a) t2(a)

f(M)=min{M(p1),1}

p2
t1(ε)

f(M)=min{M(p2),1}

p1

t1(a)

t2(a)
t3(b)

p1

p2

p3

p1 p2t1 t2 t3

t4

p3

p1

t1(a)

p2

p3
p4

t2(b)

t3(b)

t4(a)

f(M)=2M(p2)+0.9M(p3)

t5(ε)2

3
2

2

3

p1

p2

t1(a)

t2(a)

2

t3(a) t4(ε)
p3

p2
t1(a)p1

p2
t1(ε)

f(M)=min{3,M(p1)}

4

p1

4
p1

p3

p2

t1(ε)

t2(a)

4

3

2

p1
t1(ε)

f(M)=M(p1)

p1
t1(a)

p2
t1p1

p2
t1p1

p3

p4
t2 t3 p2

t1(ε)

p1

t'1(a)

p3

p4

t2

t3

Fig. 3.2 Petri net system.

Example 3.1. Consider an LPN GL = (N,M0,Σ, `), where 〈N,M0〉 is shown in Fig. 3.2,

Σ = {a} and `(t1) = a. Let σ = t1t1. Then the observation produced is w = LL(σ) = aa.�

3.2.2 Partially Observed Petri Nets (POPNs)

In addition to sensors that detect the firing of transitions, it is also possible to have sen-

sors that provide information on the markings of a net. Several researchers studied Petri nets

where some places are observable, i.e., their token content [13–16], or even more general,

a linear combination of their token contents [18] is known. Such observation structures can

be formalized as follows.

Definition 3.3. A partially observed Petri net (POPN) is a generatorGP = (N,M0,Σ, `, V ),

where (N,M0,Σ, `) is an LPN, Po ⊂ P is a set of observable places and V ∈ R|PO|×|P | is a

place sensor configuration, where R denotes the set of real numbers. �

The observations in a POPN are strings of triple (observation of the start state, label of

the transition, observation of the reached state).

Definition 3.4. LetGP = (N,M0,Σ, `, V ) be a POPN and σ = t1 · · · tk be a firing sequence

with M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function of GP is defined as a mapping

LP : T ∗ → (R|Po| × Σ× R|Po|)∗ that associates sequence σ with the observation

sP = LP (σ) = (MV 0, `(t1),MV 1) · · · (MV k−1, `(tk),MV k),

where MV i = V ·Mi and i ∈ {0, 1, 2, · · · , k}.

As a particular case, (MV i, `(t),MV j) is defined as the null observation, if `(t) = ε and

MV i = MV j . �

Example 3.2. Consider a POPN GP = (N,M0,Σ, `, V ), where 〈N,M0〉 is shown in Fig.

3.2, Σ = ∅, `(t1) = ε, and V = [0 1]. Let σ = t1t1. Then we have M0[t1〉M1[t1〉M2, where

M1 = [1 1]T and M2 = [0 2]T . Therefore, MV 0 = V ·M0 = 0, MV 1 = V ·M1 = 1 and

MV 2 = V ·M2 = 2. The corresponding observation is sP = LP (σ) = (0, ε, 1)(1, ε, 2). �
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3.2.3 Labeled Petri Nets with Outputs (LPNOs)

Partially observed Petri nets consider a very particular class of state observations where

the exact marking of some places, or a linear combination of the markings, is measured.

However, in many cases a sensor may provide more general information about the state:

consider, as an example, the case of a buffer where a sensor only detects if the buffer is

empty or not. This motivated us to define a class of labeled Petri nets endowed with a

general observation function associated to state sensors.

Definition 3.5. A labeled Petri net with outputs (LPNO) is a generatorGO = (N,M0,Σ, `, f),

where (N,M0,Σ, `) is an LPN and f : R(N,M0) → Rk is an output function associated

with k ∈ N state sensors. �

In an LPNO there are two types of observations: transition labels and marking infor-

mation.

Definition 3.6. Given an LPNO GO = (N,M0,Σ, `, f), let σ = t1 · · · tk be a firing se-

quence producing the trajectory M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function of

GO is defined as a mapping LO : T ∗ → (Σ× Rk)∗ that associates σ with the observation

s = LO(σ) = (`(t1),∆f(M0, t1)) · · · (`(tk),∆f(Mk−1, tk)),

where ∆f(Mi−1, ti) = f(Mi)− f(Mi−1) ∈ Rk, i = 1, 2, · · · , k.

If `(ti) = ε and ∆f(Mi−1, ti) = 0, the observation (ε, 0) is the null observation as no

transition firing is detected. �

Remark: since the initial marking is assumed to be known, the initial observation

f(M0) provides no additional information. In this case the two sequences f(M0), f(M1), . . .

and ∆f(M0, t1),∆f(M1, t2), . . . contain the same information. This also implies that the

observation sP in a POPN (see Definition 3.4) contains the same information as the obser-

vation (`(t1), V ·M1 − V ·M0) · · · (`(tk), V ·Mk − V ·Mk−1) and we can conclude that

POPNs are a special subclass of LPNOs whose output function is f(M) = V ·M .

Example 3.3. Consider an LPNO GO = (N,M0,Σ, `, f), where 〈N,M0〉 is shown in Fig.

3.2, Σ = ∅, `(t1) = ε, and the output function is f(M) = min{M(p2), 1}. Let the firing

sequence be σ = t1t1. Based on the result in Example 3.2, we have f(M0) = 0, f(M1) = 1

and f(M2) = 1. Therefore, ∆f(M0, t1) = 1 and ∆f(M1, t1) = 0. The corresponding

observation would be s = (ε, 1), since the second firing of t1 produces the null observation

(ε, 0). �
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Fig. 3.3 LPNO model of the manufacturing
cell in Example 3.4.4
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Fig. 3.4 LPN model of the manufacturing cell
in Example 3.4.

The following example shows that LPNOs provide an intuitive way to model systems

with arbitrary state sensors.

Example 3.4. Consider the net in Fig. 3.3 describing a manufacturing cell: there is a buffer

modeled by places p, and a robot modeled by transition t that moves products. The action of

the robot is not detectable, i.e., transitions t is labeled with the empty string. However, on the

buffer there is a counter whose measuring range is from 0 to 3: if the content is lower than

three, the device counts the products in p; otherwise a saturation will be reached. Therefore,

the output function is

f(M) =

{
3, if M(p) ≥ 3;
M(p), otherwise.

We note that it may also be possible to use LPNs to describe this system since place p is

5-bounded, i.e., for all reachable markings M it holds M(p) ≤ 5. The corresponding LPN

is the much less intuitive net shown in Fig. 3.4. Here place p is the complementary place of

p (i.e., M(p) + M(p) = 5) and t′ is a duplicate of t. If M(p) ≥ 3, t is activated; otherwise,

t′ is activated. The LPN has a larger size and, moreover, if the bound of p or the range of

the counter changes, the LPN structure has to be changed. In addition, if p is unbounded, no

LPN can model the system, since no complementary place can be defined. �

We next define a particular subclass of LPNOs called labeled Petri nets with an affine

output function.

Definition 3.7. A labeled Petri net with an affine output function (LPNAF) is an LPNO

GO = (N,M0,Σ, `, f) whose output function is an affine function f(M) = A ·M +B with

constant matrices A ∈ Rk×m and B ∈ Rk. �

Note that the POPNs considered in [13–16, 18] are all subclasses of LPNAF where

matrix B = 0.
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Example 3.5. Consider an LPNAF GO = (N,M0,Σ, `, f), where 〈N,M0〉 is shown in Fig.

3.2, Σ = ∅, `(t1) = ε and f(M) = A ·M +B with A = [1 − 1.5] and B = 2. Let σ = t1t1.

The corresponding observation would be s = (ε,−2.5)(ε,−2.5). �

3.2.4 Adaptive Labeled Petri Nets (ALPNs)

In the framework of DESs with partial event observations, it is usually assumed that the

observation corresponding to an event is static, i.e., it does not change as the system evolves.

However, there are some situations where the observation produced by the occurrence of an

event also depends on the states. Let us consider, as an example, the case of a sensor that

may be turned off in some states or where communication failures change the observation.

Some studies have considered this paradigm in DESs modeled by automata [51–54]. To

the best of our knowledge, it has never been defined in the framework of Petri nets, which

motivated us to define a Petri net generator where the labeling function depends on the state:

we call it an adaptive labeled Petri net.

Definition 3.8. An adaptive labeled Petri net (ALPN) is a generatorGA = (N,M0,ΣA, `A),

where 〈N,M0〉 is a Petri net system, ΣA is an alphabet and `A : R(N,M0)×T → ΣA∪{ε}
is an adaptive labeling function. �

According to the definition of ALPNs, the label assigned to a transition need not be

fixed but may depend on the states. However, the observation corresponding to a firing

sequence is a string of labels the same as the one in an LPN.

Definition 3.9. Given an ALPN GA = (N,M0,ΣA, `A), let σ = t1 · · · tk be a firing se-

quence producing the trajectory M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function of

GA is defined as a mapping LA : T ∗ → Σ∗A that associates sequence σ with the observation

wA = LA(σ) = `A(M0, t1) · · · `A(Mk−1, tk). �

Example 3.6. Consider an ALPN GA = (N,M0,ΣA, `A), where 〈N,M0〉 is shown in Fig.

3.2, ΣA = {a}, and the adaptive labeling function is `A(M0, t1) = a and ∀M ∈ {[1 1]T ,

[0 2]T}, `A(M, t1) = ε. Let the firing sequence still be σ = t1t1. The observation would be

wA = a. �

The following example shows that ALPNs provide an intuitive way to model systems

with state dependent event labels.

Example 3.7. Consider the manufacturing cell modeled by the ALPN in Fig. 3.5, where

transition t1 represents the operation of a robot moving products from an upstream buffer

29



Doctoral Dissertation of XIDIAN UNIVERSITY

4

p1 p2

3

p1

t1(a)

p2

p3
p4

t2(b)

t3(b)

t4(a)

f(M)=2M(p2)+1.5M(p3)

t1(a)

t2(a)

p1
p2t1(ε) t2(ε)

f(M)=min{M(p2),1}

p1t1(a) t2(a)

f(M)=min{M(p1),1}

p2
t1(ε)

f(M)=min{M(p2),1}

p1

t1(a)

t2(a)
t3(b)

p1

p2

p3

p1 p2t1 t2 t3

t4

p3

p1

t1(a)

p2

p3
p4

t2(b)

t3(b)

t4(a)

f(M)=2M(p2)+0.9M(p3)

t5(ε)2

3
2

2

3

p1

p2

t1(a)

t2(a)

2

t3(a) t4(ε)
p3

p2
t1(a)p1

p2
t1(ε)

f(M)=min{3,M(p1)}

4

p1

4
p1

p3

p2

t1(ε)

t2(a)

4

3

2

p1
t1(ε)

f(M)=M(p1)

p1
t1(a)

p2
t1p1

p2

t1

p1

p3

p4
t2 t3 p2

t1(ε)

p1

t'1(a)

p3

p4

t2

t3

t1(ε)

4

p2
t2(ε)

f(M)=min{3,M(p2)}

4

p2

t2(ε)

4

3

2

t'2(a)pc2

t1(ε)p1

p1

l(t1)=a, if M(p3)=1;
l(t1)=ε, otherwise.

Fig. 3.5 ALPN model of the system with sensors switched on/off.
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Fig. 3.6 LPN model of the system with sensors switched on/off.

(p1) to a downstream buffer (p2). A sensor on the robot may be turned on (place p3 is marked)

and off (place p3 is empty) by suitable commands (transitions t2 and t3). When the sensor is

on, the operation of the robot is detected, otherwise it is unobservable. We model this with

a state dependent label

`(t1) =

{
a, if M(p3) ≥ 0;
ε, otherwise.

Note that in this particular case the system can be modeled by the LPN in Fig. 3.6 as

well, where t′1 is a duplicate of t1. However, such an LPN model has a larger size and is less

intuitive. �
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Fig. 3.7 Structural relationships between generators.

From a structural point of view, the relationships between the classes of generators

previously defined can be summarized in Fig. 3.7. For each arc, the class corresponding to
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the head node is more general than that corresponding to the tail node.

3.3 Structural Relationships and Observation Equivalence

In the previous section we have compared the different generators introduced in this

chapter in terms of structural relationships. Here we address the problem of comparing them

in terms of modeling power by introducing an appropriate notion of observation equivalence.

We point out a fact: if a model is structurally more general than another, it does not

necessarily mean that it has greater modeling power. As an example, it is well known that

NFAs are a generalization of DFAs but as far as the languages are concerned, the two models

have the same power. In Chapter 2, we have presented the well known procedure to convert

an NFA into an equivalent deterministic one that accepts the same language.

We assume that the purpose of observing a system is that of reconstructing both the

sequence of events that has occurred and the current state of the system. To this end, we

propose a notion of observation equivalence that applies to generators having the same un-

derlying net structure but a different observation structure: two generators are observation

equivalent if their observation structures provide the same information on the transition fir-

ings and on the markings.

In the following let

J = {LPN,POPN,LPNAF,LPNO,ALPN}

denote the set of all these classes of generators.

Definition 3.10. Consider a generator G in class X ∈ J , whose underlying net system

〈N,M0〉 is assumed to be known. Let L be its observation function, and x an observation.

We define:

• the set of firing sequences consistent with x as

S(x) = {σ ∈ L(N,M0) | L(σ) = x};

• the set of markings consistent with x as

C(x) = {M ∈ Nm | ∃σ ∈ S(x) : M0[σ〉M}. �

Using these sets we define the notion of observation equivalence between generators.
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Table 3.1 Firing estimates in GO and GA

σ = ε σ = t1 σ = t1t1

GO
s ε (ε, 1) (ε, 1)
S(s) {ε} {t1, t1t1} {t1, t1t1}

GA
wA ε a a
S(wA) {ε} {t1, t1t1} {t1, t1t1}

Definition 3.11. A generatorG in classX is said to be observation equivalent to a generator

G′ in class X ′ if the following two conditions hold:

i) G and G′ have the same net system 〈N,M0〉,

ii) for any sequence σ ∈ L(N,M0) that produces an observation x in G and an observa-

tion x′ in G′, S(x) = S(x′) holds. �

Note that in Definition 3.11, S(x) = S(x′), together with condition i), implies C(x) =

C(x′). In this chapter, “equivalence” always refers to “observation equivalence”. The notion

of observation equivalence between generators induces a meaningful relationship between

classes of generators.

Example 3.8. Consider the LPNO GO in Example 3.3 and the ALPN GA in Example 3.6.

These two generators are observation equivalent, since they have the same net system and

according to Table 3.1, for all σ ∈ T ∗ it holds S(LO(σ)) = S(LA(σ)). �

Definition 3.12. Given two classes of Petri net generators X ,X ′ ∈ J , class X is said to

be observation weaker than X ′ if for any generator G in class X there exists an observation

equivalent generator G′ in class X ′. This relation is denoted by

X 4 X ′.

We also write:

• X ≈ X ′ if X 4 X ′ and X ′ 4 X : in this case we say that the two classes are

observation equivalent;

• X � X ′ if X 4 X ′ and X ′ 64 X hold1: in this case we say that class X is strictly

observation weaker than X ′;

• X � X ′ if X 64 X ′ and X ′ 64 X hold: in this case we say that the two classes are not

observation comparable. �
1Here X ′ 64 X denotes that the relation X ′ 4 X does not hold, i.e., there exists at least one generator in X ′ such that

there is no generator in X observation equivalent to it.
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Obviously if class X ′ is structurally more general than X (see Fig. 3.7), then X 4
X ′ holds; here we complete the analysis by discussing when two classes are observation

equivalent or not comparable.

3.3.1 LPNs, POPNs and LPNAFs

In this section we show that LPNs, POPNs and LPNAFs are observation equivalent.

This generalizes a result by Ru and Hadjicostis [16] who proved the equivalence between

LPNs and POPNs.

Proposition 3.1. LPNs, POPNs and LPNAFs are observation equivalent, i.e., LPN ≈
POPN ≈ LPNAF .

Proof: The relationship LPN 4 POPN 4 LPNAF immediately follows from the

structural relationship in Fig. 3.7. We now complete the proof by showing that LPNAF 4

LPN . To do this we provide a constructive procedure that, given an arbitrary LPNAF GO =

(N,M0,Σ, `, f) with f = A ·M +B, determines an equivalent LPN GL = (N,M0,Σ
′, `′).

Given an LPNAF GO, let Te = {t ∈ T |`(t) = e} with e ∈ Σ ∪ {ε} be the set of

transitions that have the same label e and Ce be the incidence matrix restricted to Te. For any

e ∈ Σ, set Te is further divided into Te = Te1∪· · ·∪Tel such that ∀t ∈ Tei (i ∈ {1, 2, · · · , l})
the corresponding columns CA

e (·, t) of matrix CA
e = A · Ce are identical. For e = ε, set Tε

is divided into Tε = Tε0 ∪ Tε1 ∪ · · · ∪ Tεl such that ∀t ∈ Tε0, the corresponding columns

CA
ε (·, t) = ~0 and ∀t ∈ Tei (i ∈ {1, 2, · · · , l}), the corresponding columns CA

ε (·, t) are

identical. Then the equivalent LPN GL = (N,M0,Σ
′, `′) has labeling: ∀e ∈ Σ ∪ {ε},

∀t ∈ Tei with i ∈ {1, · · · , l}, `′(t) = ei and ∀t ∈ Tε0, `′(t) = ε. In the following, we prove

that GL is equivalent to GO.

Let transition t′ ∈ T fire at markingM ∈ R(N,M0) withM [t′〉M ′. The corresponding

observation in GO would be s = (`(t′),∆f), where `(t′) = e and

∆f = f(M ′)− f(M)

= A ·M ′ +B − (A ·M +B)

= A · (M ′ −M)

= A · C(·, t′)

= CA
e (·, t′).

Therefore, for GO the set of firing transitions consistent with s from marking M is

S(s) = {t ∈ Te|M [t〉 ∧ CA
e (·, t) = ∆f}. Assume that the observation in GL is w = ej.
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For GL the set of firing transitions consistent with w from marking M is S(w) = {t ∈
Tej|M [t〉}. According to the definition of Tej , we have ∀t ∈ S(w), CA

e (·, t) = CA
e (·, t′) =

∆f . Namely, S(w) = S(s). Furthermore, it also indicates that, given a transition t, at

every marking where transition t is enabled, the firing of t will cause the same observation

(`(t), f(M ′)− f(M)). Thus the proof can be easily extended to firing sequences. �

Example 3.9. Consider the LPNAFGO = (N,M0,Σ, `, f) in Example 3.5, whose incidence

matrix is C = [−1 1]T . Based on the constructive procedure in the proof of Proposition 3.1,

for transition t1, we have that ∆f = A · C(·, t1) = −2.5, different from 0. Therefore, the

equivalent LPN is GL = (N,M0,Σ
′, `′), where `′(t) = a and Σ′ = {a}. �

3.3.2 LPNs and LPNOs

In this section we discuss the observation relationship between LPNs and LPNOs.

Proposition 3.2. LPNs are strictly observation weaker than LPNOs, i.e., LPN � LPNO.

Proof: Fig. 3.7 shows that LPNOs are structurally more general than LPNs, which

implies LPN 4 LPNO. According to Definition 3.12, it is sufficient to prove LPNO 64
LPN by giving an LPNO whose equivalent LPN does not exist.

Consider the LPNOGO in Example 3.3. Assume that there is an LPNGL = (N,M0,Σ
′, `′)

equivalent toGO. Since the labeling function inGL is static, the labeling function only could

be `′(t1) = ε or `′(t1) = a, i.e., transition t1 in GL is either observable or not.

• Assume that the labeling function in GL is `′(t1) = ε. At the initial marking, the

firing of t1 will produce the observation w = ε in GL. The set of firing sequences

consistent with w is S(w) = {ε, t1, t1t1}. On the other hand, in GO the corresponding

observation is s = (ε, 1), and thus the set of possible firing sequences is S(s) =

{t1, t1t1}. According to Definition 3.11, these two generators are not equivalent.

• Assume the labeling function in GL is `′(t1) = a. At the initial marking, the firing

of t1 will produce the observation w = a in GL and S(w) = {t1}, while in GO, the

observation is s = (ε, 1) and S(s) = {t1, t1t1}. Therefore, GO and GL are still not

equivalent. In conclusion, there is no LPN equivalent to GO.

�

From the equivalence between LPNs, POPNs and LPNAFs, a result also follows.

Corollary 3.1. POPNs and LPNAFs are strictly observation weaker than LPNOs.
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3.3.3 LPNs and ALPNs

Now we consider the observation relation between LPNs and ALPNs, two classes of

generators where only event occurrences are observed.

Proposition 3.3. LPNs are strictly observation weaker than ALPNs, i.e., LPN � ALPN .

Proof: The relationship LPN 4 ALPN trivially follows from the structural relation-

ship in Fig. 3.7. Now we prove ALPN 64 LPN by giving an ALPN whose equivalent LPN

does not exist.

Consider the ALPN GA in Example 3.6. Assume that there is an LPN GL = (N,M0,

Σ, `) equivalent toGA. GL has the same net system 〈N,M0〉 withGA. The possible labeling

function of GL is either `(t1) = ε or `(t1) = b ∈ Σ. Namely, in GL transition t1 is either

unobservable or observable. Let `(t1) = b (the case that transition t1 is unobservable can

be proved in the same way) and a firing sequence be σ = t1t1. Then, the corresponding

observations in GA and GL are wA = a and w = bb, respectively. Therefore, in GA, the

set of firing sequences consistent with wA is S(wA) = {t1, t1t1}; in GL, the set of firing

sequences consistent with w is S(w) = {t1t1}, i.e., S(wA) 6= S(w). We conclude that GL

is not equivalent to GA. There is no LPN equivalent to GO. �

From the equivalence between LPNs, POPNs and LPNAFs, the following result is

drived.

Corollary 3.2. POPNs and LPNAFs are strictly observation weaker than ALPNs.

3.3.4 LPNOs and ALPNs

Fig. 3.7 shows that there is no specific structural relation between LPNOs and ALPNs.

In this section, we will show that these classes are not comparable either with respect to the

observation equivalence relation.

Proposition 3.4. ALPNs and LPNOs are not observation comparable, i.e.,ALPN � LPNO.
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Fig. 3.8 ALPN that cannot be converted into an LPNO.
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Fig. 3.9 Computation of sets C(aa) and C(b) for the ALPN.
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Fig. 3.10 LPNO whose equivalent ALPN has an infinite number of labels.

Proof: a) First, we prove thatALPN 64 LPNO is true by means of an example. Let us

consider the ALPN in Fig. 3.8 with initial marking M0 = [1 1 0]T and the adaptive labeling

function given by Table 3.2.

Table 3.2 Adaptive labeling function of the ALPN
`A(M, t) t1 t2 t3 t4
M0 a a b b

M 6= M0 b b a a

For observed words wA = aa and wA = b, the sets S(aa) and S(b) can be iteratively

computed as shown in Fig. 3.9, where M1 = [0 2 0]T , M2 = [0 1 1]T and M3 = [1 0 1]T .

We claim that there does not exist an LPNO equivalent to this ALPN. We prove this by

contradiction. If we assume that such a generator exists, then its output function necessarily

satisfies f(M0) = f(M1) = f(M2) = f(M3) since otherwise we would be able to distin-

guish between the three firing sequences σ1 = t1t1, σ2 = t1t2 and σ3 = t2t3 after the firing

of two a’s or between the two firing sequences σ4 = t3 and σ5 = t4 after the firing of b. In

addition, all transitions necessarily have the same label, say a. However such an LPNO after

a would produce a set of consistent firing sequences S((a, 0)) = {t1, t2, t3, t4} 6= S(a) =

{t1, t2}, which contradicts the assumption.
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b) Now we show that LPNO 64 ALPN is true by means of another example. Consider

the LPNO in Fig. 3.10, where the output function is

f(M)

{
0, if M(p3) = 0;
M(p2), otherwise.

If the observation is s = (a, 0)(a, 0) · · · (a, 0)︸ ︷︷ ︸
k

(b, x), x could be any number from 0 to k.

To find the equivalent ALPN we have to assign infinite labels to transition t3: `A(Mi, t3) =

[b, i], where Mi = [0 1 i]T for i ∈ N. In that case the equivalent ALPN needs an infinite

alphabet, a condition that is not consistent with Definition 3.8. �

Even though LPNOs and ALPNs are not observation comparable, when generators

whose underlying net system is bounded are considered, bounded LPNOs are strictly obser-

vation weaker than bounded ALPNs.

Proposition 3.5. Bounded LPNOs (LPNObound) are strictly observation weaker than bound-

ed ALPNs (ALPNbound), i.e., LPNObound � ALPNbound.

Proof: The relation ALPNbound 64 LPNObound follows from part a) of the proof of

Proposition 3.4. Thus we are left to prove LPNObound 4 ALPNbound. To show this, we

present a brute force approach that determines the equivalent ALPN GA = (N,M0,ΣA, `A)

of a bounded LPNO GO = (N,M0,Σ, `, f). Given a bounded GO, the adaptive labeling

function of its equivalent ALPN GA = (N,M0,ΣA, `A) can be determined by the following

rule: for any t ∈ T and M ∈ R(N,M0) with M [t〉M ′, `A(t) = [`(t), f(M ′) − f(M)],

i.e., the corresponding observation in GO is assigned as a label to the transition in GA. The

alphabet ofGA is a finite set ΣA = {[`(t), f(M ′)−f(M)]|t ∈ T,M ∈ R(N,M0),M [t〉M ′},
since GO is bounded. Once the transition fires in GA, the new label exactly describes the

observation of GO and the sets of firing sequences consistent with the observations in GA

and GO must be identical. Thus the two generators are equivalent. �

LPN: Labeled 
Petri Nets

LPNO: Labeled Petri 
Nets with Outputs

ALPN: Adaptive 
Labeled Petri Nets

∞

Bounded LPN Bounded LPNO Bounded ALPN
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∞

POPN

ALPN LPNO

LPNO
with affine output 

functions

LPN POPN

ALPN

LPNAF LPN POPN

ALPN

LPNO
with affine 

output functions

LPNO

∞

bounded

LPN POPN

ALPN

LPNAF

LPNO
bounded
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Fig. 3.11 Observation relationships between generators.

In conclusion, equivalence relations between all classes of Petri net generators dis-

cussed in this chapter are illustrated in Fig. 3.11. A double arrowed arc ↔ connects two
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classes that are observation equivalent while an arrow→ denotes that the class at the tail is

strictly observation weaker than the one at the head. The arrow tagged “bounded” denotes

that bounded LPNOs are strictly observation weaker than bounded ALPNs.

3.4 Conversion of Bounded LPNOs into ALPNs

As mentioned in the introduction, bridges between different formalisms have both the-

oretical significance and practical relevance. The conversion between LPNs, POPNs, and

LPNAFs was discussed in the proof of Proposition 3.1. According to the structural relations

shown in Fig. 3.7, POPNs and LPNAFs are both subclasses of LPNOs, and LPNs is a sub-

class of both ALPNs and LPNOs. Therefore, the procedure to convert LPNOs to ALPNs

can be also applied to convert generators of all those subclasses to an equivalent ALPNs.

