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Abstract

In this thesis several results on two main topics are collected: the
coordination of networked multi agents systems and the diffusion of
innovation of social networks. The results are organized in two parts,
each one related with one of the two main topics. The common as-
pect of all the presented problems is the following: all the system are

represented by graphs.

Two are the main contributions of the first part.

e A formation control strategy, based on gossip, which leads a set
of autonomous vehicles to converge to a desired spatial dispo-
sition in absence of a common reference frame. If the vehicles
have common direction, we prove that the proposed algorithm is

robust against noise on displacement measurement.

e The formalization of the Heterogeneous Multi Vehicle Routing
Problem, which can be described as follows: given an hetero-
geneous set, of mobile robots, and a set of task to be served
randomly displaced in a 2D environment, find the optimal task
assignment to minimize the service cost. We firstly character-
ize the optimal centralized solution, and then we propose two
distributed algorithms, based on gossip, which lead the system
to a sub-optimal solutions and are significantly computationally

more efficient than the optimal one.
The contributions of the second part are the following.

e We study how the innovation spreads in a Social Network ac-
cording to the so called Linear Threshold Model, in which the

innovation is incepted in the network starting from a seed set,



and nodes adopt the innovation if the ratio of the neighbours
that have already adopted it is greater than or equal a certain
threshold value. We focus on the cohesive subset of the network,
which can be used to compute the set of final adopters. If a set
is cohesive and none of the nodes have adopted the innovation at
a certain time ¢, then they are not able to adopt the innovation
at any t' > t. We propose an algorithm based on linear pro-
gramming which computes the maximal cohesive subset of the

complement of the seed set.

According to the Linear Threshold Model, we define two prob-
lem of interest in Social Networks analysis and characterize the
optimal solution: the Influence Maximization Problem in Finite

Time and the diffusion of innovation over a target set.

We characterize the novel Non Progressive Linear Threshold
Model, which extends the classical Linear Threshold Model. We
formalize the model and we give a characterization of the network

dynamics in terms of cohesive and persistent sets.
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Introduction

Introduction to the thesis

This thesis collects several results on two main topics: the coordination of net-
worked multi agents systems and the diffusion of innovation of social networks.
Both topics have been widely studied in literature in recent years and in different
fields, since it is evident in nature the enormous power of the collectivity respect
to a single individual: the more a group of individuals is organized, the more it
grows up and generate well-being to each member. Moreover, it has always been
evident that many target can be better reached by a coordinated group of people
than a single individual, and in some cases cooperation is necessary. At the same
time, there are some phenomena in which some individuals (or group of them)
have a greater influence in the community than others. Thus, in the last two
decades, researchers of different fields have been attracted by such concepts: so-
ciology, biology, informatics, electronics, artificial intelligence and control theory.

In this manuscript we address different problems characterized by some com-

mon aspects:

e all the considered the systems are sets of simple autonomous systems (agents

or individuals), which are connected together by a network;

e in each system the behaviour of each agent is influenced by the behaviour

of interconnected agents;

e all the described systems can be represented using graphs, thus all the

mathematical results of this thesis are based on graph theory.

The thesis is organized in two parts, each one focused on one of the two main

topics.



Part 1: Coordination of multi-agent systems through

consensus

In the first part we focus on the coordination of multi vehicle systems. Given a set
of autonomous vehicle, which can exchange information through a communication
network, we propose several solutions to problems which were largely studied in
literature in the recent years. All the results presented in this part are based
on distributed consensus algorithms: agents exchange information according to a
common protocol in order to reach an agreement on a certain quantity of interest.
In particular, most of the proposed solutions are based on gossip algorithms,

which are characterized by the following:
e the communication scheme involve only a couple of agents at each step;
e the communication steps between couple of agents are asynchronous.
The contribution of the first part are the following.

(1) A formation control strategy. We propose a novel decentralized coordination
strategy, based on gossip, that allows a dynamic multi-agent system, in
absence of a common reference frame, to estimate a common orientation and
achieve arbitrary spatial formations with respect to the estimated frame.
We assume that the agents are mobile point-mass vehicles that do not
have access to absolute positions (GPS). To the best of our knowledge this
strategy extends the state of art since it simultaneously solves two problem

which are commonly considered separately:
e the achievement of an agreement on a common reference frame in
absence of it;
e the achievement of a desired spatial disposition.

The method is robust against measurement noise of odometry or inertial

navigation.

(2) Distributed solutions for the heterogeneous multi-vehicle routing Problem.
We focus on problems of MTSP (Multi Travelling Salesman Problem), and
problems of MVRP (Multi Vehicle Routing Problem). Given a network,



characterized by a set of nodes and a set of connections between them, the
problem of MTSP is to optimally assign nodes, which have to be visited, to
the different vehicles, in order to minimize the sum of the costs of the paths.
The problem of MVRP represents an extension of the MTSP in which other
variables are taken into account such as the capacity of vehicles or costs
assigned to the nodes. We extend the state of art since we consider the case
where a set of heterogeneous tasks arbitrarily distributed in a plane has to
be serviced by a set of mobile robots, each with a given movement speed
and task execution speed. Our goal is to minimize the maximum execution
time of robots. We propose two distributed algorithms based on gossip
communication: the first algorithm is based on a local exact optimization

and the second is based on a local approximate greedy heuristic.

Part 2: Diffusion of innovation in Social Networks

In the second part we focus on the diffusion of innovation in social networks. By
the expression social network we identify a group of people which are connected
together by some types of relationship: friendship, love, business. In particular
we focus on the study of the mechanism which convince people to adopt an
idea or an innovation, and how the behaviour of each individual is influenced by
the behaviour of the connected individuals or groups. Following the trend of the
control community, we study mechanisms of innovation spread in Social Networks
in order to forecast, optimize, control some diffusion behaviours. Our reference
mathematical model is the so called linear threshold model, and the contribution

of this thesis are the following.

(1) Analysis and control of the diffusion of innovation in the Linear Threshold
Model. We adopt the classical linear threshold model, which is characterized

as follows:

e at each individual is assigned a threshold value, which is a value in
[0, 1];

e a node adopts the innovation as soon as the ratio of its neighbours

who have already adopted it is above its threshold value;



e the innovation is incepted in the network by a seed set of individuals.

According to this model, we firstly present an integer programming prob-
lem and an iterative algorithm based on linear programming which take as
input the set of innovators and compute the maximal cohesive set of the
complement of the seed set. If a set is cohesive and none of the nodes have
adopted the innovation at a certain time ¢, then they are not able to adopt
the innovation at any ¢’ > t. The output of these algorithms can be used
to compute the set of final adopters in the network. We extend the state
of art by proposing a way to compute the maximal cohesive set in a given

social network, which was just defined so far, to the best of our knowledge.

Then we introduce and formalize with integer programming two problems.
The "influence maximization in finite time problem (IMFT)" is that of
finding a seed set of r individuals that maximizes the spread of innovation
in the network in k steps. This problem represents an extension of the
classical influence maximization problem, which considers an infinite time

horizon.

The second one is that of finding a seed set of whose cardinality is minimal

which diffuses the innovation to a desired set of individual in k steps.

A nowel non-progressive instance of the linear threshold model. The classi-
cal linear threshold model has a progressive nature, i.e., an individual can
adopt the innovation if it hasn’t adopted yet, but once adopted it cannot
abandon it. We extend the classical model by proposing a novel model in
which each individual in the social network is influenced by the behaviour
of its neighbours, and at each steps it decides either to adopt, abandon or

maintain the innovation by following a threshold mechanism.

We assume that the innovation is incepted in the network by a seed set of
individuals which are assumed to maintain the innovation independently of
the state of their neighbours for a finite time. We identify all the possible
evolutions of the network under the proposed model, and we describe in
details the evolution of the system in terms of two particular type of sub-

groups, namely Cohesive and Persistent sets.



Part 1

Coordination of Multi-Agent

Systems






Chapter 1

Using consensus to coordinate
multi-agent systems: introduction

and literature overview.

Multi Agent Systems (MAS) are a class of systems characterized by a set of
entities , agents, which interact in a shared environment to achieve a common
target. Such systems have attracted the attention of many researchers from dif-
ferent fields in the last decades: economy, sociology , philosophy, and , of course,
computer science and automation.

In the control theory community the term agent identify an autonomous sys-
tem, with a simple dynamic, which interact with the environment where it op-
erates and takes autonomous decision to reach a given target. A Networked
Control System (NCS) is a system composed by a set of agents which exchange
information through a communication network, and take decisions influenced by
neighbours to reach a common target. These system presents many advantages

with respect to isolated systems.

e In a MAS agents can execute in parallel sub-tasks of a single complex task:

that reduces the total execution time and the computational coasts.

e The absence of a single decision center makes the system more reliable and

robust to failures.

e The implementation of a set of simple agents which cooperates to solve a



problem can be less expensive than a complex centralized system.
Recently, in literature this concepts have been applied to problem such as:
e coordination of autonomous vehicles;
e environmental monitoring;
e localization systems;
e coordination of mobile robots.

Typical methods related with MAS are based on distributed consensus algorithms:
agents exchange local information to reach an agreement on a certain quantity of
interests. These algorithms have been applied to problems such as rendez-vous,
flocking or intrusion detection. When the state of the agents converge to the
average of their initial states we refer to it as average consensus.

In the next chapters we apply consensus algorithms to two different problems.

In Chapter 2 we present a novel formation control strategy, based on consen-
sus, which leads a set of autonomous vehicles to converge to a desired formation
in absence of a common reference frame. In Chapter 3 we use gossip algorithms
to solve a particular instance of the Multi Vehicle Routing Problem.

All the presented approaches are based on a special type of consensus al-
gorithms, , namely gossip algorithms. Gossip algorithms are characterized by
an asynchronous pairwise communication scheme: at each step only two agents
exchange information independently of the rest of the agents.

In the next sections we introduce the two studied problems in details.

1.1 Formation control for multi vehicle systems

Multi-agent systems consisting in a network of autonomous vehicles benefit greatly
from the global positioning system (GPS) in that it allows to close feedback con-
trol loops on estimated positions in a global reference frame common to every
vehicle, enabling several control tasks such as surveillance, patrolling, forma-
tion control or search and rescue missions to be performed. Unfortunately such
a powerful tool may not always be exploited for several reasons: for instance

the GPS signal is unreliable for indoor/underwater environments, during adverse



atmospheric conditions or in locations close to transmission power lines and is
vulnerable to jamming attacks. Furthermore, if the desired scale of relative dis-
tances between the vehicles is of the order of meters, the accuracy provided by
the GPS system might not be enough. The problem of how to coordinate a
network of agents in absence of absolute position information has thus received
great attention from the control theory community (1, 2, 3). Furthermore, it is
usually assumed that the full network topology is not known by the agents and
that only local point-to-point communication or sensing are available to model
sensors with limited capabilities. In (4) a theoretical framework and a method to
achieve flocking in a multi-agent system is proposed based on the famous three
rules of flocking by Reynolds (5) and on local interaction rules based on virtual
potentials that allow the achievement of flocking as global emergent behaviour.
In (6, 7, 8, 9) the consensus problem, i.e., the problem of how to make the state
of a set of agents converge toward a common value, was presented regarding also
the application of multi-agent coordination. In particular control strategies based
on consensus algorithms were described in these papers as a fundamental tool to
achieve synchronization of velocities, directions or the attainment of constant

relative distances between the agents.

In our approach we assume that each agent estimates relative positions with its
neighbours in its own local reference frame centered on it. A similar assumption
was made in (10), where a Nyquist criterion to determine the effect of the topology
of a multi-agent system performing formation control was proposed; in this case
the agents were assumed to have a common coordinate system but not a common
origin. Furthermore we firstly assume that each agent has an onboard compass,
which allows all the local frames to have the same orientation. Then we remove

this assumption.

Many formation control strategies are based on Leader-based approaches (11,
12), which require the network of vehicles to properly follow one or more leaders,
possibly controlled by a pilot, satisfying eventually some constraints. Also some
formation control strategies in the literature take advantage from the presence of
leaders exploiting network properties such as graph rigidity (13).

In Chapter 2 we design a coordination strategy for point-mass agents in which
leaders are not required, and the desired formation is expressed with coordinates

centred at the estimated common reference point. We also show that the proposed



strategy, based on an overcompensation of the agents’ displacement, is robust
against measurement noise. The concept of overcompensation is presented in the
following sections.

In (14) a decentralized algorithm to make a network of agents agree on the
location of the network centroid in absence of common reference frames was
presented; the algorithm is based on gossip (only random asynchronous pairwise
communications) and assumes static agents displaced in a 3-d space. In (15) a
decentralized algorithm based on gossip to make a network of agents agree on
a common reference point and frame was proposed, assuming static agents in
a 2-d plane. Our approach differs from (14, 15) in that we consider dynamic
agents that move while the the estimation process is executed, we assume that
all the agents local reference frames are oriented in the same direction and that
noise is affecting the relative position measurements. Furthermore, the proposed
approach is used to implement formation control.

Summarizing, the following are the main contributions of Chapter2.

e A novel local interaction protocol that achieves robust estimation of the

network centroid robust to parameter uncertainties.

e A method to achieve provably robust formation control with respect to

parameter uncertainties in the agents’ dynamics.

e An extended method to achieve robust formation control with formations of
arbitrary shape by performing agreement on a common reference frame. We

provide simulations to corroborate the description of this extended method.

1.2 The Heterogeneous Multi Vehicles Routing Prob-

lem

The travelling salesman problem (TSP) is a well known topic of research and
can be stated as follows: find the Hamiltonian cycle of minimum weight to visit
all the nodes in a given graph. Instructive surveys can be found in (16, 17, 18).
This problem has received great attention for both its theoretical implications
and its several practical applications. The Vehicle Routing Problem (VRP) is a

generalization of the TSP and was firstly introduced in (19): given a fleet of n

10



vehicles and a set of locations to be visited, the vehicle routing problem consists
of finding n tours to visit all locations in minimum time.

Several extensions of the TSP and the VRP have been proposed to better suit
practical applications by introducing several additional constraints and objectives
such as a variable number of vehicles, a finite load capacity, a cost associated to
each node which represents the demand of the costumer, service time windows
and several more. Numerous extensions are well summarized in (20, 21, 22).
Finally, several extensions explore a dynamic setting in which multiple vehicles
serve a dynamic number of tasks as discussed in (23).

Multi-vehicle routing problems have a combinatorial nature, as all the possible
tours must be explored to find the optimal configuration. Exact algorithmic
formulations are based, for example, on Integer Linear Programming (ILP) as
described in (22, 24). General ILP solvers are characterized by an exponential
computational complexity, thus in the last decades many approximate algorithms
have been proposed which are characterized by a lower computational complexity.
Examples of heuristics and approximate algorithms are presented in (21, 25, 26,
27, 28, 29).

We are interested in an instance of the VRP, called the Heterogeneous Multi
Vehicle Routing Problem (HMVRP), with the following properties: the number
n of vehicles is given a priori, a set X is given containing k tasks arbitrarily
distributed in a plane, to each task is assigned a servicing cost, each vehicle is
characterized by a movement speed and a task execution speed.

It has been shown in (30) that when comparing the length of the optimal tour
of one vehicle that visits all tasks locations with the multiple vehicle case, the
maximum length of the tours for the multiple vehicle case is proportional to the
tour length of the single vehicle case and proportionally inverse to the number of
vehicles. Both upper and lower bounds with such scaling were given.

In Chapter 3 we extend the result in (30) by considering execution times
instead of tour lengths to account for vehicles of different speeds, tasks with
arbitrary execution costs and vehicles with different task execution speeds. We
provide upper and lower bounds to the optimal solution as function of the single
vehicle optimal tour length to put in evidence how the performance is affected by
the number of vehicles.

We propose two distributed and asynchronous algorithms for the HMVRP:

11



the first one is based on the iterative optimization of the local task assignment
between pairs of vehicles (31), the second one is based on local task exchange of
assigned tasks, one by one, between couples of vehicles (32). For both algorithms
we provide deterministic bounds to their performance. The proposed approaches
to the HMVRP are distributed algorithms easy to implement in a networked
system and have favorable computational complexity with respect to the ratio
k/n between the number of tasks and vehicles instead of k as in the centralized
approach.

Note that the considered problem can also be seen as a particular instance of
a min/max VRP problem whose main feature is the heterogeneity of the speed
and the tasks execution speed of the vehicles. Related works on the min/max
VRP problem include (33, 34, 35).

Summarizing, the following are the main contributions of Chapter3.

e We formalize the centralized problem in terms of a mixed integer linear
programming (MILP) problem and extend the bounds in (30) for the multi
TSP to the HMVRP.

e We propose a first distributed algorithm, based on gossip communication
and on the solution of local MILP, to solve the HMVRP and characterize
some of its properties.

e We propose a second distributed algorithm to solve HMVRP, based on
gossip communication and on local task exchanges, characterized by a low

computational complexity.

e We provide simulations that show that the proposed algorithms attain a
constant factor approximation of the optimal solution with respect to the
number of vehicles. A detailed comparison among the performances of the

two proposed decentralized solutions is also presented.

12



Chapter 2

Formation Control Strategy

This chapter is organized as follow. In Section 2.1 we present the considered
system and the set of assumptions adopted. In Section 2.2 we propose a formation
control strategy which is characterize by a parallel application of two different
decentralized algorithms: a local displacement control rule which move each agent
toward a target point and a consensus algorithm which allows agents to reach an
agreement on a common reference frame. The concept of overcompensation is here
presented. In Section 2.2.4 the robustness of the proposed strategy is investigated

and an optimal choice of the algorithm parameters is discussed.

2.1 Preliminaries

Let a network of agents be described by a time-varying undirected graph §(t) =
{V,E(t)}, where V- = {1,...,n} is the set of nodes (agents), £ C {V x V} is the
set of edges e;; representing point-to-point bidirectional communication channels
available to the agents, E(t) : RT™ — E is the set of edges being active at time ¢.
Given a time interval 7', the joint graph G([t,¢ + T)) is the union of graphs G(t)
in the time interval [t,t + T') defined as G([t,t +T)) = {V, E([t,t +T)))}, where

e(tt+1) =emlJee+n ... Jew+1)

A node v € V is said to be reachable from v € V if there exists a path in the
graph from v to u. Node v € V is said to be a center node if it is reachable from

any node in V. In a connected undirected graph all the nodes are center nodes.

