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"You only live once,

but if you do it right, once is enough.”

Mae West





Test and diagnosis of discrete

event systems using Petri nets

Abstract

State-identification experiments are designed to identify the final state of a discrete event
system (DES) when its initial state is unknown. A classical solution to this problem,
assuming the DES has no observable outputs, consists in determining a synchronizing
sequence, i.e. a sequence of input events that drives the system to a known state. This
problem was addressed and essentially solved in the 60’ using finite state machines or
automata. The main objective of this thesis is to use Petri nets for solving the state-
identification problem more efficiently and for a wider class of systems, with possibly
infinite states.

We start showing that the classical method based on automata for constructing a syn-
chronizing sequence can be easily applied with minor changes to synchronized Petri nets,
a class of non-autonomous nets where each transition is associated with an input event.
The proposed approach is fairly general and it works for arbitrary bounded nets with
a complexity that is polynomial with the size of the state space. However, as most of
the problem solving methods for DES, it incurs in the well-known state-space explosion
problem.

Looking for more efficient solutions, we begin by considering a subclass of Petri nets
called state machines. We first consider strongly connected state machines and propose a
framework for synchronizing sequence construction that exploits structural criteria, and
thus does not require an exhaustive enumeration of the state space of the net. These
results are further extended to larger classes of nets, namely non strongly connected state
machines and nets containing state machine subnets. Finally we consider the class of
unbounded nets that describe infinite state systems: even in this case we are able to
compute a set of sequences to synchronize the marking of bounded places. A Matlab
toolbox implementing all approaches previously described has been designed and applied
to a series of benchmarks.

An additional problem addressed in this thesis and partially related to state-identification,
is the failure diagnosis of DES, i.e., the process of identifying the occurrence of a fault
based on observable symptoms. Our work is centered on diagnosis of DES using model-
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based methods where a common assumption requires that a fault model be available. The
system is represented by a labeled Petri net, in which transitions can be either observable
or silent; a fault is modeled by a silent transition. We consider an efficient approach,
based on basis markings, to compute a diagnosis state which produces different degrees
of alarm, such as “normal” or “faulty” or “uncertain”. A Matlab toolbox for solving the
diagnosis problem and the related problem of diagnosability has been designed, and tested
on a parametric example.



Test et diagnostic des systèmes à

événements discrets par les

réseaux de Petri

Résumé

L’exécution d’un test d’identification d’état d’un système à événement discret (SED) a
pour but d’en identifier l’état final, lorsque son état initial est inconnu. Une solution clas-
sique à ce problème, en supposant que le SED n’ait pas de sorties observables, consiste à
déterminer une séquence de synchronisation, c.à-d., une séquence d’événements d’entrée
qui conduit le système sur un état connu. Ce problème a été abordé et complètement
résolu dans les années 60’ à l’aide de machines à états finis ou d’automates. L’objectif
principal de cette thèse est d’utiliser les réseaux de Petri dans le but d’obtenir une réso-
lution plus optimal du problème d’identification d’état et pour une plus large classe de
systèmes, dont le nombre d’états pourrait être infini.

Dans une première approche, nous montrons que la méthode classique des automates pour
la construction des séquences de synchronisation peut être aisément étendue — par des
modifications mineures — aux réseaux de Petri synchronisés. Pour cette classe de réseaux
non-autonomes, toute transition est associée à un événement d’entrée.

L’approche proposée est assez générale, dans la mesure où elle s’applique à des réseaux
bornés arbitraires. Cependant, comme la plupart des méthodes s’appliquant aux SEDs,
elle engendre le problème classique d’explosion combinatoire du nombre d’états. Dans le
but d’obtenir des meilleures solutions, nous considérons une classe spéciale de réseaux de
Petri, connue sous le nom de graphes d’état (GdE). Pour ces réseaux, nous considérons
d’abord les GdE fortement connexes et nous proposons deux approches pour la construc-
tion de séquences de synchronisation. Ces approches exploitent les propriétés structurelles
du réseau et ne nécessitent pas ainsi une énumération exhaustive de l’espace d’état. Ces
résultats s’étendent par la suite aux GdE non fortement connexes et puis à tout RdP
synchronisés composés de GdE.Enfin, nous considérons la classe des réseaux de Petri non
bornés et proposons de construire des séquences qui synchronisent le marquage des places
non bornées. Une boîte à outils fournit toutes les approches précédemment décrites et est
appliquée à des différents bancs d’essai.
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Dans cette thèse, nous traitons aussi le diagnostic de fautes de SED, c.à-d., le processus
d’identification des causes d’un échec basé sur l’observation de symptômes. Nous nous
intéressons au diagnostic de SED à l’aide de méthodes analytiques basées sur modèle,
sous l’hypothèse que le modèle de faute soit disponible. Le système est alors modélisé
par un réseau de Petri étiqueté, pour lequel les transitions sont observables si elles sont
associées à un événement de sortie, ou silencieuses; tout comportement fautif est modélisé
par une transition silencieuse. Nous considérons une approche efficace basée sur la notion
de marquages de base qui calcule un état de diagnostic, qui caractérise différents degrés
d’alarme, tels que "normal", "fautif" ou "incertain". Une boîte à outils pour la résolution
du problème de diagnostic et de celui de la diagnosticabilité est fournie et testée pour un
exemple paramétrique.



Test e diagnosi di sistemi ad eventi

discreti mediante le reti di Petri

Riassunto

Il problema dell’identificazione di stato è concepito per la determinazione dello stato finale
di un sistema ad eventi discreti (SED), nell’ipotesi che il suo stato iniziale sia inizialmente
sconosciuto. Una soluzione classica a questo problema, assumendo il sistema privo di
uscite osservabili, consiste nella costruzione di una sequenza di sincronizzazione, cioè una
sequenza di ingressi che conduce il sistema ad uno stato noto. Tale approccio è stato
risolto negli anni 60’ tramite macchine a stati finiti ed automi. L’obiettivo principale di
questa tesi è quello di proporre le reti di Petri in questo contesto con lo scopo di proporre
soluzioni più efficienti e valide per una più vasta classe di sistemi, con eventualmente un
numero infinito di stati.

In un primo tempo, viene dimostrato come l’approccio classico proposto per gli automi
possa essere facilmente adattato nel contesto delle reti di Petri sincronizzate limitate. Per
questa classe di reti non autonome, ciascuna delle transizioni è associata ad un evento
di ingresso. L’approccio proposto è piuttosto generale, in quanto applicabile a tutte le
reti limitate, ed ha una complessità computazionale polinomiale con la dimensione dello
spazio di stato. Tuttavia, come la più parte degli approcci su SED, si imbatte sul problema
dell’esplosione combinatoria dello spazio di stato.

In seguito, con lo scopo di fornire tecniche più efficienti, ci si interessa ad una classe di reti
di Petri quale le macchine di stato. Per questa classe, consideriamo inizialmente strutture
fortemente connesse e proponiamo due approcci distinti per la costruzione di sequenze
di sincronizzazione. Entrambi gli approcci determinano una sequenza di sincronizzazione
sulla base della sola struttura della rete e ciò a prescindere del numero di gettoni contenuto
dalla rete stessa, quindi evitando una numerazione esaustiva dello spazio di stato.

Successivamente, i risultati sono estesi anche a reti non fortemente connesse ed a reti
contenenti macchine di stato come sottoreti. Infine, il problema della costruzione di se-
quenze di sincronizzazione è affrontato anche per reti non limitate, ossia reti di Petri il cui
spazio di stato è infinito. Anche in questo caso, siamo capaci di determinare una sequenza
che sincronizzi il contenuto dei posti limitati. Un Toolbox Matlab implementa tutti gli
approcci precedentemente descritti ed è applicato ad una serie di esempi applicativi.
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Un ulteriore problema presentato nella tesi, nonché parzialmente connesso a quello della
identificazione di stato, è quello della diagnosi di guasto di SED, ossia il processo di
identificazione delle cause di guasto, sulla base sull’osservazione dei "sintomi". Il nostro
interesse è centrato sulla diagnosi di SED ed in particolare considereremo approcci basati
sul modello, per i quali viene comunemente assunto che il modello di guasto sia noto. Il
sistema è rappresentato da una rete di Petri etichettata, in cui una transizione può essere
osservabile, se associata ad un evento di ingresso, o non osservabile, altrimenti; un guasto è
associato ad una transizione non osservabile. Consideriamo un approccio efficiente, basato
sulla nozione di marcatura di base, per il calcolo di uno stato di diagnosi, che caratterizza
differenti livelli di allarme, quali "normale", "anomalo" o "incerto". Viene fornito un
toolbox Matlab per la risoluzione del problema di diagnosi e del connesso problema della
diagnosticabilità ed infine testato per un esempio parametrico.
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Chapter 1

Introduction

Summary

In this chapter first we present an overview on the problems of the synchronizing sequences
and diagnosis. We give a motivation for these studies discussing the contribution of this
thesis. Secondly we describe the organization of the thesis and the topics of each chapter.
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2 CHAPTER 1. INTRODUCTION

Introduction

With a growing system complexity, the issues of test and diagnosis to ensure troubleshoot-
ing failures of these systems are becoming more and more important. A failure is defined
to be any deviation of a system from its specified behavior. Failure diagnosis is the pro-
cess of identifying the causes of a failure based on observable symptoms, i.e., determining
which fault led to this erroneous behavior.

Failures are inevitable in today’s complex industrial environment and they could arise from
several sources. Hence the need for effective means of detecting them is quite apparent
if their consequences and impacts are considered not just on the systems involved but on
the society as a whole. Moreover, note that efficient methods of failure diagnosis can not
only help avoiding the undesirable effects of failures, but can also enhance the operational
goals of industries. Improved quality of performance, product integrity and reliability, and
reduced cost of equipment maintenance and service are some major benefits that accurate
diagnosis schemes can provide, especially for service and product oriented industries such
as home and building environment control, office automation, automobile manufacturing,
and semiconductor manufacturing. Thus, one can see that accurate and timely methods
of failure diagnosis can enhance the safety, reliability, availability, quality, and economy
of industrial processes. The need of automated mechanisms for the timely and accurate
diagnosis of failures is well understood and appreciated both in industry and in academia.
A great deal of research effort has been and is being spent in the design and development of
automated diagnostic systems, and a variety of schemes, differing both in their theoretical
framework and in their design and implementation philosophy, have been proposed.

Failure diagnosis can be classified as i) fault-tree based methods; ii) analytical model-based
methods; iii) knowledge-based methods; iv) simulation-based methods. These methods
apply to continuous systems and discrete event systems (DES). Our work is centered on
diagnosis of DES by the aid of Petri nets (PNs).

Model-based diagnosis of DES is mainly carried out by the way of an observer, i.e., a
model that estimates the system state on the basis of observed outputs. Observer and
real system must clearly be in the same initial state, otherwise any further analysis would
be meaningless or misleading. For this reason, we focus first on a class of problems
known as state-identification problems. State-identification experiments are designed to
identify the final state of a DES when its initial state is unknown. Note that if the
model is synchronizable, then it will allow simple error recovery since, if a faulty behavior
is detected — e.g., unexpected reached state or wrong observed output —, it can be
initialized into a known state.

It has been first investigated by Natarajan [94] to solve the design of automated parts ori-
enteers, the dual of the so-called navigation problem (aka the motion planning problem).
The reader can easily see that for example every device part, when arriving at manufac-
turing sites, needs to be sorted and oriented before assembly. In his work, Natarajan have
considered a merely mathematical model that ignores the dynamics of the situation. The
concerned robots do not suffer from finite precision in their measurement location but
the planning is done in presence of uncertainties in position measurement. In particular a
robot might be ask to assemble a composite object by matching different part, the robot is
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capable of precise moves but the grasp is done visionless. The task becomes then to orient
that part in order to correctly get the object orientation that satisfies the requirement,
such a process of reaching a desired state of the system under an initial uncertainty is
called synchronization.

In the domain of discrete event systems synchronization coincides in driving a system,
seen as a black box, to a known state when its current state it is not known. A clas-
sical solution to this problem, assuming the DES has no observable outputs, consists in
determining a synchronizing sequence (SS). This problem was addressed and essentially
solved completely in the 60’ using finite state machines (or automata) to model DES.
This problem has many important applications and is of general interest. It is of rele-
vant importance for robotics and robotic manipulation [94, 95, 3], when dealing with part
handling and orienting problems in industrial automation such as part feeding, loading,
assembly and packing. Synchronization protocols have been developed to address global
resource sharing in hierarchical real-time scheduling frameworks [127, 6]. An interest-
ing automotive application can be found in [96]. Synchronization experiments have been
done also in biocomputing, where Benenson et al. [8, 7] have used DNA molecules as
both software and hardware for finite automata of nano-scaling size. They have produced
a solution of 3 × 1012 identical automata working in parallel. In order to synchronously
bring each automaton to its "ready-to-restart" state, they have spiced it with a DNA
molecule whose nucleotide sequence encodes a reset word. Jürgensen [68] has surveyed
synchronization issues from the point of view of coding theory in real life communication
systems. He has presented the concept of synchronization in information channels, both
in the absence and in the presence of noise. Synchronization is an important issue in
network time protocol [47, 89], where sharing of time information guaranties the correct
internet system functioning. Most of real systems, natural or man-built, have no inte-
grated reset or cannot be equipped with. That is the case of digital circuits, where a reset
circuit not only involves human intervention but increases the cost of the device itself
reducing its effectiveness. In this field Cho et al. [25] have shown how to generate test
cases for synchronous circuits with no reset. When classic procedures fail due to large
circuit size or because a synchronizing sequence does not exist, Lu et al. [83] propose a
technique based on partial reset, i.e., special inputs that reset a subset of the flip-flops in
the circuit leaving the other flip-flops at their current values. Hierons [62] has presented
a method to produce a test sequence with the minimum number of resets.

Nowadays the synchronizing theory is a field of very intensive research, motivated also by
the famous C̆erný conjecture [125]. In 1964 Ján C̆erný has conjectured that (n−1)2 is the
upper bound for the length of the shortest SS for any n−state machine. The conjecture is
still open except for some special cases [40],[3],[121]. Synchronization allows simple error
recovery since, if an error is detected, a SS can be used to initialize the machine into a
known state. That is why synchronization plays a key rôle in scientific contexts, without
which all system behavior observations may become meaningless. Thus the problem of
determining which conditions admit a synchronization is an interesting challenge. This is
the case of the road coloring problem, where one is asked whether there exists a coloring,
i.e. an edge labeling, such that the resulting automaton can be synchronized. It was
first stated by Adler in [1]. It has been investigated in various special cases and finally a
positive solution has been presented by Trahtman in [123], for which complexity analysis



4 CHAPTER 1. INTRODUCTION

are provided [109].

In a first approach, we show that the classical method based on automata for synchroniz-
ing sequence construction can be easily applied with minor changes to synchronized PNs.
For this class of non-autonomous nets, any transition is associated with an input event.
The proposed approach is fairly general, as it works for arbitrary bounded nets. How-
ever, as most of problem solving methods on DES, it incurs the well known state space
explosion problem. Looking for more efficient solutions, we begin by considering the class
of PNs called state machine PNs. For this class, we first consider strongly connected
nets and propose two novel approaches for synchronizing sequence construction. These
approaches exploit net structural criteria, thus without an exhaustive enumeration of its
state space. Next, these results are extended to non strongly connected nets and then to
nets containing state machine subnets. Finally, we consider the larger class of unbounded
nets. First, we propose a finite state space representation of these PNs. Second, results
given for bounded nets are further extended to these nets.

In addition, we present a diagnosis approach for DES modeled by labeled PNs. The
diagnosis of discrete event systems (DES) is a research area that has received a lot of
attention in the last years. Faults may correspond to any discrete event. As an example,
in a telecommunication system, a fault may correspond to a message that is lost or not
sent to the appropriate receiver. Similarly, in a transportation system, a fault may be a
traffic light that does not switch from red to green according to the given schedule. In a
manufacturing system [128, 5, 84, 48], it may be the failure of a certain operation, e.g., a
wrong assembly, or a part put in a wrong buffer, and so on.

In the diagnosis framework two different problems can be solved: the problem of diagnosis
and the problem of diagnosability.

Solving a problem of diagnosis means that a diagnosis state, such as "normal" or "faulty"
or "uncertain" is associated with each observation. Solving a problem of diagnosability is
equivalent to determine if the system is diagnosable, i.e., to determine if, once a fault has
occurred, the system can detect its occurrence in a finite number of steps. The second
investigated topic is focused on the problem of diagnosis; see [16] and [14] for an extension
of the methodology here proposed to the diagnosability problem. However, it is well
known that diagnosability is an essential property that must hold if a diagnosis approach
is to be applied in real life applications. Thus, the manufacturing example considered in
this thesis is diagnosable. This property has been tested using the MATLAB tool in [99].
Note that if a system contains a non diagnosable fault there exist sequences of unbounded
length that lead the system through diagnosis states that are uncertain. This means that
when the fault occurs the diagnoser may not be able to detect its firing.

As discussed later the first results on diagnosis of DES have been presented within the
framework of automata. More recently, the diagnosis problem has also been addressed
using PNs. In fact, the use of PNs offers significant advantages because of their twofold
representation: graphical and mathematical. Moreover, the intrinsically distributed na-
ture of PNs where the notion of state (i.e., marking) and action (i.e., transition) is local
reduces the computational complexity involved in solving a diagnosis problem.

This problem is investigated by the way of arbitrary labeled PNs where there is an as-
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sociation between sensors and observable events, while no sensor is available for certain
activities — such as faults or other unobservable but regular transitions — due to budget
constraints or technology limitations. It is assumed that several different transitions might
share the same sensor in order to reduce cost or power consumption. If two transitions
are simultaneously enabled and one of them fires it is impossible to distinguish which one
has fired, thus they are called undistinguishable. The diagnosis approach here presented is
based on the definition of four diagnosis states modeling different degrees of alarm and it
applies to all systems whose unobservable subnet is acyclic. Two are the main advantages
of this procedure. First, it is not necessary an exhaustive enumeration of the states in
which the system may be: this is due to the introduction of basis markings. Secondly,
in the case of bounded net systems the most burdensome part of the procedure, namely
building a finite graph called basis reachability graph (BRG), can be moved off-line.

Note that the approach here presented, as most of the approaches dealing with diag-
nosis of discrete event systems [33, 113, 112, 136], assumes that the faulty behavior is
completely known, thus a fault model is available. Such an assumption is applicable to
interesting classes of problems: this is the case of many manufacturing systems where the
set of possible faults is often predictable and finite in number [48, 5, 84, 128]. Moreover,
the proposed diagnosis approach allows one to deal with both permanent and intermit-
tent faults. However, in the case of intermittent faults, once a fault is detected, even
if a recovery event occurs, the diagnosis state associated to the fault is not reset to a
non faulty state. The procedure can be easily extended to overcome this limitation. In
particular, if the recovery event is observable a simple reset rule on the diagnosis state
should be introduced. On the contrary, if the recovery event is not observable a detection
procedure on such an event, based on the same features of the fault detection procedure
here presented, should be applied.

The thesis is structured as follows. In Chapter 2 the literature of fault diagnosis of
systems and basic testing problems relevant with the presented research is discussed.
Formalisms of the discrete event system models used are also provided. Chapter 3 provides
results on the computation of synchronizing sequences for systems modeled by PNs. The
synchronization problem is here first investigated on systems represented by the class of
bounded synchronized PNs. Three main approaches are given, for which computational
complexity analysis are provided and comparisons are carried out by the aid of a Matlab
toolbox. Finally, in chapter 4, the reader deals with the more general class of unbounded
synchronized PNs. First, a modified coverability graph construction is provided to yield
a faithful representation of the PN behavior. Then the results given for the bounded case
are further extended to this setting. Chapter 5 is dedicated to diagnosis of labeled PNs,
i.e., nets where two or more transitions may share the same label. Here, transitions may be
undistinguishable, namely transitions that produce an output event that is observable, but
that is common to other transitions. The provided online diagnosis approach is based on
the notion of basis marking and justification, that allow to characterize the set of markings
that are consistent with the actual observation. It is shown that the most burdensome part
of the procedure can be moved off-line defining a particular graph, called basis reachability
graph. Chapter 6 concludes the thesis with a discussion of the contributions and listing
possible further directions of research. Appendix A reviews the Tarjan’s algorithm for
graph decomposition in its maximally strongly connected components.





Chapter 2

Formalisms, test and diagnosis of

DES

Summary

Fault diagnosis of systems and basic testing problems have received considerable attention
in the last decades. In this Chapter the state-of-the art of the two topics are presented
within the framework of discrete event systems. The formalisms of the classes of discrete
event system models used in the rest of the thesis are provided.

7
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2.1 Formalisms of discrete event systems

In this section a short overview on discrete event systems is given. In particular two
discrete event modeling formalisms used in the rest of the thesis are provided: automata
and Petri nets.

System and Control Theory have focused from the very first beginning on systems gener-
ally described through ordinary differential or partial differential equations describing the
corresponding physical phenomena. The state-space can be defined by means of continu-
ous variables, which can get any real/complex value, and upon a certain input function,
depicts a state-function (or a family of state-functions for more than one state variable),
called state trajectory or equivalently sample path.

The advent of computers sometimes inclines one to describe their evolution by using dis-
crete time dynamic equations, which do not change the intrinsic continuous nature of
this evolution. So models known as Discrete Event Systems (DES) or more properly Dis-
crete Event Dynamic Systems have followed, in contrast to Continuous-Variable Dynamic
Systems (CVDS).

A DES is a discrete-state, event-driven system whose state evolution depends entirely on
the occurrence of asynchronous discrete events over time [19].

The state space is here a discrete set χ = {x1, x2, . . . , xn} and, since DES state may change
only upon asynchronous instantaneous discrete events, its sample path can be represented
by a sequence of states or a sequence of states together with the time instants at which the
transition take place. The two cases are respectively referred to the classes of un-timed
and timed models. Those trajectories are then typically piecewise constant functions of
time. Note that conventional differential equations are not a suitable description for such
a “discontinuous” behavior.

Among the major DES models we may cite automata, Markov chains, Petri nets, queuing
models, finite state machines and Discrete Event System Specification.

This work deals with the Petri net and automaton models and focuses on the first one.
The two formalisms have both a state transition structure defining their dynamics, i.e.
defining the state-space of the system upon any possible event.

Automata and Petri nets considered are both dynamic models and they belong to the
class of Time-invariant models, i.e., models whose functions describing the dynamic of
the model are time-invariant.

Automata and Petri nets are powerful formalisms for modeling DES, also because opera-
tions of composition are possible to construct a discrete event model of the system from
a set of discrete event models representing the system components. Structural properties
of such a transition structure are used to address analysis and synthesis issues.

When a DES describes the behavior of a system evolving in an dependent way, i.e.
whose evolution is conditioned by input events and/or time, the model is denoted as
non-autonomous (e.g. synchronized Petri nets and input/output automata). On the con-
trary the model is called autonomous (e.g. labeled Petri nets and any DES receiving no
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inputs).

Petri nets were introduced in 60s by Carl Adam Petri — in his Ph.D. thesis [98] disserta-
tion — to define a simple and powerful theoretical framework for studying concurrency
problem.

Several reasons motivates the wide use of PNs.

• PNs are a mathematical and graphical formalism to model discrete event systems.

• PNs give a compact representation of the state space. In fact they do not require
to explicitly represent all possible reachable states, but only the evolution rules.

• PNs can represent a discrete event system with an infinite number of states with a
graph with a finite number of nodes.

• PNs can represent the concept of concurrency.

• PNs give a modular representation. In fact if a system is composed by more than
one subsystems and these subsystems interact each other, then it is possible to
represent each subsystem as a PN and then, using specific constructs, combine the
single units to obtain the entire model.

A large set of extensions have been progressively defined with increasing complexity and
capabilities, allowing system designers to handle the functional and the non-functional
temporal and stochastic capabilities. Here we provide a short list of existing extensions.

High level Petri nets, do not modify the semantic of the net, attach new information to
nodes arcs and tokens, to obtain new dense behavioral semantics using these parameters.
These nets allows direct analysis and do not need to unfold the net. In particular we may
cite:

• colored Petri nets [66], where tokens are distinguishable and typed;

• algebraic nets [106], in which elements of user defined data types (called algebraic
abstract data types) replace black tokens;

• labeled Petri nets [49], which are used to model autonomous systems while observing
their evolution. In this setting, it is common to assume that each transition is
assigned to a label and its occurrence generates an observable output given by this
label;

• synchronized Petri nets [91], which belong to the category of non-autonomous PNs.
They describes systems whose evolution is dictated by external events associated
with each transition;

• well-formed Petri nets [23, 24], where the functions of colors are restricted to com-
position of few elementary function (identity, successor and diffusion) to make it
easier to analyze the net;
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• object-oriented Petri nets [72], which support a thorough integration of object-
oriented concepts into Petri nets.

When analyzing the behavior of systems for which time appears, we may use Time Petri
nets [87], that extend the Petri nets by associating with each transition a firing duration.

Petri nets have been also extended to stochastic features, yielding stochastic Petri nets,
whose dynamic behaviour could be represented by means of continuous-time homogeneous
Markov chains. Petri nets with exponential and immediate distribution, called generalized
stochastic Petri nets, are considered the as the standard model [85].

As the two used formalisms are concerned with quantitative analysis of real systems, it is
needless to say that the they both provide inputs and outputs variables describing system
responses to stimulus.

2.1.1 Input/output Automata

Figure 2.1: An example of automaton.

An automaton Λ is a quintuple denoted as Λ = (χ, I,O, δ, λ) where:

• χ is a finite and nonempty set of states;

• I is a finite and nonempty set of input events;

• O is a finite and nonempty set of output events;

• δ ∶ χ × I → χ is the state transition function;

• λ ∶ χ × I → O is the output function.

When the automaton is in the current state x ∈ χ and receives an event i ∈ I, it reaches
the next state specified by δ(x, i), producing an output o ∈ O given by λ(x, i).
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Definition 2.1. (completely specified automaton) An automaton Λ = (χ, I,O, δ, λ)
is called completely specified if its state transition function δ and its output function λ are
total functions, i.e., functions defined on each element (x, i) of their domain. ∎

In other words, if an automaton is completely specified, for any state and upon any input
event a state transition occurs producing the corresponding output event.

A compact way to represent an automaton is its state table, where each element gives the
next state and the output, for a combination of a present state and input event.

Another simple way to represent any automaton is a graph (see for example Figure 2.1),
where states, input and output events are respectively depicted as nodes and arcs. For
instance, if it holds that x′ = δ(x, i) and o = λ(x, i), then there exists an oriented arc from
node x to node x′ labeled with the input event i and with the output event o.

Example 2.2. In Figure 2.1 is shown the graph of an automaton Λ, where χ = {x0, x1, x2},
I = {i1, i2}, O = {0,1}. The transition function δ and the output function λ are given by
the following table:

δ, λ i1 i2

x0 x0, 1 x2, 1

x1 x1, 0 x0, 1

x2 x1, 0 x0, 0

Let assume that the current state is x1. Upon input event i2, the automaton moves to
state x0 and outputs 1. ∎

Note that I∗ (resp. O∗) is the set of all input (resp. output) sequences constructed over the
alphabet I (resp. O) and ∗ is the kleen star. For instance {i1, i2}∗ = {ε, i1, i2, i1i2, i2i1, i1i2i1,
i1i1i2 . . .}.

The number of states, input and output events are respectively denoted by nx = ∣χ∣, ni = ∣I ∣
and no = ∣O∣. One can extend the transition function δ and the output function λ from
input events to sequences of input events as follows:

a) if ε denotes the empty input sequence, δ(x, ε) = x and λ(x, ε) = ε for all x ∈ χ;

b) for all i ∈ I and for all w ∈ I∗ it holds that δ(x,wi) = δ(δ(x,w), i) and λ(x,wi) =
λ(x,w)λ(δ(x,w), i).

Suppose that the automaton in Figure 2.1 is in state x2. Input sequence i2i1i2 drives it
through states x1, x1 and x0 and outputs 001.

Functions δ and λ can also be extended to a set of states as follows:

c) for a set of states χ′ ⊆ χ, an input event i ∈ I yields the set of states χ′′ = δ(χ′, i) =
⋃
x∈χ′

δ(x, i) and produces the set of outputs λ(χ′, i) = ⋃
x∈χ′

λ(x, i).
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(a)

(b)

Figure 2.2: The successor trees of the automaton in Figure 2.1 with reference to the
current state uncertainty (a) and the initial state uncertainty (b).

The information about the current state of Λ for a given input sequence is given by
the current state uncertainty of w. After applying an input sequence w and with the
hypothesis that the initial state is unknown the current state uncertainty of w is defined
by the set φ(w) = δ(χ,w). Otherwise stated, upon an input sequence w the automata
may be in one of the states of φ(w).

Analogously, any input sequence w is associated with a partition of the set of states τ(w),
called initial state uncertainty. Two states x1 and x2 belong to the same subset of τ(w)
if λ(x1,w) = λ(x2,w).

In other words, if two states are committed to the same subset for a given input sequence,
they are not distinguishable on the base of the produced output for this input sequence.

Example 2.3. Consider again the automaton in Figure 2.1 and the input event i1. The
current state may be either x0 or x1, then the current state uncertainty is φ(i1) = δ(χ, i1) =
{x0, x1}.

The output produced by Λ in response to the input i1 tells us that if we observe an output
equal to : a) 0 the automaton was initially in state x1 or x2; b) 1, the automaton was
initially in state x0. So the initial state uncertainty is τ(i1) = {{x1, x2},{x0}}. ∎

The successor tree of an automaton is a tree-structure that shows the behavior of the
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automaton from any possible initial state, i.e. the space-set coinciding with the root,
under all possible sequence of input events.

Starting from the root, any path corresponds to an input event sequence and every node
is labelled with the corresponding initial (and/or current) state uncertainty.

Example 2.4. Consider the automaton in Figure 2.1. Figure 2.2 shows the successor
trees related to the initial and current state uncertainty for input sequences of length at
most 2. For both trees, the root is labeled with the whole set of state χ = {x0, x1, x2}. For
instance, consider event i1 as input.

Figures 2.2a provides the information about the current state uncertainty, which is given
by the first left children of the represented tree. Since δ({x1, x2}, i1) = x1 and δ(x0, i1) = x0,
it holds that φ(i1) = {x0, x1}.

Analogously, the first left children of the tree depicted in Figure 2.2b provides the initial
state uncertainty. Here we associate a different block with reference to the output produced.
Since λ({x1, x2}, i1) = 0 and λ(x0, i1) = 1, it holds that τ(i1) = {{x1, x2}, {x0}}. ∎

Finally some structural properties, that will be used in the following, here are given. An
automaton with inputs is said strongly connected if there exists a directed path from any
node of its graph to any other one. It contains at least one ergodic component since a
strongly connected automaton consists of a single ergodic component.

For a non strongly connected automaton, the following classification holds.