Moreover, ALPNs are the class that has the highest modeling power among bounded Petri

net generators. For this reason, in the rest of this chapter we focus on the conversion from

LPNOs to ALPNs.

In this section we present an algorithm to convert a bounded LPNO into an equivalent

ALPN with a minimal number of labels. The interest for finding a minimal alphabet relies

on the following observations: i) applying the brute force approach (in Proposition 3.5) may

introduce unnecessary labels; if we consider the cardinality of the alphabet corresponding

to the number of event sensors in the system, reducing the cardinality of the alphabet leads

to a cost reduction in the implementation of an observation structure; ii) it may allow us

to determine an equivalent net with a finite alphabet even when the brute-force procedure

generates an infinite number of labels (we will give such an example in Section 3.6); and iii)

this procedure may allow us to verify that a given LPNO cannot be converted into an LPN,

which will be discussed in Section 3.5.

The proposed conversion algorithm reduces the computation of the adaptive labeling

function of the equivalent ALPN to solving the vertex coloring problem [55] of a graph

called a conflict graph. A running example illustrates the algorithm. We assume that LPNOs

discussed in this section and the following two are bounded.

3.4.1 Problem Reduction

According to Definition 3.11, two equivalent generators have the same net system.

Thus, given an LPNO GO = (N,M0,Σ, `, f), to compute its equivalent ALPN GA =

(N,M0,ΣA, `A), we only need to determine the adaptive labeling function. We show that

this issue can be reduced to solving a vertex coloring. The proposed procedure requires three
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Fig. 3.12 LPNO with a nonlinear output function.

main steps.

Step 1 Since observation equivalence requires the set of consistent markings of the two

generators to be identical for all observations, we first determine which pairs of markings

are confusable, i.e., belong to the same consistent set for some observations.

Step 2 Using this information, we determine which pairs [M, t] ∈ R(N,M0) × T should

have the same label in the ALPN constructing the agreement graph GA. We also determine

which pairs [M, t] should have a different label in the ALPN constructing the conflict graph

ĜA.

Step 3 Finally, the problem of finding the label assignment that determines the equivalent

ALPN is reduced to solving the vertex coloring of graph ĜA.

3.4.2 Computation of the Confusion Relation

Given an observation in an LPNO, there may be more than one marking consistent with

the observation. First, we define the confusable relation between two markings.

Definition 3.13. Given an LPNO GO, a marking M is said to be confusable with M ′, de-

noted by M ∼M ′, if there exists an observation s ∈ L(N,M0) s.t. M,M ′ ∈ C(s). �

One can readily verify thatM ∼M ′ is a symmetric, reflexive but not transitive relation.

An intuitive way to compute the confusion relation among all markings is to construct an

observer (see Section 2.1.2). First, since the net is bounded, its reachability graph (RG) can

be constructed. This is a graph where each node is a marking M and each arc corresponds

to a transition t. We tag each arc t exiting node M with the label (`(t),∆f(M, t)), thus

constructing an NFA. Then, the corresponding observer, i.e., the equivalent DFA, can be

constructed. Each state of the DFA corresponds to a set C(s) and all markings in C(s) are

confusable with each other.

Example 3.10. Let us consider the LPNOGO in Fig. 3.12, whereM0 = [3 0]T and the output

function is

f(M) =

{
1, if M(p2) is an even number;
−1, otherwise.
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Fig. 3.13 RG of the LPNO in Fig. 3.12.
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Fig. 3.14 Observer of the RG in Fig. 3.13.

Its RG2 and the observer are shown in Figs. 3.13 and 3.14, repsectively. Hence, the con-

fusion relations between reachable markings are: M0 ∼ M2, M1 ∼ M3, M4 ∼ M6 and

M5 ∼M7. �

It is known that the worst-case complexity of computing a DFA equivalent to an NFA

is exponential with respect to the number of states of the NFA. Therefore, the complexity to

determine the confusion relation is exponential with respect to the number of markings.

Remark: there may exist more efficient ways to determine the confusion relation. Such

a case is discussed in Section 3.6.

3.4.3 Construction of the Agreement and Conflict Graph

If two transitions t and t′ of an LPNO may fire at two confusable markings M and

M ′, respectively, and produce the same non-null observation (e,∆f), then the two labels

`A(M, t) and `A(M ′, t′) must coincide in the equivalent ALPN. Furthermore, any transition

t that may fire at a marking M producing the null observation (ε, 0) should receive a label

`A(M, t) = ε in the equivalent ALPN. These two types of constraints can be captured by a

2For clarity, the corresponding transition is also labeled on the arcs.
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graph whose nodes are marking-transition pairs [M, t] and whose edges connect nodes that

should have the same label in the equivalent ALPN.

Definition 3.14. Given an LPNO GO, its agreement graph is an undirected graph GA =

(V,E) whose set of vertexes is V = {[M, t] ∈ R(N,M0)×T |M [t〉} and whose set of edges

is E = E ′ ∪ E ′′ where

E ′ ={([M, t], [M ′, t′]) ∈ V × V |[M, t] 6= [M ′, t′],

(`(t),∆f(M, t)) = (`(t′),∆f(M ′, t′)) = (ε, 0)}

and

E ′′ ={([M, t], [M ′, t′]) ∈ V × V |

[M, t] 6= [M ′, t′],M ∼M ′,

(`(t),∆f(M, t)) = (`(t′),∆f(M ′, t′)) 6= (ε, 0)}.

�

In an agreement graph there are two types of arcs E ′ and E ′′. Arcs in E ′ connect all

pairs [M, t] that produce the null observation; arcs inE ′′ connect pairs [M, t] where markings

are confusable and the firings of transitions produce the same non-null observation. Note

that there is no self-loop in an agreement graph. After the confusion relation has been

determined, the complexity of constructing the agreement graph is O(|V |2), since in the

worst case, computing the set of edges requires checking |V |2 pairs of nodes [M, t] and

[M ′t′].

Example 3.11. Consider Example 3.10 again. In order to clearly illustrate all possible ob-

servations, Table 3.3 is built. Based on the confusion relations obtained in Example 3.10

and Table 3.3, the agreement graph in Fig. 3.15 is constructed. To give an example of its

construction consider M0 and M2. From Example 3.10, M0 and M2 are confusable. From

Table 3.3, [M0, t1], [M2, t1] and [M2, t2] produce the same observation. Therefore, by Defi-

nition 3.14, these three nodes in the agreement graph are connected by arcs in E ′′. Markings

M4 and M5 are not confusable, however, nodes [M4, t4] and [M5, t4] are connected by arcs

in E ′ since they produce the null observation (ε, 0). �

We now consider the connected components of the agreement graph and partition its

set of nodes as

V = v̂0 ∪̇ v̂1 ∪̇ v̂2 ∪̇ · · · ∪̇ v̂l
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Table 3.3 All possible observations at each marking
(e,∆) {[M, t]|`(t) = e,∆f(M, t) = ∆}
(a,−2) [M0, t1], [M2, t1], [M2, t2], [M4, t1], [M6, t1]
(a, 2) [M1, t1], [M1, t2], [M3, t2], [M5, t2], [M7, t2]
(a, 0) [M2, t3], [M3, t3]
(ε, 0) [M4, t4], [M5, t4]
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Fig. 3.15 Agreement graph GA in Example 3.11.

where for i ∈ {0, 1, 2, · · · , l}, the v̂i-induced subgraph is a component of GA and in particu-

lar

v̂0 = {[M, t] ∈ V |`(t) = ε,∆f(M, t) = 0}

is the (possibly empty) set of pairs [M, t] that produce the null observation. Correspondingly

we define the partition

V̂ = {v̂0, v̂1, v̂2, · · · , v̂l}. (3-1)

Example 3.12. Consider Example 3.10 again. Based on the agreement graph, we have V̂ =

{v̂0, v̂1, v̂2, v̂3, v̂4, v̂5, v̂6}, where v̂0 = {[M4, t4], [M5, t4]}, v̂1 = {[M0, t1], [M2, t1], [M2, t2]},
v̂2 = {[M1, t1], [M1, t2], [M3, t2]}, v̂3 = {[M2, t3]}, v̂4 = {[M3, t3]}, v̂5 = {[M4, t1], [M6, t1]},
and v̂6 = {[M5, t2], [M7, t2]}. �

By means of the agreement graph, we have determined the classes of pairs [M, t] that

produce the same observation. We now determine, by means of the conflict graph, which

classes must be assigned a different label in the ALPN.

Definition 3.15. Given an LPNOGO, the conflict graph ĜA = (V̂ , Ê) is an undirected graph

whose set of vertexes is V̂ as defined in Eq. (3-1) and whose set of edges is Ê = Ê ′ ∪ Ê ′′

where

Ê ′ = {(v̂0, v̂i)|v̂i ∈ V̂ , i ∈ {1, 2, · · · , l}}
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and

Ê ′′ ={(v̂i, v̂j) ∈ V̂ × V̂ |i, j ∈ {1, 2, · · · , l},

∃[M, t] ∈ v̂i,∃[M ′, t′] ∈ v̂j :

M ∼M ′, (`(t),∆f(M, t)) 6= (`(t′),∆f(M ′, t′))}

�

Note that v̂0 may not exist, i.e., v̂0 = ∅. In this case, Ê ′ = ∅ and Ê = Ê ′′. The nodes of

graph ĜA are classes of nodes [M, t] ∈ V that produce the same observation. There are also

two types of arcs in a conflict graph: Ê ′ and Ê ′′. Since pairs [M, t] ∈ v̂0 must be assigned

the empty word different from any label from the alphabet, arcs from Ê ′ connect node v̂0

with every other node; if there exist [M, t] ∈ v̂i and [M ′, t′] ∈ v̂j such that M and M ′ are

confusable but t and t′ will produce different observations (e,∆f(M, t)), (e′,∆f(M ′, t′)),

then in the ALPN, different labels must be assigned to them, i.e., `A(M, t) 6= `A(M ′, t′).

Thus arcs from Ê ′′ connect such two nodes v̂i and v̂j .

The complexity of computing the connected components of a graph is known to be lin-

ear with respect to the number of edges of a graph using either breadth-first search (BFS) or

depth-first search (DFS), i.e., the computation of V̂ is O(|E|). In the worst case, computing

the set of edges requires checking |V̂ |2 pairs of nodes v̂i and v̂j . Therefore, based on the

agreement graph, the complexity of constructing the conflict graph is O(|V̂ |2).

3.4.4 Solving the Vertex Coloring Problem

The conflict graph ĜA of an LPNO exactly describes the relabeling rule following which

an equivalent ALPN can be obtained. We will show that given a bounded LPNO GO, a

vertex coloring of its conflict graph determines an equivalent ALPN and vice versa. Let us

first formally define the notion of a vertex coloring.

Definition 3.16. Given a graph ĜA = (V̂ , Ê), a vertex coloring is a pair (Σcol, `col) where

Σcol is a finite set of colors and `col : V̂ → Σcol is a coloring function that assigns to each

vertex a color and satisfies the constraint that if (v̂, v̂′) ∈ Ê then `col(v̂) 6= `col(v̂
′), i.e., two

adjacent vertexes cannot be assigned the same color.

The vertex coloring problem is the problem of finding a vertex coloring with a minimal

number of colors, which is called the chromatic number of ĜA, denoted by χ(ĜA). A graph

is called k-chromatic, if its chromatic number is k. �
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Proposition 3.6. Let GO = (N,M0,Σ, `, f) be a bounded LPNO with conflict graph ĜA =

(V̂ , Ê). An ALPN GA = (N,M0,ΣA, `A) is equivalent to GO if and only if there exists a

vertex coloring (Σcol, `col) of ĜA such that ΣA = Σcol \ {ε} and [M, t] ∈ v̂ with v̂ ∈ V̂ ⇒
`A(M, t) = `col(v̂) holds.

Proof: (⇒) To prove the sufficiency of the statement, we show that an ALPNGA whose

adaptive labeling function is defined by a vertex coloring of ĜA is equivalent to GO, namely

∀σ ∈ L(N,M0), S(LO(σ)) = S(LA(σ)). This is done by induction on the length of firing

sequences.

(Basis step) For any σ ∈ L(N,M0) of length 0, observations in GO and GA are

s = LO(σ) = (ε, 0) and wA = LA(σ) = ε, respectively. Let σ′ = t1t2 · · · tk with

M0[t1〉M1[t2〉M2 · · ·Mk−1[tk〉Mk.

• First we prove S(s) ⊆ S(wA). Assume σ′ ∈ S(s). It satisfies `(ti) = ε and f(Mi) =

f(M0), i = 1, 2, · · · , k. According to the definition of v̂0 and the obtained vertex

coloring, we have [Mi−1, ti] ∈ v̂0 and `col(v̂0) = ε, i.e., `A(Mi−1, ti) = ε. Thus,

LA(σ′) = ε, i.e., σ′ ∈ S(ε), and S(s) ⊆ S(wA).

• Next we prove S(wA) ⊆ S(s). Let σ′ ∈ S(wA). Then we have `A(Mi−1, ti) = ε

and [Mi−1, ti] ∈ v̂0. Therefore, in GO, `(ti) = ε and ∆f(Mi−1, ti) = 0 that implies

LO(σ′) = (ε, 0), i.e., σ′ ∈ S(s).

As a result, S(s) = S(wA).

(Inductive step) Assume that for any σ ∈ L(N,M0) of length k, S(LO(σ)) = S(LA(σ))

holds. In the following, we prove that this is also true for firing sequences of length k + 1.

Let σ = σ0t with M0[σ0〉M1[t〉M2, where |σ0| = k, s = LO(σ) = LO(σ0t) =

s0(e1,∆) and wA = LA(σ) = LA(σ0t) = w0e2. In other words, LO(σ0) = s0, `(t) = e1,

∆f(M1, t) = ∆, LA(σ0) = w0 and `A(M1, t) = e2. Let σ′ = σ′0σ
′
1 with σ′1 = t′1t

′
2 · · · t′k and

M0[σ
′
0〉M ′

0[t
′
1〉M ′

1 · · ·M ′
k−1[t

′
k〉M ′

k.

• Assume σ′ ∈ S(s) and σ′0 ∈ S(s0). Then there exists j ∈ {1, 2, · · · , k} such that

`(t′j) = e1 and ∆f(M ′
j−1, t

′
j) = ∆. However, ∀i ∈ {1, 2, · · · , k} with i 6= j,

`(ti) = ε and ∆(M ′
i−1, t

′
i) = 0. According to the definition of v̂0 and the col-

oring rule, [M ′
i−1, t

′
i] ∈ v̂0 and in the obtained ALPN `A(M ′

i−1, t
′
i) = ε. Since

σ0, σ
′
0t
′
1t
′
2 · · · t′j−1 ∈ S(s0), M1 and M ′

j−1 are confusable, i.e., M1 ∼ M ′
j−1. Mean-

while, (`(t),∆f(M1, t)) = (`(t′j),∆f(M ′
j−1, t

′
j)) = (e1,∆) and hence [M1, t] and

[M ′
j−1, t

′
j] are in a same node of the conflict graph of GO that indicates in the obtained
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ALPN `A(M ′
j−1, t

′
j) = `A(M1, t) = e2. By induction, σ′0 ∈ S(w0), and therefore,

LA(σ′0σ
′
1) = w0e2 and σ′ ∈ S(wA), i.e., S(s) ⊆ S(wA).

• Analogously, it can be proved S(wA) ⊆ S(s). Assume σ′ ∈ S(wA) and σ′0 ∈
S(w0). Then there exists j ∈ {1, 2, · · · , k} such that `A(M ′

j−1, t
′
j) = e2 and ∀i ∈

{1, 2, · · · , k} with i 6= j, `A(M ′
i−1, t

′
i) = ε. Based on the vertex coloring, in the LP-

NO we have `(ti) = ε and ∆f(M ′
i−1, t

′
i) = 0. Since `A(M ′

j−1, t
′
j) = e2, by induction

σ′0 ∈ S(s0) which means that σ0, σ′0t
′
1t
′
2 · · · t′j−1 ∈ S(s0) and M1 ∼ M ′

j−1, [M1, t]

and [M ′
j−1, t

′
j] are in a same node of the conflict graph of GO. Therefore, `(t′j) =

`(t) = e1, ∆f(M ′
j−1, t

′
j) = ∆f(M1, t) = ∆ and LO(σ′0σ

′
1) = LO(σ′) = s0(e1,∆),

i.e., σ′ ∈ S(s).

The result follows by induction.

(⇐) We prove by contradiction the necessity of the statement. LetGA = (N,M0,ΣA, `A)

be an ALPN equivalent to GO. Assume that the adaptive labeling function of GA is not

defined by a vertex coloring to ĜA, i.e., there exist [M, t] ∈ v̂i and [M ′, t′] ∈ v̂j such that

`A(M, t) = `A(M ′, t′) and (v̂i, v̂j) ∈ Ê. Since v̂i and v̂j are adjacent, according to the defini-

tion of conflict graphs, there are two possibilities inGO: i)M ∼M ′ and (`(t),∆f(M, t)) 6=
(`(t′),∆f(M ′, t′)); and ii) (`(t),∆f(M, t)) = (ε, 0) and (`(t′),∆f(M ′, t′)) 6= (ε, 0) (or

(`(t′),∆f(M ′, t′)) = (ε, 0) and (`(t),∆f(M, t)) 6= (ε, 0)). For case i), since M and M ′

are confusable, there exist firing sequences σ and σ′ such that M0[σ〉M , M0[σ
′〉M ′ and

LO(σ) = LO(σ′) = s. Therefore, we have σt ∈ S(LO(σt)) but σt /∈ S(LO(σ′t′)). As-

sume that the corresponding observation of σ in GA is wA. Since GA is equivalent to GO,

σt ∈ S(LA(σ′t′)) holds, which implies that, however, S(LA(σ′t′)) 6= S(LO(σ′t′)) and GA

is not equivalent to GO. Then, we reach a contradiction. Case ii) can be proved analogously.

�

Based on the previous results, the ALPN with a minimal alphabet equivalent to a given

LPNO can be obtained by solving a vertex coloring problem, i.e, finding a vertex coloring

such that the number of colors is minimal. The general procedure to convert a bounded

LPNO into an equivalent ALPN with a minimal alphabet is summarized in Algorithm 2.

Since Steps 2 and 3 have polynomial complexity O(|V |2) and O(|V̂ |2), respectively,

as we have discussed in the previous sections, the complexity to convert a bounded LPNO

into an equivalent ALPN with a minimal alphabet mainly depends on the computation of

the confusion relation and on solving the vertex coloring problem, which is known to be

in general NP-complete. In the worst case, the RG and the corresponding observer have to

45



Doctoral Dissertation of XIDIAN UNIVERSITY

Algorithm 2 Conversion of a bounded LPNO into an equivalent ALPN with a minimal
alphabet
Input: a bounded LPNO GO = (N,M0,Σ, `, f)
Output: an equivalent ALPN GA = (N,M0,ΣA, `A)

1: Compute the confusion relation.
2: Construct GA according to Definition 3.14.
3: Construct ĜA according to Definition 3.15.
4: Solve the vertex coloring problem of ĜA.
5: ΣA := Σcol \ {ε}, `A := `col.
6: Output GA.
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Fig. 3.16 Colored conflict graph ĜA.

be constructed. Note that in general there is no obvious relation between the size of a net

(i.e., the number of places, transitions and tokens that the initial marking assigned to the

places) and that of its RG. Therefore, the size of the RG cannot be a priori determined based

on the structure of the net. However, in Section 3.6 we show that in some cases without

computing the RG the conflict graph can be constructed by just characterizing the output

function. Meanwhile, for some special classes of graphs, for example, perfect graphs, the

vertex coloring problem can be solved in polynomial time with respect to the number of

nodes of the graph (see more results in [56]). Solving the vertex coloring is needed only

if one aims to find an equivalent ALPN with a minimal alphabet. On the contrary, the

computation of a vertex coloring — not necessarily minimal — is polynomial: one trivial

solution is to color every vertex of the conflict graph in different colors and there exist

suboptimal solutions with polynomial complexity [56], the greedy algorithm for instance.

Example 3.13. The colored conflict graph of the LPNO in Example 3.10 is shown in Fig.

3.16 (different colors are denoted by different boxes around the nodes), which is a trivial way

to color the graph. The equivalent ALPN is `A(M0, t1) = `A(M2, t1) = `A(M2, t2) = a,

`A(M2, t3) = b, `A(M1, t1) = `A(M1, t2) = `A(M3, t2) = c, `A(M3, t3) = d, `A(M4, t1) =

`A(M6, t1) = e, `A(M5, t2) = `(M7, t2) = f and `A(M4, t4) = `A(M5, t4) = ε; the alphabet

is ΣA = {a, b, c, d, e, f}.
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Nevertheless, the coloring problem of graph ĜA can be solved by using three colors.

Thus, the equivalent ALPN with a minimal alphabet is ∀M ∈ R(N,M0), `A(M, t1) =

`A(M, t2) = a, `A(M, t3) = b and `A(M, t4) = ε. This ALPN is also an LPN.

If we apply the brute-force approach, according to Table 3.3, the equivalent ALPN is

`A(M0, t1) = `A(M2, t1) = `A(M2, t2) = `A(M4, t1) = `A(M6, t1) = [a,−2], `A(M1, t1) =

`A(M1, t2) = `A(M3, t2) = `A(M5, t2) = `A(M7, t2) = [a, 2], `A(M2, t3) = `A(M3, t3) =

[a, 0], `A(M4, t4) = `A(M5, t4) = ε and the alphabet is ΣA = {[a,−2], [a, 2], [a, 0]}. �

Note that Algorithm 2 is a general procedure that can be applied to any arbitrary bound-

ed LPNO. For some special subclasses, e.g., LPNAFs, the conversion from LPNOs to ALP-

Ns has polynomial complexity (trivially follows from the proof of Proposition 3.1). How-

ever, this method cannot assure a minimal alphabet for the LPN. In some cases, even the

brute-force approach may provide a fast way to compute the equivalent ALPN, especial-

ly for LPNOs with very simple output functions. However, the alphabet of the obtained

ALPN is not necessarily minimal and many redundant labels may be introduced. To e-

liminate redundant labels, further analysis on the confusion relation is required, i.e., the

vertex-coloring-based approach is needed.

3.5 Conversion of Bounded LPNOs into LPNs

The results in the previous section show that how any bounded LPNO can be converted

into an equivalent ALPN not only with a finite alphabet, but with a minimal alphabet. This

however does not ensure the existence of an equivalent LPN.

In this section, for bounded LPNOs, a sufficient and necessary condition for the ex-

istence of an equivalent LPN is proposed. If the condition is satisfied, the LPNO can be

converted into an equivalent LPN by applying the algorithm presented in this section.

Considering that LPNs are a special case of ALPNs, a necessary condition for the

existence of an equivalent LPN is obtained.

Proposition 3.7. Let GO = (N,M0,Σ, `, f) be a bounded LPNO whose conflict graph is

k-chromatic. If |T | < k, there is no LPN equivalent to GO.

Proof: Assume that there is an LPN GL = (N,M0,Σ, `) equivalent to GO. Then the

maximal number of labels of GL is |T |, i.e., |Σ| ≤ |T |. Since the conflict graph of GL is k-

chromatic, there is an equivalent ALPN GA = (N,M0,ΣA, `A) with |ΣA| = k. Considering

LPNs are a special class of ALPNs, we have |ΣA| ≤ |Σ| ≤ |T |. Then the proposition holds.

�
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Fig. 3.17 LPNO without equivalent LPN.
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Fig. 3.18 RG of the net in Fig. 3.17.

The following counter example shows that the condition is not sufficient.

Example 3.14. Consider the LPNO in Fig. 3.17 and its corresponding RG in Fig. 3.18. By

applying Algorithm 2 and solving the vertex coloring problem, the colored conflict graph

is shown in Fig. 3.19. The equivalent ALPN with a minimal alphabet is `A(M1, t1) =

`A(M2, t2) = ε, `A(M0, t1) = `A(M1, t2) = `A(M3, t1) = `A(M4, t2) = α and ΣA = {α}.
It satisfies |ΣA| < |T | but there is no LPN equivalent to the LPNO, since all vertex colorings

of ĜA correspond to ALPNs. �

By characterizing the conflict graph, a sufficient and necessary condition that verifies

the existence of an equivalent LPN is proposed. First, we introduce some new notations for

the conflict graph ĜA = (V̂ , Ê) of a given LPNO GO. For a transition t ∈ T , the notation

[·, t] denotes a marking-transition pair [M, t] without specifying marking M . The set Tc(t)

of a given transition t is defined as

Tc(t) = {t′ ∈ T |∃v̂ ∈ V̂ : [·, t], [·, t′] ∈ v̂)};

If a transition t′ ∈ Tc(t), there exists a node v̂ ∈ V̂ to which both [·, t] and [·, t′] belong.

The set Tc(t) of t is a nonempty set as t ∈ Tc(t). According to the analysis in the previous
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Fig. 3.19 Colored conflict graph ĜA.
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section, in the equivalent ALPN, transitions t′ ∈ Tc(t) will be assigned the same label of

transition t at some markings. The set Tl(t) of a given transition t is defined as

Tl(t) = { t′ ∈ T |∃v̂i, v̂j ∈ V̂ :

[·, t] ∈ v̂i, [·, t′] ∈ v̂j, (v̂i, v̂j) ∈ Ê}.

If t′ ∈ Tl(t), in ĜA there are two adjacent nodes v̂i and v̂j that contain [·, t] and [·, t′],
respectively. Therefore, there are markings at which transitions t′ and t are assigned different

labels in the equivalent ALPN.

Now we discuss the complexity of computing sets Tc(t) and Tl(t) of a given transition

t. To compute Tc(t), we first compute the set of nodes v̂i ∈ V̂ such that [·, t] ∈ v̂i. The

transitions t′ of which [·, t′] ∈ v̂i, belong to Tc(t). Therefore, the complexity of computing

Tc(t) isO(|V̂ |). On the other hand, to compute Tl(t), first we select a node v̂i ∈ V̂ : ∃[·, t] ∈
v̂i and then compute a set of nodes v̂j ∈ V̂ such that there is a edge between v̂i and v̂j .

Finally, the transitions t′ of which [·, t′] ∈ v̂j , belong to Tl(t). Therefore, the complexity of

computing Tl(t) is O(|V̂ |2).

Example 3.15. Consider the conflict graph in Fig. 3.16. We have Tc(t1) = Tc(t2) = {t1, t2},
Tc(t3) = {t3}, Tc(t4) = {t4}, Tl(t1) = Tl(t2) = {t3, t4}, Tl(t3) = {t1, t2, t4} and Tl(t4) =

{t1, t2, t3} . �

Proposition 3.8. Given an LPNO GO and its conflict graph ĜA = (V̂ , Ê), there exists an

LPN equivalent to GO if and only if Tc(t) ∩ Tl(t) = ∅ holds, ∀t ∈ T .

