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Abstra
tIn this thesis several results on two main topi
s are 
olle
ted: the
oordination of networked multi agents systems and the di�usion ofinnovation of so
ial networks. The results are organized in two parts,ea
h one related with one of the two main topi
s. The 
ommon as-pe
t of all the presented problems is the following: all the system arerepresented by graphs.Two are the main 
ontributions of the �rst part.
• A formation 
ontrol strategy, based on gossip, whi
h leads a setof autonomous vehi
les to 
onverge to a desired spatial dispo-sition in absen
e of a 
ommon referen
e frame. If the vehi
leshave 
ommon dire
tion, we prove that the proposed algorithm isrobust against noise on displa
ement measurement.
• The formalization of the Heterogeneous Multi Vehi
le RoutingProblem, whi
h 
an be des
ribed as follows: given an hetero-geneous set of mobile robots, and a set of task to be servedrandomly displa
ed in a 2D environment, �nd the optimal taskassignment to minimize the servi
e 
ost. We �rstly 
hara
ter-ize the optimal 
entralized solution, and then we propose twodistributed algorithms, based on gossip, whi
h lead the systemto a sub-optimal solutions and are signi�
antly 
omputationallymore e�
ient than the optimal one.The 
ontributions of the se
ond part are the following.
• We study how the innovation spreads in a So
ial Network a
-
ording to the so 
alled Linear Threshold Model, in whi
h theinnovation is in
epted in the network starting from a seed set,



and nodes adopt the innovation if the ratio of the neighboursthat have already adopted it is greater than or equal a 
ertainthreshold value. We fo
us on the 
ohesive subset of the network,whi
h 
an be used to 
ompute the set of �nal adopters. If a setis 
ohesive and none of the nodes have adopted the innovation ata 
ertain time t, then they are not able to adopt the innovationat any t′ > t. We propose an algorithm based on linear pro-gramming whi
h 
omputes the maximal 
ohesive subset of the
omplement of the seed set.
• A

ording to the Linear Threshold Model, we de�ne two prob-lem of interest in So
ial Networks analysis and 
hara
terize theoptimal solution: the In�uen
e Maximization Problem in FiniteTime and the di�usion of innovation over a target set.
• We 
hara
terize the novel Non Progressive Linear ThresholdModel, whi
h extends the 
lassi
al Linear Threshold Model. Weformalize the model and we give a 
hara
terization of the networkdynami
s in terms of 
ohesive and persistent sets.
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Introdu
tion
Introdu
tion to the thesisThis thesis 
olle
ts several results on two main topi
s: the 
oordination of net-worked multi agents systems and the di�usion of innovation of so
ial networks.Both topi
s have been widely studied in literature in re
ent years and in di�erent�elds, sin
e it is evident in nature the enormous power of the 
olle
tivity respe
tto a single individual: the more a group of individuals is organized, the more itgrows up and generate well-being to ea
h member. Moreover, it has always beenevident that many target 
an be better rea
hed by a 
oordinated group of peoplethan a single individual, and in some 
ases 
ooperation is ne
essary. At the sametime, there are some phenomena in whi
h some individuals (or group of them)have a greater in�uen
e in the 
ommunity than others. Thus, in the last twode
ades, resear
hers of di�erent �elds have been attra
ted by su
h 
on
epts: so-
iology, biology, informati
s, ele
troni
s, arti�
ial intelligen
e and 
ontrol theory.In this manus
ript we address di�erent problems 
hara
terized by some 
om-mon aspe
ts:

• all the 
onsidered the systems are sets of simple autonomous systems (agentsor individuals), whi
h are 
onne
ted together by a network;
• in ea
h system the behaviour of ea
h agent is in�uen
ed by the behaviourof inter
onne
ted agents;
• all the des
ribed systems 
an be represented using graphs, thus all themathemati
al results of this thesis are based on graph theory.The thesis is organized in two parts, ea
h one fo
used on one of the two maintopi
s.
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Part 1: Coordination of multi-agent systems through
onsensusIn the �rst part we fo
us on the 
oordination of multi vehi
le systems. Given a setof autonomous vehi
le, whi
h 
an ex
hange information through a 
ommuni
ationnetwork, we propose several solutions to problems whi
h were largely studied inliterature in the re
ent years. All the results presented in this part are basedon distributed 
onsensus algorithms: agents ex
hange information a

ording to a
ommon proto
ol in order to rea
h an agreement on a 
ertain quantity of interest.In parti
ular, most of the proposed solutions are based on gossip algorithms,whi
h are 
hara
terized by the following:
• the 
ommuni
ation s
heme involve only a 
ouple of agents at ea
h step;
• the 
ommuni
ation steps between 
ouple of agents are asyn
hronous.The 
ontribution of the �rst part are the following.(1) A formation 
ontrol strategy. We propose a novel de
entralized 
oordinationstrategy, based on gossip, that allows a dynami
 multi-agent system, inabsen
e of a 
ommon referen
e frame, to estimate a 
ommon orientation anda
hieve arbitrary spatial formations with respe
t to the estimated frame.We assume that the agents are mobile point-mass vehi
les that do nothave a

ess to absolute positions (GPS). To the best of our knowledge thisstrategy extends the state of art sin
e it simultaneously solves two problemwhi
h are 
ommonly 
onsidered separately:

• the a
hievement of an agreement on a 
ommon referen
e frame inabsen
e of it;
• the a
hievement of a desired spatial disposition.The method is robust against measurement noise of odometry or inertialnavigation.(2) Distributed solutions for the heterogeneous multi-vehi
le routing Problem.We fo
us on problems of MTSP (Multi Travelling Salesman Problem), andproblems of MVRP (Multi Vehi
le Routing Problem). Given a network,
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hara
terized by a set of nodes and a set of 
onne
tions between them, theproblem of MTSP is to optimally assign nodes, whi
h have to be visited, tothe di�erent vehi
les, in order to minimize the sum of the 
osts of the paths.The problem of MVRP represents an extension of the MTSP in whi
h othervariables are taken into a

ount su
h as the 
apa
ity of vehi
les or 
ostsassigned to the nodes. We extend the state of art sin
e we 
onsider the 
asewhere a set of heterogeneous tasks arbitrarily distributed in a plane has tobe servi
ed by a set of mobile robots, ea
h with a given movement speedand task exe
ution speed. Our goal is to minimize the maximum exe
utiontime of robots. We propose two distributed algorithms based on gossip
ommuni
ation: the �rst algorithm is based on a lo
al exa
t optimizationand the se
ond is based on a lo
al approximate greedy heuristi
.Part 2: Di�usion of innovation in So
ial NetworksIn the se
ond part we fo
us on the di�usion of innovation in so
ial networks. Bythe expression so
ial network we identify a group of people whi
h are 
onne
tedtogether by some types of relationship: friendship, love, business. In parti
ularwe fo
us on the study of the me
hanism whi
h 
onvin
e people to adopt anidea or an innovation, and how the behaviour of ea
h individual is in�uen
ed bythe behaviour of the 
onne
ted individuals or groups. Following the trend of the
ontrol 
ommunity, we study me
hanisms of innovation spread in So
ial Networksin order to fore
ast, optimize, 
ontrol some di�usion behaviours. Our referen
emathemati
al model is the so 
alled linear threshold model, and the 
ontributionof this thesis are the following.(1) Analysis and 
ontrol of the di�usion of innovation in the Linear ThresholdModel. We adopt the 
lassi
al linear threshold model, whi
h is 
hara
terizedas follows:
• at ea
h individual is assigned a threshold value, whi
h is a value in
[0, 1];

• a node adopts the innovation as soon as the ratio of its neighbourswho have already adopted it is above its threshold value;
3



• the innovation is in
epted in the network by a seed set of individuals.A

ording to this model, we �rstly present an integer programming prob-lem and an iterative algorithm based on linear programming whi
h take asinput the set of innovators and 
ompute the maximal 
ohesive set of the
omplement of the seed set. If a set is 
ohesive and none of the nodes haveadopted the innovation at a 
ertain time t, then they are not able to adoptthe innovation at any t′ > t. The output of these algorithms 
an be usedto 
ompute the set of �nal adopters in the network. We extend the stateof art by proposing a way to 
ompute the maximal 
ohesive set in a givenso
ial network, whi
h was just de�ned so far, to the best of our knowledge.Then we introdu
e and formalize with integer programming two problems.The "in�uen
e maximization in �nite time problem (IMFT)" is that of�nding a seed set of r individuals that maximizes the spread of innovationin the network in k steps. This problem represents an extension of the
lassi
al in�uen
e maximization problem, whi
h 
onsiders an in�nite timehorizon.The se
ond one is that of �nding a seed set of whose 
ardinality is minimalwhi
h di�uses the innovation to a desired set of individual in k steps.(2) A novel non-progressive instan
e of the linear threshold model. The 
lassi-
al linear threshold model has a progressive nature, i.e., an individual 
anadopt the innovation if it hasn't adopted yet, but on
e adopted it 
annotabandon it. We extend the 
lassi
al model by proposing a novel model inwhi
h ea
h individual in the so
ial network is in�uen
ed by the behaviourof its neighbours, and at ea
h steps it de
ides either to adopt, abandon ormaintain the innovation by following a threshold me
hanism.We assume that the innovation is in
epted in the network by a seed set ofindividuals whi
h are assumed to maintain the innovation independently ofthe state of their neighbours for a �nite time. We identify all the possibleevolutions of the network under the proposed model, and we des
ribe indetails the evolution of the system in terms of two parti
ular type of sub-groups, namely Cohesive and Persistent sets.
4



Part ICoordination of Multi-AgentSystems
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Chapter 1Using 
onsensus to 
oordinatemulti-agent systems: introdu
tionand literature overview.Multi Agent Systems (MAS) are a 
lass of systems 
hara
terized by a set ofentities , agents, whi
h intera
t in a shared environment to a
hieve a 
ommontarget. Su
h systems have attra
ted the attention of many resear
hers from dif-ferent �elds in the last de
ades: e
onomy, so
iology , philosophy, and , of 
ourse,
omputer s
ien
e and automation.In the 
ontrol theory 
ommunity the term agent identify an autonomous sys-tem, with a simple dynami
, whi
h intera
t with the environment where it op-erates and takes autonomous de
ision to rea
h a given target. A NetworkedControl System (NCS) is a system 
omposed by a set of agents whi
h ex
hangeinformation through a 
ommuni
ation network, and take de
isions in�uen
ed byneighbours to rea
h a 
ommon target. These system presents many advantageswith respe
t to isolated systems.
• In a MAS agents 
an exe
ute in parallel sub-tasks of a single 
omplex task:that redu
es the total exe
ution time and the 
omputational 
oasts.
• The absen
e of a single de
ision 
enter makes the system more reliable androbust to failures.
• The implementation of a set of simple agents whi
h 
ooperates to solve a

7



problem 
an be less expensive than a 
omplex 
entralized system.Re
ently, in literature this 
on
epts have been applied to problem su
h as:
• 
oordination of autonomous vehi
les;
• environmental monitoring;
• lo
alization systems;
• 
oordination of mobile robots.Typi
al methods related with MAS are based on distributed 
onsensus algorithms:agents ex
hange lo
al information to rea
h an agreement on a 
ertain quantity ofinterests. These algorithms have been applied to problems su
h as rendez-vous,�o
king or intrusion dete
tion. When the state of the agents 
onverge to theaverage of their initial states we refer to it as average 
onsensus.In the next 
hapters we apply 
onsensus algorithms to two di�erent problems.In Chapter 2 we present a novel formation 
ontrol strategy, based on 
onsen-sus, whi
h leads a set of autonomous vehi
les to 
onverge to a desired formationin absen
e of a 
ommon referen
e frame. In Chapter 3 we use gossip algorithmsto solve a parti
ular instan
e of the Multi Vehi
le Routing Problem.All the presented approa
hes are based on a spe
ial type of 
onsensus al-gorithms, , namely gossip algorithms. Gossip algorithms are 
hara
terized byan asyn
hronous pairwise 
ommuni
ation s
heme: at ea
h step only two agentsex
hange information independently of the rest of the agents.In the next se
tions we introdu
e the two studied problems in details.1.1 Formation 
ontrol for multi vehi
le systemsMulti-agent systems 
onsisting in a network of autonomous vehi
les bene�t greatlyfrom the global positioning system (GPS) in that it allows to 
lose feedba
k 
on-trol loops on estimated positions in a global referen
e frame 
ommon to everyvehi
le, enabling several 
ontrol tasks su
h as surveillan
e, patrolling, forma-tion 
ontrol or sear
h and res
ue missions to be performed. Unfortunately su
ha powerful tool may not always be exploited for several reasons: for instan
ethe GPS signal is unreliable for indoor/underwater environments, during adverse

8



atmospheri
 
onditions or in lo
ations 
lose to transmission power lines and isvulnerable to jamming atta
ks. Furthermore, if the desired s
ale of relative dis-tan
es between the vehi
les is of the order of meters, the a

ura
y provided bythe GPS system might not be enough. The problem of how to 
oordinate anetwork of agents in absen
e of absolute position information has thus re
eivedgreat attention from the 
ontrol theory 
ommunity (1, 2, 3). Furthermore, it isusually assumed that the full network topology is not known by the agents andthat only lo
al point-to-point 
ommuni
ation or sensing are available to modelsensors with limited 
apabilities. In (4) a theoreti
al framework and a method toa
hieve �o
king in a multi-agent system is proposed based on the famous threerules of �o
king by Reynolds (5) and on lo
al intera
tion rules based on virtualpotentials that allow the a
hievement of �o
king as global emergent behaviour.In (6, 7, 8, 9) the 
onsensus problem, i.e., the problem of how to make the stateof a set of agents 
onverge toward a 
ommon value, was presented regarding alsothe appli
ation of multi-agent 
oordination. In parti
ular 
ontrol strategies basedon 
onsensus algorithms were des
ribed in these papers as a fundamental tool toa
hieve syn
hronization of velo
ities, dire
tions or the attainment of 
onstantrelative distan
es between the agents.In our approa
h we assume that ea
h agent estimates relative positions with itsneighbours in its own lo
al referen
e frame 
entered on it. A similar assumptionwas made in (10), where a Nyquist 
riterion to determine the e�e
t of the topologyof a multi-agent system performing formation 
ontrol was proposed; in this 
asethe agents were assumed to have a 
ommon 
oordinate system but not a 
ommonorigin. Furthermore we �rstly assume that ea
h agent has an onboard 
ompass,whi
h allows all the lo
al frames to have the same orientation. Then we removethis assumption.Many formation 
ontrol strategies are based on Leader-based approa
hes (11,12), whi
h require the network of vehi
les to properly follow one or more leaders,possibly 
ontrolled by a pilot, satisfying eventually some 
onstraints. Also someformation 
ontrol strategies in the literature take advantage from the presen
e ofleaders exploiting network properties su
h as graph rigidity (13).In Chapter 2 we design a 
oordination strategy for point-mass agents in whi
hleaders are not required, and the desired formation is expressed with 
oordinates
entred at the estimated 
ommon referen
e point. We also show that the proposed
9



strategy, based on an over
ompensation of the agents' displa
ement, is robustagainst measurement noise. The 
on
ept of over
ompensation is presented in thefollowing se
tions.In (14) a de
entralized algorithm to make a network of agents agree on thelo
ation of the network 
entroid in absen
e of 
ommon referen
e frames waspresented; the algorithm is based on gossip (only random asyn
hronous pairwise
ommuni
ations) and assumes stati
 agents displa
ed in a 3-d spa
e. In (15) ade
entralized algorithm based on gossip to make a network of agents agree ona 
ommon referen
e point and frame was proposed, assuming stati
 agents ina 2-d plane. Our approa
h di�ers from (14, 15) in that we 
onsider dynami
agents that move while the the estimation pro
ess is exe
uted, we assume thatall the agents lo
al referen
e frames are oriented in the same dire
tion and thatnoise is a�e
ting the relative position measurements. Furthermore, the proposedapproa
h is used to implement formation 
ontrol.Summarizing, the following are the main 
ontributions of Chapter2.
• A novel lo
al intera
tion proto
ol that a
hieves robust estimation of thenetwork 
entroid robust to parameter un
ertainties.
• A method to a
hieve provably robust formation 
ontrol with respe
t toparameter un
ertainties in the agents' dynami
s.
• An extended method to a
hieve robust formation 
ontrol with formations ofarbitrary shape by performing agreement on a 
ommon referen
e frame. Weprovide simulations to 
orroborate the des
ription of this extended method.1.2 The Heterogeneous Multi Vehi
les Routing Prob-lemThe travelling salesman problem (TSP) is a well known topi
 of resear
h and
an be stated as follows: �nd the Hamiltonian 
y
le of minimum weight to visitall the nodes in a given graph. Instru
tive surveys 
an be found in (16, 17, 18).This problem has re
eived great attention for both its theoreti
al impli
ationsand its several pra
ti
al appli
ations. The Vehi
le Routing Problem (VRP) is ageneralization of the TSP and was �rstly introdu
ed in (19): given a �eet of n

10



vehi
les and a set of lo
ations to be visited, the vehi
le routing problem 
onsistsof �nding n tours to visit all lo
ations in minimum time.Several extensions of the TSP and the VRP have been proposed to better suitpra
ti
al appli
ations by introdu
ing several additional 
onstraints and obje
tivessu
h as a variable number of vehi
les, a �nite load 
apa
ity, a 
ost asso
iated toea
h node whi
h represents the demand of the 
ostumer, servi
e time windowsand several more. Numerous extensions are well summarized in (20, 21, 22).Finally, several extensions explore a dynami
 setting in whi
h multiple vehi
lesserve a dynami
 number of tasks as dis
ussed in (23).Multi-vehi
le routing problems have a 
ombinatorial nature, as all the possibletours must be explored to �nd the optimal 
on�guration. Exa
t algorithmi
formulations are based, for example, on Integer Linear Programming (ILP) asdes
ribed in (22, 24). General ILP solvers are 
hara
terized by an exponential
omputational 
omplexity, thus in the last de
ades many approximate algorithmshave been proposed whi
h are 
hara
terized by a lower 
omputational 
omplexity.Examples of heuristi
s and approximate algorithms are presented in (21, 25, 26,27, 28, 29).We are interested in an instan
e of the VRP, 
alled the Heterogeneous MultiVehi
le Routing Problem (HMVRP), with the following properties: the number
n of vehi
les is given a priori, a set K is given 
ontaining k tasks arbitrarilydistributed in a plane, to ea
h task is assigned a servi
ing 
ost, ea
h vehi
le is
hara
terized by a movement speed and a task exe
ution speed.It has been shown in (30) that when 
omparing the length of the optimal tourof one vehi
le that visits all tasks lo
ations with the multiple vehi
le 
ase, themaximum length of the tours for the multiple vehi
le 
ase is proportional to thetour length of the single vehi
le 
ase and proportionally inverse to the number ofvehi
les. Both upper and lower bounds with su
h s
aling were given.In Chapter 3 we extend the result in (30) by 
onsidering exe
ution timesinstead of tour lengths to a

ount for vehi
les of di�erent speeds, tasks witharbitrary exe
ution 
osts and vehi
les with di�erent task exe
ution speeds. Weprovide upper and lower bounds to the optimal solution as fun
tion of the singlevehi
le optimal tour length to put in eviden
e how the performan
e is a�e
ted bythe number of vehi
les.We propose two distributed and asyn
hronous algorithms for the HMVRP:
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the �rst one is based on the iterative optimization of the lo
al task assignmentbetween pairs of vehi
les (31), the se
ond one is based on lo
al task ex
hange ofassigned tasks, one by one, between 
ouples of vehi
les (32). For both algorithmswe provide deterministi
 bounds to their performan
e. The proposed approa
hesto the HMVRP are distributed algorithms easy to implement in a networkedsystem and have favorable 
omputational 
omplexity with respe
t to the ratio
k/n between the number of tasks and vehi
les instead of k as in the 
entralizedapproa
h.Note that the 
onsidered problem 
an also be seen as a parti
ular instan
e ofa min/max VRP problem whose main feature is the heterogeneity of the speedand the tasks exe
ution speed of the vehi
les. Related works on the min/maxVRP problem in
lude (33, 34, 35).Summarizing, the following are the main 
ontributions of Chapter3.