13



A node u € V is said to be aperiodic if the greatest common divisor of all the
possible path length from u to u is 1.

The state of each agent 7 is characterized by its absolute position z;, an
estimation of the origin of the common reference frame s; € R? and an angle 6;
which represents the orientation of the z-axis of the local reference frame with
respect to the z-axis of the global reference frame.

Let N;(t) = {j : eij(t) € E(t)} be the set of agents that send and receive
information to agent 7 at time ¢, these agents are called neighbors of agent 7. We
define the degree of agent i as 0;(t) = |N;(¢)| where |N;(¢)| denotes the cardinality
of set N;(t). The elements of the Laplacian matrix £ of graph G(¢) are defined as

0 otherwise

Given a generic square matrix M, y,, the associated graph Gy = {Vy, En}ois

composed as follow:
e Gy has n nodes, with index i € [1,n], so Viyy = {1,...,n};

e Gy has an edge e;; if the entry m;; € M is nonzero, so Ey = {(i,j)|mi; #
0}

If M has non zero diagonal entry m;;, than node i € Gy, has a self loop. If M
is symmetric then G,, is an undirected graph. For a time-varying square matrix
M (t) the associated graph is denoted as G/ (t) = {Var, Ea(t)}.

A square matrix A is stochastic if its elements are non-negative and the row
sums equals one. A stochastic matrix said to be ergodic if rank (lim,yHOo A"“) =1.
An ergodic matrix A is STA (stochastic, indecomposable and aperiodic) if

lim AF = 1,77,
k—o0

where 7 is the left eigenvector of A corresponding to the unitary eigenvalue and

1, is the n-element vector of ones. Given two matrices A(,xn) and B the

PXq)>
Kronecker product is denoted as A ® Bnpxng)-

In our discussion we consider the following working assumptions: i. Agents
are modelled by discrete time single integrators; ii. Neighboring agents commu-

nicate with bidirectional channels and sense relative positions in a 2-D plane; iii.

14



Each agent owns a local coordinate system that moves rigidly with it and do not

know the coordinate system of others.

2.1.1 Coordinate systems

A 2-d reference frame ¥/ = (¢', ') is an orthogonal coordinate system character-
ized by an origin o’ € R? and orientation of the z-axis 6 € [0, 27) respect to a
global coordinate system 3 defined by o = (0,0) and § = 0. We deal with three

kinds of coordinate systems, which are showed in Fig. 2.1.

Y Zi, es

Figure 2.1: Coordinate systems.

e Global coordinate system: is the reference frame used to describe the system
from the point of view of an external observer. We denote it with X, and

the current position of agent i specified in ¥ is z; € R2.

e Local coordinate system: each agent owns a local reference frame centered

on it. The local coordinate system of agent 7 is denoted with X! = (z;,6;),

15
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where x; is the position of agent ¢ in ¥ and 6; is the angle between the
x-axis of ¥ and the x-axis of ¥¢. We denote the position of a generic point

j with respect to ¥ as x%. Therefore, the position of j is
where

Ri=1] .
sinf; cos;

cosf; —sinb; ]

is a rotation matrix associated to the angle 6;.

o Fstimated coordinate system: each agent keeps a local estimation of the
common reference frame. With respect to X the estimated common ref-
erence frame by agent 7 is denoted with %% = (s;,0;), where s; is the
estimated reference center and 6; is the estimated angle between the x-axis
of the common reference frame and the x-axis of ¥. Note that the orien-
tation of the local estimated reference frame is the same as the orientation

od X%, We denote the position of a generic point j with respect to X%* as
i,es

L

. The position of agent j in frame ¥* is: 2} = x;’es + st.

2.2 Formation control strategy

In this section we present a decentralized control strategy which allows a network
of mobile agents in a 2-D space to reach an agreement on a common reference
frame and simultaneously converge to a desired formation.  Here we assume
that all the agents have a compass on board, which allows them have a common
reference direction. In particular, we assume that Vi € 'V, 6; = 0.

The state of i-th agent is characterized by a position z; € R? and a variable
s; € R? which represents the estimated center of the common reference frame.
When referring to the state of the agent in its own reference frame ¥? we denote
its current estimation as s! € R2.

Our strategy involves three local state update rules:
e A rule to update the position of the agents;

e A rule to achieve agreement on a common reference point;
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2.2.1 Position update rule

Each agent is modeled by discrete time single integrator dynamics
zi(t +1) = zi(t) + quq(t), (2.1)

where x; € R? is the agent position, u; € R? is the control action representing a
displacement and ¢ € R is a gain. Each agent has to reach a constant target
position D; € R? with respect to its estimated common reference frame. The

target position d:(t) with respect to ; at time ¢ can be computed as
di(t) = si(t) + D:.

In the common reference frame X the target position of agent 7 is

di(t) = z5(t) + di(t) = i (t) + (si(t) + Dy). (2.2)

Therefore, each agent drives itself toward its target position d!(¢) with the

following state update
zi(t+1) — xi(t) = ¢ (di(t) — (1)) (2.3)

with respect to 3. By replacing equation (2.2) in (2.3) we find the following
position update rule:

The reference frame of agent ¢ thus moving rigidly with it, displace its current
estimation of the common reference point. Therefore, the agent attempts to
compensate this displacement by updating its estimation of the position of the
common reference point as follows In other words, because the agents’ local frame
is centered on x; and moves rigidly with it, each agent i needs to update s!, and
consequently d:.

it 1) = si(0) — q (si(1) + D) (25)

which, with respect to reference frame X, keeps the absolute position of the

estimated point constant in time

si(t+ 1) = s;(t).
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To implement these updates, however, a perfect knowledge of parameter ¢ is
required which corresponds to an exact measurement of the movement or actua-
tors with perfect precision.

Since measurements may be affected by disturbance and actuators subjected
to malfunctioning, we introduce a different state update rule, which we prove is
robust against uncertainties in the parameter ¢ of any agent. We call this state
update as overcompensation because it effectively moves the current estimation

further away than necessary, as follows:

sit+1) = si(t) — k (si(t) + D) (2.6)

Equation (2.6) represents a overcompensation of agent displacement based on
parameter k, which controls how much the agents compensate their displacement.
Using equation (2.4) and equation (2.6) in terms of s;(t), we can express the

general update rule as follow:

{ zi(t +1) = zi(t) + q((si(t) + Di) — 2i(t))
si(t+1) = si(t) = k((si(t) + Di) — (1)) + q((s:(t) + Ds) — (1))

We can set h = k — ¢ and rewrite equation (2.7) as follows:

{ it +1) = i) + q(s:(t) + Dy) — wi(t)) (2.8)

(2.7)

si(t +1) = si(t) — h((s:(t) + Di) — wi(t))
zilt+1) = (1 Q)a(t) + gsilt) + 4D,
si(t+1) = (h)z;(t) + (1 = h)s;(t) + (=h)D;
Note that:
e if h = —¢ (k = 0) the distance vector d;(t) — z;(t) is constant, thus there is

no compensation;

o if - g <h <0 (0<k<q),dt) translate in the same direction of x;(¢)
and |d;(t + 1) — z;(t + 1)| < |d;(t) — x;(t)|, thus there is only a partial

compensation;

e if h =0 (k = q) the target position d;(t) is constant, thus the compensation

is perfect;

e if h > 0, (k > q) d;(t) moves toward z;(t), thus an overcompensation is

made.
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2.2.2 Consensus on the network centroid

Each agent has a local estimate s¢(¢) which considers as the center of a common
estimated frame. By exchanging this local information with neighbours, agents

are able to reach an agreement on a common reference center, which means that:
Vi,j eV, lim [[si(t) — s;(t)[| =0
t—o0

At each time step agent ¢ receives the value 3? from each agent j € N;(¢). In

Figure 2.2 it is shown how agent ¢ is able to determine the correct value 52» of

agent j with respect to ¥ by only knowing 2 and the received value s; The

Y

A
- /.
-7 Y
// /
’ ©
i
X

Figure 2.2: Information exchange between agent i and j.

update rule for the local estimate is:
sit+1) =si(t)+e > (s5(t) +2%(t) — si(t)) (2.10)
JEN(t)
with 0 < & < |N;(¢)]. The same rule could be written with respect to X:

silt+1)=si(t)+e > Lij(s;(t) — si(t)) (2.11)

JEN;(t)
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With respect to ¥ the overall estimate update rule could be expressed as
follow:
s(t+1) = (P(t) ® Irxo)s(t) (2.12)
where P(t) € P is a time-varying matrix which depends on network topology at
time ¢ and e, and P is the set of all possible matrices representing the system
update defined in (2.11). Due to the update rule definition all matrices P(t) €
P are stochastic. Note that equation (2.12) can represent both deterministic
synchronous consensus algorithms and randomized gossip algorithms. At each
t, algorithm (2.12) can be represented by the associated graph Gp(t). If V& > 0
there exists a 7' > 0 such that Gp([t,t 4+ 7T')) is connected, than lim; . s1(t) =
o= limy 00 S, (t), where Gp([t,t + T)) is the union of graphs Gp(¢) in the time
interval [t,t +T) (7)(8).

2.2.3 Formation control strategy

Let us define column vectors z(t) = {x1(t),...,z,(t)}, s(t) = {s1(t),...,sn(t)}
and D ={D,...,D,}. Note that D represents the desired formation respect to
a common center. By summing the contributions of equations (2.8) and (2.12)

the overall formation control strategy could be expressed as follow:

w(t+1) | x(t) qD
R EICCET [ T ] ¥ [ o ] (213)
where ‘
o (1 - q)]nxn qInxn
M) = hlen | (P(t) = hlox) ] (2.14)

For all t, M(t) € M, where M is the set of all possible matrices of type (2.14)
corresponding to different P(t) € P. A given formation is considered to be

achieved if
o z(t) =s(t)+ D;
o Vi,j €V, |si(t)—s;()]=0

Lemma 2.2.1 Consider system (2.13). If

Hm (M(1)M(2) ... M(t) @ L) [ 29 ] = 1y, (2.15)

t—o00
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then
o lim; . z(t) = s(t) + D,
o Vi,j eV, lim o [|si(t) —s;(t)] = 0.

Thus the desired formation is asymptotically achieved.
Proof: Condition (2.15) implies that system (2.13) is stable. At the equilib-
rium x(t + 1) = x(t) and s(t + 1) = s(t). From the first equation of (2.13) we

find:
(1 —q)z(t)+ qls(t) + qI D = x(t)

x(t) =s(t)+ D
By substituting in the second equation:
Ps(t) = (I —eL)s(t) = s(t)
which implies s(t) = c1, where ¢ € R is a constant. |

Convergence of the proposed strategy toward the desired formation can thus be

addressed by studying the stability of the following linear time-varying system

z(t+1)
s(t+1)

— (M(t) ® Ipys) [ z(t) ] (2.16)

s(t)
2.2.3.1 Case I: static topology
If the network topology is static and connected, than M(t) = M, Vt.

Lemma 2.2.2 (Lin,(36)) A stochastic matriz M is SIA if and only if the asso-

ciated graph Gyr has a centre node which is aperiodic. [ |

Now we are able to prove the following result.

Theorem 2.2.1 Consider a network of agents with a static connected topology.
Given system (2.16) with M(t) = M, if

0<h<1—ebma (2.17)

where Opmar = max{oy,- - ,0,} represents the mazximum degree for the network,
then
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lim [ z(?) ] = clg,,
% | (1)

where ¢ € R is a constant.

Proof If condition (2.17) holds M is stochastic as all entries are non negative
and row sums are equal to 1. Now we have to prove that M is SIA. We can
represent system (2.16) using a undirected graph Gy associated to matrix M. In

this graph each agent i is represented by two nodes:
e one associated to the agent position z;, that we call position node;
e one associated to the agent estimate s;, that we call estimate node.

For each agent the two associated nodes are connected together by a bidirectional
edge, as the position update depends on the position estimate and vice versa.
The connections between agents depend on matrix P — hl. In particular, given
a couple of agents (7,j) there exists an edge between their estimation nodes if
the p;; entry of P is non zero. As the network is connected and undirected by
assumption, the graph Gy is connected as well and each node is a center node.
More, as all diagonal entries in (1 — ¢)/ are nonzero, each position node in the
associated graph has a self loop, so Gy is aperiodic. It follows from Lemma 2.2.2
that matrix M is SIA, so

lim M’ [ #(0) ] = clo,
= | 5(0)

where ¢ is a constant. [ |

2.2.3.2 Case II: time-varying topology.

In order to prove the robustness of (2.16) we need first to present some preliminary

notions.

Lemma 2.2.3 (Jadbabaie et al.,(8)) Let { My, Ms, ..., M,,} be a set of stochastic
matrices of the same order such that the joint graph {G(M;)|JG(M2)U ... USG(Mn)}
s connected. Then the matrixz product My Ms ... M,, is ergodic. [ |
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Lemma 2.2.4 (Wolfowitz,(37)) Let {My, Ms, ..., My} be a set of ergodic ma-
trices with the property that for each sequence M;,, M;,, ..., M;, of positive length
J the matriz product My M;, ... M;, is ergodic. Then for each infinite sequence
M;,, M;

2y -« - there exists a row vector ¢ such that lim; o M; M;, ... M;, =1c. B

Now we can state the following theorem

Theorem 2.2.2 Consider a network of agents with time-varying topology de-
scribed by (2.16). Let us assume that ¥t > 0 there exists a T > 0 such that
Sp([t,t+1T)) is connected. The following condition is sufficient for the system to

converge to the desired formation:

0<h<1—ebma (2.18)

Proof Let M. be the set of all possible product matrices in M of length 7" such
that the joint graph Sp([t,t + T')) is connected. In the theorem we assume that

for each time interval [¢t,¢ 4+ T) the matrix
MM +1)...M(t+T)e M,

Thus we can represent the evolution of the system as a product of matrices
M. (t) € M,. If condition (2.18) holds, then all matrices M (t) € M are stochastic
as showed in the proof of Theorem 2.2.1, and it follows from Lemma 2.2.3 that all
matrices M.(t) € M, are ergodic as well as all products in M. Finally it follows
from Lemma 2.2.4 that:

Tim (M(1)M(2) ... Mc(t) ® Lp0) [i((g)) ] = 1oy

2.2.4 Characterization of the robustness of the approach

The proposed coordination strategy described in section 2.2 can be affected by
errors due to the odometry or inertial navigation system. In particular the desired
displacement that the generic agent z;(t) should achieve within one sample of time

is as follows

it + 1) = x;(t) — q; () (z; () — s4(1)). (2.19)
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where the time-varying parameter ¢;(t) = g+ A;(t) models a random error in the
position update at time ¢.

Thus, the proposed local interaction rule becomes

ri(t+1)= (1 —q(t)z;(t) + q:(t)s;(t)
si(t+1) = h(t)(z:(t) — si(t)) (2.20)
+(si(t) + € Xjen, lis(s5(t) = si(t)))
where h;(t) = h — A(1).
Let Q(t) and H(t) be n x n diagonal matrices where Q);; = ¢;(t) and Hy;(t) =
hi(t). The global system dynamics are thus described by

wt+1) ] 2(t)

s(t+1) | = (Ma(t) ® Irx2) [ S(1) ] (2.21)

Ma(t) = [-0@) ‘ Q) ] (2.22)
H(t) |P(t) - H(t)

For all t, Ma(t) € Ma, where M, is a infinite set of matrices Ma(t) characterized
by different values of ¢(t), h(t) and P(t). Now we characterize the robustness of

the proposed strategy with respect to measurement noise.

Theorem 2.2.3 Consider a system as in eq. (2.21). Let us assume that ¥t > 0
there exists a T > 0 such that Sp([t,t +T')) is connected . If the measurement
noise A;(t) is bounded by

h+ €0maz — 1 < Ai(t) <min{h,(1—q)}, Vit (2.23)

lim [ z(?) ] = cly,

= | s(t)

then

where ¢ is a constant.

Proof The diagonal entries of the matrices I — Q(t) and P(t) — H(t) are

I —Qt)]i =1—q— A1)

[P(t) — H(t))s = 1 — 6 — h+ Ai(t)
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We can assume that ¢ > A;(¢). If condition (2.23) hold, then all matrices in Ma
are stochastic, because all entries are non negative and row sums equal to one.
Thus, the proof follows as in theorem 2.2.2. [ |
Note that A(t) could be positive or negative.
We now discuss what is the best parameter choice to achieve maximum ro-
bustness. Given a fixed value of ¢, the optimum value of h is the one which

maximizes the following objective function:
mas{min{h, (1~ ), [h + 0,05 — 11}}

By substitution it holds

1 - 5maz
o [f - 59maz

(2.23) becomes symmetric

< (1—¢) the optimum value of & is h = 2=%nax thus the bound

1 —€dmas < A < 1 — €0man
2
1 — €0mag
2

o If > (1 — g) the optimum value of h is h = (1 — ¢). It holds

gamaaz —q S Az(t) S ]- —q, \V/Zat

2.2.5 Convergence speed

We now characterize the convergence speed of the proposed strategy in the time-
invariant case M (t) = M and P(t) = P. Let Ay be the set of the 2n eigenvalues
of M. As M is STA, A = 1 is a simple eigenvalue of A,;, and all other eigenvalues
have module less than 1. The convergence speed of (2.16) depends on the second
biggest module eigenvalue Ay € A | which is called algebraic connectivity. By
knowing the eigenvalues of P, Aj; can be determined.

Theorem 2.2.4 Let M be a 2 x 2 block matriz as in eq. (2.16). Let Ap =
{1, Ap2, - - s Apn ) be the set of the n eigenvalues of P. The 2n eigenvalues of M
are function of the eigenvalues of P as follows:

(Ap+1—-h—gq)

\/()‘p +21 —h— q)2 — 4((1 — q))\p _ h) (2.24)

2

)‘mil,2

+
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Where A\, , € Ay are the two eigenvalues corresponding to \p; € Ap

Proof Following the work in (38) on how to compute the determinant of 2 x 2
block matrices as function of the blocks, we compute the eigenvalues of M solving
det (M — N\, 1) = 0.