Proof: If the LPNO GO satisfies Tc(t)∩Tl(t) = ∅, then no transition has to be assigned

to different labels at different markings. Thus there is a vertex coloring that corresponds to

an equivalent LPN. Suppose Tc(t)∩Tl(t) 6= ∅. Let t′ ∈ Tc(t)∩Tl(t). There is a node v̂i ∈ V̂
that includes [Ma, t] and [Mb, t

′]. Therefore `A(Ma, t) = `A(Mb, t
′). Since t′ ∈ Tl(t),

there are adjacent nodes v̂j and v̂k in ĜA where [Mc, t] ∈ v̂j and [Md, t
′] ∈ v̂k. We have

`A(Mc, t) 6= `A(Md, t
′). Hence there exists no vertex coloring corresponding to an LPN and

based on Proposition 3.6, there is no equivalent LPN. �

Note that ∀t′ ∈ Tc(t) ∩ Tl(t), t′ is adaptively labeled in the equivalent ALPN. If an

LPNO satisfies Proposition 3.8, there exists a vertex coloring by which the equivalent LPN

can be computed. Given a transition t ∈ T , the nodes in ĜA containing [·, t] can be merged

as one, since [·, t] can be in the same label. To obtain a vertex coloring that corresponds

to an LPN, the set of vertexes V̂ needs to be reconstructed and Algorithm 3 realizes such a

reconstruction.
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Algorithm 3 Reconstruction of V̂

Input: the set V̂ of ĜA
Output: a new set V̂new

1: V̂new := V̂
2: for all v̂i ∈ V̂new, do
3: for all v̂j ∈ V̂new \ {v̂i}, do
4: if ∃[·, t] ∈ v̂i : [·, t] ∈ v̂j , then
5: v̂i = v̂i ∪ v̂j;
6: V̂new = V̂new \ {v̂j};
7: end if
8: end for
9: end for

10: Output V̂new.

To obtain the final set V̂new, first we select a node v̂i in V̂ and find another node v̂j ∈ V̂
such that v̂i and v̂j contain the same transition t. Then we merge v̂i and v̂j and remove v̂j

from V̂ . Note that the obtained node v̂i will not be treated as a new node. Therefore, the

complexity of Algorithm 3 is O(|V̂ |2). As soon as the set V̂ is rebuilt as V̂new, the conflict

graph ĜA should also be reconstructed by Definition 3.15 (in order to avoid confusion, the

reconstructed conflict graph is denoted as ĜAnew). Then, by computing a vertex coloring of

ĜAnew the equivalent LPN is obtained. In conclusion, the procedure of finding an equivalent

LPN of a bounded LPNO is stated as follows:

Step 1 Construct the conflict graph ĜA.

Step 2 Check if Proposition 3.8 is verified:

“Yes” — go to Step 3;

“No” — stop, as there is no equivalent LPN.

Step 3 Apply Algorithm 3.

Step 4 Construct the new conflict graph ĜAnew by Defini-

tion 3.15.

Step 5 Compute a vertex coloring of ĜAnew.

Example 3.16. Example 3.15 shows that ∀t ∈ T, Tc(t) ∩ Tl(t) = ∅, i.e., the LPNO in Fig.

3.12 satisfies Proposition 3.8 and thus there is an LPN equivalent to the LPNO. The conflict

graph is reconstructed by applying Algorithm 3 and the colored one is shown in Fig. 3.20.

Therefore, the equivalent LPN is `(t1) = `(t2) = a, `(t3) = b, `(t4) = ε and Σ = {a, b}.
Consider the LPNO in Example 3.14. According to the conflict graph in Fig. 3.19, there

is no LPN equivalent to it since ∀t ∈ T, Tc(t) ∩ Tl(t) = T . Results in Example 3.14 also

verify this. �
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Fig. 3.20 Colored conflict graph ĜAnew.

3.5.1 Further Discussion on the Number of Labels

It is known that the number of colors that can be used to color a graph is not unique,

as well as the way of coloring it. If the conflict graph ĜA = (V̂ , Ê) of an LPNO GO is

k-chromatic, and |V̂ | = λ, the bound of labels of the equivalent ALPN is k ≤ |ΣA| ≤ λ.

Then, it is important to answer the question whether the lower bound of labels necessarily

increases/decreases when an equivalent LPN is required.

Proposition 3.9. Given an LPNO satisfying Proposition 3.8, the minimal number of labels

in equivalent LPNs is k if and only if the conflict graph ĜA = (V̂ , Ê) of GO is k-chromatic.

Proof: Since the LPNO satisfies Proposition 3.8, there is an equivalent LPN and its

conflict graph ĜA = (V̂ , Ê) can be reconstructed into ĜAnew by applying Algorithm 3 and

Definition 3.15. The reconstruction of V̂ does not change the coloring relation between

[M, t] pairs. That is to say, even though some [M, t] pairs that are not necessarily in the same

node in ĜA are absorbed into the same node of ĜAnew, this does not violate the coloring rule

since the nodes that belong to ĜA are not connected. Therefore, if ĜA is k-chromatic, so is

ĜAnew, i.e., the minimal number of labels of equivalent LPNs is k.

Proposition 3.6 shows that the vertex colorings of the conflict graph characterize all

equivalent ALPNs. Since LPNs are a special class of ALPNs, if the minimal number of

labels of equivalent LPNs is k, then ĜA = (V̂ , Ê) of GO is k-chromatic. �

Therefore, the bound of labels of the equivalent LPN is k ≤ |Σ| ≤ |T |. The requirement

of equivalent LPNs does not change the minimal number of labels. Proposition 3.9 also

implies that if there is no vertex coloring with the chromatic number of labels corresponding

to an LPN, then there is no LPN equivalent to the LPNO.
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Fig. 3.22 Conflict Graph ĜA.

3.6 Conversion of Unbounded LPNOs

The conversion algorithms and propositions proposed in the previous sections are ap-

plicable to bounded LPNOs. For unbounded LPNOs, the conflict graph may not be feasible

to be constructed and analyzed because of the infinite number of markings. Although we

lack general results, we give an example to show that in some cases it is possible to convert

an unbounded LPNO into an equivalent ALPN by using the same technique.

Example 3.17. Consider the LPNO in Fig. 3.6. Since at each marking, the firings of t1, t2

and t3 produce different observations, no marking is confusable with others. The conflict

graph ĜA is shown in Fig. 3.6, where Mi = [i], i = 0, 1, 2, · · · . For any t ∈ T , Tc(t) = {t}
and Tl(t) = T \{t}. Therefore, the LPNO satisfies Proposition 3.8. By applying Algorithms

2 and 3, the colored conflict graph ĜAnew is shown in Fig. 3.23 and the equivalent LPN is

`(t1) = a1, `(t2) = a2, `(t3) = a3 and Σ = {a1, a2, a3}. If we apply the brute force approach

to obtain the equivalent ALPN, we need an infinite number of labels. �
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Fig. 3.23 Colored conflict graph ĜAnew.

Example 3.17 shows that even though the conflict graph is infinite, the alphabet of the

equivalent ALPN could be finite. This result can be explained by the following theorem

concerning the coloring problem in infinite graphs.
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Theorem 3.1. [De Bruijin-Erdős theorem (1951)] If and only if all finite subgraphs of an

infinite graph ĜA can be colored by ρ colors, then χ(ĜA) ≤ ρ.

3.7 Conclusions

In this chapter different observation structures for Petri net generators are developed. In

particular two classes of Petri net generators are defined: labeled Petri nets with outputs (LP-

NOs) and adaptive labeled Petri nets (ALPNs). The two classes are proper generalizations

of labeled Petri nets (LPNs) usually considered in the literature. The notion of observation

equivalence is formulated and used to compare the modeling power of different classes of

Petri net generators. It is shown that LPNOs and ALPNs have the highest modeling pow-

er. Algorithms converting bounded LPNOs to equivalent ALPNs and LPNs with a minimal

alphabet are proposed, whose complexity mainly depends on the computation of confusion

relations and solving the vertex coloring problem of a particular graph that is called a conflict

graph. In the case of unbounded LPNOs, the algorithms may also be applicable.

We believe that LPNOs provide an intuitive way to model systems with various kinds

of sensors. However, it may be difficult to analyze the system behavior according to the

information provided by the labeling function and output functions in a systematic way.

This chapter addressing the conversion from LPNOs to equivalent LPNs provides some

useful tools to analyze LPNOs.
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Chapter 4 Notions of Opacity in Discrete Event Systems

4.1 Introduction

In this chapter we first recall the formal definitions of current-state opacity, initial-state

opacity, and language opacity in the framework of automata [19, 20, 22]. Then we redefine

and extend them to the Petri net model: labeled Petri nets. Note that LPNOs and ALPNs are

not considered hereafter since the novelty of the proposed approaches would be more easily

recognized in the standard Petri net model.

We show that initial-state opacity in Petri nets defined by Bryans et al. [5] is not a

counterpart of initial-state opacity in automata, and thus we call the former one B-initial-

state opacity and redefine initial-state opacity in Petri nets. Furthermore, in Petri nets we

define a new notion of language-based opacity: strict language opacity, to model the case

where the intruder only cares the order of some transitions in the secret words. Finally, we

investigate the relation between language opacity and strict language opacity.

4.2 Opacity Properties in Automaton Formulation

In the automaton framework, it is assumed that the intruder knows the structure of the

automatonA = (X,E, δ, x0) but partially observes the system. we useEI ⊆ E to denote the

set of events observable by the intruder and PEI
: E∗ → E∗I to denote the natural projection

from E to EI . Note that for initial-state opacity, the initial state x0 is not specified.

4.2.1 Current-State Opacity

Definition 4.1. Given a DFA A = (X,E, δ, x0), a secret S ⊆ X , and a set EI of events

observable by the intruder, the system is said to be current-state opaque (CSO) wrt S and

EI if ∀σ ∈ L(A) such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(A) : PEI
(σ′) = PEI

(σ) and δ(x0, σ′) /∈ S. �

A system is said to be CSO if for all possible observations, there exists a sequence of

events that produces the observation but reaches a state that is not in the secret. Therefore,

the intruder cannot establish if the current state belongs to the secret.

Example 4.1. Consider the DFA in Fig. 4.1 and let S = {3, 5}, EI = {b, c}. The system is

CSO wrt S and EI because when nothing is observed by the intruder, the current state could
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Fig. 4.1 DFA that is CSO wrt {3, 5} and {b, c}.
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Fig. 4.2 DFA that is not CSO wrt {3, 5} and {b, c}.

be 0 or 1; with observing b, the intruder would conclude that the current state could be 2, or

4 or 5; finally with observing bc, the current state could be 3 or 6. Therefore, no matter what

the intruder observes it is not able to conclude that the current state of the system is in S,

i.e., the system is not CSO wrt S and EI .

Now consider the DFA in Fig. 4.2. The system is not CSO wrt S and EI because after

the intruder observes bc, it knows the current state of the system is 3 and it is in the secret. �

4.2.2 Initial-State Opacity

Definition 4.2. Given a DFA A = (X,E, δ), a secret S ⊆ X , and a set EI of events

observable by the intruder, the system is said to be initial-state opaque (ISO) wrt S and EI

if ∀σ ∈ L(A, S),

∃σ′ ∈ L(A, X \ S) : PEI
(σ′) = PEI

(σ). �

In words, a system is said to be ISO if for all observations generated from a secret state,

there exists at least a nonsecret state from which the same observation can be generated.

Therefore, given an observation the intruder cannot establish if the observation is generated

from a secret state.

Example 4.2. Consider the DFA in Fig. 4.1 and EI = {b, c} and S = {0, 2}. Clearly, the

system is ISO wrt S and EI since whatever the intruder observes, it does not know the

observation is generated from a secret state.

Let us consider the DFA in Fig. 4.2. However, the system is not ISO wrt S and EI ,

since when the intruder observes c, it knows that c is generated from 2. �

4.2.3 Language Opacity

Current-state opacity and initial-state opacity belong to state-based opacity properties

as the secret is defined as a set of states. On the other hand, if the secret is defined as a

language then such an opacity property is called language-based opacity. There are many

language-based opacity properties have been defined in literature such as strong language
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opacity and weak language opacity [6]. In the thesis, we study the very basic one: language

opacity1.

Definition 4.3. Given a DFA A = (X,E, δ, x0), a secret S ⊆ L(A), and a set EI of events

observable by the intruder, the system is said to be language opaque (LO) wrt S and EI if

∀σ ∈ S,

∃σ′ ∈ L(A) \ S : PEI
(σ′) = PEI

(σ). �

A system is language opaque wrt the secret if for all secret strings there exists a non-

secret sting that produces the same observation. Therefore, the intruder cannot establish if

some secret sequences have occurred based on its observation.

Example 4.3. Consider the DFA in Fig. 4.1 and let S = {abc}, EI = {b, c}. Clearly, the

system is LO wrt S and EI since for σ = abc, there exists σ′ = bac such that PEI
(σ) =

PEI
(σ′) = bc.

Now consider the DFA in Fig. 4.2. The system is not LO wrt S and EI because when

the intruder observes bc, it knows abc has occurred. �

4.3 Opacity Properties in Petri Net Formulation

In this section we define opacity properties in Petri nets and study their relations. It is

assumed that an intruder knows the structure and the initial marking of the system, however,

it can only partially observe the occurrence of events of the system. To present such an ob-

servation structure, the system under consideration is modeled by a labeled Petri net system,

where the observation function is static and the states are not observable.

4.3.1 Current-State Opacity

Definition 4.4. An LPN systemG = (N,M0,Σ, `) is said to be current-state opaque (CSO)

wrt a secret S ⊆ R(N,M0) if ∀σ ∈ L(N,M0) such that M0[σ〉M ∈ S,

∃σ′ ∈ L(N,M0) : M0[σ
′〉M ′ /∈ S and `(σ) = `(σ′) �

We can see Definition 4.4 and Definition 4.1 have the same meaning but in different

form. An LPN system is CSO means for all transition sequences leading to a secret marking

there exists a transition sequence producing the same observation but leading to a nonsecret

marking.

1This notion of opacity was defined in [22] but was called language-based opacity. To avoid confusing, we call it
language opacity in the thesis.
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Fig. 4.3 LPN system that is CSO wrt {p2 + p4, p2 + p5}.

Example 4.4. Consider the LPN system in Fig. 4.3 and let S = {p2+p4, p2+p5}. For σ = t1

withM0[σ〉p2 +p4, there exists σ′ = t1t2 such thatM0[σ
′〉p3 +p4 /∈ S and `(σ) = `(σ′) = b;

for σ = t1t4 with M0[σ〉p2 + p5, there exists σ′ = t1t4t5 such that M0[σ
′〉p2 /∈ S and

`(σ) = `(σ′) = bc. Therefore, the system is CSO wrt S.

However, the system is not CSO wrt S = {p2+p4, p3+p4} since if the intruder observes

b, it knows that the current-state of the system could only be p2 + p4 or p3 + p4. �

4.3.2 Initial-State Opacity

The notion of initial-state opacity was first defined for Petri nets by Bryans et al. in [5].

According to the definition given by Bryans et al., when the intruder starts its observation it

does not know in which marking the system is, but simply knows that it belongs to a given

set M0 ∈ Nm. The secret set S is a subset of M0. If the system is initial-state opaque,

then the intruder cannot infer, based on its observation, whether the evolution has started

from a secret marking or a nonsecret one. In the thesis, we called it B-initial-state opacity

to distinguish it from the new notion of initial-state opacity proposed in the thesis.

Definition 4.5. Let G = (N,M0,Σ, `) be an LPN system and S ⊆ M0 be a secret set. G

is said to be B-initial-state opaque (B-ISO) wrt S if for all w ∈ L(G,S),

∃M ′ ∈M0 \ S : w ∈ L(G,M ′). �

A system is said to be B-ISO if for any observation generated from a secret marking,

there always exists a nonsecret marking in M0 from which the same observation can be

generated.

Example 4.5. Consider the LPN in Fig. 4.3 andM0 = {2p4, p2 + p3}. Let S = {p2 + p3}.
Thus L(G,S) = {c, cc}. The LPN system is B-ISO wrt S since for any w ∈ L(G,S), there

exists 2p4 /∈ S such that w ∈ L(G, 2p4). �

Initial-state opacity studied in the thesis is defined as follows.
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Definition 4.6. Let G = (N,Mst,Σ, `) be an LPN system and S ⊆ R(N,Mst) be a secret

set. G is said to be initial-state opaque (ISO) wrt S if for all w ∈ L(G,S),

∃M ′ ∈ R(N,Mst) \ S : w ∈ L(G,M ′). �

According to Definition 4.6, a system G = (N,Mst,Σ, `) is said to be ISO if for any

secret marking and any observation generated from such a secret marking, there exists a

nonsecret marking in R(N,Mst) from which the same observation can be generated. Com-

paring Definition 4.6 with Definition 4.5, it is evident that ISO is a special case of B-ISO

where M0 is a subset of Nm such that M0 = R(N,Mst). Namely, ISO only considers

a special class of M0 instead of an arbitrary subset of Nm. However, as discussed in the

following, it is still worth studying them separately.

The ISO problem considered in the automaton setting can be summarized as follows:

given the structure of an automaton whose initial state is unknown, determine if the intruder

can infer the state belongs to the secret by observing the system’s evolution. Note that the

structure of the automaton explicitly contains the full knowledge of the system’s state space

and thus it is implicitly assumed that the initial state must belong to such a space.

Consider on the contrary a labeled Petri net. The structure of the net (N,Σ, `) is not

a dynamical system and contains no information on the state space. We need to associate

to the net an initial marking so that the state space can be determined by computing its

reachability set. Therefore, the counterpart for Petri nets of the ISO problem defined above

can be stated as follows: given a Petri net system and its reachability set, assuming its initial

marking is unknown, determine if the intruder can infer whether such a marking belongs to

the secret by observing the system’s evolution.

Therefore, the new definition we propose of ISO not only formalizes an important

property that so far has not been discussed, but also clarifies the difference between B-ISO

for Petri nets and ISO for automata.

Example 4.6. Consider the LPN system in Fig. 4.3 and let S = {p2 + p4, p3 + p5}. We have

L(G,S) = {c, cc}. Observation w = c may also be generated from p2 + p5 or p3 + p4,

and observation cc may also be generated from p3 + p4. Thus the system is ISO wrt S. Let

M0 = R(N,M0). Clearly, G = (N,M0,Σ, `) is B-ISO wrt S.

However, the system is not ISO wrt S = {M0} since when the intruder observes b, or

bc, or bcc, it knows the observation is generated from M0. �
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4.3.3 Language-Based Opacity

When the secret is defined as a language, an opacity property is categorized as language-

based opacity. In Petri nets, to be more specific, we define two language-based opacity

properties: language opacity and strict language opacity.

Definition 4.7. An LPN system G = (N,M0,Σ, `) is said to be language opaque (LO) wrt

S ⊆ L(N,M0) if ∀σ ∈ S,

∃σ′ ∈ L(N,M0) \ S : `(σ) = `(σ′). �

In words, a system is language opaque if for all transition sequence in the secret there

is another transition sequence that is not in the secret and produces the same observation.

Therefore, no matter what the intruder observes, it does not know whether such an observa-

tion is produced by a secret sequence or not.

Example 4.7. Consider the LPN system in Fig. 4.3 and let S = {t1t2t3}. Therefore, the

observation produced by the secret is `(t1t2t3) = bc. Meanwhile, there is t1t4t5 /∈ S and

`(t1t4t5) = bc. Thus, the system is language opaque wrt S. However, the system is not lan-

guage opaque wrt S = {t1, t1t2} since when the intruder observes b it knows that sequence

in S has occurred. �

Language opacity defined above is a counterpart of language opacity in automata. From

its definition, we can see in language opacity a transition sequence is secret if and only if

it belongs to S, i.e., the order of transitions is same as one element in S. However, there

exist many practical cases where the intruder only cares about a subset of transitions. As

an example, in a banking environment, the intruder may not care if a customer checks the

account but may only be interested in the withdrawal of money. Motivated by this, we

propose a generalization of the language opacity property and introduce the notion of strict

language opacity. In particular, a system is strictly language opaque if the intruder can

never establish if the transitions in which it is interested have fired in some given order (as

described by the secret).

Definition 4.8. Given an LPN system G = (N,M0,Σ, `), a set of transitions T̂ ⊆ T , and a

secret Ŝ ⊆ T̂ ∗. G is said to be strictly language opaque wrt to T̂ and Ŝ if ∀σ ∈ L(N,M0)

such that PT̂ (σ) ∈ Ŝ, there exists σ′ ∈ L(N,M0) such that

`(σ′) = `(σ) and PT̂ (σ′) /∈ Ŝ,

where PT̂ : T ∗ → T̂ ∗ is the natural projection from T to T̂ . �
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In words, a system is strictly language opaque wrt T̂ and Ŝ if for any observation that

can be explained with a sequence whose projection on T̂ belongs to the secret, there exists

another explanation whose projection on T̂ does not belong to the secret. Note that for strict

language opacity, the secret Ŝ may not be a subset of L(N,M0). Obviously, if T̂ = T , strict

language opacity is identical to language opacity. Next we further discuss some properties

of strict language opacity.

Proposition 4.1. Let G = (N,M0,Σ, `) be an LPN system, T̂ ′ ⊆ T̂ ⊆ T , and Ŝ ⊆ T̂ ∗ a

secret. If G is strictly language opaque wrt T̂ ′ and Ŝ ′, where Ŝ ′ = PT̂ ′(Ŝ), then G is strictly

language opaque wrt T̂ and Ŝ.

Proof: This is proved by showing that if G is not strictly language opaque wrt T̂ and

Ŝ then G is not strictly language opaque wrt T̂ ′ and Ŝ ′. Given a transition sequence σ ∈
L(N,M0), the set of transition sequences having the same observation with σ is denoted as

Σ = {σ′ ∈ L(N,M0)|`(σ′) = `(σ)}. Since G is not strictly language opaque wrt T̂ and Ŝ,

there exists σ ∈ L(N,M0) such that PT̂ (σ) ∈ Ŝ and ∀σ′ ∈ Σ, PT̂ (σ′) ∈ Ŝ holds. While

projecting σ and σ′ on T̂ ′, it holds PT̂ ′(PT̂ (σ)) ∈ Ŝ ′ and PT̂ ′(PT̂ (σ′)) ∈ Ŝ ′. Since T̂ ′ ⊆ T̂ ,

PT̂ ′(PT̂ (σ)) = PT̂ ′(σ) and PT̂ ′(PT̂ (σ′)) = PT̂ ′(σ′) hold. Thus, for σ ∈ L(N,M0) such that

PT̂ ′(σ) ∈ Ŝ ′, PT̂ ′(σ′) ∈ Ŝ ′ holds for all σ′ ∈ Σ, i.e., G is not strictly language opaque wrt T̂ ′

and Ŝ ′. �

Proposition 4.1 provides a semi-decision procedure (only sufficient) to verify strict lan-

guage opacity wrt T̂ and Ŝ. More precisely, one can choose a subset T̂ ′ of T̂ and verify strict

language opacity wrt T̂ ′ and Ŝ ′. Note that as aforementioned, if T̂ = T , strict language opac-

ity is identical to language opacity. Therefore, language opacity wrt a given secret S ⊆ T ∗

can be sufficiently decided by verifying the strict language opacity property wrt a set T̂ ⊆ T

and PT̂ (S). In the following example, it is shown that the converse of Proposition 4.1 may

not hold. Namely, it may occur that even if a system is strictly language opaque wrt T̂ and

Ŝ, it may not be strictly language opaque wrt T̂ ′ and Ŝ ′.

Example 4.8. Consider the LPN system in Fig. 4.3. Let T̂ = T and Ŝ = {t1t2}. The system

is strictly language opaque wrt T̂ and Ŝ (equivalently, G is language opaque wrt Ŝ), since

there exists σ = t1 such that PT̂ (σ) /∈ Ŝ and `(t1) = `(t1t2) = b. Let T̂ ′ = {t1} ⊂ T̂ . The

system is not strictly language opaque wrt T̂ ′ and Ŝ ′, where Ŝ ′ = PT̂ ′(Ŝ) = {t1}, since there

does not exist a sequence generating b but whose projection on T̂ ′ is not in Ŝ ′. �

In the supervisory control, the normality [57] property of a language is introduced.

Herein this notion is slightly extended as follows.
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Definition 4.9. LetG = (N,M0,Σ, `) be an LPN system and T̂ ⊆ T a subset of transitions.

A language S ⊆ T ∗ is said to be normal wrt L(N,M0) and PT̂ if

L(N,M0) ∩ S = L(N,M0) ∩ P−1T̂
(PT̂ (S)). �

A language S is normal wrt a given language L(N,M0) and the natural projection PT̂
if its intersection with L(N,M0) is the largest sublanguage of L(N,M0) whose projection

is PT̂ (S).

Proposition 4.2. Let G = (N,M0,Σ, `) be an LPN system, T̂ ⊆ T a subset of T , S ⊆ T ∗

a secret, and Ŝ = PT̂ (S). G is strictly language opaque wrt T̂ and Ŝ, if and only if G is

language opaque wrt P−1
T̂

(PT̂ (S)).

Proof: (⇒) Follows from Proposition 4.1.

(⇐) Given a transition sequence σ ∈ L(N,M0), the set of transition sequences having

the same observation with σ is denoted as Σ = {σ′ ∈ L(N,M0)|`(σ′) = `(σ)}. Assume

that G is not strictly language opaque wrt T̂ and Ŝ, therefore there exists a sequence σ ∈
L(N,M0) such that PT̂ (σ) ∈ Ŝ and ∀σ′ ∈ Σ, it holds PT̂ (σ′) ∈ Ŝ. Since Ŝ = PT̂ (S),

σ ∈ L(N,M0) ∩ P−1T̂
(PT̂ (S)) and σ′ ∈ L(N,M0) ∩ P−1T̂

(PT̂ (S)) hold. Thus, G is not

language opaque wrt P−1
T̂

(PT̂ (S)). �

Proposition 4.2 shows that strict language opacity wrt T̂ and Ŝ is identical to language

opacity wrt P−1
T̂

(PT̂ (S)).

Corollary 4.1. Let G = (N,M0,Σ, `) be an LPN system and T̂ ⊆ T . Let S ⊆ T ∗ be a

secret that is normal wrt L(N,M0) and PT̂ and Ŝ = PT̂ (S). G is strict language opaque wrt

T̂ and Ŝ if and only if G is language opaque wrt S.

Proof: According to Definition 4.7, given a secret S ⊆ T ∗, G is language opaque

wrt S is identical to G is language opaque wrt S ∩ L(N,M0). By Proposition 4.2, G is

strictly language opaque wrt T̂ and Ŝ if and only if G is language opaque wrt L(N,M0) ∩
P−1
T̂

(PT̂ (S)). Since S is normal, i.e., L(N,M0)∩S = L(N,M0)∩P−1T̂
(PT̂ (S)),G is strictly

language opaque wrt T̂ and Ŝ if and only if G is language opaque wrt S. �

In general, language opacity wrt S ⊆ T ∗ (that is identical to strict language opacity wrt

T and S) does not imply strict language opacity wrt T̂ and PT̂ (S) if T̂ ⊆ T (see Proposition

4.1 ). However, by Corollary 4.1, such an implication holds if S is normal wrt L(N,M0)

and PT̂ . In other words, given an arbitrary set Ŝ ⊆ T̂ ∗, verifying strict language opacity wrt

Ŝ and T̂ can be reduced to verifying language opacity wrt P−1
T̂

(Ŝ). Thus, the complexity

of verifying strict language opacity would not be higher than that of verifying language
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opacity. Furthermore, in Chapter 6 we show that under proper assumptions, verification of

strict language opacity is of lower complexity.