• We formalize the 
entralized problem in terms of a mixed integer linearprogramming (MILP) problem and extend the bounds in (30) for the multiTSP to the HMVRP.
• We propose a �rst distributed algorithm, based on gossip 
ommuni
ationand on the solution of lo
al MILP, to solve the HMVRP and 
hara
terizesome of its properties.
• We propose a se
ond distributed algorithm to solve HMVRP, based ongossip 
ommuni
ation and on lo
al task ex
hanges, 
hara
terized by a low
omputational 
omplexity.
• We provide simulations that show that the proposed algorithms attain a
onstant fa
tor approximation of the optimal solution with respe
t to thenumber of vehi
les. A detailed 
omparison among the performan
es of thetwo proposed de
entralized solutions is also presented.
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Chapter 2Formation Control StrategyThis 
hapter is organized as follow. In Se
tion 2.1 we present the 
onsideredsystem and the set of assumptions adopted. In Se
tion 2.2 we propose a formation
ontrol strategy whi
h is 
hara
terize by a parallel appli
ation of two di�erentde
entralized algorithms: a lo
al displa
ement 
ontrol rule whi
h move ea
h agenttoward a target point and a 
onsensus algorithm whi
h allows agents to rea
h anagreement on a 
ommon referen
e frame. The 
on
ept of over
ompensation is herepresented. In Se
tion 2.2.4 the robustness of the proposed strategy is investigatedand an optimal 
hoi
e of the algorithm parameters is dis
ussed.2.1 PreliminariesLet a network of agents be des
ribed by a time-varying undire
ted graph G(t) =

{V,E(t)}, where V = {1, . . . , n} is the set of nodes (agents), E ⊆ {V × V } is theset of edges eij representing point-to-point bidire
tional 
ommuni
ation 
hannelsavailable to the agents, E(t) : R+ → E is the set of edges being a
tive at time t.Given a time interval T , the joint graph G([t, t + T )) is the union of graphs G(t)in the time interval [t, t + T ) de�ned as G([t, t+ T )) = {V,E([t, t+ T )))}, where
E([t, t+ T )) = E(t)

⋃

E(t+ 1)
⋃

. . .
⋃

E(t+ T )A node u ∈ V is said to be rea
hable from v ∈ V if there exists a path in thegraph from v to u. Node u ∈ V is said to be a 
enter node if it is rea
hable fromany node in V . In a 
onne
ted undire
ted graph all the nodes are 
enter nodes.
13



A node u ∈ V is said to be aperiodi
 if the greatest 
ommon divisor of all thepossible path length from u to u is 1.The state of ea
h agent i is 
hara
terized by its absolute position xi, anestimation of the origin of the 
ommon referen
e frame si ∈ R
2 and an angle θiwhi
h represents the orientation of the x-axis of the lo
al referen
e frame withrespe
t to the x-axis of the global referen
e frame.Let Ni(t) = {j : eij(t) ∈ E(t)} be the set of agents that send and re
eiveinformation to agent i at time t, these agents are 
alled neighbors of agent i. Wede�ne the degree of agent i as δi(t) = |Ni(t)| where |Ni(t)| denotes the 
ardinalityof set Ni(t). The elements of the Lapla
ian matrix L of graph G(t) are de�ned as

lij =











−1, if (i, j) ∈ E(t)

δi(t). if i = j

0 otherwiseGiven a generi
 square matrix Mn×n, the asso
iated graph GM = {VM , EM} is
omposed as follow:
• GM has n nodes, with index i ∈ [1, n], so VM = {1, . . . , n} ;
• GM has an edge eij if the entry mij ∈ M is nonzero, so EM = {(i, j)|mi,j 6=
0}If M has non zero diagonal entry mii, than node i ∈ GM has a self loop. If Mis symmetri
 then GM is an undire
ted graph. For a time-varying square matrix

M(t) the asso
iated graph is denoted as GM(t) = {VM , EM(t)}.A square matrix A is sto
hasti
 if its elements are non-negative and the rowsums equals one. A sto
hasti
 matrix said to be ergodi
 if rank (limk→∞Ak
)

= 1.An ergodi
 matrix A is SIA (sto
hasti
, inde
omposable and aperiodi
) if
lim
k→∞

Ak = 1nπ
T ,where π is the left eigenve
tor of A 
orresponding to the unitary eigenvalue and

1n is the n-element ve
tor of ones. Given two matri
es A(m×n) and B(p×q), theKrone
ker produ
t is denoted as A⊗ B(mp×nq).In our dis
ussion we 
onsider the following working assumptions: i. Agentsare modelled by dis
rete time single integrators; ii. Neighboring agents 
ommu-ni
ate with bidire
tional 
hannels and sense relative positions in a 2-D plane; iii.
14



Ea
h agent owns a lo
al 
oordinate system that moves rigidly with it and do notknow the 
oordinate system of others.2.1.1 Coordinate systemsA 2-d referen
e frame Σ′ = (o′, θ′) is an orthogonal 
oordinate system 
hara
ter-ized by an origin o′ ∈ R
2 and orientation of the x-axis θ′ ∈ [0, 2π) respe
t to aglobal 
oordinate system Σ de�ned by o = (0, 0) and θ = 0. We deal with threekinds of 
oordinate systems, whi
h are showed in Fig. 2.1.

Figure 2.1: Coordinate systems.
• Global 
oordinate system: is the referen
e frame used to des
ribe the systemfrom the point of view of an external observer. We denote it with Σ, andthe 
urrent position of agent i spe
i�ed in Σ is xi ∈ R

2.
• Lo
al 
oordinate system: ea
h agent owns a lo
al referen
e frame 
enteredon it. The lo
al 
oordinate system of agent i is denoted with Σi = (xi, θi),
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where xi is the position of agent i in Σ and θi is the angle between thex-axis of Σ and the x-axis of Σi. We denote the position of a generi
 point
j with respe
t to Σi as xi

j . Therefore, the position of j is
xj = Rix

i
j + xiwhere

Ri =

[

cos θi − sin θi

sin θi cos θi

]is a rotation matrix asso
iated to the angle θi.
• Estimated 
oordinate system: ea
h agent keeps a lo
al estimation of the
ommon referen
e frame. With respe
t to Σ the estimated 
ommon ref-eren
e frame by agent i is denoted with Σi,es = (si, θi), where si is theestimated referen
e 
enter and θi is the estimated angle between the x-axisof the 
ommon referen
e frame and the x-axis of Σ. Note that the orien-tation of the lo
al estimated referen
e frame is the same as the orientationod Σi. We denote the position of a generi
 point j with respe
t to Σi,es as
xi,es
j . The position of agent j in frame Σi is: xi

j = xi,es
j + sii.2.2 Formation 
ontrol strategyIn this se
tion we present a de
entralized 
ontrol strategy whi
h allows a networkof mobile agents in a 2-D spa
e to rea
h an agreement on a 
ommon referen
eframe and simultaneously 
onverge to a desired formation. Here we assumethat all the agents have a 
ompass on board, whi
h allows them have a 
ommonreferen
e dire
tion. In parti
ular, we assume that ∀i ∈ V, θi = 0.The state of i-th agent is 
hara
terized by a position xi ∈ R

2 and a variable
si ∈ R

2 whi
h represents the estimated 
enter of the 
ommon referen
e frame.When referring to the state of the agent in its own referen
e frame Σi we denoteits 
urrent estimation as sii ∈ R
2.Our strategy involves three lo
al state update rules:

• A rule to update the position of the agents;
• A rule to a
hieve agreement on a 
ommon referen
e point;
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2.2.1 Position update ruleEa
h agent is modeled by dis
rete time single integrator dynami
s
xi(t + 1) = xi(t) + qui(t), (2.1)where xi ∈ R

2 is the agent position, ui ∈ R
2 is the 
ontrol a
tion representing adispla
ement and q ∈ R

+ is a gain. Ea
h agent has to rea
h a 
onstant targetposition Di ∈ R
2 with respe
t to its estimated 
ommon referen
e frame. Thetarget position dii(t) with respe
t to Σi at time t 
an be 
omputed as

dii(t) = sii(t) +Di.In the 
ommon referen
e frame Σ the target position of agent i is
di(t) = xi(t) + dii(t) = xi(t) + (sii(t) +Di). (2.2)Therefore, ea
h agent drives itself toward its target position dii(t) with thefollowing state update

xi(t+ 1)− xi(t) = q (di(t)− xi(t)) (2.3)with respe
t to Σ. By repla
ing equation (2.2) in (2.3) we �nd the followingposition update rule:
xi(t + 1) = (1− q)xi(t) + q(si(t) +Di) (2.4)The referen
e frame of agent i thus moving rigidly with it, displa
e its 
urrentestimation of the 
ommon referen
e point. Therefore, the agent attempts to
ompensate this displa
ement by updating its estimation of the position of the
ommon referen
e point as follows In other words, be
ause the agents' lo
al frameis 
entered on xi and moves rigidly with it, ea
h agent i needs to update sii, and
onsequently dii.

sii(t + 1) = sii(t)− q
(

sii(t) +Di

) (2.5)whi
h, with respe
t to referen
e frame Σ, keeps the absolute position of theestimated point 
onstant in time
si(t + 1) = si(t).

17



To implement these updates, however, a perfe
t knowledge of parameter q isrequired whi
h 
orresponds to an exa
t measurement of the movement or a
tua-tors with perfe
t pre
ision.Sin
e measurements may be a�e
ted by disturban
e and a
tuators subje
tedto malfun
tioning, we introdu
e a di�erent state update rule, whi
h we prove isrobust against un
ertainties in the parameter q of any agent. We 
all this stateupdate as over
ompensation be
ause it e�e
tively moves the 
urrent estimationfurther away than ne
essary, as follows:
sii(t + 1) = sii(t)− k

(

sii(t) +Di

) (2.6)Equation (2.6) represents a over
ompensation of agent displa
ement based onparameter k, whi
h 
ontrols how mu
h the agents 
ompensate their displa
ement.Using equation (2.4) and equation (2.6) in terms of si(t), we 
an express thegeneral update rule as follow:
{

xi(t+ 1) = xi(t) + q((si(t) +Di)− xi(t))

si(t+ 1) = si(t)− k((si(t) +Di)− xi(t)) + q((si(t) +Di)− xi(t))
(2.7)We 
an set h = k − q and rewrite equation (2.7) as follows:

{

xi(t+ 1) = xi(t) + q((si(t) +Di)− xi(t))

si(t + 1) = si(t)− h((si(t) +Di)− xi(t))
(2.8)

{

xi(t+ 1) = (1− q)xi(t) + qsi(t) + qDi

si(t + 1) = (h)xi(t) + (1− h)si(t) + (−h)Di

(2.9)Note that:
• if h = −q (k = 0) the distan
e ve
tor di(t)− xi(t) is 
onstant, thus there isno 
ompensation;
• if −q < h < 0 (0 < k < q), di(t) translate in the same dire
tion of xi(t)and |di(t + 1) − xi(t + 1)| < |di(t) − xi(t)|, thus there is only a partial
ompensation;
• if h = 0 (k = q) the target position di(t) is 
onstant, thus the 
ompensationis perfe
t;
• if h > 0, (k > q) di(t) moves toward xi(t), thus an over
ompensation ismade.
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2.2.2 Consensus on the network 
entroidEa
h agent has a lo
al estimate sii(t) whi
h 
onsiders as the 
enter of a 
ommonestimated frame. By ex
hanging this lo
al information with neighbours, agentsare able to rea
h an agreement on a 
ommon referen
e 
enter, whi
h means that:
∀i, j ∈ V, lim

t→∞
‖si(t)− sj(t)‖ = 0At ea
h time step agent i re
eives the value sjj from ea
h agent j ∈ Ni(t). InFigure 2.2 it is shown how agent i is able to determine the 
orre
t value sij ofagent j with respe
t to Σi by only knowing xi

j and the re
eived value sjj . The

Figure 2.2: Information ex
hange between agent i and j.update rule for the lo
al estimate is:
sii(t+ 1) = sii(t) + ε

∑

j∈Ni(t)

(sjj(t) + xi
j(t)− sii(t)) (2.10)with 0 < ε ≤ |Ni(t)|. The same rule 
ould be written with respe
t to Σ:

si(t + 1) = si(t) + ε
∑

j∈Ni(t)

lij(sj(t)− si(t)) (2.11)
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With respe
t to Σ the overall estimate update rule 
ould be expressed asfollow:
s(t+ 1) = (P (t)⊗ I2×2)s(t) (2.12)where P (t) ∈ P is a time-varying matrix whi
h depends on network topology attime t and ε, and P is the set of all possible matri
es representing the systemupdate de�ned in (2.11). Due to the update rule de�nition all matri
es P (t) ∈

P are sto
hasti
. Note that equation (2.12) 
an represent both deterministi
syn
hronous 
onsensus algorithms and randomized gossip algorithms. At ea
h
t, algorithm (2.12) 
an be represented by the asso
iated graph GP (t). If ∀t > 0there exists a T > 0 su
h that GP ([t, t + T )) is 
onne
ted, than limt→∞ s1(t) =

. . . = limt→∞ sn(t), where GP ([t, t + T )) is the union of graphs GP (t) in the timeinterval [t, t + T ) (7)(8).2.2.3 Formation 
ontrol strategyLet us de�ne 
olumn ve
tors x(t) = {x1(t), . . . , xn(t)}, s(t) = {s1(t), . . . , sn(t)}and D = {D1, . . . , Dn}. Note that D represents the desired formation respe
t toa 
ommon 
enter. By summing the 
ontributions of equations (2.8) and (2.12)the overall formation 
ontrol strategy 
ould be expressed as follow:
[

x(t+ 1)

s(t + 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

]

+

[

qD

−hD

] (2.13)where
M(t) =

[

(1− q)In×n qIn×n

hIn×n (P (t)− hIn×n)

] (2.14)For all t, M(t) ∈ M, where M is the set of all possible matri
es of type (2.14)
orresponding to di�erent P (t) ∈ P. A given formation is 
onsidered to bea
hieved if
• x(t) = s(t) +D;
• ∀i, j ∈ V, ‖si(t)− sj(t)‖ = 0Lemma 2.2.1 Consider system (2.13). If

lim
t→∞

(M(1)M(2) . . .M(t)⊗ I2×2)

[

x(0)

s(0)

]

= c12n (2.15)
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then
• limt→∞ x(t) = s(t) +D,

• ∀i, j ∈ V, limt→∞ ‖si(t)− sj(t)‖ = 0.Thus the desired formation is asymptoti
ally a
hieved.Proof: Condition (2.15) implies that system (2.13) is stable. At the equilib-rium x(t + 1) = x(t) and s(t + 1) = s(t). From the �rst equation of (2.13) we�nd:
(1− q)Ix(t) + qIs(t) + qID = x(t)

x(t) = s(t) +DBy substituting in the se
ond equation:
Ps(t) = (I − εL)s(t) = s(t)whi
h implies s(t) = c1, where c ∈ R is a 
onstant. �Convergen
e of the proposed strategy toward the desired formation 
an thus beaddressed by studying the stability of the following linear time-varying system

[

x(t + 1)

s(t+ 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

] (2.16)2.2.3.1 Case I: stati
 topologyIf the network topology is stati
 and 
onne
ted, than M(t) = M, ∀t.Lemma 2.2.2 (Lin,(36)) A sto
hasti
 matrix M is SIA if and only if the asso-
iated graph GM has a 
entre node whi
h is aperiodi
. �Now we are able to prove the following result.Theorem 2.2.1 Consider a network of agents with a stati
 
onne
ted topology.Given system (2.16) with M(t) = M , if
0 ≤ h ≤ 1− εδmax (2.17)where δmax = max{δ1, · · · , δn} represents the maximum degree for the network,then
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lim
t→∞

[

x(t)

s(t)

]

= c12n,where c ∈ R is a 
onstant.Proof If 
ondition (2.17) holds M is sto
hasti
 as all entries are non negativeand row sums are equal to 1. Now we have to prove that M is SIA. We 
anrepresent system (2.16) using a undire
ted graph GM asso
iated to matrix M. Inthis graph ea
h agent i is represented by two nodes:
• one asso
iated to the agent position xi, that we 
all position node;
• one asso
iated to the agent estimate si, that we 
all estimate node.For ea
h agent the two asso
iated nodes are 
onne
ted together by a bidire
tionaledge, as the position update depends on the position estimate and vi
e versa.The 
onne
tions between agents depend on matrix P − hI. In parti
ular, givena 
ouple of agents (i, j) there exists an edge between their estimation nodes ifthe pij entry of P is non zero. As the network is 
onne
ted and undire
ted byassumption, the graph GM is 
onne
ted as well and ea
h node is a 
enter node.More, as all diagonal entries in (1 − q)I are nonzero, ea
h position node in theasso
iated graph has a self loop, so GM is aperiodi
. It follows from Lemma 2.2.2that matrix M is SIA, so

lim
t→∞

M
t

[

x(0)

s(0)

]

= c12nwhere c is a 
onstant. �2.2.3.2 Case II: time-varying topology.In order to prove the robustness of (2.16) we need �rst to present some preliminarynotions.Lemma 2.2.3 (Jadbabaie et al.,(8)) Let {M1,M2, . . . ,Mm} be a set of sto
hasti
matri
es of the same order su
h that the joint graph {G(M1)
⋃

G(M2)
⋃

. . .
⋃

G(Mm)}is 
onne
ted. Then the matrix produ
t M1M2 . . .Mm is ergodi
. �
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Lemma 2.2.4 (Wolfowitz,(37)) Let {M1,M2, . . . ,Mm} be a set of ergodi
 ma-tri
es with the property that for ea
h sequen
e Mi1 ,Mi2 , . . . ,Mij of positive length
j the matrix produ
t Mi1Mi2 . . .Mij is ergodi
. Then for ea
h in�nite sequen
e
Mi1 ,Mi2 , . . . there exists a row ve
tor c su
h that limj→∞Mi1Mi2 . . .Mij = 1c. �Now we 
an state the following theoremTheorem 2.2.2 Consider a network of agents with time-varying topology de-s
ribed by (2.16). Let us assume that ∀t > 0 there exists a T > 0 su
h that
GP ([t, t+T )) is 
onne
ted. The following 
ondition is su�
ient for the system to
onverge to the desired formation:

0 ≤ h ≤ 1− εδmax (2.18)Proof Let Mc be the set of all possible produ
t matri
es in M of length T su
hthat the joint graph GP ([t, t + T )) is 
onne
ted. In the theorem we assume thatfor ea
h time interval [t, t+ T ) the matrix
M(t)M(t + 1) . . .M(t + T ) ∈ McThus we 
an represent the evolution of the system as a produ
t of matri
es

Mc(t) ∈ Mc. If 
ondition (2.18) holds, then all matri
es M(t) ∈ M are sto
hasti
as showed in the proof of Theorem 2.2.1, and it follows from Lemma 2.2.3 that allmatri
es Mc(t) ∈ Mc are ergodi
 as well as all produ
ts in Mc. Finally it followsfrom Lemma 2.2.4 that:
lim
t→∞

(Mc(1)Mc(2) . . .Mc(t)⊗ I2×2)

[

x(0)

s(0)

]

= c12n

�2.2.4 Chara
terization of the robustness of the approa
hThe proposed 
oordination strategy des
ribed in se
tion 2.2 
an be a�e
ted byerrors due to the odometry or inertial navigation system. In parti
ular the desireddispla
ement that the generi
 agent xi(t) should a
hieve within one sample of timeis as follows
xi(t + 1) = xi(t)− qi(t)(xi(t)− si(t)). (2.19)
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where the time-varying parameter qi(t) = q+∆i(t) models a random error in theposition update at time t.Thus, the proposed lo
al intera
tion rule be
omes










xi(t+ 1) = (1− qi(t))xi(t) + qi(t)si(t)

si(t+ 1) = h(t)(xi(t)− si(t))

+(si(t) + ε
∑

j∈Ni
lij(sj(t)− si(t)))

(2.20)where hi(t) = h−∆i(t).Let Q(t) and H(t) be n× n diagonal matri
es where Qii = qi(t) and Hii(t) =

hi(t). The global system dynami
s are thus des
ribed by
[

x(t+ 1)

s(t + 1)

]

= (M∆(t)⊗ I2×2)

[

x(t)

s(t)

] (2.21)
M∆(t) =

[

I −Q(t) Q(t)

H(t) P (t)−H(t)

] (2.22)For all t, M∆(t) ∈ M∆, where M∆ is a in�nite set of matri
esM∆(t) 
hara
terizedby di�erent values of q(t), h(t) and P (t). Now we 
hara
terize the robustness ofthe proposed strategy with respe
t to measurement noise.Theorem 2.2.3 Consider a system as in eq. (2.21). Let us assume that ∀t > 0there exists a T > 0 su
h that GP ([t, t + T )) is 
onne
ted . If the measurementnoise ∆i(t) is bounded by
h+ εδmax − 1 ≤ ∆i(t) ≤ min{h, (1− q)}, ∀i, t (2.23)then

lim
t→∞

[

x(t)

s(t)

]

= c12nwhere c is a 
onstant.Proof The diagonal entries of the matri
es I −Q(t) and P (t)−H(t) are
[I −Q(t)]ii = 1− q −∆i(t)

[P (t)−H(t)]ii = 1− εδi − h+∆i(t)
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We 
an assume that q > ∆i(t). If 
ondition (2.23) hold, then all matri
es in M∆are sto
hasti
, be
ause all entries are non negative and row sums equal to one.Thus, the proof follows as in theorem 2.2.2. �Note that ∆(t) 
ould be positive or negative.We now dis
uss what is the best parameter 
hoi
e to a
hieve maximum ro-bustness. Given a �xed value of q, the optimum value of h is the one whi
hmaximizes the following obje
tive fun
tion:
max

h
{min{h, (1− q), |h+ εδmax − 1|}}By substitution it holds

• If 1− εδmax

2
≤ (1−q) the optimum value of h is h = 1−δmax

2
thus the bound(2.23) be
omes symmetri


−1− εδmax

2
≤ ∆i(t) ≤

1− εδmax

2
, ∀i, t

• If 1− εδmax

2
> (1− q) the optimum value of h is h = (1− q). It holds

εδmax − q ≤ ∆i(t) ≤ 1− q, ∀i, t

�2.2.5 Convergen
e speedWe now 
hara
terize the 
onvergen
e speed of the proposed strategy in the time-invariant 
ase M(t) = M and P (t) = P . Let ΛM be the set of the 2n eigenvaluesof M . As M is SIA, λ = 1 is a simple eigenvalue of ΛM , and all other eigenvalueshave module less than 1. The 
onvergen
e speed of (2.16) depends on the se
ondbiggest module eigenvalue λ2 ∈ Λ , whi
h is 
alled algebrai
 
onne
tivity. Byknowing the eigenvalues of P , ΛM 
an be determined.Theorem 2.2.4 Let M be a 2 × 2 blo
k matrix as in eq. (2.16). Let ΛP =

{λp1, λp2, . . . , λpn} be the set of the n eigenvalues of P . The 2n eigenvalues of Mare fun
tion of the eigenvalues of P as follows:
λmi1,2

=
(λp + 1− h− q)

2

±
√

(λp + 1− h− q)2 − 4((1− q)λp − h)