Since (1 —q)hl = h(1 —q)I

det (M — N\, 1) =det (1 —q— N )(P—hI—X)—hql),
by some manipulations
det (NI =XP —hl —ql +1)+ (1 —q)P —hl)) =0,

putting (1 — ¢ — A) in evidence:
NI — A1 —h—q)I — hI)

(1 —q— N)"det(( [y +P)))=0
for (1—q—X\) #0,
AT — M1 —h—q)I — hI)
det P))) =0.
et(—— = py)
Now, let A\, = —W. Since )\, is the solution of det(\, — P) = 0, the

eigenvalues of M as function of the eigenvalues of P are, after trivial manipula-

tions, the solutions of
NM-AXl—-h—qg+X)+ 1=\, —h=0

whose solutions are (2.24). |

2.3 Formation control strategy in absence of a

common reference frame

In the previous parts we have assumed that all the agents have a compass on
board, which allows them to maintain a common orientation of the local reference
frame. In this section we remove this assumption, thus each agent 7 belongs to

a local reference frame 3; = {x;,60;} centered on it, where z; is he position of
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the agent ¢ and 0; is the orientation of the x-axes with respect to the x-axes of
the global reference frame. Under this new assumption the state of each agent
i is described by the three state variables {z;, s;,6;}. We modify the formation
control strategy proposed in section 2.2 which is not suitable anymore to correctly
control the system, by introducing an algorithm which leads the agent to reach a
common reference direction. The new formation control strategy is characterized

by:
(1) a rule to achieve agreement on a common reference direction;
(2) a rule to update the position of the agents;
(3) a rule to achieve agreement on a common reference point.

All the results in this section are presented with respect of the global reference
frame X, and we assume that the agents are able to exchange local information.
An interesting method which allows the agent to exchange local estimates of
points and directions in absence of a common reference frame is presented in (14),
thus we can assume that the agents exchange information by using it. Under this
assumption, we don’t need to modify the consensus algorithm on the network
centroid, while the position update rule needs to take into account the variability
of the target point due to the variability of the orientation of the orientation of
the local reference frame.

This section is organized as follows: in the first part we characterize rule (1),
then we characterize rule (2), by modifying the rule presented in section 2.2, and
we point out the dependence of these rules from (1). Finally we describe the

global formation control strategy.

2.3.1 Achieving consensus on a common reference direction

In order to lead the agents to reach a consensus on a common reference direction,
we use Algorithm 1, originally proposed in (39), which allows the system to reach
a global synchronization on a common heading. Algorithm 1 is based on a Gossip
communication scheme: at each ¢ a couple of nodes (i, 7) such that (i,75) € £(¢)
is randomly selected, and the selected nodes synchronize the orientation of their

local reference frame by averaging on the shortest path arch between them. In
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Algorithm 1 Gossip Algorithm for undirected graphs((39))

(i) At time ¢ arch (4,7) € E(¢) is randomly selected.

(ii) Agentsi and j update the orientation of their local reference frame as follows:

™

o if max{0;(t),0;(t)} — min{6;(t),0,(t)} <

2
0i(t) + 0;(t)

0;(t+1) =0;(t+1) = 5

o if max{@i(t),ej(t)} min{éi(t), j<t>} = 2
ei(t) 6j(t) n
_— + -

O;(t+1)=06;(t+1) = 5

e For each a € V such that a # i and a # j:

0. (t + 1) = 6,(1)

(39) a convergence analysis of Algorithm 1 is also provided: applying Algorithm
1 the set of agents globally asymptotically synchronize with probability 1.

2.3.2 Position update rule

The position update rule proposed in section 2.2 doesn’t consider the orientation
of the local reference frame 6;(t) for each agent ¢, which may change among the
time according to Algorithm 1. For each i € V, the estimated target point d;(t)
and of the estimated common reference center s;(t) in global coordinates, at time

t, depend on 6;(t) as follows:
() = 2t) + R(B:(1))5i(0) (2.25)
and
di(t) = () + Ri(0:(t)) (si(t) + Di) = s(t) + Ri(0,(t)) Di (2.26)

where
cos(0;(t)) —sin(0;(t))

Ri(6:(t)) = sin(f;(t))  cos(6i(t))
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Following the same steps discussed in section 2.2.1, and introducing equations
(2.25) and (2.26), we obtain the following position update rule:

{ 2t + 1) = (1 — q)wi(t) + gsi(t) + qRi(0;(£)) D; (227
si(t +1) = (R)a:(t) + (1 — h)si(t) + (—h)Ry(6;(t)) D;

2.3.3 Formation control strategy

Let us define now the column vector D(#) as follows:
Ry (61(t)) Dy
D(0) = :
R, (60,(t))D,
as the vector of the target point, which depend on the orientations of the local

frames. The new formation control strategy can be expressed as follows:

w(t+1) | x(t) qD(0)
sit+1) | (M(6)® Lx2) [ s(t) ] * [ —hD(0) ] (2.28)

According to the assumptions made in this section, a given formation is con-

sidered to be achieved if
o Vi,j eV, 6t =46
e z(t) =s(t) + D;
o Vi,j €V, sit) — ;)] =0

The convergence of the agents to the desired formation depends on the conver-
gence of Algorithm 1: a given formation cannot be achieved until all the local
frames converge to a common orientation. In section 2.4 we provide a set of sim-
ulations which are useful to understand the behaviour of the system under the

assumption made in this section.

2.4 Simulation results

In this part we present the results of some simulations with two purpose: validate
the analytical results obtained in sections 2.2 and 2.2.4, and introduce some
conjectures about the behavior of the system in the scenario described in section

2.3 which do not belong to the studied cases.
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Figure 2.3: Example of formation

2.4.1 Agents with a common reference direction

In Fig 2.3 an example of achievement of a desired formation using formation
control strategy (2.13) is presented. The system is composed by a set of agents
with a common reference direction, that are initially randomly scattered in a
2-D space as in Fig 2.3a. They exchange local information through a gossip
communication scheme, and for all of them ¢ = 0.1 and A = 0.05. The agents
reach the desired formation (a crux shape) by following the trajectories showed
in Fig 2.3b. The red lines represent the trajectories of the estimated common

reference centers, while the blue lines are the trajectories of the agent.
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Our simulations have pointed out an interesting phenomena: using formation
control strategy (2.13), in a system of agent with a common reference direction,
the desired formation is reached for each value of h in —qg < h < 0, i.e., for values
of h that do not respect condition (2.18). In other words, a small compensation

is enough for the system to converge to the desired formation.

Value of}2|
T
L

n=10/

L L L L L L L L L
0.94
-0.05 -0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0

Value of h

Figure 2.4: Value of |\g| for ¢ = 0.15, —0.15 < h < 0 and n € [10, 100]

Fig 2.5 shows the the value of |\y|, i.e., the module of the second largest
eigenvalue of the matrix M, of a system of agents with ¢ = 0.15, computed for
—q < h < 0 and n € [10,100]. For all the simulations the topology of the
network is connected and randomly generated. It can be observed that in case of
no compensation, i.e., for h = —gq, |A\y| = 1, and the system is not stable, while
for —qg < h < 0 the second largest eigenvalue of M has a module smaller than

one, and the system converge to the desired formation.

2.4.2 Agents in absence of common reference direction

Let us now consider the case of absence of common reference frame. In Sec-
tion 2.3 we have characterized the algorithm which lead the agents to reach the
target formation. We have supposed that the agents locally interact and exchange
information using the method proposed in (14) which is based on the determina-
tion of the relative positions, i.e., relative distance and angles, and the correctness

of the information exchange depends on the precision of this estimation. Here we
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suppose that the relative localization is affected by an error, and we simulate the
behavior of the system for different values of the error. The agents exchange infor-
mation following a gossip communication scheme. The estimations of the relative
distance d and the relative angle of view 7y are affected by a uniformly distributed
random error with a maximum amplitude |Ad,,| = a4d and |Av,,| = ayy. In
Fig. 2.5 is represented a system of 13 agents with a triangle-shape target forma-
tion. In Fig. 2.5a is ag = «, = 0.01, while in Fig. 2.5b is ay = a, = 0.02. It
can be observed that each agent makes a random walk around its target position.

The amplitude of the random walk grows as:
e o4 and o, grow;

e the distance of the target point from the estimated common reference center

grows.
) - S ; -
3t - J
2 - [ .
1 0 , , o - -
i : 1 |
> 0 ‘ ¢ oV
3t P 1
() |Adm| = 0.01d, |Aym] =  (b) |Adw| = 0.02d, |Ayn| =
0.01vy 0.02v

Figure 2.5: Example of formation

The same behavior can be observed in Fig 2.6, where the average amplitude
of the random walk is reported for different values of oy and . Each value is
the average of 20 simulations, and for each simulation the initial positions and
the local orientations of the agents were randomly generated. Moreover, Fig 2.6
show that in absence of errors in the relative localization, the system converge to

the desired formation.
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|Adpy| =0

[Adpm| = 0.005

[Ady, | = 0.01d

[Ady,| = 0.015d

[Ady, | = 0.02d

[Ady,| = 0.025d

Target Point |Aym | =0 [Avpm | = 0.005v [Avm | = 0.01y [Avpm | = 0.015v [Avm | = 0.02y [Avpm | = 0.025v
(0,0) 0 0.01 0.02 0.04 0.04 0.09
(1,0) 0 0.10 0.15 0.25 0.35 0.45
(—1,0) 0 0.09 0.18 0.28 0.30 0.44

(—2.5,0) 0 0.21 0.46 0.71 0.69 1.21
(2.5,0) 0 0.26 0.37 0.73 0.75 1.18
(0,2.5) 0 0.23 0.43 0.74 0.85 1.06
(1,2.5) 0 0.32 0.45 0.80 0.82 1.35
(—1,2.5) 0 0.28 0.51 0.69 0.76 1.17
(2.5,2.5) 0 0.29 0.58 1.05 1.02 1.62
(—2.5,2.5) 0 0.30 0.60 1.07 1.24 1.51
(0,5) 0 0.5 0.73 1.24 1.36 2.38
(5,0) 0 0.58 0.9 1.44 1.51 2.14
(—5,0) 0 0.49 0.89 1.44 1.40 2.01

Figure 2.6: Amplitude of the random walk for different values of oy and v,

2.5 Conclusions

In this Chapter we firstly have proposed a novel coordination strategy, based on

an overcompensation of agent displacement, to achieve an arbitrary formation

in a multi-agent system. We have proved that our strategy is robust with re-

spect to measurement noise of odometry or inertial navigation. Our strategy is

characterized by a decentralized algorithm to achieve agreement on a common

reference point and a consensus based strategy to provide cohesion in the net-

work. The system achieves arbitrary formations by specifying positions in the

estimated common reference frame on which the agents agree upon. Then we

have extended our strategy to a multi vehicle system in absence of a common ref-

erence frame. Our future objective is to find analytical support for the extended

strategy, whose performances are studied only through simulations so far.
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Chapter 3

The Heterogeneous Multi Vehicle
Routing Problem

This Chapter is structured as follows. In Section 3.1 the HMVRP is formalized.
In Section 3.2 the HMVRP is discussed and solved via a centralized optimization
based on MILP. In Section 3.3 a decentralized algorithm is proposed and charac-
terized. In Section 3.4 an heuristic approach to solve the HMVRP is proposed,
and in Section 3.5 simulations are shown to corroborate the analytical results
presented in the previous sections. Finally, in Section 3.6 conclusions and future

directions are discussed.

3.1 Problem statement

Consider a set N of n mobile robots scattered in a connected region R in a plane.
Let K be a set of k tasks scattered in region R, that should be assigned to robots
to be executed.

Robots move at different speeds and have different execution speeds of tasks.

Tasks have different costs. In particular, the following notation is used:
e v, is the speed of robot R,,
e w, is the task execution speed of robot R,,

® Upin (Umaz) 18 the minimum (maximum) speed of robots,
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® Wyin (Whnaz) 18 the minimum (maximum) task execution speed of robots,
e ¢; is the cost of the i-th task,
® Cpin (Cmaz) 1s the minimum (maximum) cost of tasks.

Moreover, d,,q. is the maximum length of the shortest path between any two
points in the region R.

Robots are supposed to first coordinate themselves to decide upon their task
assignment and then start to serve the tasks autonomously.

To use a notation that is standard in the literature, we assume that robots
are initially positioned in depots and should go back to them after the execution
of tasks. The set of depots is called D and the generic r-th depot is D,.

Now, if K, denotes the set of tasks assigned to robot R,., our goal is to minimize

the objective function:

(3.1)

J =maxJ, =

reN Up Wy

(L3PECuiDY) , B

where TSP (X, U{D,}) is the minimum TSP tour length of robot R, that, initially
positioned in D,., visits all tasks in K, and go back to D,.

In simple words we want to minimize the maximum execution time of the n
robots that have to visit and execute all tasks assigned to them, guaranteeing
that each task is executed by exactly one robot.

The above problem can be seen as a generalization of the classical multi-TSP
problem. First, because we are also assuming that tasks should not only be
visited by the robots, but should be processed by them. Secondly, because the
optimization is carried out over an heterogeneous network due to the heterogene-
ity of the agents and the tasks. Similar problems have been recently addressed
in the literature, see e.g. (30), but to the best of our knowledge, never under the
assumption of heterogeneous agents and tasks.

Let us conclude this section with the introduction of some notation that will
be used in the remaining of the chapter. Let X, be the set of tasks assigned to
robot R,.. We denote as J~CT the ordered set with the same elements of XK., but
whose ordering specifies the order in which tasks in K, are visited by robot R,.

Therefore, sets K, are the unknown variables of the optimization problem (3.1).
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Finally, let K = {J~C1, ce J~Cn} be an ordered set of n ordered sets, that sum-
marizes the generic solution of the considered tasks allocation problem. The set

K is called network state.

3.2 Optimal centralized solution

In this section we first discuss a centralized strategy that leads to an optimal
solution of the above task assignment problem. Such an approach is based on
mixed linear integer programming (MILP). Then we provide a characterization of
the optimal solution in terms of an upper and a lower bound on the optimal value
of the objective function. This will be useful when evaluating the effectiveness of
the decentralized approach proposed in the next section.

To represent all possible directed tours of n robots, let us define a complete
directed graph § = {V, £} where:

e V=NUZX is the set of n + k nodes;

e &= (NUX) x (NUX) is the set of (n+ k)? edges representing directed
paths from the depots in which robots are initially placed to tasks, and viz,

and from tasks to tasks'.

Moreover, we define the following binary variables that completely identify a task
allocation and the order in which tasks are executed by robots. In simple words
they completely identify a network state %K. Since we want to minimize the total
execution times of robots, we always assume that distances among tasks, and

among tasks and depots, are covered through straight lines.

e We assign n binary variables x;. to each node ¢ € V; here r € N: if 1+ € N,
r;» = 1 means that robot R, starts its tour from node i, while if i € X,

x;» = 1 means that task 7 is executed by robot R,.

e We assign n binary variables y;;, to each edge (7, j) € €; herer € N: y,;, =1

means that robot R, goes directly from node ¢ to node j in its path.

'In the sets V and € the generic 7-th depot is identified via the r-th element in N. This has
been done for clearity of presentation as it will appear in the following.
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Moreover, we introduce the following cost coefficients.

e We assign n costs ¢;. = ¢;/w, to each node i € K; here r € N: ¢;, represents

the execution time of task ¢ by robot R, with an execution speed of w,.

e We assign n costs d;j;; = l;;/v, to each edge (i,7) € &€; here r € N: d;,
represents the time spent by robot R, to pass the length [;; of edge (3, j)
with speed v,.

Proposition 3.2.1 Let us consider the allocation problem formalized in Sec-

tion 3.1. An optimal solution can be computed solving the following MILP prob-

lem:

(J = min \
S.1.
Z TirCiy + Z dijryijr < )\, Vr e N (a)
ieX (i,5)€€
T = 1, vreXN (b)
inr =1, VieX (c)
reN
S e =D Y = Tir, VieV,VvreN  (d)
JEV jEV
Z Zyijr > Tgr Vs C K,
e Vges, VreN  (e)
AER (f)
z; € {0,1} VieV, VreN (9)

[ vijr € {0,1} V(i,j) € & VreN. (h)

Proof: The proof is carried out via a detailed explanation of all the con-
straints and the objective function.

— Constraints (a) and objective function: The left hand side term of (a) is
equal to the total execution time of robot R,. Thus, given the objective function,
constraints (a) aim to minimize the maximum execution time of robots.

— Constraints (b): These constraints force each robot to move from its initial
position (depot).

— Constraints (c): Each task i must be executed by exactly one robot.

— Constraints (d): If robot R, executes task i, it must arrive at node i in
some way and at the end of the execution has to leave it. The same holds if node

1 models a depot, i.e., i € N.
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— Constraints (e): Each robot R, has to make a single connected tour visiting
all its tasks, so we have to exclude all the disjoint paths. In words constraint (e)
relative to robot R,, imposes that if robot R, executes a task i € 8 C K, there
must be an edge passed by R, to enter in §. These constraints are named Subtour
Elimination Constraints (SEC) and are typical of vehicle routing problems and
TSP models (20). O

The number of unknowns in the MILP (3.2.1) is equal to
N =n(n+k)?+nn+k)+1=0(n>+nk*+n%k).

The total number of constraints is O(n’k+nk2"). Indeed we have n constraints

of type (a), n constraints of type (b), k constraints of type (c), (n-+k)n constraints
of type (d), and anzli

(k —id)l!
The following two theorems provide a characterization of the optimal value of

< nk2* constraints of type (e).

the performance index J*.