4.4 Conclusion

Definitions of current-state opacity, initial-state opacity, and language opacity were

recalled in this chapter. Furthermore, we formalized the aforementioned opacity properties

in Petri nets and compared their differences with ones in [5]. Finally, we defined a new

notion of language-based opacity in Petri nets, called strict language opacity and studied its

relation with language opacity.

Partial work of this chapter has been published as:

Y. Tong, Z. Y. Ma, Z. W. Li, C. Seatzu, A. Giua, “Verification of Language-Based

Opacity in Petri Nets Using Verifier”, the 35th American Control Conference (ACC’16),

2016: 757-763.
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Chapter 5 Decidability of Opacity Verification Problems in Petri
Nets

5.1 Introduction

In this chapter, we study decidability of opacity verification problems in Petri nets.

Opacity verification [6, 21, 22, 28] consists in determining whether a system is opaque with

respect to a given secret. In the sequel of this chapter we use “opacity problem” to replace

“opacity verification problem” for simplicity.

Note that in this chapter, we consider a more general LPN system that has a setM0 ⊆
Nm (may be infinite) of initial markings. In such a case, the RG of the LPN system

G = (N,M0,Σ, `) is R(N,M0) =
⋃
M0∈M0

R(N,M0), and the set of transition sequences

enabled from the initial marking is L(N,M0). Thus, to be more clear, opacity properties

are redefined in the new LPN framework. We also point out that an LPN system with a

finite set of initial markings can always be converted into an equivalent LPN system1 with

one initial marking. The procedure requires adding two new places, called p0 and p′0, and

r = |M0| new unobservable transitions, called tu1, . . . , tur. The initial marking of the new

net assigns a single token to place p0. The firing of a transition tui (with i = 1, . . . , r) moves

the token from p0 to p′0 and produces in the other places a token configuration that coincides

with the i-th marking inM0. To prevent transitions (in particular source transitions) from

firing before one of the transitions tui does, self-loops are added between p′0 and all other

transitions except tui for i = 1, . . . , r (cf. the proof of Theorem 5.2). Therefore, opacity

properties defined in this chapter are equivalent to those defined in Section 4.3.

The rest of the chapter is organized as follows. In Sections 5.2, 5.3, and 5.4, the decid-

ability of the current-state, initial-state and language opacity problems is discussed, respec-

tively. Finally, conclusions are drawn in Section 5.5.

5.2 Decidability of the Current-State Opacity Problem

In this section we discuss the decidability of the current-state opacity problem in LPN

systems.

Definition 5.1. Let G = (N,M0,Σ, `) be an LPN system and S ⊆ R(N,M0) be a secret

set. G is said to be current-state opaque (CSO) wrt S if for all M0 ∈ M0, M ∈ S and
1“Equivalent” refers to the fact that two nets have the same opacity property.
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σ ∈ L(N,M0) such that M0[σ〉M , there exists M ′
0 ∈M0, σ

′ ∈ L(N,M ′
0) such that `(σ′) =

`(σ) and M ′
0[σ
′〉M ′ /∈ S. �

Definition 5.2. Consider an LPN systemG = (N,M0,Σ, `) and a secret set S ⊆ R(N,M0).

The Petri net current-state opacity problem consists in determining whether G is current-

state opaque wrt S or not. �

In [5] it has been proven that if G is bounded, which also implies that M0 is finite,

the Petri net current-state opacity problem is decidable. In the following, we show that in

general such a problem is undecidable.

Theorem 5.1. The Petri net current-state opacity problem is undecidable.

Proof: We preliminarily recall that the Petri net language containment problem, i.e.,

the problem of determining whether the language generated by an LPN system is contained

in the language generated by another LPN system, is not decidable [58]. We now prove

the theorem by showing that the Petri net language containment problem can be reduced (in

polynomial time) to the Petri net current-state opacity problem for a singleton secret set and

a single initial marking.

Let L(G1,M01) and L(G2,M02) be the languages generated by two arbitrary LPN sys-

tems G1 = (N1,M01,Σ1, `1) and G2 = (N2,M02,Σ2, `2), respectively. Let Pi (|Pi| = mi)

and Ti (|Ti| = ni), respectively, be the set of places and transitions of Gi, for i = 1, 2. We

construct a new LPN system G = (N,M0,Σ, `) based on G1 and G2 by the following steps:

i) Duplicate the structures of G1 and G2 in G.

ii) Add to G places: p0, p1, p2, and p3, unobservable transitions: t1 and t2, and observable

transitions: t3 and t4 such that `(t3) = `(t4) = z /∈ (Σ1 ∪ Σ2).

iii) Add new arcs: Pre(p0, ti) = 1 for i = 1, 2; Pre(p1, t3) = 1; Pre(p2, t4) = 1; ∀t ∈
T1, Pre(p1, t) = 1, Post(p1, t) = 1; ∀t ∈ T2, Pre(p2, t) = 1, Post(p2, t) = 1;

Post(p1, t1) = 1; Post(p2, t2) = 1; Post(p3, t3) = 1; ∀p ∈ P such that M01(p) 6= 0,

Post(p, t1) = M01(p); ∀p ∈ P such that M02(p) 6= 0, Post(p, t2) = M02(p).

iv) M0 = p0.

As a result, the number of places and transitions in G are |P | = m1 + m2 + 4 and

|T | = n1 + n2 + 4, respectively, and Σ = Σ1 ∪ Σ2 ∪ {z}. The LPN system G is depicted

in Fig. 5.1. For i = 1, 2, the firing of ti initializes Gi. Namely, the markings reached after
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Fig. 5.1 LPN system G constructed in the proof of Theorem 5.1.

firing ti are M = pi + Σp∈Pi
M0i(p) · p. Self-loops between pi and transitions in Gi prevent

source transitions from firing before ti fires.

Let us consider the secret set S = {p3}. In the following we prove that

L(G1,M01) ⊆ L(G2,M02)⇔ G is current-state opaque wrt S.

We first prove that if G is current-state opaque wrt S, then L(G1,M01) ⊆ L(G2,M02)

holds. Assume that G is current-state opaque wrt S. Then for every σ leading to the secret

marking, there exists σ′ ∈ L(N,M0) that does not lead to the secret but produces the same

observation, i.e., `(σ) = `(σ′). Based on the structure of G, the transition sequences that

lead to the secret marking take the form σ = t1σ1t3, where σ1 ∈ L(N1,M01) and produce

observation `(σ) = `(σ1)z, where `(σ1) ∈ L(G1,M01). Moreover, it appears evident that

σ′ should take the form σ′ = t2σ2t4, where σ2 ∈ L(N2,M02). Indeed, these are the only

sequences that produce an observation ending with z and not leading to the secret marking.

This implies that for any σ1 ∈ L(N1,M01), there exists σ2 ∈ L(N2,M02) such that `(σ1) =

`(σ2), i.e., L(G1,M01) ⊆ L(G2,M02).

Analogously, we can prove that if L(G1,M01) ⊆ L(G2,M02) then G is current-state

opaque wrt S. Indeed, if L(G1,M01) ⊆ L(G2,M02), then L(N1,M01) ⊆ L(N2,M02) and

for any sequence σ = t1σ1t3 that leads to the secret marking, it corresponds a sequence σ′ =

t2σ2t4, where σ1 ∈ L(N1,M01) and σ2 ∈ L(N2,M02), that produces the same observation

but leads to a nonsecret marking, i.e., G is current-state opaque wrt S.

Therefore, for the general case where the secret is an arbitrary subset of R(N,M0) and

the initial marking set may not be a singleton, the Petri net current-state opacity problem is
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Fig. 5.2 The LPN system G′ constructed in the proof of Theorem 5.2.

undecidable. �

5.3 Decidability of the Initial-State Opacity Problem

Definition 5.3. Consider an LPN system G and a secret set S. The Petri net initial-state

opacity problem consists in determining whether G is initial-state opaque wrt S or not. �

Based on the results in [5], if the net is bounded, i.e., R(N,Mst) is finite, the Petri

net ISO problem is decidable. On the other hand, the undecidability of the Petri net B-

ISO problem does not imply its undecidability for a special class of M0. Therefore, it is

necessary to investigate the decidability of the Petri net ISO problem. In the following, we

prove its undecidability.

Theorem 5.2. The Petri net initial-state opacity problem is undecidable.

Proof: It has been proven that the B-ISO problem in Petri nets is undecidable [24],

whereM0 is finite. We prove this theorem by showing that the B-ISO problem for finite se-

cret sets, which is undecidable, can be reduced into the Petri net ISO problem in polynomial

time.

Consider an LPN system G = (N,M0,Σ, `) with |P | = m and |T | = n, where

M0 = {M1
0 ,M

2
0 , · · · ,Mk

0 } ⊆ Nm is a finite set of initial markings, and a secret set S =

{M1
0 ,M

2
0 , · · ·M r

0} ⊆ M0 with r ≤ k. Starting from G, let us construct a new LPN system

G′ = (N ′,M ′
st,Σ

′, `′), where N ′ = (P ′, T ′, P re′, Post′), by the following steps:

i) Add to G places: p0, p1, . . . , pk+1, unobservable transitions tu1, tu2, . . . , tuk, and ob-

servable transitions: t1, t2, . . . , tk, such that `(t1) = · · · = `(tk) = z /∈ Σ.
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ii) Add arcs: for i = 1, 2, · · · , k, Pre(p0, tui) = 1, Pre(pi, ti) = 1, Post(pi, tui) = 1,

Post(pk+1, ti) = 1; ∀p ∈ P such that M i
0(p) 6= 0, Post(p, ti) = M i

0(p); ∀t ∈ T ,

Pre(pk+1, t) = 1, Post(pk+1, t) = 1.

iii) M ′
st = p0.

The resulting G′ is depicted in Fig. 5.2. Obviously Σ′ = Σ ∪ {z}. Moreover, the number

of places and transitions in G′ are |P ′| = m + k + 2 and |T ′| = n + 2k, respectively. The

firing of tuiti initializes G at M i
0 (for i = 1, 2, . . . , k). Place pk+1 is added to prevent source

transitions in G from firing before the firing of tuiti.

Let us consider the secret set S ′ = {p0, p1, . . . , pr}. In the following we prove that

G is B-ISO wrt S⇔ G′ is ISO wrt S ′.

First we prove that if G′ is ISO wrt S ′, then G is B-ISO wrt S. Assume that G′ is ISO

wrt S ′. Then for any observation w generated from markings in S ′, there exists a marking

M ′ ∈ R(N ′,M ′
st) \ S ′ from which the same observation w can be generated, i.e.,

L(G′, S ′) ⊆ L(G′, R(N ′,M ′
st) \ S ′). (5-1)

By the structure of G′,

L(G′, S ′) = {w′ ∈ E ′∗|w′ = zw,w ∈ L(G,S)} (5-2)

holds. Moreover, the set of words in L(G′, R(N ′,M ′
st) \ S ′) having z as the prefix is equal

to L(G′, {pr+1, . . . , pk}). Therefore, by Eq. (5-1), we have

L(G′, S ′) ⊆ L(G′, {pr+1, . . . , pk}). (5-3)

Again by the structure of G′, we have

L(G′, {pr+1, . . . , pk}) = {w′ ∈ E ′∗|w′ = zw,w ∈ L(G,M0 \ S)} (5-4)

By Eqs. (5-2), (5-3) and (5-4), it follows that L(G,S) ⊆ L(G,M0 \ S). Namely, for all

M ∈ S, w ∈ L(G,M), there exists M ′ ∈M0 \S such that w ∈ L(G,M ′), i.e., G is B-ISO

wrt S.

Following the same reasoning, we can prove that if G is B-ISO wrt S, then G′ is ISO

wrt S ′. In more detail, if G is B-ISO wrt S, then L(G,S) ⊆ L(G,M0 \ S) holds. This

implies the inclusion relationship in Eq. (5-3) and, taking into account the structure of G′,

the inclusion relationship in Eq. (5-1). Therefore, we conclude that G′ is ISO wrt S ′. �
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5.4 Decidability of the Language Opacity Verification Problem

Language opacity was first introduced in [29] in the framework of finite automata and

then extended to Petri nets in Chapter 4. In the case of language opacity the secret is defined

as a language. In this section we first recall the notion of language opacity in LPN systems,

then we formalize the language opacity problem, and finally, we prove that such a problem

is undecidable.

Definition 5.4. Let G = (N,M0,Σ, `) be an LPN system and S ⊆ L(N,M0) be a secret

language. G is said to be language opaque (LO) wrt S if for all σ ∈ S, there exists σ′ ∈
L(N,M0) \ S such that `(σ) = `(σ′). �

In other words, a system is language opaque wrt a given secret if for any observation

that can be generated by a sequence in the secret, there exists another nonsecret sequence

generating the same observation.

Definition 5.5. Consider an LPN system G = (N,M0,Σ, `) and a secret language S ⊆
L(N,M0). The language opacity problem consists in determining whether G is language

opaque wrt S or not. �

Theorem 5.3. The Petri net language opacity problem is undecidable.

Proof: The proof is carried out by showing that the Petri net current-state opacity prob-

lem for finite secret sets, which is proven undecidable by Theorem 5.1, can be reduced into

the Petri net language opacity problem in polynomial time.

Consider an LPN system G = (N,M0,Σ, `) and a secret set S ⊆ R(N,M0). Let us

prove that

G is CSO wrt S ⇔ G is LO wrt S ′,

where S ′ = {σ ∈ T ∗|∃M0 ∈M0,M ∈ S : M0[σ〉M}.
First we prove that ifG is current-state opaque wrt S, thenG is language opaque wrt S ′.

Assume that G is current-state opaque wrt S. Then for any M0 ∈ M0, M ∈ S and σ ∈ T ∗

such that M0[σ〉M , there exist M ′
0 ∈ M0, M ′ ∈ R(N,M0) \ S and σ′ ∈ T ∗ such that

M ′
0[σ
′〉M ′ and `(σ) = `(σ′). This implies that for all σ ∈ S ′, there exists σ′ ∈ L(N,M0)\S ′

with `(σ) = `(σ′). Therefore, G is language opaque wrt S ′.

Now we prove that if G is language opaque wrt S ′, then G is current-state opaque wrt

S. Assume that G is language opaque wrt S ′. Then for any σ ∈ L(N,M0) ∩ S ′, there

exists at least a firing sequence σ′ ∈ L(N,M0) \ S ′ such that `(σ′) = `(σ). Since σ′ /∈ S ′,
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M ′ /∈ S, where M0[σ
′〉M ′ and M0 ∈ M0. Namely, for any transition sequence leading to a

marking in S, there exists a transition sequence producing the same observation but leading

to a marking not in S. Therefore, G is current-state opaque wrt S. �

Corollary 5.1. The Petri net language opacity problem in bounded Petri net systems is de-

cidable.

Proof: Follows from the proof of Theorem 5.3. �

Furthermore, verification of strict language opacity in bounded Petri nets is decidable,

since by Corollary 4.1 verification of strict language opacity can be reduced to verification

of language opacity.

5.5 Conclusion

In this chapter, the decidability of current-state, initial-state and language opacity prob-

lems in Petri nets is addressed, where initial-state opacity is a special case of B-initial-state

opacity defined in [5]. In particular, showing that all such problems are undecidable for

special classes of secrets, we conclude that, in general, Petri net current-state, initial-state,

and language opacity problems are undecidable since if a problem is undecidable under

special assumptions (e.g., the secret set is finite), the same problem under less restrictive

assumptions is obviously undecidable as well.

The work of this chapter has been accepted as:

Y. Tong, Z. W. Li, C. Seatzu, and A. Giua, “Decidability of Opacity Problems in La-

beled Petri Nets”, Automatica, 2017.
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Chapter 6 Opacity Verification Using Petri Nets

6.1 Introduction

In this chapter, we focus on the verification of two important state-based opacity proper-

ties: current-state opacity (CSO) and initial-state opacity (ISO), and strict language opacity

(SLO) in DESs modeled by bounded labeled Petri nets, which have been proven decidable

in Chapter 5. The system under consideration is modeled by a bounded labeled Petri net

(LPN), where the observation function is static and the states are not observable [23, 24].

To overcome the state explosion, in this chapter we use the notions of basis markings

and minimal explanations. Such notions have been first introduced in [59–63] to solve the

problems of state estimation, fault diagnosis, diagnosability analysis and reachability anal-

ysis in LPNs. They allow one to avoid an exhaustive enumeration of the reachability space.

Only a subset of reachable markings, i.e., the basis markings, should be enumerated, while

other reachable markings are characterized by linear systems, one for each basis marking.

Therefore, the RG can be compactly represented by the basis reachability graph (BRG), a

graph describing the transition relation between basis markings.

The main contributions of this chapter can be summarized as follows:

1. Necessary and sufficient conditions for current-state opacity with respect to an ar-

bitrary secret are provided. A novel approach based on the BRG (with appropriate

changes) is proposed that enables one to avoid RG analysis. Moreover, if the secret

is defined as the intersection of a series of generalized mutual exclusion constraints

(GMECs), then current-state opacity can be verified by solving a set of integer linear

programming problems (ILPPs) instead of exhaustively enumerating the unobservable

reach of basis markings. Finally, if the incidence matrix is totally unimodular, then

these ILPPs can be relaxed to linear programming problems (LPPs).

2. We define exposable and weakly exposable markings. In particular, we prove that if

no weakly exposable marking is contained in the secret, then current-state opacity

can be efficiently verified without solving ILPPs. Moreover, the proposed approach is

extended to the case where the intruder has uncertainties about the initial marking.

3. We provide necessary and sufficient conditions for initial-state opacity with respect

to an arbitrary secret. We show that if no weakly exposable marking belongs to the
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secret, initial-state opacity can be efficiently verified using the BRG. Otherwise, we

propose a modified BRG (MBRG) to verify initial-state opacity.

4. A MATLAB tool is developed to implement most of the proposed approaches. Nu-

merical results are illustrated to corroborate their effectiveness.

5. A finite structure called verifier is proposed to verify strict language opacity. Such

an approach works under the assumption that the intruder is interested in the set of

observable transitions and the secret is the set of all firable transition sequences in a

bounded LPN (excluding the empty string). The proposed approach is proven of lower

complexity than other methods in literature.

The rest of this chapter is organized as follows. Firstly, in Section 6.2 we briefly recall

the notion of minimal explanations, basis markings and basis reachability graphs. In Section

6.3, approaches to verifying CSO are proposed. Verification of ISO is addressed in Section

6.4. Numerical examples for verifying CSO and ISO are presented in Section 6.5. The

method of verifying SLO is developed in Section 6.6. Finally, conclusions are drawn.

6.2 Basis Reachability Graph

In [59, 60], a compact way to represent the reachability set of a Petri net was proposed

to solve the fault diagnosis problem. Under the assumption that the Tu-induced (unobserv-

able) subnet is acyclic, only a subset of the reachable markings, called basis markings, are

computed, while, all non-basis markings are characterized by a set of linear equations asso-

ciated with each basis marking. Using the notion of basis markings, the basis reachability

graph (BRG) is defined. The BRG as proposed in [59, 60] also includes some diagnosis

information, which are redundant for its application in the thesis. Herein we redefine it

neglecting such information. Now we recall some key definitions from [60].

Definition 6.1. Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u |M [σ〉M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M and Y (M, t) = {yu ∈ Nnu|∃σ ∈ Σ(M, t) : yu = π(σ)}
as the set of e-vectors. �

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t and

Y (M, t) is the set of firing vectors of the explanations. Among all the explanations, we are

interested in finding the minimal ones, i.e., those whose firing vector is minimal.
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Fig. 6.1 LPN where `(t1) = `(t3) = a.
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Fig. 6.2 Tu-induced subnet of the LPN in Fig. 6.1.

Definition 6.2. Given a marking M and an observable transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

as the set of minimal explanations of t atM and Ymin(M, t) = {yu ∈ Nnu|∃σ ∈ Σmin(M, t) :

yu = π(σ)} as the corresponding set of minimal e-vectors. �

Generally, given a marking M and a transition t, its minimal explanation Σmin(M, t)

is not a singleton because an unobservable transition may have more than one input places

whose input transitions are also unobservable. Many approaches can be applied to comput-

ing Ymin(M, t). In particular, when the Tu-induced subnet is acyclic the approach proposed

by Cabasino et al. [60] only requires algebraic manipulations, which is presented in Algo-

rithm 4.

Algorithm 4 Computation of Ymin(M, t)

Input: A Petri net N , a marking M , and a transition t ∈ To
Output: Ymin(M, t)

1: Let Γ =

[
CT
u Inu×nu

A B

]
where A := (M − Pre(·, t))T , B := ~0Tnu

;

2: while A has negative entries, do
3: choose an element A(i∗, j∗) < 0;
4: let I+ = {i|CT

u (i, j∗) > 0};
5: for all i ∈ I+, do
6: add to [A|B] a new row

[A(i∗, ·) + CT
u (i, ·)|B(i∗, ·) + ~ei

T ],

where ~ei is the i-th canonical basis vector;
7: end for
8: remove the row [A(i∗, ·)|B(i∗, ·)] from the table;
9: end while

10: Remove from B any row that covers other rows;
11: Each row of B is a vector in Ymin(M, t).
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Example 6.1. Consider the LPN system in Fig. 6.1. Its Tu-induced subnet (see Fig. 6.2) is

acyclic. Let M = [0 1 0 1]T and t = t1. Then (M − Pre(·, t))T = [−1 1 0 1]T and

Γ =


0 −1 1 0 1 0 0
1 0 −1 0 0 1 0
1 0 0 −1 0 0 1
−1 1 0 1 0 0 0

 .
There is only one element of A, i.e., A(1, 1) = −1, is negative. Moreover, I+ = {2, 3}.
Following Steps 5 to 8 in Algorithm 4, first choosing i = 2, we add Γ a new row

|0 1 −1 1 0 1 0|

obtained from the first row of A adding Γ(2, ·). Then choosing i = 3, we add Γ a new row

|0 1 0 0 0 0 1|

obtained from the first row of A adding Γ(3, ·). Finally, remove A(1, ·) obtaining

Γ =


0 −1 1 0 1 0 0
1 0 −1 0 0 1 0
1 0 0 −1 0 0 1
0 1 −1 1 0 1 0
0 1 0 0 0 0 1

 .
Now A(1, 3) is negative and we continue computing I+ = {1}. We add the following

new row to Γ:

|0 0 0 1 1 1 0|

obtained from the first row of A adding Γ(1, ·). Finally, we remove A(1, ·) from Γ obtaining

Γ =


0 −1 1 0 1 0 0
1 0 −1 0 0 1 0
1 0 0 −1 0 0 1
0 1 0 0 0 0 1
0 0 0 1 1 1 0

 .
Now we can stop because all entries of A are non negative. Since no rows of B cover the

other, both rows of B, namely

|0 0 1|, and |1 1 0|

are elements of Ymin(M, t). �

Based on the notion of minimal explanations, the set of basis markings can be recur-

sively defined.

76



Chapter 6 Opacity Verification Using Petri Nets

Definition 6.3. Given an LPN system G = (N,M0,Σ, `), its set of basis markingsMB is a

subset of R(N,M0) such that:

a) M0 ∈MB;

b) ∀M ∈ MB,∀t ∈ To,∀yu ∈ Ymin(M, t), it holds M ′ ∈ MB, where M ′ = M +

C(·, t) + Cu · yu. �

In other words, the set of basis markings includes the initial marking and the set of all

markings reachable by firing observable transitions together with their minimal explanation-

s. All other intermediate markings reachable by the firing of unobservable transitions are

disregarded.

Based on Definition 6.3, the following Algorithm 5 iteratively computes basis markings

and constructs the BRG. We now briefly explain how Algorithm 5 works. The setMB is

initialized at MB = {M0}. For all markings M in MB that have not been studied yet,

i.e., with no tag, and for all observable transitions t, we check whether the set of minimal

e-vectors Ymin(M, t) is not empty. If not, we compute the resulting basis markings. This

procedure runs iteratively until there is no unchecked marking inMB.

We denote the BRG as an NFA B = (MB,Σ, δ,M0), where MB is the state space,

all events are observable, δ is the transition relation between basis markings, and M0 is the

initial state.

As Algorithm 5 shows, to construct the BRG one only needs to explore the minimal e-

vectors for each basis marking and observable transition. This prevents us from exhaustively

exploring the RG. Therefore, the complexity of constructing the BRG is lower than that of

constructing the RG. It has been shown that in practical cases the size of the BRG can be

order of magnitude smaller than that of the RG [63]. Given a word w ∈ L(B), based on

Algorithm 5, if δ(M0, w) = M is defined in B then M is the basis marking reachable from

M0 by firing an observable sequence σo that produces w, eventually interleaved with some

unobservable transitions whose firing is necessary to enable σo. We use

Mb(w) = C(w) ∩MB

to denote the set of basis markings consistent with w.

Example 6.2. Let us consider again the LPN system in Fig. 6.1. It has 10 reachable markings

and its RG is shown in Fig. 6.3. However, there are only 5 basis markingsMB = {M0 −
M4}, and the corresponding BRG is shown in Fig. 6.4. For clarity of presentation, transitions

are added in parenthesis on arcs even if they are not provided by Algorithm 5. Note that they
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Algorithm 5 Construction of the BRG
Input: A bounded LPN system G = (N,M0,Σ, `) whose unobservable subnet is acyclic.
Output: The BRG B = (MB,Σ, δ,M0).

1: MB := {M0} and assign no tag to M0;
2: while states with no tag exist, do
3: select a state M ∈MB with no tag;
4: for all t ∈ To and Ymin(M, t) 6= ∅, do
5: for all yu ∈ Ymin(M, t), do
6: M ′ := M + Cu · yu + C(·, t);
7: δ(M, `(t)) := ∅;
8: if M ′ /∈MB, then
9: MB :=MB ∪ {M ′};

10: assign no tag to M ′;
11: end if
12: δ(M, `(t)) := δ(M, `(t)) ∪ {M ′};
13: end for
14: tag node M “old”;
15: end for
16: end while
17: Remove all tags.
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Fig. 6.3 RG of the LPN system in Fig. 6.1.
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Fig. 6.4 BRG of the LPN system in Fig. 6.1.

should not be taken into account when establishing whether the BRG is either deterministic

or not. �

Notice that to apply the BRG, two assumptions are made:

A1) the LPN system G is bounded, and

A2) the unobservable subnet of G is acyclic.

Assumption A1 guarantees that the number of basis markings is finite thus Algorithm 5 can

halt and the BRG can be constructed. Assumption A2 allows us to iteratively compute the

basis markings and to use the state equation to characterize the set of markings reachable

from a basis marking by firing unobservable transitions (as shown in Theorem 6.1 after).