2

(2.24)
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Where λmi1,2
∈ ΛM are the two eigenvalues 
orresponding to λpi ∈ ΛPProof Following the work in (38) on how to 
ompute the determinant of 2× 2blo
k matri
es as fun
tion of the blo
ks, we 
ompute the eigenvalues ofM solving

det (M − λmI) = 0.Sin
e (1− q)hI = h(1− q)I

det (M − λmI) = det ((1− q − λI)(P − hI − λI)− hqI) ,by some manipulations
det
(

(λ2I − λ(P − hI − qI + I) + (1− q)P − hI)
)

= 0,putting (1− q − λ) in eviden
e:
(1− q − λ)ndet((

λ2I − λ(1− h− q)I − hI)

1− q − λ
+ P ))) = 0for (1− q − λ) 6= 0,

det((
λ2I − λ(1− h− q)I − hI)

1− q − λ
+ P ))) = 0.Now, let λp = −λ2−λ(1−h−q)−h)

1−q−λ
. Sin
e λp is the solution of det(λp − P ) = 0, theeigenvalues of M as fun
tion of the eigenvalues of P are, after trivial manipula-tions, the solutions of

λ2 − λ(1− h− q + λp) + (1− q)λp − h = 0whose solutions are (2.24). �2.3 Formation 
ontrol strategy in absen
e of a
ommon referen
e frameIn the previous parts we have assumed that all the agents have a 
ompass onboard, whi
h allows them to maintain a 
ommon orientation of the lo
al referen
eframe. In this se
tion we remove this assumption, thus ea
h agent i belongs toa lo
al referen
e frame Σi = {xi, θi} 
entered on it, where xi is he position of
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the agent i and θi is the orientation of the x-axes with respe
t to the x-axes ofthe global referen
e frame. Under this new assumption the state of ea
h agent
i is des
ribed by the three state variables {xi, si, θi}. We modify the formation
ontrol strategy proposed in se
tion 2.2 whi
h is not suitable anymore to 
orre
tly
ontrol the system, by introdu
ing an algorithm whi
h leads the agent to rea
h a
ommon referen
e dire
tion. The new formation 
ontrol strategy is 
hara
terizedby:(1) a rule to a
hieve agreement on a 
ommon referen
e dire
tion;(2) a rule to update the position of the agents;(3) a rule to a
hieve agreement on a 
ommon referen
e point.All the results in this se
tion are presented with respe
t of the global referen
eframe Σ, and we assume that the agents are able to ex
hange lo
al information.An interesting method whi
h allows the agent to ex
hange lo
al estimates ofpoints and dire
tions in absen
e of a 
ommon referen
e frame is presented in (14),thus we 
an assume that the agents ex
hange information by using it. Under thisassumption, we don't need to modify the 
onsensus algorithm on the network
entroid, while the position update rule needs to take into a

ount the variabilityof the target point due to the variability of the orientation of the orientation ofthe lo
al referen
e frame.This se
tion is organized as follows: in the �rst part we 
hara
terize rule (1),then we 
hara
terize rule (2), by modifying the rule presented in se
tion 2.2, andwe point out the dependen
e of these rules from (1). Finally we des
ribe theglobal formation 
ontrol strategy.2.3.1 A
hieving 
onsensus on a 
ommon referen
e dire
tionIn order to lead the agents to rea
h a 
onsensus on a 
ommon referen
e dire
tion,we use Algorithm 1, originally proposed in (39), whi
h allows the system to rea
ha global syn
hronization on a 
ommon heading. Algorithm 1 is based on a Gossip
ommuni
ation s
heme: at ea
h t a 
ouple of nodes (i, j) su
h that (i, j) ∈ E(t)is randomly sele
ted, and the sele
ted nodes syn
hronize the orientation of theirlo
al referen
e frame by averaging on the shortest path ar
h between them. In
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Algorithm 1 Gossip Algorithm for undire
ted graphs((39))(i) At time t ar
h (i, j) ∈ E(t) is randomly sele
ted.(ii) Agentsi and j update the orientation of their lo
al referen
e frame as follows:
• if max{θi(t), θj(t)} −min{θi(t), θj(t)} ≤ π

2

θi(t+ 1) = θi(t+ 1) =
θi(t) + θj(t)

2

• if max{θi(t), θj(t)} −min{θi(t), θj(t)} >
π

2

θi(t+ 1) = θi(t+ 1) =
θi(t) + θj(t)

2
+

π

2

• For ea
h a ∈ V su
h that a 6= i and a 6= j:
θa(t+ 1) = θa(t)(39) a 
onvergen
e analysis of Algorithm 1 is also provided: applying Algorithm1 the set of agents globally asymptoti
ally syn
hronize with probability 1.2.3.2 Position update ruleThe position update rule proposed in se
tion 2.2 doesn't 
onsider the orientationof the lo
al referen
e frame θi(t) for ea
h agent i, whi
h may 
hange among thetime a

ording to Algorithm 1. For ea
h i ∈ V, the estimated target point di(t)and of the estimated 
ommon referen
e 
enter si(t) in global 
oordinates, at time

t, depend on θi(t) as follows:
si(t) = xi(t) +Ri(θi(t))s

i
i(t) (2.25)and

di(t) = xi(t) +Ri(θi(t))(s
i
i(t) +Di) = si(t) +Ri(θi(t))Di (2.26)where

Ri(θi(t)) =

[

cos(θi(t)) − sin(θi(t))

sin(θi(t)) cos(θi(t))

]

.
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Following the same steps dis
ussed in se
tion 2.2.1, and introdu
ing equations(2.25) and (2.26), we obtain the following position update rule:
{

xi(t+ 1) = (1− q)xi(t) + qsi(t) + qRi(θi(t))Di

si(t + 1) = (h)xi(t) + (1− h)si(t) + (−h)Ri(θi(t))Di

(2.27)2.3.3 Formation 
ontrol strategyLet us de�ne now the 
olumn ve
tor D(θ) as follows:
D(θ) =







R1(θ1(t))D1...
Rn(θn(t))Dn





as the ve
tor of the target point, whi
h depend on the orientations of the lo
alframes. The new formation 
ontrol strategy 
an be expressed as follows:
[

x(t + 1)

s(t+ 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

]

+

[

qD(θ)

−hD(θ)

] (2.28)A

ording to the assumptions made in this se
tion, a given formation is 
on-sidered to be a
hieved if
• ∀i, j ∈ V, θi(t) = θj(t)

• x(t) = s(t) +D;
• ∀i, j ∈ V, ‖si(t)− sj(t)‖ = 0The 
onvergen
e of the agents to the desired formation depends on the 
onver-gen
e of Algorithm 1: a given formation 
annot be a
hieved until all the lo
alframes 
onverge to a 
ommon orientation. In se
tion 2.4 we provide a set of sim-ulations whi
h are useful to understand the behaviour of the system under theassumption made in this se
tion.2.4 Simulation resultsIn this part we present the results of some simulations with two purpose: validatethe analyti
al results obtained in se
tions 2.2 and 2.2.4, and introdu
e some
onje
tures about the behavior of the system in the s
enario des
ribed in se
tion2.3 whi
h do not belong to the studied 
ases.
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(
) Final formationFigure 2.3: Example of formation2.4.1 Agents with a 
ommon referen
e dire
tionIn Fig 2.3 an example of a
hievement of a desired formation using formation
ontrol strategy (2.13) is presented. The system is 
omposed by a set of agentswith a 
ommon referen
e dire
tion, that are initially randomly s
attered in a2-D spa
e as in Fig 2.3a. They ex
hange lo
al information through a gossip
ommuni
ation s
heme, and for all of them q = 0.1 and h = 0.05. The agentsrea
h the desired formation (a 
rux shape) by following the traje
tories showedin Fig 2.3b. The red lines represent the traje
tories of the estimated 
ommonreferen
e 
enters, while the blue lines are the traje
tories of the agent.
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Our simulations have pointed out an interesting phenomena: using formation
ontrol strategy (2.13), in a system of agent with a 
ommon referen
e dire
tion,the desired formation is rea
hed for ea
h value of h in −q < h < 0, i.e., for valuesof h that do not respe
t 
ondition (2.18). In other words, a small 
ompensationis enough for the system to 
onverge to the desired formation.
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Figure 2.4: Value of |λ2| for q = 0.15, −0.15 < h < 0 and n ∈ [10, 100]Fig 2.5 shows the the value of |λ2|, i.e., the module of the se
ond largesteigenvalue of the matrix M, of a system of agents with q = 0.15, 
omputed for
−q < h < 0 and n ∈ [10, 100]. For all the simulations the topology of thenetwork is 
onne
ted and randomly generated. It 
an be observed that in 
ase ofno 
ompensation, i.e., for h = −q, |λ2| = 1, and the system is not stable, whilefor −q < h < 0 the se
ond largest eigenvalue of M has a module smaller thanone, and the system 
onverge to the desired formation.2.4.2 Agents in absen
e of 
ommon referen
e dire
tionLet us now 
onsider the 
ase of absen
e of 
ommon referen
e frame. In Se
-tion 2.3 we have 
hara
terized the algorithm whi
h lead the agents to rea
h thetarget formation. We have supposed that the agents lo
ally intera
t and ex
hangeinformation using the method proposed in (14) whi
h is based on the determina-tion of the relative positions, i.e., relative distan
e and angles, and the 
orre
tnessof the information ex
hange depends on the pre
ision of this estimation. Here we
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suppose that the relative lo
alization is a�e
ted by an error, and we simulate thebehavior of the system for di�erent values of the error. The agents ex
hange infor-mation following a gossip 
ommuni
ation s
heme. The estimations of the relativedistan
e d and the relative angle of view γ are a�e
ted by a uniformly distributedrandom error with a maximum amplitude |∆dm| = αdd and |∆γm| = αγγ. InFig. 2.5 is represented a system of 13 agents with a triangle-shape target forma-tion. In Fig. 2.5a is αd = αγ = 0.01, while in Fig. 2.5b is αd = αγ = 0.02. It
an be observed that ea
h agent makes a random walk around its target position.The amplitude of the random walk grows as:
• αd and αγ grow;
• the distan
e of the target point from the estimated 
ommon referen
e 
entergrows.
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(a) |∆dm| = 0.01d, |∆γm| =

0.01γ
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(b) |∆dm| = 0.02d, |∆γm| =

0.02γFigure 2.5: Example of formationThe same behavior 
an be observed in Fig 2.6, where the average amplitudeof the random walk is reported for di�erent values of αd and αγ. Ea
h value isthe average of 20 simulations, and for ea
h simulation the initial positions andthe lo
al orientations of the agents were randomly generated. Moreover, Fig 2.6show that in absen
e of errors in the relative lo
alization, the system 
onverge tothe desired formation.
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|∆dm| = 0 |∆dm| = 0.005 |∆dm| = 0.01d |∆dm| = 0.015d |∆dm| = 0.02d |∆dm| = 0.025dTarget Point |∆γm| = 0 |∆γm| = 0.005γ |∆γm| = 0.01γ |∆γm| = 0.015γ |∆γm| = 0.02γ |∆γm| = 0.025γ

(0, 0) 0 0.01 0.02 0.04 0.04 0.09

(1, 0) 0 0.10 0.15 0.25 0.35 0.45

(−1, 0) 0 0.09 0.18 0.28 0.30 0.44

(−2.5, 0) 0 0.21 0.46 0.71 0.69 1.21

(2.5, 0) 0 0.26 0.37 0.73 0.75 1.18

(0, 2.5) 0 0.23 0.43 0.74 0.85 1.06

(1, 2.5) 0 0.32 0.45 0.80 0.82 1.35

(−1, 2.5) 0 0.28 0.51 0.69 0.76 1.17

(2.5, 2.5) 0 0.29 0.58 1.05 1.02 1.62

(−2.5, 2.5) 0 0.30 0.60 1.07 1.24 1.51

(0, 5) 0 0.5 0.73 1.24 1.36 2.38

(5, 0) 0 0.58 0.9 1.44 1.51 2.14

(−5, 0) 0 0.49 0.89 1.44 1.40 2.01Figure 2.6: Amplitude of the random walk for di�erent values of αd and αγ2.5 Con
lusionsIn this Chapter we �rstly have proposed a novel 
oordination strategy, based onan over
ompensation of agent displa
ement, to a
hieve an arbitrary formationin a multi-agent system. We have proved that our strategy is robust with re-spe
t to measurement noise of odometry or inertial navigation. Our strategy is
hara
terized by a de
entralized algorithm to a
hieve agreement on a 
ommonreferen
e point and a 
onsensus based strategy to provide 
ohesion in the net-work. The system a
hieves arbitrary formations by spe
ifying positions in theestimated 
ommon referen
e frame on whi
h the agents agree upon. Then wehave extended our strategy to a multi vehi
le system in absen
e of a 
ommon ref-eren
e frame. Our future obje
tive is to �nd analyti
al support for the extendedstrategy, whose performan
es are studied only through simulations so far.
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Chapter 3The Heterogeneous Multi Vehi
leRouting ProblemThis Chapter is stru
tured as follows. In Se
tion 3.1 the HMVRP is formalized.In Se
tion 3.2 the HMVRP is dis
ussed and solved via a 
entralized optimizationbased on MILP. In Se
tion 3.3 a de
entralized algorithm is proposed and 
hara
-terized. In Se
tion 3.4 an heuristi
 approa
h to solve the HMVRP is proposed,and in Se
tion 3.5 simulations are shown to 
orroborate the analyti
al resultspresented in the previous se
tions. Finally, in Se
tion 3.6 
on
lusions and futuredire
tions are dis
ussed.3.1 Problem statementConsider a set N of n mobile robots s
attered in a 
onne
ted region R in a plane.Let K be a set of k tasks s
attered in region R, that should be assigned to robotsto be exe
uted.Robots move at di�erent speeds and have di�erent exe
ution speeds of tasks.Tasks have di�erent 
osts. In parti
ular, the following notation is used:
• vr is the speed of robot Rr,
• wr is the task exe
ution speed of robot Rr,
• vmin (vmax) is the minimum (maximum) speed of robots,
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• wmin (wmax) is the minimum (maximum) task exe
ution speed of robots,
• ci is the 
ost of the i-th task,
• cmin (cmax) is the minimum (maximum) 
ost of tasks.Moreover, dmax is the maximum length of the shortest path between any twopoints in the region R.Robots are supposed to �rst 
oordinate themselves to de
ide upon their taskassignment and then start to serve the tasks autonomously.To use a notation that is standard in the literature, we assume that robotsare initially positioned in depots and should go ba
k to them after the exe
utionof tasks. The set of depots is 
alled D and the generi
 r-th depot is Dr.Now, ifKr denotes the set of tasks assigned to robotRr, our goal is to minimizethe obje
tive fun
tion:

J = max
r∈N

Jr =

(

TSP (Kr ∪ {Dr})
vr

+

∑

i∈Kr
ci

wr

) (3.1)where TSP (Kr∪{Dr}) is the minimumTSP tour length of robotRr that, initiallypositioned in Dr, visits all tasks in Kr and go ba
k to Dr.In simple words we want to minimize the maximum exe
ution time of the nrobots that have to visit and exe
ute all tasks assigned to them, guaranteeingthat ea
h task is exe
uted by exa
tly one robot.The above problem 
an be seen as a generalization of the 
lassi
al multi-TSPproblem. First, be
ause we are also assuming that tasks should not only bevisited by the robots, but should be pro
essed by them. Se
ondly, be
ause theoptimization is 
arried out over an heterogeneous network due to the heterogene-ity of the agents and the tasks. Similar problems have been re
ently addressedin the literature, see e.g. (30), but to the best of our knowledge, never under theassumption of heterogeneous agents and tasks.Let us 
on
lude this se
tion with the introdu
tion of some notation that willbe used in the remaining of the 
hapter. Let Kr be the set of tasks assigned torobot Rr. We denote as K̃r the ordered set with the same elements of Kr, butwhose ordering spe
i�es the order in whi
h tasks in Kr are visited by robot Rr.Therefore, sets K̃r are the unknown variables of the optimization problem (3.1).
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Finally, let K̃ = {K̃1, . . . , K̃n} be an ordered set of n ordered sets, that sum-marizes the generi
 solution of the 
onsidered tasks allo
ation problem. The set
K̃ is 
alled network state.3.2 Optimal 
entralized solutionIn this se
tion we �rst dis
uss a 
entralized strategy that leads to an optimalsolution of the above task assignment problem. Su
h an approa
h is based onmixed linear integer programming (MILP). Then we provide a 
hara
terization ofthe optimal solution in terms of an upper and a lower bound on the optimal valueof the obje
tive fun
tion. This will be useful when evaluating the e�e
tiveness ofthe de
entralized approa
h proposed in the next se
tion.To represent all possible dire
ted tours of n robots, let us de�ne a 
ompletedire
ted graph G = {V,E} where:

• V = N ∪K is the set of n+ k nodes;
• E = (N ∪ K) × (N ∪ K) is the set of (n + k)2 edges representing dire
tedpaths from the depots in whi
h robots are initially pla
ed to tasks, and viz,and from tasks to tasks1.Moreover, we de�ne the following binary variables that 
ompletely identify a taskallo
ation and the order in whi
h tasks are exe
uted by robots. In simple wordsthey 
ompletely identify a network state K̃. Sin
e we want to minimize the totalexe
ution times of robots, we always assume that distan
es among tasks, andamong tasks and depots, are 
overed through straight lines.
• We assign n binary variables xir to ea
h node i ∈ V; here r ∈ N: if i ∈ N,
xir = 1 means that robot Rr starts its tour from node i, while if i ∈ K,
xir = 1 means that task i is exe
uted by robot Rr.

• We assign n binary variables yijr to ea
h edge (i, j) ∈ E; here r ∈ N: yijr = 1means that robot Rr goes dire
tly from node i to node j in its path.1In the sets V and E the generi
 r-th depot is identi�ed via the r-th element in N. This hasbeen done for 
learity of presentation as it will appear in the following.
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Moreover, we introdu
e the following 
ost 
oe�
ients.
• We assign n 
osts cir = ci/wr to ea
h node i ∈ K; here r ∈ N: cir representsthe exe
ution time of task i by robot Rr with an exe
ution speed of wr.
• We assign n 
osts dijr = lij/vr to ea
h edge (i, j) ∈ E; here r ∈ N: dijrrepresents the time spent by robot Rr to pass the length lij of edge (i, j)with speed vr.Proposition 3.2.1 Let us 
onsider the allo
ation problem formalized in Se
-tion 3.1. An optimal solution 
an be 
omputed solving the following MILP prob-lem:
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



J = minλs.t.
∑

i∈K

xircir +
∑

(i,j)∈E

dijryijr < λ, ∀r ∈ N (a)

xrr = 1, ∀r ∈ N (b)
∑

r∈N

xir = 1, ∀i ∈ K (c)

∑

j∈V

yjir =
∑

j∈V

yijr = xir, ∀i ∈ V, ∀r ∈ N (d)

∑

i/∈S

∑

j∈S

yijr ≥ xqr ∀S ⊆ K,

∀q ∈ S, ∀r ∈ N (e)

λ ∈ R (f)

xir ∈ {0, 1} ∀i ∈ V, ∀r ∈ N (g)

yijr ∈ {0, 1} ∀(i, j) ∈ E, ∀r ∈ N. (h)Proof: The proof is 
arried out via a detailed explanation of all the 
on-straints and the obje
tive fun
tion.� Constraints (a) and obje
tive fun
tion: The left hand side term of (a) isequal to the total exe
ution time of robot Rr. Thus, given the obje
tive fun
tion,
onstraints (a) aim to minimize the maximum exe
ution time of robots.� Constraints (b): These 
onstraints for
e ea
h robot to move from its initialposition (depot).� Constraints (
): Ea
h task i must be exe
uted by exa
tly one robot.� Constraints (d): If robot Rr exe
utes task i, it must arrive at node i insome way and at the end of the exe
ution has to leave it. The same holds if node
i models a depot, i.e., i ∈ N.
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� Constraints (e): Ea
h robot Rr has to make a single 
onne
ted tour visitingall its tasks, so we have to ex
lude all the disjoint paths. In words 
onstraint (e)relative to robot Rr, imposes that if robot Rr exe
utes a task i ∈ S ⊆ K, theremust be an edge passed by Rr to enter in S. These 
onstraints are named SubtourElimination Constraints (SEC) and are typi
al of vehi
le routing problems andTSP models (20). �The number of unknowns in the MILP (3.2.1) is equal to
N = n(n+ k)2 + n(n + k) + 1 = O(n3 + nk2 + n2k).The total number of 
onstraints is O(n2k+nk2k). Indeed we have n 
onstraintsof type (a), n 
onstraints of type (b), k 
onstraints of type (
), (n+k)n 
onstraintsof type (d), and n

∑k
i=1 i

k!

(k − i)!i!
≤ nk2k 
onstraints of type (e).The following two theorems provide a 
hara
terization of the optimal value ofthe performan
e index J∗.Theorem 3.2.2 The optimal solution J∗ of the obje
tive fun
tion (3.1) is upperbounded by

J∗ ≤ Cup +Dup (3.2)where
Cup =

1

n

(

TSP (K)

vmin

+

∑

i∈K ci

wmin

)

, (3.3)
Dup = 2

dmax

vmin

+
cmax

wmin

. (3.4)Proof: The proof is based on an heuristi
 that 
an be summarized in thefollowing main steps.
• Generate an optimal tour that visits all tasks. Obviously, if an agent withspeed vmin and exe
ution speed wmin follows the tour and exe
utes all tasks,its servi
e time is equal to

Ĵ =

(

TSP (K)

vmin

+

∑

i∈K ci

wmin

)

.
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• Divide the tour in n 
onse
utive sub-tours using the following rule. Takea robot (e.g. R1) at random and make it follow the route of the optimalsingle vehi
le tour at the previous item, starting from the position of anarbitrary task. Stop it as soon as its servi
e time Ĵ1 satis�es the 
ondition
Ĵ1 ≥ Ĵ/n. Now, sin
e the largest 
ost of tasks is equal to cmax, the smallestexe
ution speed of robots is wmin, and the time taken to travel betweentasks is 
ontinuous, it is

Ĵ1 ≤
Ĵ

n
+

cmax

wmin
.Sele
t at random a new robot (e.g. R2) and put it at the end of the routeof R1 and repeat the same strategy, until all robots are 
onsidered. If therearen't enough tasks for the robots, simply 
onsider null the servi
e time forthe remaining robots.

