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Abstract

In this thesis several topics on consensus and gossip algorithms for

multi-agent systems are addressed. An agent is a dynamical system

that can be fully described by a state-space representation of its dy-

namics. A multi-agent system is a network of agents whose pattern

of interactions or couplings is described by a graph. Consensus prob-

lems in multi-agent systems consist in the study of local interaction

rules between the agents such that as global emergent behavior the

network converges to the so called "consensus" or "agreement" state

where the value of each agent's state is the same and it is possibly a

function of the initial network state, for instance the average. A con-

sensus algorithm is thus a set of local interaction rules that solve the

consensus problem under some assumptions on the network topology.

A gossip algorithm is a set of local state update rules between the

agents that, disregarding their objective, are supposed to be imple-

mented in a totally asynchronous way between pairs of neighboring

agents, thus resembling the act of "gossiping" in a crowd of people.

In this thesis several algorithms based on gossip that solve the con-

sensus and other related problems are presented.

In the �rst part, several solutions to the consensus problem based

on gossip under di�erent sets of assumptions are proposed. In the

�rst case, it is assumed that the state of the agents is discretized and

represents a collection of tasks of di�erent size. In the second case,

under the same discretization assumptions of the �rst case, it is as-

sumed that the network is represented by a Hamiltonian graph and

it is shown how under this assumption the convergence speed can be

improved. In the third case, a solution for the consensus problem for

networks represented by arbitrary strongly connected directed graphs



is proposed, assuming that the state of the agents is a real number.

In the fourth case, a coordinate-free consensus algorithm based on

gossip is designed and applied to a network of vehicles able to sense

the relative distance between each other but with no access to ab-

solute position information or to a common coordinate system. The

proposed algorithm is then used to build in a decentralized way a

common reference frame for the network of vehicles.

In the second part, a novel local interaction rule based on the con-

sensus equation is proposed together with an algorithm to estimate

in a decentralized way the spectrum of the Laplacian matrix that en-

codes the network topology. As emergent behavior, each agent's state

oscillates only at frequencies corresponding to the eigenvalues of the

Laplacian matrix thus mapping the spectrum estimation problem into

a signal processing problem solvable using the Fourier Transform. It is

further shown that the constant component of the emergent behavior

in the frequency domain solves the consensus on the average problem.

The spectrum estimation algorithm is then applied to leader-follower

networks of mobile vehicles to infer in a decentralized way properties

such as controllability, osservability and other topological features of

the network such as its topology.

Finally, a fault detection and recovery technique for sensor networks

based on the so called motion-probes is presented to address the inher-

ent lack of robustness against outlier agents in networks implementing

consensus algorithms to solve the distributed averaging problem.
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Chapter 1

Introduction

1.1 Introduction to multi-agent systems in control

In the last decades, advances in computing and communication systems and a

great reduction in cost for processing units has spurred innovation in many areas

of information technology such as systems theory. Low-cost wireless devices are

now ubiquitous and the e�cient management of networks of interacting embedded

systems such as sensor networks has created new challenges for the development

of networked control systems. Furthermore, the reduction in cost of accurate

inertial measurement systems and GPS receivers has greatly pushed forward the

research in networks of autonomous mobile vehicles. All this technological ad-

vances require new ways of managing the information �ow generated by the single

units. In particular, the design of control systems has shifted from "centralized"

approaches, where all the information available is gathered in some point of time

and space and then decisions are dispatched through the network, to "decentral-

ized" approaches, where the information locally gathered by the units (agents) is

processed in locus and control decisions are taken cooperatively by the agents with

no supervision. To study this kind of large scale systems in system theory, the

so called "Multi-Agent" paradigm has been developed. Each agent is assumed to

have some peculiar dynamics that can be fully described by its input/state map,

the network or collection of agents is then described using abstractions such as

graphs. One of the most common objectives is to infer the collective emergent

behavior of the network from the knowledge of the agents' dynamics, their local

1



interaction dynamics with other agents and the network structure or topology.

A way to address the design of local interaction rules from which the desired

collective behaviors emerge is to take inspiration from biological and social sys-

tems. In biology, collective emergent behaviors are observed in several di�erent

species. Ant colonies and their ability to �nd shortest paths between the nest and

the foraging areas (1, 2) has inspired the development of algorithms to solve the

Traveling Salesman Problem TSP (3). The study of the behavior of �sh schools

(4), �ocks of birds and other animals have inspired the famous "Boyd" model

and the three rules of �ocking (5) that sequently have attracted a huge amount

of researchers from system theory to explain the �ocking dynamics or to design

bio-inspired �ocking algorithms for unmanned aerial vehicles (6, 7, 8). In statis-

tical physics the study of the emerging behavior of self-propelled particle systems

(9, 10) has received a signi�cant amount of attention and several simple local

interaction rules that produce �ocking or swirling behaviors have been produced.

Another notable example of self-propelled particle system is the one that models

escape dynamics in a crowd of people (11). Evidence suggests that even when

the agents are driven by complex dynamics, most emergent behaviors in nature

can be modeled by simpli�ed systems where the global dynamics are dominated

by the local interactions between the agents.

In system theory, the consensus problem consists in the design of local interac-

tion rules between the agents such that as global emergent behavior the network

converges to the so called "consensus" or "agreement" state where the value of

each agent's state is the same and it is a function of the initial network state. If

the consensus state corresponds to the average of the initial network states then

we refer to it as consensus on the average. The consensus problem has attracted

a huge amount of researchers that have addressed it under di�erent sets of as-

sumptions on the agents dynamics and for several distinct applications. One of

the �rsts papers on the consensus problem dates back to 1972, where Morris H.

DeGroot addressed the problem of how to make a set of agents cooperate to reach

a common estimation for the probability distribution of an unknown parameter

(12). Several other authors addressed related problems such as decentralized de-

cision making (13), where a set of voters have to agree on a boolean decision or

algorithms for distributed clock synchronization (14).

In the last decade there has been a surge in interest for distributed systems and



the consensus problem has evolved to address problems such as the cooperative

rendezvous in a network of mobile vehicles (15, 16, 17, 18, 19), distributed clock

synchronization based in consensus (20, 21, 22), the distributed average problem

in sensor networks (15, 23, 24, 25, 26), load balancing on networks (27, 28, 29,

30, 31, 32, 33) and many more.

The �rst part of the thesis focuses on instances of consensus problems for

load balancing and task assignment, distributed averaging in sensor networks,

consensus in absence of a common reference frame for networks of mobile agents

and fault detection and recovery for the distributed averaging problem.

The second part of the thesis focuses on a novel emerging behavior formally

based on the standard continuous-time formulation of the consensus problem to

estimate information about the network topology of a multi-agent system and on

applications of such information to leader-follower networks.

1.2 Overview and contributions

The thesis is structured as follows:

• In Chapter 2 the state of the art regarding consensus and gossip algo-

rithms is presented. First, the consensus problem is stated in continuous

time assuming that the dynamics of the agents is represented by a single in-

tegrator, this modeling is suitable for mobile agents. Second, the consensus

problem is stated in discrete time assuming that the dynamics of the agents

is a single discrete time integrator, this modeling is suitable for sensor net-

works. Third, the state of the art of consensus problems solved via gossip

communications is presented, the use of gossiping is particularly suitable

when the agents are interacting through wireless communications. Finally,

the consensus problem is stated in the case of agents with a quantized state

represented by integer numbers, this modeling is suitable for load balancing

problems or sensor networks.

• In Chapter 3 the framework denoted as discrete consensus is introduced.

It is a generalization of quantized consensus. We assumed that a set of tasks

of di�erent weight should be assigned to nodes with di�erent speeds with

the aim of minimizing the maximum execution time. A solution based on



gossip is proposed and convergence properties are examined in detail for

several network topologies.

• In Chapter 4 the Hamiltonian Quantized Gossip Algorithm is proposed. It

solves the quantized distributed average problem and the token distribution

problem on Hamiltonian graphs with a grater e�ciency respect to other

gossip algorithms based on uniform quantization (29, 34). The main feature

of the proposed algorithm is an embedded stopping criterion that blocks

the algorithm once quantized consensus has been achieved. It is also shown

that, if there exists a periodic interval of time where each edge along the

Hamiltonian cycle is selected at least once, a �nite time convergence bound

can be given thus ensuring a �nite and known amount of total transfers for

load balancing applications and a decentralized criterion to stop averaging

in sensor networks.

• In Chapter 5 a novel gossip algorithm based on broadcasts that achieves

consensus on the average on arbitrary strongly connected digraphs is pro-

posed. The main feature this algorithm is that it converges exactly to the

average of the initial state despite mono directional communications.

A comparison with the standard gossip algorithm based on broadcast and

with the standard gossip based on pairwise averaging has also been made.

Simulations show that the proposed algorithm achieves better convergence

rates and energy saving than the standard gossip based on pairwise aver-

aging if the number of neighbors of each node is su�ciently high.

• In Chapter 6 a novel approach to the problem of decentralized agreement

toward a common point in space in absence of a common reference frame is

presented. In this scenario, an agent is assumed to be able to sense the dis-

tance between itself and its neighbors and the direction in which it sees its

neighbors with respect to its local reference frame. The proposed approach

allows to perform an agreement on the network centroid, on a common ref-

erence frame and therefore on a common heading. Using this information

a global positioning system for the agents using only local measurements

can be achieved. Furthermore only point-to-point asynchronous communi-

cations between neighboring agents are allowed thus achieving robustness



against random communication failures. The cases in which the agents are

in a 2-D or 3-D space are addressed separately.

• In Chapter 7 the problem of how to update the state of agents in a net-

worked system in such a way that they do not change the desired conver-

gence point is considered. Such movements are referred to as motion probes.

We show how such motion probes can be used to identify faulty agents that

do not exhibit the prescribed dynamical behavior. Moreover, once these

faulty agents have been identi�ed, we show how to nullify their impact on

the behavior of the non-faulty agents.

• InChapter 8 a decentralized algorithm to estimate the Laplacian spectrum

of a network is proposed. The key idea of the algorithm is to provide a local

interaction rule among agents whose goal is to make their state oscillate at

frequencies corresponding to the eigenvalues of the network topology. In

this way, the problem of decentralized spectrum identi�cation is mapped

into a problem of signal processing that each agent can e�ciently and in-

dependently solve by applying the Fast Fourier Transform algorithm to its

state trajectory.

• In Chapter 9 a decentralized method for online veri�cation of controllabil-

ity and observability of a leader-follower network is proposed. The method

is based on the spectrum estimation algorithm presented in chapter 8. Fur-

thermore, the use of the Laplacian spectrum of the network of a multi-agent

system is proposed to identify when a desired formation is achieved.





Chapter 2

State of the art and related

literature

In this chapter we survey many results regarding consensus problems in di�erent

frameworks.

Let us consider a multi-agent system in which the network topology is de-

scribed by a graph G = (V,E) where V = {1, . . . , n} is the set of agents, rep-

resented by nodes in the graph, and E ⊆ {V × V } is the set of edges. An edge

(i, j) exists if agent i interacts with agent j. The neighborhood of each agent i is

de�ned as Ni = {j : (i, j) ∈ E} which represents the set of agents which directly

interact with it.

Each agent has dynamics

ẋi = f(xi, ui),

where xi ∈ Rm is the agent's state and ui ∈ Rm is the vector of inputs.

A local interaction protocol for agent i is de�ned as:

ui = u(xj : j ∈ Ni),

it represents the coupling between agent i and its neighbors.

A typical autonomous multi-agent system is thus completely de�ned by the

network topology G, the agents' dynamics and the local interaction protocol.

De�nition 2.0.1 (Consensus problem)

7



Consider a multi-agent system de�ned by the network topology G = (V,E) and

the agents' dynamics ẋi = f(xi, ui) with xi ∈ Rm. A consensus problem consists

in the design of a local interaction protocol u(xj : j ∈ Ni) such that:

∀i, j ∈ V, lim
t→∞

∥xi − xj∥ = 0 (2.1)

�

In the following sections several frameworks for modeling multi-agent systems

will be presented, each di�ering in interaction protocols adopted and agents and

network models.

In Section 2.1 the consensus problem for a continuous time network of single

integrators is introduced (6, 15, 19, 24, 35) both for a static or switching topol-

ogy. In Section 2.2 the consensus problem for discrete time single integrators is

presented (23, 36). In Section 2.8 gossip algorithms are introduced and results on

consensus based on gossip communications are reviewed (37, 38, 39). Finally in

Section 2.4 the consensus problem under quantization constraints is presented.

2.1 Consensus in Continuous-time

Let G = {V,E} be a graph that describes the topology of the network of agents.

Assume that each agent is a single continuous time integrator with dynamics:

ẋi = ui,

where xi, ui ∈ Rd. This simple model is useful to describe mobile agents where

the state x represent their positions in a d-dimension space and ui is the actuated

speed of the vehicle. Since most vehicles' dynamics are constrained, this model

is useful when the scale of the motions are much greater that the characteristic

size of the vehicle so that eventual non-holonomic constraints can be neglected.

Now let us consider the mono-dimensional case d = 1 and let the agents adopt

the following linear interaction protocol:

ui =
∑
j∈Ni

(xj − xi). (2.2)

Each agent's dynamics thus become:



ẋi =
∑
j∈Ni

(xj − xi).

The global system dynamics is linear and can be compactly represented by:

ẋ = −L(G)x (2.3)

where x ∈ Rn, n is the number of agents, G is the graph representing the

network topology and L(G) is the so called n × n Laplacian matrix (40) that

encodes graph G, its elements are de�ned as:

lij =


−1 if (i, j) ∈E
−
∑

j∈Ni(t)
lij if i = j

0 otherwise

Example 2.1.1 Let us consider the multi-agent system depicted in Figure ??,

the network G consists of 6 agents with V = {1, 2, 3, 4, 5, 6} and edge set

E =
{(1, 2), (1, 3), (1, 6), (3, 4), (3, 5), (3, 6), (2, 5), (2, 6),
(2, 1), (3, 1), (6, 1), (4, 3), (5, 3), (6, 3), (5, 2), (6, 2)}.

The corresponding graph Laplacian is as follows:

L(G) =



3 −1 −1 0 0 −1

−1 2 0 0 −1 −1

−1 0 4 −1 −1 −1

0 0 −1 2 −1 0

0 −1 −1 −1 3 0

−1 0 −1 0 0 2


.

�

The Laplacian matrix of a graph has several interesting properties due to its

structure. First, let 1n and 0n be respectively the n elements vectors of ones

and zeros. For any graph G, L(G)1 = 0 by construction. If G is balanced then

1TL(G) = 0T . If G is an undirected graph then the number of null eigenvalues

of L is n− c where c is the number of connected components of G (41). If G is a

directed strongly connected graph, then rank (L) = n−1 (24). The λ1, λ2, . . . , λn



1 2

3

4
5

6

Figure 2.1: Topology of the multi-agent system in example 5.3.5.

be the n eigenvalues of L(G). If G is undirected then L(G) is symmetric, all its

eigenvalues are real and the following holds (42): 0 ≤ λ1 ≤ λ2 . . . ≤ λn. Let

the in-degree δin,i and out-degree δout,i of node i, be respectively the number of

incoming and outgoing edges incident on i. If G is a directed graph, then we have

the following result (24) originally presented for weighted digraphs:

Theorem 2.1.2 Let G = (V,E) be a digraph with Laplacian L. Denote the max-

imum node in-degree of the digraph G by δmax(G) = maxi δin,i. Then, all the

eigenvalues of L(G) are located in the following disk

D(G) = {z ∈ C : |z − δmax(G)| ≤ δmax(G)},

centered at z = δmax(G+ j0 in the complex plane.

Proof: By applying the Gershgorin disk theorem to matrix L we see that

by construction δin,i = lii = −
∑

j∈Ni
lij. Thus each of the n Gershgorin disks is

centered at zi = δin,i(G+ j0 with corresponding radius

Di(G) = {z ∈ C : |z − δin,i(G)| ≤ δin,i}.

It follows that the disk with the greatest radius δmax comprises them all, thus

all the eigenvalues are inside the disk

D(G) = {z ∈ C : |z − δmax(G)| ≤ δmax(G)}.

�



The Laplacian matrix has thus many interesting properties directly linked to

the topology of the graph which is encoding. We are now ready to state the main

dynamical properties of the consensus protocol (2.2) described by system 2.3.

Theorem 2.1.3 Consider a network of single integrators ẋi = ui. Let the net-

work be described by a quasi strongly connected graph G = (V,E), then protocol

(2.2) with initial condition x(0) = x0 solves the consensus problem

∀i, j ∈ V lim
t→∞

∥xi(t)− xj(t)∥ = 0,

and converges to α1n with α ∈ R.
If furthermore G is balanced then α = 1

T x(0)
n

.

Proof: If G is strongly connected, then L(G) has a single null eigenvalue to

which corresponds the right eigenvector 1n. Since the eigenvalues of L(G) except

one have all real part greater then zero 2.1.2, it follows that system ẋ = −Lx (2.3)

is marginally stable and converges inside the invariant subspace S = {x ∈ Rn :

x = α1n α ∈ R}. If G is balanced then 1TnL = 0, it follows that 1Tnx(t) = 1Tx(0),

thus α1Tn1n = 1Tnx(0) and �nally α = 1
T x(0)
n

. �
Many extensions have been proposed to the consensus problem, one of the

most signi�cant is the study of the behavior of the consensus protocol (2.2) for

switching network topologies (43, 44, 45, 46). Let us consider a network with

dynamic topology described by a time varying graph G(t) = (V,E(t)) where

E(t) : R → E is the time-varying edge set where any given edge ei,j between

nodes i and j exists at time t only if ei,j ∈ E(t). Under this assumption the

following result holds.