Definition 2.5. (Maximal strongly connected component) Consider a non strongly
connected automaton Λ = (χ, I,O, δ, λ). Its nodes can be partitioned into its maximal
strongly connected components. A component, i.e., a set of nodes, is called ergodic, if its
set of output arcs is included in its set of input arcs, transient, otherwise. ∎

The algorithm for the decomposition of a graph in its strongly connected components is
given in Appendix A.

Maximal strongly connected components can be further classified as follows.

Definition 2.6. (Condensed graph) Given an automaton Λ = (χ, I,O, δ, λ), one defines
its corresponding condensed graph C(Λ) as the graph whose nodes represent its maximally
strongly connected components (ER or TR) and whose edges represent the arcs connecting
these components. ∎

Two states xi, xj ∈ χ are called equivalent if and only if for every input sequence the
machine will produce the same output sequence regardless of whether xi or xj is the initial
state, i.e. for any w ∈ I∗ λ(xi,w) = λ(xj ,w). Otherwise xi and xj are said inequivalent
and w is a separating sequence. Two automata Λ and Λ′ are equivalentif and only if for
every state in Λ there is a corresponding equivalent state in Λ′, and vice-versa.

An automaton is reduced or minimized if and only if no two states are equivalent.
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For instance consider the automaton Λ in Figure 2.1. Since it is strongly connected, its
condensed graph corresponds to a single node. The automaton is also completely specified
and reduced.

2.1.2 Petri nets

In this section, it is recalled the PN formalism used in the thesis. First the basic notions
of Petri nets such of marking and firing and the essential characteristics of a Petri net are
presented in this section. Then two classes of PNs are presented: the synchronized PNs,
a non-autonomous DES model, and labeled PNs, an autonomous DES model.

For more details on PNs the reader is referred to [93, 32].

2.1.2.1 Place/Transition nets

A Petri net (PN), or more properly a Place/Transition net, is a structure

N = (P,T,Pre,Post) ,

where:

• P is the set of m places;

• T is the set of q transitions;

• Pre ∶ P × T → N is the pre-incidence function;

• Post ∶ P × T → N is the post incidence functions.

Pre and Post matrices specify the weighted arcs and the resulting matrix C = Post−Pre

is commonly called the incidence matrix.

Note that Pre(⋅, ti) denotes the restriction to Pre to P × ti, i.e., the i-th column of the
pre-incidence matrix. Analogously, Pre(pj, ⋅) denotes the restriction to Pre to pj×T , i.e.,
the j-th row of the pre-incidence matrix.

A marking specifies the state of the system described by the PN. A marking is a vector
M ∶ P → N that assigns to each place of a P /T net a nonnegative integer number of
tokens, represented by black dots. The marking of place p, i.e. the number of tokens
contained in p, is denoted as M(p). A marked P /T net ⟨N,M0⟩ is a net N with an initial
marking M0.

The evolution of the net coincides with a marking evolution, which is caused by firing of
transitions. A transition t is enabled at M iff M ≥ Pre(⋅ , t) and may fire yielding the
marking M ′ = M + C(⋅ , t). The set of transitions enabled at M is denoted E(M). One
writes M [σ⟩ to denote that the sequence of transitions σ = tj1⋯tjk

is enabled at M , and
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M [σ⟩ M ′ to denote that the firing of σ yields M ′. One writes t ∈ σ to denote that a
transition t is contained in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted L(N,M0),
i.e., L(N,M0) = {σ ∈ T ∗ ∣ M0[σ⟩}. Here symbol ∗ is the kleen star and T ∗ denotes the
set of all firing sequences constructed over the set T of all transitions.

Given a sequence σ ∈ T ∗, let π ∶ T ∗ → Nn be the function that associates to σ a vector
y ∈ Nn, called the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the
transition t is contained k times in σ.

A marking M is reachable in ⟨N,M0⟩ iff there exists a firing sequence σ such that
M0 [σ⟩ M . The set of all markings reachable from M0 defines the reachability set of⟨N,M0⟩ and is denoted R(N,M0).
The preset and postset of a place p are respectively denoted ●p and p●. The set of
input transitions and the set of output transitions for a set of place P̂ are defined as
●P̂ = {t ∶ ∀p ∈ P̂ , t ∈ ●p} and P̂ ● = {t ∶ ∀p ∈ P̂ , t ∈ p●}.
Analogously, the preset and postset of a transition t are respectively denoted ●t and t●.
Also, the set of input places and the set of output places for a set of transitions T̂ are
defined as ●T̂ = {p ∶ ∀t ∈ T̂ , p ∈ ●t} and T̂ ● = {p ∶ ∀t ∈ T̂ , p ∈ t●}.
Let us give the definition of directed path.

Definition 2.7. (Directed path) Given a SM PN N = (P,T, Pre,Post), an alternated
sequence of places and transitions ρ = ⟨p′

0
t′
1
p′

1
t′
2
⋯t′rp

′
r⟩ is called a directed path if ∀i =

0,1, . . . r and ∀j = 1, . . . r it holds: i) p′i ∈ P and t′j ∈ T ; ii) p′j−1 ∈
●t′j and t′j ∈

●p′j. A path
non-containing any repeated place is called elementary. ∎

A path which ends at the vertex it begins is called circuit. A PN having no directed
circuits, is called acyclic.

Finally, consider the following definition.

Definition 2.8. (T−induced subnets) Given a net N = (P,T,Pre,Post), and a subset
T ′ ⊆ T of its transitions, let us define the T ′−induced subnet of N as the new net N ′ =(P,T ′, P re′, P ost′) where Pre′, P ost′ are the restrictions of Pre,Post to T ′. The net N ′

can be thought as obtained from N removing all transitions in T ∖ T ′. Let us also write
N ′ ≺T ′ N . ∎

Particular types of PNs can be obtained by restricting the syntax in a particular way.
Recall that ordinary PNs are nets where all arc weights are 1’s. Restricting further, the
following types of ordinary Petri nets are commonly used and studied: state graph or
more properly state machine, event graph, conflict free PN , free choice PN , simple PN.
Note that the previous classes of PNs are not disjoint.

In the following we focus on the class of state machines.

Definition 2.9. (State machine PN)[93] A state machine (SM) PN is an ordinary
PN such that each transition t has exactly one input place and exactly one output place,
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i.e.,

∣●t∣ = ∣t●∣ = 1 (∀t ∈ T ) ∎

One observes that a SM N = (P,T,Pre,Post) may also be represented by an associated
graph GN = (V,A) whose set of vertices V = P coincides with set of places of the net,
and whose set of arcs A corresponds to the set of transitions of the net, i.e., A ⊆ P × P ={(pi, pj) ∣ ∃t ∈ T, pi = ●t, pj = t●}.
Such a graph can be partitioned into its maximal strongly connected components, analo-
gously to the automata. These components induce also a partition of the set of places of
the associated SM.

Definition 2.10 (Associated graph). Given a SM N = (P,T,Pre,Post), let GN = (P,A)
be its associated graph. P can be partitioned into components as follows:

P = P1 ⊍⋯⊍ Pk

such that for all i = 1, . . . , k and Ai = A ∩ (Pi × Pi) it holds that (Pi,Ai) is a maximal
strongly connected sub-graph of GN . ∎

As discussed in Section 2.1.1, components P1, . . . Pk can be classified as transient or ergodic
components.

For a SM, analogously to the automata, a condensed graph can be constructed for a given
associated graph, following Definition 2.6.

Example 2.11. Consider Figure 2.3a, where an example of SM which is not strongly
connected is shown. Transient and ergodic components are respectively identified by dashed
and dotted boxes. For such a net the transient components are TR1 = {p1, p4}, TR2 = {p3},
whereas the ergodic components are ER1 = {p5, p6} and ER2 = {p2}. The corresponding
C(N) is shown in Figure 2.3b, where subnets induced by each component are represented
by single nodes. ∎

2.1.2.2 Synchronized Petri nets

The synchronized PNs belong to the category of non-autonomous PNs. They describe
systems whose evolution is dictated by external events whose occurrence has no duration.

A synchronized PN [32] is a structure

⟨N,E,f⟩
such that: i) N is a P/T net; ii) E is an input alphabet of external events; iii) f ∶ T → E

is a labeling function that associates with each transition t an input event f(t).
When there exists a one-to-one mapping between the alphabet of external events and the
set of transition, i.e. each event is associated with a different single transition, the net is
called totally synchronized.
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(a)

(b)

Figure 2.3: A not strongly connected SM with two transient components and two ergodic
ones (a) and its corresponding condensed graph.

Given an initial marking M0, a marked synchronized PN is a structure ⟨N,M0,E, f⟩.
One extends the labeling function to sequences of transitions as follows: if σ = t1t2 . . . tk
then f∗(σ) = f(t1)f(t2) . . . f(tk).
The set Te of transitions associated with the input event e is defined as follows: Te = {t ∣
t ∈ T, f(t) = e}. One equivalently says that all enabled transitions in Te are receptive to
input event e.

The evolution of a synchronized PN is driven by input sequences as follows. At marking
M , transition t ∈ T is fired iff:

1. it is enabled, i.e., t ∈ E(M);
2. the event e = f(t) occurs.

On the contrary, the occurrence of an event associated with a transition t /∈ E(M) does
not produce any firing. Note that a single server semantic is here adopted [91], i.e.,
when input event e occurs, the enabled transitions in Te fire only once regardless of their
enabling degree. However, a more general model, called extended synchronized PN [32],
consider q multiple firings of a transition that is q−enabled.
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Note that synchronized PNs with single-server semantics and with infinite-server seman-
tics are proven to have the same modeling power [91], since their behavior can be equiv-
alently modeled by one of these models.

Enabled transitions associated with event e are denoted Ee(M) = {t ∶ t ∈ Te⋂E(M)}.
Several transitions can be fired on the occurrence of a single event. Since simultaneous
firings are not allowed, there can be one sequential net-evolution identifying a set of
possible sequences of firing transitions. Such a set is called Step.

Definition 2.12. (Steps) Given a marked synchronized PN ⟨N,M0,E, f⟩, the set of
transition sequences Σe(M) is a step for event e ∈ E and marking M ∈ R(N,M0), if the
following four conditions hold:

i) any σ ∈ Σe(M) is a feasible firing transition sequence at marking M , i.e. Pre ⋅ y ≤M ,
having y = π(σ);

ii) every transition in any σ ∈ Σe(M) is such that y(t) = 0 if t /∈ Te and y(t) ≤ 1 otherwise;

iii) any sequence σ′, obtained by permuting transitions in σ, still belongs to Σe(M);
iv) there exists no sequence σ′′ meeting conditions i) to iii) such that y′′ = π(σ′′) and

y′′ � y. ∎

In the following, for a given marking M , any step is denoted as Σe(M) = [t1, t2, . . . , tk],
where the square brackets are used to denote that the order of the firing of transitions can
be any whatsoever. For instance [t1, t2, t3] = {t1t2t3, t1t3t2, t2t1t3, t2t3t1, t3t1t2, t3t2t1}.
The application of input event sequence w = e1 . . . ek from M yields marking M ′ and this
is denoted M

w
Ð→M ′.

In Figure 2.4a is shown an example of synchronized PN. Note that labels next to each
transition denote its name and the associated input event.

Definition 2.13. (Effective conflict) There is an effective conflict at a marking M

between two enabled transitions t, t′ ∈ E(M) if the following relation holds:

∃p ∶ t, t′ ∈ p●, M(p) < Pre(p, t) + Pre(p, t′). ∎

Definition 2.14. (Deterministic PN) A synchronized PN ⟨N,M0,E, f⟩ is said to be
deterministic if the following relation holds:

∀M ∈ R(N,M0),∀e ∈ E ∶ M ≥ ∑
t∈Te⋂E(M)

Pre(⋅, t). ∎

In other words, a synchronized PN is said to be deterministic if for all reachable markings
there is no effective conflict between enabled transitions sharing the same event.

The following sufficient condition provides a structural characterization of determinism
in synchronized PNs.
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(a)

(b)

Figure 2.4: A synchronized PN (a) and a possible behavior (b).

Proposition 2.15. A synchronized PN ⟨N,M0,E, f⟩ is deterministic if there does not
exist a place p such that t, t′ ∈ p● and f(t) = f(t′).
Proof. The existence of a place p such that t, t′ ∈ p● and f(t) = f(t′) is a necessary
condition for non-determinism according to Definitions 2.13 and 2.14. ◻

In the rest of this thesis we will only deal with the class of synchronized PNs that satisfy
this above structural deterministic condition.

When an event occurs in a deterministic net, all enabled transitions receptive to that event
can simultaneously fire. Thus an input sequence w = e1e2⋯ek ∈ E∗ drives a deterministic
net through the sequence of markings M0, M1, M2, ⋯, Mk where M0 is the initial marking
and

Mi+1 =Mi + ∑
t∈Tei+1 ⋂E(Mi)

(Post(⋅, t) − Pre(⋅, t)) .

The evolution of a synchronized PN, assuming that Proposition 2.15 holds, is defined by
the following algorithm. This is specified upon any input event occurrence.
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Algorithm 2.16. (Simulation of a deterministic synchronized PN)
Input: a synchronized PN ⟨N,E,f⟩ an initial marking M0.
Output: updated marking M ′, reached by the occurrence of a stream of input events.

1. Initialization of M ′ to M0. Wait for new event occurrences.

2. When a new event e occurs, do

2.1. let Ee(M ′) be the set of transitions associated with event e and enabled at
marking M ′.

2.2. If Ee(M ′) ≠ ∅, do

2.2.1. M ′′ =M ′ + ∑
t∈Ee(M ′)

(Post(⋅, t) − Pre(⋅, t)) be the updated marking by ap-

plying input event e at M ′, i.e. by firing all transition in Ee(M ′).
Else,

2.2.2. M ′′ =M ′.

End if

2.3. M ′ =M ′′.

End while ∎

In Figure 2.4b an example of net evolution for the synchronized PN in Figure 2.4a is
presented over a possible input sequence w = e2e1e1e2e2 starting from marking M0.

Example 2.17. Consider the deterministic PN of Figure 2.4a and let the current marking
be M = [201]T . Transitions t1 and t3 are both associated with event e1. They are both
said to be receptive to event e1, since they are both enabled and upon the occurrence of
event e1 will be fired, yielding marking M ′ = [110]T . Note that markings [011]T and[300]T , respectively obtained by the independent firing of t1 and t3, are never reachable.

Let now the current marking be again M and consider the occurrence of event e2. Although
t2 is synchronized on e2, it is not fired because not enabled when the event occurs. t2 is
said to be not receptive to this event at marking M . ∎

As a consequence, the reachability set of a synchronized PN could be either a subset or
equal to the set of the reachable markings of the corresponding P/T net, depending on
the labeling function.

A marked PN ⟨N,M0⟩ is said to be bounded if there exists a positive constant k such
that for all M ∈ R(N,M0), M(p) ≤ k ∀p ∈ P . A place in Petri net is called k-bounded
if it does not contain more than k tokens in all reachable markings, including the initial
marking; it is said to be safe if it is 1-bounded.

A bounded net has a finite reachability set. In this case, the behavior of the net can be
represented by the reachability graph (RG), a directed graph whose vertices correspond
to reachable markings and whose edges correspond to the transitions causing a change of
marking. In the case of synchronized PNs it is common to show the event next to the
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arc. The RG is obtained by exhaustively applying Algorithm 2.16, i.e. computing all
markings reached by the application of every possible input event starting from the given
initial marking.

In the following algorithm the reachability tree (RT) construction is provided.

Algorithm 2.18. (Reachability tree construction)
Input: a deterministic synchronized PN ⟨N,E,f⟩ and the initial marking M0.
Output: a reachability tree T̃ .

1. Label the root node q0 with the initial marking M0 and tag it "new".

2. While a node tagged "new" exists do

2.1. Select a node q tagged "new" and let M be its label.

2.2. For all e ∈ E:

2.2.1. Let M ′ =M + ∑
t∈Ee(M)

(Post(⋅, t) −Pre(⋅, t)) be the marking reached firing

all enabled t ∈ Te.

2.2.2. Add a new node q′ and label it M ′.

2.2.3. Add an arc labeled e∣Σe(M) from q to q′.

2.2.4. If there exists already in the tree a node with label M ′,

2.2.4.1. tag node q′ "duplicate",

else,

2.2.4.2. tag it "new".

End if

End for

2.3. Untag node q.

End while ∎

From the RT one can obtain the RG by fusing duplicate nodes with the untagged node
with the same label: any RT can always be converted in its corresponding graph and vice
versa.

The initial marking, together with the firing rules, characterizes the RG via Algorithm 2.18.
It is important to note that a different initial marking may give a completely different
reachability set as shown in the following example.

Example 2.19. Consider the PN in Figure 2.5a. Let the initial marking be M0 = [100]T .
Its RG is shown in Figure 2.5b. Let now initial marking be M0 = [200]T . This new setting
allows a different reachability set and then a different RG, as depicted in Figure 2.5c. ∎

Note that in a RG there is a one-to-one mapping between a node and its label, that are
used without making any distinction in the rest of the thesis.
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(a)

(b) (c)

Figure 2.5: A synchronized PN (a) and its RGs for 1 token (b) and 2 tokens (c)

The set of reachable markings of a PN is not necessarily finite. Karp and Miller [69]
have proposed an algorithmic computation of a finite representation of the state-space of
unbounded PNs.

In particular, this algorithm is based on an acceleration technique, which computes se-
quences of transitions that strictly increase the number of tokens in certain places. These
sequences are called increasing sequences. The acceleration technique works because PNs
are strictly monotonic, i.e. a sequence of transitions which fires from a marking M fires
from all markings M ′ such that M ′ ≧M .

This representation, called Coverability Graph (CG) is not unique and certainly not
minimal. So a minimal CG has been proposed by Finkel [45], using reduction rules based
on comparison between computed markings. The approach has been demonstrated to
be incorrect and more efficient techniques have been set to correctly determine minimal
coverability sets by constructing handle sets by Geeraerts et al. [50] of pair markings or
by pruning technics by Reynier and Servais [107].

However, the CG entails loss of information in terms of reachable markings and firing
sequences, that can somehow prevent one to use it for systematically investigating the net
properties. In this context, a different CG construction has been proposed by Mengchu et
al. [129, 36]. Their modified reachability tree allows to determine whether an unbounded
PN has deadlocks or not, but the graph contains also non reachable markings, so that no
other properties such as finiteness and liveness can be checked.

Each node of the CG is labeled with an ω-marking, defined as follows.

Definition 2.20. (ω−marking) Let Nω = N ∪ {ω}. An ω−marking of a PN N with m

places is a column vector Mω ∈ Nm
ω , whose components may either be an integer number
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or be equal to ω. ∎

Symbol ω denotes that the marking of the corresponding place may grow indefinitely.
Note that for all n ∈ N it holds ω > n and ω ± n = ω.

Let Pu and Iu (resp. Pb and Ib) denote the set of unbounded (resp. bounded) places and
the corresponding indexes s.t. Iu = {i ∶ pi ∈ Pu} (resp. Ib = {i ∶ pi ∈ Pb}). Let mu = ∣Pu∣
and mb = ∣Pb∣. We denote M ↑b (resp. M ↑u) the projection of the marking M onto the
set of bounded (resp. unbounded) places Pb (resp. Pu).

The notion of covering set is now introduced, that is a (not necessarily strict) superset of
R(N,M0).
Definition 2.21. (Covering set) Given a marked net ⟨N,M0⟩, let V be the set of nodes
of its CG. The covering set of ⟨N,M0⟩ is

CS(N,M0) = ⋃
Mω∈V

cov(Mω),

where cov(Mω) = {M ∈ Nm ∶ M(p) =Mω(p) if Mω(p) ≠ ω}. ∎

A marking Mω is called a covering marking for M if M ∈ cov(Mω). In this case, we write
Mω ≥ω M .

In the framework of synchronized PNs, David and Alla have used the Karp and Miller
algorithm [69] to construct the coverability tree to visualize the infinite state-space of a
synchronized PN.

Such an algorithm can be presented as an extension of Algorithm 2.18 for the bounded
case. In particular, between step 2.2.1 and step 2.2.2, marking M ′ is updated following
the following condition.

- Let Q̄ be the set of nodes q̄i met on a backward path from q to q0 whose label is M̄i � M ′.
If any of such nodes exists then for all p ∈ P such that M ′(p) > M̄i(p) let M ′(p) = ω.

Note that a place containing ω tokens cannot be emptied. This is not possible since single
firings are considered.

A place p is said to be unbounded if ∃M ∈ R(N,M0) s.t. M(p) = ω. Symbol ω replaces
the computed value whenever a sequence of events w leads from some q̄ ∈ Q̄ to q. This
sequence, denoted as increasing input sequence, makes the marking of the corresponding
place grow.

Definition 2.22. (Repetitive input sequence) Consider a marked synchronized PN⟨N,M0, E, f⟩. An input sequence w ∈ E∗ is called repetitive if there exists a marking
M1 ∈ R(N,M0) such that

M1[w∣σ⟩M2[w∣σ⟩M3[w∣σ⟩⋯ (2.1)

i.e. if it can fire infinitely often starting from M1, always producing the same firing of
transitions. It is possible to distinguish two different types of repetitive sequence:
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(a) (b) (c)

(d)

(e) (f)

Figure 2.6: Examples of coverability graph construction (1).

• stationary input sequence: if in 2.1 it holds Mi =Mi+1 for all i = 1,2, . . .

• increasing input sequence: if in 2.1 it holds Mi ≨Mi+1 for all i = 1,2, . . . ∎

This algorithm, as later pointed out by Devillers and Begin [34], does not correctly con-
struct the evolution of a synchronized net.

In fact, obtaining an increased marking after the application of an input sequence is only
a necessary condition to be an increasing sequence, due to the non-necessarily monotonic
evolution of the net. Such a condition must hold for every successive application of w.

As the same authors have later shown [32], this algorithmic construction does not work
in all cases and so far the coverability graph could be obtained just thanks to pertinent
reasoning.

In fact, monotonicity is crucial to the automated verification of nets and other well struc-
tured transition systems and synchronized PNs are not monotonic. For instance consider
a marking enabling a certain evolution under an input sequence. A larger marking, under
the same input event application may not allow the same evolution.

That is why in general, the unbounded places of the net and places denoted as unbounded
in the CG(N,M0) do not coincide. In the following, some examples of CG, constructed
by adding the above condition to Algorithm 2.18, are first presented.

Example 2.23. Consider the PN in Figure 2.6a. Let M0 = [0] be the initial marking.
The only possible input event is e and the reachable marking are shown in Figure 2.6b.
Hence p is bounded in N . The CG in Figure 2.6c has a path M[e∣t1⟩ω[e∣{t1, te}⟩ω . . .,
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(a)

(b) (c)

Figure 2.7: Examples of coverability graph construction (2).

hence p is unbounded in that graph. Thus, the Algorithm is proven to fail in determining
increasing input sequences of Definition 2.22. ∎

Monotonicity is generally assumed while constructing a covering graph. Here firing rules
are shown to be non-monotonic.

Example 2.24. Consider the PN in Figure 2.6d. Let M0 = [01]T be the initial marking.
If the input event e occurs at the initial marking M = [01]T , transition t1 will fire yielding
marking M ′ = [11]T ≩ M . A second occurrence of event e would make both transitions
t1 and t2 fire, yielding marking M ′′ = [10]T � M ′. This shows that the firing rule is not
monotonic in the reached markings, since the underlying firing transition sequences are
not the same under the same input event application. ∎

Example 2.25. Consider the PN in Figure 2.7a. Let M0 = [0011]T be the initial mark-
ing. The net is bounded but its CG is not. For instance, the sequence e1e2 drives the net
from M0 to the bounded marking M = [1110]T . However, in the CG shown in Figure 2.7c,
this same sequence leads the net from M0 to an unbounded marking, e.g. M ′ = [ω 200]T ,
that does not cover any of the reachable markings of the net. ∎

Under this consideration one can clearly say that the previously so-constructed CG cannot
be used for property verification of the net.
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2.1.2.3 Labeled Petri nets

The previous syntactic definition of synchronized PNs is also common to the so-called
labeled PNs [49]. However, while in the case of labelled PNs the evolution is autonomous
and the events are usually interpreted as outputs, in the case of synchronized nets the
events are inputs that drive the net evolution as explained in the following.

Furthermore, as shown later, in a synchronized nets two or more transitions can simulta-
neously fire, while this is not possible for labelled nets.

When observing the evolution of a net, it is common to assume that each transition t

is assigned a label ϕ(t) and the occurrence of t generates an observable output ϕ(t).
If ϕ(t) = ε, i.e., if the transition is labeled with the empty string, its firing cannot be
observed.

Thus the association between sensors and transitions can be captured by a labeling func-
tion L ∶ T → L ∪ {ε}.
Definition 2.26. (Labeled PNs) Given a PN N = (P,T,Pre,Post), a labeling function
ϕ ∶ T → E ∪ {ε} assigns to each transition t ∈ T a symbol, from a given alphabet E, or
assigns to it the empty string ε.

A marked labeled PN is a 3-tuple G = ⟨N,M0, ϕ⟩ where N = (P,T,Pre, Post), M0 is the
initial marking and ϕ ∶ T → E ∪ {ε} is the labeling function. ∎

Four classes of labeling functions may be defined.

Definition 2.27. (Labeling functions) The labeling function of a labeled PN system⟨N,M0, ϕ⟩ can be classified as follows.

• Free: if all transitions are labeled distinctly, namely a different label is associated to
each transition, and no transition is labeled with the empty string.

• Deterministic: if no transition is labeled with the empty string, and the following
condition1 holds: for all t, t′ ∈ T , with t ≠ t′, and for all M ∈ R(N,M0): M[t⟩ ∧
M[t′⟩ ⇒ [ϕ(t) ≠ ϕ(t′)] i.e., two transitions simultaneously enabled may not share
the same label. This ensures that the knowledge of the firing label ϕ(t) is sufficient
to reconstruct the marking that the firing of t yields.

• λ-free: if no transition is labeled with the empty string2.

• Arbitrary: if no restriction is posed on the labeling function ϕ. ∎

1A less restrictive condition can be given: for all t, t′ ∈ T , with t ≠ t′, and for all M ∈ R(N,M0): M[t⟩
∧ M[t′⟩ ⇒ [ϕ(t) ≠ ϕ(t′)] ∨ [Post(⋅, t) −Pre(⋅, t) = Post(⋅, t′)−Pre(⋅, t′)]. Thus two transitions with the
same label may be simultaneously enabled at a marking M , if the two markings reached from M by firing
t and t′ are the same.

2In the PN literature the empty string is denoted λ, while in the formal language literature it is
denoted ε. In this thesis we denote the empty string ε but, for consistency with the PN literature, we
still use the term λ-free for a non erasing labeling function ϕ ∶ T → E.
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Figure 2.8: A labeled marked PN

Each of these types of labeling is a generalization of the previous one.

In the particular case in which the labeling function is free, being an isomorphism between
the alphabet E and the set of transitions T , it is usual to choose E = T , or equivalently
to assume that the transitions are not labeled and their firing can be directly observed.

The set of transitions whose label is ε is denoted as Tu, i.e., Tu = {t ∈ T ∣ L(t) = ε}.
Transitions in Tu are called unobservable or silent. To denotes the set of transitions labeled
with a symbol in L. Transitions in To are called observable because when they fire their
label can be observed. Note that in this thesis it is assumed that the same label l ∈ L

can be associated to more than one transition. In particular, two transitions t1, t2 ∈ To

are called undistinguishable if they share the same label, i.e., L(t1) = L(t2). The set of
transitions sharing the same label l are denoted as Tl.

In the following let Cu (Co) be the restriction of the incidence matrix to Tu (To) and nu

and no, respectively, be the cardinality of the above sets. Moreover, given a sequence
σ ∈ T ∗, Pu(σ), resp., Po(σ), denotes the projection of σ over Tu, resp., To.

The word w of events associated to sequence σ is w = Po(σ). Note that the length of a
sequence σ (denoted ∣σ∣) is always greater than or equal to the length of the corresponding
word w (denoted ∣w∣). In fact, if σ contains k′ transitions in Tu then ∣σ∣ = k′ + ∣w∣.
Definition 2.28. [17](Consistent firing sequence and consistent markings) Let⟨N,M0⟩ be a labeled marked net with labeling function L ∶ T → L ∪ {ε}, where N =(P,T,Pre,Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. Let

S(w) = {σ ∈ L(N,M0) ∣ Po(σ) = w}
be the set of firing sequences consistent with w ∈ L∗, and

C(w) = {M ∈ Nm ∣ ∃σ ∈ T ∗ ∶ Po(σ) = w ∧M0[σ⟩M}
be the set of reachable markings consistent with w ∈ L∗. ∎
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In other words, given an observation w, S(w) is the set of sequences that may have fired,
while C(w) is the set of markings in which the system may actually be.

Example 2.29. Consider the PN in Figure 5.2. Assume To = {t1, t2, t3, t4, t5, t6, t7} and
Tu = {ε8, ε9, ε10, ε11, ε12, ε13}, where for a better understanding unobservable transitions
have been denoted εi rather than ti. The labeling function is defined as follows: L(t1) = a,
L(t2) = L(t3) = b, L(t4) = L(t5) = c, L(t6) = L(t7) = d.

First consider w = ab. The set of firing sequences that is consistent with w is S(w) = {t1t2,
t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}, and the set of markings consistent with w is C(w) ={[0 0 1 0 0 0 0 1 0 0 0]T , [0 0 0 1 0 0 0 1 0 0 0]T , [0 0 0 0 1 0 0 1 0 0 0]T , [0 1 0 0 0 0 0 1 0 0 0]T ,[0 0 0 0 0 1 0 1 0 0 0]T}.
If w = acd is considered the set of firing sequences that are consistent with w is S(w) ={t1t5t6, t1t5ε12ε13t7}, and the set of markings consistent with w is C(w) = {[0 1 0 0 0 0 0 1 0

0 0]T}. Thus two different firing sequences may have fired (the second one also involving
silent transitions), but they both lead to the same marking. ∎

2.2 Test of Discrete Event Systems

Due to always larger size and rising complexity, systems needs of checking performances
increase and testing problems periodically resurface.

These problems have been introduced by the pioneering paper of Moore [92], where the
main focus is to understand which type of conclusions it is possible to draw about internal
conditions of the system under test from external experiments.

2.2.1 Fundamental testing problems

In a testing problem we have a machine about which we lack some information; we would
like to deduce this information by providing a sequence of inputs, called test or experiment,
to the machine and observing the outputs produced.

A test can be preset, if the sequence is entirely provided before its application, or adaptive,
if each input event of the sequence is determined step by step regarding the previously
observed outputs. An adaptive test might be seen as a decision tree rather than a test
sequence. Adaptive tests are associated with sequences of shorter length, but their algo-
rithms are more complicated than the ones for the preset case. In fact, sometimes the
main drawback of using adaptive experiments is designing them.

In his gedanken-experiment, i.e., thought-experiment, Moore stated that the system under
investigation is a fixed semiautomaton seen as a black box. Lee and Yannakakis in [76]
have widely reviewed those problems and the techniques to solve them. They have stated
five fundamental problems of test.