• Now, if dmax is the maximum length of the shortest path between any twopoints in the region R, the exe
ution time Jr of ea
h robot Rr is su
hthat Jr ≤ Ĵr + 2dmax/vmin. Indeed the total servi
e time of ea
h robot
orresponds to the time it takes to 
omplete its sub-tour along the routeof the optimal single vehi
le TSP, plus the time to go from its depot to its�rst task and go ba
k to the depot. Therefore, it is
Jr ≤

Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
, ∀r ∈ N.Sin
e the optimal solution J∗ of the obje
tive fun
tion (3.1) 
an only be smalleror equal than the solution resulting from the above heuristi
, for sure it is

J∗ ≤ max
r∈N

Jr ≤
Ĵ

n
+

cmax

wmin

+ 2
dmax

vmin

= Cup +Dupthus proving the 
orre
tness of the upper bound. �Theorem 3.2.3 The optimal solution J∗ of the obje
tive fun
tion (3.1) is lowerbounded by
J∗ ≥ Clo −Dlo (3.5)where

Clo =
1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

, (3.6)
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Dlo =
dmax

vmin
. (3.7)Proof: Let Sopt =

∑

r∈N J∗
r be the sum of all the servi
e times 
orrespondingto an optimal task assignment. Sin
e, by de�nition J∗ = maxr∈N J∗

r , obviously itis
J∗ ≥ Sopt

n
. (3.8)Now, let Sp

opt be the sum of the 
ontributions to J∗
r , with r ∈ N, relative tothe only time spent moving from one task to another one, or from/toward thedepots, without in
luding the time spent to exe
ute tasks.Obviously, it is

Sopt ≥ Sp
opt +

∑

i∈K ci

wmax
. (3.9)Moreover, trivially generalizing the result in (30) to the 
ase of heterogeneousrobots, we have that

Sp
opt +

TSP (D)

vmin

≥ TSP (D ∪K)

vmax

≥ TSP (K)

vmax

(3.10)or equivalently
Sp
opt ≥

TSP (K)

vmax

− TSP (D)

vmin

. (3.11)By equations (3.9) and (3.11) it follows that
Sopt ≥ TSP (K)

vmax

− TSP (D)

vmin

+

∑

i∈K ci

wmax

≥ TSP (K)

vmax
− n

dmax

vmin
+

∑

i∈K ci

wmax
.

(3.12)Finally, by equations (3.8) and (3.12), it is
J∗ ≥ Sopt

n
=

1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

− dmax

vmin

= Clo −Dlo

(3.13)thus proving the statement. �
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3.3 De
entralized solution based on optimal lo
altask assignmentIn this se
tion we �rst propose a de
entralized approa
h to solve the task allo
a-tion problem in Se
tion 3.1 that is based on gossip. Then, a 
omparison amongthe 
omputational 
omplexity of the proposed algorithm and the 
entralized algo-rithm is provided. Convergen
e properties of the gossip algorithm are dis
ussed.Finally, some 
hara
terizations of the solution obtained via the de
entralized ap-proa
h are proposed.3.3.1 MILP Gossip algorithmThe idea of the proposed de
entralized algorithm is that robots lo
ally balan
etheir loads a

ording to a gossip intera
tion rule, i.e., via pairwise 
ommuni
a-tions, under the following main assumption:(A1) All robots may intera
t with all the other robots.Starting from an initial task assignment, e.g., assuming that robots have thesame number of tasks, a 
ouple of robots is sele
ted at random. Sele
ted robotsoptimally balan
e their load; a new 
ouple of robots is sele
ted and so on, untilno better balan
ing among robots 
an be obtained. This 
an be summarizedin Algorithm 1. The variable Tmax denotes a maximum number of steps to beexe
uted that is assumed to be large enough so that no further improvement ofthe obje
tive fun
tion 
an be obtained.3.3.2 Computational 
omplexity of the lo
al optimizationLet us now dis
uss the advantages in terms of 
omputational 
omplexity 
omingfrom lo
al optimizations using Algorithm 2 with respe
t to a 
entralized opti-mization.To this aim, let us �rst present some preliminary results. In parti
ular, thefollowing proposition ensures that when the number of iterations of Algorithm 2in
reases, the optimal value of the obje
tive fun
tion 
an never in
rease. Obvi-ously this does not imply that an optimal solution is obtained.
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Algorithm 2 MILP Gossip algorithm(i) Tasks are initially assigned to robots so that ea
h robot has either k/n or
k/n+ 1 tasks.(ii) Let t = 0.(iii) While t ≤ Tmax(a) Choose at random two robots r and q. Let them solve the MILP (3.2.1)where N = {r, q} and K = Kr ∪Kq.(b) If the new task assignment leads to a smaller total exe
ution time,then update the assignments of robots r and q a

ordingly,else leave them un
hanged.(
) Let t = t+ 1 and go ba
k to Step 3.(iv) All robots pro
ess their own set of tasks following the order spe
i�ed by theoptimal lo
al solution.

43



Proposition 3.3.1 Let Jgossip(t) be the maximum exe
ution time of robots 
om-puted after t iterations of Algorithm 2. For any t ≥ 0, it is Jgossip(t + 1) ≤
Jgossip(t).Proof: Let Rr and Rq be the two robots sele
ted at time t+1. By Algorithm 2this means that only the tasks allo
ation of su
h robots may 
hange, while theload of all the other robots keeps unaltered. Now, sin
e at Step 3.a of Algorithm 2tasks are assigned to robots Rr and Rq so as to minimize the maximum exe
utiontime among them, this implies that the maximum exe
ution time among Rr and
Rq either de
reases or it keeps unaltered at time t+ 1. Moreover, the maximumexe
ution time among all robots may de
rease at time t + 1 if and only if either
Rr or Rq, or both, are the robots to whi
h it 
orresponds the maximum exe
utiontime among all robots at time t. Indeed with no loss of generality, we may assumethat Rr is the �
riti
al� robot at time t, i.e., the robot to whi
h it 
orrespondsthe maximum exe
ution time among all robots at time t. Three di�erent 
asesmay o

ur at time t+1, after the new tasks allo
ation. First, Rr may still be therobot with the maximum exe
ution time, but in su
h a 
ase for sure, its exe
utiontime 
annot be larger than that at time t. Se
ondly, robot Rq may be at time
t+1 the robot with the maximum exe
ution time but for sure its exe
ution time
annot be larger than that of robot Rr at time t. Finally, at time t + 1, neitherto Rr nor to Rq it 
orresponds the maximum exe
ution time among robots. Thisimplies that a third robot, e.g., Rp, has be
ome the 
riti
al one at time t+ 1. Inany 
ase for sure its exe
ution time is smaller than that of robot Rr at time t,sin
e by assumption robot Rr was the 
riti
al robot at time t. �Let us now provide an upper bound on the value of the maximum exe
utiontime of robots resulting from Algorithm 2 at a generi
 iteration t. To this aim,we �rst re
all some deterministi
 upper bounds to the maximum length of theshortest path (SP) between a set K of k lo
ations in a unit square area, that aredue to (40) and (41), respe
tively:

SP (K) ≤
√
2
√
k + 7/4, (3.14)and

SP (K) ≤ 0.984
√
2
√
k + 11. (3.15)To the best of our knowledge the above two upper bounds are the best a
-tually proposed in the literature. Moreover, we 
annot a priori say whi
h of the
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above bounds is the most stri
t one. Indeed the bound in (41) has a smallermultipli
ative fa
tor with respe
t to (40), but has a larger additive 
onstant. Inthe following, we fo
us on upper bound (3.14), but obviously similar results 
anbe repeated 
onsidering (3.15).Proposition 3.3.2 Let Jgossip(t) be the maximum exe
ution time of robots 
om-puted after t iterations of Algorithm 2, then ∀ t ≥ 0 it is
Jgossip(t) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin
+

(

k

n
+ 1

)

cmax

wmin
.Proof: By Algorithm 2 at time t = 0 the maximum number of tasks that 
anbe assigned to a robot is equal to k/n + 1. Moreover, sin
e ea
h robot starts itspath from its depot and has to 
ome ba
k to it, then by equation (3.14), for any

r ∈ N it is
TSP (Kr(0) ∪ {Dr}) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax. (3.16)Note that the additional term √
2 between parenthesis 
omes from the fa
tthat to form a Eu
lidean TSP tour from a path in a unit square it is su�
ient to
onne
t the start and end point to form a 
y
le, thus in
reasing the size of thepath of at most √2 in the unit square. Moreover, dmax 
omes from the fa
t thatin our problem statement depots and robots are not distributed in a square ofunitary edge, but in a region R that is 
ontained in a square of edge dmax beingby de�nition dmax the maximum length of the shortest path between any twopoints in R.Finally, sin
e by assumption ∑

i∈Kr(0)

ci ≤
(

k

n
+ 1

)

cmax, it follows that
Jgossip(0) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin
+

(

k

n
+ 1

)

cmax

wminthat proves the statement being by Proposition 3.3.1 Jgossip(t) ≤ Jgossip(0) for all
t ≥ 0. �Let us now provide a proposition that 
hara
terizes the maximum number oftasks that are assigned to robots at a generi
 iteration t of Algorithm 2.
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Proposition 3.3.3 Let Kmax(t) = maxr∈N |Kr(t)| be the maximum number oftasks that are assigned to robots at a generi
 iteration t of Algorithm 2. For any
t ≥ 0 it is:

Kmax(t) ≤ wmax

cmin

[(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin

+

(

k

n
+ 1

)

cmax

wmin

]

.

(3.17)Proof: By Proposition 3.3.2, for all t ≥ 0, it holds
Jgossip(t) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin

+

(

k

n
+ 1

)

cmax

wmin

. (3.18)Now, it is
Jgossip(t) ≥

Kmax(t)cmin

wmax

(3.19)sin
e the exe
ution time of Kmax(t) tasks is greater or equal than that we have ifsu
h tasks are at a null distan
e from the robot that has to pro
ess them, all taskshave a 
ost equal to cmin and the robot who pro
ess them has an exe
ution speedequal to wmax. By equations (3.18) and (3.19) the statement of the propositionfollows. �An important remark needs to be done. The above proposition provides anupper bound on the maximum number of tasks that 
an be assigned to a robotat any iteration. For parti
ular values of the parameters it may happen thatthe upper bound given by Proposition 3.3.3 is not signi�
ant be
ause it is largerthan k. However, this only o

urs for very parti
ular 
ases, while for most of thesigni�
ant and general situations where the number of tasks is su�
iently large,robots and tasks are su�
iently distributed in R and their 
osts and speeds arein reasonable ratio, Proposition 3.3.3 enables us to 
on
lude that
Kmax(t) = O(k/n).Now, sin
e lo
al optimization 
onsiders two robots at a time, the number of tasksthat are involved in a lo
al optimization is surely smaller or equal than 2Kmax(t).This means that the number of unknowns of the MILP that should be solved atthe generi
 iteration t of Algorithm 2 is
Ngossip = O(k2/n2)
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rather than N = O(n3+nk2+n2k) as in the 
entralized 
ase. Moreover, the num-ber of 
onstraints is O(k2k/n/n) rather than O(n2k + nk2k) as in the 
entralized
ase.3.3.3 Finite time and almost sure 
onvergen
eWe now introdu
e two de�nitions to formalize two important properties of gossip
ommuni
ation s
hemes, namely deterministi
 persisten
e and sto
hasti
 persis-ten
e. Similar de�nitions have been re
ently proposed in (42). As usual in thisframework, we assume that the possible intera
tions among agents are modeledby an undire
ted graph G = {V,E} where agents 
orrespond to verti
es, and anedge exists if and only if the intera
tion among the agents 
orresponding to thein
iden
e nodes is possible. Obviously, assumption (A1) implies that in our 
aseit is E = V × V . At ea
h iteration t of the gossip algorithm a di�erent edge issele
ted. In the following we denote as e(t) the edge sele
ted at time t, while theset of edges sele
ted in the time interval [t1, t2] is denoted as ē(t1, t2), i.e., we have
ē(t1, t2) =

t2
⋃

t=t1

e(t).De�nition 1 (Deterministi
 persisten
e)A gossip 
ommuni
ation s
heme is said to be deterministi
ally persistent if
∀t ≥ 0 there exists a �nite T > 0 su
h that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) = 1or equivalently, ē(t, t+ T ) = E. �Deterministi
 persisten
e implies that, if we 
onsider a �nite but su�
iently largetime interval, then for sure all ar
s are sele
ted at least on
e during su
h interval.De�nition 2 (Sto
hasti
 persisten
e)A gossip 
ommuni
ation s
heme is said to be sto
hasti
ally persistent if ∀t ≥ 0there exists a �nite T > 0 and a probability p ∈ (0, 1) su
h that
∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) ≥ pwhere Pr(·) denotes a probability. �
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In simple words, sto
hasti
 persisten
e implies that, if we 
onsider a �nite butsu�
iently large time interval, then ea
h edge has a probability greater or equalthan a �nite value p of being sele
ted during su
h an interval.Theorem 3.3.4 Let K̃(t) be the network state resulting at time t from the exe-
ution of Algorithm 2. If the gossip 
ommuni
ation s
heme satis�es the deter-ministi
 persisten
e property then, for every initial task assignment, there existsa network state K̃∗
gossip and a �nite time T > 0 su
h that K̃(t) = K̃∗

gossip, for all
t ≥ T .Proof: Let us present some preliminary 
omments.� First, K̃∗

gossip is an invariant network state for the state evolution followingAlgorithm 2. This follows from Step 3.b of Algorithm 2.� Se
ondly, if at a given time the network state is updated then the previousnetwork state is no more visited during the algorithm evolution. This also fol-lows from Step 3.b of Algorithm 2 and the monotoni
ity property expressed byProposition 3.3.1.� Thirdly, the number Nn,k of admissible network states is �nite sin
e boththe number of robots and the number of tasks are �nite.Now, with no loss of generality we assume that at the initial time t = 0 itis K̃r 6= K̃∗
gossip,r for all r = 1, . . . , n, i.e., no robot is in its �nal assignment. Ifthe 
ommuni
ation s
heme among agents is deterministi
ally persistent, sin
e thegraph modeling the possible intera
tions among robots is fully 
onne
ted and thenumber Nn,k of admissible network states is �nite, then for sure after some �nitetime T0 the robot with the maximum 
ost in the �nal assignment rea
hes its �nalassignment. Let Rr be su
h a robot. By Step 3.b of Algorithm 2 this impliesthat the assignment of Rr is no more 
hanged during the algorithm evolution,i.e., K̃r(t) = K̃∗

gossip,r for all t ≥ T0.Analogously, after some further �nite time T1 the �nal assignment is rea
hedby the robot with the se
ond largest 
ost, and so on, until all robots have rea
hedtheir �nal assignment. Sin
e all Ti's are �nite, this proves that the �nal networkstate K̃∗
gossip is rea
hed in a �nite time T =

∑n
i=1 Ti. �Theorem 3.3.5 Let K̃(t) be the network state resulting at time t from the exe
u-tion of Algorithm 2. If the gossip 
ommuni
ation s
heme satis�es the sto
hasti
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persisten
e property, then, for every initial task assignment, there exists a net-work state K̃∗
gossip and almost surely a �nite time T > 0 su
h that K̃(t) = K̃∗

gossipfor all t ≥ T , i.e., the network state 
onverges almost surely in �nite time to
K̃∗

gossip.Proof: We prove this theorem following the same arguments an in (43). Theproof is based on verifying the following three fa
ts:(i) K̃∗
gossip is an invariant network state for the state evolution following Algo-rithm 2;(ii) K̃(t) is a Markov pro
ess on a �nite number of states;(iii) starting from any initial network state K̃(0), there is a positive probabilityfor the network state to rea
h K̃∗

gossip in a �nite number of steps.Let us now 
he
k the above three properties in order.� (i) As already dis
ussed in Theorem 3.3.4, this follows from Step 3.b ofAlgorithm 2.� (ii) As already dis
ussed in the proof of Theorem 3.3.4, the number ofadmissible network states Nn,k is �nite, being �nite both the number of robotsand the number of tasks. Markovianity immediately follows from the fa
t thatsubsequent random sele
tion of edges are independent.� (iii) This issue 
an be proved using similar arguments as in Theorem 3.3.4with the only di�eren
e that now the 
ommuni
ation s
heme is sto
hasti
allypersistent, rather than deterministi
ally persistent. This implies that for anyinitial network state K̃(0) there is a �nite probability that after some �nite time
T0 the robot with the maximum 
ost in the �nal assignment rea
hes its �nalassignment, that is no more 
hanged during the algorithm evolution. The sameholds for the robot with the se
ond largest exe
ution 
ost in the �nal assignment,and so, until the invariant network state K̃∗

gossip is rea
hed. Sin
e the number ofpossible states is �nite, item (iii) holds. �3.3.4 Performan
e 
hara
terization of the MILP algorithmAlgorithm 2 does not guarantee the 
onvergen
e to an optimal solution. However,some results 
an be given to 
hara
terize its solution at the equilibrium, i.e.,
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after a number of iterations that is su�
iently large so that no better balan
ingamong robots may be obtained. In parti
ular, the following theorem provides a
hara
terization of the maximum distan
e among the pro
essing times of robotsthat have lo
ally balan
ed their loads.Theorem 3.3.6 Let J∗
gossip,r and J∗

gossip,q, respe
tively, be the total exe
ution timesof two generi
 robots Rr and Rq resulting from the appli
ation of Algorithm 2. Itholds
|J∗

gossip,r − J∗
gossip,q| ≤ Krq = 2

drqmax

vrqmin

+
crqmax

wrq
min

(3.20)where drqmax is the maximum distan
e among tasks in Kr and tasks in Kq, vrqmin =

min{vr, vq}, and wrq
min = min{wr, wq}.Proof: We prove the statement by 
ontradi
tion, i.e., we assume that

|J∗
gossip,r − J∗

gossip,q| > Krq.With no loss of generality, we assume that it is J∗
gossip,r > J∗

gossip,q. Now, let z bethe task in Kr whose distan
e with respe
t to tasks in Kq is minimum. Remove
z from Kr and put it in Kq. Let J̃r and J̃q be the resulting exe
ution times ofrobots r and q, respe
tively. Obviously, we have

J̃q ≤ J∗
gossip,q +

cz
wq

+ 2
drqmax

vq
= J∗

gossip,q +Krq (3.21)where the inequality follows from the fa
t that the optimal TSP of robot q issurely smaller than the path obtained by simply adding twi
e the path from the
losest task in Kq to z. Now, by the 
ontradi
tory assumption, we have
J∗
gossip,r > J∗

gossip,q +Krq (3.22)thus (3.21) 
an be rewritten as
J̃q < J∗

gossip,r. (3.23)As a 
onsequen
e
max{J̃q, J̃r} < max{J∗

gossip,q, J
∗
gossip,r}. (3.24)However, this 
ontradi
ts the assumption that J∗

gossip,r and J∗
gossip,q are the timeexe
utions 
orresponding to an optimal task assignment, thus proving the state-ment. �

50



Corollary 3.3.7 Let J∗
gossip,r and J∗

gossip,q, respe
tively, be the total exe
utiontimes of two generi
 robots Rr and Rq resulting from the appli
ation of Algo-rithm 2. It holds
|J∗

gossip,r − J∗
gossip,q| ≤ Dup (3.25)where Dup is de�ned as in equation (3.4).Let us now provide a theorem that gives an upper bound on the maximum ex-e
ution time resulting from the appli
ation of Algorithm 2. First, we introdu
ethe following Lemma ne
essary to the proof of Theorem 3.3.8.Lemma 3.3.1 Let Sgossip(t) be the sum of all Ji's at iteration t of Algorithm 2.Then

∀t > 0, Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
. (3.26)Proof: By de�nition Sgossip(t) =

∑n
i=1 Ji(t). Sin
e

Ji(t) =
TSP (Ki(t) ∪ {Di})

vi
+

∑

j∈Ki
cj

wi

,it is
Sgossip(t) =

n
∑

i=1

TSP (Ki(t) ∪ {Di})
vi

+
n
∑

i=1

∑

j∈Ki
cj

wi

.By 
onsidering the worst 
ase s
enario in whi
h ea
h agent has speed vi = vminand task exe
ution speed wi = wmin for i = 1, . . . , n, we have the followingstraightforward upper bound
Sgossip(t) ≤

n
∑

i=1

TSP (Ki(t) ∪ {Di})
vmin

+

∑

j∈K cj

wmin

. (3.27)To ea
h robot ki(t) = |Ki(t)| tasks are assigned at any given time. By ex-ploiting the result by Few (40) and (41) given in eq. (3.14) and eq. (3.15), andtaking into a

ount that su
h results refer to a unit square area, the maximumtour length that ea
h robot has to drive to visit all its assigned tasks is
TSP (Ki(t) ∪ {Di}) ≤

(

α
√

ki + 1 + β
)

dmax (3.28)
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where α, β ∈ R are appropriate 
onstants that depend on the 
onsidered bound.Thus, we may now write
Sgossip(t) ≤

αdmax

vmin

n
∑

i=1

(

√

ki(t) + 1
)

+
nβdmax

vmin
+

∑

j∈K cj

wmin
. (3.29)The only term in eq. (3.29) that is a�e
ted by the task assignment to the robots is

∑n
i=1

(

√

ki(t) + 1
). We now �nd the task assignment that maximizes the boundin eq. (3.29) by solving the following optimization problem:































max
∑n

i=1

(√
ki + 1

)

s.t.
∑n

i=1 ki = k

ki ≥ 0 i = 1, . . . , n

ki ∈ N i = 1, . . . , n

(3.30)
Any solution to Problem (3.30) found by relaxing the 
onstraint to have integervariables is an upper bound to the solution of the given problem. We thereforesolve Problem (3.30) by relaxing the integer 
onstraint using Lagrange multipliers:

f(k1, . . . , kn, λ) =

n
∑

i=1

(

√

ki + 1
)

+ λ

(

n
∑

i=1

ki − k

) (3.31)By setting partial derivatives of the obje
tive fun
tion (3.31) to zero we get
∂f(k1, . . . , kn, λ)

∂ki
=

1

2
√
ki + 1

+ λ = 0 i = 1, . . . , n

∂f(k1, . . . , kn, λ)

∂λ
=

(

n
∑

i=1

ki − k

)

= 0
(3.32)Thus, for any i, j ∈ N, it is

1

2
√
ki + 1

=
1

2
√

kj + 1
,i.e., the maximum of fun
tion (3.31) is found for ki = k

n
for all i ∈ N. Therefore,an upper bound to the solution of Problem (3.30) is

n
∑

i=1

(

√

ki + 1
)

≤
n
∑

i=1

(

√

k

n
+ 1

)

= n

√

k

n
+ 1.
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Finally, by substituting the solution of (3.31) into (3.29)
Sgossip(t) ≤ αn

(

√

k

n
+ 1 + β

)

dmax

vmin
+

∑

j∈K cj

wmin
. (3.33)If we 
onsider the results by Few (3.14) we get

Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
. (3.34)

�We are now ready to state one of the main results of this 
hapter.Theorem 3.3.8 The maximum exe
ution time J∗
gossip resulting from the appli
a-tion of Algorithm 2 satis�es

J∗
gossip ≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup. (3.35)Proof: Let Sgossip(t) be the sum of all Ji's at iteration t of Algorithm 2. ByLemma 3.3.1 we have

Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
(3.36)Let J∗

gossip,min be the smallest exe
ution time between the vehi
les after the exe
u-tion of Algorithm 2. Corollary 3.3.7 implies J∗
gossip,min ≥ J∗

gossip −Dup. Moreover,
∀t ≥ 0 it obviously is

J∗
gossip,min(t) ≤

1

n
Sgossip(t) (3.37)thus

J∗
gossip ≤ J∗

gossip,min +Dup ≤
1

n
Sgossip(t) +Dup

≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup.