Theorem 3.2.2 The optimal solution J* of the objective function (3.1) is upper
bounded by

J* < Chp + Dy (3.2)
where
1 (TSP(X icx Ci
Cup:_( ( )+ZZ€%C), (3.3)
n Umin Wmin
dmaz Cmax
D,, =2 . 3.4
v Umin * Wmin ( )

Proof: The proof is based on an heuristic that can be summarized in the

following main steps.

e Generate an optimal tour that visits all tasks. Obviously, if an agent with
speed v,,;, and execution speed w,,;, follows the tour and executes all tasks,

its service time is equal to

o (18P0, B

Umin Wmin
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e Divide the tour in n consecutive sub-tours using the following rule. Take
a robot (e.g. R;) at random and make it follow the route of the optimal
single vehicle tour at the previous item, starting from the position of an
arbitrary task. Stop it as soon as its service time Jy satisfies the condition
Jy > j/n Now, since the largest cost of tasks is equal to ¢;,q., the smallest
execution speed of robots is w,,;,, and the time taken to travel between

tasks is continuous, it is

~

A J ¢
Jl S 24 max '
n Wmin

Select at random a new robot (e.g. Ry) and put it at the end of the route
of Ry and repeat the same strategy, until all robots are considered. If there
aren’t enough tasks for the robots, simply consider null the service time for

the remaining robots.

e Now, if d,,,; is the maximum length of the shortest path between any two
points in the region R, the execution time .J,. of each robot R, is such
that J, < jr + 2d00 /VUmin- Indeed the total service time of each robot
corresponds to the time it takes to complete its sub-tour along the route
of the optimal single vehicle TSP, plus the time to go from its depot to its
first task and go back to the depot. Therefore, it is

j Cma:v dmax

J < —+ +2 , Vr e N.
n Wmin Umin

Since the optimal solution J* of the objective function (3.1) can only be smaller

or equal than the solution resulting from the above heuristic, for sure it is

A

J ¢ d
J <maxJ. < =+ 2 42 =0+ Dy,
reN n Wmin, Umin

thus proving the correctness of the upper bound. O

Theorem 3.2.3 The optimal solution J* of the objective function (3.1) is lower
bounded by

J*>C,, — D, (3.5)
where L ITSP(%
Chp = — ( (%) | Liex C") , (3.6)
n ,Um(lfl‘ wmaz
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dmaz
Dy, = Lmez (3.7)

Umin

Proof: Let Sop = >, o J; be the sum of all the service times corresponding
to an optimal task assignment. Since, by definition J* = max,cy J;, obviously it
is

> St (3.8)

n
Now, let S}, be the sum of the contributions to J, with r € N, relative to

the only time spent moving from one task to another one, or from/toward the

depots, without including the time spent to execute tasks.
Obviously, it is

+ Zie% Ci.

wmax

Sopt Z Sgpt

(3.9)

Moreover, trivially generalizing the result in (30) to the case of heterogeneous
robots, we have that

| TSP(D) | TSP(DULK) | TSP(X)

P 3.10
ot Umin Umax Umax ( )
or equivalently
TSP TSP(D
s, >0 (%) _ TSP(D) (3.11)
Umax Umin
By equations (3.9) and (3.11) it follows that
TSP(X) TSP(D) Y ci
Sopt > — +
Umazx Umin Wmax
(3.12)
TSP(:K) . ndmaz + Zieﬂ( Ci.
Urmazx Umin Wmazx
Finally, by equations (3.8) and (3.12), it is
J* > SOPt _ l (TSP(‘{K) + Ziex Ci) . Amas
n n Umax Wmax Umin (3 1 3)
- Clo - Dlo
thus proving the statement. O
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3.3 Decentralized solution based on optimal local

task assignment

In this section we first propose a decentralized approach to solve the task alloca-
tion problem in Section 3.1 that is based on gossip. Then, a comparison among
the computational complexity of the proposed algorithm and the centralized algo-
rithm is provided. Convergence properties of the gossip algorithm are discussed.
Finally, some characterizations of the solution obtained via the decentralized ap-

proach are proposed.

3.3.1 MILP Gossip algorithm

The idea of the proposed decentralized algorithm is that robots locally balance
their loads according to a gossip interaction rule, i.e., via pairwise communica-
tions, under the following main assumption:

(A1) All robots may interact with all the other robots.

Starting from an initial task assignment, e.g., assuming that robots have the
same number of tasks, a couple of robots is selected at random. Selected robots
optimally balance their load; a new couple of robots is selected and so on, until
no better balancing among robots can be obtained. This can be summarized
in Algorithm 1. The variable T},,, denotes a maximum number of steps to be
executed that is assumed to be large enough so that no further improvement of

the objective function can be obtained.

3.3.2 Computational complexity of the local optimization

Let us now discuss the advantages in terms of computational complexity coming
from local optimizations using Algorithm 2 with respect to a centralized opti-
mization.

To this aim, let us first present some preliminary results. In particular, the
following proposition ensures that when the number of iterations of Algorithm 2
increases, the optimal value of the objective function can never increase. Obvi-

ously this does not imply that an optimal solution is obtained.
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Algorithm 2 MILP Gossip algorithm

(i) Tasks are initially assigned to robots so that each robot has either k/n or
k/n+ 1 tasks.

(ii) Let t = 0.
(iif) While ¢ < Thas
(a) Choose at random two robots r and ¢g. Let them solve the MILP (3.2.1)
where N = {r, ¢} and X = K, UK,.

(b) If the new task assignment leads to a smaller total execution time,

then update the assignments of robots r and ¢ accordingly,

else leave them unchanged.

(c) Let t = ¢+ 1 and go back to Step 3.

(iv) All robots process their own set of tasks following the order specified by the

optimal local solution.
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Proposition 3.3.1 Let Jyusp(t) be the mazimum ezecution time of robots com-
puted after t iterations of Algorithm 2. For any t > 0, it is Jypssip(t + 1) <
Jgossip(t)-

Proof: Let R, and R, be the two robots selected at time ¢+1. By Algorithm 2
this means that only the tasks allocation of such robots may change, while the
load of all the other robots keeps unaltered. Now, since at Step 3.a of Algorithm 2
tasks are assigned to robots R, and R, so as to minimize the maximum execution
time among them, this implies that the maximum execution time among R, and
R, either decreases or it keeps unaltered at time ¢ 4 1. Moreover, the maximum
execution time among all robots may decrease at time ¢ + 1 if and only if either
R, or R, or both, are the robots to which it corresponds the maximum execution
time among all robots at time ¢. Indeed with no loss of generality, we may assume
that R, is the “critical” robot at time ¢, i.e., the robot to which it corresponds
the maximum execution time among all robots at time ¢. Three different cases
may occur at time ¢+ 1, after the new tasks allocation. First, R, may still be the
robot with the maximum execution time, but in such a case for sure, its execution
time cannot be larger than that at time ¢. Secondly, robot R, may be at time
t+ 1 the robot with the maximum execution time but for sure its execution time
cannot be larger than that of robot R, at time ¢. Finally, at time ¢ 4 1, neither
to R, nor to R, it corresponds the maximum execution time among robots. This
implies that a third robot, e.g., R,, has become the critical one at time ¢ 4- 1. In
any case for sure its execution time is smaller than that of robot R, at time ¢,

since by assumption robot R, was the critical robot at time ¢. U

Let us now provide an upper bound on the value of the maximum execution
time of robots resulting from Algorithm 2 at a generic iteration ¢. To this aim,
we first recall some deterministic upper bounds to the maximum length of the
shortest path (SP) between a set K of k locations in a unit square area, that are
due to (40) and (41), respectively:

SP(X) < V2Vk +7/4, (3.14)

and
SP(X) < 0.984V2VE + 11. (3.15)

To the best of our knowledge the above two upper bounds are the best ac-

tually proposed in the literature. Moreover, we cannot a priori say which of the
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above bounds is the most strict one. Indeed the bound in (41) has a smaller
multiplicative factor with respect to (40), but has a larger additive constant. In
the following, we focus on upper bound (3.14), but obviously similar results can

be repeated considering (3.15).

Proposition 3.3.2 Let Jyoss,(t) be the mazimum execution time of robots com-
puted after t iterations of Algorithm 2, then ¥ t > 0 it is

4 'Umzn wmzn

Jgossip(t) < (\f U R +\f> m‘”+<k+1) Cmaz

Proof: By Algorithm 2 at time ¢ = 0 the maximum number of tasks that can
be assigned to a robot is equal to k/n + 1. Moreover, since each robot starts its
path from its depot and has to come back to it, then by equation (3.14), for any
r e Nitis

TSP(X,(0)U{D,}) < (f S 42+ 4+\f> - (3.16)

Note that the additional term +/2 between parenthesis comes from the fact
that to form a Euclidean TSP tour from a path in a unit square it is sufficient to
connect the start and end point to form a cycle, thus increasing the size of the
path of at most v/2 in the unit square. Moreover, d,,q, comes from the fact that
in our problem statement depots and robots are not distributed in a square of
unitary edge, but in a region R that is contained in a square of edge d,,,, being
by definition d,,,, the maximum length of the shortest path between any two
points in R.

k
Finally, since by assumption E ¢ < (— + 1) Cmaz, 1t follows that
n
1€%,-(0)

Jgossip(0) < <\/_ T2ty 4 + \/_> U ( ) Wrnin
<

that proves the statement being by Proposition 3.3.1 Jyossip(t) < Jyossip(0) for all
t > 0. L]

Let us now provide a proposition that characterizes the maximum number of

tasks that are assigned to robots at a generic iteration ¢ of Algorithm 2.
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Proposition 3.3.3 Let K,..(t) = max,en|K,- ()] be the mazimum number of
tasks that are assigned to robots at a generic iteration t of Algorithm 2. For any
t >0 atis:

ki 7 Anaa
Kiaa(t) < “’L[(ﬁ —+2+—+\@>

o neooo 4 Urin (3.17)

k Crmax
+(=+1 .
n Wimin

Proof: By Proposition 3.3.2, for all ¢ > 0, it holds

Umin n Wmin

k 7 dmaz k mazx
Jgossip(t) S (\/5 g + 2 + Z + \/§> + (_ + 1) ¢ . (318)

Now, it is
Kmaa:(t)cmin

wmax

since the execution time of K,,.,(t) tasks is greater or equal than that we have if

Jgossip<t) Z (319)

such tasks are at a null distance from the robot that has to process them, all tasks
have a cost equal to ¢,,;, and the robot who process them has an execution speed
equal t0 Wy,q,. By equations (3.18) and (3.19) the statement of the proposition
follows. OJ

An important remark needs to be done. The above proposition provides an
upper bound on the maximum number of tasks that can be assigned to a robot
at any iteration. For particular values of the parameters it may happen that
the upper bound given by Proposition 3.3.3 is not significant because it is larger
than k. However, this only occurs for very particular cases, while for most of the
significant and general situations where the number of tasks is sufficiently large,
robots and tasks are sufficiently distributed in R and their costs and speeds are

in reasonable ratio, Proposition 3.3.3 enables us to conclude that
Koz (t) = O(k/n).

Now, since local optimization considers two robots at a time, the number of tasks
that are involved in a local optimization is surely smaller or equal than 2K, ().
This means that the number of unknowns of the MILP that should be solved at

the generic iteration ¢ of Algorithm 2 is

Ngossip = O(k2/n2)
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rather than N = O(n®+nk?+n?k) as in the centralized case. Moreover, the num-
ber of constraints is O(k2¥/™/n) rather than O(nk + nk2*) as in the centralized

case.

3.3.3 Finite time and almost sure convergence

We now introduce two definitions to formalize two important properties of gossip
communication schemes, namely deterministic persistence and stochastic persis-
tence. Similar definitions have been recently proposed in (42). As usual in this
framework, we assume that the possible interactions among agents are modeled
by an undirected graph G = {V, E'} where agents correspond to vertices, and an
edge exists if and only if the interaction among the agents corresponding to the
incidence nodes is possible. Obviously, assumption (A1) implies that in our case
it is £ =V x V. At each iteration t of the gossip algorithm a different edge is
selected. In the following we denote as e(t) the edge selected at time ¢, while the
set of edges selected in the time interval [t1, t5] is denoted as (¢, t2), i.e., we have

to

e(t, ta) = ] e(t).

t=t1

Definition 1 (Deterministic persistence)
A gossip communication scheme is said to be deterministically persistent if
YVt > 0 there exists a finite T' > 0 such that

Ve' € E, Pr(eee(t,t+T)) =1
or equivalently, e(t,t +T) = E. |

Deterministic persistence implies that, if we consider a finite but sufficiently large

time interval, then for sure all arcs are selected at least once during such interval.

Definition 2 (Stochastic persistence)
A gossip communication scheme is said to be stochastically persistent if vVt > 0
there exists a finite T > 0 and a probability p € (0,1) such that

Ve' € F, Pr(dee(t,t+T))>p

where Pr(-) denotes a probability. |
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In simple words, stochastic persistence implies that, if we consider a finite but
sufficiently large time interval, then each edge has a probability greater or equal

than a finite value p of being selected during such an interval.

Theorem 3.3.4 Let 5((75) be the network state resulting at time t from the exe-
cution of Algorithm 2. If the gossip communication scheme satisfies the deter-
ministic persistence property then, for every initial task assignment, there exists
a network state 3%;088@ and a finite time T > 0 such that K(t) = fk;ossip, for all
t>T.

Proof: Let us present some preliminary comments.

— First, fk;ossip is an invariant network state for the state evolution following
Algorithm 2. This follows from Step 3.b of Algorithm 2.

— Secondly, if at a given time the network state is updated then the previous
network state is no more visited during the algorithm evolution. This also fol-
lows from Step 3.b of Algorithm 2 and the monotonicity property expressed by
Proposition 3.3.1.

— Thirdly, the number N,, ;, of admissible network states is finite since both
the number of robots and the number of tasks are finite.

Now, with no loss of generality we assume that at the initial time ¢ = 0 it
is K, # j(;OSSW for all » = 1,...,n, i.e., no robot is in its final assignment. If
the communication scheme among agents is deterministically persistent, since the
graph modeling the possible interactions among robots is fully connected and the
number N, ; of admissible network states is finite, then for sure after some finite
time Tj the robot with the maximum cost in the final assignment reaches its final
assignment. Let R, be such a robot. By Step 3.b of Algorithm 2 this implies
that the assignment of R, is no more changed during the algorithm evolution,
ie., K.(t) = ff(;wsiw for all t > T.

Analogously, after some further finite time 77 the final assignment is reached
by the robot with the second largest cost, and so on, until all robots have reached
their final assignment. Since all T}’s are finite, this proves that the final network
state fk;ossip is reached in a finite time 7= """ | T;. O
Theorem 3.3.5 Let 5((15) be the network state resulting at time t from the execu-

tion of Algorithm 2. If the gossip communication scheme satisfies the stochastic
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persistence property, then, for every initial task assignment, there exists a net-
work state szgssip and almost surely a finite time T > 0 such that K(t) = fk;ossip
for all t > T, i.e., the network state converges almost surely in finite time to
SCZOSSip'

Proof: We prove this theorem following the same arguments an in (43). The
proof is based on verifying the following three facts:

(i) ffC;assip is an invariant network state for the state evolution following Algo-
rithm 2;

(ii) K (t) is a Markov process on a finite number of states;

(iii) starting from any initial network state ffC(O), there is a positive probability

for the network state to reach K* in a finite number of steps.

gossip

Let us now check the above three properties in order.

— (i) As already discussed in Theorem 3.3.4, this follows from Step 3.b of
Algorithm 2.

— (ii) As already discussed in the proof of Theorem 3.3.4, the number of
admissible network states IV, is finite, being finite both the number of robots
and the number of tasks. Markovianity immediately follows from the fact that
subsequent random selection of edges are independent.

— (iii) This issue can be proved using similar arguments as in Theorem 3.3.4
with the only difference that now the communication scheme is stochastically
persistent, rather than deterministically persistent. This implies that for any
initial network state %(0) there is a finite probability that after some finite time
Ty the robot with the maximum cost in the final assignment reaches its final
assignment, that is no more changed during the algorithm evolution. The same

holds for the robot with the second largest execution cost in the final assignment,

*
gossip

possible states is finite, item (iii) holds. O

and so, until the invariant network state K is reached. Since the number of

3.3.4 Performance characterization of the MILP algorithm

Algorithm 2 does not guarantee the convergence to an optimal solution. However,

some results can be given to characterize its solution at the equilibrium, i.e.,
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after a number of iterations that is sufficiently large so that no better balancing
among robots may be obtained. In particular, the following theorem provides a
characterization of the maximum distance among the processing times of robots

that have locally balanced their loads.

Theorem 3.3.6 Let J* and J*

Jossip,r gossip.q» TeSpectively, be the total execution times

of two generic robots R, and R, resulting from the application of Algorithm 2. It
holds

dd crd
* max max
| gossip,r Jgosszp q| < KT =2 rq + rq (320)
man wmin

rq _
where d?.is the mazimum distance among tasks in K, and tasks in K,, v’ =

min{v,,v,}, and w, L = min{w,,w,}.

Proof: We prove the statement by contradiction, i.e., we assume that

| gossip,r gosszp q| > qu
With no loss of generality, we assume that it is J . . > Joesi - NOW, let 2 be

the task in X, whose distance with respect to tasks in X, is minimum. Remove
z from X, and put it in K,. Let J, and jq be the resulting execution times of

robots r and ¢, respectively. Obviously, we have

* Cz d:r(L]a:v *
J < Jgosszpq + ,w_ + v Jgosszpq qu (321)

q q
where the inequality follows from the fact that the optimal TSP of robot ¢ is
surely smaller than the path obtained by simply adding twice the path from the

closest task in X, to z. Now, by the contradictory assumption, we have

AR LAY o (3.22)

gossip,r gossip,q

thus (3.21) can be rewritten as

J, < J! (3.23)

gOSSZp T

As a consequence

maX{JCN J } < ma“X{ gossip,q’ J;)kosszp r} (324)
However, this contradicts the assumption that Jj, ., . and J; . . are the time

executions corresponding to an optimal task assignment, thus proving the state-

ment. |
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Corollary 3.3.7 Let J and J

gossip,r gossip,q’

times of two generic robots R, and R, resulting from the application of Algo-
rithm 2. It holds

respectively, be the total execution

Sgossip.al < Dup (3.25)

| gossip,r gosszpq
where D, is defined as in equation (3.4).
Let us now provide a theorem that gives an upper bound on the maximum ex-

ecution time resulting from the application of Algorithm 2. First, we introduce

the following Lemma necessary to the proof of Theorem 3.3.8.

Lemma 3.3.1 Let Syossip(t) be the sum of all J;’s at iteration t of Algorithm 2.
Then

0 (3.26)

dmaa} j Gj
V>0, Spuplt) < (f PR +f>nv4 T

Proof: By definition Sjuss,(t) = > iy Ji(t). Since

Ji(t) = TSP (X;(t) U{D;i}) . Djex, CJ"

U; w;

it is
n

TSP (X D; cac, Cj
Splt) = 35 T DD, 57 T

=1 i=1 g

By considering the worst case scenario in which each agent has speed v; = v,
and task execution speed w; = w,,;, for i = 1,...,n, we have the following

straightforward upper bound

Sgossip
i—1 Umin Wimin

To each robot k;(t) = |X;(t)| tasks are assigned at any given time. By ex-
ploiting the result by Few (40) and (41) given in eq. (3.14) and eq. (3.15), and
taking into account that such results refer to a unit square area, the maximum

tour length that each robot has to drive to visit all its assigned tasks is

TSP (K1) U{D:}) < (av/ki + 1+ B) das (3.28)
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where «, 5 € R are appropriate constants that depend on the considered bound.