In the three first problems, it is given a complete description of the machine M =(χ, I,O, δ, λ), but the current state is unknown.
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i) homing/synchronizing sequences: determining the final state after a test;

ii) state identification: identify the unknown initial state;

ii) state verification: the machine is supposed to be in an initial state, verify that the
hypothesis is indeed true;

In the last two problems, the machine M is tested as a black box, i.e. it can be viewed
solely in terms of its input, output behavior, while it is given a specification machine
A = (χA, IA,OA, δA, λA).
iv) machine verification/fault detection/conformance testing: in addition to the machine

M the experimenter is given another machine A and has to verify whether M is
equivalent to A;

v) machine identification: identify the unknown machine M .

Problem i) has been solved in the 60s by the way of finite state machines (FSMs) with
homing sequences (HS) and synchronizing sequences (SS).

In the HS problem it is given a machine for which we lack of information about its current
state. The goal is to perform a test to drive it to a known state by observing the produced
output. A HS can be constructed only for reduced FSMs, since equivalent states cannot
be distinguished by using any test, and all FSMs have a HS. An input sequence is a HS
if its block of the current state uncertainty are singletons. It is easy to see then that the
shortest HS can be determined from the successor tree of the automaton [70]. Such a HS
is determined by a node with least depth d which is labeled by a current state uncertainty
consisting in singletons. Nevertheless constructing the successor tree up to depth d takes
exponential time and finding shortest HSs is proved to be a NP-hard problem [92].

A SS takes the machine to a known state regardless of the initial state and without
observing the outputs. Every SS is clearly a HS but it is not true the contrary. The
synchronizing tree method [60, 70] have been proposed to provide shortest SSs. Anal-
ogously to the HS problem, such a method is suitable only for small size systems and
becomes useless when the size grows. As a matter of fact the problem of finding shortest
SSs is known to be NP-complete [40]. Two polynomial algorithms have been mainly used
to provide a SS that is not necessarily the shortest one: the so-called greedy and cycle
algorithms — respectively of Eppstein [40] and Trahtman [122] — that have equivalent
complexity. Heuristic methods have been proposed by Roman [108], where he gives two
measures — the average difference of length between the returned SSs and the shortest
expected SS (seSS) and the ratio of returned SSs of length equal to the seSS — to compare
his methods to the classic ones by numerical simulations.

Since the problem is the main topic of this thesis, section 2.2.2 focuses on the SS con-
struction and the classic approach is explained in detail.

Problem ii) concerns performing an experiment apt to identify the unknown initial state.
An input sequence that solves this problem is called distinguishing sequence. Note that a
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HS solves a slightly different problem, since every distinguishing sequence also determines
a HS, because the final state can be simply obtained starting from the initial one. Classic
approaches [53, 54, 70] provide preset distinguishing sequences by the way of a type of
successor tree, the so-called distinguishing tree. Each node of the distinguishing tree is
labeled by the corresponding initial state uncertainty and it identifies a distinguishing
sequence if all of its blocks are singletons. Unfortunately the existence of a preset distin-
guishing sequence is decidable but PSPACE-complete, that is why at least an exponential
time is required to construct one. Besides adaptive distinguishing sequences can be deter-
mined via polynomial time algorithm based on decision trees [75]. Machines with preset
sequences have also adaptive ones, that can also be shorter [118].

Problem iii) is an easier problem, in fact a sequence that solves it only verifies that the
machine was in a given initial state. This is possible if and only if that state has a unique
input output sequence (UIO) [117, 110]. A UIO sequence of a state is an input sequence
such that the output sequence produced from any other state is different. This concept is
known also like "simple I/O sequence" [63] and "checkword" [58]. An UIO sequence for a
state x can still be performed by the way of a distinguishing tree and it is identified by a
node containing an initial state uncertainty with a singleton block s. No efficient approach
for determining such sequences have been given and only exponential-time algorithm tree-
based known.

Problem iv) we have a specification machine A and a black-box machine M knowns as the
implementation machine, for which only its input/output behavior can be observed. The
goal is to perform a test sequence such that it is decidable if M is a good implementation of
A, i.e. if M is equivalent (conforms) to A. This is easy and proved in [70, 92]. The problem
is also known as machine verification or fault detection in the circuits and switching
systems literature. In this field, people build test sequences using fault hypothesis on a
model and apply these sequences to the real system in order to detect the considered fault.
The implementation machine is supposed to be in an unknown state, we first resolve a
HS/SS problem and then apply a sequence called checking experiment. This sequence
verify if M conforms A by checking if their outputs match. The checking experiments are
all provided under the same structure, every transition for every state is checked on M

wrt A using subsequences. The existing methods differ by the kind of subsequences they
use: distinguishing sequences, UIO sequences, characterizing sequences and identifying
sequences. However, distinguishing and UIO sequences are mostly used [2, 21, 20, 26,
116, 61, 70].

Problem v) is a problem pretty much related to the conformance testing. Given an im-
plementation machine M , seen as a black box, the purpose is to find a test sequence that
allows to determine the transition diagram of M from its response to the test itself. The
test sequence construction is clearly done under specific a priori knowledge of the machine
such an upper bound of the space-state. The input and output alphabet, supposed respec-
tively of cardinality p and q are also known. Standard approaches [92, 54] construct all
n−state machines and perform conformance testing to find the equivalent machine. This
encounters the space explosion problem since for n states, p inputs and q outputs one has
n⋅pn⋅p

n!
machines. This is partially solved by constructing a direct sum machine in which

each state corresponds to a state in either the correct or in one of the "non-conforming"
machines. Cross verifications with M are done by pairs of states and at least one machine
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is then discharged. Practical applications can be found in communication protocol, where
for instance one would track down the proprietary protocol standards by observing the
implemented behavior [74].

These results can also be applied for conformance test of industrial logic controllers,
when their specifications are given in standardized specification languages such Sequential
Function Chart (SFC) [103, 102, 104]. In this setting, Provost et al. provide a method
to obtain an equivalent and semantic loss-free automaton representation to deal with the
conformance testing problem.

At present and only few works have been done in the area of testing for systems specified
as PNs. The question of automatically testing PNs has been investigated by Jourdan
and Bochmann in [46]. They have adapted methods originally developed for Finite State
Machines (FSMs) and, classifying the possible occurring types of error, identified some
cases where free choice and 1−safe PNs [93] provide more significant results especially
in concurrent systems. Later the authors have extended their results also to k−safe PNs
[10]. Zhu and He have given an interesting classification of testing criteria [139] — without
testing algorithms — and presented a theory of testing high-level Petri nets by adapting
some of their general results in testing concurrent software systems.

In the PN modeling framework, one of the main supervisory control tasks is to guide
the system from a given initial marking to a desired one similarly to the synchronization
problem. Yamalidou et al. have presented a formulation based on linear optimization
[135, 134] Giua et al. have investigated the State identification problem. They have
proposed an algorithm to calculate an estimate — and a corresponding error bound —
for the initial marking of a given PN based on the observation of an event sequence.
A complete description of their approach can be found in [57], where labelled PNs are
taken into consideration also in the case of silent transitions, i.e., transitions that do not
produce any observation. Similar techniques are proposed by Lingxi et al. in [78] to get a
minimum estimate of initial markings. Their aim is to characterize the minimum number
of resources required at the initialization for a variety of systems.

As far as we know, the problem of providing synchronizing sequences has not been inves-
tigated via the Petri nets (PNs).

2.2.2 Synchronizing sequences using automata

In this section, the SS classic construction is presented by the aid of finite automata.

Definition 2.30. (SS on automata) Consider an automaton with inputs Λ = (χ,E, δ)
and a state x̄ ∈ χ. The input sequence w̄ is called synchronizing for state x̄ if it drives the
automaton to x̄, regardless of the initial state, i.e., ∀x ∈ χ it holds that δ(x,w) = x̄. ∎

The information about the current state of Λ after applying an input sequence w is defined
by the set φ(w) = δ(χ,w), called the current state uncertainty of w. In other words w is a
synchronizing sequence (SS) that takes the automaton to the final state x̄ iff φ(w) = {x̄}.
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Figure 2.9: The auxiliary graph of the automaton in Figure 2.1.

The synchronizing tree method [60, 70] has been proposed to provide shortest SSs. Such a
method is suitable only for small size systems, since the memory required to build up the
tree is high, and becomes useless when the size grows. As a matter of fact the problem
of finding shortest SSs is known to be NP-complete [40].

As previously said, greedy and cycle algorithms have been mainly used to provide a SS
in polynomial time.

In fact, both algorithms work in O(n3
χ + ∣ni∣n2

χ) time, where nχ and ∣ni∣ are, respectively,
the number of states and the input alphabet cardinality of the automaton. Proofs can be
respectively found in [40] and [122].

In particular, the greedy algorithm [40] determines an input sequence that takes a given
automaton, regardless of its initial state, to a known target state: note that the target
state is determined by the algorithm and cannot be specified by the user.

Here we propose a slightly different implementation of the greedy algorithm (see Algo-
rithm 2.32), that takes as input also a state x̄ and determines a sequence that synchronizes
to that state.

This algorithm is later used as a building block to determine a SS to reach a given marking
among those in the reachability set of a bounded PN.

Greedy and cycle algorithms are based on the auxiliary graph construction, defined as
follows.

Definition 2.31. (Auxiliary graph) Given an automaton with inputs Λ with n states,
let A(Λ) be its auxiliary graph. A(Λ) contains n(n+1)/2 nodes, one for every unordered
pair (x′, x′′) of states of Λ, including pairs (x,x) of identical states. There exists an
edge from node (x′, x′′) to (x̂′, x̂′′) labeled with input event e ∈ E iff δ(x′, e) = x̂′ and
δ(x′′, e) = x̂′′. ∎

For instance, Figure 2.9 shows the auxiliary graph of the automaton in Figure 2.1.

Algorithm 2.32. (Greedy computation of SSs on automata with inputs)
Input: An auxiliary graph A(Λ), associated with an automaton with inputs Λ = (χ,E, δ),
and a target state x̄ ∈ χ.
Ouput: A SS w̄ for state x̄.

1. Let i = 0.
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2. Let w0 = ε, the empty initial input sequence.

3. Let φ(w0) = χ, the initial current state uncertainty.

4. While φ(wi) ≠ {x̄}, do

4.1. i = i + 1.

4.2. Pick two states x,x′ ∈ φ(wi−1) such that x ≠ x′.

4.3. If there does not exist any path in A(Λ) from node (x′, x′′) to (x̄, x̄), stop the
computation, there exists no SS for x̄.

Else find the shortest path from node (x′, x′′) to (x̄, x̄) and let w be the input
sequence along this path, do

4.3.1. wi = wi−1w

4.3.2. φ(wi) = δ(φ(wi−1),w).
End if

End while

5. w̄ = wi. ∎

A possible execution of the above algorithm can be explained by the following example.

Example 2.33. Let state x0 be the target state. Let w0 = ε be empty the initial input
sequence and φ(w0) = {x0, x1, x2} the corresponding initial current state uncertainty. If at
the first iteration of step 4.2 the algorithm picked states x0 and x2, it would obtain w = i1,

since (x0, x2) i1Ð→ (x0, x0). Hence w1 = i1 and φ(w1) = {x0, x1}, which does not satisfy
the exiting condition of the while loop. At the second iteration the algorithm is forced to

pick states x0 and x1. The shortest path is (x0, x1) i2Ð→ (x0, x2) i1Ð→ (x0, x0), thus w = i2i1,
w2 = w1w = i1i2i1 and φ(w2) = {x0}. The current state uncertainty is now singleton and
corresponds to state x0, so w̄ = w2 is a SS for state x0. ∎

The following theorem provides a necessary and sufficient condition for the existence of a
SS for a target final state.

Theorem 2.34. The following three propositions are equivalent.

1. Given an automaton with inputs Λ = (χ,E, δ), there exists a SS for state x̄ ∈ χ;

2. A(Λ) contains a path from every node (x′, x′′), where x′, x′′ ∈ χ, to node (x̄, x̄);
3. Algorithm 2.32 determines a SS w̄ for state x̄ ∈ χ, if there exists any SS.

Proof. [1) implies 2)] If there exists a SS for state x̄ ∈ χ, there exists an input sequence w

for x̄ s.t. for any x′, x′′ ∈ χ it holds that δ(x′,w) = δ(x′′,w) = x̄. Hence there exists a path
labeled w from any (x′, x′′) to (x̄, x̄).
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[2) implies 3)] Consider iteration i of the while loop of Algorithm 2.32. If there exists a
path labeled w from any (x′, x′′) to (x̄, x̄), then it holds that δ({x′, x′′},w) = {x̄}. Hence
the following inequality holds:

∣φ(wi)∣ = ∣δ(φ(wi−1)/{x,x′},w) ∪ {x̄}∣ ≤ ∣φ(wi)∣ − 1.

The existence of such a sequence for every couple of states x′, x′′ ∈ χ assures that the
current state uncertainty will be reduced to singleton {x̄} after no more than n iteration.

[3) implies 1)] Since Algorithm 2.32 requires the current state uncertainty to be singleton
and uses it as a stop criterium, if it terminates at step 5, then the sequence found is
clearly a SS. ◻

One can easily understand that, when the automaton is not strongly connected, the above
reachability condition will be verified only when there exists only one ergodic component
(see Definition 2.5) and there may exist a SS only for those states belonging to this ergodic
component.

2.3 Diagnosis of Discrete Event Systems

In this section the state of the art of diagnosis of DES using automata and PNs is pre-
sented.

2.3.1 Diagnosis with Automata

In the contest of DES several original theoretical approaches have been proposed using
automata.

Lin et al. [81, 82] propose a state-based DES approach to failure diagnosis. The problems
of off-line and on-line diagnosis are addressed separately and notions of diagnosability
in both of these cases are presented. The authors give an algorithm for computing a
diagnostic control, i.e., a sequence of test commands for diagnosing system failures. This
algorithm is guaranteed to converge if the system satisfies the conditions for on-line diag-
nosability.

Sampath et al. [113, 114] propose an approach to failure diagnosis where the system is
modeled as a DES in which the failures are treated as unobservable events. The level
of detail in a discrete event model appears to be quite adequate for a large class of
systems and for a wide variety of failures to be diagnosed. The approach is applicable
whenever failures cause a distinct change in the system status but do not necessarily
bring the system to a halt. Sampath et al. [113] provide a definition of diagnosability
in the framework of formal languages and present necessary and sufficient conditions
for diagnosability of systems. Moreover a systematic approach to solve the problem of
diagnosis using diagnosers is introduced.

In a related work Sampath et al. [112] present an integrated approach to control and
diagnosis. More specifically, authors present an approach for the design of diagnosable
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systems by appropriate design of the system controller and this approach is called active
diagnosis. They formulate the active diagnosis problem as a supervisory control problem.
The adopted procedure for solving the active diagnosis problem is the following: given
the non-diagnosable language generated by the system of interest, they first select an
"appropriate” sublanguage of this language as the legal language. Choice of the legal
language is a design issue and typically depends on considerations such as acceptable
system behavior (which ensures that the system behavior is not restricted more than
necessary in order to eventually make it diagnosable) and detection delay for the failures.
Once the appropriate legal language is chosen, they then design a controller (diagnostic
controller), that achieves a closed-loop language that is within the legal language and is
diagnosable. This controller is designed based on the formal framework and the synthesis
techniques that supervisory control theory provides, with the additional constraint of
diagnosability.

Debouk et al. [33] deal with the problem of failure diagnosis in DES with decentralized
information. In particular, they propose a coordinated decentralized architecture consist-
ing of two local sites communicating with a coordinator that is responsible for diagnosing
the failures occurring in the system. They extend the notion of diagnosability, originally
introduced in Sampath et al. [113] for centralized systems, to the proposed coordinated
decentralized architecture. In particular, they specify three protocols that realize the
proposed architecture and analyze the diagnostic properties of these protocols.

Boel and van Shuppen [12] address the problem of synthesizing communication protocols
and failure diagnosis algorithms for decentralized failure diagnosis of DES with costly
communication between diagnosers. The costs on the communication channels may be
described in terms of bits and complexity. The costs of communication and computation
force the trade-off between the control objective of failure diagnosis and that of mini-
mization of the costs of communication and computation. The results of this paper is
an algorithm for decentralized failure diagnosis of DES for the special case of only two
diagnosers.

Zad et al. [137] present a state-based approach for on-line passive fault diagnosis. In
this framework, the system and the diagnoser (the fault detection system) do not have
to be initialized at the same time. Furthermore, no information about the state or even
the condition (failure status) of the system before the initiation of diagnosis is required.
The design of the fault detection system, in the worst case, has exponential complex-
ity. A model reduction scheme with polynomial time complexity is introduced to reduce
the computational complexity of the design. Diagnosability of failures is studied, and
necessary and sufficient conditions for failure diagnosability are derived.

2.3.2 Diagnosis with labeled Petri nets

Among the first pioneer works dealing with PNs, let us recall the approach of Prock
[101]. He proposes an on-line technique for fault detection that is based on monitoring
the number of tokens residing into P-invariants: when the number of tokens inside P-
invariants changes, then the error is detected.
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Sreenivas and Jafari [119] employ time PNs to model the DES controller and backfiring
transitions to determine whether a given state is invalid. Later on, time PNs have been
employed by Ghazel et al. [52] that propose a monitoring approach for DES with unob-
servable events and to represent the “a priori” known behavior of the system, and track
on-line its state to identify the events that occur.

Hadjicostis and Veghese [59] use PN models to introduce redundancy into the system and
additional P-invariants allow the detection and isolation of faulty markings.

Wu and Hadjicostis [132] use redundancy into a given PN to enable fault detection and
identification using algebraic decoding techniques. In this paper the authors consider two
types of faults: place faults that corrupt the net marking, and transition faults that cause
a not correct update of the marking after event occurrence. Although this approach is
general, the net marking has to be periodically observable even if unobservable events
occur. Analogously, Lefebvre and Delherm [77] investigate on the determination of the
set of places that must be observed for the exact and immediate estimation of faults
occurrence.

Miyagi and Riascos [90] introduce a methodology, based on the hierarchical and modu-
lar integration of PNs, for modeling and analyzing fault-tolerant manufacturing systems
that not only optimizes normal productive processes, but also performs detection and
treatment of faults.

Ramirez-Treviño [105] employ Interpreted PNs to model the system behavior that includes
both events and states partially observable. Based on the Interpreted PN model derived
from an on-line methodology, a scheme utilizing a solution of a programming problem is
proposed to solve the problem of diagnosis.

Note that all papers in this topic assume that faults are modeled by unobservable tran-
sitions. However, while the above mentioned papers assume that the marking of certain
places may be observed, a series of papers have been recently presented that are based on
the assumption that no place is observable [4, 9, 39, 51].

In particular, Genc and Lafortune [51] propose a diagnoser on the basis of a modular ap-
proach that performs the diagnosis of faults in each module. Subsequently, the diagnosers
recover the monolithic diagnosis information obtained when all the modules are combined
into a single module that preserves the behavior of the underlying modular system. A
communication system connects the different modules and updates the diagnosis informa-
tion. Even if the approach does not avoid the state explosion problem, an improvement is
obtained when the system can be modeled as a collection of PN modules coupled through
common places.

The main advantage of the approaches of Genc and Lafortune [51] consists in the fact
that, if the net is bounded, the diagnoser may be constructed off-line, thus moving off-line
the most burdensome part of the procedure. Nevertheless, a characterization of the set
of markings consistent with the actual observation is needed. Thus, large memory may
be required.

An improvement in this respect has been given in [9, 4, 39].
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In particular, Benveniste et al. [9] use a net unfolding approach for designing an on-line
asynchronous diagnoser. The state explosion is avoided but the on-line computation can
be high due to the on-line building of the PN structures by means of the unfolding.

Basile et al. [4] build the diagnoser on-line by defining and solving Integer Linear Pro-
gramming (ILP) problems. Assuming that the fault transitions are not observable, the
net marking is computed by the state equation and, if the marking has negative compo-
nents, an unobservable sequence is occurred. The linear programming solution provides
the sequence and detects the fault occurrences. Moreover, an off-line analysis of the PN
structure reduces the computational complexity of the ILP problem.

Dotoli et al. [39] propose a diagnoser that works on-line in order to avoid the redesign and
the redefinition of the diagnoser when the structure of the system changes. In particular,
the diagnoser waits for an observable event and an algorithm decides whether the system
behavior is normal or may exhibit some possible faults. To this aim, some ILP problems
are defined and provide eventually the minimal sequences of unobservable transitions con-
taining the faults that may have occurred. The proposed approach is a general technique
since no assumption is imposed on the reachable state set that can be unlimited, and
only few properties must be fulfilled by the structure of the PN modeling the system fault
behavior. A problem strictly related to diagnosis has been recently studied by Dotoli et
al. [38]. They address the problem of identifying the model of the unobservable behavior
of PN systems in the industrial automation framework. Assuming that the fault-free sys-
tem structure and dynamics are known, the paper proposes an algorithm that monitors
the system on-line, storing the occurred observable event sequence and the corresponding
reached states.

A series of contributions dealing with diagnosis of PNs [18, 71, 17] have also been proposed.
In particular, in [18, 71] free-labeled PNs are considered, while in [17], as well as in this
thesis, the focus is on labeled PNs.

Some authors of this paper have also addressed the problem of diagnosability, namely the
problem of providing a procedure to verify if it is possible to reconstruct the occurrence
of fault events observing words of finite length. In particular, two different approaches
for bounded [16] and unbounded [14] PNs have been proposed.

Very few other results deal with diagnosability within the framework of PNs.

The first contribution was given by Ushio et al. [126] that extend a necessary and sufficient
condition for diagnosability given in [113, 114] to unbounded PN. They assume that the
set of places is partitioned into observable and unobservable places, while all transitions
are unobservable in the sense that their occurrences cannot be observed. Starting from the
PN they build a diagnoser called simple ω diagnoser that gives them sufficient conditions
for diagnosability of unbounded PNs.

Chung [27], in contrast with Ushio’s paper, assumes that part of the transitions of the PN
modelling is observable and shows as the additional information from observed transitions
in general adds diagnosability to the analysed system. Moreover starting from the diag-
noser he proposes an automaton called verifier that allows a polynomial check mechanism
on diagnosability but for finite state automata models.
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Finally, Wen and Jeng [130] propose an approach to test diagnosability by checking the
structure property of T-invariants of the nets. They use Ushio’s diagnoser to prove that
their method is correct, however they don’t construct a diagnoser for the system to do
diagnosis. Moreover Wen et al. [131] also present an algorithm, based on a linear pro-
gramming problem, of polynomial complexity in the number of nodes for computing a
sufficient condition of diagnosability of DES modeled by PNs.



Chapter 3

Synchronizing sequences on

bounded Petri nets

Summary

This chapter presents new results on the computation of synchronizing sequences for
systems modeled by synchronized Petri nets.

First we show how the classic automaton approach [76] can be easily adapted to systems
represented by the class of bounded synchronized Petri nets. We refer to this approach
as the RG approach.

Then it is shown that the same problem can be efficiently solved using Petri nets by taking
into account the net structure, without an exhaustive enumeration of its state space. The
approach proposed (cf. STS) for computing synchronizing sequences exploits the net
structure and leads to viable algorithms that can be applied to large scale systems.

Finally, a different third approach (cf. MRG) combines the structural criteria of the
approach STS and the efficacy of the approach RG.

Computational complexity analysis of RG, STS and MRG approaches are provided and
comparisons carried out by using different test-benches.

39
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3.1 An adaptation of the automata technique

When computing a SS for real systems modeled by automata, it is assumed that it is given
a complete description of the model in terms of space-set, input events and transition
function. The idea is that the experimenter knows all possible states in which the system
may be.

A similar notion can be given for PNs, where clearly the information on the net structure is
not sufficient but it is also necessary to univocally determine the the entire state-space. In
fact, as shown in Section 2.1.2, generally the reachability set of synchronized PN depends
on the initial marking.

Given a synchronized PN ⟨N,E,f⟩, a straightforward approach to determine a SS consists
in adapting the existing approach for automata to the reachability graph (RG) of the PN.
In the rest of this thesis, this approach will be called RG approach.

This setting is further extended to unbounded PNs, i.e., nets whose reachability set is
infinite.

3.1.1 A reachability graph approach for synchronized Petri

nets

As previously seen,to construct the RG and characterize the space-set of the considered
PN, it is necessary to know the initial marking together with the net structure. Equiv-
alently, one can say that the experimenter knows a possible marking of the net, i.e., a
marking previously reached by the net and then construct the space-set starting from this
marking. We call this possible marking the starting marking.

The synchronization problem via PNs can be so reformulated: it is given a PN N =(P,T,Pre,Post) and a starting marking M0. The current marking M is unknown, but it
is assumed to be reachable from M0, i.e., M ∈ R(N,M0).
This starting marking, together with the firing rules, provides a characterization of the
initial state uncertainty, that coincides with the set of markings reachable from it, i.e.,
M0 = R(N,M0).
The goal is to find an input sequence that, regardless of the current marking, drives the
net to a known target marking M̄ .

It is easy to verify that this direct adaptation presents one shortcoming that makes it not
always applicable: the greedy approach, defined by Algorithm 2.32, requires the graph to
be completely specified, while in a RG of a PN this condition is not always true. In fact,
from a marking not all transitions are necessarily enabled, causing the RG of the PN to
be partially specified.

Example 3.1. Consider the PN in Figure 2.4a. Marking M = [2 0 0]T enables only
transition t1 thus all the events not associated with t1 are not specified, i.e., not depicted
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(a) (b)

Figure 3.1: The completely specified RG of the PN in Figure 2.4a (a) and its corresponding
auxiliary graph (b).

in the RG for this node. Hence for that marking one adds a self loop labelled e2 and so
on for the rest of the reachable markings. ∎

In order to use the aforementioned approach it is necessary to turn a RG G into a com-
pletely specified graph G̃. This is obtained by applying the following algorithm.

Algorithm 3.2. (Obtaining a completely specified RG for a synchronized PN)
Input: a RG G of a marked synchronized PN ⟨N,M0,E, f⟩.
Output: a completely specified RG G̃.

1. While there exists a non-tagged node q in G, do

1.1. pick node q and tag it;

1.2. let M be the label associated with q.

1.3. For all e ∈ E, do

1.3.1. let Ee(M) be the set of transitions associated with event e and enabled
at marking M .

1.3.2. if Ee(M) = ∅, add a self-loop to q and label it with event e.

End for

End while

2. Remove all tags. ∎

Note that the RG and the obtained completely specified RG are equivalent in behavior
and both correspond to the given marked PN. In fact, all the self-loops added by the
above algorithm at step 1.3.2 correspond to those events that do not produce any firing
of transition. These events do not alter the marking of the net, hence neither the state
of the corresponding automaton.

In Figure 3.1a is shown the RG of the PN in Figure 2.4a and dashed edges are added in
order to make it completely specified. These arcs are labelled by the only non- specified
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event because they are associated with no firing transition. In Figure 3.1b is shown its
corresponding auxiliary graph.

The modified approach for PNs can now be summarized by the following algorithm.

Algorithm 3.3. (RG computation of a SS on synchronized PNs)
Input: A bounded synchronized PN ⟨N,E,f⟩, a starting marking M0 and a target marking
M̄ .
Ouput: A SS w̄ for marking M̄ ∈ R(N,M0).

1. Let G be the RG of ⟨N,M0⟩.
2. Let G̃ be the completely specified RG obtained by applying Algorithm 3.2 to G.

3. Construct the corresponding auxiliary graph A(G̃).
4. A SS for marking M̄ , if such a sequence exists, is given by the direct application of

Algorithm 2.32 to A(G̃), having M̄ as target. ∎

The following proposition can now be stated.

Proposition 3.4. Given a deterministic bounded synchronized PN N and a starting
marking M0, there exists a SS leading to a marking M̄ ∈ R(N,M0) iff the reachability
condition on its auxiliary graph A(G̃) is verified, i.e., there is a path from every node(Mi,Mj), with Mi,Mj ∈ R(N,M0), to node (M̄, M̄).
Proof. : Consider a marked PN net ⟨N,M0⟩ and its RG G. Given a marking M ∈
R(N,M0), a sequence σ = tj1tj2 . . . tjp generates the trajectory M[tj1⟩M1[tj2 . . . tjp⟩Mp

iff there exists an oriented path γ = Mtj1M1tj2 . . . tjpMp in G. The same equivalence
holds between a synchronized PN and its completely specified RG G̃. Thus an input
sequence w = ej1ej2 . . . ejp drives the net from M to Mp iff there exists an oriented path
γ =Mej1M1ej2 . . . ejpMp in G̃.

Since the completely specified RG G̃ can be considered as an automaton whose behavior
is equivalent to that of the synchronized PN itself, Theorem 2.34 easily applies. ◻

3.1.2 Complexity via reachability graph analysis

As previously said in Section 2.2.2, the greedy computation of a SS works in O(n3
χ +∣ni∣n2

χ) time, where nχ and ∣ni∣ are, resp., the number of states and the input alphabet
cardinality of the given automaton. Such an algorithm is applicable to synchronized PNs
by first exhaustively enumerating the state space of the net, i.e., constructing its RG.
Although alternative techniques are proposed to decrease its complexity (e.g. [13, 44]),
the RG generation suffers from the problem of exponential space and time complexity. In
particular, for a SM PN the reachability set of markings significantly increases with the
number of tokens, as discussed in the following proposition.
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Proposition 3.5. Given a strongly connected SM PN N = (P,T,Pre,Post), with k

tokens, let m be the number of its places. The RG G of this net has a number of nodes
equal to:

(m + k − 1

m − 1
) ≤ 1

(m − 1)!km−1

Proof. Consider the given net once a new place is added. It can be easily shown that the
reachability set cardinality is given by the following formula:

∣G(m + 1, k)∣ = k

∑
i=0

∣G(m, i)∣ = ∣G(m,0)∣ + ∣G(m,1)∣ + . . . + ∣G(m,k)∣,
where ∣G(m, i)∣ is the cardinality of the reachability graph of the obtained PN with k − i

tokens in the added place, that is also equal to the cardinality of reachability graph of
the initial PN with i tokens. Such a result can be reported in a matrix form, obtaining
the well known Pascal matrix, that comes out from the Pascal’s triangle. The elements
of the symmetric Pascal matrix are the binomial coefficients, i.e., it holds that

(i + j − 2

i − 1
)

having i =m, j = k + 1. ◻

Considering the above result, one can state the following lemma.

Lemma 3.6. Consider a strongly connected SM PN with k tokens. Let m be the number
of its places and E be its input alphabet. For such a net, Algorithm 3.3 requires a time

O(∣G(m,k)∣3 + ∣E∣∣G(m,k)∣2) ≤ O
⎛
⎝[

km−1

(m − 1)!]
3

+ ∣E∣ [ km−1

(m − 1)!]
2⎞
⎠ . ∎

3.2 Synchronizing sequences on synchronized strongly

connected state machine Petri nets

Consider a strongly connected SM PN defined in Section 2.1.2. Knowing the number
of tokens k initially contained in the net — regardless of their initial distribution — is
sufficient to exactly determine the reachability set of the net: in fact, the number of
tokens will remain constant as the net evolves and any distribution of the k tokens can
be reached.