Let us now introduce the following definition that is useful to formalize the main result

in this subsection.

Definition 6.4. Given an LPN system G = (N,M0,Σ, `) and a marking M ∈ R(N,M0),

the unobservable reach of M is defined as U(M) = {M ′ ∈ Nm|∃σu ∈ T ∗u : M [σu〉M ′}. �

In simple words, the unobservable reach of a marking M is the set of markings reach-

able from M by firing only unobservable transitions.

Sets Mb(w) can be computed through constructing the observer of the BRG. In [59,

60], it has been proved that the set of markings consistent with an observation w can be

characterized by the unobservable reaches of basis markings inMb(w).

79



Doctoral Dissertation of XIDIAN UNIVERSITY

Table 6.1 Unobservable reaches of markings in Fig. 6.3
Marking M U(M) Marking M U(M)

M0 {M0,M5,M8} M5 {M5,M8}
M1 {M0,M1,M5,M6,M7,M8} M6 {M0,M5,M6,M7,M8}
M2 {M2,M8} M7 {M5,M7,M8}
M3 {M0,M2,M3,M5,M8,M9} M8 {M8}
M4 {M2,M4,M8} M9 {M2,M5,M8,M9}

Theorem 6.1. [60] Let G = (N,M0,Σ, `) be an LPN system whose Tu-induced subnet is

acyclic. For all w ∈ L(G,M0), it holds that

C(w) =
⋃

Mb∈Mb(w)

U(Mb)

=
⋃

Mb∈Mb(w)

{M ∈ Nm|∃yu ∈ Nnu : M = Mb + Cu · yu}.

In words, given an LPN system whose unobservable subnet is acyclic, and an observa-

tion w, a marking M is consistent with w if and only if it belongs to the unobservable reach

of a basis marking Mb that is consistent with w. Since the unobservable subnet is acyclic,

marking M belonging to U(Mb) means that M = Mb + Cu · yu has a non-negative integer

solution yu.

Example 6.3. Consider the LPN system in Fig. 6.1. Unobservable reaches of all reachable

markings are listed in Table 6.1. One can compute them by looking at the RG or by solving

the equation in Theorem 6.1.

As discussed above, only markings M0 to M4 are basis markings. It can be easily

observed that the union of the unobservable reaches of basis markings equals the set of

reachable markings. �

Corollary 6.1 follows from Theorem 6.1.

Corollary 6.1. Let G = (N,M0,Σ, `) be an LPN system whose Tu-induced subnet is a-

cyclic. There exists a firing sequence σ = σu1ti1 · · · σuktik such that M0[σu1〉M1[ti1〉M ′
1 · · ·

Mk−1[σuk〉Mk[tik〉, where σuj ∈ T ∗u and tij ∈ To, if and only if there exists σ′ = σ′u1ti1 · · · σ′uk
tik such that M0[σ

′
u1〉M̂1[ti1〉M̂ ′

1 · · · M̂k−1[σ
′
uk〉M̂k[tik〉, where σ′uj ∈ Σmin(M̂j, tij).

In simple words, a sequence σ whose projection on To is ti1ti2 · · · tik is firable if and only if

there exists σ′ such that the minimal explanation of each observable transition is not empty.

Namely, to check if ∃σ ∈ L(N,M0) : PTo(σ) = ti1ti2 · · · tik there is no need to enumerate

all σu ∈ T ∗u that enable ti1, ti2, · · · , tik but only the minimal explanations. Markings M̂ ′
j are

basis markings.
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Fig. 6.5 Observer of the RG in Fig. 6.3.

6.3 Verification of Current-State Opacity

According to the definition of CSO (see Definition 4.4), we have the following fact:

Fact 1: An LPN system is CSO wrt a secret S ⊆ R(N,M0) if and only if

∀w ∈ L(G,M0) : C(w) * S.

In other words, to verify current-state opacity of an LPN system, we need to check if C(w) *
S holds for all w ∈ L(G,M0), which means that all sets C(w) need to be computed first.

For a bounded LPN system, this can be done by constructing the observer (automaton) (see

Section 2.1.2) of its RG.

Example 6.4. Let us consider the LPN system in Fig. 6.1. Let S = {M2,M3,M6,M7,M8}.
The observer of the RG (see Fig. 6.3) is shown in Fig. 6.5. Since none of the states of the

observer is a subset of S, the LPN system is CSO wrt S. �

Clearly, computing all sets C(w), in general, requires to exhaustively enumerate all

sequences of transitions that may fire, and the complexity of computing the observer of a

given NFA with |X| states isO(2|X|). Therefore, if the RG is too large, it may be impossible

to construct the observer. In this section, based on the notion of basis markings and minimal

explanations, an efficient approach to verifying current-state opacity is proposed. Let us first

introduce the following definition.

Definition 6.5. Let G = (N,M0,Σ, `) be an LPN system and S ⊆ R(N,M0) be a secret.

A reachable marking M is said to be exposable if it does not belong to the secret, i.e.,

M ∈ R(N,M0) \ S. The set of exposable markings is ex(S) = R(N,M0) \ S. A marking

M is said to be weakly exposable if there exists a marking M ′ ∈ R(N,M0) such that M ′ ∈
U(M) ∩ ex(S). The set of weakly exposable markings is denoted as wex(S). �

In simple words, a markingM is weakly exposable if there exists an exposable marking

M ′ that is reachable from it by firing unobservable transitions. Note that the firing sequence

of unobservable transitions could be empty. Therefore, all exposable markings are also

weakly exposable. Their relations are depicted by the Venn diagram in Fig. 6.6.
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ex(S)

wex(S)

R(N,M0)
S

R(N,M0)

ex(S)

Swex(S)

Fig. 6.6 Inclusion relationships among secret, exposable, weakly exposable, and reachable marking sets.

Example 6.5. Consider again the LPN system in Fig. 6.1. Given a secret S = {M2,M3,M6,

M7,M8}. The set of exposable markings is ex(S) = {M0,M1,M4,M5,M9}. According to

Table 6.1, U(M2) ⊆ S, U(M3) * S, U(M6) * S, U(M7) * S, and U(M8) ⊆ S. Therefore,

the set of weakly exposable markings is wex(S) = {M0,M1,M3 −M7,M9}. �

From Fact 1 and Definition 6.5, the following corollary follows.

Corollary 6.2. G = (N,M0,Σ, `) is current-state opaque wrt S iff ∀w ∈ L(G,M0), C(w)∩
ex(S) 6= ∅ holds.

Example 6.6. Consider Examples 6.4 and 6.5. The LPN system is current-state opaque wrt

S since ∀w ∈ L(G,M0), C(w) ∩ ex(S) 6= ∅. �

Based on Theorem 6.1, we derive the following necessary and sufficient condition for

current-state opacity.

Theorem 6.2. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S ⊆ R(N,M0) be a secret. G is current-state opaque wrt S iff ∀w ∈ L(G,M0),

Mb(w) ∩ wex(S) 6= ∅ holds.

Proof: (⇒) Given an arbitrary observation w ∈ L(G,M0), if there exists a basis mark-

ing Mb ∈ Mb(w) that is weakly exposable, then there is a marking M ∈ U(Mb) such that

M ∈ ex(S), and hence M ∈ C(w). This indicates that C(w) ∩ ex(S) 6= ∅. By Fact 1, the

system is current-state opaque wrt S.

(⇐) Assume that there is an observation w ∈ L(G,M0) and none of the basis markings

consistent with w are weakly exposable, i.e., ∀Mb ∈ Mb(w), U(Mb) ⊆ S. Based on

Theorem 6.1, all markings consistent with observation w belong to the secret, i.e., C(w) ∩
ex(S) = ∅. By Fact 1, the LPN system is not current-state opaque. �
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As a result, instead of exhaustively computing the sets C(w) for all w ∈ L(G,M0),

according to Theorem 6.2, to determine if an LPN system is current-state opaque, we only

need to compute the set of basis markingsMb(w) for all observations w ∈ L(G,M0) and

to check if it contains a weakly exposable basis marking.

6.3.1 BRG for Current-State Opacity

In this section, we propose a modified BRG that enables us to verify current-state opac-

ity more efficiently.

Given a bounded LPN system G and a secret S, with each node Mb ∈MB of the BRG

B = (MB,Σ, δ,M0) we associate a binary scalar α(Mb) defined as follows:

α(Mb) =

{
1, if Mb is weakly exposable;
0, otherwise. (6-1)

The BRG for current-state opacity is denoted as Bc = (M̃B,Σ, δc, (M0, α(M0))), where

M̃B ⊆MB × {0, 1}.

For all observations w,Mb(w) can be computed by converting the obtained BRG into

its equivalent DFA by a standard determinization procedure. In the resulting DFA, called

current-state basis observer, each state is a subset of M̃B consistent with an observation.

According to Theorem 6.2, if all states of the observer have at least a pair (M,α(M)) with

α(M) = 1, the LPN is current-state opaque wrt S; otherwise, the LPN is not current-state

opaque.

The number of states of the current-state basis observer in the worst case is 2|MB | − 1.

Therefore, the space complexity of the proposed approach is O(2|MB |). However, since the

RG-based approach has a space complexity of O(2|R(N,M0)|), and |MB| is typically greatly

smaller than |R(N,M0)|, we conclude that the BRG-based method is practically much more

efficient. Some numerical results that validate this are given in Section 6.5. Moreover, once

the current-state basis observer is constructed, there is no need to reconstruct it when the

secret S changes. If S is changed to S ′, all we need is to update the value of α(M) in the

current-basis observer for each basis marking M .

Example 6.7. Consider the LPN in Fig. 6.1 and the same secret S = {M2,M3,M6,M7,M8}
in Example 6.5. By Eq. (6-1), the BRG for current-state opacity is illustrated in Fig. 6.7 and

the corresponding observer is shown in Fig. 6.8. Since all nodes of the observer have at least

a pair (M,α(M)) with α(M) = 1, then by Theorem 6.2, the LPN is current-state opaque

wrt S. �
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Fig. 6.7 BRG Bc for current-state opacity in Example 6.7.
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BRG-obs-aaFig. 6.8 Current-state basis observer of the BRG Bc in Fig. 6.7.

The following proposition provides a sufficient but not necessary condition for verify-

ing current-state opacity without constructing the observer of the BRG.

Proposition 6.1. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S ⊆ R(N,M0) be a secret. If all basis markings Mb ∈ MB of G are weakly

exposable, i.e.,MB ⊆ wex(S), the system is current-state opaque wrt S.

Proof: Since all basis markings are weakly exposable, namely, for all observations

w ∈ L(G,M0), there is an exposable marking in C(w), according to Theorem 6.2, the LPN

system is current-state opaque. �

If all states of the BRG have α(·) = 1, the LPN is current-state opaque; otherwise,

current-state opacity requires further analysis. The result of Example 6.7 shows that the

condition in Proposition 6.1 is not necessary for current-state opacity: even though in the

BRG there is basis markings M2 ∈Mb(a) that is not weakly exposable, the LPN is current-

state opaque wrt S. When w = a is observed, consistent markings reached from basis

marking M2 belong to the secret. The intruder, however, still does not know for sure if the

current state is in the secret, since the current state could be the one that is reachable from

M1 ∈Mb(a) and that does not belong to the secret. For example, the current state could be

M5.
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6.3.2 Secrets Described by GMECs

Let us now discuss some special cases for which the computation of the scalars α(M)

could be simplified. To verify if a marking M is weakly exposable requires to test if there

exists a nonsecret marking M ′ that belongs to its unobservable reach. This can be done ex-

haustively by solving the reachability problem in its unobservable subnet. If the unobserv-

able subnet is acyclic, this can be done by checking if M ′ = M +Cu · yu has a nonnegative

integer solution. However, under special assumptions on the secret and/or the net structure,

there may exist a more efficient way to do that. In this subsection we show that such is

the case when the secret S is described by a set of generalized exclusion mutual constraints

(GMECs) [64]. It is well-known that GMECs describe interesting subsets of the state space

of a net and many interesting state-based specifications can be represented by GMECs. Fur-

thermore, they allow one to solve analysis and control problems by means of simple linear

algebraic tools [65–68]. We show that in such a case determining if a basis marking is weak-

ly exposable does not require constructing the reachability set of the unobservable subnet,

but only finding if a given set of linear integer constraints admits a feasible solution.

Definition 6.6. [64] Given a net N , a single GMEC is a pair (w, k), where w ∈ Zm, k ∈ Z,

defining a set of legal markingsM(w,k) = {M ∈ Nm | wT ·M ≤ k}. A conjunctive GMEC

is a pair (W,K) where W ∈ Zr×m, K ∈ Zr defining a set of legal markings M(W,K) =

{M ∈ Nm | W T ·M ≤ K}. Given a conjunctive GMEC (W,K), we use (wi, ki) to denote

the single GMEC (W (i, ·), K(i)). �

In this subsection we assume that the secret is described by a conjunctive GMEC, i.e.,

S = {M ∈ Nm | W T ·M ≤ K}.

Definition 6.7. Let M ∈ R(N,M0) be a marking of an LPN system G = (N,M0,Σ, `),

S = {M ∈ Nm|W ·M ≤ K} be a secret and (wi, ki) be the i-th GMEC of the secret. The

(i,M)-constraint set is defined as

Yi(M) =



M ′ = M + Cu · yu

wT
i ·M ′ > ki

yu ∈ Nnu

M ′ ∈ Nm

�

Proposition 6.2. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S = {M ∈ Nm|W ·M ≤ K} be a secret. A reachable marking M ∈ R(N,M0)
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is weakly exposable iff there exists a GMEC (wi, ki) of the secret such that the corresponding

(i,M)-constraint set is feasible.

Proof: (⇒) Given a marking M ∈ R(N,M0), if there exists a GMEC whose (i,M)-

constraint set is feasible, then there exists a marking M ′ that is reachable from M by firing

unobservable transitions and that does not belong to the secret, i.e., M is weakly exposable.

(⇐) If M is weakly exposable, then there exists a marking M ′ /∈ S with M [σ〉M ′,

σ ∈ T ∗u . Therefore, there exists a GMEC (wj, kj) such that M ′ and vector y = π(σ) is a

solution to the (j,M)-constraint set. �

In other words, when the secret is described by GMECs, verifying if a marking is

weakly exposable can be done by solving integer linear programming problems (ILPPs).

Therefore, the construction of BRG for current-state opacity requires solving r · z ILPPs,

where r is the number of GMECs and z is the number of basis markings. Moreover, for some

net structures the complexity of constructing the BRG can be further reduced by relaxing an

ILPP into a linear programming problem (LPP).

Lemma 6.1. [69] If A is a totaly unimodular matrix1 and b is a vector of integers, then a

linear programming problem of the form min {c · x | A · x ≥ b, x ≥ 0} or max {c · x |
A · x ≤ b} has an integer optimal solution, for any c.

Proposition 6.3. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic, the corresponding incidence matrix Cu be a totally unimodular matrix, and S =

{M ∈ Nm|W · M ≤ K} be a secret. A reachable marking M ∈ R(N,M0) is weakly

exposable iff there exists a GMEC (wi, ki) whose (i,M)-constraint set Yi(M) is feasible for

y ∈ Rnu
≥0 and M ′ ∈ Rm≥0.

Proof: Trivially follows from Proposition 6.2 and Lemma 6.1. �

Note that there exist many interesting classes of nets whose incidence matrix is totally

unimodular: examples are marked graphs and state machines [70].

Example 6.8. Consider again the LPN system in Fig. 6.1 whose unobservable subnet is a

state machine. Let the secret be S = {M ∈ N4|M(p1) + M(p4) ≥ 2}, i.e., W =

[ −1 0 0 −1 ] and K = −2. Since the observer of the BRG has been constructed in

Example 6.7, only the value α(·) of each basis marking needs to be updated. By solving

the LPP, we obtain α(M0) = 1, α(M1) = 1, α(M2) = 0, α(M3) = 1, and α(M4) = 0.

According to Theorem 6.2, the LPN system is current-state opaque wrt the secret S. �
1A matrix A is totally unimodular if each subdeterminant of A is 0, 1, or −1.
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Notice that the observer of the BRG still needs to be constructed first. Providing a nec-

essary but not sufficient condition for current-state opacity, Proposition 6.4 can be applied

without constructing the observer and only requires solving LPPs.

Proposition 6.4. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S = {M ∈ Nm|W ·M ≤ K} be a secret. The LPN is not current-state opaque if

for all basis markingsMb ∈MB and all GMECs (wi, ki), the (i,Mb)-constraint sets Yi(Mb)

are not feasible for y ∈ Rnu
≥0 and M ∈ Rm≥0.

Proof: Given a basis marking Mb, if for all GMECs (wi, ki) the (i,Mb)-constraint sets

Yi(Mb) is not feasible for y ∈ Rnu
≥0 and M ∈ Rm≥0, they are not feasible for y ∈ Nnu

≥0 and

M ∈ Nm≥0 either. According to Proposition 6.2, basis marking Mb is not weakly exposable.

Since none of the basis markings is weakly exposable, by Theorem 6.2, the LPN system is

not current-state opaque. �

6.3.3 Secrets with No Weakly Exposable Markings

In this subsection we focus on a special class of secrets. More precisely, given an LPN

system, we assume that the secret satisfies the following additional assumption:

A3) none of the secret markings is weakly exposable, i.e., M ∈ S ⇒ ∀M ′ ∈ U(M) :

M ′ ∈ S holds.

This means that if M is a secret marking, all markings in the unobservable reach of M

are secret markings as well. This assumption allows to simplify the verification of current-

state opacity (as shown by Theorem 6.3). Moreover, it is useful when studying the case of

initial-state opacity in Section 6.4.

We denote SB = S ∩MB the set of basis markings that are in secret S, and ex(SB) =

ex(S) ∩MB =MB \ SB the set of exposable basis markings.

Theorem 6.3. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S be a secret satisfying Assumption A3. The LPN G is current-state opaque wrt

S iff ∀w ∈ L(G,M0),Mb(w) ∩ ex(SB) 6= ∅ holds.

Proof: (⇒) LetMb ∈Mb(w)∩ex(SB). Therefore, Mb ∈ C(w) and C(w)∩ex(S) 6= ∅,
i.e., G is current-state opaque wrt S.

(⇐) AssumeG is opaque. Then ∀w ∈ L(G,M0), C(w)∩ex(S) 6= ∅, i.e., ∃M ∈ C(w) :

M ∈ ex(S). According to Theorem 6.1, ∃Mb ∈ MB ∩ ex(S) : M ∈ U(Mb), otherwise,

Assumption A3 would be violated. Therefore,Mb(w) ∩ ex(SB) 6= ∅. �

87



Doctoral Dissertation of XIDIAN UNIVERSITY

Example 6.9. Consider again the LPN in Fig. 6.1. Consider a secret S = {M0,M2,M5,M8,

M9} that satisfies Assumption A3. Then we have SB = {M0,M2} and ex(SB) = {M1,M3,

M4}. Based on the observer of the BRG in Fig. 6.8, ∀w ∈ L(G,M0),Mb(w)∩ex(SB) 6= ∅,
and therefore, the LPN is current-state opaque wrt S. �

In other words, if Assumption A3 is satisfied, then current-state opacity can be verified

by simply checking if each state of the current-state basis observer contains at least one

basis marking which is exposable (rather than weakly exposable). This can be easily done

by checking ifMb(w) ∩ (R(N,M0) \ S) = ∅.
We finally point out that Theorem 6.3 could also be useful when the secret does not

satisfy Assumption A3. Indeed, given an arbitrary system G and a secret S, the following

proposition shows that we can always find another secret S ′′ which satisfies Assumption A3

and G has the same current-state opacity property wrt both S and S ′′, and hence Theorem

6.3 can be applied.

Proposition 6.5. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic, and S ⊆ R(N,M0) be a secret. G is current-state opaque wrt S iffG is current-state

opaque wrt S ′′, where S ′′ = S \ S ′ and S ′ = wex(S) ∩ S.

Proof: Assume thatG is current-state opaque wrt S ′′. Therefore, ∀w ∈ L(G,M0), C(w)∩
ex(S ′′) 6= ∅. Suppose that G is not current-state opaque wrt S, i.e., ∃w ∈ L(G,M0) :

C(w)∩ex(S) = ∅. Since ex(S ′′) = ex(S)∪S ′, we have C(w)∩ex(S ′′) = (C(w)∩ex(S))∪
(C(w) ∩ S ′) = C(w) ∩ S ′ 6= ∅. Let M ∈ C(w) ∩ S ′. Therefore, there exists a marking

M ′ ∈ U(M) : M ′ ∈ ex(S), and thus M ′ ∈ C(w) ∩ ex(S), i.e., G is opaque wrt S.

It is clear that ex(S) ⊆ ex(S ′) and ex(S) ⊆ ex(S ′′), since S ′ ⊆ S and S ′′ ⊆ S.

Furthermore, since G is current-state opaque wrt S, i.e., C(w) ∩ ex(S) 6= ∅, it holds C(w) ∩
ex(S ′) 6= ∅ and C(w) ∩ ex(S ′′) 6= ∅. Thus G is current-state opaque wrt both S ′ and S ′′,

respectively. �

Proposition 6.5 indicates that given a system G and a secret S, to verify if G is current-

state opaque wrt S we can pretreat the secret S by simply removing all weakly exposable

markings in S to get S ′′ that satisfies Assumption A3, and then verify if G is current-state

opaque wrt S ′′ using Theorem 6.3.

Example 6.10. Consider again the LPN system in Fig.6.1. Let S = {M1,M2,M5,M8}.
The secret does not satisfy Assumption A3 since M1 is weakly exposable. The secret can be

partitioned into S = S ′ ∪ S ′′, where S ′ = {M1} and S ′′ = {M2,M5,M8}. Therefore, S ′′B =
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{M2} and ex(S ′′B) = {M0,M1,M3,M4}. Since ∀w ∈ L(G,M0), Mb(w) ∩ ex(S ′′B) 6= ∅
holds, the LPN is current-state opaque wrt S ′′, or equivalently, by Proposition 6.5, the LPN

is current-state opaque wrt S. �

6.3.4 Uncertainty on the Initial Marking

In this section we focus on the problem of verifying current-state opacity under the

more general assumption that the intruder has only partial knowledge of the initial marking

of the net. In more detail, we assume that the intruder simply knows that the initial marking

M0 belongs to a setM0 ⊆ MB, i.e., M0 ∈ M0. Clearly, this is equivalent to assume that

the set of possible initial markings for the intruder is M̂0 =
⋃
Mb∈M0

U(Mb). Obviously,

if a Petri net system is current-state opaque wrt a secret when the intruder knows the initial

marking M0, a fortiori it is current-state opaque when the intruder simply knows that the

initial marking belongs to set M̂0. In this subsection, we show that current-state opacity

with the above ambiguity on the initial marking can be verified by simply modifying the

current-state basis observer.

Given an observationw, we have defined C(w) as the set of markings consistent withw,

assuming thatM0 is known. Now, we generalize this notion to a given set of initial markings

M̂0, and define

Ĉ(w) = {M ∈ Nm|∃M ′ ∈ M̂0,∃σ ∈ T ∗ :

M ′[σ〉M and `(σ) = w},

i.e., Ĉ(w) is the set of possible current markings estimated by the intruder when observing

w. Clearly, if M0 ∈ M0 it holds Ĉ(w) ⊇ C(w), hence the condition in Theorem 6.2 is

no longer necessary. Namely, the system could be current-state opaque even if there exists

w ∈ L(G,M0) such that Mb(w) ∩ wex(S) = ∅. If the initial state of the current-state

basis observer is initialized at M0 directly, words that would never be generated by the

LPN, i.e., words in L(G,M̂0) \ L(G,M0), will be generated by the observer. Note that

L(G,M̂0) = L(G,M0). As a result, current-state opacity cannot be verified looking at

the current-state basis observer. To restrict the language of the current-basis observer to the

language of the LPN and separately denote estimations made on the basis of false initial

markings M0 \ {M0} and estimations made on the basis of the real initial marking M0,

as formalized in the following definition, we introduce an extended observer which is the

synthesis of two BRG observers, initialized atM0 \M0 and M0, respectively.
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Definition 6.8. Let G = (N,M0,Σ, `) be a bounded LPN system whose unobservable sub-

net is acyclic, S ⊆ R(N,M0) be a secret, Bc = (M̃B,Σ, δc, (M0, α(M0))) be the cor-

responding BRG for current-state opacity and M0 be the intruder’s knowledge about the

initial marking. The extended observer of the BRG is a DFA V = (Q,Σ, δ, q0), where

Q ⊆ 2M̃B × 2M̃B and q0 = (X̂0,X0) with X̂0 = {(M,α(M))|M ∈ M0 \ {M0}} and X0 =

{(M0, α(M0))}. The transition function δ is defined as follows: for e ∈ E and (X̂i,Xi) ∈ Q,

if ∃(M,α(M)) ∈ Xi : e is defined at (M,α(M)), then δ((X̂i,Xi), e) = (X̂j,Xj)), where

X̂j = {x′ ∈ M̃B|∃x ∈ X̂i : x′ ∈ δc(x, e)} and Xj = {x′ ∈ M̃B|∃x ∈ Xi : x′ ∈ δc(x, e)}. �

In plain words, the extended observer characterizes the possible current markings es-

timated by the intruder. It is first initialized with the uncertainty of the initial marking. To

verify current-state opacity we only need to consider the language L(G,M0) generated by

the LPN, since a word w which can only be generated by some false initial marking will not

occur in the actual evolution of the system. The set X denotes the intruder’s estimation with

knowledge of the initial marking M0, while the set X̂ denotes additional estimated mark-

ings introduced by uncertainties about the initial markingM0 \ {M0}. Therefore, given an

observation w ∈ L(G,M0), the intruder’s estimation of the current state is X̂ ∪ X , where

δ(q0, w) = (X̂ ,X ). As a particular case, ifM0 = {M0}, then the intruder knows exactly

the initial marking and all the states of the corresponding extended observer have X̂ = ∅.
Therefore, the complexity of constructing the extended observer is O(4|MB |).

Theorem 6.4. LetG = (N,M0,Σ, `) be a bounded LPN system whose unobservable subnet

is acyclic, S ⊆ R(N,M0) be a secret and V = (Q,Σ, δ, q0) be the corresponding extended

observer. The LPN system is current-state opaque wrt S iff for all states (X̂ ,X ) ∈ Q,

∃(M,α(M)) ∈ X̂ ∪ X : α(M) = 1.