Thus, we may now write

n
lmax

< ki(t) + 1) + "3 dma + Zje% Cj.

Umin Wimin

Sgossip(t) < (3.29)

Umin i—1

The only term in eq. (3.29) that is affected by the task assignment to the robots is
S («/kl-(t) + 1). We now find the task assignment that maximizes the bound
in eq. (3.29) by solving the following optimization problem:

(mea Y, (VD)

s.t.

S ki=k (3.30)
ki >0 1=1,...,n

ki € N 1=1,...,n

\

Any solution to Problem (3.30) found by relaxing the constraint to have integer
variables is an upper bound to the solution of the given problem. We therefore

solve Problem (3.30) by relaxing the integer constraint using Lagrange multipliers:

Flks o ko M) :i(\/k:iﬂ) +A (ik—k) (3.31)

i=1
By setting partial derivatives of the objective function (3.31) to zero we get

ok 1 ,
Of ki, - hns A) TA=0 i=1,....n

8/{72 2\//{Zi—|—1
Of (kis- o ku N [ B
o) — z;k—k) =0

(3.32)

Thus, for any 7,7 € N, it is
(|
2k +1 2k +1

i.e., the maximum of function (3.31) is found for k; = £ for all i € N. Therefore,

an upper bound to the solution of Problem (3.30) is

i(m)§i<\/g>=n §+1.

=1 i=1
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Finally, by substituting the solution of (3.31) into (3.29)

k dmaa: j Cj
Sgossip(t) < an (\/ Sl ﬁ) ——+ Zujfjf . (3.33)

If we consider the results by Few (3.14) we get

Sgossip(t) < (f i Ty xf) Nimaz | 2jex “. (3.34)

4 Umin Wmin
OJ
We are now ready to state one of the main results of this chapter.
Theorem 3.3.8 The mazimum execution time J resulting from the applica-

gossip

tion of Algorithm 2 satisfies

1 . C;
gosszp < (\/_ —+14- 1 + f) . _ZzEfK + Dy (3.35)

TL Wmin

Proof: Let Syossip(t) be the sum of all J;’s at iteration ¢ of Algorithm 2. By
Lemma 3.3.1 we have

Sgossip(t) < (f — 14— + V2 ) Mmar + 2y Y (3.36)

4 Umin Wmin
Let J)pssip min D€ the smallest execution time between the vehicles after the execu-
tion of Algorithm 2. Corollary 3.3.7 implies J7 . i > S350, — Dup. Moreover,
vVt > 0 it obviously is
. 1
Jgosszp mln(t) < ESQOSSip@t) (337)
thus
* * 1
Jgosszp — Jgosszp min + DUP S _SQOSSip<t) + DUP
3.38)
max 1 ] Ci (
(f —4+1+- +xf> FEPDE + Dy
4 Urnin n Wmin
proving the statement. O
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3.3.5 Asymptotic behavior

We now study what is the performance to expect from the proposed algorithm
in the limit cases in which the ratio between tasks and robots goes to infinity. In

particular we obtain the following result.

Proposition 3.3.9 Let J;, ., be the marimum ezecution time resulting from

the application of Algorithm 2 and let J* be the optimal solution to the HMVR
problem. Then

*

i @ w
gossip - “maz ma:v. (339)

I
%E;I;o J* - Cmin Wmin

Proof: By taking the ratio between the upper bound to Jj,;, given in The-

orem 3.3.8 and the lower bound of the optimal solutions to the HMVR, problem

J* given in eq.(3.5) we get

max 1 i C;
<f _“+4+f) izt p,

J;; » Umin n Wmin ( )
h 0551 < 3.40
b T L(TSP0, Tt} o,

n Umax Wmax

The term }lemﬂ being at the denominator, can be lower bounded by zero.

l ZzeCK {

The term at the numerator can be upper bounded by Efy’”—“ﬁ” while
n wmzn main
the equivalent term Z'EK * at the denominator can be lower bounded by fl min

Therefore, we get

max kma$
) (\/_ W +f> 4 Lomer o D,

gossip 4 Umin N Winin
l. 0SS1 <
e JT LTSP(X) | k Cmin

n 'Umaan n wmaaﬂ

(3.41)

The term % dominates both on the constants and on the term \/é, thus we get

*

gossip < Crmaz Wmax ) (342)

lim <
%HOO Cmin Wmin

proving the statement. O
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3.4 An heuristic gossip algorithm

In this section we present a new algorithm, called the Decentralized Heuristic
Algorithm, and discuss its convergence properties and computational complexity
in comparison with the algorithm in the previous section.

The robots update their states following Algorithm 3, while the task exchange
rule is described in Algorithm 4. The basic idea is as follows. When two robots
are selected at step 3.a of Algorithm 3, the two agents start to balance their
execution time by the iterative execution of Algorithm 4. At each execution of

Algorithm 4 only two scenarios are possible:

e the sets of assigned tasks of the two robots do not change;

e one task is given by the robot with the higher execution time to the other

robot.

Note that the determination of the possible exchanges is made by the computation
of the Approximated Euclidean TSP (AT'SP), thus, unlike in the MILP gossip
algorithm, this approach involves polynomial time algorithms. There exist a
vast literature on polynomial time algorithms to compute approximations to the
Euclidean TSP such that

ATSP < aTSP

where T'SP denotes the value of the optimal TSP and « represents the worst
case ratio. In (44) some heuristics for the TSP problem are summarized. Many
heuristics are based on the computation of the Minimum Spanning Tree (MST)
among the nodes and guarantee a worst case ratio of @« = 2 with a running time of
O(m?), where m denotes the number of nodes to be visited. Another polynomial
time heuristic based on MST which provides a value of a = 1.5 is the Christofides
algorithm described in (45), which is characterized by a running time of O(m?).

We observe that the STOP of Algorithm 4 ensures that after the execution
of Algorithm 4 it holds

max{.J,(t + 1), J,(t + 1)} < max{J.(t), J,(¢)}

whatever is the choice of the algorithm to compute the value of the AT'SP.
As a final remark we note that conditions can be given on the gossip commu-

nication scheme which allow the robot to converge to stable task assignment in a
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Algorithm 3 Decentralized Heuristic Algorithm

(i) Tasks are initially arbitrarily assigned to robots.
(i) Let ¢ = 0.
(iii) While ¢ < Tnee

(a) Select two robot R, and R, at random.

(b) Apply Algorithm 4 repeatedly on R, and R, until no more task ex-

changes are possible.

(c) Let t =t + 1 and go back to Step 3.

(iv) All robots process their own set of tasks following the order specified by the
local solution of an ATSP Algorithm.

finite time. In particular, the following two theorems can be given, whose proofs
are omitted here because they follow the same lines of Theorems 3.3.4 and 3.3.5,

respectively.

Theorem 3.4.1 Let 9~<(t) be the network state resulting at time t from the exe-
cution of Algorithm 3. If the gossip communication scheme satisfies the deter-
ministic persistence property then, for every initial task assignment, there exists
a network state K5, and a finite time T > 0 such that X(t) = X for all
t>T.

*
heur?

Theorem 3.4.2 Let fk(t) be the network state resulting at time t from the execu-
tion of Algorithm 3. If the gossip communication scheme satisfies the stochastic
persistence property, then, for every initial task assignment, there exists a net-
work state X%, and almost surely a finite time T > 0 such that X(t) = K3, for

heur

*

allt > T, i.e., the network state converges almost surely in finite time to K5, .

3.4.1 Computational complexity of the local optimization

In this section we discuss about the advantages of the proposed heuristic in terms

of computational complexity with respect to the MILP gossip algorithm.
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Algorithm 4 Local Balancing between robots R, and R,

- INPUT: X, (t) and K,(1).

~OUTPUT: K, (t+ 1) and K, (t + 1).

- ASSUMPTION: We assume, with no loss of generality, that J,.(t) > J,(t).
- STEPS:

(i) Let K.o = 0, K, = K, and F = 0.
(ii) While FF =0 and X, # ()

e Select ¢ € K, randomly.
o Let K, =X, \ {i}.

e Compute

;_ATSP(X,U{i) | 2 je(k,u(i)) &

Uq Wq

o If J,, < J.(1)
(a) Kep = Kep U {i}.
(b) F=1.

End While.
_ STOP:
o K, (t+1)=%K,(t)UKep and K, (¢ + 1) = K, (1) \ Koo

ATSP(XK,(t+1 » Cs
J(t+1)= (Ky(t +1)) +EJ€(9<q<t+1)) i

Uq Wq

J.(t+1) = min {Jr(t)  Diex G ’

T

ATSP,(t+1) | Liewxei) & }

Ur Wy

S7



Let us begin with the analysis of the computational complexity of the single
task exchange rule in Algorithm 4. The following proposition characterizes the

running time of Algorithm 4.

Proposition 3.4.3 Assume to compute the ATSP using, at step 2 of Algo-
rithm 4, an algorithm with a running time of O(kP). The worst case running
time of Algorithm 4 is O(kPT1).

Proof: The maximum number of nodes assigned to a robot is &, thus at each
iteration of the while loop of Algorithm 4 the running time of the algorithm to
compute the ATSP is at maximum O(k?). The while loop can be repeated at
maximum k times, as there may be at maximum £k tasks exchange. Thus the
total running time of Algorithm 4 is k - O(k?) = O(kP*1). 0.

An important property of the proposed heuristic is presented in the following

proposition.

Proposition 3.4.4 Let Jyeu-(t) = max;en J;(t) be the mazimum execution time
of robots at time t resulting from the execution of Algorithm 3. The following
holds

vt € Na Jheur(t + 1) S Jheur(t)~

Proof: The proof directly follows from the update rules of Algorithm 4.
Let R, and R, be the couple of robots selected by Algorithm 3 at time ¢ with
execution time respectively J,.(¢) and J,(¢). Let R, be the robot with the
maximum execution time at time ¢t > 0, so it iS Jy00(t) = Jhewr(t). Now, by
Algorithm 4 is holds max{J,(t + 1), J,(t + 1)} < max{J.(t), J,(t)}, and only two

cases Imay occur

o if R, R, # Riazs Jheur(t +1) = Jpewr(t), i-e., the maximum execution time

does not change;

o ifeither R, = Ryaz O Ry = Rinaz, Jhewr(t+1) < Jpewr (1), i.e., the maximum

execution time may be reduced.
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A similar property was discussed for the MILP gossip algorithm as well: at each
iteration of the local optimization rule the maximum execution time can not in-
crease. Note that in the MILP gossip algorithm each local optimization requires
to solve a MILP problem, which is an exponential time algorithm. Proposition
3.4.3 shows that the proposed heuristic is based on a local balance with a consid-
erably smaller computational complexity than the MILP gossip algorithm.

We conclude this section with some considerations about the total number of
local interactions required to reach a final task assignment. We conjecture that
the expected number of iterations of Algorithm 3 required to converge are of the
same order as the number of iterations required in the MILP gossip algorithm.
Our conjecture is based on the following observations. The execution of Algo-
rithm 4 leads to a different task assignment only if the maximum execution time
among the involved robots can be decreased, otherwise the task assignment does
not change. In the proposed framework if at time ¢ the execution of Algorithm 4
leads to a decrement of the maximum execution time, the network state X ()
changes to a new one X (¢ + 1). It follows from Proposition 3.4.4 that K(t) is no
more visited during the algorithm evolution. This property holds for the MILP
gossip algorithm as well. Starting from an initial network state X(0), in both
decentralized solutions all the possible network states may be visited before to
reach the equilibrium state. For that reason we can reasonably conjecture that
the MILP gossip algorithm and Algorithm 3 have computational complexity of
the same order in terms of total number of iterations. Our conjecture is supported

also by the results of some simulations presented in the following.

3.4.2 Characterizations of the heuristic solution

In this section we focus on some properties of J;.,., i.e., the solution of Al-
gorithm 3 at the equilibrium, when no better balancing among robots may be
obtained. As the MILP gossip algorithm, Algorithm 3 does not guarantee the
convergence to an optimal solution. Firstly we present a theorem that character-
izes the maximum distance among the execution times of two robots that have
locally balanced their loads. Then we provide an upper bound on the maximum

execution time resulting from the application of Algorithm 3.
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Theorem 3.4.5 Let J;

Sheur

of two generic robots R, and R, resulting from the application of Step 2 of Algo-
rithm 3. It holds

respectively, be the total execution times

and J;

sheur?

dr1 crd
maz mazx
I‘]:,heur - ;,heurl < KTq =2 rq + W' (343)

min man

rq  __
mn

where d}?, s the mazimum distance among tasks in X, and tasks in X,, v
min{v,,v,}, and w % = min{w,, w,}.

Proof: Let R, and R, be a couple of robots selected in Algorithm 3 at
time ¢ with execution time respectively J,.(¢) and J,(t) after ¢ iterations. By
step 2 of Algorithm 3 robots R, and R, exchange tasks one by one until no more
exchanges are possible. Assume, without lack of generality, that at time ¢ it holds
J.(t) > Jy(t). Now, let us assume to exchange one task from R, to R,. Surely
the execution time of R, decreases, thus J,.(t + 1) < J,(¢). On the contrary, the

execution time of robot R, increases but the resulting value is such that:

C:;ga$ d:ga/x
Jq(t + 1) < Jq(t) + w— + 2?}—.

q q

Thus, by exchanging one task a reduction of the maximum execution time is

guaranteed if

crd dre
Jo(t) + = 4 222 < JL(2).
Wq Uq
In other words, if
" 7 Tw )

q q

then there exists at east task that can be exchanged such that

max{J,(t + 1), J,(t + 1)} < max{J,(t), J,(¢)}.

Since the number of possible task assignments is finite and at each iteration of
Algorithm 4 the local maximum may be decreased due to a task exchange, some

of these configurations are never visited again. Thus we have that in finite time

dra o
* * _ 9%maz | Cmax
I‘]r,heur - q,heurl < KT’Q =2 rq + w'd

min main
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By Theorem 3.4.5 and the fact that each robot interacts with any other suf-

ficiently often, a significant result follows.

Corollary 3.4.6 Let J* and J;

. heur heurs TESPECtIvElY, be the total execution times

of two generic robots R, and R, resulting from the application of Algorithm 3. It
holds
‘ :,heur - ;,heur‘

< Dy (3.44)

where

dmaz max
D, = 25maz | Cmez

Umin Wmin

O

Finally, the following result can be proved using the same arguments as in the

proof of Theorem 3.3.8.

Theorem 3.4.7 Let J},,. be the value of the objective function (3.1) resulting
from the execution of Algorithm 3. It is

k 7 dmaa} 1 iex CGi
J;ossip S <\/§ E + 1 TaT ﬁ) + _Z < + D“P' (345)

4 Umin N Wmin

dmax Cmax
where D, = 2 + .
Umin Wmin

Proof: Follows the same steps of Theorem 3.3.8. U

3.5 Numerical simulations

In this section we present some numerical results comparing the performance

of the proposed heuristic and the performance of the MILP gossip algorithm.

*
gossip

comparing them with the lower and upper bounds, given in eq. (3.2) and eq. (3.5),

We first analyze the value of J;,,,. and for different values of k and n,
respectively. We then compare the convergence time of the two decentralized
solutions either in terms of number of iterations required or in terms of absolute
time.

In all the experiments robots and tasks are randomly scattered in a square
box of side 5. Costs of tasks are integer values randomly generated with uniform

distribution in the interval [1,5]. Speeds v; and w; are real values randomly

61



generated with uniform distribution in [1,2]. In both decentralized algorithms
the edge selection is performed in a uniformly random way. The MILP problems
are solved using the MATLAB optimization tool g¢lpk, while the results related
with Algorithm 3 are obtained using our own MATLAB script. The value of the
ATSP is computed by calculating a minimum spanning tree and adding shortcuts
in the induced cycle, thus approximating the optimal T'S P length by a factor of
a=2.

In Fig.3.1 are reported the results of the comparison between the following

values:

e the value of J},,., obtained by the execution of Algorithm 3;

*

e the value of J;, ..,

obtained by the execution of Algorithm 2;

e the upper and lower bound of the centralized approach given respectively
by (3.2) and (3.5).

For each couple (n, k) of n robots and k tasks, Jy.,., Ji, and the two bounds
are the mean values of 10 experiments. Simulations show that the maximum
service time obtained with the two approaches lies always between the upper and
the lower bound of the centralized approach. Moreover, the performance of the
two approaches are similar. It can be observed that Algorithm 2 leads to better
results than Algorithm 3 when the ratio % is high.

In Fig. 3.2, Fig. 3.3 and Fig. 3.4 the execution times of Algorithm 3 are
compared with the execution times of Algorithm 2. In particular, Fig. 3.2 and
Fig. 3.3 show the execution time respectively of the MILP gossip algorithm and
Algorithm 3 in terms of number of iterations, while in Fig. 3.4 the comparison is
made in terms of time in seconds spent by MATLAB to execute the Algorithms.
The two figures confirm that the proposed framework has a computational com-
plexity considerably lower than the MILP gossip algorithm.

The results in Fig. 3.2 and Fig. 3.3 confirm also the conjecture that we have
discussed in the final part of Section 3.4.1: the execution time in terms of num-
ber of iterations are of the same order in Algorithm 3 and in the MILP gossip
algorithm.

Finally we focus on the execution time of Algorithm 3 in seconds and in terms

of number of cycles. Figure 3.5 shows the number of iterations while Figure 3.6
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Figure 3.1: J;_ ., J} and the upper bound (3.2) and the lower bound (3.5) of

gossip

the centralized solution.
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Figure 3.4: Execution time of MILP gossip algorithm and Algorithm 3.

shows the execution time in seconds for Algorithm 3 for different values of k in a
system with n = 10 robots.

Figure 3.5 shows that the expected number of iterations of Algorithm 3 grows
linearly with the number of tasks if the number of robots is kept constant. On
the other hand, in Figure 3.6 is shown that the actual computational time is of
the order of O(n?®) seconds. This is due to the fact that the complexity of the
task exchange according to the heuristic grows linearly with the number of tasks
for each iteration of Algorithm 3 thus accounting for at least a quadratic grow of
computational time, the remaining difference can be accounted by the software

implementation and execution in Matlab.