Theorem 2.1.4 Consider a network of single integrators ẋi = ui. Let the net-

work be described by a time-varying graph G(t) = (V,E(t)) and local interaction

protocol (2.2) with initial condition x(0) = x0. Then, if ∀t ≥ 0 there exists T > 0

such that

G(t+ T, t) =
T∪

t′=t

G(t′),

is quasi-strongly connected, then



∀i, j ∈ V lim
t→∞

∥xi(t)− xj(t)∥ = 0,

and the network converges to α1n with α ∈ [mini∈V (xi),maxi∈V (xi)].

Proof: The result follows from the fact that V (x) = max(x1, . . . , xn) −
min(x1, . . . , xn) is a valid Lyapunov function for system (2.3). See (47) for an

exhaustive proof for the more general case of weighted interaction links. �
The most general result for agreement problems in continuous time with a

switching topology is the one proposed by Z. Lin et al. (46), under the assumption

that the non-linear interaction protocol is locally Lipschitz and satis�es the strict

sub-tangetiality condition. The authors proved that a graph-theoretical necessary

and su�cient condition to ensure convergence to the agreement or consensus state

is that the network topology is uniformly quasi-strongly connected (UQSC).

2.2 Consensus in Discrete-time

Let G = {V,E} be a graph that describes the topology of the network of agents.

Assume that each agent is a single discrete time integrator with dynamics:

xi(t+ 1) = x(t) + ui,

where xi, ui ∈ R. This simple model is useful to describe the state update in

sensor or computer networks. The state x represents some parameter on which

the network of sensors has to agree, for instance the average temperature of the

environment. Now let us consider the following linear interaction protocol (15):

ui = ε
∑
j∈Ni

(xj − xi), (2.4)

with |ε| ≤ maxi∈V |Ni|. Each agent's dynamics thus become:

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj − xi).

The global system dynamics is linear and can be compactly represented by:

x(t+ 1) = Px, (2.5)



where P = I − εL(G).

If |ε| < 1
maxi∈V |Ni| =

1
δmax(G)

, then P is a stochastic matrix by construction.

If G is balanced then P is doubly stochastic. Clearly, the dynamical properties

of system (2.5) are strictly linked to the topological properties of G. These links

have been explored in the theory of Markov chains, where P represents the state

transition probability and the generic state xi(t) represents the probability that

the state of the underlying Markov process equals is xi at time t. In our frame-

work, though formally equivalent, we are interested to link the eigenvalues of P as

function of the eigenvalues of L. In particular it can be noticed that by construc-

tion both P and L share the same set of eigenvectors, denoting λ1, λ2, . . . , λn the

eigenvalues of L and µ1, µ2, . . . , µn the eigenvalues of P we have that the following

relation holds:

µi = 1− ελi. (2.6)

System 2.5 has thus a structural eigenvalues µ1 = 1 (formally equivalent to the

trivial unitary eigenvalue of a Markov chain), which if G is strongly connected, is

unique. Since system 2.5 evolves in discrete time, it solves the consensus problem

only if G is strongly connected and all the eigenvalues have module strictly less

than 1 except one structural eigenvalue in 1. From (2.6) and 2.1.2 it can be shown

that all the eigenvalues of P are inside the disk:

D(G) = {z ∈ C : |z − εδmax(G)| ≤ εδmax(G)},

centered at z = 1 − εδmax(G) + j0. Thus all the eigenvalues are inside the

unitary disk if εδmax(G) < 1 which becomes ε < 1
δmax(G)

. Converges toward the

average of the initial state is achieved if G is balanced, namely if 1TnP = 1Tn .

Many authors proposed di�erent protocols for consensus in discrete time. In

this section we presented the one in (48)

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj − xi),

its peculiarity is its dependence from the parameter ε and its strict link with

the Laplacian matrix.

In (49) the following protocol:



xi(t+ 1) =
1

|Ni|
∑
j∈Ni

(xj − xi),

was used to study formation control in multi-vehicle systems.

In (9) the following protocol was proposed to model the local interaction

between self propelled particles:

xi(t+ 1) =
1

|Ni|+ 1
(xi(t) +

∑
j∈Ni

(xj − xi)),

this protocol, in which the state represents the heading the i-th particle, was

shown to produce �ocking as emergent behavior if interaction noise was under

some maximum threshold. In (50) convergence to a consensus state was proven,

later in (51) it has been pointed out that this famous protocol is a special case of

the one in (52).

2.3 Consensus based on Gossip

"Gossiping" is one of the more natural way of human communication. It is

uncoordinated, unsupervised, distributed in nature and asynchronous in time.

Being one of the simplest forms of communication it is one of the cheapest to

mimic by wireless devices. A communication based on "Gossiping" involves short

point-to-point data transfers (usually just one data packet) with no packet routing

inside the network. Sensor networks and networks of mobile vehicles are the

applications that best exploit the advantages of gossiping due to the higher cost

of other types of communications. In these applications the network topology

changes rapidly since the nodes are "moving" inside an unknown environment, the

environment is changing in an unpredictable way or both. Due to fast topology

changes, data routing becomes expensive since to build routing tables at the

nodes the knowledge of the full topology of the network is required but frequently

obsolete.

Furthermore, in sensor networks or networks of mobile vehicles, the objective

is to implement distributed �lters for state estimation purposes (53, 54, 55) or

distributed control algorithms to achieve behaviors such as �ocking (6, 7). These

kinds of models, while satisfying the constraints of the distributed information



�ow, are often designed as continuous or discrete time systems which require each

agent to synchronously update its state as function of the state of its neighbors.

This kind of synchronization requirement is the main source of unreliability in the

implementation of such algorithms on wireless networks subject to packet-drops

and fast topology changes, furthermore since the complexity of communication

synchronization grows linearly with the network size, it further constraints the

scalability of the system.

To mitigate these problems, a signi�cant amount of attention has been devoted

by the research community to distributed algorithms based on "gossip" as mean

of information exchange between the nodes.

De�nition 2.3.1 (Gossip Algorithm) Let G = (V,E) be an undirected graph,

with set of nodes V = {1, . . . , n} and set of edges E ⊆ {V × V }. Let (t) :

R → (i, j) ∈ E be a time-varying edge selection process, at given time instants

t0, t1, . . . , tk, an edge is selected (t) = (i, j). Let Si(t) represent the state of the

generic node i at time t. Let R be a set of pairwise local interaction rules such

that {
Si(tk+1) = R(Si(tk), Sjtk)),

Sj(tk+1) = R(Si(tk), Sjtk)).

An algorithm based on gossip, is a set of rules R to update the state of the

nodes V of the network G = {V,E} that are applied following the edge selection

process (t). �

A signi�cant amount of literature sometimes refers to "consensus algorithms

based on gossip" simply as "gossip algorithms" since gossiping has been mainly

exploited to solve instances of consensus problems (37, 39, 56, 57, 58, 59).

One of the most studied model for gossip based consensus was proposed in

(56, 57) where the authors study the consensus on the average problem in a sensor

network based on a gossip algorithm.

Let x ∈ R represent the state of a sensor network where the generic element

xi(t) represent the current state of node i. At time t = 0 the sensor nodes make a

measurement, for instance temperature, and start a consensus algorithm based on

gossip to compute the average value of the measured parameter in the network.



At any given instant of time, following a random edge selection process (t), nodes

i and j interact and update their state with their average:{
xi(tk+1) =

xi(tk)+xj(tk)

2
,

xj(tk+1) =
xi(tk)+xj(tk)

2
.

(2.7)

Let ei be the i-th column of the n× n identity matrix I. By de�ning

Wij = I − (ei − ej)(ei − ej)
T

2
,

and

W (t) = {Wij : (t) = (i, j)},

we can model the network state evolution as:

x(tk+1) = W (tk)x(tk). (2.8)

Each instant of time tk, W (tk) is a doubly stochastic matrix that satis�es

W (tk)1 = 1 and 1TW (tk) = 1T . Furthermore W (tk) is para-contractive, namely

∀tk, x ∈ Rn, ∥W (tk)x∥ ≤ ∥x∥. The evolution of the network dynamics is thus

described by:

x(tk) =
k∏

τ=1

W (tτ )x(tτ ).

The network's state converges to the average consensus state for any initial

condition if

lim
τ→∞

ϕ(tτ ) = lim
k→∞

k∏
τ=1

W (tτ ) =
11T

n
. (2.9)

The general problem of determining wether the in�nite product of matrices

taken at random from set converges to a �nite limit is still open, a number of

su�cient computable conditions exist if the matrices taken in consideration have

particular properties (36, 60). If the set of matrices is para-contractive then it has

been proven that the series converges to the intersection of the invariant spaces

of the matrices (60).



In our case, since all the matrices taken into consideration are doubly stochas-

tic, ϕ(tτ ) is doubly stochastic as well for any τ , thus the trajectories of system

(2.8) are bounded. If the edge selection process (t) selects edges independently

across time, assuming that each edge in E has a strictly positive probability of

being chosen at each instant of time and that G is a connected undirected graph,

then we know that system (2.8) converges to a �nite limit

lim
k→∞

x(tk) = α1n, (2.10)

with α ∈ [maxi xi(0),mini xi(0)].

Now we study the expected evolution of system (2.8) by taking the expectation

on both sides of (2.8):

E[x(tk+1)] = E[W (tk)x(tk)]

= E[W (tk)]x(tk)

= Wx(tk).

E[x(tk)] = W
k
x(t0).

(2.11)

Where E[W (tk)] = W = 1
|E|
∑

(i,j)∈E Wij.

Since W is a convex combination of doubly stochastic matrices, it is dou-

bly stochastic itself, thus ρ(W ) = 1 and the second largest eigenvalue of W is

λ2(W ) < 1 if G is a connected graph. Since W (tk)1 = 1, the system converges

to the equilibrium space given by the right eigenvector corresponding to the uni-

tary eigenvalue which is α1n. Furthermore since 1TW (tk) = 1T , we have that

1Tα1 = 1. It follows that

lim
k→∞

x(tk) =
11T

n
x(0).

Convergence rate

The converge rate of system (2.8) is determined by the stochastic edge selection

process, here we take the de�nition of convergence rate proposed in (56), namely:

Tave(ε,W ) = supx(0)inf{t : Pr

(
∥x(t)− xave1n∥

∥x(0)∥
≥ ε

)
≤ ε)}, (2.12)



the convergence time is then the smallest time system (2.8) takes to get a ε

close to xave1n with high probability, disregarding the initial condition.

In (56) it was shown that for any gossip algorithm based on averaging matrices

which converges in expectation, the following result holds:

Tave(ε,W ) ≤ 3log(ε−1)

log
(

1
λ2(W )

) ≤ 3log(ε−1)

1− λ2(W )
.

This upperbound puts in evidence that the spectral gap 1 − λ2(W ) a�ects

directly the expected convergence time of the gossip algorithm.

2.4 Quantized Consensus

In this section we review some consensus algorithms extended to the case in which

the network state is quantized.

Any implementation of a consensus algorithm with digital processing units

needs to deal with quantization. The reason is simple, all the algorithms that

we have presented so far assume that no external noise or round-o� errors are

considered, unfortunately all the proposed systems (??) are marginally stable

since all have a structural invariant subspace {x : x = α1, ∀α ∈ rea} in which

every point is an equilibrium point. This means that whenever noise or round-

o� errors fall inside such subspace they e�ectively change the equilibrium point

to which the system is converging. This is why the study of consensus in the

quantized case is signi�cant for any real implementation.

In (29), it was originally presented a solution to the quantized consensus

problem taking inspiration from the literature in distributed load balancing for

networks of processors (27, 28) since it turns out to be formally a similar problem.

Let us consider n agents whose state is quantized xi ∈ Z and consider a

network described by an undirected graph G = (V,E). We assume a commu-

nication model based in gossip, in which an edge selection process e(t) that at

random selects at each instant time which edge in the network is active. In (29) a

class of distributed averaging algorithms, which was de�ned as quantized gossip

algorithms, was considered.

Say edge (i, j) is selected at time t, and let Di,j(t) = |xi(t)− xj(t)|. Then, if
Dij(t) = 0, we leave the values unchanged, xi(t + 1) = xi(t), xj(t + 1) = xj(t).



If Dij(t) ≥ 1, then it is required that the state update abide the following three

rules:

1. (P1) - xi(t+ 1) + xj(t+ 1) = xi(t)i+ xj(t),

2. (P2) - if Dij(t) > 1 then Dij(t+ 1) < Dij(t),

3. (P3) - if Dij(t) = 1 and (without loss of generality) xi(t) < xj(t), then

xi(t + 1) = xj(t) and xj(t + 1) = xi(t). Such an update is referred to as

"swap".

Let L = ⌊ 1
n

∑n
i=1 xi⌋ and S =

∑n
i=1 xi(0). De�ne the quantized consensus

state as

S = {x : xi ∈ [L,L+ 1], ∀i ∈ V,

n∑
i=1

xi = S}. (2.13)

Then, the following result holds

Theorem 2.4.1 For any given initial vector x(0), if the values x(t) are updated

using a quantized gossip algorithm, then

lim
t−→∞

Pr(x(t) ∈ S) = 1,

where the set S is de�ned as in (2.13).

Proof: See (29) for a detailed proof. �
As standard example of algorithm labeled as quantized gossip algorithm we

report the one in (29).

Algorithm 1 (Standard quantized gossip)

1. Let t = 0 and x(0) = x0.

2. Select an edge (i, j) ∈ E at random.

3. Let

xi(t+ 1) = ⌊xi(t) + xj(t)

2
⌋,

xj(t+ 1) = ⌈xi(t) + xj(t)

2
⌉,



4. Let t = t+ 1 and go back to step 2.

It is easy to show that for algorithm 1 properties (P1), (P2) and (P3) (1) hold.

Particularly relevant to the convergence properties of algorithm 1 is property (P3),

it holds in general if each edge has a strictly positive probability being chosen

(regarding the notation of algorithm 1 it also assumes strictly positive probability

of choosing either (i, j) or (j, i)). A characteristic of this algorithm is that even

after the network state has reached the quantized consensus state S, it does not

settle in a equilibrium point. Instead, due to the dynamics of the state "swaps"

between the nodes, it may persistently change while being inside S.

Several authors have devised new strategies to address in the quantized con-

sensus problem. In (26) a consensus strategy in which the state of agents is a real

number but the exchanged data are symbols and not real numbers is presented,

the approach is based on a logarithmic quantizer based state estimator.

In (61) a distributed algorithm in which the nodes utilize probabilistically

quantized information, i.e., dithered quantization, to communicate with each

other is presented. The algorithm is a dynamical system that generates sequences

achieving a consensus at one of the quantization values almost surely.



Chapter 3

Discrete Consensus on

Heterogeneous Networks

3.1 Introduction

In several applicative domains related to consensus problems the assumption that

the state of each node is a continuous variable is clearly an oversimpli�ed assump-

tion, and it is necessary to explicitly take into account its discrete nature. This

de�nes a new framework called quantized consensus (26, 29, 61) where the state

only takes nonnegative integer values. It has been observed in (29) that reach-

ing a consensus under this quantization constraint is equivalent to determining

a balanced assignment of identical tasks to nodes. In this chapter, we generalize

this approach assuming that the tasks to be assigned to nodes may not be iden-

tical. Thus we assume that the state of each node is not described by an integer

number, but by a collection of objects each one with its own integer weight. We

call this framework discrete consensus.

One of the most important classes of problems that can be formulated in terms

of discrete consensus is given by task assignment. Tasks may be generic objects,

e.g., spatial locations, network resources, or classi�cations. In particular, recent

advances in communication and computation have allowed e�cient solutions to

the problem of task assignment (62). Both on-line (63, 64) and o�-line (65) ap-

proaches have been proposed: on-line approaches keep into account the variations

of the task environment, while o�-line approaches assume that the task environ-

21



ment keeps constant thus a solution can be computed in advance. Processor

assignment and computation of an optimal execution sequence for multiversion

software is an example of this kind of problems (66).

In this chapter, whose results appeared in (67), we will focus on a problem

of discrete consensus over heterogeneous networks. To provide a more intuitive

interpretation to the considered physical variables, our problem formulation will

be given in terms of task assignment although the approach is general. We assume

that a given set of tasks, that may have di�erent weight, should be assigned to

agents (nodes). Networks are denoted as heterogeneous because nodes may have

di�erent speeds. The consensus problem for this type of nets, as far as we know,

has not received much attention in the control literature.

Our goal is that of determining, using consensus algorithms based on gossip

(29, 38), the solution that minimizes the maximum execution time over nodes. It

is based on the recent work by Kashyap et al. (29) and on our previous results

in (34) where homogeneous networks have been considered.

Note that due to the discrete nature of tasks and to the assumption that tasks

may have arbitrary weights, the optimality of the solution is not guaranteed. As

discussed in (34) this is not related to our particular approach but is intrinsic in

the nature of gossip, that implements at each step a pairwise optimization, and

does not always yield an optimal solution. However, we prove that there exists a

bounded set that contains the optimal solution that is always reachable and we

study the convergence properties and the convergence time to this bounded set.

As mentioned in the literature (29, 34), in the case of discrete consensus to

ensure good convergence properties it is necessary to enrich the gossip algorithm

with an appropriate swapping rule. Whenever a balancing between two nodes is

not possible, the swap �shakes� the network con�guration to redistribute the load

and allows loads composed by discrete tasks to travel in the network, reaching a

situation in which a new balancing may occur.