Proof: Let (X̂ ,X ) be the state reachable by firing a sequence w, i.e., δ(q0, w) =

(X̂ ,X ). According to Definition 6.8, the set X̂ ∪ X corresponding to (X̂ ,X ) is a subset

ofMB × {0, 1} whose markings belong to C(w). If ∃(M,α(M)) ∈ X̂ ∪ X : M is weakly

exposable, for observation w there exists a marking M ′ ∈ U(M) such that M ′ ∈ ex(S),

i.e., C(w) ∩ ex(S) 6= ∅. Since this is true for all states of Q, i.e., for all observations

w ∈ L(G,M0), the LPN is current-state opaque. Assume there is a state (X̂ ,X ) of Q reach-

able by w and ∀(M,α(M)) ∈ X̂ ∪ X : M is not weakly exposable. Therefore, by Theorem

6.1, we have C(w) ∩ ex(S) = ∅. We conclude that the LPN is not current-state opaque. �

Example 6.11. Let us consider the LPN in Fig. 6.9. The BRG of the LPN wrt secret S =

{M ∈ N6|M(p3)+M(p5) ≤ 0} is shown in Fig.6.10. Assume that the uncertainty about the
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Fig. 6.9 LPN whose initial marking is not exactly known by the intruder.
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Fig. 6.10 BRG for CSO of the LPN in Example 6.11.
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Fig. 6.11 The extended observer of the BRG in Fig. 6.10.
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initial marking isM0 = {M0,M2}. The extended observer, as in Definition 6.8, is shown in

Fig.6.11. There are states (∅; {(M3, 0), (M4, 0), (M5, 0)}) and (∅; {(M4, 0), (M5, 0)}) where

all basis markings in X̂ ∪ X satisfy α(·) = 0, and therefore, the LPN is not current-state

opaque wrt S underM0. �

6.4 Verification of Initial-State Opacity

According to the definition of ISO (see Definition 4.6), we have the following fact:

Fact 2: An LPN system is ISO wrt a secret S ⊆ R(N,M0) if and only if

∀w ∈ L(G,M0) : I(w) * S.

In other words, to verify ISO of an LPN, we need to check if I(w) * S holds for all

w ∈ L(G,R(N,M0)). For a bounded LPN, this can be done by constructing the initial-

state estimator (see Section 2.1.2) of its RG.

Let G be a bounded LPN and Ae = (X,Σ, δe, x0) be the initial-state estimator of the

RG. According to the property of the initial-state estimator described in Section 2.1.2 of

Chapter2, if ∃w′ ∈ Σ∗ and x ∈ X such that x = δe(x0, w
′), then in the LPN we have

I(w) = x, where w is the reverse of w′. Clearly, we have the following corollary.

Corollary 6.3. Given a bounded LPN G = (N,M0,Σ, `) and a secret S ⊆ R(N,M0), let

Ae = (X,Σ, δe, x0) be the initial-state estimator of the RG. G is initial-state opaque wrt S

iff ∀x ∈ X , x ∩ ex(S) 6= ∅ holds.

Therefore, by constructing the initial-state estimator of the RG, the complexity of veri-

fying initial-state opacity in bounded Petri nets is O(2|R(N,M0)|).
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Fig. 6.12 LPN where t3 is labeled by b.
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Example 6.12. Consider the LPN in Fig. 6.12 whose only difference wrt Fig. 6.1 is the label

assigned to transition t3 (b rather than a). The initial-state estimator of its RG is shown in

Fig. 6.13. Consider a secret S1 = {M1,M5,M6,M7,M9} and an observation w = bbaa.

The state reached by w′ = aabb, the reverse of w, in the estimator is {M1,M6,M7}, i.e.,

I(bbaa) = {M1,M6,M7}. Since I(bbaa) ∩ ex(S1) = ∅, the LPN is not initial-state opaque

wrt S1.

Consider another secret S2 = {M1,M7}. Then the LPN is initial-state opaque wrt S2,

since ∀w ∈ L(G,R(N,M0)), I(w) ∩ ex(S2) 6= ∅. �

In the rest of this section an efficient approach to verifying initial-state opacity is

proposed based on BRG analysis. Given an LPN G = (N,M0,Σ, `) and an observation

w ∈ L(G,R(N,M0)), we denote by

Ib(w) = I(w) ∩MB

the set of basis markings generating w.

Proposition 6.6. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S ⊆ R(N,M0) be a secret. If G is initial-state opaque wrt S, then ∀w ∈
L(G,R(N,M0)), Ib(w)∩wex(S) 6= ∅ holds, where wex(S) is the set of weakly exposable

markings.

Proof: Since G is initial-state opaque wrt S, ∀w ∈ L(G,S), there exists an exposable

marking M ∈ ex(S) such that w ∈ L(G,M). Moreover, according to Theorem 6.1, ∃Mb ∈
MB : M ∈ U(Mb). Therefore, w ∈ L(G,Mb) and Mb ∈ wex(S), i.e., Mb ∈ Ib(w). �

The following example shows that Proposition 6.6 provides a necessary but not suffi-

cient condition for initial-state opacity.

Example 6.13. Consider the LPN system and the secret S1 in Example 6.12. According

to Table 6.1 (it applies to both the nets in Figs. 6.1 and 6.12), we have that ∀Mb ∈ MB,

α(Mb) = 1, i.e., all basis markings are weakly exposable. Clearly, ∀w ∈ L(G,R(N,M0)),

Ib(w) ∩ wex(S) 6= ∅ holds. However, according to the result in Example 6.12, the LPN is

not initial-state opaque wrt S1. �

The reason why Proposition 6.6 is not a sufficient condition is that for an observationw,

the possible initial markings that could generate w is generally not the union of all unobserv-

able reach of the possible initial basis markings, i.e., I(w) ⊆
⋃
Mb∈Ib(w) U(Mb). Therefore

I(w) ⊆ S does not imply that
⋃
Mb∈Ib(w) U(Mb) ⊆ S. This is different from the case of the
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Fig. 6.14 BRG in Example 6.14.
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Fig. 6.15 Initial-state estimator of the BRG in Fig. 6.14.

current-state opacity problem since C(w) =
⋃
Mb∈Mb(w)

U(Mb). However, we show that if

Assumption A3 is satisfied, initial-state opacity can be necessarily and sufficiently verified

by checking if each Ib(w) contains at least one basis marking that does not belong to the

secret.

Proposition 6.7. Let G = (N,M0,Σ, `) be an LPN system whose unobservable subnet is

acyclic and S be a secret satisfying Assumption A3. G is initial-state opaque wrt S iff

∀w ∈ L(G,R(N,M0)), Ib(w) ∩ ex(SB) 6= ∅ holds.

Proof: (⇒) Assume that ∀w ∈ L(G,R(N,M0)), Ib(w) ∩ ex(SB) 6= ∅ holds. By

Ib(w) ⊆ I(w) and ex(SB) ⊆ ex(S), I(w) ∩ ex(S) 6= ∅, G is initial-state opaque wrt S.

(⇐) Now assume thatG is initial-state opaque wrt S. By Fact 2, ∀w ∈ L(G,R(N,M0)),

we have I(w) ∩ ex(S) 6= ∅. Let M ∈ I(w) ∩ ex(S). Under Assumption A3, there exists

Mb ∈ MB : M ∈ U(Mb) and Mb ∈ ex(SB) (otherwise it would contradict M ∈ ex(S)).

Therefore, w ∈ L(G,Mb) and Mb ∈ I(w) ∩ ex(SB), i.e., Ib(w) ∩ ex(SB) 6= ∅. �

As a result, initial-state opacity of G can be verified by constructing the initial-state

estimator of its BRG B = (MB,Σ, δ) whose complexity is O(2|MB |). Since the size of

the BRG will never be larger than the RG and it may be much smaller especially when

unobservable transitions exist, the proposed approach is practically more efficient.

Example 6.14. Consider again the LPN system in Example 6.12. The BRG and the corre-

sponding initial-state estimator are shown in Figs. 6.14 and 6.15. Let S = {M0,M2,M5,M8,

M9} be the secret that satisfies Assumption A3. Then SB = {M0,M2} and ex(SB) =

{M1,M3,M4}. According to Proposition 6.7, G is initial-state opaque wrt S since no state

of the estimator either coincides with SB or is strictly contained in it. �
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Note that Assumption A3 is only necessary for the only if part of Proposition 6.7 as

clarified by the following example.

Example 6.15. Consider the LPN system and secret S2 in Example 6.12. All markings in

S2 are weakly exposable. We have S2B = {M1} and ex(S2B) = {M0,M2 −M4}. Based

on the initial-state estimator of the BRG shown in Fig. 6.15, we have Ib(bb) = {M1}, i.e.,

∃w : Ib(w) ∩ ex(SB) = ∅. However, according to the result in Example 6.12, the LPN is

initial-state opaque wrt S2. �

6.4.1 Relaxation of Assumption A3

Different from the case discussed in Section 6.3.3, Assumption A3 cannot be relaxed

in Proposition 6.7 by simply removing the weakly exposable markings from the secret. In

this subsection, we propose a method to relax Assumption A3 by appropriately modifying

the BRG definition. The new BRG is called modified basis reachability graph (MBRG).

Let us consider the case where Assumption A3 does not hold. Then S can be partitioned

into S ′ ∪ S ′′, where S ′ = wex(S) ∩ S 6= ∅ and S ′′ = S \ S ′ (Clearly, if Assumption A3 is

satisfied, S ′ = ∅). The system may be initial-state opaque wrt S even if Ib(w) ⊆ S, since

there may exist some marking M ∈ (I(w)\Ib(w))∩ex(S). We writeQ =
⋃
M∈S′ U(M)∩

ex(S) to denote the unobservable reach of all markings in S ′. The following proposition

shows that to decide if the system is initial-state opaque, we need to check if I(w) ∩Q 6= ∅
holds

Proposition 6.8. Let w be an observation in an LPN system G whose unobservable subnet

is acyclic, S ⊆ R(N,M0) be a secret, and Ib(w) ⊆ S. Then I(w) * S iff I(w) ∩Q 6= ∅.

Proof: (⇒) Assume I(w) ∩ Q 6= ∅. Since Q ⊆ ex(S), I(w) ∩ ex(S) 6= ∅, i.e.,

I(w) * S.

(⇐) Assume I(w) * S. Since Ib(w) ⊆ S, there exists a marking M ∈ (I(w) \
Ib(w)) ∩ ex(S). Let Mb ∈ MB be the basis marking such that M ∈ U(Mb). Since

Ib(w) ⊆ S, we have Mb ∈ S ′ and M ∈ Q, i.e., I(w) ∩Q 6= ∅. �

In simple words, when Assumption A3 is not satisfied, by checking if either Ib(w) ∩
ex(S) 6= ∅ or I(w) ∩ Q 6= ∅ holds, initial-state opacity can be verified. Let Qmin ⊆ Q
be the subset of Q with the minimal cardinality satisfying the following property: for any

M ′ ∈ Q, there exists M ∈ Qmin such that M ′ ∈ U(M). Obviously Qmin is unique.

Proposition 6.9. Let w be an observation in a bounded LPN system G whose unobservable

subnet is acyclic and S ⊆ R(N,M0) be a secret. Then I(w) ∩Q 6= ∅ iff I(w) ∩Qmin 6= ∅.

95



Doctoral Dissertation of XIDIAN UNIVERSITY

Proof: (⇒) Assume I(w) ∩Qmin 6= ∅. Since Qmin ⊆ Q, I(w) ∩Q 6= ∅.

(⇐) Assume I(w) ∩ Q 6= ∅. Let M ′ ∈ I(w) ∩ Q. There exists M ∈ Qmin such that

M ′ ∈ U(M). Therefore, M ∈ I(w), i.e., I(w) ∩Qmin 6= ∅. �

Proposition 6.9 shows that we do not need to consider all markings in Q but only

a minimal subset of them. Given a bounded LPN system whose unobservable subnet is

acyclic, we propose Algorithm 6 to compute Qmin. Once Qmin is obtained, a method to

verify initial-state opacity by using the MBRG is proposed.

Algorithm 6 Computation of Qmin
Input: A bounded LPN system G = (N,M0,Σ, `) whose unobservable subnet N ′ is a-

cyclic, and a secret S.
Output: Qmin

1: Qmin := ∅;
2: Compute S ′, the set of weakly exposable markings in S;
3: while S ′ 6= ∅, do
4: select a marking M ∈ S ′;
5: construct the reachability graph of 〈N ′,M〉, denoted as R(N ′,M) =

(U(M), Tu, δ,M);
6: Qtemp := U(M) ∩ ex(S).
7: for all Mj ∈ Qtemp, do
8: if @Mi ∈ Qtemp : Mj ∈ δ(Mi, σu) is defined, where σu ∈ T ∗u , then
9: Qmin := Qmin ∪ {Mj};

10: end if
11: end for
12: S ′ := S ′ \ U(M);
13: end while

In Algorithm 6, Qmin is initialized at the empty set. Given a marking M ∈ S ′, the

reachability graph of 〈N ′,M〉 is denoted as an automaton R(N ′,M) = (U(M), Tu, δ,M):

the state space of R(N ′,M) is the unobservable reach of M , the initial state is M , and the

event set is the set of the unobservable transitions Tu. Since N ′ is acyclic, the reachable

markings can be computed by solving the state equation M ′ = M +Cu · y, where y ∈ Nnu ,

and there is no cycle in the reachability graph R(N ′,M). We compute the set of exposable

markings that are initial vertices of paths in R(N ′,M) (Steps 7-11). Finally, since some

markings in S ′ can be reached from some existing markings inQmin, they are removed from

S ′ to further reduce the computation load in forthcoming iterations.

Example 6.16. Consider again the LPN in Example 6.12 and S = {M1,M7}. All markings

in S are weakly exposable. The reachability graph of 〈N ′,M1〉 is shown in Fig. 6.16, and

secret markings are in shadowed boxes. We have S ′ = {M1,M7}. By Algorithm 6, after
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Fig. 6.16 Reachability GraphR(N ′,M1).

the first iteration, Qtemp = {M0,M5,M6,M8} and Qmin = {M6} since one can readily

verify that all nonsecret markings M0, M5, and M8 in U(M1) can be reached from M6

by firing unobservable transitions. Furthermore, M7 is removed from S ′ by Step 12 since

M7 ∈ U(M1) and it is not necessary to check the unobservable reach ofM7. Then Algorithm

6 outputs Qmin = {M6}. �

In the following, Algorithm 7 is presented to construct the modified BRG (MBRG)

B′ = (MB′ ,Σ, δ′) of a given bounded LPN system whose unobservable subnet is acyclic.

The method to construct the MBRG is analogous to the method to construct BRG, however,

the nodes are initialized by markings in {M0}∪Qmin. Although the MBRG is larger than the

BRG, the MBRG is still much smaller than RG. We useMB′ to denote the extended basis

markings that appear in the MBRG. Correspondingly, we denote by Ib′(w) = I(w) ∩MB′

the set of markings inMB′ generating w, SB′ = S ∩MB′ the set of markings inMB′ that

belong to the secret, and ex(SB′) = ex(S) ∩MB′ the set of markings inMB′ that do not

belong to the secret.

Proposition 6.10. Let G be an LPN system whose unobservable subnet is acyclic, and S ⊆
R(N,M0) be a secret. G is initial-state opaque wrt S iff ∀w ∈ L(G,R(N,M0)), Ib′(w) ∩
ex(SB′) 6= ∅ holds.

Proof: (⇒) Assume that ∀w ∈ L(G,R(N,M0)), Ib′(w)∩ex(SB′) 6= ∅. Since Ib′(w) ⊆
I(w) and ex(SB′) ⊆ ex(S), I(w)∩ex(S) 6= ∅ holds and, by Fact 2,G is initial-state opaque

wrt S.

(⇐) Now assume that G is initial-state opaque wrt S. According to Fact 2, ∀w ∈
L(G,R(N,M0)), we have I(w) ∩ ex(S) 6= ∅, i.e., ∃M ∈ I(w) ∩ ex(S). Since M must be

in the unobservable reach of a basis markingMb. IfMb ∈ ex(S) then the proof is concluded.

If Mb ∈ S, then Mb is weakly exposable, i.e., Mb ∈ S ′. By Algorithm 6 there must exist a

marking M ′ ∈ Qmin ⊆MB′ such that M is reachable from M ′ by firing only unobservable

transitions, which indicates that M ′ ∈ Ib′(w) ∩ ex(SB′). �
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Algorithm 7 Construction of the MBRG
Input: A bounded LPN system G = (N,M0,Σ, `) whose unobservable subnet N ′ is a-

cyclic, and a secret S.
Output: The modified BRG B′ = (MB′ ,Σ, δ′).

1: Construct the BRG B = (MB,Σ, δ,M0) by using Algorithm 5.
2: Compute set Qmin by using Algorithm 6.
3: MB′ :=MB ∪Qmin, δ′ := δ.
4: Tag all M ∈MB “old”.
5: while states inMB′ with no tag exist, do
6: select a state M ∈MB′ with no tag;
7: for all t s.t. `(t) ∈ Σ and Ymin(M, t) 6= ∅, do
8: for all yu ∈ Ymin(M, t), do
9: M ′ := M + Cu · yu + C(·, t);

10: if M ′ /∈MB, then
11: MB′ :=MB′ ∪ {M ′};
12: assign no tag to M ′;
13: end if
14: δ′(M, `(t)) := δ′(M, `(t)) ∪ {M ′};
15: end for
16: tag node M “old”;
17: end for
18: end while
19: Remove all tags.
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Fig. 6.17 MBRG in Example 6.17.
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Fig. 6.18 Initial-state estimator of the M-
BRG in Fig. 6.17.

Proposition 6.10 shows that if Assumption A3 is not satisfied, by constructing the

initial-state estimator of the MBRG, initial-state opacity of G can be verified. In this case,

the complexity increases to O(2|MB′ |).

Example 6.17. Since secret S = {M1,M7} does not satisfy Assumption A3, we construct its

MBRG (shown in Fig. 6.17) by Algorithm 7. We haveMB′ = {M0−M4,M6}, SB′ = {M1}
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and ex(SB′) = {M0,M2 −M4,M6}. The corresponding initial-state estimator is shown in

Fig. 6.18. Since, ∀w ∈ L(G,R(N,M0)), Ib′(w)∩ex(SB′) 6= ∅ holds, the LPN is initial-state

opaque wrt S. �

6.5 Numerical Examples

To compare the approaches of using BRG and RG to verify the state-based opacity

properties, a series of numerical examples are presented. Based on the proposed approaches

in this work, we developed a MATLAB tool [71] to compute the BRG, the current-state

basis observer, the initial-state estimator, and to determine current-state opacity of a bounded

LPN. In the following, numerical results are obtained by using the tool.

We still consider the simple LPN G in Fig. 6.1 but the initial marking in place p2 is a

parameter k ∈ {1, 2, · · · }. Therefore, here we consider not a single LPN but a family of nets

parameterized by the initial marking. Based on the structure of the LPN, the number of its

reachable markings is

|R(N,M0)| =
1

6
(k + 4)(k + 3)(k + 2). (6-2)

We still let t1 and t3 be the observable transitions. Then the number of basis markings is

|MB| = 2k + 3. (6-3)

Based on Eqs. (6-2) and (6-3), Fig. 6.19 shows the variation of |R(N,M0)| and |MB| with

respect to k. The numerical values for some specific k’s together with the computational

times are reported in Table 6.2, where Columns 2 and 4 illustrate the number of reachable

markings |R(N,M0)| and basis markings |MB|, respectively. The corresponding time costs

are presented in Columns 3 and 5, respectively. The table shows that when the initial marking

of p2 is larger than or equal to 60, the RG cannot be computed within 8 hours and we use

“o.t.” to denote the computation is out of time. On the contrary, the BRG can still be

constructed in a short time.

For the verification of current-state opacity, let `(t1) = a, `(t3) = a, and S = {M ∈
N4|M(p1) + M(p4) ≥ 2}, i.e., W = [ −1 0 0 −1 ] and K = −2. For the verification

of initial-state opacity, let `(t1) = a, `(t3) = b. Results are summarized in Tables 6.3

and 6.4, respectively. Columns 2 and 4 present the numbers of states |Xor| and |Xob| (resp.

|Xer| and |Xeb|) corresponding to the observers (resp. estimators) of the RG and the BRG.

The computation time T-or and T-ob (resp. T-er and T-eb) are shown in Columns 3 and

5, respectively. Note that the computational time for the observer and estimator does not
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Table 6.2 Number of (basis) markings and time cost
k |R(N,M0)| T-r |MB| T-b
8 220 7.2× 10−1 19 4.1× 10−2

10 364 2.1× 100 23 5.0× 10−2

20 2024 6.3× 101 43 8.0× 10−2

40 13244 1.1× 103 83 1.1× 10−1

60 o.t. o.t. 123 3.6× 10−1

80 o.t. o.t. 163 5.3× 10−1

100 o.t. o.t. 203 7.6× 10−1

120 o.t. o.t. 243 9.7× 10−1

Fig. 6.19 The sizes of |R(N,M0)| and |MB| changing with k.

increase fast with respect to k. However, the observer and the estimator of the RG cannot be

constructed since the RG is not obtained for k ≥ 60.

From Table 6.3, we notice that the number of states of the observer computed using

RG, when computable, is identical to the number of states of the observer relative to the

BRG. It can be easily proved that this is a general result validating the effectiveness of the

proposed result. Same conclusions can be drawn with regard to the estimator. As a result,

we conclude that the proposed approaches are practically efficient especially for large-size

Petri nets. The reader can use the MATLAB tool we have developed, which is available on

the web [71] to test the proposed approach on other nets.

Two remarks should be done concerning the above numerical examples. The first one

relates to initial-state opacity verification, and the other is about the MBRG. When the initial

marking (i.e., the value of k) changes, a given secret may not satisfy Assumption A3. There-

fore, for initial-state opacity we cannot provide results as a function of parameter k while

keeping the secret constant. In simple words, a column analogous to the last column of Table
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Table 6.3 Number of states of the observers and the time cost
k |Xor| T-or |Xob| T-ob CSO
8 11 2.0× 100 11 1.6× 10−2 Y
10 13 4.2× 100 13 2.2× 10−2 Y
20 23 5.5× 101 23 6.8× 10−2 Y
40 43 3.5× 103 43 2.1× 10−1 Y
60 o.t. o.t. 63 4.5× 10−1 Y
80 o.t. o.t. 83 7.7× 10−1 Y

100 o.t. o.t. 103 8.7× 10−1 Y
120 o.t. o.t. 123 1.7× 100 Y

Table 6.4 Number of states of the estimators and the time cost
k |Xer| T-er |Xeb| T-eb
8 10 1.8× 100 10 1.1× 10−1

10 12 3.6× 100 12 1.1× 10−1

20 22 6.0× 101 22 2.8× 10−1

40 42 3.7× 103 42 1.7× 100

60 o.t. o.t. 62 3.7× 100

80 o.t. o.t. 82 6.5× 100

100 o.t. o.t. 102 9.8× 100

120 o.t. o.t. 122 1.4× 101

6.3 cannot be obtained. It would be also interesting to compare the size of the MBRG and

the RG for different values of k as we did for the BRG. However, this cannot be done since

the structure of MBRG depends not only on the initial marking but also on the secret.

6.6 Verification of Strict Language Opacity

The verification of language-based opacity in Petri nets has never been discussed be-

fore, the only way to solve the problem in bounded Petri nets was to construct the reacha-

bility graph and apply the approach in [6]. Corollary 4.1 implies that if a secret S ⊆ T ∗ has

the normality property, i.e., there exists a subset T̂ ⊆ T such that S is normal wrt L(N,M0)

and T̂ , language opacity wrt S can be verified by strict language opacity wrt T̂ and PT̂ (S).

However, given a secret S ⊆ T ∗, finding a set T̂ that guarantees its normality is still an open

problem. Therefore, the remaining of this chapter is focused on verifying strict language

opacity in a bounded LPN system G = (N,M0,Σ, `). Before formalizing the problem

addressed in this section, we first introduce the following assumptions:

A1) The Tu-induced subnet of G is acyclic.

A2) The set of transitions of which the intruder cares is the set of observable transitions,

i.e., T̂ = To.
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A3) The secret is the set of all firable transition sequences in a bounded labeled Petri net

system whose set of transitions is To, but excluding ε.

These assumptions would bring some properties on which we could build our algorith-

m for verifying strict language opacity. In practice, the computational load can be greatly

reduced as shown in Section 6.6.2, since by Assumptions A1 and A2 the order of the unob-

servable transitions can be abstracted using minimal explanations and basis markings. Note

that there is no assumption on the labeling function of the system. Namely, the same la-

bel (including ε) can be assigned to different transitions. Assumption A3 indicates that the

secret can be described by the generated language of a bounded free-labeled Petri net but

excluding the empty word. If ε is in the secret, the system is not strictly language opaque

since initially it is at the state in which no observable transition has fired and the intruder

can conclude that without ambiguity. It is true that only a special class of secrets satisfy

Assumption A3 and thus the application of the proposed approach is not general. Howev-

er, Assumption 3 leads to a computationally efficient verification procedure. Moreover, in

practice we believe that these assumptions, even if quite restrictive, allow to represent some

real problems.

We denote GS = (NS,MS
0 , T

S, `S), where T S ⊆ To, the labeled Petri net system

describing the secret, i.e., S = L(NS,MS
0 ) \ {ε}. The labeling function of GS is identical

to that of G, i.e., given a transition t ∈ T S , `S(t) = `(t). The problem is stated as follows.

Problem Statement: Given a bounded LPN system G and a bounded LPN system

GS describing the secret S = L(NS,MS
0 ) \ {ε} ⊆ T ∗o satisfying Assumptions A1 to A3,

determine whether G is strictly language opaque wrt To and S or not.

6.6.1 Construction of the Verifier

In this section we introduce a structure, called verifier, to efficiently verify strict lan-

guage opacity.

If the plant G and the net GS describing the secret are bounded, the verifier is a DFA,

denoted as V = (X,T S, δ, x0). A state x ∈ X of V is a 3-tuple (MS,MG,M), where

MS is a marking of GS , MG andM are subsets of basis markingsMB in G, i.e., MS ∈
R(NS,MS

0 ),MG ⊆MB andM⊆MB. The i-th element (for i = 1, 2, 3) of x is denoted

as x(i). The set of events is the set of transitions of GS . The initial state of the verifier is

x0 = (MS
0 , {M0}, ∅). Given a set T of transitions, a label e ∈ Σ ∪ {ε} and a marking M ,

we denote

T (M) = {t ∈ T |M [t〉}
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the set of transitions enabled at M ; we denote

Te = {t ∈ T |`(t) = e}

the set of transitions whose label are e; finally, we denote

Te(M) = T (M) ∩ Te

the set of transitions enabled at M and labeled with e. Algorithm 8 illustrates the construc-

tion of the verifier.

Given a state x in the verifier such that δ(x0, σ) = x, x(1) is the marking in GS

reachable from MS
0 by firing σ, i.e., MS

0 [σ〉x(1); x(2) is the set of basis markings in G

that are reachable by firing a transition sequence σ′ whose projection on To belongs to S,

i.e., PTo(σ′) ∈ S; finally x(3) is the set of basis markings in G that are reachable by fir-

ing a transition sequence σ′′ whose projection on To is different from σ but generates the

same observation, i.e., PTo(σ′′) 6= σ and `(σ′′) = `(σ). More precisely, given two states

x1 = (MS
1 ,MG

1 ,M1), x2 = (MS
2 ,MG

2 ,M2) and an event t ∈ T S of V , δ(x1, t) = x2

implies that MS
2 is the marking reachable from MS

1 by firing t in GS (Step 6), MG
2 is the

set of basis markings reachable from markings inMG
1 by firing t ∈ T S(x(1)) and the cor-

responding minimal explanations in G (Steps 7 to 14), andM2 is the union of two sets: the

set of markings reachable from markings inMG
1 by firing transitions in t′ ∈ Te \ T Se (x(1))

and the corresponding minimal explanations (Steps 19 to 26) in G, and the set of markings

reachable fromM1 by firing transitions in Te and the corresponding minimal explanations

(Steps 27 to 34) in G, where e = `(t) and T Se (x(1)) is the set of transitions labeled with e

and enabled at marking x(1) in GS . If such a transition t is never enabled in G, then a new

node would not be created (Steps 15 to 17).