3.6 Conclusions and future work

In this chapter we proposed upper and lower bounds for the cost of the optimal
solution to the HMVRP which considers vehicles with different movement and

task execution speed and tasks with different servicing costs. We extended to
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our framework the bounds for the multi-vehicle routing problem in (30). Fur-
thermore, we proposed two algorithms based on gossip to solve the HMVRP in
a distributed fashion exploiting only pairwise task exchanges between vehicles.
The first algorithm is based on local, asynchronous and pairwise optimizations
to improve the local task assignment. The second one is an heuristic with linear
complexity with respect to the number of tasks. The computational complex-
ity of the first method scales with exponential complexity with respect to the
ratio between the number of tasks and vehicles, improving with respect to a cen-
tralized optimization that scales exponentially with the number of tasks. The
proposed algorithms have been characterized in terms of finite-time almost sure
convergence and in terms of minimum guaranteed performance.

We validated through simulations that the proposed algorithms compute a
solution that scales with the number of robots within a constant factor of ap-
proximation with respect to the optimal centralized solution.

As future work we plan to extend the framework to a dynamic case in which
robots start to move and serve tasks while the decentralized optimization is being

executed and new tasks appear in the region.
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Part 11

Graph methods for diffusion of

innovation in social networks
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Chapter 4

Mathematical models for the
diffusion of innovation in social
networks: Introduction and

literature overview.

In the last decades many researchers from different fields have been interested in
the study of how innovation spreads in social networks. What is the mechanism
that convinces an individual to follow a new idea or to buy a new product?
What is the best marketing strategy which a company should adopt to take a
competitive advantage? How does viral marketing works? Many mathematical

models have been proposed to give an answer to questions of this type.

Since the 40’s, many mathematical models on the diffusion of innovation has
been proposed ((46, 47)) such as: the Linear Threshold Model, the Independent
cascade model ((48)) and epidemic models such as SIS and SIR ((49, 50)). All
these models are based on the same concept: in a social network the behaviour

of each individual is highly influenced by the behaviour of its neighbours.
Many of these models are based on the threshold effect: an individual adopts

a behaviour if a certain ratio of its social contacts have already adopted it, differ-
ently from the epidemic models in which a node adopts a behaviour with a certain
probability if at least one of its neighbours has adopted it. Threshold models are

more suitable to describe social influence phenomena and individual behaviours,
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while epidemic models are more used for mass behaviours. Examples of threshold
models are presented in (51, 52, 53). The firsts examples of threshold approaches
go back to the seventies ((51, 54)). Several aspects of the diffusion phenomena
have been studied among he years, from the local interactions between neighbours
((55, 56)), to the analysis of groups behaviours ((53, 57, 58)), which is the aspect

we focus on.

In the following chapters we deal with the Linear Threshold model, which was
originally proposed in (51), and has been widely studied in recent years. As in
most of the models appeared in the literature, the social network is represented
by a graph in which each node represents an individual, and edges represent
the relationships among individuals. In the original model a threshold value
A; is assigned to each individual 7, and all the neighbours of ¢ have the same
influence weight on it. An individual adopts the innovation as soon as the ratio
of its neighbours who have already adopted it is above its threshold value. The
origin of the previous rule is the following: many competitive games such an
individual decision rule has been proved to be the best response to the actions
of one’s neighbours ((53, 57)). When a node adopts the innovation we say that
it becomes active, otherwise is said to be inactive. It is implicitly assumed that
a node can adopt the innovation, but once adopted, it cannot abandon it, i.e., a
node can switch its state from inactive to active but cannot switch it from active
to inactive. This model can be used to represent systems in which the adoption
of a innovation is permanent and in the literature is called progressive ((59, 60)).
For instance, the progressive Linear threshold model can be suitable to represent
a group of people who want to buy a certain item: once an individual spends
money to buy that, i.e., once it adopts the innovation, usually it cannot have the
money back, thus we can say that the adoption of the innovation has a permanent

nature.

In many cases, however, the progressive model is not suitable to correctly
describe the spread of innovation, as habits may change: an individual who votes
for a party for a period can decide to change its preference, a person who eats
every day at the same restaurant can be persuaded to change of venue. More-
over, the influence pattern in real networks is usually time-varying, as the human
connections are subjected to changes: friendships can become stronger or weaker

due to the passing of time, new connections can be setted up and old connections
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can be removed. All these changes in the network can influence the spread of the
innovation, and in such systems an individual who has adopted the innovation
can be persuaded to abandon it. Such types of mechanisms can be described
using non-progressive models, in which each individual periodically updates its
state by looking at its neighbours, deciding either to be active or inactive.

To the best of our knowledge, most of the model presented in literature are
progressive ((61, 62, 63)), while the non-progressive diffusion of innovation has
not received much attention ((64)).

In the following chapters of we deal both with the progressive and non progres-
sive models: in particular in Chapter 5 and Chapter 6 we deal with the classical
progressive Linear threshold model, while in Chapter 7 we present a novel non
progressive instance of the line threshold model.

Our research has been focused on two main aspects:

e the role of cohesive subgroups in the spread of innovation in the network;

e how to influence the network.

The first aspect represent an analysis problem: we want to understand how a
system behave starting from a certain initial state. The second aspect represents
a control problem: we want to impose a specific state to the system in order to
make it follow a desired behaviour.

The social cohesion is considered a key aspect to understand collective be-
haviours in social networks. Many definitions of cohesiveness and social sub-
groups have been proposed in literature, and good surveys can be found in
(65, 66, 67). Here we study two particular types of cohesive subgroups, namely
the cohesive and persistent sets, to characterize the system, since this two types
of groups are strictly related to the adopting rules of the considered Threshold
models. We can define cohesive sets in both progressive and non progressive
models, while the persistent sets are important in the non-progressive model.

Chapters 5 and 6 collect the results discussed in (68), presented at the inter-
national conference Necsys 2013.

In Chapter 5 our analysis is inspired by the recent work (58), which extends an
idea proposed in (57), and present a characterization of the spread of innovation
in social networks, given a seed set — i.e., the set of initial adopters — based on

groups cohesion. A group of individuals is said to be cohesive for each node of
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the set, the ratio of the in edges coming from nodes which are not in the set is
smaller then its threshold value. A consequence of this property is that if none of
the nodes of a cohesive set have adopted the innovation at a certain time ¢, then
they will remain inactive for each ¢ > t. Moreover, in (58) it was proven that,
given a seed set, the final adopters set consists all nodes in the network except
those that belong to the maximal cohesive subset contained in the complement of
the seed set. We firstly characterize with a Binary Programming Problem (BPP)
the computation of the maximal cohesive set. This characterization is useful to
model other problems in social network analysis such as the ones presented in the
next sections. Secondly we propose an algorithm, based on the linear relaxation
of the presented BPP, which takes as input a seed set and computes the maximal

cohesive subset contained in the complement of the seed set.

In Chapter 6 we discuss the problem of influence mazimization, which can be
stated as follows: find a seed set of  individuals which maximizes the number of fi-
nal adopters. This problem is NP-hard, as shown in (60), and many approximated
and greedy algorithms have been proposed in literature ((60, 69, 70, 71, 72)). To
the best of our knowledge the target of all the approaches proposed so far is the
maximization of the number of final adopters. This represents a limitation, as in
many realistic cases it would be required to maximize the spread of innovation
on a network in a finite time horizon. For example, let’s think about a com-
pany which proposes a new product, it has to chose the best possible advertising
strategy to convince the maximum number of costumers to adopt its product
before other similar products come to the market. In this chapter we introduce
the Influence Maximization in Finite Time Problem with parameters r and k
(IMFTP(r, k)), which represents a generalization of the classical influence maxi-
mization problem. The IMFTP(r, k) can be described as follows: find a seed set
of r individuals which maximizes the set of adopters in k time steps. Choosing a
value of k high enough the solution of the IMFTP(r, k) coincides with the solu-
tion of the classical influence maximization problem. In section 6.1 a BPP which
solves the (IMFTP(r, k)) is proposed.

Chapter 7 collects the results discussed in (73), presented in Florence at the
international conference CDC 2013. In that chapter we present a non-progressive
instance of the linear threshold model which can be considered as a generalization

of the model presented in (58). We assume that the innovation is incepted in the
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network by a seed set, and the seed nodes are supposed to maintain the innovation
for a finite time - the seeding time -, after which they start to update their state
by following the same rules adopted by all the other nodes in the network.

We characterize the system evolution in two different phases: during and after
the seeding time. We show that during the seeding time the system behaves as in
the progressive model in (58). The main contribution of our work is the analysis of
the system evolution after the seeding time, which represent the main difference
between our model and the ones previously presented in literature, as in this
phase non-progressive mechanisms may occur. We use cohesive and persistent

groups to characterize some conditions under which such mechanisms take place.
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Chapter 5

Diffusion of imnovation in the

Progressive Linear Threshold Model

The chapter is organized as follows. In Section 5.1.1 we describe the representa-
tion of the network and the used model. In Section 5.2 we use binary and linear

programming to compute the maximal cohesive set in a network.

5.1 Network representation and reference model

5.1.1 Network structure

We represent the network as a directed graph G = (V, ) where V = {1,2,...,n}
is the set of nodes and € C 'V x 'V is the set of edges. Each node ¢ € V represents
an individual and an oriented edge (7, j) € € denotes that node j is influenced by
node 7. For this reason in this manuscript we use the terms individual or node
interchangeably. No selfloops, i.e., edges from one node to itself, are allowed. For
each node 7, let \; € [0, 1] denote its threeshold value and let N; = {j | (4,7) € £}
denote the set of its in-neighbours.
The topological information about the graph can be encoded in the adjacency
matriz A € {0, 1}"*"™ which is defined as follows:
o 1 if there is an edge from node 7 to j
A(i, j) = {

0 otherwise
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We define the in-neighbours scaled adjacency matriz A € [0,1]*™ as follows:

We denote with A = diag([A\; A2 ... \;]) the diagonal matrix whose diagonal
entries are the thresholds of the graph nodes.

5.1.2 Linear threshold model

Let us define ¢ as the seed set, i.e., the set of nodes which have adopted the
innovation at time ¢ = 0. From the seed set the innovation spreads through the
social network, and we denote as ¢; the set of nodes which adopt the innovation
at time ¢. All the individuals that adopt the innovation during the time interval
[0,t] belong to the set &, = U;:o ¢;j. In general, node ¢ which has not adopted
the innovation until time ¢, adopts the innovation at time t +1 —i.e., 7 € @11 —
if the following holds:

9N [Wiods NN

= >N\ 5.1
N Y 5-1)

The innovation spreads in the network until no more individuals can adopt it,

and we denote the set of final adopters as:

o = o
j=0

Algorithm 5 describes the dynamic of the network and returns as output the set

®* computing at each step which nodes respect equation (5.1).

5.1.3 Other mathematical results

We associate to each set of nodes X C 'V a characteristic vector defined as follows.

Definition 3 Given a set X C 'V, the associated characteristic vector € {0,1}"
s such that x; =1 if i € X else x; = 0.
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Algorithm 5 Computing ®*

INPUT: A graph G = (V,€). A set ¢pg C V.
OUTPUT: The set of final adopters ®*.

(i) Let ® = ¢g, ® =V \ ¢, and P,y = 0.
(ii) Let k= 0.
(iii) While ® # By
(a) k=k+ 1.
(b) Let &y = .
(c) Foric ®
= 1f o (AN > )\, then:

NG|
L @=duU{}.

2. &=\ {i}.
(d) end while.

(iv) Let ®* = &.
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In the rest of the chapter we denote with a; the characteristic vector of the set
¢; and with w; the characteristic vector of the set ®;. According to the linear
threshold model, for each couple of sets (¢;, ¢;) such that 4,5 > 0 and ¢ # j it
holds:

PNy =10

It follows that, Vt € N:
wy=xyg+x1+ ...+, <1,
The following definition formalizes the concept of cohesive set.

Definition 4 (Cohesive set in (58)) A set X C V is called cohesive if for all

1€ X it holds
|X NN
—>1—-\. (5.2)
N
In other world a set X C V is said to be cohesive if for each i € X the ratio
of neighbours which do not belong to X is strictly smaller than A;. If X is a
cohesive set it follows that if o N X = (), then no individual in X can adopt the

innovation. This can be formalized by the next result due to (58).

Lemma 5.1.1 (Lemma 2 in (58)) Let ¢pg C V be the seed set of a network and
let M C V\ ¢g be the mazimal cohesive set of the complement of ¢o. The set of
final adopters ®* is given by:

o =V \ M. (5.3)

5.2 Computing a maximal cohesive set

Lemma 5.2.1 shows that, given a network with seed set ¢g, the knowledge of the
maximal cohesive set M C V \ ¢y permits an immediate computation of the set
of final adopters ®*. In this section we propose an algorithm that computes the
maximal cohesive subset of V\ ¢g by solving some Linear Programming Problems
(LPPs) . We first present a Binary Programming Problem (BPP), whose optimal
solution is the characteristic vector of M, then we prove that the LPP obtained

by the relaxation of the BPP can be used to iteratively compute M.
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Lemma 5.2.1 A set X CV is cohesive if and only if its characteristic vector x
for all i € X satisfies
xlA(i) > 1 -\

where

if \i - [N;] €N
Yy if Ai - Ni| ¢ N

Proof: Firstly we make the following obvious remark:

CxTA(LD) X NN

T Al -
A(-4) = =
PACD T Tac) T

Then we observe that equation (5.2) can be rewritten as follows:

X NN;
| N | >1=XN & XN > Ni| = Ai - [N (5.4)
Since the LHS of the last inequality of (4) is an integer, we consider two cases:

o if )\; - |N;| € N the inequality can be rewritten as:
IX AN > N = A - (NG| + 1
o if \; - [N;| ¢ N the inequality can be rewritten as:
IX AN > N = A - NG

Dividing these inequalities by |[N;| the result follows immediately. O

According to the definition of )\; introduced in Lemma 5.2.1 we define the diagonal

matrix A = diag([A; Ao ... A\]).
Now we are able to present the following BPP.

Proposition 5.2.1 Given a graph § = {V,E}, let ¢p9 C V be a seed set with
characteristic vector y. The mazimal cohesive set M contained in V' \ ¢o has a

characteristic vector x that is the solution of the following BPP:

max 17.x
T
[[—]\—AT]aj
xe{0,1}"

1-y
0

IA A
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Proof: Firstly, we observe that
MNepg=10 — r+y<l1,

which can be rewritten as the first constraint in (5.5).

Secondly, since M is a cohesive set, by Lemma 5.2.1 it holds

VieM, xTA(i)>1-X\

Vi € V, CCT121<', Z) 1— )\Z).TZ

= IV <

2T A > 2T — A]

and this can be immediately rewritten as the second constraint in (5.5).
Finally, the cohesive set computed by BPP (5.5) is maximal because of the
chosen objective function. O

Note that, as shown in (58) a such a maximal cohesive set always exists — but
may be the empty set — and is unique.

The main advantage of our characterization is that using characteristic vectors
we can model several problems which are difficult to represents, such as the
influence maximization problem presented in section 6.1. However, according to
the previous proposition, computing a maximal cohesive set M requires solving a
BPP, a task that may be computationally hard for large graphs. We will present
in the following an alternative approach that requires solving a series of linear
programming problems and is thus computationally viable.

First we consider a relaxed version of BPP (5.5) and characterize its solutions.

Proposition 5.2.2 Given a graph G = {V,E}, let ¢pg C V be a seed set with
characteristic vector y, and let M be the mazimal cohesive set contained in V' \ ¢y.
Consider the following LPP:

max 17 . x

VARVA

8
v

and let «* € [0,1]" be an optimal solution of LPP (5.6).
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(i) Forallie M, zf = 1.
(i) If x* € {0,1}" then M ={i € V |z} = 1}.
Proof: We prove separately the two statements.

(i) The first result can be proved by contradiction. Assume @ is an optimal
solution of (5.6) such that Z = {i € M | x; < 1} is not empty, and consider
x' where z; = x; if i ¢ Z else 2; = 1. We claim that o’ satisfies the

constraint set of (5.6).

In fact constraint (a) is trivially verified by ', since for all i € Z it holds

yi = 0.
Consider now constraints of the form (b). For all i € V' \ Z it holds

VA D) > xTA(L D) > (1= M)z = (1— Nz,
while for all : € Z C X it holds
|X NNy - <
———>1-)N=(1-\N)
[Nl

since M is a cohesive set. As shown in the proof of Proposition 5.2.1 these

m/TA<'7 Z) >

two results imply that a satisfies constraints (b).

Finally, since 17 - 2’ > 17 . , then @« is not an optimal solution, which

contradicts the assumption.

(ii) If * € {0,1}" then &* is also the optimal solution of BPP (5.5) and thus

it is the characteristic vector of set M. ]

We can finally write Algorithm 6 for the iterative computation of the maximal
cohesive subset of the complement of the seed.

Some comments about the algorithm.

(1) Each time the LPP is solved, all nodes ¢ with SL’Z(-k) < 1 do not belong to M
(according to Proposition 5.2.2, part 1). Hence at step iii.(b) we can safely
change the input of the LLP to y**% setting for these nodes ygkﬂ) = 1.

Clearly the set M we want to determine is also the maximal cohesive set

contained in V\ Y 1 where Y*+1) is the set whose characteristic vector
is y(k—i—l)_
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Algorithm 6 Computing Maximal Cohesive Set using LPP
INPUT: A graph § = (V, ) with scaled adjacency matrix A and matrix A. A
set g C 'V with characteristic vector y € {0,1}".

OUTPUT: The characteristic vector of the maximal cohesive set M contained in

VA do.

(i) Let k=0 and y© = y.

(ii) Let ®) € [0,1]" be an optimal solution of

the LPP
max 17 .-z
x < 1—9yO
[I—]\—AT] x < 0
x >

(iii) While z® ¢ {0,1}"
(a) Let k =k + 1.
(b) Let y*) = [1 — g*V].

(¢) Let ® € [0,1]" be an optimal solution of

the LPP
max 17 .z
x < 11—y
[I—/_\—AT] x < 0
x >

(iv) End while.