(3.38)proving the statement. �
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3.3.5 Asymptoti
 behaviorWe now study what is the performan
e to expe
t from the proposed algorithmin the limit 
ases in whi
h the ratio between tasks and robots goes to in�nity. Inparti
ular we obtain the following result.Proposition 3.3.9 Let J∗
gossip be the maximum exe
ution time resulting fromthe appli
ation of Algorithm 2 and let J∗ be the optimal solution to the HMVRproblem. Then
lim
k
n
→∞

J∗
gossip

J∗
≤ cmax

cmin

wmax

wmin
. (3.39)Proof: By taking the ratio between the upper bound to J∗

gossip given in The-orem 3.3.8 and the lower bound of the optimal solutions to the HMVR problem
J∗ given in eq.(3.5) we get

lim
k
n
→∞

J∗
gossip

J∗
≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin

+
1

n

∑

i∈K ci

wmin

+Dup

1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

−Dlo

. (3.40)The term 1
n
TSP (K)
vmax

, being at the denominator, 
an be lower bounded by zero.The term 1

n

∑

i∈K ci

wmin

at the numerator 
an be upper bounded by k
n

cmax

wmin
whilethe equivalent term ∑

i∈K
ci

wmax
at the denominator 
an be lower bounded by k

n
cmin

wmax
.Therefore, we get

lim
k
n
→∞

J∗
gossip

J∗
≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin

+
k

n

cmax

wmin

+Dup

1

n

TSP (K)

vmax
+

k

n

cmin

wmax
−Dlo

. (3.41)The term k
n
dominates both on the 
onstants and on the term √

k
n
, thus we get

lim
k
n
→∞

J∗
gossip

J∗
≤ cmax

cmin

wmax

wmin

. (3.42)proving the statement. �
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3.4 An heuristi
 gossip algorithmIn this se
tion we present a new algorithm, 
alled the De
entralized Heuristi
Algorithm, and dis
uss its 
onvergen
e properties and 
omputational 
omplexityin 
omparison with the algorithm in the previous se
tion.The robots update their states following Algorithm 3, while the task ex
hangerule is des
ribed in Algorithm 4. The basi
 idea is as follows. When two robotsare sele
ted at step 3.a of Algorithm 3, the two agents start to balan
e theirexe
ution time by the iterative exe
ution of Algorithm 4. At ea
h exe
ution ofAlgorithm 4 only two s
enarios are possible:
• the sets of assigned tasks of the two robots do not 
hange;
• one task is given by the robot with the higher exe
ution time to the otherrobot.Note that the determination of the possible ex
hanges is made by the 
omputationof the Approximated Eu
lidean TSP (ATSP ), thus, unlike in the MILP gossipalgorithm, this approa
h involves polynomial time algorithms. There exist avast literature on polynomial time algorithms to 
ompute approximations to theEu
lidean TSP su
h that

ATSP ≤ αTSPwhere TSP denotes the value of the optimal TSP and α represents the worst
ase ratio. In (44) some heuristi
s for the TSP problem are summarized. Manyheuristi
s are based on the 
omputation of the Minimum Spanning Tree (MST)among the nodes and guarantee a worst 
ase ratio of α = 2 with a running time of
O(m2), where m denotes the number of nodes to be visited. Another polynomialtime heuristi
 based on MST whi
h provides a value of α = 1.5 is the Christo�desalgorithm des
ribed in (45), whi
h is 
hara
terized by a running time of O(m3).We observe that the STOP of Algorithm 4 ensures that after the exe
utionof Algorithm 4 it holds

max{Jr(t+ 1), Jq(t+ 1)} ≤ max{Jr(t), Jq(t)}whatever is the 
hoi
e of the algorithm to 
ompute the value of the ATSP .As a �nal remark we note that 
onditions 
an be given on the gossip 
ommu-ni
ation s
heme whi
h allow the robot to 
onverge to stable task assignment in a
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Algorithm 3 De
entralized Heuristi
 Algorithm(i) Tasks are initially arbitrarily assigned to robots.(ii) Let t = 0.(iii) While t ≤ Tmax(a) Sele
t two robot Rp and Rr at random.(b) Apply Algorithm 4 repeatedly on Rp and Rr until no more task ex-
hanges are possible.(
) Let t = t+ 1 and go ba
k to Step 3.(iv) All robots pro
ess their own set of tasks following the order spe
i�ed by thelo
al solution of an ATSP Algorithm.�nite time. In parti
ular, the following two theorems 
an be given, whose proofsare omitted here be
ause they follow the same lines of Theorems 3.3.4 and 3.3.5,respe
tively.Theorem 3.4.1 Let K̃(t) be the network state resulting at time t from the exe-
ution of Algorithm 3. If the gossip 
ommuni
ation s
heme satis�es the deter-ministi
 persisten
e property then, for every initial task assignment, there existsa network state K̃∗
heur and a �nite time T > 0 su
h that K̃(t) = K̃∗

heur, for all
t ≥ T .Theorem 3.4.2 Let K̃(t) be the network state resulting at time t from the exe
u-tion of Algorithm 3. If the gossip 
ommuni
ation s
heme satis�es the sto
hasti
persisten
e property, then, for every initial task assignment, there exists a net-work state K̃∗

heur and almost surely a �nite time T > 0 su
h that K̃(t) = K̃∗
heur forall t ≥ T , i.e., the network state 
onverges almost surely in �nite time to K̃∗

heur.3.4.1 Computational 
omplexity of the lo
al optimizationIn this se
tion we dis
uss about the advantages of the proposed heuristi
 in termsof 
omputational 
omplexity with respe
t to the MILP gossip algorithm.
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Algorithm 4 Lo
al Balan
ing between robots Rr and Rq- INPUT: Kr(t) and Kq(t).- OUTPUT: Kr(t+ 1) and Kq(t+ 1).- ASSUMPTION: We assume, with no loss of generality, that Jr(t) > Jq(t).- STEPS:(i) Let Kex = ∅, Kv = Kr and F = 0.(ii) While F = 0 and Kv 6= ∅

• Sele
t i ∈ Kv randomly.
• Let Kv = Kv \ {i}.
• Compute

Jnew =
ATSP (Kq ∪ {i})

vq
+

∑

j∈(Kq∪{i})
cj

wq
.

• If Jnew < Jr(t)(a) Kex = Kex ∪ {i}.(b) F = 1.End While.- STOP:
• Kq(t + 1) = Kq(t) ∪Kex and Kr(t+ 1) = Kr(t) \Kex.
•

Jq(t+ 1) =
ATSP (Kq(t+ 1))

vq
+

∑

j∈(Kq(t+1)) cj

wq
,

Jr(t + 1) = min

{

Jr(t)−
∑

i∈Kex
ci

wr
,

ATSP (Kr(t+ 1))

vr
+

∑

j∈(Kr(t+1)) cj

wr

}

.
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Let us begin with the analysis of the 
omputational 
omplexity of the singletask ex
hange rule in Algorithm 4. The following proposition 
hara
terizes therunning time of Algorithm 4.Proposition 3.4.3 Assume to 
ompute the ATSP using, at step 2 of Algo-rithm 4, an algorithm with a running time of O(kp). The worst 
ase runningtime of Algorithm 4 is O(kp+1).Proof: The maximum number of nodes assigned to a robot is k, thus at ea
hiteration of the while loop of Algorithm 4 the running time of the algorithm to
ompute the ATSP is at maximum O(kp). The while loop 
an be repeated atmaximum k times, as there may be at maximum k tasks ex
hange. Thus thetotal running time of Algorithm 4 is k · O(kp) = O(kp+1). �.An important property of the proposed heuristi
 is presented in the followingproposition.Proposition 3.4.4 Let Jheur(t) = maxi∈N Ji(t) be the maximum exe
ution timeof robots at time t resulting from the exe
ution of Algorithm 3. The followingholds
∀t ∈ N, Jheur(t+ 1) ≤ Jheur(t).Proof: The proof dire
tly follows from the update rules of Algorithm 4.Let Rr and Rq be the 
ouple of robots sele
ted by Algorithm 3 at time t withexe
ution time respe
tively Jr(t) and Jq(t). Let Rmax be the robot with themaximum exe
ution time at time t ≥ 0, so it is Jmax(t) = Jheur(t). Now, byAlgorithm 4 is holds max{Jr(t+ 1), Jq(t+ 1)} ≤ max{Jr(t), Jq(t)}, and only two
ases may o

ur

• if Rr, Rq 6= Rmax, Jheur(t+ 1) = Jheur(t), i.e., the maximum exe
ution timedoes not 
hange;
• if either Rr = Rmax or Rq = Rmax, Jheur(t+1) ≤ Jheur(t), i.e., the maximumexe
ution time may be redu
ed.

�
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A similar property was dis
ussed for the MILP gossip algorithm as well: at ea
hiteration of the lo
al optimization rule the maximum exe
ution time 
an not in-
rease. Note that in the MILP gossip algorithm ea
h lo
al optimization requiresto solve a MILP problem, whi
h is an exponential time algorithm. Proposition3.4.3 shows that the proposed heuristi
 is based on a lo
al balan
e with a 
onsid-erably smaller 
omputational 
omplexity than the MILP gossip algorithm.We 
on
lude this se
tion with some 
onsiderations about the total number oflo
al intera
tions required to rea
h a �nal task assignment. We 
onje
ture thatthe expe
ted number of iterations of Algorithm 3 required to 
onverge are of thesame order as the number of iterations required in the MILP gossip algorithm.Our 
onje
ture is based on the following observations. The exe
ution of Algo-rithm 4 leads to a di�erent task assignment only if the maximum exe
ution timeamong the involved robots 
an be de
reased, otherwise the task assignment doesnot 
hange. In the proposed framework if at time t the exe
ution of Algorithm 4leads to a de
rement of the maximum exe
ution time, the network state K̃(t)
hanges to a new one K̃(t+ 1). It follows from Proposition 3.4.4 that K̃(t) is nomore visited during the algorithm evolution. This property holds for the MILPgossip algorithm as well. Starting from an initial network state K̃(0), in bothde
entralized solutions all the possible network states may be visited before torea
h the equilibrium state. For that reason we 
an reasonably 
onje
ture thatthe MILP gossip algorithm and Algorithm 3 have 
omputational 
omplexity ofthe same order in terms of total number of iterations. Our 
onje
ture is supportedalso by the results of some simulations presented in the following.3.4.2 Chara
terizations of the heuristi
 solutionIn this se
tion we fo
us on some properties of J∗
heur, i.e., the solution of Al-gorithm 3 at the equilibrium, when no better balan
ing among robots may beobtained. As the MILP gossip algorithm, Algorithm 3 does not guarantee the
onvergen
e to an optimal solution. Firstly we present a theorem that 
hara
ter-izes the maximum distan
e among the exe
ution times of two robots that havelo
ally balan
ed their loads. Then we provide an upper bound on the maximumexe
ution time resulting from the appli
ation of Algorithm 3.
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Theorem 3.4.5 Let J∗
r,heur and J∗

q,heur, respe
tively, be the total exe
ution timesof two generi
 robots Rr and Rq resulting from the appli
ation of Step 2 of Algo-rithm 3. It holds
|J∗

r,heur − J∗
q,heur| ≤ Krq = 2

drqmax

vrqmin

+
crqmax

wrq
min

(3.43)where drqmax is the maximum distan
e among tasks in Kr and tasks in Kq, vrqmin =

min{vr, vq}, and wrq
min = min{wr, wq}.Proof: Let Rr and Rq be a 
ouple of robots sele
ted in Algorithm 3 attime t with exe
ution time respe
tively Jr(t) and Jq(t) after t iterations. Bystep 2 of Algorithm 3 robots Rr and Rq ex
hange tasks one by one until no moreex
hanges are possible. Assume, without la
k of generality, that at time t it holds

Jr(t) > Jq(t). Now, let us assume to ex
hange one task from Rr to Rq. Surelythe exe
ution time of Rr de
reases, thus Jr(t + 1) ≤ Jr(t). On the 
ontrary, theexe
ution time of robot Rq in
reases but the resulting value is su
h that:
Jq(t + 1) ≤ Jq(t) +

crqmax

wq
+ 2

drqmax

vq
.Thus, by ex
hanging one task a redu
tion of the maximum exe
ution time isguaranteed if

Jq(t) +
crqmax

wq
+ 2

drqmax

vq
≤ Jr(t).In other words, if

Jr(t)− Jq(t) ≥
cmax

wq
+ 2

drqmax

vqthen there exists at east task that 
an be ex
hanged su
h that
max{Jq(t+ 1), Jr(t+ 1)} < max{Jq(t), Jr(t)}.Sin
e the number of possible task assignments is �nite and at ea
h iteration ofAlgorithm 4 the lo
al maximum may be de
reased due to a task ex
hange, someof these 
on�gurations are never visited again. Thus we have that in �nite time

|J∗
r,heur − J∗

q,heur| ≤ Krq = 2
drqmax

vrqmin

+
crqmax

wrq
min

�
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By Theorem 3.4.5 and the fa
t that ea
h robot intera
ts with any other suf-�
iently often, a signi�
ant result follows.Corollary 3.4.6 Let J∗
r,heur and J∗

q,heur, respe
tively, be the total exe
ution timesof two generi
 robots Rr and Rq resulting from the appli
ation of Algorithm 3. Itholds
|J∗

r,heur − J∗
q,heur| ≤ Dup (3.44)where

Dup = 2
dmax

vmin
+

cmax

wmin
.

�Finally, the following result 
an be proved using the same arguments as in theproof of Theorem 3.3.8.Theorem 3.4.7 Let J∗
heur be the value of the obje
tive fun
tion (3.1) resultingfrom the exe
ution of Algorithm 3. It is

J∗
gossip ≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup. (3.45)where Dup = 2

dmax

vmin
+

cmax

wmin
.Proof: Follows the same steps of Theorem 3.3.8. �3.5 Numeri
al simulationsIn this se
tion we present some numeri
al results 
omparing the performan
eof the proposed heuristi
 and the performan
e of the MILP gossip algorithm.We �rst analyze the value of J∗

heur and J∗
gossip for di�erent values of k and n,
omparing them with the lower and upper bounds, given in eq. (3.2) and eq. (3.5),respe
tively. We then 
ompare the 
onvergen
e time of the two de
entralizedsolutions either in terms of number of iterations required or in terms of absolutetime.In all the experiments robots and tasks are randomly s
attered in a squarebox of side 5. Costs of tasks are integer values randomly generated with uniformdistribution in the interval [1, 5]. Speeds vi and wi are real values randomly
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generated with uniform distribution in [1, 2]. In both de
entralized algorithmsthe edge sele
tion is performed in a uniformly random way. The MILP problemsare solved using the MATLAB optimization tool glpk, while the results relatedwith Algorithm 3 are obtained using our own MATLAB s
ript. The value of the
ATSP is 
omputed by 
al
ulating a minimum spanning tree and adding short
utsin the indu
ed 
y
le, thus approximating the optimal TSP length by a fa
tor of
α = 2.In Fig.3.1 are reported the results of the 
omparison between the followingvalues:

• the value of J∗
heur, obtained by the exe
ution of Algorithm 3;

• the value of J∗
gossip obtained by the exe
ution of Algorithm 2;

• the upper and lower bound of the 
entralized approa
h given respe
tivelyby (3.2) and (3.5).For ea
h 
ouple (n, k) of n robots and k tasks, J∗
heur, J∗

gossip and the two boundsare the mean values of 10 experiments. Simulations show that the maximumservi
e time obtained with the two approa
hes lies always between the upper andthe lower bound of the 
entralized approa
h. Moreover, the performan
e of thetwo approa
hes are similar. It 
an be observed that Algorithm 2 leads to betterresults than Algorithm 3 when the ratio k
n
is high.In Fig. 3.2, Fig. 3.3 and Fig. 3.4 the exe
ution times of Algorithm 3 are
ompared with the exe
ution times of Algorithm 2. In parti
ular, Fig. 3.2 andFig. 3.3 show the exe
ution time respe
tively of the MILP gossip algorithm andAlgorithm 3 in terms of number of iterations, while in Fig. 3.4 the 
omparison ismade in terms of time in se
onds spent by MATLAB to exe
ute the Algorithms.The two �gures 
on�rm that the proposed framework has a 
omputational 
om-plexity 
onsiderably lower than the MILP gossip algorithm.The results in Fig. 3.2 and Fig. 3.3 
on�rm also the 
onje
ture that we havedis
ussed in the �nal part of Se
tion 3.4.1: the exe
ution time in terms of num-ber of iterations are of the same order in Algorithm 3 and in the MILP gossipalgorithm.Finally we fo
us on the exe
ution time of Algorithm 3 in se
onds and in termsof number of 
y
les. Figure 3.5 shows the number of iterations while Figure 3.6
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entralized solution.

63

img/confrontoboundNew.eps


5

6

7

8

9

10

10

12

14

16

18

20

0

100

200

300

400

 

Number of Tasks kNumber of Robots n
 

N
um

be
r 

of
 it

er
at

io
ns

MILP gossip Algorithm
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Figure 3.4: Exe
ution time of MILP gossip algorithm and Algorithm 3.shows the exe
ution time in se
onds for Algorithm 3 for di�erent values of k in asystem with n = 10 robots.Figure 3.5 shows that the expe
ted number of iterations of Algorithm 3 growslinearly with the number of tasks if the number of robots is kept 
onstant. Onthe other hand, in Figure 3.6 is shown that the a
tual 
omputational time is ofthe order of O(n3) se
onds. This is due to the fa
t that the 
omplexity of thetask ex
hange a

ording to the heuristi
 grows linearly with the number of tasksfor ea
h iteration of Algorithm 3 thus a

ounting for at least a quadrati
 grow of
omputational time, the remaining di�eren
e 
an be a

ounted by the softwareimplementation and exe
ution in Matlab.3.6 Con
lusions and future workIn this 
hapter we proposed upper and lower bounds for the 
ost of the optimalsolution to the HMVRP whi
h 
onsiders vehi
les with di�erent movement andtask exe
ution speed and tasks with di�erent servi
ing 
osts. We extended to
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our framework the bounds for the multi-vehi
le routing problem in (30). Fur-thermore, we proposed two algorithms based on gossip to solve the HMVRP ina distributed fashion exploiting only pairwise task ex
hanges between vehi
les.The �rst algorithm is based on lo
al, asyn
hronous and pairwise optimizationsto improve the lo
al task assignment. The se
ond one is an heuristi
 with linear
omplexity with respe
t to the number of tasks. The 
omputational 
omplex-ity of the �rst method s
ales with exponential 
omplexity with respe
t to theratio between the number of tasks and vehi
les, improving with respe
t to a 
en-tralized optimization that s
ales exponentially with the number of tasks. Theproposed algorithms have been 
hara
terized in terms of �nite-time almost sure
onvergen
e and in terms of minimum guaranteed performan
e.We validated through simulations that the proposed algorithms 
ompute asolution that s
ales with the number of robots within a 
onstant fa
tor of ap-proximation with respe
t to the optimal 
entralized solution.As future work we plan to extend the framework to a dynami
 
ase in whi
hrobots start to move and serve tasks while the de
entralized optimization is beingexe
uted and new tasks appear in the region.