When swaps are performed, the maximum average convergence time depends

on the average meeting time of agents performing a random walk in a graph. We

show that this can always be computed numerically, modeling the swap process

with a Markov Chain with a single absorbing state that represents the meeting

of the agents. We also discuss two particular net structures (fully connected

networks and networks with ring topology) for which it is possible to compute



the average meeting time analytically.

3.2 Problem description

We consider a heterogeneous network of n nodes whose connections can be de-

scribed by an undirected connected graph G = (V,E), where V = {1, 2, . . . , n} is

the set of nodes and E ⊆ V × V is the set of edges.

We assume that K indivisible tasks should be assigned to the nodes, and

an integer weight cj, j = 1, . . . , K, is associated to each task. We de�ne a

weight vector c ∈ NK whose j-th component is equal to cj, and n binary vectors

yi ∈ {0, 1}K such that: yi,j = 1 if the j-th task is assigned to node i, yi,j = 0

otherwise.

To each node i ∈ V is allocated a load xi = cTyi consisting in the sum of the

costs of tasks assigned to node i that must be processed.

The speed factor, denoted γi, represents the amount of load that can be pro-

cessed in a time unit by node i. In the following we denote γmin the smallest

speed in the network (clearly γmin > 0), and cmax the maximum weight of tasks

in the network.

The task assignment we are looking for is the one that minimizes themaximum

execution time, starting from any initial condition. Namely, if we de�ne the

load and speed vectors x =
[
x1 x2 . . . xn

]T
, γ =

[
γ1 γ2 . . . γn

]T
and

Γ = diag(γ), we would like to minimize the following objective function:

f(x) = max
i=1,...,n

xi

γi
= ∥Γ−1x∥∞ (3.1)

under the assumption that the total load remains constant, namely 1Tx = 1Tx(0),

where x(0) represents the initial load con�guration.

Denoting Y (t) = [y1(t) y2(t) . . . yn(t)] the state of the network at time t,

a centralized optimal solution to this problem can be determined solving the

following integer programming problem with binary variables:
minV = ∥cTY Γ−1∥∞
s.t. Y 1 = 1

yi,j ∈ {0, 1} ∀ i = 1, . . . , n; j = 1, . . . , K.

(3.2)



We denote Y ∗ (resp., V ∗) the optimal solution (resp., the optimal value of the

performance index) of Problem (3.2).

3.3 Proposed algorithm

We �rst de�ne a task exchange process between two adjacent nodes that, while

not changing the value of the objective function, modi�es the load con�guration.

De�nition 3.3.1 (Swap) Let us consider two nodes i and r incident on the

same edge. Let Ki(t), resp. Kr(t), be the set of tasks contained in node i, resp.

r, at time t.

Let us call swap the operation that moves the tasks in Ki(t) to r, and the tasks

in Kr(t) to i at time t+ 1, reaching the distribution

Ki(t+ 1) = Kr(t), and Kr(t+ 1) = Ki(t),

provided that the objective function locally de�ned for the two nodes does not

change, i.e.,

max

 ∑
j∈Ki(t+1)

(
cj
γi

)
,
∑

j∈Kr(t+1)

(
cj
γr

) = max

 ∑
j∈Ki(t)

(
cj
γi

)
,
∑

j∈Kr(t)

(
cj
γr

) .

�

We denote K̂ir(t) = Ki(t) ∪ Kr(t) the set of tasks present in nodes i and r

at time t. We de�ne ĉ = c ↑ K̂ir(t) the projection of c on K̂ir(t), namely a

vector whose elements are the weights of the tasks present in nodes i and r at

time t. Using the same notation we de�ne two binary vectors ŷi = yi ↑ K̂ir(t)

and ŷr = yr ↑ K̂ir(t), in other words each vector has a number of elements equal

to the number of tasks locally present in the nodes.

Algorithm 2 (Gossip Algorithm with discrete tasks)

1. Let t = 0.



2. Select an edge {i, r} at random.

3. Solve the integer programming problem (IPP):

k∗ = min k

s.t.
ĉT ŷi
γi

≤ k

ĉT (1− ŷi)

γr
≤ k

k ∈ R+ ∪ {0},

ŷi ∈ {0, 1}|K̂ir(t)|

(3.3)

4. If k∗ < max

{
ĉT ŷi(t)

γi
,
ĉT (1− ŷi(t))

γr

}
then

let ŷi(t+ 1) = ŷi and ŷr(t+ 1) = 1− ŷi,

else execute a swap if possible.

5. Let t = t+ 1 and goto step 2. �

In practice IPP (3.3) provides the task assignment that minimizes the execu-

tion time at the two nodes. If the resulting assignment is better than the previous

one, tasks are assigned accordingly, otherwise a swap is executed if possible.

The swap allows to overcome several blocking conditions: anytime the network

reaches a local minimum of the objective function the swap �shakes� the network

ensuring convergence within some precise bounds (see Theorem 3.4.5).

Example 3.3.2 Let us consider the fully connected1 net in Fig. 3.1 composed by

3 nodes with speeds γ1 = γ2 = 1 and γ3 = 2. Assume that it contains 10 tasks

whose weights are equal to c1 = 1, c2 = c3 = 2, c4 = c5 = 3, c6 = 4, c7 = 5,

c8 = 6, c9 = 7 and c10 = 10 and let the initial con�guration be

K1(0) = {6, 10}, K2(0) = ∅, K3(0) = {1, 2, 3, 4, 5, 7, 8, 9}.

Using Algorithm 2, we obtain the optimal task assignment in four steps, as sum-

marized in the Fig. 3.1. In particular, the �rst line of the table summarizes the

1A network is fully connected if there is an arc from each node to any other one.



 

 γ1 = 1  γ2 = 1 

 γ3 = 2 

 1  2 

 3 

 

t edge node 1 node 2 node 3 V (Y )

0 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5

1 {1, 3} 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5

2 {2, 3} 4, 10 2,7 1,2,3,3,5,6 14

3 {1, 3} 5, 6 2, 7 1, 2, 3, 3, 4, 10 11.5

4 {2, 3} 5, 6 1, 2, 7 2, 3, 3, 4, 10 11

Figure 3.1: The network discussed in Example 3.3.2 and the results of Algorithm 2.

initial assignment to which it corresponds a value of the objective function that is

equal to 14.5 (see the last column). The other lines point out the task assignment

for t = 1, 2, 3, 4: in the second column we point out the selected edge, columns

3 to 5 point out the task assignment in the three nodes; �nally, the last column

points out the corresponding value of the objective function. �

3.4 Convergence properties

The convergence properties of Algorithm 2 depend on the possibility of performing

swaps.

De�nition 3.4.1 (Swap domain) We call swap domain Gγ ⊆ G a connected

subgraph induced by nodes with the same speed. �

Example 3.4.2 Let us consider the network in Fig. 3.2.a that has seven nodes

with three di�erent speeds. This network can be partitioned in three di�erent

subgraphs G1, G2 and G3 induced respectively by nodes {1, 2}, {3, 4} and {5, 6, 7}.
In this case each swap domain is connected to each other. �

Each swap domain identi�es a set of nodes where swaps may always happen.

On the contrary swaps between adjacent nodes of di�erent domains may either

be possible or not, depending on the particular tasks and on the speed of nodes.
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Figure 3.2: (a) The network discussed in Example 3.4.2: (b) Network in example

3.4.7 (c) A net with a generalized ring topology where s = 3 and k = 4.



As an example, if we consider the network in Example 3.3.2 a swap among nodes

1 and 3, that belong to di�erent swap domains, is not allowed at time t = 1

because it would lead to an increasing of the maximum execution time at the two

nodes. The following example shows a scenario in which a swap among nodes

belonging to di�erent swap domains is admissible.

Example 3.4.3 Let us assume that two nodes 1 and 2 have speed equal to γ1 = 10

and γ2 = 11, respectively. Moreover, let us assume that node 1 only contains one

task of weight 10, while the second node contains two tasks both of weight equal

to 5. The corresponding maximum execution time is equal to 1. Now, no tasks

exchange may occur that leads to a better tasks assignment, while a swap may

happen keeping unaltered the maximum execution time at the two nodes. �

It is relevant to note that the de�nition of �swap domain� is embedded in the

graph topology: the nodes don't need to know in which domain they are or even

that any domain exists.

De�nition 3.4.4 We call �nal set

Ỹ = {Y = [y1 y2 · · · yn] |
∣∣∣∣cTyiγi

− cTyr
γr

∣∣∣∣ ≤ cmax

γmin

, ∀ i, r ∈ {1, . . . , n}}

(3.4)

i.e., the set of con�gurations such that, for any couple of nodes i, r ∈ V , the

di�erence among their execution times is at most equal to the ratio cmax/γmin. �

Theorem 3.4.5 Let Y (t) be the matrix that summarizes the task assignment

resulting from Algorithm 2 at the generic time t. If each swap domain is connected

to each other, it holds limt→∞ Pr
(
Y (t) ∈ Ỹ

)
= 1 where Pr(Y (t) ∈ Ỹ) denotes the

probability that Y (t) ∈ Ỹ.

Proof: We de�ne a Lyapunov-like function

V (t) = [V1(t), V2(t)] (3.5)



consisting of two terms. The �rst one is equal to the objective function of (3.2),

namely

V1(t) = ∥cTY (t)Γ−1∥∞.

The second one is a measure of the number of nodes whose execution time is equal

to

∥cTY (t)Γ−1∥∞,

i.e.,

V2(t) =

∣∣∣∣arg max
i=1,...,n

cTyi(t)

γi

∣∣∣∣ .
Note that we impose a lexicographic ordering on the performance index, i.e.,

V = V̄ if V1 = V̄1 and V2 = V̄2; V < V̄ if V1 < V̄1 or V1 = V̄1 and V2 < V̄2.

The proof is based on three arguments.

(1) We �rst prove that V (t) is a non increasing function of t.

This is trivially true when a swap is executed, since in such a case V (t+1) =

V (t).

Consider the case in which the selected nodes i and r balance their load. It

holds

max

{
cTyi(t+ 1)

γi
,
cTyr(t+ 1)

γr

}
< max

{
cTyi(t)

γi
,
cTyr(t)

γr

}
,

hence three di�erent cases may happen.

(a) One of the selected nodes is the only node in the network such that its

execution time is equal to ∥cTY Γ−1∥∞. In such a case V1(t + 1) < V1(t) hence

V (t+ 1) < V (t).

(b) One of selected nodes is such that its execution time is equal to ∥cTY (t)Γ−1∥∞
but there exists at least one other node in the network with the same execu-

tion time. In such a case V1(t + 1) = V1(t) and V2(t + 1) = V2(t) − 1, hence

V (t+ 1) < V (t).

(c) The execution time of both the selected nodes is smaller than ∥cTY (t)Γ−1∥∞.

In such a case V (t+ 1) = V (t).

(2) Secondly, we observe that, if the current con�guration is outside the �-

nal set Ỹ, then there exists at least one node whose execution time is equal to



∥cTY (t)Γ−1∥∞ that could balance his load with (at least) one other node if they

were incident on the same arc: this would reduce function V (t) (see cases (a) and

(b) of the previous item).

To prove this we observe that if the current con�guration is outside the �nal

set Ỹ, then there exists (at least) one couple of nodes i and r such that

cTyi(t)

γi
− cTyr(t)

γr
>

cmax

min{γi, γr}
(3.6)

where
cTyi(t)

γi
is equal to the maximum execution time. If we move a task

cj ≤ cmax from node i to node r we have: cTyi(t+1) = cTyi(t)− cj, and cTyr(t+

1) = cTyr(t) + cj. Now

cTyi(t+ 1)

γi
=

cTyi(t)− cj
γi

<
cTyi(t)

γi
(3.7)

and
cTyr(t)

γr
+

cj
γr

≤ cTyr(t)

γr
+

cmax

min{γi, γr}
<

cTyi(t)

γi

where the second inequality follows from assumption (3.6); thus

cTyr(t+ 1)

γr
=

cTyr(t) + cj
γr

<
cTyi(t)

γi
. (3.8)

By (3.7) and (3.8) it follows that

max

{
cTyi(t+ 1)

γi
,
cTyr(t+ 1)

γr

}
< max

{
cTyi(t)

γi
,
cTyr(t)

γr

}
.

(3) Finally, we observe that being each swap domain connected to each other,

there exists a series of swaps that lead to a con�guration in which the loads of the

two nodes identi�ed in the previous item are adjacent and the arc between them

is selected. This happens with probability 1 as t goes to in�nity. �

Remark 3.4.6 Theorem 3.4.5 characterizes the convergence properties of Algo-

rithm 2 in terms of a �nite set Ỹ. This obviously does not imply that an optimal



task assignment is achieved. As shown in (34) this is not a limitation of the par-

ticular algorithm. To reach consensus an optimization involving more than two

nodes at the same time may be necessary. �

Finally the following example shows that if each swap domain is not connected

to each other, then the convergence set Ỹ may not be reached by Algorithm 2.

Example 3.4.7 Let us consider the network in Fig. 3.2.b where γ1 = 1, γ2 = 1.1,

γ3 = 1.2. Tasks with cost c1 = c2 = . . . c6 = 1 are assigned such that

K1(0) = {1}, K2(0) = {1, 1}, K3(0) = {1, 1, 1}.

It can be seen that the network is in a blocking con�guration where no task

exchange may happen according to Algorithm 2. As a result the convergence set

Ỹ is not reached being∣∣∣∣cTy1γ1
− cTy3

γ3

∣∣∣∣ = ∣∣∣∣1− 3

1.2

∣∣∣∣ = 1.5 >
cmax

γmin

= 1.

On the other hand if node 3 and node 1 were connected, then node 3 could

exchange one task with node 1 and achieve a con�guration included in Ỹ. �

We now show with an example the inherent limitations of pairwise balancing

based on gossip.

Example 3.4.8 Let us consider a three node fully connected network. The initial

con�guration of the network is

K1(0) = {1}, K2(0) = {2, 3, 4}, K3(0) = {5, 6}

where c1 = 7, c2 = c3 = c4 = 3, c5 = c6 = 5. An optimal con�guration in terms of

load balancing is

K∗
1 = {1, 2}, K∗

2 = {3, 5}, K∗
3 = {4, 6}.

However, it cannot be reached , because neither a swap nor a load balancing is

possible between any two nodes. �

The previous example highlights an important general property: an optimal

load balancing with non-unitary tasks cannot always be achieved by greedy gossip

algorithms that balance the load between two nodes at each step, even on a fully

connected network. In fact, to reach consensus an optimization involving more

than two nodes at the same time may be necessary.



Convergence time of Algorithm 2

The convergence time is a random variable de�ned for a given initial task assign-

ment Y (0) = Y as: Tconv(Y ) = inf {t | ∀ t′ ≥ t, Y (t′) ∈ Ỹ}. Thus, Tconv(Y )

represents the number of steps required at a certain execution of Algorithm 2 to

reach the convergence set Ỹ starting from a given tasks distribution. Let us �rstly

introduce the following notation.

• Nmax is the maximum number of improvements of V (t) de�ned as in (4.7),

needed by any realization of Algorithm 2 to reach the set Ỹ, starting from

a given con�guration.

• Tmax is the maximum average time between two consecutive improvements

of V (t) de�ned as in (4.7), needed by any realization of Algorithm 2, starting

from a given con�guration.

Using the previous notation, it follows that the expected convergence time is

E[Tconv(Y )] ≤ Nmax · Tmax. (3.9)

The following proposition provides a topology independent upper bound on

Nmax.

Proposition 3.4.9 Let us consider a net with n nodes and let γ be the corre-

sponding speed vector. Let x(0) be the vector representative of the initial amount

of load at nodes. It holds:

Nmax ≤ (n− 1) · ϱ · (M −m) (3.10)

where

M = ∥Γ−1x(0)∥∞, m =

n∑
i=1

xi(0)

n∑
i=1

γi

=
1Tx(0)

1TΓ1
,

ϱ = max
{i,r}∈E

lcm{γi, γr},

(3.11)



and lcm denotes the least common multiple.

Proof: By de�nition the maximum number of improvements of V1 = f needed

by any realization of Algorithm 2 to reach the set Ỹ is smaller or equal to the ratio

between the global improvement of f needed before reaching the convergence set Ỹ

starting from x(0), and its minimum admissible improvement.

By Step 5 of Algorithm 2 the task assignment is updated if and only if leads

to an improvement of the objective function, otherwise a swap is executed. Thus,

the largest value of f(x) occurs at the initial con�guration and is equal to

M = f(x(0)) = ∥Γ−1x(0)∥∞.

The minimum value of f(x) corresponds to the case of perfect task assignment,

that in general is not achievable in the discrete case. However, a lower estimate

of it is given by its optimal value in the case of in�nitely divisible tasks, namely

by f(x∗) where

x∗ = αγ and α =
1x(0)

1TΓ1

. Thus, if we de�ne m = f(x∗) = α, then for any task assignment x it holds

m ≤ f(x).

We also observe that the minimum load exchange is equal to 1 since all tasks

have an integer weight.

Now, if we consider the generic edge {i, r}, we know that the minimum im-

provement of f that we may obtain when balancing this edge is equal to 1/lcm{γi, γr}.
As a consequence the minimum improvement of f at a generic step of Algorithm 2

is equal to 1/ϱ = 1/max{i,r}∈E lcm{γi, γr}, where E is the set of edges.

Thus, we may conclude that the largest number of improvements of f before

reaching the convergence set Ỹ starting from x(0) is at most equal to ϱ · (M −m).