If a SM PN is not strongly connected, knowing the number of tokens k initially contained
in the net — but not their initial distribution — will give a larger approximation of the
reachability set that may be used to design a SS. The knowledge of the number of tokens
initially contained in each component — but not their initial distribution within each
component — will provide an exact characterization of the reachability set.

This new setting aims to determine a SS without constructing the whole state-space.
Hence a new formal definition of SS for SM PNs has to be given.
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Definition 3.7. (SS on state machine PNs) Given a synchronized SM PN ⟨N,E,f⟩,
assume that the initial marking M0 is not given but is known to belong to a set

M0 = {M ∈ Nm ∣∑
i

M(pi) = k}.
Sequence w̄ is called a k-SS if for all M ∈M0 it holds M

w̄
Ð→ M̄ . ∎

In this section, two different techniques to solve the synchronization problem on the
framework of strongly connected state machine PNs are proposed.

The first approach exploits the net structure and obtains a SS, by constructing paths
that satisfy certain labeling conditions. Such paths are called synchronizing transition
sequences (STS).

The second approach is based on a greedy computation made on a modified reachability
graph (MRG), which is obtained by pruning the RG of the net.

3.2.1 A synchronizing transition sequence approach

In this subsection we present a particular technique to determine SSs via sufficient con-
ditions over the net structure.

Such a technique can be more efficient than the approach presented in Algorithm 3.3, as
discussed later in Section 3.1.2, Section 3.2.2 and Section 3.2.4.

The problem of determining a 1-SS is here first analyzed and then the more general k-SS
construction, starting from a 1-SS, is addressed.

3.2.1.1 1-SS on strongly connected state machines

1-SS are first taken into account.

The notion of synchronizing transition sequence for a set of places P̂ and a specific place
p̄ ∈ P̂ is given on the basis of Definition 2.7 of directed path.

Definition 3.8. (Synchronizing transition sequence) Given a synchronized SM PN⟨N,E,f⟩, let ρ(P̂ , p̄) = ⟨p′
0
t′
1
p′

1
t′
2
⋯t′rp

′
r⟩, with p̄ = p′r, be a directed path in N = (P,T,Pre,Post)

that visits all places in P̂ ⊆ P and ends in p̄ ∈ P̂ , with p̄ ≠ pj for j = 0,1, . . . , r − 1. Let

σ be the firing sequence obtained by removing all places from ρ(P̂ , p̄). Such a sequence is
called a synchronizing transition sequence for P̂ and p̄ if

C1) ∄t, t′ ∈ P̂ ● such that t ∈ σ, t′ /∈ σ, and f(t) = f(t′).
C2) ∀p′i, p

′
k
∈ ρ(P̂ , p̄) ∶ if p′i = p′

k
and i < k it holds that f(t′j) ≠ f(t′

k
) for j = 1, . . . k − 1. ∎

In simple words, condition C1) requires that there is no transition exiting P̂ and sharing
the same label of a transition in σ. Condition C2) requires that if a place is visited multiple
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Figure 3.2: A strongly connected synchronized SM PN

times, its ingoing transition has not to share the same label of any of the transitions in
the path.

A first result related to the existence of a SS for SM PNs with a single token can now be
stated.

Proposition 3.9. Consider a strongly connected synchronized SM PN ⟨N,E,f⟩ contain-
ing a single token. Let σ be a synchronizing transition sequence for P and p̄ ∈ P . Then
w̄ = f∗(σ) is a 1-SS for marking M̄ that assigns the token to place p̄, i.e.,

M̄ ∶ M̄(p) = { 1 if p = p̄,

0 otherwise.

Proof. Let σ = t′
1
⋯t′r be the synchronizing transition sequence found and ρ(P, p̄) = p′

0
t′
1
p′

1
t′
2

⋯t′rp
′
r, with p̄ = p′r, be the corresponding path (not necessarily elementary).

Let w̄ be the corresponding input event sequence, i.e., w̄ = f∗(σ) = e′
1
⋯e′r.

We first prove that after the occurrence of event e1 the token can only be in a place p′
k

such that k ≥ 1. Assume, in fact, the token is initially in place p′i and event e′
1

occurs. Two
different cases have to be treated. If i = 0, then by definition of σ, the token is certainly
driven to place p′

1
. If i ≥ 1, two further subcases are possible: a) no output transition of

p′i has label e1, i.e., Te1
∩p′i

● = ∅, and the token will not not move; b) an output transition
of p′i has label e1 and its firing moves the token to some place p′j, with j > i.

The last result follows from conditions C1) and C2) of Definition 3.8. In fact, condition
C1) assures that only transitions belonging to σ are receptive to e1; thus the token can
only be driven along the chosen path. Besides, condition C2) assures that the token
cannot go back in the upstream path along the sequence.

By repeating this argument, we can show that after the application of event ei, for i =
2, . . . , r, the token can only be in a place p′k such that k ≥ i, hence this ensures that when
all events in the input sequence w̄ have been applied the token will be in place p̄. ◻

Next algorithm shows how Proposition 3.9 can be effectively used to compute a 1-SS. In
this, function τ ∶ P × T → T (resp. π ∶ P × T → P ) returns the set of transitions (resp.
places) visited by directed path ρ. Function start ∶ P × T → P determines the last place
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which has been added to ρ. For instance, consider the path ρ = ⟨prtrpr−1tr−1⋯t1p0⟩. It
holds that τ(ρ) = {t1, t2,⋯, tr}, π(ρ) = {p0, p1, . . . , pr} and start(ρ) = pr.

Algorithm 3.10. (STS computation of a 1-SS on synchronized SM PNs)
Input: A synchronized SM PN ⟨N,E,f⟩ and a target place p̄.
Ouput: a 1-SS w that drives the token to place p̄.

1. ρ = p̄, R = {ρ};
2. flag ∶= false;

3. while flag = false ∨ R ≠ ∅

a. pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

b. p ∶= start(ρ);
c. T ∶= ●p/(τ(ρ) ∪ p̄●);
d. while flag = false ∨ T ≠ ∅,

i. pick t ∈ T , ρ′ ∶= ●ttρ;

ii. if ρ′ does not satisfiy C2), then goto step 3.d.v.

iii. if π(ρ) = P ,

− if ρ′ satisfies C1), then flag ∶= true.

else, goto step 3.d.v.

iv. R ∶=R∪ {ρ′}
v. T ∶= T /{t};

e. R ∶= R/{ρ}.
end while

end while

4. if flag = false,

a then no STS exists;

else

b pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

c let σ be the firing sequence obtained removing all places from ρ;

d w ∶= f∗(σ).
end if ∎

The algorithm computes a synchronizing transition sequence and the corresponding SS.
It starts from desired place p̄ (step 1) and puts the path of zero length ρ = p̄ into R, which
contains the set of path to be analyzed. The net is explored using a backward search until
either a STS has been found, i.e., the flag is true, or there are no more paths to analyze,
i.e., R ≠ ∅ (step 3).
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Once a path ρ is selected, we consider the set of transitions T inputting its start place p

that i) have not already been visited in the path; ii) do not output from the final place p̄

(step 3.c).

For all new paths ρ′, obtained adding to ρ one transition in T and its input place
(step 3.d.i), we do the following. First, we check condition C2) (step 3.d.ii), which must
hold for all prefixes of the final path. If it does not hold, we discard the path going to
step 3.d.v. Then we check if ρ′ contains all places: in this case, if it satisfies condition
C1) (step 3.d.iii) we stop the algorithm (flag=true), else we discard it, going to step 3.d.v.
All new not discarded paths, are added to set R to be later explored (step 3.d.iv).

When all transitions in T have been evaluated, path ρ is then removed from R (step 3.e).

At step 4, if the flag is set to false, there is no 1-SS constructible via the STS approach.
Otherwise the path of maximum length is contained in R and it defines an STS.

Paths are constructed via a depth-first-search, as ensured by the condition of step 3.a
that always picks (one of) the longest path(s). We could implement a breadth-first-search
by picking — at the same step — the shortest ρ ∈R, to ensure the shortest STS solution
to be found.

Example 3.11. Consider the strongly connected SM PN in Figure 3.2. The objective is
to find a SS that leads the system to the marking [0001]T . Let ρ = p1t1p2t2p3t5p2t4p4

be the directed path that contains all the places and ends in p4. Let σ = t1t2t5t4 be the
synchronizing transition sequence for P and p4. It holds that w̄ = f∗(σ) = e1e2e5e4 is the
searched 1-SS. ∎

Note that condition C1) of Definition 3.8 is sufficient to assure the sequence to be a
synchronizing one if ρ is an elementary path.

The conditions given by Proposition 3.9 for the existence of a SS are sufficient but not
necessary.

Although one determines a SS by just analyzing the net structure — avoiding then the
RG and the auxiliary graph construction and consistently reducing the complexity —,
the conditions required are very restrictive.

In fact there are SM PNs for which those conditions do not hold but that still have a SS.

Example 3.12. Consider again the strongly connected SM PN in Figure 3.2 with one
token and suppose f(t5) = f(t2) = e2. Let the goal be again to construct a 1-SS that leads
the system to the marking [0001]T . There clearly exists no synchronizing transition
sequence with such a change of the labeling function, hence no 1-SS can be determined
by Proposition 3.9. Despite this, one easily finds the 1-SS w̄ = e1e4e2e4 by the way of
Algorithm 3.3. ∎

In simply words, when conditions required by Proposition 3.9 do not hold, one can always
determine a SS using Algorithm 3.3, obviously with an increased complexity as previously
shown in section 3.1.2.
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3.2.1.2 k-SS on strongly connected state machines

We now consider the problem of determining a k-SS for nets with k tokens.

Proposition 3.13. Consider a strongly connected synchronized SM PN ⟨N,E,f⟩ con-
taining k tokens.

Let σ be a synchronizing transition sequence for P and p̄ ∈ P and w = f∗(σ) a 1−SS. wk

is a k-SS that moves all k tokens to place p̄, such that:

M̄ ∶ M̄(p) = { k if p = p̄,

0 otherwise.

Proof. Consider a first application of w, at least one token is driven to p̄. Because of
condition C2) and of the fact that the directed path does not pass through p̄, none of the
output transitions of this place is receptive to some event in w. Hence every application
of w does not move the token from p̄ and takes the k tokens at least one by one to place
p̄. ◻

Example 3.14. Consider the SM PN of Example 3.11, where w = e1e2e5e4 is the 1-SS
previously found. Let the PN have 2 tokens. It holds that w2 = e1e2e5e4e1e2e5e4 is a 2-SS,
leading the net to the desired final marking M̄ = [0002]T . ∎

The previous propositions shows that having determined a synchronizing transition se-
quence, one readily obtains not only a 1-SS but a k−SS for an arbitrary k. However not
all SSs can be obtained in this way.

Thus we consider the following problem: given any arbitrary 1-SS, constructed not from
a synchronizing transition sequence but by using Algorithm 3.3, does Proposition 3.13
apply so that we can we use it to construct a k-SS? Unfortunately this is not case, as
shown by next example.

Example 3.15. Consider the SM PN of Example 3.11 and let w = e3e1e2e5e4 be a 1-SS
for p4. Let the PN have 2 tokens. It is easy to see that w2 is not a 2-SS, since only one
token out of two would be driven to p4. ∎

It is however possible to provide a sufficient condition for an arbitrary 1−SS to ensure
that, concatenating it k times, a k−SS is obtained.

Proposition 3.16. Consider a strongly connected synchronized SM PN ⟨N,E,f⟩ con-
taining k tokens. Let w be a 1-SS for a target marking M̄ , such that M̄(p) = 1 if p = p̄,
otherwise M̄(p) = 0.

If for all t ∈ p̄ ● it holds that f(t) /∈ w, i.e., sequence w does not contain any symbol
labeling an output transition of place p̄, then wk is a k-SS for a target marking M̄k, such
that M̄k(p) = k if p = p̄, otherwise M̄k(p) = 0.

Proof. During the first application of w, at least one of the tokens is driven to p̄. Any
further application of w moves to p̄ at least one of the tokens not in this place, and does
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not move the tokens already in p̄, as none of its output transitions is receptive to a event
in w. Thus wk takes the k tokens to place p̄. ◻

Note that any SS constructed via the STS approach satisfies this sufficient condition by
definition.

3.2.2 Complexity via synchronizing transition sequences anal-

ysis

We have shown in Proposition 3.9 a technique to compute a 1-SS on a strongly connected
net based on synchronizing transitions sequences. Here we discuss the complexity of such
a procedure.

Algorithm 3.10 computes a synchronizing transition sequence by using a backward depth-
first search from place p̄ and verifying the conditions of Definition 3.8 over the labeling
function.

It is known that a depth first search requires O(bd) time [29], for explicit graphs traversed
with repetition, having a branching factor b and a depth search of d.

Assume that a SM PN has a backward branching factor (the number of transitions in-
putting in a place) bounded by φ = maxp∈P ∣●p∣. While exploring the net with possible
repetitions of places, an upper bound for the depth search length is q − 1, where q is the
number of net transitions. Thus a first very rough approximation of the needed time is
given by O(φq−1).
This time only depends on structural net parameters, does not grow with the number of
tokens and is typically smaller than the time required by Algorithm 3.3.

3.2.3 A modified reachability graph approach

As previously proven, under some particular conditions any SS for a net with one token
can also be used as a building block to determine a SS for k tokens.

The STS approach constructs SSs with a depth-first search on the net structure and
verifies certain conditions over the labeling function. However its conditions may prevent
the approach to find a solution, that is why here a new approach is presented.

This different approach is provided so that the sole sequences satisfying these conditions,
if any exists, are found.

The proposed approach is a modified implementation of the RG approach, based on an
arc-pruning. Given a target place p̄, events labeling arcs outputting p̄ — disregarding
self-loops — are not considered. These events belong to the set of forbidden events, which
is denoted as F(p̄).
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M1 [1000]T
M2 [0100]T
M3 [0010]T
M4 [0001]T

Figure 3.3: The RG (b) of the PN in Figure 3.2 with one token and f(t5) = e2.

On the basis of the given target place, we construct the so-called modified reachability
graph (MRG) GM , which is the graph of the net with only 1 token obtained by removing
all forbidden events from the RG G of the net. Note that there is a different MRG for
any given target place.

Example 3.17. Consider the synchronized PN of Figure 3.2 with f(t5) = e2 and con-
taining one token. its RG is shown in Figure 3.3. For p̄ = p4, it holds that F(p4) = {e3}.
Its MRG G̃M is shown in Figure 3.4a disregarding dashed edges. Here, Mi ∶ Mi(p) = 1 if
p = pi, 0 otherwise. The dashed self-loops are then added to make it completely specified.
The corresponding auxiliary graph A(G̃M) is shown in Figure 3.4b. ∎

The MRG computation of 1-SS consists of three steps. First, we determine the set of
forbidden events, which is used to construct the MRG and the corresponding auxiliary
graph; second, we apply the algorithm for the RG computation. Finally we prove that
the obtained sequence is a 1-SS for the complete model.

The so-constructed SS is 1-SS w̄, which is not necessarily the shortest one. Such a sequence
leads the net to a target marking M̄ ∈ R(N,M0), where place p̄ is the only marked place.

Algorithm 3.18. (MRG computation of a 1-SS on synchronized SM PNs)
Input: a synchronized SM PN ⟨N,E,f⟩ and a target place p̄.
Ouput: a 1-SS w̄ for a marking M̄ such that M̄(p) = 1 if p = p̄ and 0 otherwise.

1. Let F(p̄) ⊆ E be the set of forbidden events such that F(p̄) = {e ∈ E ∶ ∃t ∈ p̄●/●p̄ ∧
f(t) = e}.

2. Construct the RG G of the net for any initial marking M0 ∶ M
T
0
⋅ 1⃗ = 1.
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(a) (b)

Figure 3.4: The completely specified MRG G̃M for p̄ = p4 (a) and its auxiliary graph
A(G̃M) (b) of the PN in Figure 3.2 with one token and f(t5) = e2.

3. Construct the MRG GM , by removing all events e ∈ F(p̄) from G.

4. Let G̃M be the completely specified MRG, obtained by applying Algorithm 3.2 to GM .

5. Construct the corresponding auxiliary graph A(G̃M).
6. A SS for marking M̄ , if such a sequence exists, is given by the direct application of

Algorithm 2.32 to A(G̃M), having M̄ as target. ∎

Note that Algorithm 3.3 for the RG computation of a SS is here applied to pruned graphs.
The correctness of its results is proven by the following theorem.

Theorem 3.19. Sequences determined by the way of Algorithm 3.18 are 1-SS for the
considered synchronized SM PN.

Proof. Let w̄ = e1e2⋯ek be the sequence constructed by Algorithm 3.18, such that it drives
the MRG through the sequence of markings M ′

0
, M ′

1
, M ′

2
, ⋯, M ′

k. We have to prove that:
i)w̄ drives the given synchronized PN through exactly the same sequence of markings; ii)
point i) holds for every marking M ′

0
∈M0.

First, we prove point i). For any event ei ∈ w̄ every transition t ∈ Tei
fires in the net and is

taken into account in GM . Hence, if in the latter the occurrence of event ei at M ′
i yields

M ′
i+1, the same marking will be reached on the PN.

Second, we prove point ii), by showing that at step 6, while applying Algorithm 2.32 to the
pruned MRG, the current state uncertainty corresponds to the set of reachable markings
of the net, which is necessary by Definition 3.7 of 1-SS. This proof is easily provided, since
GM has the same cardinality of G, whose behavior is equivalent to the synchronized net
itself.

Example 3.20. Consider the synchronized PN of Figure 3.2. The objective is to find a
1-SS such that the the single token is driven to place p4. As previously shown in Exam-
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ple 3.12, no 1-SS can be determined by Proposition 3.9, i.e., the STS approach does not
find any solution.

However, the execution of Algorithm 3.18 may give the 1-SS w̄ = e1e4e2e4, as pointed out
in the aforementioned example. ∎

As previously said the RG approach needs to construct the RG G of the synchronized
PN and then its corresponding auxiliary graph A(G). Their cardinalities, as shown in
Section 3.1.2, may significantly increase with an increasing number of tokens.

The MRG approach constructs the RG G of the net for k = 1 and, for a given place p̄,
the MRG GM and its corresponding auxiliary graph A(̃GM), whose cardinality is exactly
the same of A(G) but with a smaller branching factor. However, for a different number
of tokens, none of the two graphs has to be reconstructed, since determining a 1-SS using
Algorithm 3.18 allows to readily determine a k-SS for an arbitrary large k. That is because
for such sequences the sufficient condition provided by the following proposition holds.

Proposition 3.21. Consider a strongly connected synchronized SM PN ⟨N,E,f⟩ con-
taining k tokens. Let w̄ be a 1-SS constructed by the way of Algorithm 3.18 for a target
marking M̄ , such that M̄(p) = 1 if p = p̄, otherwise M̄(p) = 0. The input sequence w̄k is
a k-SS for a target marking M̄k, such that M̄k(p) = k if p = p̄, otherwise M̄k(p) = 0.

Proof. Every sequence w̄ constructed by Algorithm 3.18 satisfies the following condition:(∀t ∈ p̄●/●p̄) f(t) /∈ w. In other words sequence w̄ does not contain any symbol labeling a
transition that outputs place p̄ and inputs any place p ≠ p̄. Proposition 3.16 provides a
slightly more restrictive version of this proposition. The requirement is that no transition
t ∈ p̄● is labelled by an event e ∈ w̄. Instead in this case here we disregard transition
labeling self-loops. However, the same proof provided for Proposition 3.16 applies also in
this case.

3.2.4 Complexity via a modified reachability graph analysis

The MRG approach is basically a modified version of the RG approach. In fact both the
RG and MRG approach perform the same greedy algorithm on slightly different graphs.
The MRG approach introduces the set of forbidden events to decrease the branching
factor of the analyzed reachability graph. Given a target place p̄ and its corresponding
set of forbidden events F(p̄).
The computational time does not change with the number of tokens k, as previously
shown in Section 3.2.3, since any k-SS is constructed starting from the SS for the 1-token
case. The analyzed graph is of size

∣G(m,k)∣k=1 =m.

The following lemma can now be stated.

Lemma 3.22. Consider a strongly connected SM PN with k tokens. Let m be the num-
ber of its places and E be its input alphabet. Let p̄ be the target place and F(p̄) the
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corresponding set of forbidden events. For such a net, Algorithm 3.18 requires a time:

{ O(m3 + ∣E′∣m2)
E′ = E/F(p̄) ∎

3.3 Non strongly connected state machines Petri

nets

Consider now connected — but not necessarily strongly connected — state machines. It
can be shown how the existence of SS depends on the interconnection between ergodic
and transient components.

Proposition 3.23. Consider a synchronized SM PN ⟨N,E,f⟩ with µ transient compo-
nents and η ergodic components. If η > 1 there exists no SS for such a net.

Proof. Let the net have two ergodic components ER′ and ER′′. Consider two initial
markings M ′

0
and M ′′

0
both with k tokens such that M ′

0
(resp., M ′′

0
) assigns all tokens

to the component ER′ (resp., ER′′). Clearly there exists no marking M̄ reachable from
both M ′

0
and M ′′

0
, hence no SS exists according to Definition 3.7. ◻

Later it will be shown that an additional information about the initial tokens distribution
allows to construct a SS even in nets with more than one ergodic components.

3.3.1 SS for particular structure of state machine Petri nets

Figure 3.5: A not strongly connected SM PN with two components TR and one ER.

The following result considers a special class of nets with a single ergodic component and
where each transient component is directly connected to the ergodic one. They are based
on the STS approach.
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Proposition 3.24. Consider a synchronized not strongly connected SM PN N = (P,T,Pre,

Post) with a single component ER and µ transient components TR1, TR2, . . . , TRµ. Let
the net have only one token.

Let σ = σ1t
′
1
. . . σµt′µσ′, where: σi is a synchronizing transition sequence for the set of all

places belonging to TRi and place pi ∈ TRi; t′i is a transition from pi to some p′i ∈ ER; σ′

is a synchronizing transition sequence for the set of all places belonging to ER and place
p̄ ∈ ER.

The input sequence w = f∗(σ) is a 1-SS that moves the unique token to place p̄.

Proof. By definition of synchronizing transition sequence, the input sequences correspond-
ing to each couple (σi, t

′
i) drive the token to the ergodic component. The application of

the input sequence corresponding to σ′ matches with the already solved problem of Propo-
sition 3.9 wrt to the subnet induced by the ergodic component. ◻

The above result can be extended for the case of k tokens.

Proposition 3.25. Consider a synchronized not strongly connected SM PN N = (P,T,

Pre,Post) with a single component ER and µ transient components TR1, TR2, . . . , TRµ.
Let the net have k tokens.

Let σ = σ1t
′
1
. . . σµt′µσ

′ be the transition sequence determined in Proposition 3.24 where:
σi is a synchronizing transition sequence for the set of all places belonging to TRi and
place pi ∈ TRi; t′i is a transition from pi to some p′i ∈ ER; σ′ is a synchronizing transition
sequence for the set of all places belonging to ER and place p̄ ∈ ER.

The input sequence w = f∗(σ1t
′
1
)k . . . f∗(σµt′µ)kf∗(σ′)k is a k-SS that moves all the tokens

to place p̄.

Proof. Consider the input sequence f∗(σit
′
i) for component TRi. For the same reasoning

of Proposition 3.24, this input sequence will drive at least one of the token initially in
TRi to ER. Thus, any other further application of this sequences will drive all tokens
initially in TRi (whose number is less than or equal to k) to ER. After the application
of the input f∗(σ1t

′
1
)k . . . f∗(σµt′µ)k all k tokens will be in the component ER. Finally the

input sequence f∗(σ′)k will move all tokens to place p̄. ◻

Example 3.26. Consider the SM PN in Figure 3.5 with three tokens. One wants to find
a SS that drives those tokens to place p4, then reaching the marking M = [00030]T . Let
it be (σ1, t

′
1
) = (t1, t3) and (σ2, t

′
2
) = (ε, t6). Let σ′ = t5 be the synchronizing transition

sequence from each of the places of the component ER to place p4, having ●t4 = p4. It
holds that w = f∗(t1t3)3f(t6)3f(t5)3 = {e1e3}3{e2}3{e5}3 = e1e3e1e3e1e3e2e2e2e5e5e5 is a
SS. ∎

3.3.2 SS for more general state machine Petri nets

It is now proposed an algorithm to determine sequences for non strongly connected state
machines having a single ergodic component where the interconnection between transient
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components can be arbitrary.

It is first stated the following result.

Proposition 3.27. Consider a SM PN N = (P,T, Pre,Post) with a single component
ER and let C(N) be its condensed graph. For each node vi of C(N) associated with a
transient component TRi (with i > 0), let li be the length of the longest path from vi to
node v0 associated with the ergodic component ER. Then if there is an edge (vi, vj) in
C(N) it holds li > lj.

Proof. First observe that C(N) is acyclic by construction and the node v0 is reachable
from any other node, hence lj ∈ N is well defined for each node vj (with j > 0). By
definition, if (vi, vj) is an edge of C(N), then li ≥ lj + 1. ◻

The following algorithm for the one-token case allows to obtain a SS, such that a place p̄

in the single ergodic component is marked.

Algorithm 3.28. (Computing a SS leading to p̄ ∈ ER)

Input: A synchronized SM PN ⟨N,E,f⟩ containing 1 tokens, with µ components TR and
1 component ER. A target place p̄.
Ouput: A SS w̄ for marking M̄ , such that M̄(p) = 1 if p = p̄, 0 otherwise.

1. Let C(N) be the condensed graph of N and associate ER with node v0.

2. Label every other node vi of C(N) with li, where li is the length of the longest path
from vi to v0.

3. Let Σk be the set of nodes such that Σk = {vi ∶ li = k}, thus for construction Σ0 = {v0}.
4. Let w = ε.

5. For k=lmax, lmax − 1, . . . 1,

5.1. for all vi ∈ Σk,

5.1.1. pick any transition t′ connecting vi to vj, being vj ∈ Σk′ and k′ < k;

5.1.2. consider the strongly connected subnet associated with node vi. Determine
a 1−SS w′ for place p′, where p′ ∈ t′●;

5.1.3. let w = ww′.

End for

End for

6. Consider the strongly connected subnet associated with node v0. Let w′ be a 1−SS
for place p̄.

7. Let w̄ = ww′. ∎
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The algorithm starts taking into account the farthest nodes from ER. By definition of
condensed graph, transient nodes with the same label value are not connected. Hence at
step 5.1.2 the application of each couple (w′, t′), step by step, drives the token always
nearer to ER until it reaches it.

We have remarked that a net with more than one ergodic component cannot have a SS, at
least according to Definition 3.23. However, the knowledge of the initial tokens distribu-
tion among the net components may lead to other interesting characterizations, provided
of course the initial state uncertainty is redefined according to this new information.

3.4 Synchronizing sequence on synchronized Petri

nets containing state machine subnets

In the following we discuss some results on synchronized PNs which do not belong to the
class of SM PNs, but which do contain SM PNs.

This class of PNs has been proved to be a powerful framework for modeling shared re-
sources among concurrent processes and providing analysis of deadlock avoidance and
resolution, hence to give solutions to the so-called resource allocation problem (RAP)
[73]. Systems of this kind are often called resource allocation systems (RAS) [28, 80] and
PNs have been considerably used when dealing with RAP [41, 42, 79].

There exists an extensive literature for PN models while modeling RAS. In particular we
may cite the class of S3PR nets [41], S4PR nets [97, 124], S∗PR nets [43], NS −RAP

[42], ERCN−merged nets [133] or PR nets [65].

In this setting, resources may be modeled by places and their instance by tokens. The
advancing of tokens along the SM PNs represents the sequentiality of the processes. Any
arc from a resource place to a transition (resp. from any transition to a resource place)
represents the obtainment (resp. the release) of some resources by a process.

We now show how — under certain conditions — our approach can be further extended
to this more general setting.

Proposition 3.29. Consider a synchronized PN ⟨N,E,f⟩. Let P = Ps∪Pz and T = Ts∪Tz,
such that Ns = (Ps, Ts, P res, P osts) is a strongly connected SM PN subnet, where Pres

and Posts are the restrictions of Pre and Post to Ps × Ts.

Let w̄ be a SS that drives the subnet Ns to a target marking M̄s. This sequence w̄ drives
N to a target marking M̄ such that:

M̄(p) = M̄s(p) if p ∈ Ps,

if the two following conditions hold:

i) {T ●z ∪ ●Tz} ∩ Ps = ∅;

ii) (∀e ∈ w̄) Te ∩ P ●z ∩ Ts = ∅.
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Proof. Condition i) states that no transition t ∈ Tz is connected to any place p ∈ Ps.
This ensures that the firing of a transition in Tz cannot affect the marking of places in
Ps. Hence, given the special structure of Ns, the following condition holds for any initial
marking M0: (∀M ∈ R(N,M0)) ∑

p∈Ps

M(p) = ∑
p∈Ps

M0(p), i.e., the token count in the SM

PN component remains constant.

Let w̄ = e1e2⋯ek be a SS for subnet Ns that yields a known marking M̄s from any reachable
marking M of the subnet. To prove the result, it is sufficient to show that at each step
i = 1, . . . , k the same sequence, applied to N from any marking M ′, with M ′(p) =M(p) if
p ∈ Ps, produces exactly the same transition firings that it produces in Ns.

In fact, when a input symbol ei ∈ w̄ is applied:

• all transitions that can fire in Ns can also fire in N , because the additional places
Pz in N cannot disable these transitions since they do not belong to ●Ts;

• no transition in P ●z can fire, because no transition in P ●z has label ei. ◻

Such a result can be further generalized to nets containing more than one SM subnets.

Proposition 3.30. Consider a synchronized PN ⟨N,E,f⟩. Let Ps∪Pz = P and Ts∪Tz = T ,

where Ps =
n

⊍
i=1

Ps,i and Ts =
n

⊍
i=1

Ts,i (here ⊍ denotes the union of disjoint subsets). These

sets are such that for i = 1,2, . . . n Ns,i = (Ps,i, Ts,i, P res,i, P osts,i) is a strongly connected
SM PN subnet. Pres,i and Posts,i are the restrictions to Pre and Post to Ps,i × Ts,i.

For every subnet Ns,i, let w̄i be a SS that drives the subnet Ns,i to a target marking M̄s,i.
The sequence w̄ = w̄1w̄2 . . . w̄n drives N to a target marking M̄ such that:

M̄(p) = M̄ ′
s,i with M̄s,i

w̄i+1w̄i+2⋯w̄nÐÐÐÐÐÐÐ→ M̄ ′
s,i if p ∈ Ps,i,

if the two following conditions hold:

i) {●Tz ∪ T ●z } ∩Ps = ∅;

ii) (∀e ∈ w̄i) Te ∩P ●z

i

⋂
j=1

Ts,j = ∅.