The main idea behind Algorithm 8 is to compute a sort of parallel composition between

GS and G, where synchronization is performed wrt To. As a result, the generated language

of V is equal to PTo(L(N,M0)) ∩ L(NS,MS
0 ). Moreover, this enables one to understand

if to a transition sequence in the secret it corresponds a transition sequence in the system

such that its projection on To is not in the secret, and it generates the same observation. The

properties of the verifier are formally presented as follows.

Proposition 6.11. LetG = (N,M0,Σ, `) be a bounded LPN satisfying Assumption A1, and

GS = (NS,MS
0 , T

S, `S) be the LPN describing the secret S and satisfying Assumptions A2

and A3. Let V = (X,T S, δ, x0) be the verifier constructed by using Algorithm 8. Given a
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Algorithm 8 Construction of the verifier
Input: A bounded LPN system G = (N,M0,Σ, `) and a bounded LPN system GS =

(NS,MS
0 ,Σ, `).

Output: Verifier V = (X,T S, δ, x0)
1: x0 := (MS

0 , {M0}, ∅);
2: X := {x0};
3: for all x ∈ X with no tag, do
4: for all t ∈ T S(x(1)), do
5: MG := ∅,M := ∅;
6: MS := x(1) + CS(·, t);
7: for all M ∈ x(2) do
8: for all t ∈ T S(x(1)) do
9: for all yu ∈ Ymin(M, t) do

10: M ′ := M + Cu · yu + C(·, t);
11: MG :=MG ∪ {M ′};
12: end for
13: end for
14: end for
15: ifMG = ∅, then
16: Break;
17: end if
18: e := `(t);
19: for all M ∈ x(2), do
20: for all t′ ∈ Te \ T Se (x(1)), do
21: for all yu ∈ Ymin(M, t′), do
22: M ′ := M + Cu · yu + C(·, t′)
23: M :=M∪ {M ′};
24: end for
25: end for
26: end for
27: for all M ∈ x(3), do
28: for all t′ ∈ Te, do
29: for all yu ∈ Ymin(M, t′), do
30: M ′ := M + Cu · yu + C(·, t′);
31: M :=M∪ {M ′};
32: end for
33: end for
34: end for
35: if (MS,MG,M) /∈ X , then
36: X := X ∪ {(MS,MG,M)};
37: end if
38: δ(x, t) := (MS,MG,M);
39: end for
40: tag x “checked”;
41: end for
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state x ∈ X and σ ∈ L(V) such that δ(x0, σ) = x, the following implication holds:

x(2) 6= ∅ ⇔ ∃σ′ ∈ L(N,M0) : PTo(σ
′) ∈ S.

Proof: Let δ(x0, σ) = x and σ = ti1ti2 · · · tik ∈ T S∗. According to Algorithm 8, x(2)

is the set of markings reachable from M0 by firing the sequence σ̂ = σu1t
′
i1σu2t

′
i2 · · · σukt′ik

in G, where σuj is a minimal explanation of t′ij , t
′
ij ∈ T̂ and `(t′ij) = `(tij). Therefore,

PTo(σ̂) ∈ S. By Corollary 6.1, a sequence σ′ = σ′u1t
′
i1σ
′
u2t
′
i2 · · · σ′ukt′ik such that M0[σ

′〉 and

PTo(σ
′) = PTo(σ̂) exists (where σ′ui ∈ T ∗u ) if and only if x(2) 6= ∅. �

Proposition 6.12. Let G = (N,M0,Σ, `) be a bounded LPN system satisfying Assumption

A1, and GS = (NS,MS
0 , T

S, `S) be the LPN system describing the secret S and satisfying

Assumptions A2 and A3. Let V = (X,T S, δ, x0) be the verifier constructed by using Algo-

rithm 8. Given a state x ∈ X \ {x0} and σ ∈ L(V) such that δ(x0, σ) = x, the following

implication holds:

x(3) 6= ∅ ⇔ ∃σ′ ∈ L(N,M0) : PTo(σ
′) /∈ S ∧ `(σ′) = `(σ).

Proof: This is proven by induction.

(Basis step) For σ ∈ L(V) with length 1. Let δ(x0, t) = x and e = `(t). Since

x0(3) = ∅, if and only if x(3) 6= ∅, there exists a sequence σut′ such thatM0[σut
′〉M ∈ x(3),

where t′ ∈ Te \ T Se (x(2)), and σu ∈ Σmin(M0, t
′). Namely, PTo(σut′) /∈ S and `(t′) = `(t).

(Inductive step) Assume that for σk ∈ L(V) with length k, the result is valid. We prove

that it is also true for σk+1 ∈ L(V) with length k + 1. Let σk+1 = σkt and e = `(t).

Consider δ(x0, σk) = x1 and δ(x1, t) = x2. According to Algorithm 8 and Corollary

6.1, x2(3) 6= ∅ if and only if one of the following conditions holds:

1. there exists M ∈ x1(2) such that M [σut
′〉, where t′ ∈ Te \ T Se (x1(1)) and σu ∈

Σmin(M, t′);

2. there exists M ∈ x1(3) such that M [σut
′〉, where t′ ∈ Te and σu ∈ Σmin(M, t′).

Assume condition 1) holds. Since x1(2) 6= ∅, by Proposition 6.11, there exists σ ∈
L(N,M0) such that PTo(σ) ∈ S, `(σ) = `(σk) and M0[σ〉M . Since t′ ∈ Te \ T Se (x1(1)),

PTo(σσut
′) /∈ S but `(σσut′) = `(σk+1).

Assume condition 2) holds. Since x1(3) 6= ∅, there exists σ ∈ L(N,M0) such that

PTo(σ) /∈ S and M0[σ〉M . Therefore, PTo(σσut′) /∈ S but `(σσut′) = `(σk+1). Thus, this

concludes the proof. �
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Fig. 6.20 LPN system whose Tu-induced net is acyclic
in Example 6.18.
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Fig. 6.21 LPN system that models the
secret in Example 6.18.

Theorem 6.5. Let G = (N,M0,Σ, `) be a bounded LPN system satisfying Assumption A1,

and GS = (NS,MS
0 , T

S, `S) be the LPN system describing the secret S and satisfying As-

sumptions A2 and A3. Let V = (X,T S, δ, x0) be the verifier constructed by using Algorithm

8. G is strictly language opaque wrt To and S, if and only if ∀x ∈ X \ {x0}, x(3) 6= ∅ holds.

Proof: Follows from Propositions 6.11 and 6.12. �
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Fig. 6.22 Verifier constructed in Example 6.18.

Table 6.5 States of the verifier in Fig. 6.22.
X (MS,MG,M)

x0 (p1, {p3 + p4}, ∅)
x1 (p2, {p3 + p2}, {2p5 + p4})
x2 (p1, {p4 + p2}, {p1 + p4})
x3 (p2, {2p2}, {p4 + 2p5, p2 + p4})
x4 (p1, {p2 + p4}, {p4 + p1, 2p4})
x5 (p2, {2p2}, {p4 + p2})
x6 (p1, {p2 + p4}, {2p4})

Example 6.18. Consider the LPN in Fig. 6.20 modeling the plant, and the LPN in Fig. 6.21

describing the secret S = {t1, (t1t3)n, (t1t3)nt1} with n = 1, 2, 3, . . .. By Algorithm 8, the

verifier is constructed in Fig. 6.22. Table 6.5 presents the state space of the verifier. By

Theorem 6.5, since in no state of the verifier the third entry is empty, the LPN is strictly

language opaque wrt To and S. �

6.6.2 Computational Complexity Analysis

In this section we compare the computational complexity (with respect to the number

of states) of the proposed approach with a previous approach in the literature.

Let ns, nb and nr be the number of reachable markings of GS , basis markings of G and

reachable markings of G, respectively. The number of states of the verifier V constructed by

Algorithm 8 is bounded by

|X|V max = ns × 2nb × 2nb . (6-4)

106



Chapter 6 Opacity Verification Using Petri Nets

The notion of basis markings enables one to avoid enumerating all transition sequences

whose projection on To does not belong or belongs to the secret. Since nb ≤ nr and in many

cases nb is much smaller than nr as shown in [72], using basis markings provides significant

advantages.

Let us compare the proposed approach with other methods in the literature. As pointed

out at the beginning of Section 6.6, there is no method for language-based opacity analysis

in Petri nets. However, some approaches in the automata framework can be used. More

precisely, based on Proposition 4.2, given an arbitrary secret, the problem of verifying strict

language opacity wrt T̂ and Ŝ can be reduced to verifying language opacity wrt P−1
T̂

(Ŝ).

Therefore, the method of verifying language opacity in [6] can also be used to verify strict

language opacity in Petri nets. Note that an LPN system G is said to be language opaque wrt

a secret S is equivalent to saying L(N,M0) is language-based opaque wrt S in the automata

formalism. In such a case, the reachability graph of the net should be constructed and used

as the automaton model. Given two automata A and AS whose number of states are n1 and

n2, respectively, let B be the automaton constructed to verify if Lm(A) is language-based

opaque wrt Lm(AS). The number of states of B is

|X|Bmax = 2n1×n2 × 2n1 . (6-5)

LetA andAS be the reachability graphs ofG andGS , respectively, Lm(A) = L(N,M0),

and Lm(AS) = L(NS,MS
0 ) \ {ε} = S. To construct the automaton whose accepted lan-

guage is P−1To
(S), one just needs to add self loops of transitions in T \ To on each state.

We still denote AS the obtained automaton to avoid introducing further notation. Namely,

verifying if G is strictly language opaque wrt To and S is reduced to verifying if Lm(A) is

language-based opaque wrt Lm(AS). By Eq. (6-5), the number of states of automaton B is

|X|Bmax = 2nr×ns × 2nr . (6-6)

Compared with Eq. (6-4), the proposed approach is shown to be more efficient. We also

point out that in practice for large-sized bounded Petri nets reachability sets may not be

computable even if they are finite [72] due to the state explosion problem. However, to

construct the verifier there is no need to compute all reachable markings but a subset of

basis markings.

Moreover, as pointed out in the discussion about Proposition 4.1, language opacity can

be semi-decided by strict language opacity. Therefore, compared with the automaton-based

approach, using the proposed approach to verify language opacity is more efficient. Note
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that given an arbitrary secret S ⊆ T ∗, its projection on To may not be a prefix-closed bound-

ed free-labeled Petri net language, i.e., Assumption A3 may not be satisfied. Therefore, the

proposed approach cannot be used. However, for bounded LPNs the previous method pro-

vides a necessary and sufficient condition of language opacity wrt a given secret which is a

regular language.

6.7 Conclusion

This chapter addresses current-state, initial-state and strict language opacity properties

in labeled Petri nets. In the first part of the chapter we show that the notion of BRG can be

used to verify current-state opacity by constructing the observer of the BRG. This approach

has several advantages in terms of computational and space complexity. When the intruder

has uncertainty about the initial marking, an extended observer can be used whose initial

marking is a subset of the reachability set and the generated language is identical to the lan-

guage generated by the system. In the second part of the chapter we show that under certain

assumptions, initial-state opacity can be verified by constructing the initial-state estimator of

the BRG. The modified basis reachability graph is introduced to verify initial-state opacity

in the general case. Finally, through constructing the verifier a novel approach to verify-

ing strict language opacity of bounded Petri nets is developed under the assumption that

the set of transitions in which the intruder is interested is identical to the set of observable

transitions and the secret is a prefix-closed bounded free-labeled Petri net language.
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Chapter 7 Supervisory Enforcement of Current-State Opacity with
Incomparable Observations

7.1 Introduction

In this chapter we tackle the opacity enforcement problem in DESs using supervisory

control theory. Given a system that is not current-state opaque with respect to a given secret,

our purpose in this chapter is to design a maximally permissive supervisor that restricts the

behavior of the system to ensure that the controlled system is current-state opaque. There

has been some related work on the design of supervisors to enforce opacity properties [29,

37, 39, 40, 44].

We point out that all the aforementioned works are carried out in the framework of finite

automata and rely on Ramadge and Wonham’s basic theory of supervisory control for DES

[73]. Note that the objective of opacity enforcement is not concerned with liveness since

opacity properties focus on a set of indiscernible runs from the perspective of the intruder

instead of individual runs. What distinguishes our work from the existing works consists in

three aspects.

• No containment relation is assumed between the sets EI , ES of events observable by

the intruder and by the supervisor, respectively. We call this general setting incompa-

rable observations. In this sense, the problem considered here is more general than

the one in [29, 37, 39, 40, 44].

• We also relax the assumption made in [36–39, 74] that all controllable events EC

should be observable.

• Finally, we define A-opacity of a language. We show that if a controlled system

Sup/A is current-state opaque then its generated language L(Sup/A) is A-opaque

but the converse may not hold. However, if the intruder does not know the supervisor,

L(Sup/A) being G-opaque is sufficient to guarantee current-state opacity of Sup/A.

To be more clear, comparison between the proposed approach and previous ones [37, 40, 74]

is summarized in Table 7.1. All the approaches are developed for deterministic finite automa-

ta but under different assumptions. The last row of Table 7.1 presents their computational

complexity, where X is the set of states of the system and EC is the set of controllable

events.
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Table 7.1 Comparison between the proposed approach and previous approaches.
Works [37] [40] [74] This Chapter

Assumptions
EI ⊆ ES

(or ES ⊆ EI) EI ⊆ ES EC ⊆ ES None
EC ⊆ ES

Does the
intruder know Yes Yes No No
the supervisor?

Complexity O(|X| × 2|X|) O(22(|X|+|EC |)) O(222|X|
) O(22(|X|×2|X|+|EC |))

In this chapter, first a structure called augmented I-observer is constructed. The aug-

mented I-observer of a system is a deterministic finite automaton, where each state contains

the current-state estimate of the intruder. Based on the augmented I-observer, evolutions of

the system that satisfy current-state opacity can be characterized. Then we show that the

current-state opacity enforcement problem can be reduced to the basic supervisory control

problem under partial observation [45]. Note that the maximally permissive supervisor en-

forcing current-state opacity may not be unique. Thus we obtain a set of locally optimal

supervisors where the adverb “locally” points out that the behavior of the controlled system

under each of them is not strictly included in another. Finally, we show that based on the pro-

posed approach it is possible to solve current-state opacity enforcement problem assuming

the intruder does not know to the supervisor. To summarize, three are the main contributions

of the chapter.

• The definition of A-opacity of a language that enables us to formalize the opacity

enforcement problem under the assumption that the intruder has no knowledge (or at

most a partial knowledge) of the supervisor.

• The definition of a novel finite structure, the augmented I-observer, that enables one

to relax the assumptions ES ⊆ EI (or EI ⊆ ES) and EC ⊆ ES .

• The demonstration that based on the notion ofA-opacity and the augmented I-observer,

the current-state opacity enforcement problem can be reduced to the basic supervisory

control problem under partial observation, which is different from the approaches in

literature. Then, locally optimal supervisors are achieved using appropriate supervi-

sory control techniques.

This chapter improves the results presented in our paper [74] to a more general setting, by

removing the assumption that all events controllable by the supervisor should be observable.
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In addition, under the same assumptions, the proposed approach has lower complexity than

the approach in [74].

The rest of this chapter is organized as follows. Basic notions on supervisory control

theory are recalled in Section 7.2. Section 7.3 recalls the definition of current-state opacity,

and the current-state opacity enforcement problem is formalized. In Section 7.4, a method

for the synthesis of a locally optimal supervisor is proposed. The computational complexity

of the proposed approach is analyzed in Section 7.5. Finally, this chapter is concluded.

7.2 Supervisory Control Theory

Before we formally present the problem addressed in this chapter, we recall supervisory

control theory presented in [73]. Given a system modeled by a DFA A = (X,E, δ, x0), the

goal of supervisory control is to design a supervisor such that the controlled system satisfies a

set of constraints represented by a language K ⊆ L(A) (we call it a specification language).

The supervisor observes a subset ES of the events in E and is able to control a subset of

events EC ⊆ E. After the supervisor observes a string generated by the system it tells the

system the set of events that are allowed next so that the system will not violate the specifi-

cation. According to the theory in [73], a supervisor is denoted as Sup = (Y,ES, δs, y0,Ψ),

where (Y,ES, δs, y0) is a DFA and

Ψ : Y → {E ′ ⊆ E|EUC ⊆ E ′}

specifies the set of events enabled by the supervisor. Fig. 7.1 illustrates the paradigm of

supervisory control under partial observation. Let σ ∈ L(A) be the string generated by the

system and ws = PS(σ) be the corresponding observation of the supervisor. Then the set of

events enabled by the supervisor is Ψ(y), where y = δs(y0, ws). SystemA under the control

of a suitable supervisor Sup is denoted as Sup/A, and it satisfies L(Sup/A) ⊆ K.

PS

Sup






( )s Sw P 

Fig. 7.1 Supervisory control under partial observation.
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Definition 7.1. [73] Given a DFA A, a set of controllable events EC , and a language K ⊆
L(A), K is said to be controllable (wrt L(A) and EC) if

KEUC ∩ L(A) ⊆ K,

where EUC = E \ EC . �

In other words, K is controllable if in L(A) no string that is a prefix of K exits from

the prefix closure of K when followed by an uncontrollable event. It is known that con-

trollability is preserved under arbitrary unions and consequently the supremal controllable

sublanguage of a given language exists.

Definition 7.2. [73] Given a DFA A, a set of controllable events EC , a set of observable

events ES , and a language K ⊆ L(A), K is said to be observable (wrt L(A), ES and EC)

if for all σ, σ′ ∈ K and all e ∈ EC such that σe ∈ L(A), σ′e ∈ K and PS(σ) = PS(σ′),

σe ∈ K holds. �

Roughly speaking, observability requires that the observation of the supervisor (i.e., the

projection on ES) provides sufficient information to decide after the occurrence of a control-

lable event whether the resultant string is still in K. Unlike controllability, observability

is however not preserved under union, therefore the supremal observable sublanguage of a

given language may not exist. However maximal observable sublanguages exist, but are not

usually unique.

Theorem 7.1. [73] Let K ⊆ L(A) be a prefix-closed nonempty language, EC the set of

controllable events and ES the set of observable events. There exists a supervisor Sup such

that L(Sup/A) = K if and only if K is controllable and observable.

Definition 7.3. Given a systemA, a set of controllable eventsEC , a set of observable events

ES by the supervisor, and a specification language K ⊆ L(A), the supervisory control and

observation problem (SCOP) consists in finding a locally optimal supervisor Sup such that:

1. L(Sup/A) ⊆ K

2. L(Sup/A) is maximal, i.e., for any other supervisor Sup′,

L(Sup′/A) ⊆ K ⇒ L(Sup/A) 6⊂ L(Sup′/A). �
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Fig. 7.2 System A where ES = {a}, EC = {a, b, c} and states 3 and 5 should be unreachable.

A SCOP involves the system1 A, the set ES of events observable by the supervisor, the

set EC of events controllable by the supervisor, and the specification language K. To be

concise, we call this problem SCOP(A, ES, EC , K).

Since the supremal observable sublanguage may not exist, there may not be the supre-

mal controllable and observable sublanguage of a given language. Consequently, there may

be multiple solutions to a SCOP and they are called “locally optimal” because under the

control of the corresponding supervisors, the behaviors of the controlled system are incom-

parable.

The SCOP has been considered in the literature and many different methods have been

proposed to solve it [75–80]; in the chapter we briefly introduce the approach recently pre-

sented in [79].

The authors of [79] propose a structure, called total controller, based on which all

locally optimal supervisors of the SCOP can be computed. Given a SCOP(A, ES, EC , K)

with K = L(H), it is assumed, without loss of generality, that H = (XH , E, δH , xH,0)

is a strict sub-automaton2 of A. In other words, the language specification K of a SCOP

is reduced to a state specification: a state x ∈ X is legal iff x ∈ XH , i.e., σ /∈ K with

x = δ(x0, σ). We denote F = X \ XH the set of forbidden states. Clearly, the controlled

system Sup/A would also be a strict sub-automaton of A. In this section, such an approach

is introduced through a numerical example.

Consider the system A = (X,E, δ, x0) in Fig. 7.2, where ES = {a} and EC =

{a, b, c}. The set of forbidden states is F = {3, 5}. The approach proposed by Yin and

Lafortune [79] can be summarized as follows. First, construct a finite structure called a

total controller, which enumerates all possible control policies of the system. In the total

controller there are two types of states: Y-states Y ⊆ X in rounded boxes and Z-states

Z = (Z, I) in rectangles, where Z ⊆ X and I is a control decision, i.e., it contains the set

of events enabled by the supervisor. The initial state of the total controller is Y0 = {x0}.
Y-states are driven to Z-states by control decisions. At each Y-state Y , we enumerate al-

1Properly speaking, the SCOP concerns the language L(A)
2If H is not a strict subautomaton of A, the algorithm in [81] can be used to transform both of them to A′ and H ′,

respectively, such that the H ′ is a strict subautomaton of A′.
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Fig. 7.3 Total controller ofA in Fig. 7.2. Removing the state in the dashed box, the all inclusive controller
is obtained.
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l control decisions3, and then the successor Z-state corresponding to a control decision is

computed: Z is the set of states reachable from Y by firing unobservable events enabled

by the control decision and I is the control decision. For instance, in Fig. 7.3, from Y-state

{1}, for control decision {b} the Z-state reached is ({1, 2}, {b}) and for control decision

{b, c} the Z-state reached is ({1 − 5}, {b, c}). Z-states are driven to Y-states by observable

events e ∈ ES that are defined at a state in Z and enabled by the control decision I . The

successor Y-state is the set of states reachable from a state in Z after the occurrence of e.

For instance, from Z-state ({0}, {a}) event a is enabled at 0 and is allowed by the control

decision, therefore the Y-state reached is {1}.

After the total controller is constructed, removing all the Y-states and Z-states that

contain a forbidden state (i.e., 3 and 5 in this case) and the related arcs, the all inclusive

controller is obtained. In Fig. 7.3 ({1 − 5}, {b, c}) is such a state and should be removed.

The all inclusive controller models all the control policies that enforce the specification

language. Finally, after each Y-state we pick a control decision that is not a strict subset of

any other decisions. A combination of those local maximal control decisions corresponds to

an optimal supervisor.

It has been proven that the time complexity of the approach proposed in [79] to solv-

ing the SCOP is O(|X||E|2|X|+|EC |). In Fig. 7.3, each local maximal control decision is

colored. There are two optimal supervisors Sup1 and Sup2 (see Fig. 7.4) and the behav-

3For the system in Fig. 7.2, there is no need to enumerate all control decisions when Y-state is {0} or {1}. Indeed, from
state 0, observable event a would never occur before b and c, therefore all other control policies are equivalent to {a} or
{}. From state 1, event a would never be executed. Therefore, control policies containing a are redundant.
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Fig. 7.6 Observer of the system in Fig. 7.5 for the intruder.

iors of the controlled system under different supervisors are L(Sup/A1) = {ε, a, ab} and

L(Sup/A2) = {ε, a, ac}, respectively.

7.3 Problem Formalization

We first recall the definition of CSO in Chapter 4 and then introduce a related notion:

A-opaque language, which would be helpful to formalize the opacity enforcement problem.

Definition 7.4. Given a system A = (X,E, δ, x0), a secret S ⊆ X , and a set EI of events

observable by the intruder, the system is said to be current-state opaque (CSO) wrt S and

EI if ∀σ ∈ L(A) such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(A) : PI(σ
′) = PI(σ) and δ(x0, σ′) /∈ S,

where PI : E∗ → E∗I is the natural projection from E to EI . �

Given a word w ∈ E∗I , we denote CI(w) = {x ∈ X|∃σ ∈ L(A) : δ(x0, σ) =

x, PI(σ) = w} the set of states consistent with w. Thus, A is CSO wrt S and EI if and

only if ∀w ∈ PI(L(A)), C(w) * S holds.

Example 7.1. Consider the system in Fig. 7.5. Let EI = {o2} and S = {5} (the secret state

is in a box). The corresponding observer for the intruder is shown in Fig. 7.6. Since there

exists w = o2 such that CI(w) = {5} ⊆ S, the system is not current-state opaque wrt S and

EI . �
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Let us introduce the following notion of opacity that is related to a sublanguage of the

generated language of the system and is useful to formalize the result of the work.

Definition 7.5. Given a system A = (X,E, δ, x0), a secret S ⊆ X and a set EI of events

observable by the intruder, a sublanguage L ⊆ L(A) is said to be A-opaque (wrt S and EI)

if ∀σ ∈ L such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(A) : δ(x0, σ
′) /∈ S, PI(σ) = PI(σ

′). �

In words, a language L is A-opaque if for any string σ in L leading to a secret state

there is another string in the generated language of A that produces the same observation as

PI(σ) but does not lead to a secret state. Clearly, by Definitions 7.4 and 7.5 Corollary 7.1

follows.

Corollary 7.1. Given a system A = (X,E, δ, x0), a secret S ⊆ X and a set EI of events

observable by the intruder, A is current-state opaque wrt S and EI if and only if L(A) is

A-opaque.

In other words, CSO of a systemA is equivalent toA-opacity of its generated language.

Proposition 7.1. Given a system A, a secret S ⊆ X , a set EI of events observable by the

intruder, and two A-opaque languages L1, L2 ⊆ L(A), then it holds:

i) L1 ∪ L2 is A-opaque;

ii) ∀L ⊆ L1, L is A-opaque.

Proof: i) By assumption, Li (with i = 1, 2) is A-opaque. By Definition 7.5, for all

σ ∈ Li, CI(PI(σ)) * S. Therefore, for all σ ∈ L1 ∪ L2, CI(PI(σ)) * S, i.e., L1 ∪ L2 is

A-opaque. ii) Given a subset L of Li, for all σ ∈ L, CI(PI(σ)) * S, i.e., L is A-opaque. �

Therefore, the A-opacity property of a language is closed under union, and the supre-

mal A-opaque sublanguage of a given language exists. Any sublanguage of a A-opaque

language is still A-opaque.

Proposition 7.2. Let Sup/A be the controlled system of A = (X,E, δ, x0) under a super-

visor Sup, EI ⊆ E the set of events observable by the intruder, and S ⊆ X the secret. Given

a language L ⊆ L(A), if L is Sup/A-opaque wrt S and EI , then L is A-opaque wrt S and

EI .