Finally, in the worst case n−1 consecutive balancing may occur before having

an improvement of f , namely n−1 consecutive reductions of V2 may occur before

having a reduction of V1 = f . In particular, this case may happen if n− 1 nodes

have the same execution time that is equal to the maximum one. In this case, a

�rst balancing may occur between the only �di�erent� node and any of the other

ones. Then, a new balancing may occur between any of the remaining n−2 nodes

with the maximum execution time and one with a smaller execution time, and so

on. �



We now focus on Tmax. Evaluating Tmax, and hence the average convergence

time (3.9), is in general a di�cult issue because it is strictly related to the par-

ticular topology of the net.

In the following we consider two cases: fully connected networks and general-

ized ring topology nets. Similar approaches based on Markov chains can always

be used to evaluate numerically an upper bound on Tmax for a particular net

example.

Fully connected networks

Proposition 3.4.10 Let us consider a fully connected network, and let n be the

number of nodes.

It holds

Tmax =
n(n− 1)

2
. (3.12)

Proof: The maximum average time between two consecutive balancing occurs

when only one balancing is possible. Thus, if N is the number of arcs of the net,

then the probability of selecting the only arc whose incident nodes may balance

their load is equal to p = 1/N , while the average time needed to select it is equal to

N . Since the network is fully connected, if n is the number of nodes, the number

of arcs is N = n(n− 1)/2 and so Tmax = n(n− 1)/2. �

Proposition 3.4.11 If a net is fully connected, the average convergence time of

Algorithm 2 is

E[Tconv(Y )] ≤ ϱ · (M −m) · n(n− 1)2

2
= O(n3).

Proof: Follows from equation (3.9) and Propositions 4.4.7 and 4.4.8. �

Generalized ring topology

De�nition 3.4.12 (Generalized ring topology) A graph G = (E, V ) has a

generalized ring topology if it satis�es the following assumptions.



• It is composed by s rings, each one with k nodes. The generic j-th ring

Rj is a graph Rj = (Vj, Ej) with Vj = {1, . . . , k} and Ej = {{i, r} ∈ E | r =

i+ 1, ∀i = 1, . . . , k − 1} ∪ {k, 1}.
• The same speed is associated to all nodes in the same ring, while nodes

of di�erent rings have di�erent speeds. Thus each ring de�nes a di�erent swap

domain.

• Let (i, j), with i = 1, . . . , k and j = 1, . . . , s, be the i-th node of ring Rj. Let

Σi = {(i, j) ∈ V, j = 1, . . . , s} be the set of the nodes of index i in all rings. All

nodes in Σi are fully connected, i.e., for all i = 1, . . . , k, there exists an edge in

E that connects each node in Σi with any other node in Σi. �

An example of a net with a generalized ring topology is reported in Fig. 3.2.c:

here s = 3, k = 4.

Note that such a topology well �ts with our problem for two main reasons.

Firstly, it is scalable both in the number of nodes in the rings and in the number

of rings (namely in the number of swap domains). Secondly, the diameter of the

net, namely the maximum distance among nodes that may balance, increases

with the number of nodes in the ring.

Proposition 3.4.13 Let us consider a net with a generalized ring topology. Let

s be the number of rings and n = k · s be the total number of nodes in the net. It

holds

Tmax ≤
n2(s+ 1)

32 · s
·
(n
s
+ 16

)
=

k2s(s+ 1)

32
· (k + 16) . (3.13)

Proof: We �rst observe that, due to the gossip nature of Algorithm 2 and to

the random rule used to select the edges, the problem of evaluating an upper bound

on Tmax can be formulated as the problem of �nding the average meeting time of

two agents walking on a graph executing a random walk. In fact, the average

meeting time of the two agents may be thought as the average time of selecting an

edge whose incident nodes may balance their load. Note that in general more than

two edges may balance their load, thus assuming that only two agents are walking

on the graph provides us an upper bound on the value of Tmax. In particular, the

worst case in terms of meeting time occurs when the two agents are on di�erent

rings.



In the following we compute the average meeting time using discrete Markov

chains assuming that the two agents walk on di�erent rings (worst case). For the

sake of simplicity, we assume that the number of nodes k in each ring is even1.

We call distance between two agents in nodes (i, j) and (i′, j′), with j ̸= j′,

di,i′ = 1 + min{|i − i′|, k − |i − i′|}, namely the number of arcs in the shortest

path connecting node i with node i′. In simple words the above distance is equal

to the distance between the two agents, computed as if they were in the same ring,

plus 1 due to the fact that they are on di�erent rings. This is consistent with

the assumption that, in a generalized ring topology net, any node with a given

index in a certain ring is connected to all the other nodes having the same index

in di�erent rings. Therefore nodes with a unitary distance are nodes within the

same section Σ. Under the assumption that k is even, the maximum distance

between the two agents is equal to D = k/2 + 1.

The Markov chain relative to a net with an even value of k is shown in Fig. 3.3,

thus it is a particular birth-death process. Each node (apart from the �rst one,

named A) is characterized by an integer number that denotes the distance between

the two nodes. Let us now discuss the weight of the arcs in the Markov chain.

� The weight of the arcs going from nodes i to i + 1, and viceversa, for

i = 2, . . . , D − 1 is equal to 2/N where N = ks(s + 1)/2 is the number of arcs2.

This follows from the fact that if a net has N arcs the probability of selecting a

generic edge is equal to 1/N ; moreover, if the distance between the two agents

is i = 1, . . . , D − 1, two are the edges whose selection leads to an increasing or

decreasing of their distance. The same reasoning explains the weight of the arc

going from D − 1 to D and the weight of the arc going from 2 to 1.

� If the distance between the two agents is unitary (the state of the Markov

chain is 1) being by assumption the two agents on di�erent rings, it means that

they are on the same section. Two di�erent cases may occur: either we select

an edge that leads to a distance equal to 2, or the edge incident on the nodes

containing the agents is selected. The �rst case occurs with a probability equal

1The case of rings with an odd number of nodes k is upper bounded by the case of rings

with k + 1 nodes.
2The number of arcs of a ring topology net is equal to k times the number of arcs of each

section Σ, plus k times the number of arcs of each ring. Being each Σ a fully connected graph

with s nodes, its number of arcs is equal to s(s − 1)/2. Therefore, N = ks(s + 1)/2 + ks =

ks(s+ 1)/2.



to 4/N ; the second case occurs with a probability equal to 1/N and leads to the

absorbing state A.

� Now, assume that the distance between the agents is equal to D. Since by

assumption the two agents walk on di�erent rings, in such a case the selection of

4 di�erent arcs may lead to a decreasing of their distance. Therefore the arc of

the Markov chain going from node D to node D − 1 has a weight equal to 4/N .

� Finally, the weights of all self-loops are due to the fact that the sum of the

weights of arcs exiting a node is equal to 1 in a discrete Markov chain.

Given the Markov chain in Fig. 3.3 it is easy to compute the average hitting

time of the absorbing state from any admissible distance. This can be done solving

analytically the following linear system of equations:

(I − P ′) τ = 1 (3.14)

where I is the D-dimensional identity matrix; P ′ has been obtained by the proba-

bility matrix P of the Markov chain in Fig. 3.3 removing the row and the column

relative to the absorbing state1; τ is the D-dimensional vector of unknowns: its

i-th component τ(i) is equal to the hitting time of the absorbing state starting from

an initial distance equal to i, for i = 1, . . . , D; �nally, 1 is the D-dimensional

column vector of ones. We found out that the worst case in terms of hitting

time occurs when the two agents are at their maximum distance, i.e., for i = D.

In particular it is τ(D) = n2(s+1)
32·s ·

(
n
s
+ 16

)
=

k2s(s+ 1)

32
· (k + 16) where the

last equality follows from the fact that n = ks. This proves the statement being

Tmax ≤ τ(D). �

Proposition 3.4.14 If a net has a generalized ring topology, then the average

convergence time of Algorithm 2 in terms of the number of nodes n is

E[Tconv(Y )] ≤ ϱ · (M −m) · n
2(s+ 1)

32 · s
·
(n
s
+ 16

)
· (n− 1) = O(n4)

or, in terms of the net parameters k and s

1It obviously holds that the hitting time of the absorbing state is null from the absorbing

state itself.
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Figure 3.3: The Markov chain associated to a generalized ring topology net with

an even value of k.

E[Tconv(Y )] ≤ ϱ · (M −m) · k
2s(s+ 1)

32
· (k + 16) · (k s− 1) = O(k4s3).

Proof: Follows from equation (3.9) and Propositions 4.4.7 and 3.4.13.

�

Remark 3.4.15 We want to motivate why generalized ring topology nets are sig-

ni�cant within this framework, even if this class may appear restrictive.

Proposition 3.4.13, is based on the observation that the problem of computing

an upper bound on the maximum average time between two consecutive balancing

of Algorithm 2 can be formulated as the problem of �nding the average meeting

time of two agents walking on a graph executing a random walk. Such an average

meeting time can obviously be computed using Markov chains, regardless of the

structure of the net. However, while solving a linear system of the form (3.14) is

easy for a given network, computing an analytical solution for a generic class of

networks is an open problem.

In the case of generalized ring topology nets, the structure of the coe�cient

matrix of the linear system (3.14) is such that, through triangularization, we have

been able to compute the meeting time analytically.

3.5 Conclusions

In this chapter we introduced a framework denoted as discrete consensus, that

is a generalization of quantized consensus. We assumed that a set of tasks of

di�erent weight should be assigned to nodes with di�erent speeds with the aim



of minimizing the maximum execution time. A solution based on gossip has been

proposed and convergence properties have been examined in detail.





Chapter 4

Quantized Consensus on

Hamiltonian Graphs

4.1 Introduction

A fair e�ort has been devoted to the problem of quantized consensus, i.e., the

consensus problem over a network of agents with quantized state variables (25,

26, 29, 34), as a practical implementation of the continuous one (7, 23, 24, 50, 68).

Such problem has relevant applications such as sensor networks, task assignment

and token distribution over networks (a simpli�ed load balancing problem) (27,

28, 69, 70). In the case of sensor networks, the quantized distributed average

problem arises from the fact that sensor measurements are inevitably quantized

given the �nite amount of bits used to represent variables and the �nite amount

of bandwidth of the communication links between the nodes. Some approaches

(71) deal with quantization by adding a quantization noise in the communication

links to model such e�ect and study the resulting convergence properties without

modifying the algorithms. Other approaches propose probabilistic quantization

(25, 72) to ensure that after a certain amount of time each node has exactly

the same value, even though it might be slightly di�erent from the actual initial

average of the measurements.

Some years ago in (29) it was originally proposed an algorithm to solve the

distributed average problem with uniformly quantized measurements. Such an al-

gorithm guarantees that almost surely the state of all the agents (xi, i = 1, . . . , n)
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will reach a value that is either equal to the �oor of the average of the net (L), or

the ceil (L+1), i.e., it ensures that the net will almost surely reach the convergence

set

S , {x : {xi}N1 ∈ {L,L+ 1}, L = ⌊N−1

N∑
i=1

xi⌋}.

However, a stopping criterion is missing, i.e., load transfers may occur even if the

convergence set S is reached.

Several works followed the pioneering work in (29). In (73) three quantized

consensus algorithms are proposed which achieve a comparable performance re-

spect to the one in (29). In (74) quantized consensus over random and switching

graphs is addressed and polynomial upper-bounds to the convergence time are

provided. In (75, 76) quantized gossip algorithms are investigated in the case

of edges with di�erent weights corresponding to di�erent probabilities of being

chosen.

In this chapter we propose an algorithm to solve the quantized distributed

average problem using a gossip algorithm (56). Our algorithm can be applied

to the token distribution problem, i.e., the problem of evenly distribute a set of

tokens among the agents (29). We investigated the extension of this problem to

the distribution of tokens of arbitrary size (34). Our algorithm presents two main

advantages with respect to other applications and approaches in the literature:

1. A decentralized stopping criterion.

2. An average convergence time reduced with respect to (29, 34).

Moreover, let us observe that in our approach tokens may have di�erent size.

However, in the particular case of tokens with the same size our convergence set

coincides with the convergence set in (29), de�ned as quantized consensus.

Our work has three main di�erences with respect to (73, 74, 75, 76). First, we

consider tokens with arbitrary and possibly di�erent size or cost as in (34, 77).

Second, we consider hamiltonian graphs, i.e., graphs in which an hamiltonian

cycle exists. Third, we propose a novel interaction rule to be applied when no av-

eraging due to quantization issues can be applied, that improves the convergence

time of the algorithm by reducing the average meeting time of two random walks

in graph. Since the convergence time of all the quantized gossip and consensus

algorithms proposed in (73, 74, 75, 76) depend upon the average meeting time of



two random walks in a graph, an interesting direction of research is to improve

the convergence times of such algorithms with the ideas proposed in this chapter.

We remark that the issue of providing a stop criterion has already been solved

by other authors using non uniform quantization, e.g., probabilistic or logarithmic

quantization (25, 26). However, uniform quantization is surely easier to imple-

ment and less cost consuming than the other types of quantization. Moreover,

in (25, 26) a convergence set is not de�ned, and the convergence properties are

given in terms of probability.

Finally, our algorithm is based on gossip, i.e., only adjacent nodes asyn-

chronously exchange information to achieve a global objective. In particular, one

edge is selected at each iteration, and only the nodes incident on this edge may

communicate and redistribute their tokens. Thus, no time synchronization is re-

quired nor information exchange between distant agents may occur. This clearly

reduces signi�cantly the implementation complexity and cost of the procedure.

Note that parallel communications between disjoint sets of nodes are allowed as in

(28). Nevertheless the convergence time is expressed as total number of updates

to allow a straightforward comparison to other gossip algorithms.

The content of this chapter can be found in (34, 78). We provide both a

convergence proof for the case in which edges are selected at random and a proof

for the case in which there exists a periodic interval of time in which each link is

selected at least once.

Algorithm Applications

The proposed Hamiltonian Quantized Consensus (HQC) algorithm may be ap-

plied in several application domains. The most signi�cant ones are discussed in

the following items.

• Token distribution over networks. The token distribution problem is a

static variant of the load balancing problem (30, 69, 70, 79, 80, 81, 82) where K

indivisible tokens of possibly di�erent size should be uniformly distributed over

N parallel processors.

• Sensor networks. The case in which tokens are indivisible and of unitary

size is equivalent to the case in which a network of agents need to agree on the

average of integer state variables.



• Token Ring/IEEE 802.5 networks. Our proposed algorithm well applies to

all those application domains where the communication architecture is based on

a Token Ring network which has an embedded Hamiltonian cycle.

4.2 Problem description

In this section we recall the results we presented in (34).

Let us consider a network of n agents whose connections can be described by

an undirected connected graph G = (V,E), where V is the set of nodes (agents)

and E is the set of edges.

Assume that K indivisible tokens should be assigned to the nodes, where the

size of the generic j-th token is denoted as cj, j = 1, . . . , K. Notice that assuming

unitary size for all tokens is equivalent to the problem of quantized consensus with

integer state variables (29).

Our goal is that of achieving a globally balanced state, starting from any

initial condition, such that the total number of tokens weighted by their sizes in

each node is as close as possible, in the least-square sense, to the best possible

token distribution

c̄ =
1

n

K∑
j=1

cj. (4.1)

In the token distribution problem no token enters nor leaves the network thus

the total amount of tokens is preserved during the iterations. This assumption is

helpful in abstracting the convergence properties of the network that depend on

the topology and on the actual token distribution. In the following we will refer

to the total size of the tokens in the generic node as the load of such a node.

We de�ne a cost vector c ∈ NK whose j-th component is equal to cj, and n

binary vectors yi ∈ {0, 1}K such that

yi,j =

{
1 if the j-th token is assigned to node i

0 otherwise.
(4.2)

In the following, given a generic node i, we denote Ki(t) the set of indices of

tokens assigned to i at time t, where
∑

j∈Ki
cj = cTyi.



The optimal token distribution corresponds to any distribution such that the

following performance index

V1(Y ) =
n∑

i=1

(
cTyi − c̄

)2
, (4.3)

is minimum, where

Y (t) = [y1(t) y2(t) . . . yn(t)] (4.4)

denotes the state of the network at time t and Y ∗ (resp., V ∗
1 ) is the optimal token

distribution (resp. optimal value of the performance index). Finally, we denote

cmax = max
j=1,...,K

cj cmin = min
j=1,...,K

cj (4.5)

respectively the maximum and the minimum size of tokens in the network.

An interesting class of decentralized algorithms for load balancing or averaging

networks is given by gossip-based algorithms that can be summarized as follows

(29, 34).

Algorithm 3 (Quantized Gossip Algorithm)

1. Let t = 0.

2. Select an edge ei,r.

3. Perform a local balancing between nodes i and r using a suitable rule such

that the di�erence between their loads is reduced.

If such a balancing is not possible execute a swap among the loads in i and

r.

4. Let t := t+ 1 and goto Step 2. �

A swap is an operation between two communicating nodes that, while not

reducing nor increasing their load di�erence, it modi�es the token distribution.



De�nition 4.2.1 (34) [Swap] Let us consider two nodes i and r incident on the

same edge and let Ii ⊆ Ki(t) and Ir ⊆ Kr(t) be two subsets of their tokens.

We call swap the operation that moves the tokens in Ii to r, and the tokens in

Ir to i at time t+ 1, reaching the distribution

Ki(t+ 1) = Ir ∪ (Ki(t) \ Ii),
Kr(t+ 1) = Ii ∪ (Kr(t) \ Ir)

provided the absolute value of the load di�erence between the two nodes does not

change.