Proof. The proof follows along the same lines of the proof of Proposition 3.29 with just
an additional consideration. First we observe that condition ii) in Proposition 3.30 is a
generalization of condition ii) in Proposition 3.29: the condition now must hold not only
for the transitions of net i but also for those of all nets j with j < i. In fact, the overall
SS is composed by concatenation of the SSs for each state machine subnet. When we
apply the SS wi to the net, we assume that the markings of all subnets j, for j < i are
known but may change, as some transitions in the already synchronized subnets may be
receptive to an event e ∈ w̄i. However, condition ii) ensures that the enabling condition
of these transitions does not depend on the places in Pz, whose marking is unknown, and
the marking reached after the application of event e is computable. ◻
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(a) (b)

Figure 3.6: A marked synchronized PN containing SM subnets (a) and its RG

Sequence w̄ determined in the previous proposition is a SS for the subnet Ns. It also
drives the complete model N to a state where the marking of places in Ps is known, while
in general nothing can be said about the marking of places in Pz.

Example 3.31. Consider the net in Figure 3.6a. Let Ps,1 = {p1, p2}, Ps,2 = {p3, p4},
Pz = {p5, p6}, Ts,1 = {t1, t2}, Ts,2 = {t3, t4} and then Tz = ∅. Ns is then the net depicted
in Figure 3.6a, without taking into account dashed places and arcs. Let w̄1 and w̄2 be
SSs that drives respectively Ns,1 = (Ps,1, Ts,1, P res,1, P osts,1) to M̄s,1 = [01]T and Ns,2 =(Ps,2, Ts,2, P res,2, P osts,2) to M̄s,2 = [01]T . By separately analyzing the two subnets, w̄1 =
w̄2 = e1 are obtained. w̄ = w̄1w̄2 respects conditions i) and ii) of Proposition 3.30 and is
therefore a SS for Ns, i.e., it drives the net to a marking M̄ that is either [101010]T or[101001]T , as can be seen by its RG in Figure 3.6b. ◻

Proposition 3.30 and Proposition 3.29 apply to nets containing SM PNs so that they
provide a SS that leads from any reachable marking to a marking where only the token
content of places of the SM subnetsis known. This concept of partial synchronization will
be proposed again for the the case of unbounded PNs in Chapter 4.

However, it can be proved that the marking of places not belonging to the SM subnets
can be reconstructed, if the additional places introduce constraints on the firing rules of
the net which belongs to certain classes of specifications.

This is the case of the generalized mutual exclusion constraints (GMECs) [55], which are
conditions that limit a weighted sum of tokens contained in a subset of places.

Definition 3.32. (GMEC) Let ⟨N,M0⟩ be a marked net with a set of places P . A single
generalized mutual exclusion constraint (h⃗, k) defines a set of legal markings

M(h⃗, k) = {M ∈ N∣P ∣ ∶ h⃗T ⋅ ≤ k},
where h⃗ is a weight vector, and k ∈ N+ 1. ∎

A GMEC is a natural way to express the concurrent use of a finite number of resources
which have to be shared among different processes. A single GMEC can be easily imple-
mented by a monitor [55]. In the area of the manufacturing design an important class
of PNs, providing an important model for RAS, is represented by nets composed by SMs

1Here, N+ = {1,2,3,4, . . .}.
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and monitors, where monitors are places whose marking represents the number of current
available units of a resource and whose outgoing (resp. ingoing) transitions represent the
acquisition (resp. the release) of units of the resource.

Definition 3.33. (Monitor) Given ⟨N,M0⟩ be a marked net with N = (P,T,Pre,Post),
and a GMEC (h⃗, k), the monitor that enforces this constraint is a new place r to be added
to N . The resulting marked PN is denoted ⟨N r,M r

0
⟩, with N = (P ∪ {r}, T,P rer, P ostr).

Let C be the incidence matrix of N . Then N r will have the incidence matrix:

Cr = [ C

−h⃗T ⋅C
] .

It is assumed that there are no self-loops containing r in N r, hence Prer and Postr may
uniquely determined by Cr. It is also assumed that the initial marking of M0 of the marked
PN satisfies the constraint (h⃗, k). ∎

While constructing a SS, according to its definition, the marking of all monitors is un-
known, but we are given their upper bound, since the number of resources acquirable by
the processes are bounded. However every GMEC entails a P-invariant, i.e., the marking
of monitors can be inferred by the marking of some places of the subnets. Here, we deal
with the more general case of nets containing SM subnets and a set of monitors.

Proposition 3.34. Consider a bounded synchronized PN ⟨N,E,f⟩. Let Ps ∪ Pr = P ,

where Ps =
n

⊍
i=1

Ps,i, Pr = {r1, r2, . . . rz} and T =
n

⊍
i=1

Ts,i (here ⊍ denotes the union of disjoint

subsets). These sets are such that for i = 1,2, . . . n Ns,i = (Ps,i, Ts,i, P res,i, P osts,i) is
a strongly connected SM PN subnet. Every place ri ∈ Pr is a monitor satisfying the
constraint (h⃗i, ki). Pres,i and Posts,i are the restrictions to Pre and Post to Ps,i × Ts,i.

For every subnet Ns,i, let w̄i be a SS that drives the subnet Ns,i to a target marking M̄s,i.
The sequence w̄ = w̄1w̄2 . . . w̄n drives N to a target marking M̄ such that:

M̄ ∈ N∣P ∣ ∶ M̄(p) = { ki − h⃗T ⋅ M̄, if p = ri

M̄ ′
s,i(p) with M̄s,i

w̄i+1w̄i+2⋯w̄nÐÐÐÐÐÐÐ→ M̄ ′
s,i if p ∈ Ps,i.

if the following condition holds:

i) (∀e ∈ w̄i) Te ∩P ●r

i

⋂
j=1

Ts,j = ∅.

Proof. The proof follows on the proof of Proposition 3.30. We observe that condition
ii) of Proposition 3.30 here corresponds to condition i) and that condition ii) here is not
requested, since T = Ts thus it would always be satisfied. The marking of every SM subnet
is computed by applying each SS and then updating them with reference to the further
applied subsequences. Finally the marking of all monitors is computed by the aid of the
set of constraints enforced by the monitor itself. ◻
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Figure 3.7: A marked synchronized PN with a monitor

Example 3.35. Consider the marked synchronized PN in Figure 3.7. Let Ps,1 = {p1, p2, p3},
Ps,2 = {p4, p5, p6}, Pr = {r}, Ts,1 = {t1, t2, t3} and Ts,2 = {t4, t5, t6}. Ns is then the net de-
picted in Figure 3.7, without taking into account the dashed monitor and dashed arcs. Let(h⃗, k) be the monitor with h⃗ = [010010]T and k = 1, i.e., M(p2) +M(p5) ≤ 1.

Let w̄1 and w̄2 be the SSs that drives respectively Ns,1 = (Ps,1, Ts,1, P res,1, P osts,1) to M̄s,1 =[200]T and Ns,2 = (Ps,2, Ts,2, P res,2, P osts,2) to M̄s,2 = [100]T . By separately analyzing
the two subnets, w̄1 = e2e2e2 and w̄2 = e1e1 are obtained. w̄ = w̄1w̄2 respects condition i)
of Proposition 3.34, hence it is a SS which drives the net to marking M̄ = [2001001]T ,
where the marking of the monitor is easily computed by the way of the inequality its
constraints entail. ◻

3.5 A Matlab toolbox for synchronizing sequences

construction

In this section, the main MATLAB functions for for synchronization of system modeled
by automata and synchronized PNs are briefly illustrated. They can be downloaded on
the web [100].

In the following, we assume that an automaton is represented by an cell matrix that has
as many rows/column as the automaton’s cardinality. Consider row i and column j, the
cell contains a line vector with the indices of the input events that cause the transition
from state xi to state xj .

For instance, the automaton in Figure 2.1 is represented by the following cell matrix:

Λ = {[1], [ ][2]; [2], [1][ ]; [1], [2][ ]}.
Note that the output events are not taken into account since not of interest for the
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synchronization scope.

A marked synchronized PN is represented by the two matrices (Pre and Post), one column
vector (M0) and one row vector (Ein): the pre and post incidence matrices, the initial
marking and the labeling function with as much element as the number of transitions. In
particular, for the latter, the value of element i represents the index of the event associated
to transition ti.

For example, the marked synchronized PN in Figure 2.4a is represented as follows:

Pre =
⎛⎜⎝
2, 0, 0

0, 1, 0

0, 0, 1

⎞⎟⎠ Post =
⎛⎜⎝
0, 1, 1

1, 0, 0

0, 1, 0

⎞⎟⎠ M = [2; 0; 0] Ein = [1, 2, 1]

3.5.1 Main functions for SS construction with automata

aux_graph.m: computes the auxiliary graph of an automaton. Self-loops are omitted.

Its input is:

• the structure of the automaton Λ.

Its output is:

• a cell matrix a_graph that contains for each row: i) an unordered pair of state of(xi, xj) identifying the label of graph node, ii) the number of arcs outgoing the node,
iii) the triple (x′i, x′j , i), identifying the reached node and the input event causing
the transition.

Consider the auxiliary graph in Figure 3.1b. Line 2 of matrix a_graph, representing node(M0,M1), would be :

a_graph{2, ∶} = {[0, 1], 2, [1, 1, 1], [0, 2, 0]}

check_scc.m: checks if an automaton is strongly connected.

Its input is:

• the structure of the automaton Λ.

It outputs a boolean value which is equal to 1, if the graph associated with the automaton
is strongly connected, 0 otherwise.
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randomFSM.m: randomly computes an automaton.

Its inputs are:

• the cardinality of the set of states;

• the cardinality of the input alphabet.

Its output is:

• the structure of the automaton Λ.

show_AUX_GRAPH.m: provides a textual representation of the aux_graph.m output
data function. The auxiliary graph can be constructed step-by-step starting from the
initial node following all input events’ application and corresponding reached nodes.

synch_seq.m computes the SS of an automaton for a given final state

Its input are:

• the structure of the automaton Λ;

• the corresponding auxiliary graph;

• a desired final state x̄.

Its output is

• a row vector with the indices of the input events characterizing the SS.

s_reached.m simulates a the behavior of a given automaton while applying an input
event.

Its inputs are:

• the structure of the automaton Λ;

• an initial state x0;

• an input event.

It outputs the new reached state.
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3.5.2 Main functions for SS construction with synchronized

PNs

CSU.m: builds the current state uncertainty of a synchronized PN, by applying Algo-
rithm 2.16 to the initial state uncertainty.

Its inputs are:

• a synchronized PN defined by its Pre and Post matrices and its labeling function
Ein;

• the initial marking or the set of markings defining the initial state uncertainty MM0;

• an input events’ sequence;

• a boolean variable show, which if is equal to 1 provides a textual representation of
the output data.

Its output is

• a matrix that has as many row as the length of the input sequence plus one. Row i

contains respectively i) an identifier number of step; ii) the markings where the net
may be after the application of event ei ∈ w; iii) the firing vector associated with
this event.

CG_synch.m builds the coverability/reachability graph (CG/RG) of a marked synchro-
nized Petri net. It follows from of Algorithm 4.5.

Its inputs are:

• a marked synchronized PN defined by its Pre and Post matrices, its initial marking
and its labeling function Ein;

• a variable (woc), which is used for unbounded PNs while introducing the ω value
This is done by analyzing, for each node M of the tree, all of its ancestors that are
covered by M . A place takes an ω value if there exists a set of markingM′ covered
by M . Three cases are possible:

woc = 1: only the first encountered node M ′ ∈M′ is taken into account (this case is
the one implemented by Algorithm 4.5);

woc = 2: all marking M ′ ∈M′, are taken into account all at once and M(p) = ω if
∃M ′ ∈M′ ∶ M ≩M ′ and M(p) >M ′(p).

woc = 3: all marking M ′ ∈M′, are taken into account and the marking M is updated
recursively from the nearest encountered ancestor to the farthest one following
the previous case rule.

Its outputs are
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• the coverability/reachability tree and graph of the synchronized PN. Both matrices
have the same structure. Row i contains all information about of node i: i) the
marking; ii) the outgoing arcs specified by reached node, input event and firing
vector that label them. Both graph has as many rows as the number of nodes per
graph plus one additional row containing some information of the net in terms of
number of places, transitions and events.

enumeratingSM.m gives an estimate of the number of m-places deterministic synchro-
nized SMs over a k-events alphabet. Note that this estimate is a lower bound, since it
takes into account only totally synchronized PNs. For more details the reader shall refer
to [115]

makeFSM_s.m builds the completely specified automaton corresponding to the reacha-
bility graph of a synchronized PN.

Its input is:

• the reachability graph of a synchronized PN.

Its outputs are:

• a cell matrix corresponding to the structure of the automaton equivalent to the RG;

• a matrix containing all the reachable markings associated with each of this states.

randomSM_PN.m randomly computes a strongly connected and deterministic SM PN.

Its inputs are:

• the cardinality of the set of places;

• the cardinality of the set of transitions;

• the cardinality of the set set of input events;

Its outputs are:

• the (Pre and Post) matrices;

• the labeling function specified by the matrix Ein;

• the number of tries before successfully exiting.

showSTS.m provides a textual representation of the STS.m output data function.
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STS.m computes the synchronizing transition sequence (STS) for a given State Machine
PN and a desired final place.

Its inputs are:

• the (Pre and Post) matrices;

• the labeling function specified by the matrix Ein;

• the desired place.

Its output is:

• a matrix cell with as many row as the STS found.

3.6 Comparisons among the proposed approaches

for bounded synchronized Petri nets

This section has two objectives. First, we compare the three algorithms we have presented
for SS computation on state machine Petri nets (reachability graph based approaches
versus path based approach) by applying them to a series of randomly generated nets
and analyzing their performance. Second, we show the effectiveness of our approach by
applying it to a manufacturing system modeled by a PN which is not a SM.

The model data and MATLAB programs can be downloaded from [100].

All simulations have been run on a mini Mac intel core Duo 2, 2.53 GHz processor, with
4 GB 1067 MhZ DDR3 RAM.

3.6.1 Numerical results for randomly generated PNs

In order to evaluate the quality of the three proposed approaches, a second experiment has
been performed. This subsection takes into account randomly generated models, whose
construction is later presented in detail in Section 3.5.

Randomly generated models have been previously adopted as a validation method for
synchronizing sequence construction also by Roman [108].

For selected values of m places, q transitions and k tokens, we randomly generate 100

synchronized SM PNs which are a) deterministic and b) strongly connected, with:

i) m = 2 ÷ 7 places;

ii) q =m ÷ 15 transitions;

iii) k = 1,2 tokens.
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H
H

H
H

H
H

q

m
2 3 4 5 6

1 4 12 32 80 192
2 16 324 8192 250000 8957952
3 64 8748 2097152 7.8125e+8 4.1794e+11
4 256 236196 5.3687e+8 2.4414e+12 1,9499e+16
5 1024 6.3772e+6 1.3743e+11 7,6293e+15 9,0976e+20
6 4096 1.7218e+8 3.5184e+13 2,3841e+19 4,2446e+25

Table 3.1: The number of deterministic synchronized SM PNs over a k−event alphabet
and a p places.

To do so, we resort to function "randomSM_PN.m". Every computation stops either
when such a SM PN is found or when no deterministic and strongly connected SM PN
exists for the chosen setting of number of places, transitions and input events.

A good enumeration can suggest methods for random generation, since this process clearly
has a stop criterium given by the number (or an upper bound) of synchronized SMs for
which it holds a) and b).

In automata framework the enumeration problem for arbitrary input and output alphabet
size has been solved. Such results are easily applicable to SMs, since, as previously shown,
SMs are isomorphic to its reachability graph in the 1−token case.

This number of generable deterministic SMs, for a given number of m places and q events,
is denoted S(m,q). Totally synchronized SMs are considered for the sake of simplicity
but more general labeling function can be easily considered.

The following exact formula for one event input alphabet holds:

S(m,1) = ∑
m1+2m2+3m3+...=n

⎛
⎝Πi≥1

⎛
⎝∑j∣i jmj

⎞
⎠

mi

i−mi

mi!

⎞
⎠ ,

which is demonstrated to be asymptotically equal to:

Am−
1

2 τm,

where A ≐ 0.45 and τ ≐ 2.94.

A pretty good estimate of the number of SMs of m−places over a q − event alphabet is
given by the following formula, known as the Domaratzki-Kisman theorem [37]:

S(m,q) = S(m,1)n(q−1)m ≃m2m−1m(q−1)m.

Table 3.1 gives S(m,q) for 2 ≤m ≤ 6 and 1 ≤ q ≤ 6.

For more details in model enumeration, the reader shall refer to [115].
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In all cases the input alphabet has cardinality f randomly chosen in q

m
÷ q. Note that q

m

is the minimal alphabet cardinality to ensure the determinism for a SM having m places
and q transitions. For each net a place is randomly selected and we use Algorithm 3.3
(denoted RG), Algorithm 3.10 (denoted by STS) and Algorithm 3.18 (denoted by MRG)
to determine a SS such that this place is marked. The algorithms are compared by means
of three performance indexes:

NRG, NSTS, NMRG: number of times the algorithm successfully terminates returning a
SS;

T̂RG, T̂STS, T̂MRG: average time required to compute the sequence;

L̂RG, L̂STS, L̂MRG: average length of the sequences.

Finally the performance of the two approaches is evaluated by comparing 2 approaches at
time and computing the ratio of their indexes. First it is evaluated the effectiveness of the
three approaches in terms of number of successful terminations, by comparing the STS
and MRG approach to the RG approach. The RG approach, if the net is synchronizable,
always finds a solution, so it is here the chosen as a basis for comparison. Then, compu-
tational time and length of the found sequences are compared. Here results are referred
and related to the STS approach, since it is expected to be faster than the others.

Results are shown in Table 3.3 to Table 3.7 for nets with one token and in Table 3.8
and Table 3.9 for the two tokens’ case. Black cells denote parameter values for which no
strongly connected SM can be generated, i.e., for m > q.

Note that the tables showing NSTS/NRG, NMRG/NRG,T̂STS/T̂MRG and L̂STS/L̂MRG do not
depend on the number of tokens and thus they are shown only for k = 1.

Table 3.2 shows the ratio NSTS/NRG between the number of times a SS has been found
using the STS and the RG approach. In the previous sections we have mentioned that
while the RG approach always determines a SS if any exists, the STS approach may fail
to do so. Hence the value in the table should be contained in the interval [0,1]. We can
observe, however, that the average ratio of those indexes is about 0.78 hence confirming
that the STS approach can find a solution in most cases and thus this result is not too
restrictive.

Table 3.3 shows the ratio NMRG/NRG between the number of times a SS has been found
using the MRG and the RG approach. In the previous sections we have mentioned that
the MRG approach is based on a greedy computation like the RG approach, but applied
to a pruned graph. Hence the value also in this table should be contained in the interval[0,1]. However, results of MRG approach are even better of the STS approach, since
the average ratio of those indexes is about 0.87. The additional constraints, introduced
to modify the RG approach, are preventing the approach to find a solution for an even
smaller number of nets.

Table 3.4 shows the ratio T̂STS/T̂RG between the average execution time to compute a SS
using the STS and the RG approach for nets with one token. Here we expect the STS
approach to be more efficient, as discussed in Section 3.2.2, and this is confirmed from
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H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 0.900 0.900

4 0.900 0.900 0.812

5 0.900 0.780 0.717 0.690

6 0.809 0.644 0.717 0.664 0.685

7 0.850 0.809 0.682 0.664 0.707 0.703

8 0.823 0.809 0.644 0.644 0.767 0.688

9 0.876 0.717 0.780 0.734 0.682 0.721

10 0.850 0.734 0.700 0.682 0.652 0.701

11 0.888 0.823 0.717 0.823 0.767 0.654

12 0.888 0.809 0.750 0.700 0.767 0.745

13 0.900 0.876 0.765 0.734 0.799 0.786

14 0.888 0.823 0.795 0.644 0.826 0.812

15 0.900 0.850 0.780 0.809 0.799 0.803

Table 3.2: NSTS/NRG (k = 1)

H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 1.000 1.000

4 1.000 1.000 0.925

5 1.000 0.867 0.797 0.780

6 0.899 0.716 0.797 0.737 0.760

7 0.944 0.899 0.758 0.737 0.786 0.810

8 0.915 0.899 0.716 0.716 0.852 0.824

9 0.973 0.797 0.867 0.815 0.758 0.803

10 0.954 0.815 0.778 0.758 0.725 0.704

11 0.987 0.915 0.797 0.915 0.852 0.860

12 0.987 0.899 0.833 0.778 0.852 0.838

13 1.000 0.973 0.850 0.815 0.887 0.890

14 0.987 0.915 0.883 0.716 0.917 0.902

15 1.000 0.944 0.867 0.899 0.887 0.894

Table 3.3: NMRG/NRG (k = 1)

the fact that in almost all cases the table entries are much smaller than one. Only in a
few cases, for very large values of m and q, we have that the RG method is faster than
the STS one. This, we believe, it is due to our implementation of the STS approach that
uses a brute force depth-first search.

Table 3.5 shows the ratio T̂STS/T̂MRG between the average execution time to compute
a SS using the STS and the MRG approach for nets with one token. This table shows
that the STS approach is still "faster" than the MRG approach in most of the analyzed
settings but the gap is much less significant and in 10% of the cases it is even positive.
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H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 0.226 0.237

4 0.143 0.232 0.433

5 0.242 0.212 0.202 0.602

6 0.172 0.266 0.327 0.307 0.457

7 0.204 0.239 0.378 0.327 0.216 0.626

8 0.159 0.269 0.506 0.416 0.292 0.161

9 0.133 0.367 0.627 0.535 0.458 0.223

10 0.184 0.485 0.548 0.6038 0.725 0.271

11 0.157 0.545 0.527 0.905 0.732 0.88

12 0.187 0.309 0.653 0.598 0.542 0.78

13 0.121 0.331 0.610 0.781 1.037 1.15

14 0.127 0.405 0.753 0.726 0.767 1.6

15 0.100 0.744 0.937 1.522 1.082 2.54

Table 3.4: T̂STS /T̂RG (k = 1)

H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 0.788 0.825

4 0.835 0.829 0.856

5 0.818 0.860 0.878 0.880

6 0.834 0.892 0.873 0.855 0.820

7 0.834 0.882 0.890 0.860 0.814 0.805

8 0.826 0.872 0.926 0.879 0.832 0.854

9 0.835 0.910 0.906 0.915 0.900 0.925

10 0.848 0.905 0.934 0.932 0.821 0.865

11 0.838 0.898 1.003 0.961 0.862 0.908

12 0.837 0.941 0.984 0.944 0.876 0.897

13 0.845 0.920 0.979 1.024 0.872 0.905

14 0.843 0.930 0.977 0.945 1.030 1.058

15 0.833 0.980 0.986 1.064 1.030 0.997

Table 3.5: T̂STS/T̂MRG (k = 1)

Table 3.8 shows the ratio T̂STS/T̂RG between the execution time to compute a SS using
the STS and the RG approach for nets with two tokens. Here we see the main advantage
of the STS approach, and so the MRG approach, that can use a 1-SS to determine a k-SS,
while the RG method had a complexity that grows polynomially with k (and exponentially
with m), as discussed in Section 3.1.2. Here the advantage of the STS and MRG method
is more noticeable for large values of m and q.

Table 3.6 shows the ratio L̂STS/L̂RG between the average length of a SS computed using
the STS and the RG approach. Table 3.7 show the ratio L̂STS/L̂MRG between the average
length of a SS computed using the STS and the MRG approach. Both values are computed
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H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 1.000 0.835

4 1.000 0.918 0.652

5 1.000 0.910 0.858 0.800

6 1.000 0.912 0.893 0.855 0.654

7 1.000 0.832 1.000 0.850 0.534 0.547

8 1.000 1.000 0.776 0.709 0.902 0.612

9 1.000 1.100 0.856 0.915 0.790 0.574

10 1.000 0.835 0.954 0.912 0.901 0.501

11 1.000 1.000 0.843 0.961 0.802 0.881

12 1.000 0.911 1.000 0.754 0.746 0.592

13 1.000 0.770 0.949 1.000 0.862 0.76

14 1.000 1.100 0.897 0.875 0.813 0.856

15 1.000 1.000 1.060 0.924 0.700 0.692

Table 3.6: L̂STS /L̂RG (k = 1)

H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 1.000 1.000

4 1.000 1.000 0.980

5 1.000 0.963 0.781 0.840

6 1.000 0.889 0.971 0.868 1.210

7 1.000 1.023 1.032 0.769 1.625 0.920

8 1.000 1.200 1.333 0.926 0.653 0.845

9 1.000 1.167 0.830 1.160 0.556 0.654

10 1.000 1.875 1.193 0.952 0.400 0.489

11 1.000 1.600 1.127 1.125 0.224 0.354

12 1.000 1.500 1.137 1.260 0.300 0.402

13 1.000 1.786 0.429 0.976 0.274 0.354

14 1.000 1.222 1.167 1.079 0.554 0.521

15 1.000 1.185 1.215 1.429 0.431 0.478

Table 3.7: L̂STS/L̂MRG (k = 1)

for nets with one token. This index is probably less significant than the previous ones,
although one may argue that the shortest the SS the less expensive is the synchronization
(in terms of costs or of time required). Here we can see that in the case of one token the
STS and MRG approach in most of the cases produce shorter SS than the RG approach.
Also, the solution provided by the STS approach is the shortest one, since it computes SS
via a depth first search, while RG and MRG approaches find a solution that may be not
the best one. In fact, they chose a subsequence w that synchronizes at least two markings
but does not pick those markings with any criterium. The evaluation could be based
on some heuristics that at each step picks a couple of markings that either maximizes
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H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 0.260 0.270

4 0.120 0.164 0.287

5 0.230 0.780 0.127 0.172

6 0.169 0.145 0.207 0.084 10−3

7 0.170 0.148 0.232 0.084 10−3 10−3

8 0.133 0.217 0.316 0.194 0.091 10−3

9 0.116 0.283 0.410 0.014 0.020 10−3

10 0.160 0.353 0.357 0.282 10−3 0.052

11 0.148 0.421 0.117 0.448 10−3 0.050

12 0.158 0.246 0.390 0.270 0.200 10−3

13 0.110 0.276 0.205 0.354 10−3 10−3

14 0.118 0.248 0.365 10−3 0.295 10−4

15 0.100 0.548 0.400 0.758 0.392 10−3

Table 3.8: T̂STS /T̂RG (k = 2)

H
H

H
H

H
H

q

m
2 3 4 5 6 7

3 1.710 1.500

4 1.710 1.600 1.500

5 1.710 1.410 1.412 1.172

6 1.710 1.600 1.420 1.425 1.392

7 1.710 1.330 1.642 1.355 0.923 0.857

8 1.710 1.710 1.460 1.265 1.523 0.975

9 1.710 1.890 1.576 1.447 1.326 0.973

10 1.710 1.500 1.608 1.507 1.648 0.928

11 1.710 1.710 1.540 1.556 1.273 0.886

12 1.710 1.600 1.542 1.365 1.333 0.770

13 1.710 1.410 1.505 1.653 1.282 0.797

14 1.710 1.890 1.540 1.376 1.396 0.647

15 1.710 1.760 1.772 1.651 1.300 0.792

Table 3.9: L̂STS /L̂RG (k = 2)

the number of synchronized markings or minimizes the length of such a subsequence.
The situation, as shown in Table 3.9, is the opposite when the number of tokens grows.
Consider for example the 2 tokens case. The k-SS obtained by STS and MRG approach
is always k times longer than the corresponding 1-SS, while shorter solutions may be
obtained by the RG approach.

On the base of these results, we can say that to compute a SS for strongly connected Petri
nets it is convenient to first search for a STS based solution using Algorithm 3.10 and
then, if this fails, to use Algorithm 3.3. This is summarized in the flowchart in Figure 3.8.
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Figure 3.8: Suggested way to determine a SS for strongly connected SMs.

3.6.2 A manufacturing example

In the following, a second experiment has been performed: a family of manufacturing
systems, represented by a parametric PN, is analyzed by applying the theoretical results
provided in section 3.4 — for synchronized PNs composed by SM subnets — to construct
a SS.

We consider a manufacturing plant consisting of two parallel and symmetric production
lines, that produce two different kinds of final product. Each line i has a fixed number
of k pallets, that limit the number of parts that can be under processing at a given time.
A raw piece entering the system waits in the buffer (not modeled) until a pallet becomes
available. Robot R0 feeds the two lines alternatively, taking one part from the buffer and
mounting it on an empty pallet.

In each line there are two workstations, which are composed by two machines and one
robot. A workstation can process several pallets at a time.

For instance consider line 1. The pallet entering the system is deposed by R0 on a conveyor
belt and is moved to the first worstation where machines M ′

1,1 and M”1,1 perform their
operation as requested. Robot R11 moves the pallet from the conveyor belt to the machines
and viz.

Once the operations required on the first workstation have been completed, the pallet
is put again onto the conveyor belt and moved to the second workstation where the
processing is repeated. After processing, parts are unloaded from the pallets by robot
R1,2 and put on an AGV that moves them to the output buffer O1 (not represented in
Figure 3.10).
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Figure 3.9: Layout of the manufacturing system.

The system’s layout is shown in Figure 3.9: we say that such a plant has production
length l = 2 because each line is composed by a series of two workstations. We can
consider a parameterized family of plants of this type, assuming that the number of
pallets k and length l of the production lines may vary. For this family of plants, we
obtain the synchronized Petri net depicted in Figure 3.10.

This Petri net has 4 + 6l places and 2 + 10l transitions. The marking of places p1 and p2

represents number of the empty pallets in each line, the marking of place p3 (resp. p4)
denotes that robot R0 is ready to move a pallet to the left (resp. right) production line.

Consider machines M ′
ij and M”ij , which compose workstation j in line i. Transition n′i,j

(resp. n”i,j) represents the loading of a pallet from the conveyor belt queue to machine
M ′

ij (resp. M”ij) while transition t′i,j (resp., t”i,j) represents the unloading. Tokens in
place p′ij (resp. p”ij) denote pallets loaded on machine M ′

ij (resp. M”ij).

The firing of transition ti,j denotes the transfer of a pallet to the next workstation.

The PN in Figure 3.10, without taking into account dashed places and arcs, is composed
by two SMs. Hence, according to Proposition 3.30, Ps = Ps,1 ∪ Ps,2 = P /{p3, p4}, Ps,1 ={p1, p1,1, p

′
1,1, p

′′
1,1, . . . p1,l, p

′
1,l, p

′′
1,l}, Ps,2 = {p2, p2,1, p

′
2,1, p

′′
2,1, . . . p2,l, p

′
2,l, p

′′
2,l} and Ts = T .

We look for a SS that from an arbitrary state can empty the system, thus moving all
empty pallets to the input buffers. The obtained sequences are w̄1 = {e4e5e6e7e2}l, w̄2 ={e8e9e10e11e3}l and w̄ = w̄1w̄2. w̄ meets conditions of Proposition 3.30 then is a SS for Ns.