67



68



Part IIGraph methods for di�usion ofinnovation in so
ial networks
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Chapter 4Mathemati
al models for thedi�usion of innovation in so
ialnetworks: Introdu
tion andliterature overview.In the last de
ades many resear
hers from di�erent �elds have been interested inthe study of how innovation spreads in so
ial networks. What is the me
hanismthat 
onvin
es an individual to follow a new idea or to buy a new produ
t?What is the best marketing strategy whi
h a 
ompany should adopt to take a
ompetitive advantage? How does viral marketing works? Many mathemati
almodels have been proposed to give an answer to questions of this type.Sin
e the 40's, many mathemati
al models on the di�usion of innovation hasbeen proposed ((46, 47)) su
h as: the Linear Threshold Model, the Independent
as
ade model ((48)) and epidemi
 models su
h as SIS and SIR ((49, 50)). Allthese models are based on the same 
on
ept: in a so
ial network the behaviourof ea
h individual is highly in�uen
ed by the behaviour of its neighbours.Many of these models are based on the threshold e�e
t : an individual adoptsa behaviour if a 
ertain ratio of its so
ial 
onta
ts have already adopted it, di�er-ently from the epidemi
 models in whi
h a node adopts a behaviour with a 
ertainprobability if at least one of its neighbours has adopted it. Threshold models aremore suitable to des
ribe so
ial in�uen
e phenomena and individual behaviours,
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while epidemi
 models are more used for mass behaviours. Examples of thresholdmodels are presented in (51, 52, 53). The �rsts examples of threshold approa
hesgo ba
k to the seventies ((51, 54)). Several aspe
ts of the di�usion phenomenahave been studied among he years, from the lo
al intera
tions between neighbours((55, 56)), to the analysis of groups behaviours ((53, 57, 58)), whi
h is the aspe
twe fo
us on.In the following 
hapters we deal with the Linear Threshold model, whi
h wasoriginally proposed in (51), and has been widely studied in re
ent years. As inmost of the models appeared in the literature, the so
ial network is representedby a graph in whi
h ea
h node represents an individual, and edges representthe relationships among individuals. In the original model a threshold value
λi is assigned to ea
h individual i, and all the neighbours of i have the samein�uen
e weight on it. An individual adopts the innovation as soon as the ratioof its neighbours who have already adopted it is above its threshold value. Theorigin of the previous rule is the following: many 
ompetitive games su
h anindividual de
ision rule has been proved to be the best response to the a
tionsof one's neighbours ((53, 57)). When a node adopts the innovation we say thatit be
omes a
tive, otherwise is said to be ina
tive. It is impli
itly assumed thata node 
an adopt the innovation, but on
e adopted, it 
annot abandon it, i.e., anode 
an swit
h its state from ina
tive to a
tive but 
annot swit
h it from a
tiveto ina
tive. This model 
an be used to represent systems in whi
h the adoptionof a innovation is permanent and in the literature is 
alled progressive ((59, 60)).For instan
e, the progressive Linear threshold model 
an be suitable to representa group of people who want to buy a 
ertain item: on
e an individual spendsmoney to buy that, i.e., on
e it adopts the innovation, usually it 
annot have themoney ba
k, thus we 
an say that the adoption of the innovation has a permanentnature.In many 
ases, however, the progressive model is not suitable to 
orre
tlydes
ribe the spread of innovation, as habits may 
hange: an individual who votesfor a party for a period 
an de
ide to 
hange its preferen
e, a person who eatsevery day at the same restaurant 
an be persuaded to 
hange of venue. More-over, the in�uen
e pattern in real networks is usually time-varying, as the human
onne
tions are subje
ted to 
hanges: friendships 
an be
ome stronger or weakerdue to the passing of time, new 
onne
tions 
an be setted up and old 
onne
tions
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an be removed. All these 
hanges in the network 
an in�uen
e the spread of theinnovation, and in su
h systems an individual who has adopted the innovation
an be persuaded to abandon it. Su
h types of me
hanisms 
an be des
ribedusing non-progressive models, in whi
h ea
h individual periodi
ally updates itsstate by looking at its neighbours, de
iding either to be a
tive or ina
tive.To the best of our knowledge, most of the model presented in literature areprogressive ((61, 62, 63)), while the non-progressive di�usion of innovation hasnot re
eived mu
h attention ((64)).In the following 
hapters of we deal both with the progressive and non progres-sive models: in parti
ular in Chapter 5 and Chapter 6 we deal with the 
lassi
alprogressive Linear threshold model, while in Chapter 7 we present a novel nonprogressive instan
e of the line threshold model.Our resear
h has been fo
used on two main aspe
ts:
• the role of 
ohesive subgroups in the spread of innovation in the network;
• how to in�uen
e the network.The �rst aspe
t represent an analysis problem: we want to understand how asystem behave starting from a 
ertain initial state. The se
ond aspe
t representsa 
ontrol problem: we want to impose a spe
i�
 state to the system in order tomake it follow a desired behaviour.The so
ial 
ohesion is 
onsidered a key aspe
t to understand 
olle
tive be-haviours in so
ial networks. Many de�nitions of 
ohesiveness and so
ial sub-groups have been proposed in literature, and good surveys 
an be found in(65, 66, 67). Here we study two parti
ular types of 
ohesive subgroups, namelythe 
ohesive and persistent sets, to 
hara
terize the system, sin
e this two typesof groups are stri
tly related to the adopting rules of the 
onsidered Thresholdmodels. We 
an de�ne 
ohesive sets in both progressive and non progressivemodels, while the persistent sets are important in the non-progressive model.Chapters 5 and 6 
olle
t the results dis
ussed in (68), presented at the inter-national 
onferen
e Ne
sys 2013.In Chapter 5 our analysis is inspired by the re
ent work (58), whi
h extends anidea proposed in (57), and present a 
hara
terization of the spread of innovationin so
ial networks, given a seed set � i.e., the set of initial adopters � based ongroups 
ohesion. A group of individuals is said to be 
ohesive for ea
h node of
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the set, the ratio of the in edges 
oming from nodes whi
h are not in the set issmaller then its threshold value. A 
onsequen
e of this property is that if none ofthe nodes of a 
ohesive set have adopted the innovation at a 
ertain time t, thenthey will remain ina
tive for ea
h t′ > t. Moreover, in (58) it was proven that,given a seed set, the �nal adopters set 
onsists all nodes in the network ex
eptthose that belong to the maximal 
ohesive subset 
ontained in the 
omplement ofthe seed set. We �rstly 
hara
terize with a Binary Programming Problem (BPP)the 
omputation of the maximal 
ohesive set. This 
hara
terization is useful tomodel other problems in so
ial network analysis su
h as the ones presented in thenext se
tions. Se
ondly we propose an algorithm, based on the linear relaxationof the presented BPP, whi
h takes as input a seed set and 
omputes the maximal
ohesive subset 
ontained in the 
omplement of the seed set.In Chapter 6 we dis
uss the problem of in�uen
e maximization, whi
h 
an bestated as follows: �nd a seed set of r individuals whi
h maximizes the number of �-nal adopters. This problem is NP-hard, as shown in (60), and many approximatedand greedy algorithms have been proposed in literature ((60, 69, 70, 71, 72)). Tothe best of our knowledge the target of all the approa
hes proposed so far is themaximization of the number of �nal adopters. This represents a limitation, as inmany realisti
 
ases it would be required to maximize the spread of innovationon a network in a �nite time horizon. For example, let's think about a 
om-pany whi
h proposes a new produ
t, it has to 
hose the best possible advertisingstrategy to 
onvin
e the maximum number of 
ostumers to adopt its produ
tbefore other similar produ
ts 
ome to the market. In this 
hapter we introdu
ethe In�uen
e Maximization in Finite Time Problem with parameters r and k(IMFTP(r, k)), whi
h represents a generalization of the 
lassi
al in�uen
e maxi-mization problem. The IMFTP(r, k) 
an be des
ribed as follows: �nd a seed setof r individuals whi
h maximizes the set of adopters in k time steps. Choosing avalue of k high enough the solution of the IMFTP(r, k) 
oin
ides with the solu-tion of the 
lassi
al in�uen
e maximization problem. In se
tion 6.1 a BPP whi
hsolves the (IMFTP(r, k)) is proposed.Chapter 7 
olle
ts the results dis
ussed in (73), presented in Floren
e at theinternational 
onferen
e CDC 2013. In that 
hapter we present a non-progressiveinstan
e of the linear threshold model whi
h 
an be 
onsidered as a generalizationof the model presented in (58). We assume that the innovation is in
epted in the
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network by a seed set, and the seed nodes are supposed to maintain the innovationfor a �nite time - the seeding time -, after whi
h they start to update their stateby following the same rules adopted by all the other nodes in the network.We 
hara
terize the system evolution in two di�erent phases: during and afterthe seeding time. We show that during the seeding time the system behaves as inthe progressive model in (58). The main 
ontribution of our work is the analysis ofthe system evolution after the seeding time, whi
h represent the main di�eren
ebetween our model and the ones previously presented in literature, as in thisphase non-progressive me
hanisms may o

ur. We use 
ohesive and persistentgroups to 
hara
terize some 
onditions under whi
h su
h me
hanisms take pla
e.
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Chapter 5Di�usion of innovation in theProgressive Linear Threshold ModelThe 
hapter is organized as follows. In Se
tion 5.1.1 we des
ribe the representa-tion of the network and the used model. In Se
tion 5.2 we use binary and linearprogramming to 
ompute the maximal 
ohesive set in a network.5.1 Network representation and referen
e model5.1.1 Network stru
tureWe represent the network as a dire
ted graph G = (V,E) where V = {1, 2, . . . , n}is the set of nodes and E ⊂ V×V is the set of edges. Ea
h node i ∈ V representsan individual and an oriented edge (i, j) ∈ E denotes that node j is in�uen
ed bynode i. For this reason in this manus
ript we use the terms individual or nodeinter
hangeably. No sel�oops, i.e., edges from one node to itself, are allowed. Forea
h node i, let λi ∈ [0, 1] denote its threeshold value and let Ni = {j | (j, i) ∈ E}denote the set of its in-neighbours.The topologi
al information about the graph 
an be en
oded in the adja
en
ymatrix A ∈ {0, 1}n×n whi
h is de�ned as follows:
A(i, j) =

{

1 if there is an edge from node i to j

0 otherwise
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We de�ne the in-neighbours s
aled adja
en
y matrix Â ∈ [0, 1]n×n as follows:
Â(i, j) =

A(i, j)

|Nj|
.We denote with Λ = diag([λ1 λ2 . . . λn]) the diagonal matrix whose diagonalentries are the thresholds of the graph nodes.5.1.2 Linear threshold modelLet us de�ne φ0 as the seed set, i.e., the set of nodes whi
h have adopted theinnovation at time t = 0. From the seed set the innovation spreads through theso
ial network, and we denote as φt the set of nodes whi
h adopt the innovationat time t. All the individuals that adopt the innovation during the time interval

[0, t] belong to the set Φt =
⋃t

j=0 φj. In general, node i whi
h has not adoptedthe innovation until time t, adopts the innovation at time t + 1 � i.e., i ∈ φt+1 �if the following holds:
|Φt

⋂

Ni|
|Ni|

=
|∪t

j=0φj

⋂

Ni|
|Ni|

≥ λi (5.1)The innovation spreads in the network until no more individuals 
an adopt it,and we denote the set of �nal adopters as:
Φ∗ =

∞
⋃

j=0

φj.Algorithm 5 des
ribes the dynami
 of the network and returns as output the set
Φ∗ 
omputing at ea
h step whi
h nodes respe
t equation (5.1).5.1.3 Other mathemati
al resultsWe asso
iate to ea
h set of nodes X ⊂ V a 
hara
teristi
 ve
tor de�ned as follows.De�nition 3 Given a set X ⊂ V, the asso
iated 
hara
teristi
 ve
tor x ∈ {0, 1}nis su
h that xi = 1 if i ∈ X else xi = 0.
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Algorithm 5 Computing Φ∗INPUT: A graph G = (V,E). A set φ0 ⊂ V .OUTPUT: The set of �nal adopters Φ∗.(i) Let Φ = φ0, Φ̄ = V \ φ0, and Φold = ∅.(ii) Let k = 0.(iii) While Φ 6= Φold(a) k = k + 1.(b) Let Φold = Φ.(
) For i ∈ Φ̄� If |Φold

⋂

Ni|
|Ni| ≥ λi, then:1. Φ = Φ ∪ {i}.2. Φ̄ = Φ̄ \ {i}.(d) end while.(iv) Let Φ∗ = Φ.
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In the rest of the 
hapter we denote with xi the 
hara
teristi
 ve
tor of the set
φi and with wi the 
hara
teristi
 ve
tor of the set Φi. A

ording to the linearthreshold model, for ea
h 
ouple of sets (φi, φj) su
h that i, j ≥ 0 and i 6= j itholds:

φi ∩ φj = ∅It follows that, ∀t ∈ N:
wt = x0 + x1 + . . .+ xt ≤ 1nThe following de�nition formalizes the 
on
ept of 
ohesive set.De�nition 4 (Cohesive set in (58)) A set X ⊂ V is 
alled 
ohesive if for all

i ∈ X it holds
|X ∩Ni|

|Ni|
> 1− λi. (5.2)In other world a set X ⊂ V is said to be 
ohesive if for ea
h i ∈ X the ratioof neighbours whi
h do not belong to X is stri
tly smaller than λi. If X is a
ohesive set it follows that if φ0 ∩X = ∅, then no individual in X 
an adopt theinnovation. This 
an be formalized by the next result due to (58).Lemma 5.1.1 (Lemma 2 in (58)) Let φ0 ⊂ V be the seed set of a network andlet M ⊂ V \ φ0 be the maximal 
ohesive set of the 
omplement of φ0. The set of�nal adopters Φ∗ is given by:

Φ∗ = V \M. (5.3)5.2 Computing a maximal 
ohesive setLemma 5.2.1 shows that, given a network with seed set φ0, the knowledge of themaximal 
ohesive set M ⊂ V \ φ0 permits an immediate 
omputation of the setof �nal adopters Φ∗. In this se
tion we propose an algorithm that 
omputes themaximal 
ohesive subset of V\φ0 by solving some Linear Programming Problems(LPPs) . We �rst present a Binary Programming Problem (BPP), whose optimalsolution is the 
hara
teristi
 ve
tor of M, then we prove that the LPP obtainedby the relaxation of the BPP 
an be used to iteratively 
ompute M.
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Lemma 5.2.1 A set X ⊂ V is 
ohesive if and only if its 
hara
teristi
 ve
tor xfor all i ∈ X satis�es
x
T Â(·, i) ≥ 1− λ̄iwhere

λ̄i =







λi −
1

|Ni|
if λi · |Ni| ∈ N

λi if λi · |Ni| /∈ NProof: Firstly we make the following obvious remark:
x
T Â(·, i) = x

TA(·, i)
1TA(·, i) =

|X ∩Ni|
|Ni|

.Then we observe that equation (5.2) 
an be rewritten as follows:
|X ∩Ni|

|Ni|
> 1− λi ⇔ |X ∩Ni| > |Ni| − λi · |Ni|. (5.4)Sin
e the LHS of the last inequality of (4) is an integer, we 
onsider two 
ases:

• if λi · |Ni| ∈ N the inequality 
an be rewritten as:
|X ∩Ni| ≥ |Ni| − λi · |Ni|+ 1;

• if λi · |Ni| /∈ N the inequality 
an be rewritten as:
|X ∩Ni| ≥ |Ni| − λi · |Ni|.Dividing these inequalities by |Ni| the result follows immediately. �A

ording to the de�nition of λ̄i introdu
ed in Lemma 5.2.1 we de�ne the diagonalmatrix Λ̄ = diag([λ̄1 λ̄2 . . . λ̄n]).Now we are able to present the following BPP.Proposition 5.2.1 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set with
hara
teristi
 ve
tor y. The maximal 
ohesive set M 
ontained in V \ φ0 has a
hara
teristi
 ve
tor x that is the solution of the following BPP:

max 1
T · x















x ≤ 1− y
[

I − Λ̄− ÂT
]

· x ≤ 0

x ∈ {0, 1}n

(5.5)
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Proof: Firstly, we observe that
M ∩ φ0 = ∅ ⇐⇒ x+ y ≤ 1,whi
h 
an be rewritten as the �rst 
onstraint in (5.5).Se
ondly, sin
e M is a 
ohesive set, by Lemma 5.2.1 it holds

∀i ∈ M, x
T Â(·, i) ≥ 1− λ̄i

m
∀i ∈ V, x

T Â(·, i) ≥ (1− λ̄i)xi

m
x
T Â ≥ x

T [I − Λ̄]and this 
an be immediately rewritten as the se
ond 
onstraint in (5.5).Finally, the 
ohesive set 
omputed by BPP (5.5) is maximal be
ause of the
hosen obje
tive fun
tion. �Note that, as shown in (58) a su
h a maximal 
ohesive set always exists � butmay be the empty set � and is unique.The main advantage of our 
hara
terization is that using 
hara
teristi
 ve
torswe 
an model several problems whi
h are di�
ult to represents, su
h as thein�uen
e maximization problem presented in se
tion 6.1. However, a

ording tothe previous proposition, 
omputing a maximal 
ohesive set M requires solving aBPP, a task that may be 
omputationally hard for large graphs. We will presentin the following an alternative approa
h that requires solving a series of linearprogramming problems and is thus 
omputationally viable.First we 
onsider a relaxed version of BPP (5.5) and 
hara
terize its solutions.Proposition 5.2.2 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set with
hara
teristi
 ve
tor y, and let M be the maximal 
ohesive set 
ontained in V \φ0.Consider the following LPP:
max 1

T · x














x ≤ 1− y (a)
[

I − Λ̄− ÂT
]

· x ≤ 0 (b)

x ≥ 0

(5.6)and let x∗ ∈ [0, 1]n be an optimal solution of LPP (5.6).
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(i) For all i ∈ M, x∗
i = 1.(ii) If x∗ ∈ {0, 1}n then M = {i ∈ V | x∗

i = 1}.Proof: We prove separately the two statements.(i) The �rst result 
an be proved by 
ontradi
tion. Assume x is an optimalsolution of (5.6) su
h that Z = {i ∈ M | xi < 1} is not empty, and 
onsider
x
′ where x′

i = xi if i /∈ Z else x′
i = 1. We 
laim that x

′ satis�es the
onstraint set of (5.6).In fa
t 
onstraint (a) is trivially veri�ed by x
′, sin
e for all i ∈ Z it holds

yi = 0.Consider now 
onstraints of the form (b). For all i ∈ V \ Z it holds
x
′T Â(·, i) ≥ x

T Â(·, i) ≥ (1− λ̄i)xi = (1− λ̄i)x
′
iwhile for all i ∈ Z ⊆ X it holds

x
′T Â(·, i) ≥ |X ∩Ni|

|Ni|
≥ 1− λ̄i = (1− λ̄i)x

′
isin
e M is a 
ohesive set. As shown in the proof of Proposition 5.2.1 thesetwo results imply that x′ satis�es 
onstraints (b).Finally, sin
e 1

T · x′ > 1
T · x, then x is not an optimal solution, whi
h
ontradi
ts the assumption.(ii) If x∗ ∈ {0, 1}n then x

∗ is also the optimal solution of BPP (5.5) and thusit is the 
hara
teristi
 ve
tor of set M. �We 
an �nally write Algorithm 6 for the iterative 
omputation of the maximal
ohesive subset of the 
omplement of the seed.Some 
omments about the algorithm.(1) Ea
h time the LPP is solved, all nodes i with x
(k)
i < 1 do not belong to M(a

ording to Proposition 5.2.2, part 1). Hen
e at step iii.(b) we 
an safely
hange the input of the LLP to y

(k+1) setting for these nodes y
(k+1)
i = 1.Clearly the set M we want to determine is also the maximal 
ohesive set
ontained in V \ Y (k+1), where Y (k+1) is the set whose 
hara
teristi
 ve
toris y(k+1).
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Algorithm 6 Computing Maximal Cohesive Set using LPPINPUT: A graph G = (V,E) with s
aled adja
en
y matrix Â and matrix Λ̄. Aset φ0 ⊂ V with 
hara
teristi
 ve
tor y ∈ {0, 1}n.OUTPUT: The 
hara
teristi
 ve
tor of the maximal 
ohesive set M 
ontained in
V \ φ0.(i) Let k = 0 and y

(0) = y.(ii) Let x(k) ∈ [0, 1]n be an optimal solution ofthe LPP
max 1

T · x














x ≤ 1− y
(0)

[

I − Λ̄− ÂT
]

· x ≤ 0

x ≥ 0(iii) While x
(k) /∈ {0, 1}n(a) Let k = k + 1.(b) Let y(k) =

⌈

1− x
(k−1)

⌉.(
) Let x(k) ∈ [0, 1]n be an optimal solution ofthe LPP
max 1

T · x














x ≤ 1− y
(k)

[

I − Λ̄− ÂT
]