In particular, we say that a total swap occurs if Ii = Ki(t) and Ir = Kr(t). �

In the following section we provide an algorithm that is still based on the

notion of swap. However, the main di�erence with respect to Algorithm 3 is

that in Algorithm 3 swaps are executed following a random process, while in the

proposed algorithm we exploit the existence of an hamiltonian cycle in the graph

so that they can be executed following an appropriate criterion. As discussed

in detail in the rest of the chapter, this leads to two main advantages. First, if

the average out-degree of the nodes is not high, it results in a smaller conver-

gence time. Secondly, our algorithm has a stopping criterion, while Algorithm 3

inde�nitely iterates even if no further improvement can be obtained.

4.3 Proposed algorithm

Our idea is based on the notion of Hamiltonian cycle, and our assumption is

that the considered nets are represented by Hamiltonian graphs, i.e., they have a

Hamiltonian cycle.

De�nition 4.3.1 A Hamiltonian cycle is a cycle in an undirected graph that

visits each vertex exactly once and returns to the starting vertex. �

Given a network represented by graph G = {V,E} we label the nodes V =

1, . . . , n along the Hamiltonian cycle in increasing order such that node i is con-

nected to node i + 1 and node n is connected to node 1. According to this,

we de�ne the set of edges belonging to the Hamiltonian cycle as H = {ei,i+1 =



{Vi, Vi+1}, i = 1, . . . , n − 1} ∪ {en,1}. It follows that if G is Hamiltonian then

H ⊆ E.

In such a Hamiltonian cycle we label edge en,1 as eae and call it absorbing

edge.

In the literature the question of how common Hamiltonian cycles are in arbi-

trary graphs is still an open issue even if many results exist in this framework.

In particular it is known that if the number of nodes and arcs is su�ciently high

then almost surely a Hamiltonian cycle exists (83? ).

Finding a Hamiltonian cycle in a graph is an NP-complete problem (84). On

the other hand, many algorithms can be formulated to design a network such

that a Hamiltonian cycle is embedded in it by construction (85) or to �nd it in

a distributed way (86? ). Furthermore there exist communication architectures

where a Hamiltonian cycle is embedded in their structure. A famous example of

such a communication architecture is the Token Ring network (87).

Note that the proposed algorithm is �distributed�. Indeed the agents need

not to know the network topology nor the number of agents. The agents only

know who are the next and previous agents on the directed Hamiltonian cycle

and whether one of their incident edges is the absorbing edge. The assignment of

increasing integer numbers as labels to the nodes is an arbitrary choice we have

done for simplicity of presentation.

Notice that the network can be arbitrarily connected as long as it contains a

Hamiltonian cycle.

In the following we denote the total amount of load in the generic node i

at time t as xi(t) = cTyi(t). The optimal assignment of tokens ȳi, ȳr at time t

between two di�erent nodes with respect to (4.3) is the one that minimizes the

following quantity:

(ȳi, ȳr) = argmin
yi,yr

|xi(t)− xr(t)|

given the set of tasks Ki(t) ∪Kr(t).

The following algorithm assumes that a Hamiltonian cycle is determined be-

fore its initialization.

Algorithm 4 (Hamiltonian Quantized Consensus (HQC) Algorithm)

1. Let t = 0.



2. An edge ei,r is selected at random.

3. If xi(t) ̸= xr(t) (the load balancing among the two nodes may potentially

be improved)

(a) Let x̄i, x̄r and respectively ȳi, ȳr, be the optimal assignment of tokens

with indices in Ki(t) ∪Kr(t)

(b) If |x̄i − x̄r| < |xi(t)− xr(t)|, then

yi(t+ 1) = ȳi,

yr(t+ 1) = ȳr;

and goto step 6.

4. If ei,r ̸∈ H or ei,r ≡ eae then

yi(t+ 1) = yi(t),

yr(t+ 1) = yr(t);

else if ei,r ∈ H \ {eae},

if xr(t) ≡ xi+1(t) > xi(t) then execute a swap such that

xi(t+ 1) > xi+1(t+ 1),

else
yi(t+ 1) = yi(t),

yr(t+ 1) = yr(t);

and goto step 6.

5. If xi(t) = xr(t), then

yi(t+ 1) = yi(t),

yr(t+ 1) = yr(t);

6. Let t = t+ 1 and go back to Step 2.

�



Explanation of the algorithm

In simple words, at each time t an edge is arbitrary selected. If the two nodes

incident on the edge have di�erent loads we look for a better load balancing (that

may potentially occur only if their loads di�er of more than one unit). If the edge

belongs to the Hamiltonian cycle but it is not the absorbing edge, then the larger

loads are moved toward nodes with smaller index and the smaller loads to nodes

with higher index. Thus, the largest and smallest loads eventually meet at the

absorbing edge where they can eventually be balanced.

Remark 4.3.2 We point out that in general if the tokens are not of unitary size

it is not guaranteed that the �nal load con�guration is optimal. The following

Theorem 4.4.1 characterizes the convergence properties of the algorithm and shows

that disregarding the network topology, the number of tokens and the number of

nodes, the maximum distance of the �nal tokens distribution from the the optimal

one depends only on the token sizes. �

As it will be formally proved in the following section, while preserving the

asynchrony of the local updates, the simple notion of a "preferred" direction

produces several important advantages. Firstly, it reduces the convergence time;

then, it makes �nite the total number of tokens exchanges between the nodes to

achieve the global tokens distribution; �nally, it makes the algorithm stop once

a balanced state is reached1 to allow a change of mode of operation (e.g., take a

new measurement in the case of a sensor network or proceed with task execution

in the case of multi agent systems).

Let us conclude this section with an important remark.

Remark 4.3.3 Algorithm 4 does not contain an explicit stopping criterion. What

happens in practice is that, after a certain number of iterations, no load can be

further balanced nor swapped. However, the communication among nodes contin-

ues inde�nitely.

1We point out that some algorithms in the literature (29) achieve quantized consensus

asymptotically, without actually terminating. This is a relevant issue in the case of load bal-

ancing and tasks assignment. In wireless sensor networks such an improvement also allows to

save power by avoiding averaging inde�nitely after having reached a satisfactory agreement.



To impose a stopping criterion on communications, we may assume that the

edge selection is implemented in a distributed fashion as follows: any node may

asynchronously start a communication request with one of its neighbors. After a

node has already tested all its possible communications and no balancing or swap

was possible, it will enter a �sleeping" state in which it will wait for communication

requests but it will not start any new communication. If a sleeping node receives a

communication request and as a result its load changes, then it leaves the sleeping

state. This ensures that once the network reaches a con�guration from which

no evolution is possible, each node, after having tested all its link, will reach a

sleeping state and all communications will eventually stop. �

A numerical example

Let us consider the network in Fig. 4.1(a). It consists of six nodes whose con-

nections allow the existence of a Hamiltonian cycle. By assumption arcs are

undirected. The direction given to the edges in the Hamiltonian cycle is only

introduced to better explain the steps of the algorithm. Assume that the initial

token distribution is that in Fig. 4.1(a): here the integer numbers upon nodes

denote the size of tokens in their inside. Finally, eae = e6,1 is the absorbing edge.

We now run Algorithm 4. In Table ?? the evolution of the network is shown.

As it can be seen, when Algorithm 4 can not locally balance the loads, it moves

the largest load toward nodes with smaller index and the smallest one to nodes

with higher index. This behavior makes the largest load move toward node V1

and the smallest one to V6. In Fig. 4.1(b) is shown the token distribution at time

t = 1. Here the thick dashed edge denotes the selected edge. In Fig. 4.1(c) is

shown the �nal token distribution reached at time t = 10.

Let us �nally observe that all the updates are decentralized and asynchronous,

i.e., the order in which edges are selected is not relevant to the algorithm con-

vergence properties. After t = 10 local updates of the network is in a globally

balanced con�guration: due to the token quantization a better distribution is not

reachable.

Moreover, starting from the last con�guration no further load transfer is al-

lowed because every node is locally balanced with its neighbors and the loads are

in descending order starting from node V1 to node V6. This is a great advantage
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(c) Final token distribution at t = 10

Figure 4.1: The network considered in Subsection 5.3.5.

with respect to other randomized algorithms which keep on swapping loads even

after the best load con�guration achievable is reached (29, 34).

4.4 Convergence properties

The convergence properties of Algorithm 4 are stated by the following theorem.

In particular, Theorem 4.4.1 claims that using Algorithm 4 the net distribution

will almost surely converge to a given set Y de�ned as in the following equation

(4.6).

Theorem 4.4.1 Let us consider

Y = {Y = [y1 y2 · · · yn] | |cTyi − cTyr| ≤ cmax, ∀ i, r ∈ {1, . . . , n}}.
(4.6)

Let Y (t) be the matrix that summarizes the token distribution resulting from

Algorithm 4 at the generic time t.

It holds

lim
t→∞

Π(Y (t) ∈ Y) = 1



Time Edge\Node V1 V2 V3 V4 V5 V6

0 3, 1 1 4, 1 2 2, 1, 1 0

1 e5,6 3, 1 1 4, 1 2 2 1, 1

2 e3,5 3, 1 1 4 2 2, 1 1, 1

3 e2,3 3, 1 4 1 2 2, 1 1, 1

4 e1,6 3 4 1 2 2, 1 1, 1, 1

5 e4,5 3 4 1 2, 1 2 1, 1, 1

6 e1,2 4 3 1 2, 1 2 1, 1, 1

7 e3,4 4 3 2 1, 1 2 1, 1, 1

8 e5,6 4 3 2 1, 1 2, 1 1, 1

9 e4,5 4 3 2 1, 1, 1 2 1, 1

10 e3,4 4 3 2, 1 1, 1 2 1, 1

Table 4.1: The results of the numerical example in Subsection 5.3.5.

where Π(Y (t) ∈ Y) denotes the probability that Y (t) ∈ Y.

Proof. We de�ne a Lyapunov-like function

V (t) = [V1(t), V2(t)] (4.7)

consisting of two terms. The �rst one is:

V1(Y (t)) =
n∑

i=1

(xi(t)− c̄)2 (4.8)

where xi(t) = cTyi(t) for i = 1, . . . , n. The second one is a measure of the ordering

of the loads:

V2(t) =
n−1∑
i=1

n∑
j=i+1

f(xi(t)− xj(t)) (4.9)

where

f(xi(t)− xj(t)) = max (sign(xi(t)− xj(t)), 0))

Note that here we are assuming that eae = en,1 and nodes are labeled as in

Fig. 4.2. Therefore, V2(t) denotes the number of couples of nodes that are not

ordered1 at time t.
1According to Algorithm 4 and the notation in Fig. 4.2 a couple of nodes {i, j} is said to

be ordered if for i < j, it is xi < xj .
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Figure 4.2: The oriented Hamiltonian cycle considered in the proof of Theo-

rem 4.4.1 and Proposition 4.4.9.

We impose a lexicographic ordering on the performance index, i.e., V = V̄ if

V1 = V̄1 and V2 = V̄2; V < V̄ if V1 < V̄1 or V1 = V̄1 and V2 < V̄2.

The proof is based on three arguments.

1. V1(t) is a non increasing function of t. In fact, at any time t it holds

V1(t+ 1) ≤ V1(t).

The case V1(t+1) = V1(t) holds during a token exchange when the resulting

load di�erence between the nodes is not reduced. In such a case the loads

at the nodes may either swap or not, thus not increasing nor decreasing the

value of the Lyapunov function.

The case of V1(t + 1) < V1(t) holds when a new load balancing occurs.

Assume that a combination of tokens with total cost q with 0 < q <

|xi(t)− xr(t)| is moved from i to r at the generic time t such that

|xi(t+ 1)− xr(t+ 1)| < |xi(t)− xr(t)|.

It is easy to verify, by simple computations, that

(xi(t+ 1)− c̄)2 + (xr(t+ 1)− c̄)2 < (xi(t)− c̄)2 + (xr(t)− c̄)2

which implies V1(t+ 1) < V1(t).

We also observe that if two nodes (e.g., i and r) communicate at time t, the

resulting di�erence among their loads at time t + 1 is surely less or equal

to the largest cost of tokens in the nodes at time t, i.e.,

|xi(t+ 1)− xr(t+ 1)| ≤ max
j∈Ki(t)∪Kr(t)

cj ≤ cmax. (4.10)

This is due to the fact that if the load di�erence between two nodes is

greater than cmax, it is always possible to move at least one token with

c ≤ cmax to the less loaded node to reduce the load di�erence.



2. V2(t) is a positive non increasing function of t if V1(t+ 1) = V1(t).

Function V2(t) is positive because it is the summation of positive quantities.

Moreover, V2(t+ 1) = V2(t) anytime an edge connecting two nodes already

ordered along the Hamiltonian cycle is chosen, or alternatively when the

absorbing edge is chosen. This is due to the fact that in such a case the

ordering of loads does not change.

While V2(t+1) < V2(t) anytime the loads of two nodes are reordered along

the Hamiltonian cycle and the load di�erence between the loads is not

reduced. This follows from the fact that if the loads of nodes i and j are

not ordered at time t, i.e., for i < j, xi(t) < xj(t), we have that

f(xi(t)− xj(t)) = 1.

If the edge connecting them is selected and they are ordered, then at time

t+ 1 it is

f(xi(t+ 1)− xj(t+ 1)) = 0.

Furthermore since the nodes are directly connected, their ordering does not

a�ect the value of f for other couples of nodes. If a ordering happens, then

V2(t+ 1) = V2(t)− 1.

Finally, if at time t all the loads are ordered along the Hamiltonian cycle it

is easy to verify that V2(t) = 0.

3. If the Lyapunov-like function V (t) has not reached its minimum at a given

time t, then there exists an edge along the Hamiltonian cycle with strictly

positive probability to be chosen such that V (t+ 1) < V (t).

(a) If an edge is selected and the load di�erence between two nodes is

reduced then V1(t+ 1) < V1(t).

(b) If there does not exist an edge such that the load di�erence between

the two nodes is reduced, we can always select an edge such that the

loads are reordered if V2(t) ̸= 0, then V2(t+ 1) < V2(t).

(c) If V2(t) = 0 then the nodes connected by the absorbing edge contain

the maximum and minimum load in the network. If their di�erence

is greater than cmax then we can select the absorbing edge and have

V1(t+ 1) < V1(t).



(d) If V2(t) = 0 and the load di�erence between the nodes connected by

the absorbing edge is less or equal than cmax then Y (t) ∈ Y.

Finally, at each instant of time, we proved that there exists an edge with

strictly positive probability p that if selected makes V (t + 1) < V (t). The

probability that such an edge is selected at least once in t time steps is

P (t) = 1 − (1 − p)t. Thus since we assume p to be strictly positive, the

probability that such an edge is selected goes to 1 as t goes to in�nity, thus

proving the statement. �

Remark 4.4.2 We remark that such a theorem states the convergence toward a

balanced situation in which the load di�erence between any couple of nodes in the

network is at most cmax. However, in principle any load balancing rule can be

designed to have a greater threshold to trigger the local balancing mechanism, for

instance one in which the load di�erence between the two nodes is γ > cmax. In

such a case the theorem gives a design criterion for such threshold since it states

that the local threshold used for the balancing mechanism will hold globally by

bounding the maximum load di�erence between any two nodes. �

A characterization of the maximum distance of the �nal set of token distribu-

tion using Algorithm 4 from the optimal one is given by the following proposition.

Proposition 4.4.3 Let us consider the optimal token distribution problem, and

let the set Y be de�ned as in equation (4.6). Let V1(Y ) =
∑n

i=1(c
Tyi − c̄), where

Y ≡ Y (t) results from the application of Algorithm 4 for a su�ciently long time

t.

The following inequalities hold for any Y ∈ Y:

0 ≤ V ∗
1 ≤ V1(Y ) ≤ α (4.11)

where

α =


nc2max

4
if n is even,⌊n

2

⌋ ⌈n
2

⌉ c2max

n
if n is odd.

(4.12)

Proof. The �rst two inequalities are trivial. To prove the last inequality we look

at the worst case, i.e., the token distribution in Y that has the highest value of

V1(Y ).



If n is even, the worst case corresponds to a balancing where half of the

nodes have a load k and the remaining half have a load k + cmax. In this case

c̄ = k + 0.5cmax, and the �rst value of bound can be computed.

If n is odd, the worst case corresponds to a con�guration where ⌊n/2⌋ of

the nodes have a load k and the remaining ⌈n/2⌉ have a load k + cmax. Now

cave = k + ⌈n/2⌉cmax/n, which gives the other value of the bound. �
The above results enable us to characterize some cases in which Algorithm 4

provides the optimal solution to the token distribution problem.

Proposition 4.4.4 Let cmin and cmax be de�ned as in (4.5).

If cmin = cmax = c, then all load distributions that belong to a set of �nal

distributions (4.6) are optimal, hence Algorithm 4 provides a token distribution

for which V1(Y ) is minimum and thus it is an optimal distribution.

Proof. If cmin = cmax the set of �nal distributions is

Y = {[y1 · · · yn] | (∀ i) cTyi ∈ {⌊K·c
n
⌋, ⌊K·c

n
⌋+ c}}. (4.13)

We can normalize the weight c so that it is unitary. With this formulation the

problem corresponds to that of quantized consensus, and the set Y coincides with

the set of the quantized-consensus distributions de�ned in (29) and shown to be

optimal. �
We now prove that Algorithm 4 always reaches a blocking con�guration.

Proposition 4.4.5 Given a Hamiltonian Graph G, if the network evolves accord-

ing to Algorithm 4, then

∀ Y (0), ∃t′ : ∀t ≥ t′, Y (t) ≡ Y (t′) ∈ Y.