74 CHAPTER 3. SYNCHRONIZING SEQUENCES ON BOUNDED PETRI NETS

Figure 3.10: Petri net model of the actuators of the manufacturing system in Figure 3.9

Results obtained with using the STS, MRG and the RG approach are shown in Table 3.10,
where required time (TSTS, TMRG and TRG) of the SS are summarized for different values
of m and l. Note that here only one simulation per setting has been performed.

The table shows the cardinality of the reachability graph (∣G∣) and of the auxiliary graph
(∣A(G)∣) for the RG approach. Note that Proposition 3.30 applies to the synchronized PN
in Figure 3.10. Thus, the MRG and STS approach work on the underlying SM subnets. As
a consequence, the MRG approach constructs a different RG GM and a different modified
auxiliary graph A(G̃M), whose cardinalities do not correspond. These are important
parameters to understand the limits of the RG approach, while exhaustively enumerating
the set space of the net.

Note that the table shows also non-numerical values where the corresponding result cannot
be provided:
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RG MRG STS

k l ∣G∣ ∣A(G̃)∣ T̂RG[s] ∣GM ∣ ∣A(G̃M)∣ T̂MRG[s] T̂STS[s]
1 1 32 528 3.43 4 10 0.42 0.26

1 2 98 4851 o.t. 7 28 0.46 0.43

1 3 200 20100 o.t. 10 55 0.92 2.81

1 4 338 57291 o.t. 13 91 1.57 31.13

2 1 200 20100 o.t. 4 10 0.42 0.26

2 2 1568 o.t. n.c. 7 28 0.46 0.43

2 3 o.t. n.c. n.c. 10 55 0.92 2.81

2 4 o.t. n.c. n.c. 13 91 1.57 31.13

3 1 800 320400 o.t. 4 10 0.42 0.26

3 2 o.t. n.c. n.c. 7 28 0.46 0.43

3 3 o.t. n.c. n.c. 10 55 0.92 2.81

3 4 o.t. n.c. n.c. 13 91 1.57 31.13

Table 3.10: Time results for a manufacturing system.

i) out of time (o.t.), when the corresponding value has not been computed within 6 hours;

ii) not computable (n.c.), if the corresponding value cannot be computed: e.g., the RG is
o.t. and the corresponding auxiliary graph cannot be evaluated.

The table denotes, for an increasing number of tokens, that the RG approach goes almost
always o.t., due to a significant larger space state. On the contrary, the required time
does not change with the STS and MRG approach, that always find a solution.





Chapter 4

Synchronizing sequences on

unbounded Petri nets

Summary

In this chapter the problem of boundedness for the class of synchronized PNs is investi-
gated.

First, a modified coverability graph construction is provided to yield a faithful represen-
tation of the PN behavior.

Then the RG approach given for the bounded case is further extended to this setting.
The proposed approach suffers from the fact that no finite space representation can ex-
haustively answer to the reachability problem. However it is shown that this shortcoming
can be solved for some particular semantics.

77
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(a)

(b)

Figure 4.1: A synchronized PN (a) and the partial construction of its RG (b).

4.1 Problem statement

The same setting provided for bounded synchronized PNs can be extended with some
minor changes to the class of unbounded PNs, i.e., nets with an infinite state space.

The next example shows what kind of problems may encountered while constructing a SS
on unbounded synchronized PNs.

Example 4.1. Consider the PN in Figure 4.1a (without the dashed transition t3) with
a initial marking [100]T and its infinite reachability graph in Figure 4.1b (without the
dashed arcs labeled e3∣t3). Here the set of bounded places and the set of unbounded places
are respectively Pb = {p1, p2} and Pu = {p3}. The RG does not have an ergodic component,
because all the nodes are transient components: such a case cannot occur in bounded
nets. As previously said, there exists a SS only for those markings belonging the ergodic
component, so the absence of an ergodic component implies that no SS exists regardless
of the chosen target marking.

Consider now the unbounded PN in Figure 4.1a (including dashed transition t3) with an
initial marking [100]T and its infinite reachability graph in Figure 4.1b (including the
dashed arcs labeled e3∣t3). Even in this case Pb = {p1, p2} and Pu = {p3}. Suppose we
want to reach the target marking M̄ = [100]T . For such a marked net, it holds that
M0 = R(N,M0) = {M ∈ N3 ∶ M(p1) +M(p2) = 1, M(p3) = k ∈ N}. Obviously, the input
sequence w = e2{e3}k drives the net to M̄ from any marking M = [10u]T and M = [01u]T
with u ≤ k. However, since u can be arbitrarily large, properly speaking no SS to M̄ exists
for this net.

Finally, note that in both previously discussed cases it is always possible to reach a marking
where the token content of places p1 and p2 is known. In fact, from any reachable marking
the input sequence w = e2 drives the net to M(p1) = 1 and M(p2) = 0. ∎
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The previous example shows that in an unbounded net one cannot find a SS that leads
from any reachable marking to a marking where the token content of an unbounded place
is known. In fact, the ω symbol, used to keep the graph finite, entails loss of information
in terms of reachable markings and of firing sequences.

Note that this concept of partial synchronization of the state has been suggested in the
context of sequential machines by Cheng et al. [22], where if a SS is prohibitively long or
non existent, a selected subset of all flip-flops could be electrically reset.

This motivates the following extended definition of SS that only takes into account the
set of bounded places Pb.

Definition 4.2. (SS on unbounded PNs) Given an unbounded synchronized PN ⟨N,E,f⟩
and a starting marking M0, w̄ is called a SS for a desired marking M̄ iff the net is driven,
starting from any marking M ∈ R(N,M0), to a marking M̄ ′ such that M̄ ′ ↑b= M̄ ↑b. ∎

Note that M̄ ↑b is the projection of the marking M̄ onto the set of bounded places Pb.

The set of all SSs for a given marking M̄ is denoted SS(N,M0, M̄).
Thus, because of Definition 4.2, the synchronization process aims to guide the net from
an unknown marking to one of the markings that corresponds to the desired one in terms
of bounded places. Clearly the target turns from a target marking into a target set of
markings.

Definition 4.3. (Synchronization target marking set) Consider an unbounded syn-
chronized PN N = ⟨N,E,f⟩ and a starting marking M0. Given a desired marking M̄ , one
defines the target marking set as M̄ = {M ∶ M ↑b= M̄ ↑b}. ∎

4.2 A modified coverability graph

In this section a modified coverability graph (MCG) construction is provided to yield a
faithful representation of the unbounded PN behavior. Afterwards it is shown that this
algorithmic construction may present some shortcomings that can be solved for some
particular semantics.

4.2.1 An algorithmic construction of the MCG

In synchronized PNs, the occurrence of any input event sequence w at some marking M

may cause the firing of a (set of) transition(s). From any marking M ′ ≩ M , the same
input event application can yield another evolution, i.e., a larger set of firing transitions
or simply a disjoint one. In fact, obtaining an increased marking after the application
of an input sequence is only a necessary condition, due to the non-necessarily monotonic
evolution of the net. Such a condition must hold for every further occurrence of w.

The following definition gives a procedure to determine the increasing sequences presented
in Definition 2.22.
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Definition 4.4. (increasing input sequences) Consider a synchronized PN ⟨N,E,f⟩
and let the current marking be M . Let M ′ and M ′′ be respectively the marking reached
after a first and a second occurrence of sequence w, i.e., M[w∣σ⟩M ′[w∣σ′⟩M ′′. Sequence
w is called increasing input sequence if the following three conditions hold:

(Test for increasing sequences)

C1) π(σ) = π(σ′);
C2) M ≨M ′ ≨M ′′;

C3) ∀p ∶M ′(p) >M(p) and ∀t ∈ p●, M ′(p) ≥ Pre(p, t). ∎

We recall that, given sequence σ ∈ T ∗, π(σ) is its firing vector as defined in section 2.1.2.

An algorithmic construction of the modified coverability tree (MCT) can now be given.

Algorithm 4.5. (MCT construction for synchronized PNs)
Input: a deterministic marked synchronized PN ⟨N,M0,E, f⟩.
Output: a MCT T .

1. Label the root node q0 with the initial marking M0 and tag it "new".

2. While a node tagged "new" exists, do

2.1. Select a node q tagged "new".

2.2. Let M be the label of q.

2.3. For all e ∈ E:

2.3.1. Let M ′ = M + ∑
t∈Ee(M)

(Post(⋅, t) − Pre(⋅, t)) be the marking reached by

firing all enabled t ∈ Te.

2.3.2. Let Q̂ be the set of nodes met on a backward path from q to q0 whose
label is M̂ ≨M ′.

2.3.3. For all nodes q̂ ∈ Q̂ labeled M̂ ,

2.3.3.1. let w and σ be the input sequence and the corresponding firing
sequence s.t. M̂[w∣σ⟩M ′.

2.3.3.2. Let apply again w from M ′, obtaining M ′[w∣σ′⟩M ′′.

2.3.3.3. If the three following conditions hold:

C1) π(σ) = π(σ′);
C2) M̂ ≨M ′ ≨M ′′;

C3) ∀p ∶M ′(p) > M̂(p) and ∀t ∈ p●, M ′(p) ≥ Pre(p, t);
then let M ′(p) = ω.

End for

2.3.4. Add a new node q′ and label it M ′.

2.3.5. Add an arc labeled e∣{Ee(M)} from q to q′.
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2.3.6. If there exists already in the tree a node with label M ′, then tag node
q′ "duplicate", else tag it "new".

2.4. Untag node q.

End while ∎

Analogously to the RT construction of Algorithm 2.18, the MCG is obtained from the
MCT fusing duplicate nodes with the untagged node with the same label.

Note that, this algorithm can also be used to compute the RT (and then the RG) skipping
from step 2.2.2 to step 2.2.3.

Proposition 4.6. Consider a marked unbounded synchronized PN ⟨N,M0,E, f⟩ and its
MCG G. There exists a ω−marking Mω in G such that Mω(p) = ω iff p ∈ Pu.

Proof. Consider Definition 2.22 for increasing sequences. Condition C1) and condition
C2) ensure that sequence w leads to a greater marking by the firing of the same transition
sequence. For increasing sequences those two requirements must hold while applying w not
once but an infinite number of times. Condition C3) guarantees exactly this monotonicity
of the firing rule. In fact, while arbitrarily incrementing the marking of every place p such
that M ′(p) >M(p), if C3) holds, sequence σ will still not change.

The boundedness of the MCG is proven by the following proposition.

Proposition 4.7. Consider a marked unbounded synchronized PN ⟨N,M0,E, f⟩. Its
MCG constructed via Algorithm 4.5 is a finite graph.

Proof. In the framework of P/T nets, Karp and Miller [69] have given an algorithmic
construction of a CT. Their algorithm is proven to compute the tree in a finite number
of steps — i.e., the constructed tree has a finite number of vertices — even if the net has
an infinite reachability set. The boundedness of the CT is guaranteed by the ω-symbol,
which replaces the marking of a place whenever an increasing sequence is found. These
increasing sequences, which in the RT represent paths of infinite length, are depicted in
the CT as self-loops over ω-markings.

The very same proof can be given in the framework of synchronized PNs, since the Karp-
Miller algorithm [69] and Algorithm 4.5 coincide except in the computation of increasing
sequences (see Definition 2.22). In fact, reaching an increased marking after the occurrence
of an input sequence — see condition C2) — is only a necessary condition for synchro-
nized PNs. Additional conditions C1) and C3) introduce a finite number of markings
before being satisfied, so that the identification of any increasing input sequence is only
postponed.

An example of MCG can be found in Figure 4.2, where Algorithm 4.5 is applied to the
unbounded synchronized PN of Figure 4.1a.

Note that this is a simple way to construct the coverability marking set and more efficient
techniques could be investigated as in the case of P/T nets for minimal coverability sets.
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Figure 4.2: The MCG of the synchronized PN of Figure 4.1a.

However, to the best of our knowledge, no algorithmic construction of such a set exists
so far.

4.2.2 Vanishing markings and vanishing sequences

The ω−symbol allows to have a set of ω−markings Mω covering an infinite set of finite
markings. It is clear that, for a given input event occurring at ω−marking Mω, not all
M ∈ cov(Mω) enable the same firing sequence. Different firing sequences may lead then
to markings that are not represented in the MCG. Thus, the so-constructed coverability
marking set may not be, as for the case of P/T nets, a superset of the reachability set.

Definition 4.8. (Vanishing markings) Consider an unbounded marked synchronized
PN ⟨N,M0,E, f⟩. For a MCG G, constructed by the way of Algorithm 4.5, there may
exist some marking Mv such that: i) Mv ∈ R(N,M0); ii) ∄M ∈ G ∶ M = Mv ∧M ≥ω Mv.
Mv is called a vanishing markings. ∎

Vanishing markings are markings reachable only by the firing of vanishing sequences. As
it could be easily seen in the following example, such sequences are fireable only from
markings that have "not enough" tokens in the unbounded places.

Example 4.9. Consider the PN in Figure 4.3a. Its partial RG construction and its
MCG are respectively depicted in Figure 4.3b and in Figure 4.3c. Consider marking
M1 = [11110]T of the RG, which is covered by ω−marking M ′

1
= [ω ω 110]T of the MCG.

Input event e2 drives the net to vanishing marking M2 = [10101]T and the MCG to
ω−marking M ′

2
[ω ω 002]T . M2 does not cover M2 because the marking of place p2 is not

enough to enable t2, preventing it to fire. ∎

Vanishing markings cannot obviously be taken as a target for any SS, as shown in the
following proposition.

Proposition 4.10. Consider an unbounded synchronized PN ⟨N,E,f⟩. There exists no
SS for a vanishing marking.

Proof. The proposition is proved by reductio ad absurdum. Suppose there exists a SS
of finite length for vanishing marking Mv. If this was possible, then one would have
a sequence that, no matter the contents of the unbounded places, synchronizes the net
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(a) (b)

(c)

Figure 4.3: A synchronized PN with vanishing markings (a), its MCG (b) and RG (c).

to Mv. Obviously this is contradictory to Definition 4.8 and the supposition is thereby
refuted.

The proposed MCG lacks in representing vanishing markings. In fact, all transitions
firing at an ω-marking may not be fired in the synchronized PN because the marking of
unbounded places does not enable all of them.

This obviously does not occur in the case of totally synchronized PNs, i.e., nets where
each event is associated with a different single transition, as defined in Section 2.1.2.

In the rest of the chapter, a less restrictive assumption is made so that a SS can be
constructed for the case of unbounded nets.

Assumption 4.11. Consider a synchronized PN ⟨N,E,f⟩ and let Pu ⊂ P the set of its
unbounded places. Every transition t ∈ P ●u is such that ∄t′ ∈ T ∶ t ≠ t′ ∧ f(t) = f(t′).
The previous assumption ensures that any transition outputting an unbounded place is
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associated with an input event which is not shared with any other transition.

Proposition 4.12. There is no vanishing marking for unbounded synchronized PNs sat-
isfying Assumption 4.11.

Proof. Consider an unbounded synchronized PN ⟨N,E,f⟩ and its MCG G, constructed
by Algorithm 4.5. Consider some marking M ′

ω of G, reached by applying input event
e from marking Mω, i.e., Mω[e∣σ⟩M ′

ω. Assume that the current marking of the PN is
any M ∈ cov(Mω). The occurrence of event e will lead the net to a vanishing marking
M ′ ∉ cov(M ′

ω), i.e., M[e∣σ′⟩M ′, if the following condition holds: (∃p ∈ Pu, ∃t ∈ σ) M(p) ≱
Pre(p, t). In other words, vanishing marking M ′ is reached from M if while event e occurs
any of the unbounded places is not sufficiently marked and a different firing sequence σ′

is obtained, such that π(σ′) < π(σ).
If ⟨N,E,f⟩ satisfies Assumption 4.11, then event e will be associated with one transition
so that either σ′ = ε or σ′ = σ. Thus, the net cannot reach any vanishing marking.

4.3 Computation of synchronizing sequences using

the MCG

The RG approach (see Section 3.1.1) has been provided as an adaptation of the greedy
algorithm [76] for SS construction in the case of bounded synchronized PNs.

The same algorithm can be easily thought as applicable to the class of unbounded PNs,
provided, of course, a finite representation of its reachability set, i.e., an automaton whose
behavior is equivalent to the unbounded net itself.

The developed approach for bounded nets — based on the analysis of the RG — can
now be extended to unbounded nets satisfying Assumption 4.11 and whose behavior is
represented by their MCG.

4.3.1 Potentially synchronizing sequences

The objective of this section is first to compute a SS for the MCG of a given net and then
use this sequence to compute a SS for the net itself.

Graph-based approaches require a given graph G to be completely specified, condition not
always true for a PN. In fact, from a marking not all transitions are necessarily enabled.

So, as in the bounded case, it is necessary to turn the MCG into a completely specified
MCG, denoted G̃. The new graph is obtained by applying Algorithm 3.2 to G.

The SS construction could be done following these steps: i) computation of the MCG G
of a given net; ii) computation of the completely specified MCG G̃; iii) computation of
the auxiliary graph A(G̃); iv) computation of a SS for G̃; v) computation of a SS for the
original net.
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Steps i)-iii) have been discussed in previous sections so in the following we will focus on
the last two steps of the procedure.

A sequence that synchronizes the MCG to a node corresponding to the desired marking
is called a potentially synchronizing sequence (PSS).

The set of all PSSs for a given MCG is defined as follows.

Definition 4.13. (Set of PSS) Given a MCG G of a synchronized PN constructed over
a starting marking M0, one defines the set of all PSSs for a target marking M̄ as

PSS(G, M̄) = {w ∶ ∀M ∈ G, M
w
Ð→ M̄ ′ ∧ M̄ ′ ↑b= M̄ ↑b}. ∎

The following algorithm allows one to construct a PSS w̄, which is not necessarily the
shortest one. Such a sequence leads the MCG to a marking M ∈ M̄.

Algorithm 4.14. (Computing a PSS for a marking M̄)
Input: An unbounded synchronized PN N = ⟨N,E,f⟩ satisfying Assumption 4.11, a
starting marking M0 and a bounded target marking M̄ .
Ouput: A PSS w̄.

1. Let G and A(G̃) be respectively the MCG and the auxiliary graph of the completely
specified MCG.

2. Let M̄ be the set of target markings for a given M̄ .

3. Let w̄ = ε, the empty initial input sequence.

4. Let φ(w̄) = {M ∶M ∈ V }, the initial current marking uncertainty.

5. While φ(w̄) /⊆ M̄, do

5.1. pick two markings Mi,Mj ∈ φ(w̄) such that the two following conditions hold:
i) Mi ≠Mj, ii) Mi ∉ M̄ or Mi ∉ M̄ or Mi,Mj ∉ M̄;

5.2. find a shortest path in A(G̃) from (Mi,Mj) to (M̄ ′, M̄ ′′), where M̄ ′, M̄ ′′ ∈ M̄.

5.3. If no such a path exists, stop the computation, there exists no PSS for M̄ .

Else, let w be the input sequence along this path, do

5.3.1. φ(w̄w) = {M ′ ∶ ∀M ∈ φ(w̄),M w
Ð→M ′};

5.3.2. w̄ = w̄w.

end if

end while ∎

Note that the above algorithm performs a greedy-computation (see Algorithm 2.32) on
the MCG of the given synchronized PN with two important differences. First, its stop
criterium at step 5 is changed. In fact, the current state uncertainty is not required
to be singleton, but included in the synchronization target marking set, according to
Definition 4.2. Second, consider step 5.1. At this point two markings Mi and Mj of the
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M0 [100]T
M1 [110]T
M2 [1ω 0]T
M3 [0ω 1]T

Table 4.1: Markings of the synchronized PN in Figure 4.4a

(a)

(b)

(c)

Figure 4.4: An unbounded synchronized PN (a), its completely specified MCG G (b) and
auxiliary graph A(G̃) (c).

current state uncertainty are selected to be synchronized to the target by the application
of input sequence w. Note that the two markings have not to simultaneously belong to
the target marking set, accordingly to conditions i) and ii), otherwise the current state
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uncertainty would not change. At step 5.2, since the target is no longer a marking but
a set of markings, the algorithm searches the shortest path in the auxiliary graph from
node (Mi,Mj) to a node (M̄ ′, M̄ ′′), where M̄ ′ and M̄ ′′ are not necessarily different and
belong to the set of target markings.

Example 4.15. Consider the marked synchronized PN in Figure 4.4a. Let Pu = {p2} and
P ●u = {t2}, where f(t2) = e2. The net clearly satisfies Assumption 4.11, since no other
transition is associated with e2. The reachable markings are provided by Table 4.1. Let
M̄ = [031]T and then M̄ = {M3}. A possible execution of Algorithm 4.14 is described
by the following steps. Let the initial marking uncertainty be φ(ε) = {M0, M1, M2, M3}.
If at step 5.1 markings M0 and M1 are selected, path (M0,M1) e1e1e2ÐÐÐ→ (M3,M3) will be
obtained. The corresponding current state uncertainty is updated to φ(e1e1e2) = {M3}, so
that the computation ends in finding w = e1e1e2 as the searched PSS. ∎

4.3.2 Validating marking estimate

Each node of the MCG represents either one of the following: i) a marking M of the net,
in such a case outgoing node transitions correspond to all transitions enabled on the net
from that marking, i.e., E(M); ii) an ω−marking Mω, covering an infinite set of markings
of the net; in such a case all outgoing node transitions characterize the union of all sets
of transitions enabled on the net from those markings, i.e., ⋃

M∈cov(Mω)

E(M).
On the basis of the above remark, it can be stated that any input sequence w synchronizing
a PN — satisfying Assumption 4.11 — to a target marking M̄ , it also synchronizes the
MCG to a marking M̄ ′ such that M̄ ∈ cov(M̄ ′). The opposite is not true, i.e., not every
PSS is a SS.

However, for any PSS w̄ there exists a minimal enabling marking M , i.e., if the current
marking M ′ is greater than or equal to M , the occurrence of w̄ at M ′ will drive the net
to a marking in the target set.

Definition 4.16. (Validating marking set) Consider an unbounded synchronized PN
and its starting marking M0, from which one constructs the MCG G. It is given an
input sequence w̄, synchronizing G to the target M̄ . The set of all markings validating w̄,
denoted M(w̄), is the set of all markings M such that M

w
Ð→ M̄ ′ and M̄ ′ ↑b= M̄ ↑b ∎

If the initial marking uncertainty belongs to this set, an input sequence is clearly a SS.

4.3.2.1 Initial marking estimate

For any input event sequence computed by the way of the auxiliary graph one easily
determines the underlying transition sequence, since the markings are known step by
step.
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Consider Algorithm 4.14, at each iteration i of step 5, a path wi = ei1ei2 . . . eil from node(Mi1,Mi1) to (M̄ ′, M̄ ′′) is selected. Such a sequence identifies an interleaving of pairs of
markings and input events as follows:

(Mi1,M
′
i1) ei1Ð→ (Mi2,M

′
i2) ei2Ð→ . . .

eilÐ→ (M̄ ′, M̄ ′′). (4.1)

Consider the j−th event of the found sequence. Since the auxiliary graph has unordered
pairs of markings, to compute the underlying transition one has to determine which of
the following statements is true:

a) Mij

eij

Ð→Mij+1 and M ′
ij

eij

Ð→M ′
ij+1;

b) Mij

eij

Ð→M ′
ij+1 and M ′

ij

eij

Ð→Mij+1.

This uncertainty can be clearly solved by the MCG itself, being a deterministic oriented
graph. Given the path wi of Equation 4.1, the two underlying firing transition sequences
can be easily determined as follows:

σi, σ′i ∶ { Mi1[σi1⟩Mi2[σi2⟩ . . .Mil[σil⟩M̄ ′

M ′
i1[σ′i1⟩M ′

i2[σ′i2⟩ . . .M ′
il[σ′il⟩M̄ ′′,

(4.2)

where σij ∈ Σe(Mij), σ′ij ∈ Σe(M ′
ij), σi = σi1σi2 . . . σil and σ′i = σ′i1σ

′
i2 . . . σ′il. We remind that

all sequences in Σe(Mij) are possible firing sequences at marking Mij after the occurrence
of event e (see Definition 2.12).

Obtained the underlying firing sequences, the initial marking estimate can be computed
by using the underlying P/T net, i.e., the corresponding non-labeled net. The following
algorithm, taken from [56], recursively calculates the minimal initial marking for a given
sequence of transition.

Algorithm 4.17. (Computing minimal marking estimate)
Input: a PN N = (P,T,Pre,Post), a marking M and a firing sequence σ.
Output: the minimal enabling marking M̄ = M̄(M,σ), s.t. M̄[σ⟩ ∧ (∀p ∈ P )M̄(p) ≥
M(p).

1. Let M̄0 =M .

2. Let σ = ti1ti2 . . . til.

3. For j = 1,2 . . . l, do

3.1. M̄ j =max{M̄ j−1 +C ⋅ yj, P re(⋅, tij)} −C ⋅ yj

End for. ∎
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Assume σ = ti1ti2 . . . til. The firing vector of the prefix sequence ti1ti2 . . . tij is denoted yj,
i.e., yj = π(ti1ti2 . . . tij).
M

j−1
0

(resp. M
j
0
) is the initial marking estimate before (resp. after) tij fires. Such an

estimate is obtained by adding the minimum number of tokens to places, such that the
prefix of σi considered so far is enabled.

Given a transition firing sequence σ, it is not difficult to see that the minimal initial
marking M̄ is unique. That marking is recursively obtained, when one initially sets
M̄0 = 0⃗m×1.

Example 4.18. Consider the PN in Figure 4.4a. It is given the firing sequence σ = t3t2t1,
for which one wants to construct the minimal marking that enables it. By the direct
application of Algorithm 4.17 one obtains the following recursive updates:

i) M̄0
0
= 0⃗3×1 = [000]T

ii) M̄1
0
=max{[000]T + [000]T , [001]T } − [000]T = [001]T

iii) M̄2
0
=max{[001]T + [10 − 1]T , [120]T } − [10 − 1]T = [021]T

iv) M̄3
0
=max{[021]T + [0 − 20]T , [100]T } − [0 − 20]T = [121]T ∎

For any other initial marking M , Algorithm 4.17 verifies if M enables the given sequence
σ and increases the marking of places that otherwise would not allow the firing of σ,
obtaining M̄ .

Example 4.19. Consider the MCG of the PN in Figure 4.4a and ω−marking M2 =[1ω 0]T . The minimal marking of the unique unbounded place p2 that enables t2 is given
by the direct application of Algorithm 4.17. The following recursive updates are obtained:

i) Let M ′
2
(p) = { M1(p) if p ∉ Pu

0 otherwise
. Then M̄0

2
=M ′

2
= [100]T .

ii) M̄1
2
=max{[100]T + [000]T , [120]T } − [000]T = [120]T . ∎

4.3.2.2 Set of markings validating a PSS

A procedure to construct the set of markings validating a PSS is now proposed. It is
shown that such a set belongs to the class of semi-cylindrical sets, whose definition is
recalled in the following.

Definition 4.20. [49] (Cylindrical sets) Given a subset I ⊂ {1, . . . ,m} and a vector
v ∈ Nm, the cylinder of basis (I, v) is the subset C(I, v) = {x ∈ Nm ∶ ∀i ∈ I, xi = vi ∧ ∀i ∉
I, xi ≥ vi}. One denotes by SCyl(Nm) the set of finite unions of cylinders, that are called
semicylindrical subsets. ∎
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Assume that Algorithm 4.14 has output a PSS w̄. By the way of the MCG G, the set
of underlying transition sequences can be derived. Each sequence σi is associated with a
path from any of the marking Mi ∈ G to some M̄ ∈ M̄.

The set of validating markings M(w̄) is constructed so that those underlying firing se-
quences are fireable. It is shown that it depends on the considered PSS and that is a
subset of the covering set CS(N,M0).
Algorithm 4.21. (Validating marking set construction)
Input: An unbounded synchronized PN ⟨N,M0,E, f⟩, its MCG G and a PSS w̄ for a
bounded target marking M̄ .
Ouput: the set M(w̄) of markings validating w̄.

1. Let ∣G∣ = n.

2. let M(w̄) = ∅.
3. For i = 1, . . . , n, do

3.1. Let σi be the underlying firing sequence of w̄, s.t.

3.1.1. M̄ ∈ cov(Mω,i);
3.1.2. σi is the path along G, i.e., Mi

w̄∣σi

ÐÐ→Mω,i.

3.2. Let M ′
i be s.t. M ′

i(p) = { Mi(p) if p ∈ Pb

0 otherwise

3.3. Let M̄i = M̄i(M ′
i , σi), determined by Algorithm 4.17.

3.4. Let M(w̄) =M(w̄)⋃C(Ib, M̄i).
End for ∎

A possible execution of the above algorithm is given by the following example.

Example 4.22. Consider the PSS w̄ = e1e1e2 computed in Example 4.15. By the aid of
the MCG, one finds that σ0 = σ1 = σ2 = t1t1t2, and σ3 = ε. Let M ′

0
=M ′

1
=M ′

2
= [100]T and

M ′
3
= [001]T . By applying Algorithm 4.17 the following marking estimate are computed:

M̄ ′
0
(M ′

0
, t1t1t2) = M̄ ′

1
(M ′

1
, t1t1t2) = M̄ ′

2
(M ′

2
, t1t1t2) = [100]T and M̄ ′

3
(M ′

3
, ε) = [001]T .

Thus the set of markings for which w is SS is M(w̄) = C({1,3}, M̄ ′
0
) ⋃C({1,3}, M̄ ′

3
). ∎

The following theorem proves the correctness of the above algorithm.

Theorem 4.23. Consider an unbounded synchronized PN ⟨N,E,f⟩ satisfying Assump-
tion 4.11. Let G be its MCG for a given starting marking M0. Let σ be the sequence
in G along the path between markings Mω and M ′

ω. For all M ∈ cov(Mω) s.t. M ↑u≥
M̄ω(Mω, σ) ↑u it holds that M[σ⟩M ′, where M ′ ∈ cov(M ′

ω).
Proof. Increasing the marking of a place can change the set of enabled transitions and
then, after the same input event application, the reached marking. Synchronized PNs
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satisfying Assumption 4.11 have 1−to−1 mapping between transitions outputting an un-
bounded place and input events. Then, once sufficiently marked unbounded places, none
but the expected transitions fire.

An important result can be deduced by only looking at the setM(w̄).
Proposition 4.24. Consider an unbounded synchronized PN ⟨N,E,f⟩ satisfying As-
sumption 4.11 and a starting marking M0. It is given a PSS w̄ for a target marking M̄

for which the validating marking set M(w̄) is computed. If for every base M̄i of M(w̄)
it holds that M̄i ↑u= 0⃗mu

for i = 1, . . . n, then w̄ is a SS.

Proof. Consider each subset C(Ib, M̄i) ofM(w̄). If for every of those subsets it holds that
M̄i ↑u= 0⃗mu

, then C(Ib, M̄i) = cov(M̄i). It is not difficult to see thatM(w̄) = CS(N,M0),
hence R(N,M0) ⊆M(w̄) and w̄ synchronizes to M̄ .