(v) x® is the characteristic vector of M.
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(2) When the optimal solution of the LPP is a binary vector, we can be sure
that it represents the characteristic vector of set M (according to Proposi-
tion 5.2.2, part 2).

The final result we present in this section concerns a bound on the number of

steps the previous algorithm requires before halting.

Proposition 5.2.3 Algorithm 5 and Algorithm 6 require a number k of repeti-

tions of the while-loop where

Proof: In Algorithm 5 at each execution of the while-loop it holds that the
cardinality of ® increases at least of 1. In Algorithm 6 one can immediately
see that each time the while-loop is executed vector y increases in at least one

component, and in both cases the maximal number of increments is equal to

n — |do| — M]. 0

Algorithm 6 provides an alternative way, with respect to Algorithm 5, to
compute the set of final adopters that does not require to determine the evolution
of the network. However, we cannot claim that Algorithm 6 is more efficient
than Algorithm 5 at the light of Proposition 5.2.3. Algorithm 6 is based on
the characterization of cohesive sets given in Proposition 5.2.1, and its interest
consist in showing how a BPP for analysis of social network is amenable to a
linear relaxation. We believe that other problems may exists which can be solved
by using this type of approaches, and for that reason we have included this

preliminary result.
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Chapter 6

Influence Problems in the

Progressive Linear Threshold Model

The Chapter is organized as follows. In section 6.1 we deal with the Influence
Maximization problem. In section 6.2 another BPP model is proposed to solve the
following problem: choose the minimum seed set which can diffuse the innovation
over a target set in a finite time horizon. Finally, in the last section, we present

some simulations and some numerical results related with the presented problem.

6.1 The Influence Maximization in Finite Time
Problem (IMFTP).

The influence maximization represents one of the most attractive problems re-
lated with the diffusion of innovation in social networks. It can be summarized as
follows: given a network described by a graph G = (V, €), find a seed set ¢y C 'V
of r innovators to maximize the diffusion of innovation, i.e., find a ¢y such that
|po| = r and |®*| is maximal.

The classical influence maximization problem presented above considers as
quantity of interest the final number of adopters. Sometimes it could be required
to maximize the spread of innovation in a finite time horizon. The Influence
Mazimization in Finite Time Problem with parameters r and k (IMFTP(r, k))
can be formalized as follows: choose a seed set of r nodes to maximize the in-

fluence on the network in k time steps, i.e., find a ¢y such that |po| = r and
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|Py| is maximal. It’s evident that the IMFTP(r, k) represents an extension of the
classical influence maximization problem: choosing a value of k£ high enough the
IMFTP(r, k) has the same solution as the classical problem.

As the number of possible subsets of r elements in a set of n is

n n!
()

the IMFTP(r, k) has a combinatorial nature. We characterize a solution to this
problem using binary programming.

We first introduce the definition of k-evolution vector associated to a seed set

bo.

Definition 5 (k-evolution vector) Consider the diffusion of innovation in a
net starting from a seed set ¢pg according to the linear threshold model presented in

subsection 5.1.2. Given a positive integer k, let ®; be the set of nodes that adopt

the innovation at time t (fort =0,1,... k) and let w, be the characteristic vector
of ®;. The vector w = [wl w! ... w]] is the k-evolution vector associated to
bo-

Lemma 6.1.1 Given a graph G = {V,E}, let po C V be a seed set, and at each
time t let x, and w; be the characteristic vectors respectively of ¢, and ®,. The

following property holds.
vteN, [AT + Ajw, — Aw,y; >0, (6.1)

Proof: A node i € V such that ¢ ¢ &, adopt the innovation at time ¢ + 1,
ie., 1 € ¢yyq, if and only if
wl A 0) > N\ (6.2)
Equation (6.2) follows from the following observation:
w! A(-, 1) RN
1TA(-4) [Ny

wlA(:, i) =

It follows that: Vi € ¢pq, AT(-,d)w;, > \;.

Thus: .
VieV, AT(,i)w; > Nxpq (i)

0

Ath — Az >0,
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As x4 = wyy g — wy it follows:
YVt € N, [AT -+ A]wt — Awt+1 Z On
O

Given a seed set ¢g, all the components of the associated k-evolution vector
respect equation (6.1). The k-evolution vector w associated to ¢q is unique, and
keeps all the information about the evolution of the innovation diffusion in k
steps. There may exist however other vectors whose components satisfy equation
(6.1) but do not represent the evolution of the innovation diffusion. We define

these vectors as k-step vectors.

Definition 6 (k-step vector) Let ¢y be a seed set with characteristic vector

Wy, and Wo, Wy, ..., Wy be k + 1 vectors of n elements. The vector w' =
[wo" w! ... ] is a k-step vector associated to ¢o if Vi € {1,...,k} the com-

ponent w; € {0,1}", and respects equation (6.1).

Observe that, given a seed set ¢g there could be several k-step vectors as-
sociated to it. Let us consider the network represented in Figure 1, and let
A1 = A2 =049 and A3 = Ay = 0.60. Let ¢9 = {2}, whose characteristic vector is
xo = [0100]7, then it is ®; = {1,2,3,4} and w; = [1111]7. Thus, according to
Lemma 6.1.1 and Definition 5, vector w = [01001111]7 is surely a possible 1-step
vector associated to ¢y and it is also its unique 1-evolution vector. However it is
easy to verify that w is not the only possible 1-step vector associated to ¢q, but
also @' = [01000100]" and w" = [01000101]7.

Lemma 6.1.2 Let ¢ be a seed set whose k-evolution vector is w. For all possible

k-step vectors W' associated to ¢ it holds:

Proof: According to the linear threshold model, if an individual 7 can adopt
the innovation at time ¢ < k, then for each component j > ¢ of the k-evolution
vector it holds w;(i) = 1, while in a k-step vector w it can be w,;(i) = 1 or
w;(i) = 0, as in both cases equation (6.1) is respected. If an individual ¢ can’t
adopt the innovation during the k steps, then for each component j > k it must
be w;(i) = w;(i) = 0. Thus w;, > wy. O
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Figure 6.1: A network with n = 4 nodes.

Using the above definitions we propose now a BPP which solves the IMFTP(r, k).
For a given network G = {V, £}, the choice of the constraints guarantees that the
optimal solution of the following BPP is a k-step vector associated to a seed set
¢4 of r nodes, which maximize the spread of innovation in G in k steps. Moreover,
we prove that the weights of the objective function guarantee that the optimal

solution is the k-evolution vector associated to ¢y.

Proposition 6.1.1 Given a graph G = {V, E} with |V| = n, consider the follow-
ing BPP problem:

max [11, (nk)1L] . w

17w, = r (a)
Vie{l,...,k}, (6.3)
w e {0,1}"*+D (¢
where w? = [wl wl ... wl] . Let w* be an optimal solution of (6.3). Then:

o wy is the characteristic vector of the seed set ¢ which solve the IMFTP(r, k);
o w* is the k-evolution vector of ¢j.

Proof: From Definition 6 it follows that constraints (b) and (c) guarantee
that each feasible solution of (6.3) must be a k-step vector associated to ¢f. We

prove the properties above in two steps:

(i) firstly we prove that vector wj is the characteristic vector of ®; starting

from a seed set ¢j;
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(ii)

secondly we prove that wy is the k-evolution vector of ¢;.

We analyse the two steps separately.

(i)

6.2

We prove this statement by contradiction. Let the i-th component w; of the
optimal solution w* be the characteristic vector of a set ©;. Let us suppose
that ©) # @, starting from ¢j. As w* is a k-step vector, by Lemma 6.1.2
it follows that |®x| > |O].

Let |®x] = m < n, than at maximum it can be |©y] = m — 1. For the

characteristic vector wy, of ®,, it holds:
(nk) - 1Tw;, = nkm
For the optimal solution ®* it can be at maximum:
05l = 101] = ... =[Ok =m — 1,

thus
1L (nk) - 11]w* < k(m—1) +nk(m —1)
= nkm—nk-+mk—k

As mk — nk is for sure a non-positive value, it follows that:
17 (nk) - 1Tw* < (nk) - 1Xw,

thus ©; can’t be the set whose characteristic vector is the k-th component

of the optimal solution.

As the problem is a maximization, the value of the objective function is
maximized when each individual adopts the innovation as soon as condition
(5.1) is satisfied, hence each component w} is the characteristic vector of
;. starting from the seed set ¢j. O

Diffusion of innovation over a target set

Another interesting problem in social network is the following: minimize the seed

set, ¢y to diffuse the innovation over a target set of nodes ®; C V in k time step.

In this section we use the definitions of k-evolution vector and k-step vector to

model a BPP which can be used to solve this problem.
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Proposition 6.2.1 Given a graph G = {V, &} with |V| = n, let w? = |

T o1
wo wl LIS

be a n(k + 1) vector and x4 be the characteristic vector of the target set &4 C V.

Consider the following BPP:

(min 1 o7 ] w

v

Wy,
Vie{l,..., k},
[AT + A]'wi_l — A'wl Z

w €
\

Let wx be an optimal solution of (6.4). Then w{ is the characteristic vector of

Lq

{0, 13" ()

(6.4)

the minimum seed set which can diffuse the innovation over the target set ®4 in

k steps.

Proof: Constraints (b) and (c) guarantee that the optimal solution w* is a
k-step vector. Constraint (a) guarantees that, starting from a seed set ¢§ with
characteristic vector wy, a set ®; O ®; can be reached in £ steps. Moreover, as

the problem is a minimization BPP, the seed set must be the minimum.

0

Like (6.3), in BPP (6.4) the complexity grows as the number of steps k increases.

The relaxed version of (6.4) can be used to compute a lower bound of its optimal

solution.

Proposition 6.2.2 Given a graph § = {V, &} with |V| = n, let w' = [wl wT ...
be a n(k+ 1) vector and x4 be the characteristic vector of the target set &4 C V.

Consider the following LPP:

min [17 0%, ] w
r w,
Vie{l,... k},

[AT + A]wi,1 — A’wl

w
\

>

>

>

On(ry1)

()

Let w* be an optimal solution of (6.5). The following properties hold:

(i) if w* € {0,1}"* Y then w* is also an optimal solution of (6.4);
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Figure 6.2: In this network if A < 0.5 Algorithm 6 is more efficient than Algorithm

5.

i) [17wy] is a lower bound on the cardinality of the minimum seed set which
n 270

diffuses the innovation to the whole target set ®4 in k steps.

Proof: The two statements trivially follow by the definition of relaxed BPP.
O

6.3 Numerical results

In this section we propose a small selection of the results obtained by the simu-
lations of the proposed algorithms. Firstly we present a case in which Algorithm
6 is more efficient than Algorithm 5.

The network in Figure 2 represents a case in which Algorithm 6 can be more

efficient than Algorithm 5 depending on the choice of \.

Table 6.1
Algorithm 5
G0 | n A | Executed while-loops | Execution time (sec.)
{1} | 1000 | 0.01 1000 6.6
{1} | 1000 | 0.005 1000 6.6
{1} | 1000 | 0.001 1000 6.6
Algorithm 6
oo n A | Executed while-loops | Execution time (sec.)
{1} | 1000 | 0.01 100 5.7
{1} | 1000 | 0.005 67 1.1
{1} | 1000 | 0.001 30 1.9

Table 6.1 shows the results of the comparison of the two algorithms for differ-
ent values of A and n = 1000.
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Figure 6.3: Network used to test BPP (6.3)

We have solved the IMFTP(r, k) in the network represented in Figure 6.3
using BPP (6.3) for different values of r and k. The values of A are different at
each node and have been randomly generated. The results of the experiment are
plotted in Figure 6.4, in which the value of || is computed for different values of
the parameters (r, k). As it was expected, if the value of k is fixed, the function
|®5|(r) is non-decreasing as well as the function |®}|(k) if the value of r is fixed.

We have tested BPP (6.4) and LPP (6.5) in the network represented in Fig-
ure 6.5. In this case also the values of lambda are different at each node and
have been randomly generated. The chosen target set is &; = V. Figure 6.6
show the variation of |¢§| computed with BPP (6.4) for different values of k, and
the respective lower bound computed with LPP (6.5). As it was expected the

function |¢g|(k) is non-decreasing.

6.4 Conclusions

In this chapter we have discussed different aspects related to the diffusion of
innovation in social networks. In the first part we have proposed a BPP charac-
terization and an iterative algorithm based on LPP which compute the maximal

cohesive subset of the complement of the seed set when the seed set is known. In
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Figure 6.4: |®}| obtained by BPP (6.3) for different values of k and r.

the second part a BPP model is presented that determines the set which maxi-
mizes the spread of innovation over the network in k steps.

This chapter presents a useful characterization of the Linear Threshold Model
using vectors and matrices, and shows that there exist some problems which can
be represented with BBPs and solved using their linear relaxations. We believe
this preliminary approach can be applied to solve efficiently other problems of

interest in social network analysis.
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Figure 6.5: Network used to test BPPs (6.4) and (6.5)
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Figure 6.6: |¢;| obtained by BPP (6.4) and its lower bound obtained by LPP (10)
for different values of k
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Chapter 7

A Non-Progressive instance of the
Linear Threshold Model

The Chapter is organized as follows. In section 7.2 we introduce the non-
progressive linear threshold model, formalizing the used notation, the main as-
sumptions and the adopting conditions. In section 7.3 we define and characterize
the persistent sets with respect of the presented model. Finally, in section 7.4
we analyse how the innovation spreads in a social network according to the non-
progressive linear threshold model, and we confirm the analytical results through

some numerical examples.

7.1 Background

Let us represent a social network with a directed graph § = {V, £}, as made in
Chapter 6. Differently from Chapter 6, a weight w;; € [0, 1] is associated to each
edge (i,j) € € and denotes how much node 7 influences node j. We assume that
for all i € V it holds: >, wj; = 1.

7.2 Non-Progressive Linear Threshold Model

In this section we introduce a non-progressive instance of the linear threshold
model. Firstly we list the assumptions on which the model is based, then we
define the update rule. For the rest of the chapter we refers to this model as the
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non-progressive linear threshold model.

7.2.1 System description

A threshold value \; € [0,1] is associated to all nodes i € V. We assume that
the independent variable time ¢ belongs to N. The innovation spreads in the
network starting from a seed set ¢y, i.e., a set of individuals are active at time
t = 0. We assume that all the nodes in ¢, are active for a time interval ¢ € [0, T],
independently of the state of their neighbours, then for ¢ > T, they update their
state following the same rule as the rest of the nodes. We call T the seeding time.

We assume that:

e the topology of the network is static and all the connections and the influ-

ence weights are known;
e the thresholds \;, V2 € V are static and known;
e a node can be more influenced by some neighbours than others, thus for

each node the weights of the in-edges may be different.

7.2.2 Update rule

Let ®; be the set of active nodes at time t. In the non-progressive linear threshold

model the nodes update their states at time ¢t according to the following equation:

®o t=20
(bt - (bOU {Z | ZjE(Niﬂq?'t_l) w.]l Z )\2}7 t S [17Ts] (71)
{7 Zje(j\rmcpt,l) wj; > A}, t > T

In other words, after the seeding time a node is active at time t if the sum of
the weights of the in-edges coming from active neighbours at time ¢t — 1 is greater
than or equal to its threshold. Differently from the progressive model, in which a
node maintains the innovation indefinitely once adopted, in the non-progressive
model a node can switch its state from inactive to active and vice versa.

Additional notation that will be used in the rest of the chapter is the following.

o ¢/ = &, \ ¥, y, i.e, the set of nodes which become active at time ¢;
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o ¢, =D, 1\ Dy ie., the set of nodes which become inactive at time ¢;
o &* =lim; ., P; denotes if it exists, the set of final adopters.

Note that the set ®* does not always exist. The existence of this set will be

discussed in section 7.4.

7.3 Cohesive and Persistent Sets

In this section we define two types of cohesive groups in the non-progressive
linear threshold model, which are useful to analyse the spread of innovation in the
network. We firstly adapt to our model the concept of cohesive sets as presented
in (58). Then we introduce the idea of persistent sets, which describe a different

type of coherence with respect to cohesive sets.

Definition 7 (Cohesive set ((58)) for weighted graphs) A set X is cohe-
sive if for all nodes i € X the sum of the weights of the in-edges coming from

nodes which are not in X is lower than their threshold \;, i.e.:

VieX, Y wip>1-\ (7.2)
FEN;NX)
An important property of a cohesive set, proved in (58), is that if none of the
nodes within the set is active at time ¢, then none of them can become active for
all ¢ > t. In Figure 7.1 the sets {1,2,3} and {8,9} are cohesive, while {4,5,6,7}
is not cohesive.
We introduce now a novel type of cohesion which is typical of the proposed

model and is useful to analyse the evolution of the network.

Definition 8 (Persistent set) A set X is persistent if for all nodes i € X the
sum of the weights of the in-edges coming from nodes within X is greater than or

equal their threshold \;, i.e.:

JEMN;NX)

The following theorem points out the reason why such type of sets are important

in the non-progressive linear threshold model.
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Theorem 7.3.1 Let X be a persistent set. If at time t' all the nodes in X are
active, then they remain active for all t > t'.
Proof: 1f all nodes in X are active at time ¢/, i.e., X C &y, from (7.3) follows

that
Vi € X, Z Wi Z Z Wi; Z )\z
je(Niﬁ¢t1) JEMN;NX)
hence X C &, ;. The result follows by recursion. O

Property 7.3.2 Let X| and X5 be two persistent sets. The set X1 U X5 s a
persistent set as well.

Proof: ~As X is persistent, each node i in X satisfies equation (7.3). As
X1 - X1 UX2 it holds for k = 1, 2:

1€ Xy, Z wij; 2 Z Wi = A
JjeEMN;N(X1UX2)) JjeEMN;NXy)

Thus all the nodes in X; U X satisfy equation (7.3), i.e., X7 U X, is a persistent
set. (]

In Figure 7.1 the sets {1,2,3} and {4,5,6,7} are persistent, while {3,4} is not
persistent. We conclude this section by observing that a set can be both cohesive

and persistent, e.g., the set {1,2,3} in Figure 7.1.

7.4 System’s dynamic

The purpose of this section is to characterize how the innovation spreads in the
network according to the non-progressive model. We analyse separately two dif-

ferent phases of the evolution in the network:
e during the seeding time, i.e. for 0 <t < Tg;
e after the seeding time, i.e., for t > T5.