Proof. Due to Theorem 4.4.1 ∃t′ such that ∀ t ≥ t′, Y (t) ∈ Y. Let us consider

the Lyapunov-like function (4.7):

V (t) = [V1(t), V2(t)].

It can be shown that if V2(t) = 0 then the loads are ordered such that xi ≥
xi+1 for i = 1, . . . , n − 1. If at time t′ the loads are ordered and V1(t

′) has

reached a local minimum, then according to Algorithm 4 no token exchange is

performed since no balancing is feasible and no swap is allowed. Then it follows

that Y (t′ +∆t) ≡ Y (t′) ∀∆t ≥ 0. �



Convergence time

In this section we discuss the expected convergence time of Algorithm 4, and

provide an upper bound for arbitrary Hamiltonian graphs.

We assume that edges are selected with uniform probability, so the probability

to select the generic edge ei,j at time t is equal to p = 1/N where N is the number

of edges in the network.

The convergence time is a random variable de�ned for a given initial load

con�guration Y (0) = Y as:

Tcon(Y ) = inf {t | ∀ t′ ≥ t, Y (t′) ∈ Y}.

Thus, Tcon(Y ) represents the number of steps required at a certain execution of

Algorithm 4 to reach the convergence set Y starting from a given token distribu-

tion.

Now, let us provide some further de�nitions that will occur in the following.

• Nmax is the maximum number of improvements of V1(Y ) needed by any

realization of Algorithm 4 to reach the set Y, starting from a given con�g-

uration.

• Tmax is the maximum average time between two consecutive improvements

of V1(Y ) in any realization of Algorithm 4, starting from a given con�gura-

tion.

From the previous de�nitions, it is possible to give an upper bound on the

expected convergence time.

Proposition 4.4.6 Let E[Tcon(Y )] be the expected convergence time. It holds

E[Tcon(Y )] ≤ Nmax ·Nmax. �

Notice that the term maximum average time in the above de�nition is intended

as in the following.

The average time between two consecutive improvements is a function of the

load distribution: an unbalanced distribution has a short average time between

two consecutive improvements, while a nearly balanced distribution has a long

average time. In our de�nition we consider the longest possible average time



between two improvements and take it as an upper bound to the average time

between two consecutive improvements.

In (29) an upper bound on Nmax is given when cmax = 1. In our case the result

still holds since it is based on the fact that the improvement of the performance

index is lower bounded by V1(Y (t+ 1)) ≤ V1(Y (t))− 2 since the minimum token

exchange allowed decreases the load di�erence between two nodes of at least 1.

Finally, the initial value of V1(Y (0)) can be upper bounded by a function of the

maximum and the minimum amount of load in the generic node.

Proposition 4.4.7 (29) For the Hamiltonian Quantized Gossip it holds:

Nmax =
(M −m)n

4

where M = maxi c
Tyi and m = mini c

Tyi.

We now focus on Tmax. As shown in the following proposition, it is easy to

compute in the case of fully connected networks.

Proposition 4.4.8 Let us consider a fully connected network, namely a net such

that E = {V × V }. Let n be the number of nodes.

It holds

Tmax =
n(n− 1)

2
. (4.14)

Proof. The maximum average time between two consecutive balancing occurs

when only one balancing is possible. Thus, if N is the number of edges of the

net, then the probability of selecting the only edge whose incident nodes may

balance their load is equal to p = 1/N , while the average time needed to select it

is equal to N . Since the network is fully connected, if n is the number of nodes,

the number of edges is N = n(n− 1)/2 and so Tmax = n(n− 1)/2. �

Notice that the previous proposition holds for various gossip based algorithms

(29, 34).

We now show that Tmax for Hamiltonian graphs is of the same order with

respect to the number of nodes as for fully connected topologies when using the

Hamiltonian Quantized Gossip Algorithm.
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Figure 4.3: The Markov chain associated to a net containing a Hamiltonian cycle.

Proposition 4.4.9 Let us consider a net with a Hamiltonian cycle. Let n be the

number of nodes, and N be the number of arcs of the net.

It holds

Tmax ≤ N(n− 2). (4.15)

Proof. We �rst observe that, due to the gossip nature of Algorithm 4 and

to the rule used to select the edges, the problem of evaluating an upper bound

on Tmax can be formulated as the problem of �nding the average meeting time

of two agents walking on the Hamiltonian cycle in opposite directions1. In fact,

the average meeting time of the two agents may be thought as the average time

of selecting an edge whose incident nodes may balance their load. Note that in

general more than two edges may balance their load, thus assuming that only

two agents are walking on the graph provides us an upper bound on the value of

Tmax.

To compute such an upper bound we determine the average meeting time of

the largest and smallest load walking on the graph along the Hamiltonian cycle in

the worst case. To this aim we de�ne the discrete Markov chain in Fig. 4.3 whose

states (apart from the �rst one, named A) characterize the distance between the

two agents.

For simplicity of explanation we assume that the �rst agent is the one corre-

sponding to the largest load.

The distance between the two agents is equal to the length of the path going

from the �rst agent to the second one in the direction of nodes with increasing

index. In other words, the distance between the two agents is equal to the mini-

mum number of movements they need to perform, following the rule at Step 3 of

Algorithm 4, to meet each other.

1The problem of random walk and average meeting times has been extensively studied in

di�erent applications (88, 89).



Now, if a net has n nodes, then the Hamiltonian cycle has n edges, and the

maximum distance among the two agents is equal to D = n − 1, while their

minimum distance is equal to 1.

Note that both these conditions correspond to the case in which the two agents

are in nodes incident on the same edge. However, the �rst case occurs when such

an edge is directed from the second agent to the �rst one, while the second case

happens when the edge is directed from the �rst agent to the second one. As an

example, if the Hamiltonian cycle is that reported in Fig. 4.2, if the �rst agent is

in V1 and the second one is Vn, then their distance is null; if the �rst agent is in

Vn and the second one in V1, then their distance is equal to D.

The absorbing state (node A in Fig. 4.3) corresponds to the case in which the

agents are in nodes incident on the same edge and this edge is selected. Thus, the

absorbing state may only be reached from nodes 1 and D, and the probability

that this occurs is in both cases equal to 1/N .

Moreover, given the rule of step 3 of Algorithm 4, the distance among two

nodes with load di�erence greater than cmax may only decrease, regardless their

initial position. In particular, the probability of going from node i to node i− 1,

with i = D,D − 1, . . . , 1, is equal to 2/N , because two are the edges whose

selection leads to a unitary reduction of the distance among the agents.

Finally, we consider the linear system:

(I − P ′)τ = 1 (4.16)

where I is the D-dimensional identity matrix; P ′ has been obtained by the

probability matrix P of the Markov chain in Fig. 4.3 removing the row and

the column relative to the absorbing state1; τ is the D-dimensional vector of

unknowns: its i− th component τ(i) is equal to the hitting time of the absorbing

state starting from an initial distance equal to i, for i = 1, . . . , D; �nally, 1 is

the D-dimensional column vector of ones. Solving analytically the linear system

(4.16), we found out that τ(i) = iN for i = 1, . . . , D−1, and τ(D) = N(n−1)/2.

Thus the maximum average hitting time of the absorbing state occurs when the

distance between the two nodes is equal to D− 1 if n ≥ 3. In particular, it holds

τ(D − 1) = N(n− 2) that proves the statement. �
1It obviously holds that the hitting time of the absorbing state is null from the absorbing

state itself.



Proposition 4.4.10 An upper bound to the average convergence time of Algo-

rithm 4 is

E[Tcon(Y )] ≤ (M −m)n

4
·N(n− 2) = O(n2N).

Proof. The statement follows from Propositions 4.4.7 and 4.4.9 and Fact 4.4.6.

�

Proposition 4.4.11 If a net is fully connected, an upper bound to the average

convergence time of Algorithm 4 is

E[Tcon(Y )] ≤ (M −m)n

4
· n(n− 1)

2
= O(n3).

Proof. Follows from Propositions 4.4.7 and 4.4.8 and Fact 4.4.6. �

The above propositions enable us to conclude that Algorithm 4 leads to a

signi�cant improvement respect to (29, 34) in terms of convergence time for net-

works with low average out-degree (e.g. path networks). Indeed for such networks

the average convergence time is O(n4) using the approaches in (29, 34), while it

is O(n3) using Algorithm 4. On the contrary, if we consider networks with a high

average out-degree such as fully connected networks, in both cases the average

convergence time is O(n3) and the advantage of Algorithm 4 is basically that of

providing a stopping criterion.

In Figure 4.4 is shown the average convergence time for a ring network of n

nodes with n = 10, . . . , 100 and random initial loads ranging from 0 to 10. For

each network size the average convergence time is taken over 100 realizations of

the experiment. In such a �gure is also shown a comparison with the previously

computed upper bound to the average convergence time, it is evident that such a

bound is not strict, i.e., the actual performance of the algorithm is considerably

better than the worst case analysis prediction. Furthermore we point out that the

convergence time is given in number of local updates, not time, thus disregarding

the e�ects of parallel communications for analysis purposes.

Algorithm extension for convergence in �nite time

The e�ectiveness of Algorithm 4 is even more evident if a periodic interval of time

Th exists such that each edge in the Hamiltonian Cycle is selected at least once. In
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Figure 4.4: Comparison between simulation results and the worst case analytical

average convergence time.

such a case Algorithm 4 converges in �nite time, as will be shown in the following.

Furthermore if Algorithm 4 is applied to networks whose edge selection process is

deterministic, it still preserves its convergence properties while other algorithms

as the one in (29) may cycle inde�nitely without reaching the consensus set of

�nal con�gurations. Obviously Algorithm 4 prevents the existence of such cycles

due to the deterministic swap rule. In particular, the following result holds.

Proposition 4.4.12 If there exists a period of time Th such that each edge along

the Hamiltonian cycle is selected at least once, then a deterministic upper-bound

to the convergence time of Algorithm 4 is

max(Tcon(Y )) ≤ (n− 1)2 · (M −m) · Th = O(n2).

Proof. By Proposition 4.4.7 the maximum number of balancing between two

consecutive improvements of V (Y ) is at most equal to (M−m)n
4

. Now, if each edge

of the Hamiltonian cycle is selected at least once during Th, being the maximum

distance between the two nodes with the smallest and highest load in the network



equal to n− 1 (see the proof of Proposition 4.4.9), then at each interval Th their

distance is surely reduced by at least 1 and they meet after at most (n − 1)Th

units of time. Then, (M−m)n
4

(n − 1) · Th is the maximum number of time units

required to reach the convergence set Y. �

The above proposition states a �nite time bound on the convergence time of

Algorithm 4.

We note that to make Proposition 4.4.12 useful in practical cases, namely if

we want to use it as a criterion to know when Y is reached for sure, then a slight

overhead needs to be added to Algorithm 4 to evaluate the di�erence M −m of

the initial load. This can be done in a decentralized way with a consensus-like

algorithm (namely consensus on maxi xi(0)).

4.5 Conclusions

In this chapter we proposed a new algorithm, the Hamiltonian Quantized Gossip

Algorithm, that solves the quantized distributed average problem and the token

distribution problem on Hamiltonian graphs with a grater e�ciency respect to

other gossip algorithms based on uniform quantization (29, 34). The main feature

of the proposed algorithm is an embedded stopping criterion that will block the

algorithm once quantized consensus has been achieved.

We have also shown that, if there exists a periodic interval of time where

each edge along the Hamiltonian cycle is selected at least once, a �nite time

convergence bound can be given thus ensuring a �nite and known amount of total

transfers for load balancing applications (that can be used as a design criterion

for the local load balancing trigger mechanism) and a decentralized criterion to

stop averaging in sensor networks.





Chapter 5

Consensus problems in directed

graphs

5.1 Introduction

Great e�ort has been directed to the study of the consensus problem � i.e. the

problem of making the scalar states of a set of agents converge to the same value

under local communication constraints (7, 23, 43, 50, 90, 91) � and of its many

applications. One of such applications, namely wireless sensor networks and in

general peer-to-peer networks, is now the focus of a huge amount of research

in many disciplines of information technology. The reason why the distributed

average problem has received great attention is that it allows to achieve tasks with

a minimum overhead of communication since it requires only local information

exchange between nodes directly connected, i.e. no routing is needed and so no

congestion due to network tra�c is generated. One of the networks in which

this is desirable is the internet in which the availability of information on the

average of local quantities generated by users behavior is of great relevance for

statistical analysis, marketing, security and so on. If such objectives can be

achieved without unnecessarily overloading network nodes and user bandwidth

the relevance of such algorithms becomes clear.

A di�erent kind of networks are wireless embedded sensor networks, intended

to be composed of a huge number of cheap wireless sensors scattered around a

target, be it a city, a forest, a war �eld or a polluted area. By de�nition if a
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wireless sensor is to be cheap it has to consume very little power for achieving its

task and to this end the ability to retrieve the average of the measurements with

only local packet exchange is of great relevance.

Many previous works on the consensus problem and gossip algorithms (23,

38, 43, 58, 90, 91, 92, 93, 94) are based on bidirectional communications and so

represent the network through an undirected graph, possibly with a switching

topology. In (38) a study of convergence times of gossip algorithms based on

pairwise random communications is presented for di�erent network topologies.

In (93) consensus on the average in presence of intermittent links and noise is

addressed. In (94) the problem of designing the topology to maximize the rate of

convergence of average consensus is addressed taking into account communication

costs and constraints.

The requirement of bidirectional communications requires synchronization be-

tween transmitter and receiver and some overhead required by the communication

protocols like acknowledgments. Furthermore even if a set of nodes can communi-

cate between each other, communications are inherently sequential and pairwise if

they are not done in the form of broadcasts. An attempt to use broadcasts in the

distributed average problem has been made with gossip algorithms, the tradeo�

of this approach is that agreement is only reached in the form of a random vari-

able whose expectation corresponds to the average of the initial measurements

and whose shape is deeply a�ected by the sequence in which the nodes perform

broadcasts.

A di�erent approach to this issue is the use of distributed Kalman �ltering

based on consensus (53, 54). A couple of years ago this problem was solved by

adapting the optimal Kalman gain of such �lter with respect to the out�ow of each

node (55) to achieve consensus on the average on arbitrary strongly connected

digraphs. The proposed technique was time-variant and proposed as a decen-

tralized iterative algorithm with synchronized updates. In this chapter, that is a

journal version of (95), we propose an alternative approach based on gossip.

In (43) the study of consensus on digraphs was motivated by reduction in

communication costs. Unfortunately the conclusion of the authors was that con-

sensus on the average is achievable only for balanced digraphs, i.e. graphs in

which the in-degree and out-degree of each node are the same.

Starting from this, we developed a new algorithm, with the same feature of



Laplacian-based consensus, that can achieve the same objective for the wider

class of arbitrary digraphs. This generalizes the consensus problem and allows a

consistent reduction of complexity since it allows the use of only broadcasting as

communication mean.

Furthermore wireless sensor networks are usually required to perform tasks

more complex than just computing the average of some quantity. We argue that

an algorithm that allows consensus on directed graphs can actually be imple-

mented as simple and small "overhead" on normal communication between the

sensors. For instance with the ZigBee protocol for wireless networks we have

packets with a maximum payload of around 104 bytes, which it is clearly much

more than what is required to just send a scalar integer value of 16 bits. We

argue that such consensus protocol could have a more meaningful and real appli-

cation if thought as network overhead for distributed estimation purposes that

does not actually "increase" the load in the network. Since no speci�c acknowl-

edge or response is required, no dedicated communication is required and only

the usual communication due to data transfer between nodes for other purposes is

needed. With the previous assumption while the nodes use only mono-directional

communications, they always know their out-degree.

Finally, the proposed algorithm poses new theoretical questions on stability

of gossip algorithms since it is an instance of gossip algorithm in which local

interactions are based on asymmetric, non-contractive matrices with possibly

both positive and negative elements taken from a set all the products of which

converge (36).

Note that, even if a formal proof of convergence of the algorithm we propose is

missing, a series of simulations are presented to illustrate the e�ectiveness of the

approach. In particular, di�erent network topologies have been considered that

are scalable in the number of nodes, and for such topologies the dependence of the

convergence times upon the number of nodes is shown. Finally, we present a series

of simulations to compare the proposed algorithm with other gossip algorithms

known in the literature.

We point out that in Cai K. et al. 2009-2010(96, 97, 98) by exploiting a similar

approach presented in Franceschelli et al. 2008-2010 (95, 99, 100, 101) based on

the use of "surplus" or "storage" variables to keep memory of the initial network

average in the network the problem of consensus on directed graphs is addressed



in the case of agents with uniformly quantized states.

Problem description

We model the network of agents as a directed graph G(t) = {V,E(t)}, with V =

{1, . . . , n} the set of nodes (or vertices) that represent the agents, E(t) ⊆ {V ×V }
the time varying edge set that encodes the network topology, (i, j) ∈ E(t) if and

only if agent i may receive information from agent j at time t. In the following

directed edges from j to i are considered to have their "tail" in j and the "head"

in i.

The graph can be encoded through its n× n adjacency matrix

A(t) = {ai,j(t)} with ai,j(t) =

{
1 if (i, j) ∈ E(t);

0 otherwise.

The in-degree of a node corresponds to the number of "heads" incident in

such node while the out-degree is the number of "tails" incident on it.

We de�ne the two n× n matrices

∆in(t) = diag (δin,1(t), . . . , δin,n(t))

and

∆out(t) = diag (δout,1(t), . . . , δout,n(t))

where δin,i and δout,i, for i = 1, . . . , n, are respectively the in-degree and out-degree

of node i.