· x ≤ 0

x ≥ 0(iv) End while.(v) x
(k) is the 
hara
teristi
 ve
tor of M.
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(2) When the optimal solution of the LPP is a binary ve
tor, we 
an be surethat it represents the 
hara
teristi
 ve
tor of set M (a

ording to Proposi-tion 5.2.2, part 2).The �nal result we present in this se
tion 
on
erns a bound on the number ofsteps the previous algorithm requires before halting.Proposition 5.2.3 Algorithm 5 and Algorithm 6 require a number k̄ of repeti-tions of the while-loop where
k̄ ≤ n− |φ0| − |M|+ 1.Proof: In Algorithm 5 at ea
h exe
ution of the while-loop it holds that the
ardinality of Φ in
reases at least of 1. In Algorithm 6 one 
an immediatelysee that ea
h time the while-loop is exe
uted ve
tor y in
reases in at least one
omponent, and in both 
ases the maximal number of in
rements is equal to

n− |φ0| − |M|. �Algorithm 6 provides an alternative way, with respe
t to Algorithm 5, to
ompute the set of �nal adopters that does not require to determine the evolutionof the network. However, we 
annot 
laim that Algorithm 6 is more e�
ientthan Algorithm 5 at the light of Proposition 5.2.3. Algorithm 6 is based onthe 
hara
terization of 
ohesive sets given in Proposition 5.2.1, and its interest
onsist in showing how a BPP for analysis of so
ial network is amenable to alinear relaxation. We believe that other problems may exists whi
h 
an be solvedby using this type of approa
hes, and for that reason we have in
luded thispreliminary result.
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Chapter 6In�uen
e Problems in theProgressive Linear Threshold ModelThe Chapter is organized as follows. In se
tion 6.1 we deal with the In�uen
eMaximization problem. In se
tion 6.2 another BPP model is proposed to solve thefollowing problem: 
hoose the minimum seed set whi
h 
an di�use the innovationover a target set in a �nite time horizon. Finally, in the last se
tion, we presentsome simulations and some numeri
al results related with the presented problem.6.1 The In�uen
e Maximization in Finite TimeProblem (IMFTP).The in�uen
e maximization represents one of the most attra
tive problems re-lated with the di�usion of innovation in so
ial networks. It 
an be summarized asfollows: given a network des
ribed by a graph G = (V,E), �nd a seed set φ0 ⊆ Vof r innovators to maximize the di�usion of innovation, i.e., �nd a φ0 su
h that
|φ0| = r and |Φ∗| is maximal.The 
lassi
al in�uen
e maximization problem presented above 
onsiders asquantity of interest the �nal number of adopters. Sometimes it 
ould be requiredto maximize the spread of innovation in a �nite time horizon. The In�uen
eMaximization in Finite Time Problem with parameters r and k (IMFTP(r, k))
an be formalized as follows: 
hoose a seed set of r nodes to maximize the in-�uen
e on the network in k time steps, i.e., �nd a φ0 su
h that |φ0| = r and

87



|Φk| is maximal. It's evident that the IMFTP(r, k) represents an extension of the
lassi
al in�uen
e maximization problem: 
hoosing a value of k high enough theIMFTP(r, k) has the same solution as the 
lassi
al problem.As the number of possible subsets of r elements in a set of n is
(

n

r

)

=
n!

r!(n− r)!the IMFTP(r, k) has a 
ombinatorial nature. We 
hara
terize a solution to thisproblem using binary programming.We �rst introdu
e the de�nition of k-evolution ve
tor asso
iated to a seed set
φ0.De�nition 5 (k-evolution ve
tor) Consider the di�usion of innovation in anet starting from a seed set φ0 a

ording to the linear threshold model presented insubse
tion 5.1.2. Given a positive integer k, let Φt be the set of nodes that adoptthe innovation at time t (for t = 0, 1, . . . , k) and let wt be the 
hara
teristi
 ve
torof Φt. The ve
tor w

T = [wT
0 w

T
1 . . . w

T
k ] is the k-evolution ve
tor asso
iated to

φ0.Lemma 6.1.1 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set, and at ea
htime t let xt and wt be the 
hara
teristi
 ve
tors respe
tively of φt and Φt. Thefollowing property holds.
∀t ∈ N, [ÂT + Λ]wt − Λwt+1 ≥ 0n (6.1)Proof: A node i ∈ V su
h that i /∈ Φt adopt the innovation at time t + 1,i.e., i ∈ φt+1, if and only if

w
T
t Â(:, i) ≥ λi (6.2)Equation (6.2) follows from the following observation:

w
T
t Â(:, i) =

w
T
t A(·, i)

1TA(·, i) =
|Φt ∩Ni|

|Ni|It follows that: ∀i ∈ φt+1, ÂT (·, i)wt ≥ λi.Thus:
∀i ∈ V, ÂT (:, i)wt ≥ λixt+1(i)

m
ÂT

wt − Λxt+1 ≥ 0n
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As xt+1 = wt+1 −wt it follows:
∀t ∈ N, [ÂT + Λ]wt − Λwt+1 ≥ 0n

�Given a seed set φ0, all the 
omponents of the asso
iated k-evolution ve
torrespe
t equation (6.1). The k-evolution ve
tor w asso
iated to φ0 is unique, andkeeps all the information about the evolution of the innovation di�usion in ksteps. There may exist however other ve
tors whose 
omponents satisfy equation(6.1) but do not represent the evolution of the innovation di�usion. We de�nethese ve
tors as k-step ve
tors.De�nition 6 (k-step ve
tor) Let φ0 be a seed set with 
hara
teristi
 ve
tor
ŵ0, and ŵ0, ŵ1, . . . , ŵk be k + 1 ve
tors of n elements. The ve
tor ŵ

T =

[ŵ0
T
ŵ

T
1 . . . ŵ

T
k ] is a k-step ve
tor asso
iated to φ0 if ∀i ∈ {1, . . . , k} the 
om-ponent ŵi ∈ {0, 1}n, and respe
ts equation (6.1).Observe that, given a seed set φ0 there 
ould be several k-step ve
tors as-so
iated to it. Let us 
onsider the network represented in Figure 1, and let

λ1 = λ2 = 0.49 and λ3 = λ4 = 0.60. Let φ0 = {2}, whose 
hara
teristi
 ve
tor is
x0 = [0100]T , then it is Φ1 = {1, 2, 3, 4} and w1 = [1111]T . Thus, a

ording toLemma 6.1.1 and De�nition 5, ve
tor w = [01001111]T is surely a possible 1-stepve
tor asso
iated to φ0 and it is also its unique 1-evolution ve
tor. However it iseasy to verify that w is not the only possible 1-step ve
tor asso
iated to φ0, butalso ŵ

′ = [01000100]T and ŵ
′′ = [01000101]T .Lemma 6.1.2 Let φ0 be a seed set whose k-evolution ve
tor is w. For all possiblek-step ve
tors ŵ′ asso
iated to φ0 it holds:

wk ≥ ŵk.Proof: A

ording to the linear threshold model, if an individual i 
an adoptthe innovation at time t ≤ k, then for ea
h 
omponent j ≥ t of the k-evolutionve
tor it holds wj(i) = 1, while in a k-step ve
tor ŵ it 
an be ŵj(i) = 1 or
ŵj(i) = 0, as in both 
ases equation (6.1) is respe
ted. If an individual i 
an'tadopt the innovation during the k steps, then for ea
h 
omponent j ≥ k it mustbe wj(i) = ŵj(i) = 0. Thus wk ≥ ŵk. �
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Figure 6.1: A network with n = 4 nodes.Using the above de�nitions we propose now a BPP whi
h solves the IMFTP(r, k).For a given network G = {V,E}, the 
hoi
e of the 
onstraints guarantees that theoptimal solution of the following BPP is a k-step ve
tor asso
iated to a seed set
φ∗
0 of r nodes, whi
h maximize the spread of innovation in G in k steps. Moreover,we prove that the weights of the obje
tive fun
tion guarantee that the optimalsolution is the k-evolution ve
tor asso
iated to φ∗

0.Proposition 6.1.1 Given a graph G = {V,E} with |V| = n, 
onsider the follow-ing BPP problem:
max [1T

nk (nk)1T
n ] ·w



















1
T
nw0 = r (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ∈ {0, 1}n(k+1) (c)

(6.3)
where w

T = [wT
0 w

T
1 . . . w

T
k ] . Let w∗ be an optimal solution of (6.3). Then:

• w
∗
0 is the 
hara
teristi
 ve
tor of the seed set φ∗

0 whi
h solve the IMFTP(r, k);
• w

∗ is the k-evolution ve
tor of φ∗
0.Proof: From De�nition 6 it follows that 
onstraints (b) and (
) guaranteethat ea
h feasible solution of (6.3) must be a k-step ve
tor asso
iated to φ∗

0. Weprove the properties above in two steps:(i) �rstly we prove that ve
tor w
∗
k is the 
hara
teristi
 ve
tor of Φ∗

k startingfrom a seed set φ∗
0;
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(ii) se
ondly we prove that w∗
0 is the k-evolution ve
tor of φ∗

0.We analyse the two steps separately.(i) We prove this statement by 
ontradi
tion. Let the i-th 
omponentw∗
i of theoptimal solution w

∗ be the 
hara
teristi
 ve
tor of a set Θi. Let us supposethat Θk 6= Φk starting from φ∗
0. As w∗ is a k-step ve
tor, by Lemma 6.1.2it follows that |Φk| ≥ |Θk|.Let |Φk| = m ≤ n, than at maximum it 
an be |Θk| = m − 1. For the
hara
teristi
 ve
tor wk of Φk it holds:

(nk) · 1T
nwk = nkmFor the optimal solution Φ∗ it 
an be at maximum:

|φ∗
0| = |Θ1| = . . . = |Θk| = m− 1,thus

[1T
nk (nk) · 1T

n ]w
∗ ≤ k(m− 1) + nk(m− 1)

= nkm− nk +mk − kAs mk − nk is for sure a non-positive value, it follows that:
[1T

nk (nk) · 1T
n ]w

∗ < (nk) · 1T
nwkthus Θk 
an't be the set whose 
hara
teristi
 ve
tor is the k-th 
omponentof the optimal solution.(ii) As the problem is a maximization, the value of the obje
tive fun
tion ismaximized when ea
h individual adopts the innovation as soon as 
ondition(5.1) is satis�ed, hen
e ea
h 
omponent w

∗
i is the 
hara
teristi
 ve
tor of

Φk starting from the seed set φ∗
0. �6.2 Di�usion of innovation over a target setAnother interesting problem in so
ial network is the following: minimize the seedset φ0 to di�use the innovation over a target set of nodes Φd ⊆ V in k time step.In this se
tion we use the de�nitions of k-evolution ve
tor and k-step ve
tor tomodel a BPP whi
h 
an be used to solve this problem.
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Proposition 6.2.1 Given a graph G = {V,E} with |V| = n, let wT = [wT
0 w

T
1 . . . wT

k ]be a n(k + 1) ve
tor and xd be the 
hara
teristi
 ve
tor of the target set Φd ⊆ V.Consider the following BPP:
min [1T

n 0
T
nk] ·w































wk ≥ xd (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ∈ {0, 1}n(k+1) (c)

(6.4)
Let w∗ be an optimal solution of (6.4). Then w

∗
0 is the 
hara
teristi
 ve
tor ofthe minimum seed set whi
h 
an di�use the innovation over the target set Φd in

k steps.Proof: Constraints (b) and (
) guarantee that the optimal solution w
∗ is ak-step ve
tor. Constraint (a) guarantees that, starting from a seed set φ∗

0 with
hara
teristi
 ve
tor w∗
0 a set Φ∗

k ⊇ Φd 
an be rea
hed in k steps. Moreover, asthe problem is a minimization BPP, the seed set must be the minimum. �Like (6.3), in BPP (6.4) the 
omplexity grows as the number of steps k in
reases.The relaxed version of (6.4) 
an be used to 
ompute a lower bound of its optimalsolution.Proposition 6.2.2 Given a graph G = {V,E} with |V| = n, let wT = [wT
0 w

T
1 . . . wT

k ]be a n(k + 1) ve
tor and xd be the 
hara
teristi
 ve
tor of the target set Φd ⊆ V.Consider the following LPP:
min [1T

n 0
T
nk] ·w































wk ≥ xd (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ≥ 0n(k+1) (c)

(6.5)
Let w∗ be an optimal solution of (6.5). The following properties hold:(i) if w∗ ∈ {0, 1}n(k+1) then w

∗ is also an optimal solution of (6.4);
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Figure 6.2: In this network if λ ≪ 0.5 Algorithm 6 is more e�
ient than Algorithm5.(ii) ⌈1T
nw

∗
0⌉ is a lower bound on the 
ardinality of the minimum seed set whi
hdi�uses the innovation to the whole target set Φd in k steps.Proof: The two statements trivially follow by the de�nition of relaxed BPP.

�6.3 Numeri
al resultsIn this se
tion we propose a small sele
tion of the results obtained by the simu-lations of the proposed algorithms. Firstly we present a 
ase in whi
h Algorithm6 is more e�
ient than Algorithm 5.The network in Figure 2 represents a 
ase in whi
h Algorithm 6 
an be moree�
ient than Algorithm 5 depending on the 
hoi
e of λ.Table 6.1Algorithm 5
φ0 n λ Exe
uted while-loops Exe
ution time (se
.)
{1} 1000 0.01 1000 6.6
{1} 1000 0.005 1000 6.6
{1} 1000 0.001 1000 6.6Algorithm 6
φ0 n λ Exe
uted while-loops Exe
ution time (se
.)
{1} 1000 0.01 100 5.7
{1} 1000 0.005 67 4.1
{1} 1000 0.001 30 1.9Table 6.1 shows the results of the 
omparison of the two algorithms for di�er-ent values of λ and n = 1000.
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Figure 6.3: Network used to test BPP (6.3)We have solved the IMFTP(r, k) in the network represented in Figure 6.3using BPP (6.3) for di�erent values of r and k. The values of λ are di�erent atea
h node and have been randomly generated. The results of the experiment areplotted in Figure 6.4, in whi
h the value of |Φ∗
k| is 
omputed for di�erent values ofthe parameters (r, k). As it was expe
ted, if the value of k is �xed, the fun
tion

|Φ∗
k|(r) is non-de
reasing as well as the fun
tion |Φ∗

k|(k) if the value of r is �xed.We have tested BPP (6.4) and LPP (6.5) in the network represented in Fig-ure 6.5. In this 
ase also the values of lambda are di�erent at ea
h node andhave been randomly generated. The 
hosen target set is Φd = V. Figure 6.6show the variation of |φ∗
0| 
omputed with BPP (6.4) for di�erent values of k, andthe respe
tive lower bound 
omputed with LPP (6.5). As it was expe
ted thefun
tion |φ∗

0|(k) is non-de
reasing.6.4 Con
lusionsIn this 
hapter we have dis
ussed di�erent aspe
ts related to the di�usion ofinnovation in so
ial networks. In the �rst part we have proposed a BPP 
hara
-terization and an iterative algorithm based on LPP whi
h 
ompute the maximal
ohesive subset of the 
omplement of the seed set when the seed set is known. In
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Figure 6.4: |Φ∗
k| obtained by BPP (6.3) for di�erent values of k and r.the se
ond part a BPP model is presented that determines the set whi
h maxi-mizes the spread of innovation over the network in k steps.This 
hapter presents a useful 
hara
terization of the Linear Threshold Modelusing ve
tors and matri
es, and shows that there exist some problems whi
h 
anbe represented with BBPs and solved using their linear relaxations. We believethis preliminary approa
h 
an be applied to solve e�
iently other problems ofinterest in so
ial network analysis.
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Figure 6.5: Network used to test BPPs (6.4) and (6.5).
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Figure 6.6: |φ∗
0| obtained by BPP (6.4) and its lower bound obtained by LPP (10)for di�erent values of k
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Chapter 7A Non-Progressive instan
e of theLinear Threshold ModelThe Chapter is organized as follows. In se
tion 7.2 we introdu
e the non-progressive linear threshold model, formalizing the used notation, the main as-sumptions and the adopting 
onditions. In se
tion 7.3 we de�ne and 
hara
terizethe persistent sets with respe
t of the presented model. Finally, in se
tion 7.4we analyse how the innovation spreads in a so
ial network a

ording to the non-progressive linear threshold model, and we 
on�rm the analyti
al results throughsome numeri
al examples.7.1 Ba
kgroundLet us represent a so
ial network with a dire
ted graph G = {V,E}, as made inChapter 6. Di�erently from Chapter 6, a weight wij ∈ [0, 1] is asso
iated to ea
hedge (i, j) ∈ E and denotes how mu
h node i in�uen
es node j. We assume thatfor all i ∈ V it holds: ∑j∈Ni
wj,i = 1.7.2 Non-Progressive Linear Threshold ModelIn this se
tion we introdu
e a non-progressive instan
e of the linear thresholdmodel. Firstly we list the assumptions on whi
h the model is based, then wede�ne the update rule. For the rest of the 
hapter we refers to this model as the

97



non-progressive linear threshold model.7.2.1 System des
riptionA threshold value λi ∈ [0, 1] is asso
iated to all nodes i ∈ V. We assume thatthe independent variable time t belongs to N. The innovation spreads in thenetwork starting from a seed set φ0, i.e., a set of individuals are a
tive at time
t = 0. We assume that all the nodes in φ0 are a
tive for a time interval t ∈ [0, Ts],independently of the state of their neighbours, then for t > Ts they update theirstate following the same rule as the rest of the nodes. We 
all Ts the seeding time.We assume that:

• the topology of the network is stati
 and all the 
onne
tions and the in�u-en
e weights are known;
• the thresholds λi, ∀i ∈ V are stati
 and known;
• a node 
an be more in�uen
ed by some neighbours than others, thus forea
h node the weights of the in-edges may be di�erent.7.2.2 Update ruleLet Φt be the set of a
tive nodes at time t. In the non-progressive linear thresholdmodel the nodes update their states at time t a

ording to the following equation:

Φt =











φ0 t = 0

φ0

⋃ {i |∑j∈(Ni∩Φt−1)
wji ≥ λi}, t ∈ [1, Ts]

{i |∑j∈(Ni∩Φt−1)
wji ≥ λi}, t > Ts

(7.1)In other words, after the seeding time a node is a
tive at time t if the sum ofthe weights of the in-edges 
oming from a
tive neighbours at time t−1 is greaterthan or equal to its threshold. Di�erently from the progressive model, in whi
h anode maintains the innovation inde�nitely on
e adopted, in the non-progressivemodel a node 
an swit
h its state from ina
tive to a
tive and vi
e versa.Additional notation that will be used in the rest of the 
hapter is the following.
• φ+

t = Φt \ Φt−1, i.e., the set of nodes whi
h be
ome a
tive at time t;
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• φ−
t = Φt−1 \ Φt, i.e., the set of nodes whi
h be
ome ina
tive at time t;

• Φ∗ = limt→+∞Φt denotes if it exists, the set of �nal adopters.Note that the set Φ∗ does not always exist. The existen
e of this set will bedis
ussed in se
tion 7.4.7.3 Cohesive and Persistent SetsIn this se
tion we de�ne two types of 
ohesive groups in the non-progressivelinear threshold model, whi
h are useful to analyse the spread of innovation in thenetwork. We �rstly adapt to our model the 
on
ept of 
ohesive sets as presentedin (58). Then we introdu
e the idea of persistent sets, whi
h des
ribe a di�erenttype of 
oheren
e with respe
t to 
ohesive sets.De�nition 7 (Cohesive set ((58)) for weighted graphs) A set X is 
ohe-sive if for all nodes i ∈ X the sum of the weights of the in-edges 
oming fromnodes whi
h are not in X is lower than their threshold λi, i.e.:
∀i ∈ X,

∑

j∈(Ni∩X)

wji > 1− λi. (7.2)An important property of a 
ohesive set, proved in (58), is that if none of thenodes within the set is a
tive at time t, then none of them 
an be
ome a
tive forall t′ > t. In Figure 7.1 the sets {1, 2, 3} and {8, 9} are 
ohesive, while {4, 5, 6, 7}is not 
ohesive.We introdu
e now a novel type of 
ohesion whi
h is typi
al of the proposedmodel and is useful to analyse the evolution of the network.De�nition 8 (Persistent set) A set X is persistent if for all nodes i ∈ X thesum of the weights of the in-edges 
oming from nodes within X is greater than orequal their threshold λi, i.e.:
∀i ∈ X,

∑

j∈(Ni∩X)

wji ≥ λi. (7.3)The following theorem points out the reason why su
h type of sets are importantin the non-progressive linear threshold model.
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Theorem 7.3.1 Let X be a persistent set. If at time t′ all the nodes in X area
tive, then they remain a
tive for all t > t′.Proof: If all nodes in X are a
tive at time t′, i.e., X ⊆ Φt′ , from (7.3) followsthat
∀i ∈ X,