We pay particular attention to the evolution of the innovation after the seeding
time: which are the nodes that are able to hold their states active after 7,7
We use the following definitions to describe the evolution of the innovation in

the network according to the presented model.
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Definition 9 (Progressive evolution) The diffusion of the innovation in the

network is progressive (or non-decreasing) during a time interval [ty,ts] if:
Ve [t t], ¢ =0

In other words, for all ¢ € [t1, 5] all active nodes i € ®;_; remain active at time

t. If t; =ty = t', we said that the evolution is progressive in ¢ if ¢, = (.

Definition 10 (Non-progressive evolution) The diffusion of the innovation

in the network is non-progressive during a time interval [ty,ts] if:

3t € [t ts], o #0.

In other words, during the time interval ¢ € [t1, t5] there is at least a node which

becomes inactive.

Definition 11 (Degressive evolution) The diffusion of the innovation in the

network is degressive (or non-increasing ) during a time interval [t1, 5] if:
VL€ [t t], ¢ =0

Definition 12 (Periodic evolution) The diffusion of the innovation in the net-
work s periodic after time t if there exist a T > 0 € N such that:

Vk’ 6 N, t, Z t (b; — (bt/—f—kT'

where T is the period of the evolution.

The definitions of progressive and degressive follow the usual definitions in lit-
erature. Note that an evolution can be both progressive and degressive if the
set, of active nodes is constant. In the following parts we prove analytically the

following results:
(a) during the seeding time the system has a progressive evolution;

(b) after the seeding time the evolution of the system is progressive if &, is

persistent, otherwise is non-progressive;
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(c) if Ty is sufficiently large (larger than a parameter T, called diffusion time
and introduced in the following section) two results holds: a) the set of final
adopters ®* exists and is the maximal persistent set in ®7_; b) if &7, is not

persistent the system has a degressive evolution for ¢ > 7.

Examples of evolutions, including a case in which the system has a periodic

evolution, are given in the final subsection.

7.4.1 Evolution during the seeding time: 0 <t < 7T

In this part we prove that in the non-progressive model, according to the assump-
tions made so far, during the seeding time [0, 7] the system has a progressive

evolution.

Theorem 7.4.1 The evolution of a social network with seed set ¢y and seeding
time Ty is progressive in the time interval [0, Ty].

Proof: We prove the statement by induction on the time step ¢, assuming
Ty > 1 (if Ty = 0 the result is trivial).

(base step) At time step ¢ = 1, the evolution is progressive because by equation
(7.1) &g = ¢y C Py, hence ¢; = 0.

(inductive step) Assume that at time step t—1 (where t € [2, T}]) the evolution
is progressive: we now show that the evolution is also progressive at time step ¢
thus completing the proof.

Observe that the assumption ¢, ; = () implies ®; 5 C ®; 1, hence for all i € V
holds:

N:Nd, 5 TN, NPy,

By (7.1) this implies that ®;_; C ®;, hence ¢; = 0. O

The previous analysis also points out that as long as the nodes of the seed set are
active, no node in the network can become inactive, i.e., during the seed time a
node, which is not in the seed set, adopts the innovation as soon as the sum of
the weights of the in-edges coming from active nodes is greater than or equal its
threshold value, and maintains it.

This behaviour is also typical of the progressive instance of the linear threshold

model presented in (58). Differently from our model, the progressive in (58)
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assumes that all in-edges at each node have the same weight, i.e., for all i € V it
holds:

Wir

1
ji = ma
In the progressive model an inactive node ¢ adopt the innovation at time ¢ if
at time ¢ — 1 it holds:

Vi eN,.

O, NN;
Z wj; = M >\ (7.4)

£ [N;|
]G(Nlﬂq?'t_l)

According to the previous equation, also in the progressive model a node
adopts the innovation as soon as the sum of the weights of the in-edges coming
from active nodes is above its threshold value, but differently from our non-
progressive model an individual is assumed to never abandon the innovation once
adopted. Thus we can claim that the non-progressive linear threshold model
represents a generalization of the progressive model. In particular, the evolution
of the progressive model corresponds to the evolution of the non-progressive model
in case of T, — oo.

We can exploit this similarity even further. We know from (58) that the
progressive model reaches in a finite time a steady state where the set of active

nodes remains constant and is:
"=V -M

, where M denotes the maximal cohesive set in the complement of the seed set.
Motivated by this, we define a parameter, the diffusion time, which will play
an important role in the analysis of the evolution of the non-progressive model

as will be shown in the following sections.

Definition 13 (Diffusion Time T;) For T, sufficiently large the innovation spreads
in the network until a time Ty < Ty such that &7, = Or,p = -+ = Op,. The

parameter T, is the diffusion time of the network.

7.4.2 Evolution after the seeding time: t > T

At time T, + 1 some nodes in the seed set may become inactive, as they may

not satisfy equation (7.1). If that happens, at time T, + 2 some active nodes
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connected to the seed set may become inactive, etc. Such a tendency to abandon
the innovation leads to a non-progressive evolution.
In this section we characterize the evolution of our model after the seeding

time and also present some particular results that hold in the special case T, < T}.

Lemma 7.4.1 Consider a social network with seeding time Ty. If there exists a
time step t > T, such that the evolution in t is progressive, then the evolution is
also progressive for all t > t.
Proof: Observe that the assumption ¢; = () implies ®7_; C @y, hence for all
1 €V holds
N; Nd;_; CN; N Dy

By (7.1) this implies that ®; C ®z,y, hence ¢, = 0. The result follows by

recursion. ]

The following theorem fixes the conditions under which the evolution of the

system remains progressive for ¢t > T5.

Theorem 7.4.2 Consider a social network with seed set ¢pg and seeding time Tj.
The evolution of the network is progressive for all t > 0 if and only if ®r, s
persistent.

Proof: We prove separately the if and only if parts.

(if) For 0 < ¢t < Ty it has been shown in Theorem 7.4.1 that the network
has a progressive evolution. If @7 is persistent, Theorem 7.3.1 implies that the
evolution at time step T + 1 is progressive. From Lemma 7.4.1 one concludes
that the evolution is also progressive for all time steps ¢t > T, + 1.

(only if ) If @, is not persistent, by Definition 8 there exists a node i € O,
such that Zje(chst) wj; < Ai. By (7.1) if follows that node i becomes inactive
at step Ts 4 1, hence the network has a non-progressive evolution. (]

The following corollary points out that to determine if the system has a pro-
gressive evolution after T it is sufficient to determine if all nodes in the seed set

remain active at time 7T, + 1.

Corollary 7.4.1 The evolution of a social network with seed set ¢y and a seed
time T is progressive for allt > 0 if and only if at time T+1 it holds: ¢poNop | =
0.
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Proof: Since ¢ N ¢7 ., = 0 it holds

P & {Z | 2 jeouner,) Wi = )‘i}

hence

60 U {i | Siennon, o wi 2 M

- {Z | 2 jeovndr,) Wi = )\z}
and by (7.1) this implies that ®7, 11 C ®7,. The result follows from Lemma 7.4.1.
U

The following theorem points out a sufficient condition on the structure on

the seed set under which the evolution of the system is progressive.

Theorem 7.4.3 Consider a social network with seed set ¢po and seeding time Tj.
If ¢q is persistent, the evolution of the network is progressive for all t > 0.
Proof: To prove this statement is sufficient to prove that if ¢, is persistent,

then ®p, is persistent as well. We can consider ®p, as:
Or, = do+ ¢ + 65 + ... 01,
. Since ¢ is persistent, it holds:
¢o € P11
Since all the nodes in ¢, are active at time T + 1, it holds:
¢7 € Pr,41.
Using the same argument we can observe that:
¢3 € Prpa; . §¢JT: S

. Thus it follows that:

G101 =10
and from Corollary 7.4.1 it follows that the evolution is progressive for ¢ > 0. [
We now present some results that apply to the special case in which T, > T,. If
this condition holds, the progressive evolution during the seeding time reaches a

steady state and &7, = O7 41 = -+ = P

Next theorem points out which are the nodes that remain active for all ¢ > T}.
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Theorem 7.4.4 Let ¢y be a seed set of a social network with a seed time Ty and
diffusion time Ty < T,. If @7, = P, is not persistent, then the system has a
degressive evolution for t > Tj.

Proof: The proof is based on verifying the following two facts.

(a) Firstly, we prove that if @7, is non-persistent, then ¢7. ,, = 0 and ¢z, # 0.
Observe that if &, = @7, is not persistent it follows from Theorem 7.4.3
that ¢, # (. Moreover, as Ty > Ty, it holds that V — &7, = M, where M
is the maximal cohesive subset of the complement of the seed set. Thus no

nodes can adopt the innovation at time T, + 1, i.e., ¢£+1 = (.

(b) Secondly we prove that for all ¢ > T} + 1 it holds ¢ = (). At time T, +1 it
holds @1, ,; C ®7,, thus according to equation (7.1) it holds ¢7, ., = 0. By
the iteration of the same argument, for all ¢ > T, + 1 it is:

o, CP ., & ¢ZL+1 = ]

Theorem 7.4.5 Let ¢y be a seed set of a social network with seed time Ty and
diffusion time T, < T,. The set ®* of active nodes for t — oo is the mazrimal
persistent set contained in ®r, and is reached at time Ty < Ty + |Op,| — |@*].
Proof: 1f the set of active nodes at step ¢ is not persistent, there is at least
one node in ®; that becomes inactive at step ¢ + 1. This, since the evolution is
degressive according to Theorem 7.4.4, the number of active nodes decreases at
each step until the system reaches a persistent set of active nodes ®*, which is
the maximal persistent set contained in ®7 . The steady state is achieved from

T, in a number of steps which is at maximum |®7,| — |®*], thus:

Ty < T+ || — [@7]

7.4.3 Some examples

In this section we consider social networks with seeding time 7§ smaller than the
diffusion time T; because in this case several types of evolutions are possible, as
opposed the networks with T, > T}; that we have shown can only admit degressive
evolutions after the seeding time. We illustrate three different scenarios separately

through examples.
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Example 7.4.6 (Scenario 1: progressive evolution) Consider the network
in Fig. 7.1 with seed set ¢g = {1,2} and seeding time Ty = 2. The diffusion
time for the considered network is Ty = 4. As it is shown in Fig. 7.2, the evo-
lution of the system is progressive. According to Theorem 7.4.3 the progressive
evolution can be predicted by observing that O, = Py is a persistent set, as all
the nodes that belong to it satisfy equation (7.3). The set of final adopters exists
and is ®* ={1,2,3,4,5,6,7}.

Figure 7.1: Network in scenario 1.

d, o | o

{1,2}
{1,2,3} {3}
{1,2,3,4} {4}

{1,2,3,4,5,7} | {5,7}
{1,2,3,4,5,6,7} | {6}
{1,2,3,4,5,6,7} | 0

Gl | W N | = | O+
S RSSERSSHRSS RS

Figure 7.2: Evolution in scenario 1.
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Example 7.4.7 (Scenario 2: non-progressive evolution) Consider the net-
work in Fig. 7.3 with seed set oo = {1,3} and seeding time T = 1. The diffusion
time for the considered network is Ty = 3. As it is shown in Fig. 7./, the evo-

lution of the system is non-progressive.
O* = ().

The set of final adopters exists and is

Figure 7.3: Network in scenario 2.

t D, ¢ ¢r

0 {1,2}

1 {1,2,3} {3} 0

2 {3,4,5} {4,5} {1,2}
31{4,5,6,7,8,9} | {6,7,8,9} {3}

41 {6,7,8,9} 0 {4,5}
5 0 0 {6,7,8,9}

Figure 7.4: Evolution in scenario 2.

The numerical results confirm the analytical result obtained in Theorem 7.4.3:

as the set ®p, is non-persistent, the system has a non-progressive evolution.

The next example represent a case in which the evolution of the system is periodic

after T,. This is a particular, but interesting, case of non-progressive evolutions
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but so far we have not found any analytical characterization of this behavior.

Example 7.4.8 (Scenario 3: periodic evolution.) Consider the network in
Fig. 7.5 with seed set ¢y = {1,3} and seeding time Ty = 1. The diffusion time
for the considered network is Ty = 2. As it is shown in Fig. 7.6, the evolution of
the system is non-progressive after Ty, as the set ®r, is non-persistent. Moreover,
the system has a periodic evolution with period T = 2 from t = 2. In this case
the set ®* cannot be defined.

Figure 7.5: Network in scenario 3.

P,
1,3y | of | o
{1,2,3,5} | {2,5} 0
2,45} | {4 [{13}
{1,2,3} | {1,3} | {4,5}
{2,4,5} | {4,5} | {1,3}
{1,2,3} | {1,3} | {4,5}
{2,4,5} | {4,5} | {1,3}

DO R WIN|—~| O

Figure 7.6: Evolution in scenario 3.
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7.5 Conclusions

In this chapter we have presented a non-progressive instance of the linear thresh-
old model, in which the diffusion of the innovation starts from a seed set whose
nodes are assumed to maintain the innovation for a finite time. We character-
ized analytically the conditions under which the system has a progressive, non-
progressive and degressive evolution. This model represents a first step in the
analysis of non-progressive mechanisms dealing with the linear threshold model.
In our future works we want to extend the presented model by exploring other
mechanisms which can lead the network to a non-progressive evolution, such as
changes in the network topology or in the influence weights. Furthermore we
also plan to characterize the set of final adopters when T, < T, and to find some

conditions on the graph structure to characterize the evolution on the network.
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Chapter 8
Conclusions

In this thesis we have presented several algorithm, based on graph theory, on two
main topics: the coordination of multi-agent systems through consensus and the
diffusion of innovation in social networks.

Regarding the coordination of multi-agent systems, the following are the pre-

sented results.

e In Chapter 2 a formation control strategy for a set of autonomous vehicle
in absence of a common reference frame, based on gossip, is proposed. If
the agent have a common reference direction the algorithm is proved to
be robust to noise on the displacement measurement. To the best of our
knowledge this algorithm is a rare example in literature of formation control
strategy in absence of a common reference frame, which is not characterized

by a leader.

e In Chapter 3 we have proposed the Heterogeneous Multi Vehicle Routing
Problem (HMVRP), which represent an extension of the classical Multi
Vehicle Routing Problem. We have proposed upper and lower bounds for
the cost of the optimal solution. Furthermore, we proposed two algorithm
based on gossip to solve the HMVRP in a distributed fashion exploiting
only pairwise task exchanges between vehicles, thus greatly reducing the
computational complexity required to compute a solution. The proposed
methods scales with exponential complexity with respect to the ratio be-
tween the number of tasks and vehicles instead of scaling with respect to

the number of tasks. We believe that our framework can be extended to the
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case of Dynamic MVRP, in which robots start to move and serve tasks while
the decentralized optimization is being executed and new tasks appear in

the region

Regarding the diffusion of the innovation in social networks, the following are the

proposed results.

e [n Chapter 5 we have adopted the classical Linear Threshold Model for the
diffusion of innovation in Social Network. We firstly have proposed an algo-
rithm, based on linear programming, which computes the maximal cohesive
subset of a network. This algorithm can be used to compute the set of final
adopters for a given seed set of nodes. Then we have characterized the op-
timal solutions of two problems: the Influence Maximization in Finite Time
and the diffusion of innovation over a target set. The framework presented
in this chapter represents a useful characterization of the Linear Threshold
Model using vectors and matrices, and shows that there exist some prob-
lems which can be represented with BBPs and solved using their linear
relaxations. We believe this preliminary approach can be applied to solve
efficiently other problems of interest in social network analysis. Another
interesting orientation for future work is the study of heuristic approaches

to the presented problems, since most of them have a combinatorial nature.

e In Chapter 7 we have defined and analysed a novel model, the Non Pro-
gressive Linear Threshold Model, which extends the classical model and,
differently from it, is suitable to represent non progressive phenomena of
innovation diffusion. We have characterized the evolution of the network in
therms of Cohesive and Persistent sets. The analysis of innovation diffusion
phenomena through the analysis of the cohesion in the network represent
an actual and still open problem. We believe that this technique an be
extended to other models which represent diffusion phenomena. Further-
more, the proposed model represents a first step in the analysis of non-
progressive mechanisms dealing with the linear threshold model, which can
be extended by exploring other phenomena which can lead the network to a
non-progressive evolution, such as time-varying network topology or in the

time varying edge weights.
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Appendix A

Appendix

A.1 Algebraic graph theory

A graph can be defined as G = {V, E} where V' = {1,...,n} is the set of n nodes
or vertices, which in our thesis represent agents or individuals and £ C {V x V'}
is the set of edges, which represents the existence of an interaction between any
given couple of nodes. A graph can be directed (digraph) or undirected. A graph
G is directed if to each edge (i,j) we associate a direction. We call head of the
edge node i and tail node j, finally we say that edge (7,j), which sometime is
referred as e; ; in short, goes from node j to node i.

A loop is an edge whose endpoints are the same. A walk w;; from node ¢ to

node j in G is an alternate sequence of vertices and edges, for instance

wW1,3 = V1, €12, V2, €32, Us.
A path p; ; from node ¢ to node j in G is an alternate sequence of vertices and

edges, for instance

P13 = V1, €1,2,V2, €23, V3.
In an undirected graph in which edges do not have a direction, a walk is
equivalent to a path.

A graph is:

e disconnected if there exists two nodes ¢ and j and there does not exist a

walk from 7 to j;
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e weakly connected if for any couple of nodes 7,7 € V there exists a walk

between ¢ and j;

o quasi-strongly connected if from each node ¢ € V' there exist a path to node

w;
e strongly connected if there exists a path between each pair of nodes 7, j, € V.

If graph G is undirected, it can be only disconnected or connected.

Dynamic case

We define a time-varying graphs as G(t) = {V, E(t)} where V' = {1,...,n} is the
set of nodes and E(t) C {V x V} is the time-varying set of edges that map each
instant of time into a set of edges € : R — E. We define the union of graph
Gy = {V1, E1} and Gy = {V5, Es} as the graph G = G| Go = {V1 U V>, E1 | >
whose vertex and edge set is the union of those of G; and (5. Given an interval
of time [t, '] we define the union graph §[t,#'| over an interval of time as

A time-varying graph G(t) is uniformly strongly connected if for any ¢ there
exists T in which G[t, ¢ + T1] is strongly connected.
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