The Laplacian of a time-varying digraph is de�ned as

L(t) = ∆in(t)− A(t). (5.1)

It is a positive semi-de�nite matrix and weak diagonally row dominant. De�ning

0 and 1 column vectors whose n elements are all, respectively, zeros and ones, we

have that L(t)1 = 0 by construction.

To each node i for i = 1, . . . , n is associated a scalar xi(t) with an arbitrary

initial value xi(0) = xi0.

Furthermore we de�ne the set of neighbors of node i as Ni(t) = {j : (j, i) ∈ E}
and with |Ni(t)| its cardinality. We point out that since the graph is directed,

node i may be a neighbor of node j while node j is not a neighbor of node i.



Note that the underlying topology of the network is deterministic and speci�es

the edges that may be selected by the gossip algorithm at any time. What is

random is the selection of the node that performs a broadcast, involving only the

edges connected to it. So at any time instant the interaction topology is a set of

neighbors of the broadcaster node which is taken at random.

Our objective is to �nd a decentralized control law that satis�es the network

topology constraints given by G(t) and achieves consensus on the average on the

initial states.

5.2 Proposed algorithm

In our approach we associate to each node i for i = 1, . . . , n, in addition to xi(t)

on which value a consensus on the average is sought, a companion variable zi(t)

with initial value zi(0) = 0. In the following we study a gossip algorithm based

on mono-directional communications. Each node at each instant of time is then

either transmitting information, receiving information or in an idle state.

RULE 1, Transmitter state update, node i{
xi(t+ 1) = xi(t),

zi(t+ 1) = 0.
(5.2)

RULE 2, Receiver state update, node j ∈ Ni(t){
xj(t+ 1) =

xj(t)+xi(t)

2
+ 0.5zj(t) +

zi(t)
2δout,i(t)

,

zj(t+ 1) =
xj(t)−xi(t)

2
+ 0.5zj(t) +

zi(t)
2δout,i(t)

.
(5.3)

RULE 3, Idle nodes, k ̸= i, k ̸∈ Ni(t){
xk(t+ 1) = xk(t),

zk(t+ 1) = zk(t).
(5.4)

Algorithm 5 (Extended Gossip based on Broadcasts (EGB))

1. Let t=0, let x(0) = x0 and z(0) = 0.



2. A node i at random executes RULE 1

3. Each node j ∈ Ni(t) that listens to the broadcast applies RULE 2.

4. All the other nodes k ̸= i, k ̸∈ Ni(t) keep their state variable and their

companion variable constant (RULE 3).

5. Let t = t+ 1 and go back to step 2. �

These interaction rules can be explained in simple words.

• The transmitter node i broadcasts its state value xi to all nodes j ∈ Ni. In

doing so, it knows its out-degree and it also broadcasts the value zi(t)/δout,i(t) by

dividing the value of the companion variable by the number of nodes that receive

the information. The transmitter node i does not change its value of xi(t) while

it resets to 0 the companion variable zi(t).

• The receiver nodes update their xj(t) variable by computing the average be-

tween their and the received state value. Furthermore they correct their update

by a fraction of their companion variable zj(t) and a fraction of the companion

variable of the transmitter node zi(t). The receiver nodes update their compan-

ion variable by adding up several terms, designed to preserve the average of the

network at each iteration while converging to the average of the initial measure-

ments.

The sequence of nodes that perform the broadcast at the di�erent time in-

stants t ∈ N de�nes a signal I(t). As an example if node 3 is the transmitter node

at time t = 0 then I(0) = 3.

Assume that at time t node i = I(t) performs a broadcasts, the interaction

topology at time t is represented by a graph Gi(t), obtained from G(t) removing all

arcs whose tail is not node i. We let Ai(t), ∆in,i(t) and Li(t) denote, respectively,

the incidence matrix, the in-degree matrix and the Laplacian of this graph.

Let us de�ne

Pi(t) = I − 0.5Li(t), Γ̂i(t) =
Ai(t)

2δout,i(t)
+ 0.5∆in(t),

Γi(t) =
Ai(t)

2δout,i(t)
− 0.5∆in(t) + (I − eie

T
i ),

where I is the identity matrix and ei is the i-th canonical basis vector of dimension

n.



We denote

Ci(t) =

[
Pi(t) Γ̂i(t)

I − Pi(t) Γi(t)

]
. (5.5)

Under the decentralized state update rule (5.2), (5.3) and (5.4), the system

dynamics at time t, is:[
x(t+ 1)

z(t+ 1)

]
= Ci(t)

[
x(t)

z(t)

]
, i = I(t). (5.6)

Remark 5.2.1 It is assumed that at each instant of time each node has a strictly

positive probability of broadcasting its state to the neighboring nodes. This as-

sumption is to model the inherent asynchrony of wireless communications between

sensor nodes. The results on the convergence properties of algorithms developed

with this assumption hold for any deterministic scheduling of the communica-

tions between the nodes because the order in which the updates are performed is

not relevant to the stability of the equilibrium point of the algorithm.

We point out that at each time instant t only the broadcaster node i has to

know the number of local neighbors |Ni|, which correspond to its out-degree at

time t. The most trivial case in which such assumption holds is when the sensor

network is not just executing a distributed average algorithm but is also providing

other services that require the knowledge of the network topology. Our algorithm

reduces the resources dedicated to the distributed average algorithm by not re-

quiring acknowledgements to the transmitted information and fully exploits dense

proximity networks by using broadcasts.

The main di�erence between the proposed algorithm and other consensus algo-

rithms based on broadcasts is that in our approach convergence toward the exact

initial average is ensured. In the other cases presented in the literature the con-

sensus state is not the initial average of the measurements, but it may be any value

inside the convex hull spanned by the initial conditions in the network depending

on the sequence of broadcasts (39, 102).

Furthermore given that the sensor network is distributed in space, any pair of

nodes su�ciently far apart can perform a broadcast while not interfering with each

other. The inherent parallelism of the network is fully exploited and is expected

to greatly improve the convergence time of the proposed algorithm. Nonetheless



in the following we focus our attention in studying the stability of the equilibrium

point of the algorithm leaving the study of its convergence time to future work.

�

In the following, for simplicity of explanation the dependence of Ci from t will

be omitted.

5.3 Convergence properties

In this section we study the convergence properties of the algorithm. We �rst

characterize the eigenstructure of matrices Ci and then we present a conjecture

on the convergence to consensus.

Proposition 5.3.1 Ci is idempotent for any i = 1, . . . , n.

Proof: Using the general identities A2
i = Ai∆in,i = 0 and ∆in,iAi = Ai, one

can readily verify that for all i = 1, . . . , n it holds C2
i = Ci. �

Since Ci is idempotent, its eigenvalues are always either 0 or 1. Unfortunately

since it is not symmetric, it represents an oblique projection which does not result

in a contractive matrix in general.

We observe, however, that the system is conservative.

Proposition 5.3.2 System (5.6) evolves on the hyperplane

1Tx(t) + 1Tz(t) = 1Tx(0) + 1Tz(0).

Proof: For all i = 1, . . . , n, the row vector [1T 1T ] is a left eigenvector for

matrix Ci associated to eigenvalue 1, because it holds [1T 1T ]Ci = [1T (Pi + I −
Pi) 1

T (Γ̂i + Γi)] = [1T 1T ]. �

Since the system is autonomous and the companion initial state can be ar-

bitrary chosen, we select z(0) = 0. With such assumption we obtain that the

information about the average of the initial state is preserved despite communi-

cations are mono-directional and asynchronous. In particular, if there exists a

time t in which z(t) = 0, then at that time t it holds 1Tx(t) = 1Tx(0).



In the following we provide an analysis of the equilibrium states of the pro-

posed algorithm and corroborate the conjectured asymptotic stability of the equi-

librium states by simulations.

Let us now consider the equilibrium points.

Proposition 5.3.3 The consensus state in which x(t) = α1 for some scalar α

and z(t) = 0 is an equilibrium state for system (5.6).

Proof: For all i = 1, . . . , n, the column vector [1T 0T ]T is a right eigenvector

for matrix Ci associated to eigenvalue 1, because it holds

Ci(t)

[
1

0

]
=

[
Pi1

(I − Pi)1

]
=

[
1

0

]
,

due to the Laplacian property L1 = 0. �

We now consider the null space of the consensus matrices.

Proposition 5.3.4 For all i = 1, . . . , n, the kernel of Ci(t) has dimension dim(Ker(Ci)) =

|Ni(t)|+ 1.

Proof: It can be shown that the multiplicity of the null eigenvalue of Ci is

|Ni(t)| + 1. A set of linearly independent eigenvectors that form a basis of the

null space are:

• for j ∈ Ni a vector vj = [eTj − eTj ]
T ;

• a vector v̂i = [x̂T
i ẑTi ]

T with

x̂i(j) =

{
1 if j ∈ Ni,

0 otherwise

and

ẑi(j) =


−2δout,i if j = i,

1 if j ∈ Ni,

0 otherwise

.
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Figure 5.1: Network considered in Example 5.3.5 (left). Interaction topology

when node 2 performs a broadcast in Example 5.3.5 (right).

Example 5.3.5 Let us consider the network on the left of Fig. 5.1. When node

2 performs a broadcast, the interaction topology is represented by a directed graph,

shown on the right of Fig. 5.1. The adjacency matrix for the resulting graph is

A2 =


0 1 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 .

Following our previous de�nitions, δout,2 = 2, and we have:

P2 =


1/2 1/2 0 0

0 1 0 0

0 1/2 1/2 0

0 0 0 1

 ,

Γ2 =


1/2 1/4 0 0

0 0 0 0

0 1/4 1/2 0

0 0 0 1

 , Γ̂2 =


1/2 1/4 0 0

0 0 0 0

0 1/4 1/2 0

0 0 0 0

 ;

�nally

C2 =



1/2 1/2 0 0 1/2 1/4 0 0

0 1 0 0 0 0 0 0

0 1/2 1/2 0 0 1/4 1/2 0

0 0 0 1 0 0 0 0

1/2 −1/2 0 0 1/2 1/4 0 0

0 0 0 0 0 0 0 0

0 −1/2 1/2 0 0 1/4 1/2 0

0 0 0 0 0 0 0 1


.



By Proposition 5.3.4 the following is a basis of linearly independent eigenvec-

tors for the null space:

[
v1 v3 v̂2

]
=



1 0 1

0 0 0

0 1 1

0 0 0

−1 0 1

0 0 −4

0 −1 1

0 0 0


.

�

Now we consider a property that holds for strongly connected graphs.

Proposition 5.3.6 If

Ĝ[t1, t2] =

t2∪
t=t1

Gi(t), i = I(t)

is strongly connected, then

dim

(
t2∨

t=t1

ker(Ci(t))

)
= 2n− 1,

where ∨ denotes the linear combination of vector spaces.

Proof: To show this, let us take the union of all basis vectors for the null

spaces of all matrices Ci, as de�ned in the proof of Proposition 5.3.4. Since

Ĝ[t1, t2] is strongly connected (su�cient condition), each node is at least once a

transmitter and at least once a receiver. Thus combining all vectors we obtain the

following matrix

V = [v1 · · · vn v̂1 · · · v̂n] =

[
I A(t)

−I A(t)− 2∆out(t)

]
.

By elementary row operations we show this matrix to be equivalent to[
I A(t)

0 2A(t)− 2∆out(t)

]
=

[
I A(t)

0 −2Lout(t)

]



where Lout = ∆out − A denotes the out-degree Laplacian, whose rank is n − 1 if

the graph is strongly connected.

Thus matrix V has rank 2n− 1 and this proves the result. �

Thanks to the above propositions the following important result can be proved.

Proposition 5.3.7 If ∀t > 0 there exists T (t) > 0 such that

Ĝ[t, t+ T (t)] =

t+T (t)∪
τ=t

Gi(τ), i = I(τ),

is strongly connected, then the subspace

span

([
1

0

])
is the largest invariant subspace for system (5.6).

Proof: The fact that span
([
1T0T

]T)
is an invariant subspace was shown is

Proposition 5.3.3. The fact that it is the largest invariant subspace follows from

Proposition 5.3.6. In fact, the strongly connectedness of Ĝ[t, t+ T (t)] implies the

existence of a basis composed by vector
[
1T0T

]T
plus a set of vectors that span

K =
∨t+T (t)

τ=t ker(Ci(τ)). Hence any vector that has initially a component along a

basis vector of K will have that component eventually �ltered. �

We point out that the assumption of strong connectivity of the network topol-

ogy does not require a �xed and constant time window T over which it is strongly

connected. For Proposition 5.3.7 to hold it is su�cient that for any t there exists

a T (t) > 0 possibly varying but �nite in which Ĝ[t, t+T (t)] is strongly connected.

Note that such assumption is one of the most general assumptions that can be

made regarding network connectivity because if for some time instant t there does

not exists a T (t) > 0 in which Ĝ[t, t + T (t)] is strongly connected, then starting

from such t there exists at least a node not reachable from all the others.

Now we state the main conjecture regarding the proposed algorithm for which

a formal proof is missing, further evidence of the convergence properties of the

algorithm is shown by simulations.



Conjecture 5.3.8 If ∀t, there exists T (t) > 0 such that

Ĝ[t, t+ T (t)] =

t+T (t)∪
τ=t

Gi(τ), i = I(τ)

is strongly connected, if the system evolves according to the state update rule

described by (5.6) with z(0) = 0, then:

lim
t→∞

x(t) =
11T

n
x(0).

�

The above conjecture is validated by several numerical experiments, some

of which are reported in the following simulations section, and by the following

theoretical observations.

First, by Proposition 5.3.3, it holds that [α1T 0T ]T is an equilibrium state

for system (5.6) for some scalar α. Secondly, by Proposition 5.3.2, being by

assumption z(0) = 0, it holds that 1Tx(t) + 1Tz(t) = 1Tx(0) for any t. Finally,

by Proposition 5.3.7, span
([
1T0T

]T)
is the largest invariant subspace for system

(5.6).

Unfortunately, the problem of deciding wether the random product of a �nite

set of matrices converges is still an open problem in matrix theory and all the

results are either not applicable or relate to classes of matrices not suitable for

our purposes.

The proposed conjecture, while intuitive and validated by simulation results

poses great di�culties in its proof. First, the description of the stability of a

switching linear system of the type of system (5.6) has been treated only for

simple cases in which at each instant of time t the system matrix is at least para-

contractive. Others have used Markov chain theory and applied it to the study

of consensus problems. Some other results use the Common Lyapunov function

approach to study the convergence properties of such systems. In our case the

system matrix C is not symmetric, is not contractive, nor is it with non-negative

elements thus invalidating almost all known general results for stability analysis

of such system.



5.4 Simulations

In this section we provide simulations in order to corroborate the algorithm anal-

ysis.

Each node is initialized with values between 0 and 1 chosen at random from a

uniform distribution. The simulations are scaled respect to the number of nodes

in the network for topologies whose features do not change as the number of

nodes is increased.

We now de�ne an error performance index:

V (t) = ∥x(t)− 11T

n
x(0)∥2 + ∥z(t)∥2.

Such index is a measure of how far the state of the network is from its equi-

librium state, namely

x(∞) =
11T

n
x(0), z(∞) = 0.

The convergence time is function of the network topology and the number of

nodes. Let us de�ne the convergence time proposed in the simulations as

Tcon = inf{τ > 0 :
V (τ)

V (0)
< 0.05}, (5.7)

i.e. the number of broadcasts needed such that the error modeled by the

performance index V (t) becomes less then 5% of its value at initialization time.

Note that, since V (t) is not a non-increasing function of t, the fact that V (t) is

less than 5% of its initial value at a given time t, does not imply that it remains

less than this value for all τ > t.

The following simulations show the average value of Tcon over 100 realizations

of the algorithm. We consider three di�erent topologies:

• Fully connected topology : each broadcast is received by every node in the

network.

• Line topology : each broadcast is received only by the 2 adjacent nodes of

the broadcaster expect for the one of the end nodes.

• Square grid topology : each broadcast is received only by those nodes in

proximity of the broadcaster in a square grid.
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Figure 5.2: Average value of Tcon for a fully connected network with respect to

the number of nodes.

The selected topologies specify the edges that may be selected by the gossip

algorithm at any given time instant. We simulated the algorithm on regular and

well de�ned graphs topologies so that the presented simulations results are easily

reproducible. Furthermore by selecting well de�ned topologies we can easily com-

pute average convergence times when transmitter nodes are selected at random.

On the contrary, in the case of random topologies the convergence time not only

would vary depending on the edge selection process but also due to the given

realizations of the random topologies, thus greatly increasing the variance of the

convergence time and impairing the clarity of the results.

Fig. 5.2 is relative to simulations performed on fully connected networks with

an increasing number of nodes. Simulations show that the average convergence

time scales linearly with the number of nodes as Tcon ≈ 10n.

In Fig. 5.3 the simulations are performed for line networks of increasing

number of nodes. Simulations show that the convergence time scales polynomially

respect to the diameter of the graph which is equal to n− 1 for line graphs.

In Fig. 5.4 the simulations are performed for square grid networks of in-

creasing number of nodes, such that the total number of nodes is perfect square.

Simulations show that the convergence time scales polynomially respect to the

diameter of the graph which is equal to
√
n− 1 for grid graphs.
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Figure 5.3: Average value of Tcon for a line network with respect to the number

of nodes.
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Figure 5.4: Average value of Tcon for a square grid network with respect to the

number of nodes.



The improvement of the proposed algorithm respect to other gossip algorithms

is that by using broadcasts the inherent parallelism in a distributed network is

fully exploited between all the nodes and not only between nodes not directly

connected. This feature is especially relevant in networks with small diameter

where few nodes have a very high out-degree such as small world networks.