116



Chapter 7 Supervisory Enforcement of Current-State Opacity with Incomparable Observations

Proof: Let Sup/A = (X ′, E ′, δ′, x′0). By the results in Section 7.2, Sup/A is a strict

sub-automaton of A. Namely, X ′ ⊆ X , E ′ ⊆ E, x′0 = x0, and for σ ∈ E∗, if δ′(x′0, σ) = x

in Sup/A, then δ(x0, σ) = x in A. Assume L is Sup/A-opaque. Then for all σ ∈ L such

that δ(x0, σ) ∈ S, there exists σ′ ∈ L(Sup/A) such that δ′(x′0, σ
′) /∈ S and PI(σ) = PI(σ

′).

Since L(Sup/A) ⊆ L(A), there also exists σ′ ∈ L(A) such that δ(x0, σ′) /∈ S and PI(σ) =

PI(σ
′). Therefore, L is A-opaque wrt S and EI . �

Therefore, ifL(Sup/A) ⊆ L(A) is Sup/A-opaque (i.e., Sup/A is CSO) thenL(Sup/A)

is also A-opaque. Note that the converse of Proposition 7.2 is not true. In other words, even

ifL(Sup/A) of a controlled system Sup/A isA-opaque wrt S andEI , the controlled system

Sup/A may not be CSO wrt S and EI . Therefore, CSO of Sup/A generally is a stronger

requirement than L(Sup/A) being A-opaque.

Example 7.2. Consider the system A in Fig. 7.5 and its controlled system Sup2/A in Fig.

7.13. Let S = {5}, EI = {o1, o2}, ES = {o1}, and EC = {a, b, c}. Clearly, L(Sup2/A) is

A-opaque wrt S and EI but not Sup2/A-opaque. Namely, Sup2/A is not CSO wrt S and

EI . Indeed, when the intruder observes o1, if it knows the structure of Sup2/A, its estimate

would be CI(o1) = {5} ⊆ S, i.e., Sup2/A is not CSO; on the contrary, if the intruder does

not know the structure of Sup2/A, its estimate would be CI(o1) = {2, 5, 6} * S, i.e., the

intruder is not able to discover the secret. �

Example 7.2 also shows that if the intruder knows the supervisor Sup, to guarantee

that the intruder does not discover the secret, L(Sup/A) should be Sup/A-opaque. On the

contrary, if the intruder does not know the supervisor Sup, it is sufficient that L(Sup/A) is

A-opaque. In the latter case, enforcing CSO on A is equal to synthesizing a supervisor Sup

of A such that L(Sup/A) is A-opaque, which clearly is a weaker condition than Sup/A
being CSO.

Note that A-opacity of L(Sup/A) may guarantee CSO of Sup/A also in some cases

in which the intruder knows there is a supervisor acting on the system but has not sufficient

information to determine it exactly. Suppose the intruder knows there is a supervisor and

has some information on ES and EC but not precise. Then the intruder may synthesize

an estimate supervisor Sup′ on A such that L(Sup′/A) is Sup′/A-opaque. However, if

L(Sup/A) is Sup′/A-opaque, then the intruder is still not able to discover the secret.

Example 7.3. Consider Example 7.2 again. Suppose now the intruder knows there is a su-

pervisor and believes the supervisor can observeE ′S = {a, o1}, and can controlE ′C = {b, c},
which are different from what the supervisor really can observe and control. The estimate
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Table 7.2 Observable and controllable events in Example 7.4.
Events EI ES EC
o1 ×

√
×

o2
√

× ×
a × ×

√

b × ×
√

c × ×
√

supervisor synthesized based on E ′S and E ′C is Sup′ which disables event b when observ-

ing nothing. Consider the supervisor Sup2 defined in Example 7.2. It is easy to see that

L(Sup2/A) is Sup′/A-opaque wrt S and EI . Therefore, under the control of Sup2 the

intruder is still not able to infer the secret. �

For simplicity, in the remainder of the chapter it is directly assumed that the intruder

does not know a supervisor controlling the plant to enforce opacity. Introducing such an

assumption enables us to solve opacity enforcement using supervisory control in an efficient

way. Meanwhile, imposing such an assumption is reasonable and meaningful. Indeed, this is

realistic in many practical situations. Furthermore, it is interesting from a theoretical point of

view since it provides some insights into tackling more general and complicated problems.

The problem we want to solve in this work can be formalized as follows.

Definition 7.6. Given a system A = (X,E, δ, x0), a secret S ⊆ X , a set EI of events

observable by the intruder, a set ES of events observable by the supervisor, and a set EC of

controllable events, synthesize a locally optimal supervisor Sup such that

1. L(Sup/A) is A-opaque wrt S and EI ;

2. For any other supervisor Sup′ such that Sup′/A is A-opaque wrt S and EI it holds

L(Sup/A) 6⊂ L(Sup′/A). �

A CSOEP involves the system A, the set EI of events observable by the intruder, the

secret S, the set ES of events observable by the supervisor and the set EC of events control-

lable by the supervisor. To be concise, we call this problem CSOEP(A, EI , S, ES, EC). A

solution to the CSOEP is called a locally optimal supervisor.

Example 7.4. Consider again the system in Fig. 7.5. From Example 7.1 we know that the

system is not current-state opaque wrt S = {5} and EI = {o2}. Now we want to de-

sign a locally optimal supervisor Sup, so that L(Sup/A) is A-opaque. The sets of events

observable\controllable by the intruder and the supervisor are shown in Table 7.2. In this

118



Chapter 7 Supervisory Enforcement of Current-State Opacity with Incomparable Observations

case, EI and ES are not comparable, i.e., neither EI ⊆ ES nor ES ⊆ EI holds, and not all

controllable events are observable, i.e., EC 6⊆ ES . �

Proposition 7.3. There exists a solution to the CSOEP if and only if there exists a prefix-

closed language K ⊆ L(A) such that

1. K is controllable (wrt L(A) and EC) and observable (wrt L(A), ES and EC);

2. K is A-opaque (wrt S and EI);

3. For any other controllable, observable and A-opaque language K ′ ⊆ L(A), K 6⊂ K ′.

Proof: By Theorem 7.1, the first item is a necessary and sufficient condition for the

existence of a supervisor that restricts the behaviour of the system to K. Items 2 and 3

correspond to items 1 and 2, respectively, of Definition 7.3 that formalize the requirements

that a supervisor has to satisfy for a locally optimal solution to the CSOEP. �

Thus, to solve the CSOEP we have to compute a prefix-closed maximal controllable,

observable and A-opaque sublanguage of L(A). It is known that the supremal observ-

able sublanguage may not exist. Therefore such a maximal controllable, observable and

A-opaque sublanguage, if it exists, may not be unique. In other words, there may exist a set

of locally optimal supervisors.

In the next section, we introduce a structure, called augmented I-observer, based on

which the supremalA-opaque sublanguage can be characterized and the optimal supervisors

can be designed.

7.4 Synthesis of Locally Optimal Supervisors

To design locally optimal supervisors, we have to characterize a maximal controllable

and observable behavior of the system such that the secret will never be leaked. To do this,

we need to first characterize the supremalA-opaque sublanguage of the system as the speci-

fication language K, and then compute a maximal controllable and observable sublanguage

of K. Indeed, by Proposition 7.1 if a language is A-opaque, any sublanguage of it is still

A-opaque. Unfortunately, the absence of specific containment relationships between sets

EI and ES makes the solution via a single structure, as in [37, 40], tricky. In the follow-

ing we provide an example where the approach in [37] fails since none of the containment

relationships EI ⊆ ES or ES ⊆ EI holds.
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Fig. 7.8 Parallel composition N of the observers for the intruder and the supervisor.

Example 7.5. Consider the system in Fig. 7.7. Let EI = {a, d}, ES = {b, c}, EC = {c},
and S = {5}. Obviously, the system is not opaque wrt S and EI since when the intruder

observes ad it unambiguously knows that the current state is 5. According to [37], observers

of the system for the intruder and the supervisor should be constructed first. Then we have

to compute the parallel composition N of these two observers to characterize the behavior

that would leak the secret and that should be forbidden (see Fig. 7.8, states in shadow should

be unreachable).

Finally, by computing the observer (wrt ES) of the parallel composition structure the

optimal supervisor can be obtained. Without the assumption EI ⊆ ES or ES ⊆ EI , the

parallel composition between the observers would introduce event sequences (e.g., σ =

abd) not belonging to Po(L(A)), where Po : E∗ → (EI ∪ ES)∗. In the case at hand,

being Eo = E, it is Po(L(A)) = L(A). As a result, the behavior of the system would be

over restricted. For instance, sequence ab does not leak the secret. However, it should be

disabled: N tells that after uncontrollable event d occurs, sequence abd will lead to a state in

shadow. Therefore, the obtained supervisor would not be optimal, or even no such an opacity

enforcing supervisor exists (as in the case at hand). Note that assuming EC = {o1} = ES
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the approach in [37] coincidentally works for Example 7.4 though neither EI ⊆ ES nor

ES ⊆ EI holds. �

In this work, we show that locally optimal supervisors for the CSOEP can be designed

in two phases, without assuming EI ⊆ ES , or ES ⊆ EI , or EC ⊆ ES . First, by in-

troducing a structure, called augmented I-observer, the supremal A-opaque sublanguage

can be computed. Then, applying the method recalled in Section 7.2 to the augmented I-

observer, the locally optimal supervisors can be designed. The augmented I-observer of

system A = (X,E, δ, x0) is a DFA denoted as Ag = (Q,E, δg, q0). A state q ∈ Q of Ag
is a pair (CI , x), where CI ⊆ X and x ⊆ X . The initial state of the augmented I-observer

is q0 = (Rε(x0), x0). Note that when computing Rε(x) and Re(x) of a given state x, all

events not in EI are regarded as ε. Algorithm 9 illustrates the construction of the augmented

I-observer.

Now we explain the main ideas behind Algorithm 9. The initial state of the augmented

I-observer is q0 = (Rε(x0), x0), i.e., the pair (set of states estimated by the intruder when

observing nothing, initial state of the system). Given a state q = (CI , x) ∈ Q and an event

e ∈ E that is defined at x in A, using Algorithm 9, the generic state δg(q, e) = q′ = (C ′I , x
′)

in the augmented I-observer is computed as follows. C ′I is updated to the new intruder

estimate when event e is observed by the intruder; otherwise, CI = C ′I . State x′ is reached

by the occurrence of e at x in A. If q′ is a new state, it is added to Q, otherwise Q does

not change. The set F = {q = (CI , x) ∈ Q|CI ⊆ S} is the set of states of Ag where the

estimate of the intruder is a subset of the secret.

The maximum number of states of the augmented I-observer is |X| × 2|X|. Clearly, the

construction of the augmented I-observer is completely different from the parallel composi-

tion in [37] and the parallel observer proposed in [74].

Example 7.6. Consider the problem in Example 7.4. Using Algorithm 9, the augmented

I-observer is constructed and shown in Fig. 7.9, where states in F are in dashed boxes. �

Proposition 7.4. Let A = (X,E, δ, x0) be a system, EI the set of events observable by the

intruder, and S the secret. The augmented I-observer Ag = (Q,E, δg, q0) constructed using

Algorithm 9 has the following properties:

i) L(Ag) = L(A);

ii) {σ ∈ L(Ag)|δg(q0, σ) ∈ F} = {σ ∈ L(A)|CI(PI(σ)) ⊆ S}.

121



Doctoral Dissertation of XIDIAN UNIVERSITY

Algorithm 9 Computation of the augmented I-observer
Input: A system A = (X,E, δ, x0), the sets of events EI and the secret S.
Output: The corresponding augmented I-observer Ag = (Q,E, δg, q0) and the subset F of

Q.
1: q0 := (Rε(x0), x0) and assign no tag to it;
2: Q := {q0};
3: if Rε(x0) ⊆ S, then
4: F := {q0};
5: else
6: F := ∅;
7: end if
8: while q = (CI , x) ∈ Q with no tag exists, do
9: for all e ∈ E such that δ(x, e)!, do

10: if e ∈ EI , then
11: C ′I :=

⋃
x∈CI

Re(x);
12: else
13: C ′I := CI ;
14: end if
15: x′ := δ(x, e);
16: q′ := (C ′I , x

′);
17: if q′ /∈ Q then
18: Q := Q ∪ {q′};
19: end if
20: if C ′I ⊆ S, then
21: F := F ∪ {q′};
22: end if
23: δg(q, e) := q′;
24: end for
25: Tag q “old”;
26: end while
27: Remove all tags;
28: Output A.
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Fig. 7.9 Augmented I-observerAg of the system in Example 7.6, where states in F are in dashed boxes.

Proof:

i) The statement follows from the fact that Steps 9 and 15 of Algorithm 9 consider all the

events (and only them) that are defined at each state of A.

ii) Let q = (CI , x) = δg(q0, σ). By Steps 3 to 7, and 20 to 22 of Algorithm 9, CI =

CI(PI(σ)) holds. Therefore, δg(q0, σ) ∈ F if and only if CI(PI(σ)) ⊆ S.

�

Moreover, by Steps 3 to 5 and 20 to 22 of Algorithm 9, there exists σ ∈ L(A) such that

CI(PI(σ)) ⊆ S, if and only if F 6= ∅. Therefore, we have the following corollary showing

that the augmented I-observer can also be used to verify current-state opacity.

Corollary 7.2. Given a system A, a secret S and the sets of events EI and ES , let Ag =

(Q,E, δg, q0) be the augmented I-observer. A is current-state opaque wrt S and EI if and

only if F = ∅.

Proof: Follows from Steps 3 to 5 and 20 to 22 of Algorithm 9, Proposition 7.4 and

Definition 7.4. �

The following proposition shows how it is possible to compute the supremalA-opaque

sublanguage of A using the augmented I-observer.

Proposition 7.5. The supremal A-opaque sublanguage of L(A) is

K = {σ ∈ L(Ag)|δg(q0, σ) /∈ F}.
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Proof: First, we prove that K is opaque. Let σ ∈ K, δg(q0, σ) = q = (CI , CS). Since

q /∈ F , CI * S, i.e., CI(w) * S, where w = PI(σ). Therefore, K is opaque. Now we show

that K is the “largest” opaque sublanguage of L(A) and for any other opaque language

L ⊆ L(A), L is contained in K. Let σ ∈ L and q = δg(q0, σ) = (CI , CS). Since L is

opaque, CI(PI(σ)) * S, i.e., CI * S, q /∈ F and σ ∈ K. Therefore, L is a subset of K and

K contains all opaque sublanguages of A. �

Therefore, by means of the augmented I-observer we can compute the supremal opaque

sublanguage ofA, and by Propositions 7.1 and 7.3, the CSOEP can be solved by computing a

maximal sublanguage of K that is prefix-closed, controllable and observable. The following

theorem states that the CSOEP(A, EI , S, ES, EC) is equivalent to the SCOP(A, ES, EC , K),

i.e., based on the augmented I-observer locally optimal supervisors can be synthesized to

enforce current-state opacity to a system A.

Theorem 7.2. The set of solutions to the CSOEP(A, EI , S, ES, EC) coincides with the set

of solutions to the SCOP(Ag, ES, EC , K), where Ag is the augmented I-observer of A and

K = {σ ∈ L(Ag)|δg(q0, σ) /∈ F}.

Proof: We prove this theorem by showing that the CSOEP(A, EI , S, ES, EC) and

SCOP(Ag, ES, EC , K) define the same supervisory control problem. By Proposition 7.1,

we know that any sublanguage of a A-opaque language is still A-opaque. By Proposition

7.5, it is known that K is the supremal A-opaque sublanguage of A. Therefore, condition

1 in Definition 7.6 can be rephrased as “L(Sup/A) ⊆ K”, same as condition 1 in Defi-

nition 7.3. Moreover, L(A) = L(Ag). Therefore, the CSOEP(A, EI , S, ES, EC) and the

SCOP(Ag, ES, EC , K) define the same supervisory control problem, and thus they share

the same set of solutions. Namely, if Sup is a locally optimal supervisor of SCOP(Ag, ES,
EC , K), then Sup is also a locally optimal supervisor of CSOEP(A, EI , S, ES, EC), and vice

versa. �

In other words, the CSOEP(A, EI , S, ES, EC) can be solved by synthesizing a locally

optimal supervisor of Ag with F being the set of forbidden states.

Example 7.7. By Theorem 7.2, the CSOEP in Example 7.4 is reduced to the problem of

finding a locally optimal supervisor Sup for Ag such that state q7 of Ag is not reachable in

the controlled system. Applying the approach recalled in Section 7.2, first we construct the

total controller in Fig. 7.10 and then, after removing all the states that contain forbidden state

7 (i.e., q7 in Ag), we obtain the all inclusive controller. In this case, removing the states in

the dashed boxes in Fig. 7.10, the all inclusive controller is obtained. For simplicity, in the
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Fig. 7.10 Total controller of A in Fig. 7.9.
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diagrams, we use i (with i = 0, 1, . . . , 7) to denote state qi in of the augmented I-observer and

omit all uncontrollable events in the control decisions, e.g., decision {} represents {o1, o2},
and so forth. Finally, at each step we choose a local maximal control decision and all locally

optimal supervisors are computed. There are two locally optimal supervisors: Sup1 and

Sup2 with the same automaton structure shown in Fig. 7.11. For Sup1, Ψ(0) = {a, c, o1, o2}
and Ψ(1) = {o1, o2}; for Sup2, Ψ(0) = {b, c} and Ψ(1) = {o1, o2}. The controlled system

under Sup1 and Sup2 is shown in Figs. 7.12 and 7.13, respectively. �

7.5 Computational complexity analysis

According to the previous analysis, in the worst case the number of states of the aug-

mented I-observer is |X| × 2|X|, where X is the set of states of A. Since the complexity

of solving the SCOP is O(|Q||E|2|Q|+|EC |), where Q is the set of states of the augmented I-

observer, the worst-case complexity of solving the CSOEP isO(|X|×2|X||E|2|X|×2|X|+|EC |),

i.e., double exponential in the number of states of A. It is clear that one exponential order

comes from the construction of the augmented I-observer and the other one comes from the

method adopted in this chapter to solve the SCOP.

We point out that in some cases (e.g., finding a near optimal supervisor [75, 82], on-

line synthesizing the supervisor [78]), the complexity of solving the SCOP may decrease

and consequently so would be the complexity of solving CSOEP.

Assuming the intruder has no knowledge of the supervisor, the proposed approach can

solve the same problems in [37, 40, 74] with the same or lower complexity: exponential

or double exponential, respectively. Consider the problem in [37] where EI ⊆ ES = E,

EC ⊆ ES . The augmented I-observer contains all observations of the supervisor (i.e.,

PS(L(A)) = L(Ag)). Therefore, the augmented I-observer can be used to synthesize the

supervisor directly. Moreover, due to EC ⊆ ES the complexity of the proposed approach

reduces to O(|X| × 2|X|) same as the complexity of the approach in [37]. On the other

hand, the complexity of solving the problem in [74] (where ES and EI are incomparable but

EC ⊆ ES) using the proposed approach is O(2(|X|×2|X|)), lower than that of the approach

in [74]. In addition, if either ES ⊆ EI (or EI ⊆ ES) or EC ⊆ ES holds, the supervi-

sory synthesis problem considered in the chapter cannot be solved using the approaches in

[39, 40, 44, 74].
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7.6 Conclusion

In this chapter, we proposed a novel approach to solve the problem of current-state

opacity enforcement in discrete event systems using finite automata. By constructing the

augmented I-observer, all the strings that will leak the secret can be characterized. Based

on the augmented I-observer, current-state opacity can be checked and a synthesis algorith-

m was provided to design locally optimal supervisors, without assuming the existence of

containment relationships between EI and ES , or between EC and ES .

Preliminary work of this chapter has been published as:

Y. Tong, Z. Y. Ma, Z. W. Li, C. Seatzu, A. Giua. “Supervisory Enforcement of Current-

State Opacity with Uncomparable Observations”, In Proceedings of the 13th International

Workshop on Discrete Event Systems (WODES’16), 2016: 313-318.
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Chapter 8 Conclusion and Future Work

In the last chapter of the thesis conclusions for observation structures and opacity prob-

lems are drawn. In addition, directions on future research are also pointed out.

8.1 Concluding Remarks on Observation Structures

In the thesis, we have defined two classes of Petri net generators: labeled Petri nets

with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs), which extend the modeling

power of Petri nets. Besides all the features of labeled Petri nets, LPNOs and ALPNs are

capable of modeling systems with more complex observation structures. LPONs have an

output function that provides an observation that is an arbitrary function of markings while

the labeling function of an ALPN depends on the current marking, namely, the observation

of an event depends on the evolution of the system.

The notion of observation equivalence is proposed to compare the modeling power.

Two Petri net generators are observation equivalent if for any sequence of transitions the

corresponding estimates of transition sequences in the two generators are identical. In other

words, their observation structures provide the same information for reconstructing the evo-

lution of the system. We show that among all Petri net generators LPNOs and ALPNs have

the highest modeling power while for bounded systems, ALPNs are even more powerful

than LPNOs. The conversion from other Petri net generators to ALPNs is meaningful, since

if a method is applicable to ALPNs then it is also applicable to any other Petri net generator.

Finally, we presented a general procedure to convert an LPNO into an observation

equivalent ALPN. Considering in literature there is a lot of methodology of system analysis

using labeled Petri nets (LPNs), we also proposed an algorithm of converting the LPNO into

an observation equivalent LPN, if there exists one.

8.2 Concluding Remarks on Opacity Problems

In the thesis we investigated opacity problems in discrete event systems modeled with

labeled Petri net systems. The intruder knows the structure of the system but partially ob-

serves the behavior of the system. Based on its knowledge of the system and its observation,

the intruder wants to know whether or not the secret has occurred. The system is said to

be opaque if for any secret behavior there is another non-secret one that produces the same
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observation.

We formalized the notion of current-state opacity (CSO), initial-state opacity (ISO) and

language opacity (LO) in LPNs. In addition, a new notion of language-based opacity, called

strict language opacity (SLO), is proposed to describe the situation where the intruder is

interested in a subset of transitions. We showed that SLO generalizes the notion of LO and

characterizes the class of secrets for which SLO and LO are identical. We clarified that

B-initial-state opacity (B-ISO) defined in [5] generalizes the notion of ISO in Petri nets and

automata.

We showed that the ISO verification problem can be reduced to the B-ISO verification

problem, which is proven undecidable in LPNs. Thus, the ISO verification problem is not

decidable either. We proved that the CSO verification problem is undecidable since it can

be reduced to another undecidable problem — the Petri net language containment problem.

Meanwhile, reducing the LO verification problem to the CSO verification problem, the LO

verification problem is proven undecidable. Since in bounded LPNs, CSO verification, ISO

verification and LO verification problems are decidable, we then focused on developing

efficient and effective methods of verifying CSO, ISO and SLO in bounded LPNs.

We defined exposable and weakly exposable markings. Based on the notion of basis

markings, if and only if for any observation there exists at least one weakly basis mark-

ing that is consistent with the observation, then the LPN system is current-state opaque.

Therefore, to check CSO there is no need to construct the RG and its observer but the basis

reachability graph, which is in general smaller than the RG, and its observer. If the secret is

described by a set of generalized mutual exclusion constraints (GMECs), then CSO can be

verified by solving a set of integer linear programming problems (ILPPs). Meanwhile, if the

incidence matrix of the LPN is a totally unimodular, then the ILPPs can be relaxed to linear

programming problems (LPPs). In particular, if no weakly exposable marking is contained

in the secret, then CSO can be efficiently verified without solving LPPs. With constructing

the extended observer, the proposed approach to verifying CSO can be applied to the case

where the intruder only knows that the initial marking belongs to a set of markings. A suf-

ficient and necessary condition is proposed to verify ISO. If no weakly exposable marking

is in the secret, then the initial-state estimator of the BRG can be used to verify ISO. Oth-

erwise, the modified BRG has to be constructed rather than the BRG. Finally, the verifier

is proposed to analyze strict language opacity in bounded LPNs. Given the nets modeling

the plant and the secret, the verifier synchronizes the plant and the secret with respect to

observable transitions. It keeps track of both the sequences belonging and not belonging
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to the secret. In particular, thanks to the notion of minimal explanations, to characterize

the sequences there is no need to enumerate all of them. Therefore, the construction of the

reachability graph is avoided. Compared with other methods in literature, the proposed ap-

proach is of lower complexity. Based on the proposed algorithms, a MATLAB toolbox is

developed to verify CSO and ISO.

Given a system that is modeled with a DFA and that is not CSO with respect to a given

secret, we proposed a method of synthesizing the locally optimal supervisors such that the

controlled system is CSO. We considered the case where the intruder and the supervisor

have incomparable observations and the sets of events observable and controllable by the

supervisor is also incomparable. The notion of A-opacity of a language is defined. It en-

ables us to formalize the CSO enforcement problem assuming that intruder does not know

or partially knows the supervisor. A finite structure, called augmented I-observer, is con-

structed to compute the supremal A-opaque sublanguage of the system. It is shown that,

the CSO enforcement problem of the system can be reduced to the supervisory control and

observation problem of the augmented I-observer. Then using the methods in literature, the

locally optimal supervisors are computed.

8.3 Future Work

The work in the thesis also points out several potential research directions. First, LP-

NOs and ALPNs provide an intuitive way to model systems with various kinds of sensors.

Converting the LPNOs to ALPNs provides a way to analyze the system if the obtained

ALPN is also an LPN. However, the converting procedure is of high complexity since one

needs to compute the observer of the RG, and to solve the vertex coloring problem, which

is NP-complete. Therefore, it would be interesting to develop a systematic way to analyze

the system based on the information provided by the labeling function and output functions

directly.

For the opacity verification problem, we only considered the problem in logical Petri

net models, i.e., labeled Petri nets (LPNs), and there is no time factor or probability. Clearly,

this is not the case in practice. Therefore, extending the notion of opacity to LPNOs/ALPNs,

timed/stochastic Petri nets and Petri nets with probability would be another direction of

our future research. For LPNOs and ALPNs, there are two types of observations. The

problem would be how to extend the notion of opacity in the new Petri net models and

how to efficiently verify opacity without converting LPNOs/ALPNs back to LPNs. For

timed Petri nets, the intruder may refine its estimate taking the time factor into account.
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Therefore, the problem would be more complicated. In Petri nets with probability, the firing

of a transition has its probability. If we assume the intruder also knows the firing probability

of all transitions, then its estimate would be with confidence. A system is opaque if for every

observation, the occurrence of nonsecret behavior has higher probability than the occurrence

of secret behavior.

The proposed approach to enforcing CSO does not consider the case where the intruder

knows the supervisor. Otherwise, the intruder would make its estimate based on the structure

of the controlled system rather than the original plant. In that case, the controlled system

may not be opaque any more. Therefore, the supervisor has to take the knowledge of the

intruder into account and further modify the controller, which leads to a game situation. In

fact, such a scenario is quite common in practice because the two players could be military

forces of two countries, or commercial competitors, or network hackers, etc. It would be

meaningful to investigate the opacity enforcement problem considering different levels of

intruder’s knowledge.

Last but not the least, most work on opacity is carried out in a centralized way. On

the contrary, it is more often that there is a group of intruders that may cooperate togeth-

er to crack the secret, and/or the system is composed by modules distributed in differen-

t areas. Therefore, it would be also meaningful to study opacity problems in decentral-

ized/distributed structures.
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