∑

j∈(Ni∩Φt′)

wji ≥
∑

j∈(Ni∩X)

wji ≥ λi.hen
e X ⊆ Φt′+1. The result follows by re
ursion. �Property 7.3.2 Let X1 and X2 be two persistent sets. The set X1 ∪ X2 is apersistent set as well.Proof: As X1 is persistent, ea
h node i in X1 satis�es equation (7.3). As
X1 ⊆ X1 ∪X2 it holds for k = 1, 2:

i ∈ Xk,
∑

j∈(Ni∩(X1∪X2))

wji ≥
∑

j∈(Ni∩Xk)

wji ≥ λi.Thus all the nodes in X1 ∪X2 satisfy equation (7.3), i.e., X1 ∪X2 is a persistentset. �In Figure 7.1 the sets {1, 2, 3} and {4, 5, 6, 7} are persistent, while {3, 4} is notpersistent. We 
on
lude this se
tion by observing that a set 
an be both 
ohesiveand persistent, e.g., the set {1, 2, 3} in Figure 7.1.7.4 System's dynami
The purpose of this se
tion is to 
hara
terize how the innovation spreads in thenetwork a

ording to the non-progressive model. We analyse separately two dif-ferent phases of the evolution in the network:
• during the seeding time, i.e. for 0 ≤ t ≤ Ts;
• after the seeding time, i.e., for t > Ts.We pay parti
ular attention to the evolution of the innovation after the seedingtime: whi
h are the nodes that are able to hold their states a
tive after Ts?We use the following de�nitions to des
ribe the evolution of the innovation inthe network a

ording to the presented model.
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De�nition 9 (Progressive evolution) The di�usion of the innovation in thenetwork is progressive (or non-de
reasing) during a time interval [t1, t2] if:
∀t ∈ [t1, t2], φ−

t = ∅.In other words, for all t ∈ [t1, t2] all a
tive nodes i ∈ Φt−1 remain a
tive at time
t. If t1 = t2 = t′, we said that the evolution is progressive in t′ if φ−

t′ = ∅.De�nition 10 (Non-progressive evolution) The di�usion of the innovationin the network is non-progressive during a time interval [t1, t2] if:
∃t ∈ [t1, t2], φ−

t 6= ∅.In other words, during the time interval t ∈ [t1, t2] there is at least a node whi
hbe
omes ina
tive.De�nition 11 (Degressive evolution) The di�usion of the innovation in thenetwork is degressive (or non-in
reasing) during a time interval [t1, t2] if:
∀t ∈ [t1, t2], φ+

t = ∅.De�nition 12 (Periodi
 evolution) The di�usion of the innovation in the net-work is periodi
 after time t if there exist a T > 0 ∈ N su
h that:
∀k ∈ N, t′ ≥ t Φ′

t = Φt′+kT .where T is the period of the evolution.The de�nitions of progressive and degressive follow the usual de�nitions in lit-erature. Note that an evolution 
an be both progressive and degressive if theset of a
tive nodes is 
onstant. In the following parts we prove analyti
ally thefollowing results:(a) during the seeding time the system has a progressive evolution;(b) after the seeding time the evolution of the system is progressive if ΦTs
ispersistent, otherwise is non-progressive;
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(
) if Ts is su�
iently large (larger than a parameter Td 
alled di�usion timeand introdu
ed in the following se
tion) two results holds: a) the set of �naladopters Φ∗ exists and is the maximal persistent set in ΦTs
; b) if ΦTs

is notpersistent the system has a degressive evolution for t > Ts.Examples of evolutions, in
luding a 
ase in whi
h the system has a periodi
evolution, are given in the �nal subse
tion.7.4.1 Evolution during the seeding time: 0 ≤ t ≤ TsIn this part we prove that in the non-progressive model, a

ording to the assump-tions made so far, during the seeding time [0, Ts] the system has a progressiveevolution.Theorem 7.4.1 The evolution of a so
ial network with seed set φ0 and seedingtime Ts is progressive in the time interval [0, Ts].Proof: We prove the statement by indu
tion on the time step t, assuming
Ts ≥ 1 (if Ts = 0 the result is trivial).(base step) At time step t = 1, the evolution is progressive be
ause by equation(7.1) Φ0 = φ0 ⊆ Φ1, hen
e φ−

1 = ∅.(indu
tive step) Assume that at time step t−1 (where t ∈ [2, Ts]) the evolutionis progressive: we now show that the evolution is also progressive at time step tthus 
ompleting the proof.Observe that the assumption φ−
t−1 = ∅ implies Φt−2 ⊆ Φt−1, hen
e for all i ∈ Vholds:

Ni ∩ Φt−2 ⊆ Ni ∩ Φt−1.By (7.1) this implies that Φt−1 ⊆ Φt, hen
e φ−
t = ∅. �The previous analysis also points out that as long as the nodes of the seed set area
tive, no node in the network 
an be
ome ina
tive, i.e., during the seed time anode, whi
h is not in the seed set, adopts the innovation as soon as the sum ofthe weights of the in-edges 
oming from a
tive nodes is greater than or equal itsthreshold value, and maintains it.This behaviour is also typi
al of the progressive instan
e of the linear thresholdmodel presented in (58). Di�erently from our model, the progressive in (58)
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assumes that all in-edges at ea
h node have the same weight, i.e., for all i ∈ V itholds:
wji =

1

|Ni|
, ∀j ∈ Ni.In the progressive model an ina
tive node i adopt the innovation at time t ifat time t− 1 it holds:

∑

j∈(Ni∩Φt−1)

wji =
|Φt−1

⋂

Ni|
|Ni|

≥ λi (7.4)A

ording to the previous equation, also in the progressive model a nodeadopts the innovation as soon as the sum of the weights of the in-edges 
omingfrom a
tive nodes is above its threshold value, but di�erently from our non-progressive model an individual is assumed to never abandon the innovation on
eadopted. Thus we 
an 
laim that the non-progressive linear threshold modelrepresents a generalization of the progressive model. In parti
ular, the evolutionof the progressive model 
orresponds to the evolution of the non-progressive modelin 
ase of Ts → ∞.We 
an exploit this similarity even further. We know from (58) that theprogressive model rea
hes in a �nite time a steady state where the set of a
tivenodes remains 
onstant and is:
Φ̂∗ = V−M, where M denotes the maximal 
ohesive set in the 
omplement of the seed set.Motivated by this, we de�ne a parameter, the di�usion time, whi
h will playan important role in the analysis of the evolution of the non-progressive modelas will be shown in the following se
tions.De�nition 13 (Di�usion Time Td) For Ts su�
iently large the innovation spreadsin the network until a time Td ≤ Ts su
h that ΦTd

= ΦTd+1 = · · · = ΦTs
. Theparameter Td is the di�usion time of the network.7.4.2 Evolution after the seeding time: t > TsAt time Ts + 1 some nodes in the seed set may be
ome ina
tive, as they maynot satisfy equation (7.1). If that happens, at time Ts + 2 some a
tive nodes
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onne
ted to the seed set may be
ome ina
tive, et
. Su
h a tenden
y to abandonthe innovation leads to a non-progressive evolution.In this se
tion we 
hara
terize the evolution of our model after the seedingtime and also present some parti
ular results that hold in the spe
ial 
ase Ts < Td.Lemma 7.4.1 Consider a so
ial network with seeding time Ts. If there exists atime step t̄ > Ts su
h that the evolution in t̄ is progressive, then the evolution isalso progressive for all t > t̄.Proof: Observe that the assumption φ−
t̄ = ∅ implies Φt̄−1 ⊆ Φt̄, hen
e for all

i ∈ V holds
Ni ∩ Φt̄−1 ⊆ Ni ∩ Φt̄.By (7.1) this implies that Φt̄ ⊆ Φt̄+1, hen
e φ−

t̄+1 = ∅. The result follows byre
ursion. �The following theorem �xes the 
onditions under whi
h the evolution of thesystem remains progressive for t > Ts.Theorem 7.4.2 Consider a so
ial network with seed set φ0 and seeding time Ts.The evolution of the network is progressive for all t > 0 if and only if ΦTs
ispersistent.Proof: We prove separately the if and only if parts.(if) For 0 ≤ t ≤ Ts it has been shown in Theorem 7.4.1 that the networkhas a progressive evolution. If ΦTs

is persistent, Theorem 7.3.1 implies that theevolution at time step Ts + 1 is progressive. From Lemma 7.4.1 one 
on
ludesthat the evolution is also progressive for all time steps t > Ts + 1.(only if) If ΦTs
is not persistent, by De�nition 8 there exists a node i ∈ ΦTssu
h that ∑j∈(Ni∩ΦTs )

wji < λi. By (7.1) if follows that node i be
omes ina
tiveat step Ts + 1, hen
e the network has a non-progressive evolution. �The following 
orollary points out that to determine if the system has a pro-gressive evolution after Ts it is su�
ient to determine if all nodes in the seed setremain a
tive at time Ts + 1.Corollary 7.4.1 The evolution of a so
ial network with seed set φ0 and a seedtime Ts is progressive for all t > 0 if and only if at time Ts+1 it holds: φ0∩φ−
Ts+1 =

∅.
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Proof: Sin
e φ0 ∩ φ−
Ts+1 = ∅ it holds
φ0 ⊆

{

i |∑j∈(Ni∩ΦTs )
wji ≥ λi

}hen
e
φ0

⋃

{

i |∑j∈(Ni∩ΦTs−1)
wji ≥ λi

}

⊆
{

i |∑j∈(Ni∩ΦTs)
wji ≥ λi

}and by (7.1) this implies that ΦTs+1 ⊆ ΦTs
. The result follows from Lemma 7.4.1.

� The following theorem points out a su�
ient 
ondition on the stru
ture onthe seed set under whi
h the evolution of the system is progressive.Theorem 7.4.3 Consider a so
ial network with seed set φ0 and seeding time Ts.If φ0 is persistent, the evolution of the network is progressive for all t > 0.Proof: To prove this statement is su�
ient to prove that if φ0 is persistent,then ΦTs
is persistent as well. We 
an 
onsider ΦTs

as:
ΦTs

= φ0 + φ+
1 + φ+

2 + . . . φ+
Ts. Sin
e φ0 is persistent, it holds:

φ0 ∈ ΦTs+1.Sin
e all the nodes in φ0 are a
tive at time Ts + 1, it holds:
φ+
1 ∈ ΦTs+1.Using the same argument we 
an observe that:

φ+
2 ∈ ΦTs+1; . . . ;φ+

Ts
∈ ΦTs+1. Thus it follows that:

φ−
Ts+1 = ∅and from Corollary 7.4.1 it follows that the evolution is progressive for t > 0. �We now present some results that apply to the spe
ial 
ase in whi
h Ts ≥ Td. Ifthis 
ondition holds, the progressive evolution during the seeding time rea
hes asteady state and ΦTd

= ΦTd+1 = · · · = ΦTs
.Next theorem points out whi
h are the nodes that remain a
tive for all t > Td.
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Theorem 7.4.4 Let φ0 be a seed set of a so
ial network with a seed time Ts anddi�usion time Td < Ts. If ΦTs
= ΦTd

is not persistent, then the system has adegressive evolution for t > Ts.Proof: The proof is based on verifying the following two fa
ts.(a) Firstly, we prove that if ΦTs
is non-persistent, then φ+

Ts+1 = ∅ and φ−
Ts+1 6= ∅.Observe that if ΦTs

= ΦTd
is not persistent it follows from Theorem 7.4.3that φ−

Ts+1 6= ∅. Moreover, as Ts > Td, it holds that V−ΦTs
= M, where Mis the maximal 
ohesive subset of the 
omplement of the seed set. Thus nonodes 
an adopt the innovation at time Ts + 1, i.e., φ+

Ts+1 = ∅.(b) Se
ondly we prove that for all t > Ts + 1 it holds φ+
t = ∅. At time Ts + 1 itholds ΦTs+1 ⊆ ΦTs

, thus a

ording to equation (7.1) it holds φ+
Ts+2 = ∅. Bythe iteration of the same argument, for all t > Ts + 1 it is:

Φt ⊆ Φt−1 ⇔ φ+
t+1 = ∅ �Theorem 7.4.5 Let φ0 be a seed set of a so
ial network with seed time Ts anddi�usion time Td < Ts. The set Φ∗ of a
tive nodes for t → ∞ is the maximalpersistent set 
ontained in ΦTs

and is rea
hed at time Tf ≤ Ts + |ΦTs
| − |Φ∗|.Proof: If the set of a
tive nodes at step t is not persistent, there is at leastone node in Φt that be
omes ina
tive at step t + 1. This, sin
e the evolution isdegressive a

ording to Theorem 7.4.4, the number of a
tive nodes de
reases atea
h step until the system rea
hes a persistent set of a
tive nodes Φ∗, whi
h isthe maximal persistent set 
ontained in ΦTs

. The steady state is a
hieved from
Ts in a number of steps whi
h is at maximum |ΦTs

| − |Φ∗|, thus:
Tf ≤ Ts + |ΦTs

| − |Φ∗|. �7.4.3 Some examplesIn this se
tion we 
onsider so
ial networks with seeding time Ts smaller than thedi�usion time Td be
ause in this 
ase several types of evolutions are possible, asopposed the networks with Ts ≥ Td that we have shown 
an only admit degressiveevolutions after the seeding time. We illustrate three di�erent s
enarios separatelythrough examples.
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Example 7.4.6 (S
enario 1: progressive evolution) Consider the networkin Fig. 7.1 with seed set φ0 = {1, 2} and seeding time Ts = 2. The di�usiontime for the 
onsidered network is Td = 4. As it is shown in Fig. 7.2, the evo-lution of the system is progressive. A

ording to Theorem 7.4.3 the progressiveevolution 
an be predi
ted by observing that ΦTS
= Φ2 is a persistent set, as allthe nodes that belong to it satisfy equation (7.3). The set of �nal adopters existsand is Φ∗ = {1, 2, 3, 4, 5, 6, 7}.

Figure 7.1: Network in s
enario 1.
t Φt φ+

t φ−
t0 {1, 2}1 {1, 2, 3} {3} ∅2 {1, 2, 3, 4} {4} ∅3 {1, 2, 3, 4, 5, 7} {5, 7} ∅4 {1, 2, 3, 4, 5, 6, 7} {6} ∅5 {1, 2, 3, 4, 5, 6, 7} ∅ ∅Figure 7.2: Evolution in s
enario 1.
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Example 7.4.7 (S
enario 2: non-progressive evolution) Consider the net-work in Fig. 7.3 with seed set φ0 = {1, 3} and seeding time Ts = 1. The di�usiontime for the 
onsidered network is Td = 3. As it is shown in Fig. 7.4, the evo-lution of the system is non-progressive. The set of �nal adopters exists and is
Φ∗ = ∅.

Figure 7.3: Network in s
enario 2.
t Φt φ+

t φ−
t0 {1, 2}1 {1, 2, 3} {3} ∅2 {3, 4, 5} {4, 5} {1, 2}3 {4, 5, 6, 7, 8, 9} {6, 7, 8, 9} {3}4 {6, 7, 8, 9} ∅ {4, 5}5 ∅ ∅ {6, 7, 8, 9}Figure 7.4: Evolution in s
enario 2.The numeri
al results 
on�rm the analyti
al result obtained in Theorem 7.4.3:as the set ΦTs

is non-persistent, the system has a non-progressive evolution.The next example represent a 
ase in whi
h the evolution of the system is periodi
after Ts. This is a parti
ular, but interesting, 
ase of non-progressive evolutions
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but so far we have not found any analyti
al 
hara
terization of this behavior.Example 7.4.8 (S
enario 3: periodi
 evolution.) Consider the network inFig. 7.5 with seed set φ0 = {1, 3} and seeding time Ts = 1. The di�usion timefor the 
onsidered network is Td = 2. As it is shown in Fig. 7.6, the evolution ofthe system is non-progressive after Ts, as the set ΦTs
is non-persistent. Moreover,the system has a periodi
 evolution with period T = 2 from t = 2. In this 
asethe set Φ∗ 
annot be de�ned.

Figure 7.5: Network in s
enario 3.
t Φt0 {1, 3} φ+

t φ−
t1 {1, 2, 3, 5} {2, 5} ∅2 {2, 4, 5} {4} {1, 3}3 {1, 2, 3} {1, 3} {4, 5}4 {2, 4, 5} {4, 5} {1, 3}5 {1, 2, 3} {1, 3} {4, 5}6 {2, 4, 5} {4, 5} {1, 3}Figure 7.6: Evolution in s
enario 3.
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7.5 Con
lusionsIn this 
hapter we have presented a non-progressive instan
e of the linear thresh-old model, in whi
h the di�usion of the innovation starts from a seed set whosenodes are assumed to maintain the innovation for a �nite time. We 
hara
ter-ized analyti
ally the 
onditions under whi
h the system has a progressive, non-progressive and degressive evolution. This model represents a �rst step in theanalysis of non-progressive me
hanisms dealing with the linear threshold model.In our future works we want to extend the presented model by exploring otherme
hanisms whi
h 
an lead the network to a non-progressive evolution, su
h as
hanges in the network topology or in the in�uen
e weights. Furthermore wealso plan to 
hara
terize the set of �nal adopters when Ts < Td and to �nd some
onditions on the graph stru
ture to 
hara
terize the evolution on the network.
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Chapter 8Con
lusionsIn this thesis we have presented several algorithm, based on graph theory, on twomain topi
s: the 
oordination of multi-agent systems through 
onsensus and thedi�usion of innovation in so
ial networks.Regarding the 
oordination of multi-agent systems, the following are the pre-sented results.
• In Chapter 2 a formation 
ontrol strategy for a set of autonomous vehi
lein absen
e of a 
ommon referen
e frame, based on gossip, is proposed. Ifthe agent have a 
ommon referen
e dire
tion the algorithm is proved tobe robust to noise on the displa
ement measurement. To the best of ourknowledge this algorithm is a rare example in literature of formation 
ontrolstrategy in absen
e of a 
ommon referen
e frame, whi
h is not 
hara
terizedby a leader.
• In Chapter 3 we have proposed the Heterogeneous Multi Vehi
le RoutingProblem (HMVRP), whi
h represent an extension of the 
lassi
al MultiVehi
le Routing Problem. We have proposed upper and lower bounds forthe 
ost of the optimal solution. Furthermore, we proposed two algorithmbased on gossip to solve the HMVRP in a distributed fashion exploitingonly pairwise task ex
hanges between vehi
les, thus greatly redu
ing the
omputational 
omplexity required to 
ompute a solution. The proposedmethods s
ales with exponential 
omplexity with respe
t to the ratio be-tween the number of tasks and vehi
les instead of s
aling with respe
t tothe number of tasks. We believe that our framework 
an be extended to the
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ase of Dynami
 MVRP, in whi
h robots start to move and serve tasks whilethe de
entralized optimization is being exe
uted and new tasks appear inthe regionRegarding the di�usion of the innovation in so
ial networks, the following are theproposed results.
• In Chapter 5 we have adopted the 
lassi
al Linear Threshold Model for thedi�usion of innovation in So
ial Network. We �rstly have proposed an algo-rithm, based on linear programming, whi
h 
omputes the maximal 
ohesivesubset of a network. This algorithm 
an be used to 
ompute the set of �naladopters for a given seed set of nodes. Then we have 
hara
terized the op-timal solutions of two problems: the In�uen
e Maximization in Finite Timeand the di�usion of innovation over a target set. The framework presentedin this 
hapter represents a useful 
hara
terization of the Linear ThresholdModel using ve
tors and matri
es, and shows that there exist some prob-lems whi
h 
an be represented with BBPs and solved using their linearrelaxations. We believe this preliminary approa
h 
an be applied to solvee�
iently other problems of interest in so
ial network analysis. Anotherinteresting orientation for future work is the study of heuristi
 approa
hesto the presented problems, sin
e most of them have a 
ombinatorial nature.
• In Chapter 7 we have de�ned and analysed a novel model, the Non Pro-gressive Linear Threshold Model, whi
h extends the 
lassi
al model and,di�erently from it, is suitable to represent non progressive phenomena ofinnovation di�usion. We have 
hara
terized the evolution of the network intherms of Cohesive and Persistent sets. The analysis of innovation di�usionphenomena through the analysis of the 
ohesion in the network representan a
tual and still open problem. We believe that this te
hnique an beextended to other models whi
h represent di�usion phenomena. Further-more, the proposed model represents a �rst step in the analysis of non-progressive me
hanisms dealing with the linear threshold model, whi
h 
anbe extended by exploring other phenomena whi
h 
an lead the network to anon-progressive evolution, su
h as time-varying network topology or in thetime varying edge weights.
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Appendix AAppendix
A.1 Algebrai
 graph theoryA graph 
an be de�ned as G = {V,E} where V = {1, . . . , n} is the set of n nodesor verti
es, whi
h in our thesis represent agents or individuals and E ⊆ {V × V }is the set of edges, whi
h represents the existen
e of an intera
tion between anygiven 
ouple of nodes. A graph 
an be dire
ted (digraph) or undire
ted. A graphG is dire
ted if to ea
h edge (i, j) we asso
iate a dire
tion. We 
all head of theedge node i and tail node j, �nally we say that edge (i, j), whi
h sometime isreferred as ei,j in short, goes from node j to node i.A loop is an edge whose endpoints are the same. A walk wi,j from node i tonode j in G is an alternate sequen
e of verti
es and edges, for instan
e

w1,3 = v1, e1,2, v2, e3,2, v3.A path pi,j from node i to node j in G is an alternate sequen
e of verti
es andedges, for instan
e
p1,3 = v1, e1,2, v2, e2,3, v3.In an undire
ted graph in whi
h edges do not have a dire
tion, a walk isequivalent to a path.A graph is:

• dis
onne
ted if there exists two nodes i and j and there does not exist awalk from i to j;
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• weakly 
onne
ted if for any 
ouple of nodes i, j ∈ V there exists a walkbetween i and j;
• quasi-strongly 
onne
ted if from ea
h node i ∈ V there exist a path to node
w;

• strongly 
onne
ted if there exists a path between ea
h pair of nodes i, j,∈ V .If graph G is undire
ted, it 
an be only dis
onne
ted or 
onne
ted.Dynami
 
aseWe de�ne a time-varying graphs as G(t) = {V,E(t)} where V = {1, . . . , n} is theset of nodes and E(t) ⊆ {V × V } is the time-varying set of edges that map ea
hinstant of time into a set of edges E : R −→ E. We de�ne the union of graphG1 = {V1, E1} and G2 = {V2, E2} as the graph G = G1

⋃G2 = {V1

⋃

V2, E1

⋃

E2whose vertex and edge set is the union of those of G1 and G2. Given an intervalof time [t, t′] we de�ne the union graph G[t, t′] over an interval of time asA time-varying graph G(t) is uniformly strongly 
onne
ted if for any t thereexists T in whi
h G[t, t + T ] is strongly 
onne
ted.
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