Note that verifying whether a given PSS w̄ is a SS is clearly possible without any further
computation if it holds that ∀e ∈ w̄ ∶ ∄t ∈ P ●u ∩ Te.

Example 4.25. Consider the PN in Figure 4.4a. One wants to synchronize the net
to marking M̄ = [130]T and determine the set of marking M. A possible PSS is w̄ =
e3, whose underlying firing sequences are σ0 = σ1 = σ2 = ε and σ3 = t3. Finally M =
C({1,3}, M̄ ′

0
) ⋃C({1,3}, M̄ ′

3
), where M̄ ′

0
= [100]T and M̄ ′

3
= [001]T . The condition of

Proposition 4.24 holds and w̄ is then a SS for M̄ . ∎





Chapter 5

Diagnosis of labeled Petri nets

Summary

In this part an approach to on-line diagnosis of discrete event systems based on labeled
Petri nets is presented. The approach is based on the notion of basis markings and
justifications and it can be applied both to bounded and unbounded Petri nets whose
unobservable subnet is acyclic. Moreover it is shown that, in the case of bounded Petri
nets, the most burdensome part of the procedure may be moved off-line, computing a
particular graph called Basis Reachability Graph.

Finally the effectiveness of the proposed procedure is analyzed applying a MATLAB di-
agnosis toolbox we have developed to a manufacturing example taken from the literature.

93
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(a) (b)

Figure 5.1: An example of a marked net with a permanent fault (a) and with an inter-
mittent fault (b).

5.1 Discrete event diagnosis using labeled Petri nets

Failures are inevitable in today’s complex industrial environment and they could arise
from several sources such as design errors, equipment malfunctions, operator mistakes,
and so on. As technology advances, as systems of increasing size and functionality are
built, and as increasing demands on the performance of these systems are placed, then the
complexity of these systems increases. Consequently (and unfortunately), the potential
for systems to fail is enhanced, and no matter how safe the designs are, how improved the
quality control techniques are, and how better trained the operators are, system failures
become unavoidable [111].

In the diagnosis of discrete event systems faults may correspond to any discrete event.
In out approach, a categorization of faults is given from the manner in which they are
recovered after they occur. It can be distinguished between permanent and intermittent
faults. A fault is permanent if the recovery event occurs only due to a repair/replacement
of the fault that is controllable and observable. On the contrary, a fault is intermittent
if the recovery event can occur either spontaneously or through repair/replacement; it
tends to be uncontrollable and unobservable. Example is a loose wire that makes and
breaks contact spontaneously. It is important to distinguish between these two types of
faults. In fact, intermittent faults may spontaneously recover, making the system oscillate
between non-faulty and faulty states. On the other hand, in the case of permanent faults,
the system cannot spontaneously move from a fault state to a non-fault one [64].

Examples of permanent and intermittent faults in a given net system are presented in
Figure 5.1.(a) and Figure 5.1.(b) respectively. In particular, the net system during the
nominal behavior produces a cyclic sequence of “a” followed by “b”. In Figure 5.1.(a) a
permanent fault to the sensor that produces “b” is modeled: after the occurrence of the
fault f only events a will be produced. On the contrary, Figure 5.1.(b) represents an
intermittent fault to the sensor “b”: after the occurrence of the fault event f the sensor
that produces b may start working again.

5.1.1 Characterization of the set of consistent markings

To solve a diagnosis problem, it is essential to be able to compute the set of sequences and
markings consistent with a given observation w. In this section a formalism that allows
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one to characterize these sets without resorting to explicit enumeration is provided. The
approach is based on the notions of minimal explanations and basis markings that are
introduced in the following two subsections.

5.1.1.1 Minimal explanations and minimal e-vectors

In this subsection the notion of minimal explanation for unlabeled PNs is introduced and
later it is extended to labeled PNs.

Definition 5.1. (explanations and e-vectors) Given a marking M and an observable
transition t ∈ To, let

Σ(M,t) = {σ ∈ T ∗u ∣M[σ⟩M ′, M ′ ≥ Pre(⋅, t)}
be the set of explanations of t at M , and let

Y (M,t) = π(Σ(M,t))
be the e-vectors (or explanation vectors), i.e., the firing vectors associated with the expla-
nations. ∎

Thus Σ(M,t) is the set of unobservable sequences whose firing at M enables t. Among
the above sequences select those whose firing vector is minimal. The firing vector of these
sequences are called minimal e-vectors.

Definition 5.2. (minimal explanations and minimal e-vectors) Given a marking
M and a transition t ∈ To, let us define1

Σmin(M,t) = {σ ∈ Σ(M,t) ∣ ∄ σ′ ∈ Σ(M,t) ∶
π(σ′) ≨ π(σ)}

the set of minimal explanations of t at M , and let us define

Ymin(M,t) = π(Σmin(M,t))
the corresponding set of minimal e-vectors. ∎

Example 5.3. Consider the PN in Figure 5.2 previously introduced in Example 2.29. It
holds that Σ(M0, t1) = {ε}. Then Σ(M0, t2) = ∅. Finally, let M = [ 0 0 1 0 0 0 0 1 0 0 0 ]T ,
it holds that Σ(M,t5) = {ε, ε8, ε8ε9, ε8ε11, ε8ε9ε10}, while Σmin(M,t5) = {ε}. It follows that
Y (M,t5) = {[0 0 0 0 0 0]T , [1 0 0 0 0 0]T , [1 1 0 0 0 0]T , [1 0 0 1 0 0]T , [1 1 1 0 0 0]T},
and Ymin(M,t5) = {[0 0 0 0 0 0]T}. ∎

In [30] it was shown that, if the unobservable subnet is acyclic and backward conflict-free,
then ∣Ymin(M,t)∣ = 1.

1 Given two vectors x and y, x ≨ y denotes that all components of x are less than or equal to all
corresponding components of y and there exists at least one component of x that is strictly less than the
corresponding component of y.
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Figure 5.2: A marked labeled PN.

Different approaches can be used to compute Ymin(M,t), e.g., [11, 67]. Here, it is suggested
an approach that terminates finding all vectors in Ymin(M,t) if applied to nets whose Tu-
induced subnet is acyclic. It simply requires algebraic manipulations, and is inspired by
the procedure proposed by [86] for the computation of minimal P-invariants. It can be
briefly summarized by the following algorithm.

Algorithm 5.4. (Computation of Ymin(M,t))
Input: a marking M and a transition t for a PN N = (P,T,Pre,Post).
Ouput: the set of corresponding minimal e-vectors.

1. Let Γ ∶=
CT

u Inu×nu

A B
where A ∶= (M − Pre(⋅, t))T , B ∶= 0⃗ T

nu
.

2. While A has negative entries, do
2.1. choose an element A(i∗, j∗) < 0;
2.2. let I+ = {i ∣ CT

u (i, j∗) > 0};
2.3. for all i ∈ I+, add to [A ∣ B] a new row[A(i∗, ⋅) +CT

u (i, ⋅) ∣ B(i∗, ⋅) + e⃗ T
i ]

where e⃗i is the i-th canonical basis vector.
2.4. Remove the row [A(i∗, ⋅) ∣ B(i∗, ⋅)] from the table.

3. Remove from B any row that covers other rows.
End while

4. Each row of B is a vector in Ymin(M,t). ∎

The above algorithm can be explained as follows.

Given a marking M and a transition t, Algorithm 5.4 computes the minimal e-vectors ,
i.e., the firing vectors of unobservable sequences whose firing at M is necessary to enable
t.
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At step 1 a row vector is defined, A = A(1, ⋅), that has a number of columns equal to
number of places of the net. This vector contains a negative element A(1, j) if place pj

does not enable t at M . In particular, the absolute value ∣A(1, j)∣ denotes the number of
tokens missing from pj to enable t at M . Finally, B is initially a null firing vector.

While A has negative entries, one of such entries is chosen and at step 2.2 it is checked if
there exists an unobservable transition whose firing may increase the number of tokens in
pj : if so all possible such firings (of a single transition) computing the markings reached
by each of these firings are considered. Vector B, in the right part of the table, denotes
the corresponding firing vector. These new markings and the correspondent firing vectors
will be the new rows of matrix A, while the previous row is removed.

Note that at step 2.3 it may be possible that the new row [A(i∗, ⋅)+CT
u (i, ⋅) ∣ B(i∗, ⋅)+e⃗ T

i ]
is identical to a row already in the table: if such is the case it is not necessary to add it.

The while loop is repeated until all markings represented by matrix A have non negative
components.

5.1.1.2 Basis markings and j-vectors

In this subsection, the definitions of basis markings and justifications, that are the crucial
notions of the diagnosis approach presented in this thesis, are introduced.

In particular, given a sequence of observed events w ∈ L∗, a basis marking Mb is a marking
reached from M0 with the firing of the observed word w and of all unobservable transitions
whose firing is strictly necessary to enable w. Such a sequence of unobservable transitions
is called justification. Note that in general several sequences σo ∈ T ∗o may correspond to
the same w, i.e., there are several sequences of observable transitions such that L(σo) = w

that may have actually fired. Moreover, in general, to any of such sequences σo a different
sequence of unobservable transitions interleaved with it is necessary to make it firable at
the initial marking. Thus the introduction of the following definition of pairs (sequence
of transitions in To labeled w; corresponding justification) is needed.

Definition 5.5. (justifications and j-vectors) Let ⟨N,M0⟩ be a marked net with la-
beling function L ∶ T → L ∪ {ε}, where N = (P,T,Pre,Post) and T = To ∪ Tu. Let w ∈ L∗

be a given observation. Let

Ĵ (w) = { (σo, σu), σo ∈ T ∗o , L(σo) = w, σu ∈ T ∗u ∣[∃σ ∈ S(w) ∶ σo = Po(σ), σu = Pu(σ)]∧[/∃ σ′ ∈ S(w) ∶ σo = Po(σ′), σ′u = Pu(σ′)∧
π(σ′u) � π(σu)]}

be the set of pairs (sequence σo ∈ T ∗o with L(σo) = w, corresponding justification of w).
Moreover, let

Ŷmin(M0,w) = {(σo, y), σo ∈ T ∗o ,L(σo) = w,y ∈ Nnu ∣
∃(σo, σu) ∈ Ĵ (w) ∶ π(σu) = y}

be the set of pairs (sequence σo ∈ T ∗o with L(σo) = w, corresponding j-vector). ∎
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In simple words, Ĵ (w) is the set of pairs whose first element is the sequence σo ∈ T ∗o labeled
w and whose second element is the corresponding sequence of unobservable transitions
interleaved with σo whose firing enables σo and whose firing vector is minimal. The firing
vectors of these sequences are called j-vectors.

Example 5.6. Consider the PN in Figure 5.2 previously introduced in Example 2.29.

Assume w = ab. In this case Ĵ (w) = {(t1t2, ε)} and Ŷmin(M0,w) = {(t1t2, 0⃗)}. Now, con-
sider w = acd. The set Ĵ (w) = {(t1t5t6, ε), (t1t5t7, ε12ε13)} and Ŷmin(M0,w) = {(t1t5t6, 0⃗),(t1t5t7, [0 0 0 0 1 1]T )}. ∎

The main difference among minimal explanations and justifications is that the first ones
are functions of a generic marking M and transition t, while justifications are functions
of the initial marking M0 and w. Moreover, as will be claimed in the following Propo-
sition 5.9, in the case of acyclic unobservable subnets, justifications can be computed
recursively summing up minimal explanations.

Definition 5.7. (basis markings) Let ⟨N,M0⟩ be a marked net with labeling function
L ∶ T → L ∪ {ε}, where N = (P,T,Pre,Post) and T = To ∪ Tu. Let w be a given observa-
tion and (σo, σu) ∈ Ĵ (w) be a generic pair (sequence of observable transitions labeled w;
corresponding justification). The marking

Mb =M0 +Cu ⋅ y +Co ⋅ y
′, y = π(σu), y′ = π(σo),

i.e., the marking reached firing σo interleaved with the justification σu, is called basis
marking and y is called its j-vector (or justification-vector). ∎

Obviously, because in general more than one justification exists for a word w (the set
Ĵ (w) is generally not a singleton), the basis marking may be not unique as well.

Definition 5.8. (basis marking and relative j-vector) Let ⟨N,M0⟩ be a marked net
with labeling function L ∶ T → L ∪ {ε}, where N = (P,T,Pre,Post) and T = To ∪ Tu. Let
w ∈ L∗ be an observed word. Let

M(w) = {(M,y) ∣ (∃σ ∈ S(w) ∶ M0[σ⟩M) ∧(∃(σo, σu) ∈ Ĵ (w) ∶ σo = Po(σ),
σu = Pu(σ), y = π(σu))}

be the set of pairs (basis marking, relative j-vector) that are consistent with w ∈ L∗. ∎

Note that the setM(w) does not keep into account the sequences of observable transitions
that may have actually fired. It only keeps track of the basis markings that can be reached
and of the firing vectors relative to sequences of unobservable transitions that have fired to
reach them. Indeed, this is the information really significant when performing diagnosis.
The notion of M(w) is fundamental to provide a recursive way to compute the set of
minimal explanations.

Proposition 5.9. Given a marked net ⟨N,M0⟩ with labeling function L ∶ T → L ∪ {ε},
where N = (P,T,Pre,Post) and T = To ∪ Tu. Assume that the unobservable subnet is
acyclic. Let w = w′l be a given observation.
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It holds:
Ŷmin(M0,w′l) = {(σo, y) ∣ σo = σ′ot ∧ y = y′ + e ∶

(σ′o, y′) ∈ Ŷmin(M0,w′),(t, e) ∈ Ŷmin(M ′
b, l) and L(t) = l},

where M ′
b =M0 +Cu ⋅ y′ +Co ⋅π(σ′o) and Ŷmin(M ′

b, l) is the set of pairs (transition labeled l

that may have fired at M ′
b, corresponding j-vector) introduced in Definition 5.5.

Proof: Let us prove this result by induction on the length of the observed string w.

(Basis step) For w = ε the result trivially follows from Definitions 5.5 and 5.7.

(Inductive step) Assume the result is valid for w′. Let us prove it is also true for w = w′l

where l = L(t).
In fact, if there exists a sequence w = w′l ∈ L∗, such that M0[σo⟩M̃ with L(σo) = w then
there exist sequences σ′ and σ′′ such that

M0[σ′⟩M ′[t⟩M ′′[σ′′⟩M̃
where L(σ′) = w′, L(t) = l and σ′′ ∈ T ∗u . By induction, there exists (M ′

b, y
′) ∈M(w′) such

that
M0[σ′a⟩M ′

b[σ′b⟩M ′[t⟩M ′′[σ′′⟩M̃
where L(σ′a) = w′, π(σ′a) = π(σ′o) + y′ and σ′b ∈ T ∗u . Now there exists at least one minimal

explanation2 σ′c ∈ Σ̂min(M ′
b, l) such that π(σ′c) ≤ π(σ′b) and, since the Tu-induced subnet

is acyclic the state equation gives necessary and sufficient conditions for the reachability,
thus the marking reached is not dependent by the order of the firing of the unobservable
transitions, thus

M0[σ′a⟩M ′
b[σ′c⟩M ′

c[t⟩M ′
d[σ′d⟩M ′′[σ′′⟩M̃ (5.1)

where π(σ′c) + π(σ′
d
) = π(σ′

b
) and (M ′

d
, π(σ′c)) ∈M(w′l) =M(w). From eq. (5.1) it holds

M ′
b =M0 +C ⋅ π(σ′a) =M0 +Cu ⋅ y

′ +Co ⋅ π(σ′o),
M ′

d =M ′
b +Cu ⋅ π(σ′c) +Co ⋅ t⃗ =M0 +Cu ⋅ (y′ + π(σ′c)) +Co ⋅ (π(σ′o) + t⃗).

Thus σo = σ′ot and y = y′ + π(σ′c), where (σ0, y) ∈ Ŷmin(M0,w′l). ◻

Example 5.10. Consider the PN in Figure 5.2 previously introduced in Example 2.29.

Assume w = ab. As shown in Example 5.6 Ĵ (w) = {(t1t2, ε)}, thus the basis marking is
Mb = [0 0 1 0 0 0 0 1 0 0 0]T , and M(w) = {(Mb, 0⃗)}.
Now, consider w = acd. As computed in Example 5.6, the set Ĵ (w) = {(t1t5t6, ε),(t1t5t7, ε12ε13)}. All the above j-vectors lead to the same basis marking Mb = [0 1 0 0 0 0 0 1 0 0 0]T
thus M(w) = {(Mb, 0⃗), (Mb, [0 0 0 0 1 1]T )}. ∎

By Proposition 5.9, under the assumption of acyclicity of the unobservable subnet, the
set M(w) can be easily constructed as follows.

2In fact, being the Tu−induced subnet acyclic, this is always true for all sequences σ′
c

enabled at M

and such that π(σ′
c
) = π(σ′

b
) (in such case π(σ′

d
) = 0⃗).
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Algorithm 5.11. (Computation of the basis markings and j-vectors)
Input: a labeled marked net ⟨N,M0⟩ with labeling function L ∶ T → L ∪ {ε}.
Ouput: the basis marking associated with a stream of observed labels.

1. Let w = ε.
2. Let M(w) = {(M0, 0⃗)}.
3. Wait until a new label l is observed.
4. Let w′ = w and w = w′l.
5. Let M(w) = ∅.
6. For all M ′ such that (M ′, y′) ∈M(w′) , do

6.1. for all t ∈ Tl, do
6.1.1. for all e ∈ Ymin(M ′, t), do

6.1.1.1. let M =M ′ +Cu ⋅ e +C(⋅, t),
6.1.1.2. for all y′ such that (M ′, y′) ∈M(w′), do

6.1.1.2.1. let y = y′ + e,
6.1.1.2.2. let M(w) =M(w) ∪ {(M,y)}.

End for
End for

End for
End for

7. Goto tep 3. ∎

In simple words, the above algorithm can be explained as follows. Assume that, after
a certain word w′ has been observed, a new observable t fires and its label l = L(t) is
observed. Consider all basis markings at the observation w′ and select among them those
that may have allowed the firing of at least one transition t ∈ Tl, also taking into account
that this may have required the firing of appropriate sequences of unobservable transitions.
In particular, let us focus on the minimal explanations, and thus on the corresponding
minimal e-vectors (step 6.1.1). Finally, update the setM(w′t) including all pairs of new
basis markings and j-vectors, taking into account that for each basis marking at w′ it may
correspond more than one j-vector.

Definition 5.12. (Set of basis markings at w) Let ⟨N,M0⟩ be a marked net where
N = (P,T,Pre,Post) and T = To ∪ Tu. Assume that the unobservable subnet is acyclic.
Let w ∈ T ∗o be an observed word. Let

Mbasis(w) = {M ∈ Nm ∣ ∃y ∈ Nnu and (M,y) ∈M(w)}
be the set of basis markings at w. Moreover, denote as

Mbasis = ⋃
w∈T ∗o

Mbasis(w)
the set of all basis markings for any observation w. ∎

Note that if the marked net is bounded then the setMbasis is finite being the set of basis
markings a subset of the reachability set.

In the following theorem a result proved for unlabeled PNs [18] is extended to labeled
PNs.
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Theorem 5.13. Consider a marked net ⟨N,M0⟩ whose unobservable subnet is acyclic.
For any w ∈ L∗ it holds that

C(w) = {M ∈ Nm ∣M =Mb +Cu ⋅ y ∶ y ≥ 0⃗ and Mb ∈Mbasis(w)}.
Proof: This proof has been given for unlabeled PNs in [18]. Also in the case of labeled
PNs a formal proof can be given by induction on the length of observed string w, following
the same arguments in the proof of Proposition 5.9. ◻

The above result shows that the set C(w) can be characterized in linear algebraic terms
given the set Mbasis(w), thus not requiring exhaustive enumeration. This is the main
advantage of the approach here presented.

5.1.2 Diagnosis using Petri nets

Assume that the set of unobservable transitions is partitioned into two subsets, namely
Tu = Tf ∪Treg where Tf includes all fault transitions (modeling anomalous or fault behav-
ior), while Treg includes all transitions relative to unobservable but regular events. The
set Tf is further partitioned into r different subsets T i

f
, where i = 1, . . . , r, that model

the different fault classes. Usually, fault transitions that belong the same fault class are
transitions that represent similar physical faulty behavior.

The following definition introduces the notion of diagnoser.

Definition 5.14. (diagnoser) A diagnoser is a function ∆ ∶ L∗ × {T 1

f , T 2

f , . . . , T r
f } →{0,1,2,3} that associates to each observation w ∈ L∗ and to each fault class T i

f , i = 1, . . . , r,
a diagnosis state.

• ∆(w,T i
f) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf /∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences
consistent with the observation contains fault transitions of class i.

• ∆(w,T i
f) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf /∈ σu.

In such a case a fault transition of class i may have occurred but is not contained
in any justification of w.

• ∆(w,T i
f) = 2 if there exist (σo, σu), (σ′o, σ′u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that tf ∈ σu;

(ii) for all tf ∈ T i
f
, tf /∈ σ′u.

In such a case a fault transition of class i is contained in one (but not in all)
justification of w.
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• ∆(w,T i
f) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consis-
tent with the observation contain at least one fault in T i

f . ∎

Note that assuming that certain transitions belong to the same fault class is not a re-
strictive assumption. On the contrary, it makes the presentation more general. If one is
interested in reconstructing the occurrence of a particular transition tf , with no ambiguity
with other transitions, it is sufficient to define a fault class only containing tf .

Example 5.15. Consider the PN in Figure 5.2 previously introduced in Example 2.29.
Let Tf = {ε11, ε12}. Assume that the two fault transitions belong to different fault classes,
i.e., T 1

f
= {ε11} and T 2

f
= {ε12}.

Let us observe w = a. Then ∆(w,T 1

f ) = ∆(w,T 2

f ) = 0, being Ĵ (w) = {(t1, ε)} and S(w) ={t1}. In simple words no fault of both fault classes may have occurred.

Let us observe w = ab. Then ∆(w,T 1

f ) = 1 and ∆(w,T 2

f ) = 0, being Ĵ (w) = {(t1t2, ε)} and
S(w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}. This means that a fault of the first
fault class may have occurred (firing the sequence t1t2ε8ε11) but it is not contained in any
justification of ab, while no fault of the second fault class can have occurred.

Now, consider w = abb. In this case ∆(w,T 1

f ) = 2 and ∆(w,T 2

f ) = 0, being Ĵ (w) ={(t1t2t2, ε8ε9ε10), (t1t2t3, ε8ε11)} and S(w) = {t1t2ε8ε9ε10t2, t1t2ε8ε9ε10t2ε8, t1t2ε8ε9ε10t2ε8ε9,

t1t2ε8ε9ε10t2ε8ε9ε10, t1t2ε8ε9ε10t2ε8ε11, t1t2ε8ε11t3}. This means that no fault of the second
fault class can have occurred, while a fault of the first fault class may have occurred since
one justification does not contain ε11 and one justification contains it.

Finally, consider w = abbccc. In this case ∆(w,T 1

f ) = 3 and ∆(w,T 2

f ) = 1. In fact since

Ĵ (w) = {(t1t2t3t5t4t4, ε8ε11), (t1t2t3t4t5t4, ε8ε11), (t1t2t3t4t4t5, ε8ε11), (t1t2t3t4t4t4, ε8ε11)}
a fault of the first fault class must have occurred, while a fault of the second fault class
may have occurred (e.g. t1t2ε8ε11t3t4t4t5ε12) but it is not contained in any justification of
w. ∎

The following two results proved in [18] for unlabeled PNs still hold in the case of labeled
PNs. In particular, the following proposition presents how the diagnosis states can be
characterized analyzing basis markings and justifications.

Proposition 5.16. Consider an observed word w ∈ L∗.

• ∆(w,T i
f) ∈ {0,1} iff for all (M,y) ∈M(w) and for all tf ∈ T i

f it holds y(tf) = 0.

• ∆(w,T i
f) = 2 iff there exist (M,y) ∈M(w) and (M ′, y′) ∈M(w) such that:

(i) there exists tf ∈ T i
f such that y(tf) > 0,

(ii) for all tf ∈ T i
f , y′(tf) = 0.

• ∆(w,T i
f) = 3 iff for all (M,y) ∈M(w) there exists tf ∈ T i

f such that y(tf) > 0.
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Proof: By Definition 5.14, ∆(w,T i
f) = 0 iff no fault transition tf ∈ T i

f is contained in

any firing sequence that is consistent with w, while ∆(w,T i
f) = 1 iff no fault tf ∈ T i

f is
contained in any justification of w but there exists at leat one sequence that is consistent
with w that contains a transition tf ∈ T i

f . Therefore, a necessary and sufficient condition

to have ∆(w,T i
f ) ∈ {0,1} is that for all j-vectors y at w and all tf ∈ T i

f it is y(tf) = 0, thus
proving the first item.

Analogously, ∆(w,T i
f) = 2 if a transition tf ∈ T i

f is contained in at least one (but not in

all) justification of w. Thus, to have ∆(w,T i
f) = 2 it is necessary and sufficient that there

exists at least one j-vector y that contains at least one transition tf ∈ T i
f and one j-vector

y′ that does not contain transitions tf ∈ T i
f
, thus proving the second item.

Finally, given an observed word w and a fault class T i
f

it holds ∆(w,T i
f
) = 3 if all firable

sequences consistent with w contain at least one fault transition tf ∈ T i
f . Thus, to have

∆(w,T i
f) = 3 it is necessary and sufficient that all justifications contain at least one

transition tf ∈ T i
f . This proves the third item. ◻

The following proposition shows how to distinguish between diagnosis states 0 and 1.

Proposition 5.17. For a PN whose unobservable subnet is acyclic, let w ∈ L∗ be an
observed word such that for all (M,y) ∈M(w) it holds y(tf) = 0 ∀ tf ∈ T i

f . Consider the
constraint set

T (M,T i
f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M +Cu ⋅ z ≥ 0⃗,

∑
tf ∈T

i
f

z(tf ) > 0,

z ∈ Nnu .

(5.2)

• ∆(w,T i
f) = 0 if ∀ (M,y) ∈M(w) the constraint set (5.2) is not feasible.

• ∆(w,T i
f) = 1 if ∃ (M,y) ∈M(w) such that the constraint set (5.2) is feasible.

Proof: Let w ∈ L∗ be an observed word such that ∀(M,y) ∈M(w) it is y(tf) = 0 ∀ tf ∈ T i
f .

By Definition 5.14 it immediately follows that:

• ∆(w,T i
f) = 0 if ∀(M,y) ∈M(w) and ∀tf ∈ T i

f there does not exist a sequence σ ∈ T ∗u
such that M[σ⟩ and tf ∈ σ;

• ∆(w,T i
f) = 1 if ∃ at least one (M,y) ∈M(w) and a sequence σ ∈ T ∗u such that for

at least one tf ∈ T i
f , M[σ⟩ and tf ∈ σ.

Now, as proved in [31] if a generic PN is acyclic its state equation gives necessary and
sufficient conditions for marking reachability. Therefore, if such a result is applied to
the unobservable subnet, that is acyclic by assumption, it can be concluded that the set
T (M,T i

f) characterizes the reachability set of the unobservable net at marking M . Thus,
due to this fact and the above two items, it can be concluded that there exists a sequence
containing a transition tf ∈ T i

f firable at M on the unobservable subnet if and only if

T (M,T i
f) is feasible. ◻
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On the basis of the above two results, if the unobservable subnet is acyclic, diagnosis may
be carried out by simply looking at the set M(w) for any observed word w and, should
the diagnosis state be either 0 or 1, by additionally evaluating whether the corresponding
integer constraint set (5.2) admits a solution.

Example 5.18. Consider the PN in Figure 5.2 where T 1

f = {ε11} and T 2

f = {ε12}.
Let w = ab. In this case M(w) = {(M1

b , 0⃗)}, where M1

b = [0 0 1 0 0 0 0 1 0 0 0]T . Being
T (M1

b , T i
f) feasible only for i = 1 it holds ∆(w,T 1

f ) = 1 and ∆(w,T 2

f ) = 0.

Let w = abb. It is M(w) = {(M1

b , [1 1 1 0 0 0]T ), (M2

b , [1 0 0 1 0 0]T)}, where M2

b =[0 0 0 0 0 0 1 1 0 0 0]T . It is ∆(w,T 1

f ) = 2 and ∆(w,T 2

f ) = 0 being both T (M1

b , T 2

f ) and
T (M2

b , T 2

f ) not feasible.

Let w = abbccc. In this case M(w) = {(M3

b , [1 1 1 0 0 0]T ), (M4

b , [1 1 1 0 0 0]T)}, where
M3

b = [0 0 0 0 0 0 1 1 0 0 0]T and M4

b = [0 0 0 0 0 0 1 0 1 0 0]T . It is ∆(w,T 1

f ) = 3 and
being T (M4

b , T 2

f ) feasible it holds ∆(w,T 2

f ) = 1. ∎

The approach described above requires to compute for each observed word w and for
each fault class i a diagnosis state ∆(w,T i

f). Let us conclude this section with a brief
discussion on the definition of diagnosis states ∆ = 1 and ∆ = 2. Firstly, observe that
both the diagnosis states correspond to uncertain states even if a higher degree of alarm is
associated with ∆ = 2 with respect to ∆ = 1. Secondly, observe that an advantage in terms
of computational complexity can be obtained by splitting the uncertain condition in two
diagnosis states, namely ∆ = 1 and ∆ = 2. In fact, the diagnosis approach is based on the
preliminary computation of the setM(w). If ∆ = 2 or ∆ = 3 no additional computation is
required. On the contrary to distinguish among ∆ = 0 and ∆ = 1 an integer programming
problem should be solved.

5.1.3 Basis Reachability Graph

Diagnosis approach described in the previous section can be applied both to bounded
and unbounded PNs. The proposed approach is an on-line approach that for each new
observed event updates the diagnosis state for each fault class computing the set of basis
markings and j-vectors. Moreover if for the fault class T i

f is necessary to distinguish
between diagnosis states 0 and 1, it is also necessary to solve for each basis marking Mb

the constraint set T (Mb, T
i
f).

In this section it is shown that if the considered marked net is bounded, the most burden-
some part of the procedure can be moved off-line defining a graph called Basis Reachability
Graph (BRG).

Definition 5.19. (Basis Reachability Graph) The BRG is a deterministic graph that
has as many nodes as the number of possible basis markings.

To each node is associated a different basis marking M and a row vector with as many
entries as the number of fault classes. The entries of this vector may only take binary
values: 1 if T (M,T i

f ) is feasible, 0 otherwise.
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Arcs are labeled with observable events in L and e-vectors. More precisely, an arc exists
from a node containing the basis marking M to a node containing the basis marking M ′ if
and only if there exists a transition t for which an explanation exists at M and the firing
of t and one of its minimal explanations leads to M ′. The arc going from M to M ′ is
labeled (L(t), e), where e ∈ Ymin(M,t) and M ′ =M +Cu ⋅ e +C(⋅, t). ∎

Note that the number of nodes of the BRG is always finite being the set of basis markings a
subset of the set of reachable markings, that is finite being the net bounded. Moreover, the
row vector of binary values associated with the nodes of the BRG allows us to distinguish
between the diagnosis state 1 or 0.

The main steps for the computation of the BRG in the case of labeled PNs are summarized
in the following algorithm.

Algorithm 5.20. (Computation of the BRG)
Input: a labeled marked net ⟨N,M0⟩ with labeling function L ∶ T → L ∪ {ε}.
Ouput: a diagnosis state associated with a stream of output labels.

1. Label the initial node (M0, x0) where ∀i = 1, . . . , r,

x0(T i
f
) = { 1 if T (M0, T

i
f) is feasible,

0 otherwise.
Assign no tag to it.

2. While nodes with no tag exist,
select a node with no tag and do
2.1. let M be the marking in the node (M,x),
2.2. for all l ∈ L

2.2.1. for all t ∶ L(t) = l ∧ Ymin(M,t) ≠ ∅, do
● for all e ∈ Ymin(M,t), do
● let M ′ =M +Cu ⋅ e +C(⋅, t),
● if ∄ a node (M,x) with M =M ′, do
● add a new node to the graph containing(M ′, x′) where ∀i = 1, . . . , r,

x′(T i
f) = { 1 if T (M ′, T i

f) is feasible,

0 otherwise.
and arc (l, e) from (M,x) to (M ′, x′)

● else
● add arc (l, e) from (M,x) to (M ′, x′)
if it does not exist yet

2.3. tag the node "old".
3. Remove all tags. ∎

The algorithm constructs the BRG starting from the initial node to which it corresponds
the initial marking and a binary vector defining which classes of fault may occur at M0.
Now, consider all the labels l ∈ L such that there exists a transition t with L(t) = l for
which a minimal explanation at M0 exists. For each of these transitions compute the
marking resulting from firing t at M0 +Cu ⋅ e, for any e ∈ Ymin(M0, t). If a pair (marking,
binary vector) not contained in the previous nodes is obtained, a new node is added to the
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M0 [ 1 0 0 0 0 0 0 0 0 0 0 ]T
M1 [ 0 1 0 0 0 0 0 1 0 0 0 ]T
M2 [ 0 1 0 0 0 0 0 0 1 0 0 ]T
M3 [ 0 0 1 0 0 0 0 1 0 0 0 ]T
M4 [ 0 0 1 0 0 0 0 0 1 0 0 ]T
M5 [ 0 0 0 0 0 0 1 1 0 0 0 ]T
M6 [ 0 0 0 0 0 0 1 0 1 0 0 ]T

Table 5.1: The markings of the BRG in Figure 5.3.
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Figure 5.3: The BRG of the PN in Figure 5.2.

graph. The arc going from the initial node to the new node is labeled (l, e). The procedure
is iterated until all basis markings have been considered. Note that the approach here
presented always requires to enumerate a state space that is a subset (usually a strict
subset) of the reachability space. However, as in general for diagnosis approaches, the
combinatory explosion cannot be avoided.

Example 5.21. Consider again the PN in Figure 5.2, where To = {t1, t2, t3, t4, t5, t6, t7},
Tu = {ε8, ε9, ε10, ε11, ε12, ε13}, T 1

f = {ε11} and T 2

f = {ε12}. The labeling function is defined
as follows: L(t1) = a, L(t2) = L(t3) = b, L(t4) = L(t5) = c, L(t6) = L(t7) = d.

The BRG is shown in Figure 5.3. The notation used in in this figure is detailed in
Tables 5.1 and 5.2. Each node contains a different basis marking and a binary row vector
of dimension two, being two the number of fault classes. As an example, the binary vector[0 0] is associated with M0 because T (M0, T

i
f) is not feasible for i = 1 and i = 2. From

node M0 to node M1 there is one arc labeled a with the null vector as minimal explanation.
The node containing the basis marking M2 has binary vector [0 1], because T (M2, T

i
f) is

feasible only for i = 2. Node (M2, [0 1]) has two output arcs both labeled with d and both
directed to node (M1, [0 0]) with two different minimal explanations 0⃗ and e1, respectively,
plus another output arc (b, 0⃗) directed to node (M4, [1 1]). ∎

The following algorithm summarizes the main steps of the on-line diagnosis carried out
by looking at the BRG.
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Algorithm 5.22. (Diagnosis using the BRG)
Input: the BRG of a labeled PN.
Ouput: a diagnosis state associated with a stream of output labels.

1. Let w = ε.
2. Let M(w) = {(M0, 0⃗)}.
3. Wait until a new observable transition fires.

Let l be the observed event.
4. Let w′ = w and w = w′l.
5. Let M(w) = ∅, [Computation of M(w)]
6. For all nodes containing M ′ : (M ′, y′) ∈M(w′), do

6.1. for all arcs exiting from the node with M ′, do
6.1.1. let M be the marking of the output node

and e be the minimal e-vector on the edge from M ′ to M ,
6.1.2. for all y′ such that (M ′, y′) ∈M(w′), do

6.1.2.1. let y = y′ + e,
6.1.2.2. let M(w) =M(w) ∪ {(M,y)},

7. for all i = 1, . . . , r, do [Computation of the diagnosis state]
7.1. if ∀ (M,y) ∈M(w) ∧ ∀tf ∈ T i

f it is y(tf) = 0, do

7.1.1. if ∀ (M,y) ∈M(w) it holds x(i) = 0,
where x is the binary vector in node M , do

7.1.1.1. let ∆(w,T i
f ) = 0,

7.1.2. else
7.1.2.1. let ∆(w,T i

f ) = 1,

7.2. if ∃ (M,y) ∈M(w) and (M ′, y′) ∈M(w) s.t.:
(i) ∃tf ∈ T i

f such that y(tf) > 0,

(ii) ∀tf ∈ T i
f , y′(tf) = 0, do

7.2.1. let ∆(w,T i
f) = 2,

7.3. if ∀ (M,y) ∈M(w) ∃tf ∈ T i
f : y(tf) > 0, do

7.3.1. let ∆(w,T i
f) = 3.

8. Goto step 3. ∎

Steps 1 to 6 of Algorithm 5.22 enable us to compute the set M(w). When no event is
observed, namely w = ε, thenM(w) = {(M0, 0⃗)}. Now, assume that a label l is observed.
All couples (M,y) such that an arc labeled l exits from the initial node and ends in a node
containing the basis marking M are included in the set M(l). The corresponding value
of y is equal to the e-vector in the arc going from M0 to M , being 0⃗ the j-vector relative
to M0. In general, if w′ is the actual observation, and a new event labeled l fires, one has
to consider all couples (M ′, y′) ∈M(w′) and all nodes that can be reached from M ′ with
an arc labeled l. Let M be the basis marking of the generic resulting node. Include in
M(w) =M(w′l) all couples (M,y), where for any M , y is equal to the sum of y′ plus the
e-vector labeling the arc from M ′ to M .

Step 7 of Algorithm 5.22 computes the diagnosis state. Consider the generic ith fault
class. If ∀(M,y) ∈ M(w) and ∀tf ∈ T i

f it holds y(tf) = 0, the ith entry of all the
binary row vectors associated with the basis markings M has to be checked, such that
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ε8 ε9 ε10 ε11 ε12 ε13

e1 0 0 0 0 1 1
e2 1 1 1 0 0 0
e3 1 0 0 1 0 0

Table 5.2: The e-vectors of the BRG in Figure 5.3.

(M,y) ∈M(w). If these entries are all equal to 0, it holds ∆(w,T i
f) = 0, otherwise it holds

∆(w,T i
f) = 1. On the other hand, if there exists at least one pair (M,y) ∈M(w) with

y(tf) > 0 for any tf ∈ T i
f , and there exists at least one pair (M ′, y′) ∈M(w) with y(tf) = 0

for all tf ∈ T i
f , then ∆(w,T i

f) = 2. Finally, if for all pairs (M,y) ∈M(w), y(tf) > 0 for any

tf ∈ T i
f , then ∆(w,T i

f) = 3.

The following example shows how to perform diagnosis on-line simply looking at the BRG.

Example 5.23. Consider the PN in Figure 5.2 and its BRG in Figure 5.3. Let w = ε.
By looking at the BRG it holds that ∆(ε,T 1

f ) = ∆(ε,T 2

f ) = 0 being both entries of the row
vector associated with M0 equal to 0.

Now, consider w = ab. In such a case M(w) = {(M3, 0⃗)}. It holds ∆(ab,T 1

f ) = 1 and
∆(ab,T 2

f ) = 0 being the row vector in the node equal to [1 0].
Finally, for w = abbc it holds ∆(abbc, T 1

f ) = 2 and ∆(abbc, T 2

f ) = 1. In fact M(w) ={(M4, y1), (M5, y2), (M6, y3)}, where y1 = e2, y2 = y3 = e3, and the row vectors associated
with M4 and M5 are respectively [1 1], [0 0] and [0 1]. ∎

Let us conclude this section observing that the BRG is a graph containing all information
necessary for the construction of an observer. In the case of bounded PNs a modified
version of the BRG is used to build the diagnoser that it is used to study the diagnosability
of the system [16]. Note that, if an automaton has a number N of states, in the worst
case (that depends on the labeling of events) the cardinality of the set of nodes of its
observer is 2N − 1 [19]. On the contrary, the number of nodes of the BRG is equal to the
number of basis markings that is at most equal to the number of reachable markings.

5.2 A Matlab toolbox for diagnosis of Petri nets

The tool is currently supported by the Distributed Supervisory Control of Large Plants
(DISC) Software Platform. The DISC Project has been supported by the European
Commission (see http://www.disc-project.eu/software_platform.html).

Note also that the developed tool provides other features whose theoretical results are
not here presented. In particular, the problem of diagnosability can be investigated for
the class of labeled PNs. An interesting comparisons with the other existing techniques
can be found in [15], where a PN model is taken from the manufacturing area. This
benchmark shows how the use of basis marking can greatly outperform tools based on an
exhaustive enumeration of the state space.

http://www.disc-project.eu/software_platform.html
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5.2.1 The tool

In this section it is briefly illustrated a MATLAB function (BRG.m) that, given a bounded
labeled PN, builds the basis reachability graph. This function, together with other MAT-
LAB functions for diagnosis of labeled PNs, can be downloaded on the web [99].

The inputs of the MATLAB function BRG.m are:

• the structure of the net, i.e., the matrices Pre and Post;

• the initial marking M0;

• a cell array F that has as many rows as the number of fault classes: each row
contains the indices of the transitions that belong to the corresponding class;

• a cell array L that has as many rows as the cardinality of the considered alphabet:
each row contains the indices of the observable transitions having the corresponding
label;

• a cell array E that contains in each row a character (or a string of characters)
defining a label of the considered alphabet. The cell array E is ordered according
to L.

As an example, for the PN in Figure 5.2 introduced in the Example 2.29 the cell arrays
F , L and E are:

F = {[11]; [12]}, L = {[1]; [2 3]; [4 5]; [6 7]}, E = {[′a′]; [′b′]; [′c′]; [′d′]}.
The output of the MATLAB function BRG.m is a cell array T that univocally identifies
the resulting BRG. It has as many rows as the number of nodes of the BRG. A different
row is associated with each node and contains the following information:

• an identifier number of the node;

• the transpose of the basis marking M i
b associated with the node;

• a vector with as many columns as the number of fault classes: the jth element is
equal to xi(T j

f ) evaluated at M i
b . Thus, xi(T j

f ) = 0 if T (M i
b , T

j
f ) is not feasible, 1

otherwise;

• the indices of the transitions enabled at the node;

• the identifier number of the nodes that are reached firing an enabled transition and
the corresponding j-vector.
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Figure 5.4: Layout of the manufacturing system.

5.2.2 A manufacturing example

In this section the diagnosis approach proposed in Section 5.1.2 is applied to an example
modeling a manufacturing system. The considered net is similar to the one described
in [138]. The automated manufacturing system layout is shown in Figure 5.4 and the
corresponding PN is depicted in Figure 5.5, where thick transitions represent observable
events and thin transitions represent unobservable events.

The plant consists of four machines (M1 to M4), four robots (R1 to R4), one AGV system
(AGV), one buffer of finite capacity (B), two inputs of parts to be processed (I1 and I2)
and two outputs for the processed parts (O1 and O2). The two production lines produce
two different kinds of final product.

This PN has 46 places and 39 transitions. The marking of place p41 (γ) represents the
number of free slots of the buffer, while α (the marking of place p1) and β (the marking
of place p16) represent the number of parts of type 1 and 2, respectively. Places from 42

to 46 represent the faulty behavior (in the sense that these places are marked only if a
fault has occurred).

The set of observable transitions To is composed by transitions from t1 to t13, the set of
unobservable but regular transitions Treg is composed by transitions from ε14 to ε35 and
the set of fault transitions is partitioned into three fault classes: T 1

f = {ε36}, T 2

f = {ε37}
and T 3

f = {ε38, ε39}. The first fault class models a fault in the robot R3 that moves a
part from the output buffer of machine M1 to the input buffer of machine M2, rather
than putting it in the buffer B. Analogously, the second fault class models a fault in the
robot R4 that moves a part from the output buffer of machine M3 to the input buffer of
machine M4, rather than putting it in the buffer B. Finally, the third fault class models
a fault in the AGV. In particular, when the AGV is working correctly, a processed part
exits the system and a new one is admitted. If a fault in the AGV occurs parts do not
exit the production lines, and are not replaced by new input parts. However, in faulty
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Figure 5.5: Petri net model of the manufacturing system in Figure 5.4.
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behavior the sensors associated with the AGV may indefinitely produce the same signal
they provide when a part regularly exits the production line.

Assume that each robot is equipped of a sensor that observes each time that the robot picks
up a part. In particular, for R1 L(t1) = a and L(t6) = e, for R2 L(t4) = c and L(t9) = l,
for R3 L(t2) = L(t3) = L(t11) = b, for R4 L(t7) = L(t8) = L(t12) = g. Moreover assume it is
possible to observe each time that a part is moved by the AGV L(t5) = L(t10) = L(t13) = d.

In this section the results of the computation of the BRG for several initial states are
presented. In particular, the cardinality of the number of nodes of the BRG, denoted as∣BRG∣, are summarized in Table 5.3 for different values of α and β.

The table also shows the cardinality of the reachability set R , i.e., ∣R∣. This is an
extremely important parameter to appreciate the advantage of using basis markings rather
than exhaustively enumerating the set of reachable states, as it typically occurs in the
automata based approaches. The value of ∣R∣ has been computed using the PN tool TINA
(Time PNs Analyzer) (see TINA website: http://homepages.laas.fr/bernard/tina).

— Column 1: (α + β) represents the total number of parts to be processed by the two
production lines.

— Columns 2 and 3: α and β represent the number of parts to be processed in the first
and second production line, respectively.

— Column 4 shows the number of nodes ∣R∣ of the reachability graph.

— Column 5 shows the number of nodes ∣BRG∣ of the BRG.

Table 5.3 shows how the state space of the reachability graph highly increases with the
number of pallets circulating in the first and in the second production line (places p1 and
p16). In particular, it increases exponentially. Note that, also in the case of the BRG
the number of nodes increases exponentially, but much more slowly with respect to the
cardinality of R.

Since robot R1 always starts taking one part from the first production line, all cases in
which α is equal to zero present only one node corresponding to M0 both in the BRG
and in the reachability graph. Moreover all cases in which β is equal to zero present 9

nodes in the BRG and 27 nodes in the reachability graph corresponding respectively to
the number of basis markings and consistent markings that can be reached when only one
part is introduced in the first production line. Finally, since the first production line is
perfectly symmetric to the second one the number of nodes both in the BRG and in the
reachability graph does not change exchanging α with β. This is shown in Table 5.3.

For the considered PN, on the basis of the above simulations, it can be concluded that the
diagnosis approach here presented is suitable from a computational point of view. In fact,
thanks to the basis markings the reachability space can be described in a more compact
manner.

Finally, remark that, although in this thesis the problem of diagnosability is not addressed,
the manufacturing system illustrated in this section is diagnosable for any value of α, β

and γ. The diagnosability of this system has been tested using the MATLAB tool in [99].
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α + β α β ∣R∣ ∣BRG∣
2 2 0 27 9
2 1 1 1,640 170
2 0 2 1 1

3 3 0 27 9
3 2 1 10,260 604
3 1 2 10,260 604
3 0 3 1 1

4 4 0 27 9
4 3 1 35,098 1,343
4 2 2 62,210 2,128
4 1 3 35,098 1,343

5 5 0 27 9
5 4 1 78,404 2,294
5 3 2 205,761 4,691
5 2 3 205,761 4,691
5 1 4 78,404 2,294

6 6 0 27 9
6 5 1 131,614 3,325
6 4 2 448,306 7,963
6 3 3 655,472 10,250
6 2 4 448,306 7,963
6 1 5 131,614 3,325

7 7 0 27 9
7 6 1 186,808 4,373
7 5 2 741,035 11,503
7 4 3 1,383,391 17,273
7 3 4 1,383,391 17,273
7 2 5 741,035 11,503
7 1 6 186,808 4,373

Table 5.3: Numerical results in the case of γ = 8.





Chapter 6

Concluding remarks

In this last part of the thesis conclusion for diagnosis and testing of Petri nets are drawn.

Concluding remarks for testing Petri nets

The first part of this thesis is dedicated to the computation of synchronizing sequences
in the Petri net (PN) framework. It has been shown how the classic automata approach
can be applied with minor changes to the class of bounded synchronized PNs. According
to this approach (cf. RG approach), one exploits the reachability graph of the net —
which describes the state-space of the net and depends on the initial marking — and its
corresponding auxiliary graph of cardinality n⋅(n+1), with n reachable markings. Clearly,
n is exponential in the number of tokens the net contains.

Afterwards, we have considered a special class of synchronized PNs, called state machine
(SM) PNs, characterized by the fact that each transition has a single input and a single
output arc. For this class, we have proposed a novel approach which allows to determine
a SS for nets containing 1 token (cf. 1-SS). This SS can be used as a building block
to construct a SS for the same net in the k-token case (cf. k-SS). Such a sequence is
called synchronizing transition sequence (STS). The STS approach constructs a SS with
a depth-first search on the net structure — thus avoiding the state-space explosion prob-
lem encountered in the RG-approach — and verifies certain conditions over the labeling
function. However, not all SSs can be obtained in this way, because of the conditions the
STS approach requires.

It is then provided another approach, which is a modified implementation of the RG
approach, based on an arc-pruning. In fact, for a given target place, a modified reachability
graph (MRG) is constructed, which is the RG of the net with only 1 token and is obtained
by removing all transition associated with any event in a set of forbidden events. Any
1-SS constructed by the way of the MRG approach leads to readily determine a k-SS for
an arbitrary large k without any further computation. The MRG approach is also proven
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to to be much less restrictive than the STS approach, covering then larger number of
cases where a SS can be found.

A set of experimental results is also given with a tool for synchronization that we have
developed. First, the three presented approaches are compared for randomly generated
SM PNs. Furthermore they are applied to a family of manufacturing plants, which are
not SM PNs.

Finally, our results are further extended to the case of unbounded PNs. To the best of
our knowledge, the problem of determining a SS is here treated for the very first time
on unbounded systems. It is proposed a simple approach, that is a generalization of the
RG approach. To do so, a modified coverability graph construction is provided to yield
a faithful representation of the PN behavior. Obviously, such an approach suffers from
the fact that no finite space representation can exhaustively answer to the reachability
problem. So results are restricted to bounded places.

There are several open lines for interesting future works. First of all improve the outcomes
of the proposed approaches for state machine PNs. In this framework, for the multiple
tokens case, the length of the SS grows polynomially with the number of token. For
instance, some heuristics could be introduced to provide a lower upper bound.

We plan to extend our approach to other structures of synchronized PNs such as the
marked graphs, for which there can not be any conflict but concurrency is allowed, and
the free-choice PNs, where there can be concurrency and conflict, but not at the same
time.

A possible case study of interest is extending the synchronized PN definition, including
the always occurring event ε̂, which is the neutral element of the monoid E∗. The always
occurring event is not an input event. In fact, any transition t associated with ε̂ is fired
as soon as it is enabled by the current marking, since this event is "always occurring".
In this case, the PN may present "unstable markings", i.e., markings where the net can
not be obviously synchronized. In fact, when the PN reaches any of these markings, the
current marking instantaneously changes under the occurrence of ε̂. When this condition
holds, a challenging problem would be to determine the minimal number of controllable
transitions so that there still exists a SS.

Another work we intend to do is further generalizing synchronized PNs to take also the
time into consideration.

We have also planned to deal with a more general model such as "the interpreted PNs".
This input-output model combines the two models presented in this thesis, synchronized
PNs and labeled PNs. In this nets an enabled transition is fired if its associated input event
occurs and it produces an either observable or non-observable output event, depending on
the labeling. In this framework, we want to generalize our approaches for first constructing
homing sequences and finally taking into consideration the state verification problem, the
conformance testing problem and the machine identification problem.
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Concluding remarks for diagnosis of Petri nets

The second part of the thesis has been dedicated to the diagnosis of Petri nets (PNs).
For the provided approach — differently to the synchronization problem — as most of
the approaches dealing with diagnosis of DES, it is assumed that the faulty behavior is
completely known, thus a fault model is available.

The provided diagnosis approach takes into account labeled PNs and is based on the
notion of basis markings and justifications, that allow to characterize the set of markings
that are consistent with the actual observation, and the set of unobservable transitions
whose firing enable it. This ensures to avoid an exhaustive enumeration of the reachability
set of the net both for bounded and unbounded labeled PNs whose unobservable subnet
is acyclic. Here, four diagnosis states are defined, each one corresponding to a different
degree of alarm.

However, in the case of bounded PNs the procedure can be simplified, by computing the
so-called basis reachability graph. This may move off-line the most burdensome part of
the computation.

Finally, a tool for the diagnosis of labeled bounded PNs has been presented and the
simulations results using a net system taken from the manufacturing domain have been
shown.
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Appendix A

Strongly connected component

decomposition on automata

When operating on automata, it can be useful to work over its graphical representation,
i.e. its directed graph.

A directed graph can be partitioned in its strongly connected components. A component
is called strongly connected if there is a path from each of its vertex to every other of
its vertices. The strongly connected components of a directed graph G are its maximal
strongly connected subgraphs. If each strongly connected component is contracted to a
single vertex, the resulting graph is a directed acyclic graph, the condensation of G.

The strongly connected components of a directed graph can be computed efficiently by
the way of three main approaches: the Kosaraju’s algorithm [88], also known as the
Kosaraju-Sharir algorithm, the Tarjan’s algorithm [120] and the path-based strong compo-
nent algorithm [35].

In practice the last two, the Tarjan’s and the path-based algorithm, are preferred, since
they terminate their computation by only one depth-first search rather than two.

Here, we provide the Tarjan’s algorithm — since both previously presented algorithms are
equivalently efficient — to decompose the graph of a given automaton in its maximally
strongly connected components.

The algorithm is starts from a random node, the one having the lowest index, and conducts
depth-first searches on every not explored nodes. The strongly connected components
form sets of subtrees.

Each time a node is visited, it is placed on an initially empty stack S, that keeps track
of the visiting order. When the search returns from a subtree, the nodes are taken from
the stack and it is determined whether each node is the root of a strongly connected
component. If a node is the root of a strongly connected component, then it and all of
the nodes taken off before it form that strongly connected component.
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AUTOMATA

Note that the property of a node of being a root node applies only to the algorithm itself,
since outside of it a strongly connected component has no single "root" node.

The root node is simply the first node of the strongly connected component which is
encountered twice during the depth-first traversal. When a node is identified as the root
node (step 6.), once recursion on its successors has finished, all nodes on the stack from
the root upwards form a complete strongly connected component. To find the root, each
node is given a depth search index, called v.index. Such an index numbers the nodes in
the order they are encountered. In addition, each node is assigned a value v.lowlink that
is equal to the smallest index of some node reachable from v, and is always less than
or equal to v.index if no other node is reachable from v. Therefore v is the root of a
strongly connected component if and only if v.lowlink == v.index. The value v.lowlink

is computed during the depth first search such that it is always known when needed.

Algorithm A.1. [120] (Tarjan’s algorithm for strongly connected component decomposi-
tion)
Input: a graph G = (V,E).
Output: the set of strongly connected components defined as partition of the set of vertices
V .

1. index := 0

2. S := empty

3. For each vertex v ∈ V , do

3.1 if v.index is not defined

3.1.1 strongconnect(v)

function strongconnect(v)

1. v.index := index [Setting the depth index for v to the smallest unused index]

2. v.lowlink := index

3. index := index + 1

4. S.push(v)

5. For each connected vertex v,w ∈ V , do [Analyzing successors of v]

5.1. if w.index is not defined [Successor w has not yet been visited; recurse on it]

5.1.1. strongconnect(w)

5.1.2. v.lowlink := min(v.lowlink, w.lowlink)

5.2. else if w ∈ S [Successor w is in stack S and hence in the current SCC]

5.2.1. v.lowlink := min(v.lowlink, w.index)

6. If v.lowlink = v.index [v is a root node, pop the stack and generate an SCC]
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6.1. start a new strongly connected component.

6.2. While w ≠ v

6.2.1. w := S.pop();

6.2.2. add w to current strongly connected component;

6.3. output the current strongly connected component

end function ∎

S is the stack, which starts out empty (step 2.) and stores the history of nodes explored
but not yet committed to a strongly connected component (step 4.).

The outermost loop (step 5.) searches each node that has not yet been visited, ensuring
that nodes which are not reachable from the first node are still eventually traversed. The
function strongconnect computes a single depth-first search of the graph, determining
every successors of node v, and returning all strongly connected components of that
subgraph.

When each recursion is done, if its low-link is still set to its index, then it is the root
node of a strongly connected component, formed by all of the nodes above it on the stack
(step 6.). The nodes are popped out of the stack only when an entire strongly connected
component has been found (step 6.2.1.). At this moment all of these nodes are presented
as a strongly connected component.







Test and diagnosis of Discrete Event Systems using Petri Nets

State-identification experiments are designed to identify the final state of a discrete event system (DES) when its
initial state is unknown. A classical solution to this problem, assuming the DES has no observable outputs, consists
in determining a synchronizing sequence, i.e. a sequence of input events that drives the system to a known state. This
problem was addressed and essentially solved in the 60’ using finite state machines or automata. The main objective
of this thesis is to use Petri nets for solving the state-identification problem more efficiently and for a wider class of
systems, with possibly infinite states.
We start showing that the classical method based on automata for constructing a synchronizing sequence can be
easily applied with minor changes to synchronized Petri nets, a class of non-autonomous nets where each transition is
associated with an input event. The proposed approach is fairly general and it works for arbitrary bounded nets with
a complexity that is polynomial with the size of the state space. However, as most of the problem solving methods
for DES, it incurs in the well-known state-space explosion problem.
Looking for more efficient solutions, we begin by considering a subclass of Petri nets called state machines. We first
consider strongly connected state machines and propose a framework for synchronizing sequence construction that
exploits structural criteria, and thus does not require an exhaustive enumeration of the state space of the net. These
results are further extended to larger classes of nets, namely non strongly connected state machines and nets containing
state machine subnets. Finally we consider the class of unbounded nets that describe infinite state systems: even in
this case we are able to compute a set of sequences to synchronize the marking of bounded places. A Matlab toolbox
implementing all approaches previously described has been designed and applied to a series of benchmarks.
An additional problem addressed in this thesis and partially related to state-identification, is the failure diagnosis of
DES, i.e., the process of identifying the occurrence of a fault based on observable symptoms. Our work is centered on
diagnosis of DES using model-based methods where a common assumption requires that a fault model be available.
The system is represented by a labeled Petri net, in which transitions can be either observable or silent; a fault is
modeled by a silent transition. We consider an efficient approach, based on basis markings, to compute a diagnosis
state which produces different degrees of alarm, such as “normal” or “faulty” or “uncertain”. A Matlab toolbox for
solving the diagnosis problem and the related problem of diagnosability has been designed, and tested on a parametric
example.

Test et diagnostic des systèmes à événements discrets par les réseaux de Petri

L’exécution d’un test d’identification d’état d’un système à événement discret (SED) a pour but d’en identifier l’état
final, lorsque son état initial est inconnu. Une solution classique à ce problème, en supposant que le SED n’ait pas de
sorties observables, consiste à déterminer une séquence de synchronisation, c.à-d., une séquence d’événements d’entrée
qui conduit le système sur un état connu. Ce problème a été abordé et complètement résolu dans les années 60’ à
l’aide de machines à états finis ou d’automates. L’objectif principal de cette thèse est d’utiliser les réseaux de Petri
dans le but d’obtenir une résolution plus optimal du problème d’identification d’état et pour une plus large classe de
systèmes, dont le nombre d’états pourrait être infini.
Dans une première approche, nous montrons que la méthode classique des automates pour la construction des séquences
de synchronisation peut être aisément étendue — par des modifications mineures — aux réseaux de Petri synchronisés.
Pour cette classe de réseaux non-autonomes, toute transition est associée à un événement d’entrée.
L’approche proposée est assez générale, dans la mesure où elle s’applique à des réseaux bornés arbitraires. Cependant,
comme la plupart des méthodes s’appliquant aux SEDs, elle engendre le problème classique d’explosion combinatoire
du nombre d’états. Dans le but d’obtenir des des meilleures solutions, nous considérons une classe spéciale de réseaux
de Petri, connue sous le nom de graphes d’état (GdE). Pour ces réseaux, nous considérons d’abord les GdE fortement
connexes et nous proposons deux approches pour la construction de séquences de synchronisation. Ces approches
exploitent les propriétés structurelles du réseau et ne nécessitent pas ainsi une énumération exhaustive de l’espace
d’état. Ces résultats s’étendent par la suite aux GdE non fortement connexes et puis à tout RdP synchronisés
composés de GdE. Enfin, nous considérons la classe des réseaux de Petri non bornés et proposons de construire des
séquences qui synchronisent le marquage des places non bornées. Une boîte à outils fournit toutes les approches
précédemment décrites et est appliquée à des différents bancs d’essai.
Dans cette thèse, nous traitons aussi le diagnostic de fautes de SED, c.à-d., le processus d’identification des causes
d’un échec basé sur l’observation de symptômes. Nous nous intéressons au diagnostic de SED à l’aide de méthodes
analytiques basées sur modèle, sous l’hypothèse que le modèle de faute soit disponible. Le système est alors modélisé
par un réseau de Petri étiqueté, pour lequel les transitions sont observables si elles sont associées à un événement de
sortie, ou silencieuses; tout comportement fautif est modélisé par une transition silencieuse. Nous considérons une
approche efficace basée sur la notion de marquages de base qui calcule un état de diagnostic, qui caractérise différents
degrés d’alarme, tels que "normal", "fautif" ou "incertain". Une boîte à outils pour la résolution du problème de
diagnostic et de celui de la diagnosticabilité est fournie et testée pour un exemple paramétrique.
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