A comparison with the Standard Gossip based on Broadcast

We now compare the proposed algorithm with a simple gossip algorithm illus-

trated in (39, 102) without our average preserving properties. In these works

a gossip algorithm based on broadcasts is studied which can be summarized as

follows.

Algorithm 6 (Standard Gossip based on Broadcasts (SGB))

• At each instant of time a node broadcasts its value to its neighbors.

• If at any time a node listens to a broadcast, it computes the average between

its state and the broadcaster state. It then takes this new value as its state.

• Repeat until all the nodes have the same value. �

Remark 5.4.1 The following numerical simulations compare our algorithm with

the SGB algorithm (39, 102) in terms of convergence rate. However, the main

di�erence among the two algorithms is qualitative: the proposed algorithm con-

verges exactly to the average of the initial states while the SGB algorithm may

converge to any point inside the convex hull spanned by the initial network con-

ditions depending on the sequence of broadcasts. It has been shown that, if the

number of nodes is su�ciently high and broadcasts occur at random, then the SGB

converges statistically su�ciently close to the initial average. Indeed, the main

point of adding more sensors to a network to measure the same scalar quantity

is to get out of cheap sensors a measurement whose precision is far greater than

the precision of the single units but this can be achieved through averaging only if

the network does actually converge to the initial average. �

Now, since the SGB algorithm does not converge to the average, we de�ne

a di�erent performance index which becomes zero only when each node has the

same value:



V̂ (t) = ∥x(t)− 11

n
x(t)∥.

In the simulations of Algorithm 6 we adopt the following de�nition of conver-

gence time:

T̂con = inf{τ > 0 :
V̂ (τ)

V̂ (0)
< 0.05}. (5.8)

To corroborate the simulation results, we show the average error over the 100

realizations respect to the initial average of the network at t = T̂con, namely

Err(T̂con) =
∥x(T̂con)−

11

n
x(0)∥

n
.

The simulations are again performed for the three topologies taken into con-

sideration:

• Simulations on a Fully connected topology are shown in Fig. 5.5. The conver-
gence time results to be constant when increasing the number of nodes. This can

be explained by the fact that being the network fully connected, at each broad-

cast all the nodes receive information disregarding the size of the network. In

Fig. 5.6 the average error at convergence time is shown for the same simulations:

the error decreases as more nodes are added.

• Simulations on a Line topology are shown in Fig. 5.7. The convergence

time appears to be polynomial in the number of nodes and an order of magnitude

lower than our proposed algorithm. In Fig. 5.8 is shown the average error at

convergence time for the same simulations: also in this case adding more nodes

reduces the �nal average error.

• Simulations on a Grid topology are shown in Fig. 5.9. The convergence time

appears to be polynomial and faster than our proposed algorithm. In Fig. 5.10

is shown the average error at convergence time for the same simulations: again

it decreases when increasing the number of nodes.

Summarizing, simulations show that the SGB algorithm achieves better con-

vergence times for growing network size trading o� a �nite error in the �nal state

that decreases with network size. Such trade-o� is the highest when the number

of nodes is small.
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Figure 5.5: Average value of Tcon (dashed line) and T̂con (continuous line) for a

fully connected network with respect to the number of nodes.
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Figure 5.6: Average value of Err(T̂con) for a fully connected topology using the

SGB algorithm.
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Figure 5.7: Average value of Tcon (dashed line) and T̂con (continuous line) for a

line topology with respect to the number of nodes.
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Figure 5.8: Average value of Err(T̂con) for a line topology using the SGB algo-

rithm.
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Figure 5.9: Average value of Tcon (dashed line) and T̂con (continuous line) for a

square grid topology with respect to the number of nodes.
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Figure 5.10: Average value of Err(T̂con) for a square grid topology using the SGB

algorithm.



A comparison with standard Gossip based on pairwise aver-

aging

We now compare our algorithm with the standard gossip algorithm based on

random pairwise averaging (SGP) (38, 92, 93, 94). We believe that comparing

the performances of these two algorithms is signi�cant because they both converge

exactly to the average of the initial state of the network.

A gossip algorithm based on pairwise communications can be summarized as

follows.

Let G = {V,E} represent the network topology at time t. Let x(t) be an

n-element vector representing the state of the network where the generic element

xi(t) is the state of node i. Let E(t) : R+ → E be the edge selection process that

at any given time instant outputs an edge eij ∈ E.

Algorithm 7 (Standard Gossip based on pairwise averaging)

• Let t = 0 and x(t) = x0 be the initial state of the network.

• Select the edge eij given by the edge selection process E(t).

• Let 
xi(t+ 1) =

xi(t) + xj(t)

2
,

xj(t+ 1) =
xi(t) + xj(t)

2
.

• Let t = t+ 1 and go back to step 2. �

Remark 5.4.2 Before presenting the results of numerical simulations, let us dis-

cuss some qualitative di�erence between the two algorithms: the proposed algo-

rithm works on arbitrary strongly connected directed graphs while the SGP algo-

rithm requires bidirectional information exchange at each time step and thus can

only be applied to connected undirected graphs. For this reason we can compare

the performance of the two algorithms only for those restricted network topologies

that satisfy the connectivity requirements of the SGP algorithm.

Moreover, several gossip algorithms based on pairwise averaging di�er in the

edge selection process, for instance in (38) the nodes are selected according to a



Convergence time Total Energy

Broadcast Transmission SGP EGB SGP EGB

radius power Algorithm Algorithm Algorithm Algorithm

1.10 1.23 1406 9405 1406 9406

1.57 2.43 931 3948 2095 8883

2.10 4.41 680 1271 2723 5086

2.97 8.82 528 421 4445 3544

3.10 9.61 494 341 4446 3077

4.10 16.81 445 253 7133 4059

4.39 19.27 451 241 8352 4455

5.10 26.01 426 227 10659 5684

5.80 33.64 434 236 14100 7678

6.10 37.21 433 233 15592 8391

7.22 52.13 434 228 21894 11511

8.63 74.48 426 232 30809 16810

Table 5.1: Simulation on a 49 node grid proximity network.



Poisson process. In general, the edge selection process a�ects the convergence time

in absolute terms, while the sequence in which edges are chosen a�ects the number

of iterations required, which indirectly a�ects the convergence time. To perform a

single iteration of the GSP algorithm requires two transmissions, node i needs to

send it's state value to node j and node j has to reply to node i with its own state.

In this analysis we neglect the complexity of data link and physical layers because,

even with this crude simpli�cation of the bidirectional communication process, we

can show the advantage of our algorithm respect to the SGP algorithm in terms

of the total energy required to achieve a given performance.

�

In the following simulations a set of 49 wireless sensors has been placed in

a 7 × 7 grid spaced 1 unit of length [m] between each other. The network has

been simulated by varying the total transmitted power of each node to compute

how the energy consumed by the algorithms scale with the transmitted power on

proximity graphs. Note that we take into consideration a grid network and not the

more general set of random geometric graphs, to eliminate the contribution of the

randomness of the topology to the energy spent during the algorithm execution,

which is already random due to the particular edge selection process.

In these simulations we take inspiration from (94) that as in our case simu-

lates changes in network topologies due to increases in transmitted power. Such

changes of the communication range are proportional to the square root of the

transmitted power taking into account total communication costs in the perfor-

mance index.

To model the proximity range as function of the transmitted power we consider

the standard equation for radio frequency communications:

Pr =
Ptgtgr
4πr2

where Pt and Pr are, respectively, the transmitted and received power in watt

[W ], gt and gr are the antenna gains of the receiver and the transmitter and r is

the line of sight distance between transmitter and receiver. The receiver, given

the technological constraints due to the electronics and noise, needs to receive at

least a given power Pr to be able to decode the message sent.



In our simulations we simplify this model by allowing the e�ective commu-

nication radius r to scale as r ∝
√
Pt. The topology of the grid network then

requires at least Pt = 1 to be connected, i.e. to allow each node to communi-

cate bidirectionally with at least one neighbor. Increasing the transmitted power

the number of neighbors that each node can communicate with increases until

the transmitted power is enough to reach any node in the network, roughly for

r = 6
√
2 and Pt = r2 = 72.

Each transmission is assumed to last τ seconds and so consume E = Ptτ

[J ] units of energy. Again we simplify the simulation assuming τ = 1 since

the improvement of the proposed algorithm respect to the SGP algorithm is the

reduction of total number of transmissions and does not depend on τ .

The execution of the algorithms is stopped as soon as the performance index

Ṽ (t) = ∥x(t)− 11T

n
x(0)∥2

reaches 10% of its initial value, i.e., we de�ne the average convergence time as

T̃con = inf{τ > 0 :
Ṽ (τ)

Ṽ (0)
< 0.1}, (5.9)

In Fig. 5.11 and 5.12 a comparison between the proposed algorithm (contin-

uous line with square markers) and the SGP algorithm (dashed line with round

markers) is shown. In particular, in Fig. 5.11 the total number of transmissions

is plotted against the broadcast radius which a�ects the topology by increasing

the number of neighbors of each agent in the grid. In Fig. 5.12 the total energy

consumption is shown respect to the transmitted power at the nodes.

It can be seen that, when the number of neighbors of each node is small due

to little transmitted power, the SGP algorithm performs better both in number

of transmissions and energy saving. This is reasonable because there is no gain in

performing broadcasts if the number of nodes that can listen to it is very small. As

soon as the out-degree of each node increases for increasing values of the broadcast

radius, the performance of the proposed algorithm based on broadcasts becomes

signi�cantly better of almost one order of magnitude in number of transmissions

and energy saving. In particular, it is clear that the proposed algorithm achieves

a better performance, in the case of the grid topology, achieving a minimum-

energy consumption when the broadcast radius equals 3.1, corresponding to the
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Figure 5.11: Total number of transmissions executed by the SGP algorithm

(dashed line) and the proposed algorithm (continuous line) respect to the broadcast

radius for a grid of sensors.
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Figure 5.12: Total energy in [J] consumed by the execution of the SGP algorithm

(dashed line) compared with the proposed algorithm based on broadcasts respect

to normalized transmitted power [W] for a grid of sensors.

case in which each node can reach other nodes distant at most 3 rows or columns

in the grid network (sample marked in red). The results of the above numerical

simulations are also summarized in Table 5.1.

5.5 Conclusions

In this chapter a novel gossip algorithm based on broadcasts that achieves consen-

sus on the average on arbitrary strongly connected digraphs has been proposed.

The study of the convergence properties is preliminary and convergence is shown

by simulations. The proposed algorithm is based on gossip and preserves the

information about the average of the initial state during its execution. The main

feature of our algorithm is that it converges exactly to the average of the initial

state. Moreover, it works on arbitrary strongly connected digraphs.

A comparison with the standard gossip algorithm based on broadcast and with



the standard gossip based on pairwise averaging has also been made. Simulations

show that the proposed algorithm achieves better convergence rates and energy

saving than the standard gossip based on pairwise averaging if the number of

neighbors of each node is su�ciently high.



Chapter 6

Gossip based consensus in absence

of common reference frames

6.1 Introduction

In recent years multi agent systems have drawn the attention of a huge amount of

researchers, for a representative example see (8, 15, 103, 104). In this framework

Laplacian based controllers (17, 48, 105, 106) have been studied in many forms

and applications, for instance rendezvous (18), leader following (107), attitude

control (108) and many others (109, 110, 111). The majority of these algorithms,

dealing with decentralized motion coordination problems, assume that the agents

have access to absolute position information (GPS) and thus have a common

global reference frame that makes it easy to interpret the information passed by

other agents. Even when in multi agent systems the agents are not supposed

to know their absolute position, many times they are assumed to have a com-

mon attitude reference to exchange information that can be achieved by using a

compass, gyroscopes and occasionally gravity as common reference for their co-

ordinate system. For space applications another technological solution is to use

a frame of �xed stars to have a common reference. In all these instances several

technological countermeasures have to be undertaken for the implementation of

coordination algorithms increasing the total costs of the single agents. We believe

that removing such hidden assumption could signi�cantly advance the technolog-

ical feasibility of mobile swarm of agents, reducing their dependence on the global

93



positioning system in the low level control loops. Furthermore in many space ap-

plications, where networks of mobile robots are envisioned in the so not distant

future, the absence of the need for absolute position information or a common

coordinate system could prove to be an essential robust feature.

On the other hand, many works on motion coordination for multi-agent sys-

tems that do not assume to have neither a common reference frame nor absolute

positions su�er greatly from the very limited amount of information that can be

retrieved locally, resulting in limited capabilities of the coordination algorithms.

Indeed, the availability of a common reference frame turns out to be a critical

issue for several applications. For instance, it could help to signi�cantly simplify

any task involving the formation control of a team of robots, or the tracking of

an object. Generally speaking, this can be thought as a service for multi-agent

systems or sensor networks by which any constraint on the absence of a common

reference frame could be relaxed, hence simpler or more e�ective algorithms could

be developed.

In this chapter a novel approach to the problem of decentralized agreement

toward a common point in space in a multi-agent system is proposed. The pro-

posed approach allows to perform an agreement on the network centroid, on a

common reference frame and therefore on a common heading. Using this infor-

mation a global positioning system for the agents using only local measurements

can be achieved. Furthermore only point-to-point asynchronous communications

between neighboring agents are allowed thus achieving robustness against ran-

dom communication failures. The proposed algorithms can be thought as general

tools to locally retrieve global information usually not available to the agents. In

this way, any assumption on the absence of a common reference frame could be

relaxed and therefore, simpler algorithms could be developed.

Background on Gossip algorithms over networks

Let the network of agents be described by a time-varying graph G(t) = (V,E(t)),

where V = {vi; i = 1, . . . , n} is the set of nodes (agents) and E(t) = {eij =

(vi, vj)} is the set of edges (connectivity) representing the point-to-point commu-

nication channel availability at time t. A position pi ∈ Rd in the dth dimensional

space is associated to each node vi ∈ V , with i = 1, . . . , n. In particular, an edge



representing a connection between two agents exists if and only if the distance

between these agents is less then or equal to their sensing radius r, namely

E(t) = {eij : ∥pi(t)− pj(t)∥ ≤ k, i ̸= j},

where ∥ · ∥d is the Euclidean norm in Rd. Therefore, a generic couple of agents

{i, j} is able to sense ∥pi − pj∥ reciprocally. In addition, each agent has a local

reference frame de�ned by an orthonormal basis of vectors in Rd �xed on it and,

is able to determine the direction in which neighbors are sensed, strictly with

respect to its own local reference frame.

In the proposed framework a gossip algorithm is de�ned as a triplet {S,R, e}
where

• S = {s1, . . . , sn} is a set containing the local estimate si of each agent i in

the network.

• R is a local interaction rule that given edge ei,j and the states of agents i, j

R : (si, sj) ⇒ (ŝi, ŝj).

• e is a edge selection process that speci�es which edge eij ∈ E(t) is selected

at time t.

From an algorithmic point of view, a possible implementation of the gossip

algorithm described above is given in Algorithm ??.

De�nition 6.1.1 Let us de�ne G(t, t + ∆t) = {V,E(t, t + ∆t)}, where E(t, t +
∆t) =

∪t+∆t
k=t e(k), as the graph resulting from the union of all the edges given by

the edge selection process from time t to t+∆t.

6.2 Problem description

Let us consider a network of agents with limited sensing capabilities. Each agent,

which is characterized by a position in a 2-dimensional space, is able to cooperate

with its neighboring agents, i.e., agents that are within its sensing radius. The

following assumptions on the network of agents are made:



Algorithm 1: Gossip Algorithm

Data: t = 0, si(0) = si0 ∀ i = 1, . . . , n.

Result: si(tstop) ∀ i = 1, . . . , n.

while stop_condition do

• Let t = t+ 1. ;

• Select an edge eij ∈ E(t) according to e. ;

• Update the states of the selected agents applying R:

(si(t+ 1), sj(t+ 1)) = R(si(t), sj(t)).

end

Assumptions 1

• The network can be described by a connected undirected switching graph.

• Sensing range is limited by a maximum sensing radius r.

• Communications are asynchronous.

• Each node can sense the distance between itself and its neighbors.

• Each node can sense the direction in which it sees its neighbors with respect

to its local reference frame, arbitrary �xed on it.

�

Note that, for each agent i it is possible to express its estimate si with respect

to a global reference frame by introducing a rotation matrix Ri as follows:

sgi = Risi + pi. (6.1)

Our �rst objective is to make the local estimate of each agent converge to a

common value by applying an iterative algorithm so that:

∀i, lim
t→∞

sgi(t) = Risi(t) + pi =
1

n

n∑
i=1

(
Risi(0) + pi

)
.



6.3 Agreement on a common point in a 2-D space

In this section, we specify an interaction rule R such that an agreement on a

common point under assumptions 1 is achieved.

Given a couple of nodes {i, j} for which an edge exists, that is eij ∈ E(t), let

us de�ne the direction for which node i is able to sense node j with respect to its

local frame as

ĉij = RT
i

(pj − pi)

∥pj − pi∥
,

where pi, pj ∈ R2. Clearly, the following property holds Ricij = −Rjcji. Further-

more we de�ne the orthogonal versor ĉij so that a right handed frame is built as

follows:

[
Riĉ

⊥
ij

0

]
=

 0

0

1

 ∧

[
Riĉij

0

]

In addition, let the relative distance between two nodes i and j be:

dij = dji = ∥pi − pj∥2.

Finally, let the network of agents be deployed in a 2-dimensional space. The

proposed algorithm consists of an edge selection process e that speci�es which

edge eij ∈ E(t) is active at time t and a local interaction rule R that speci�es

how to update the estimates of agents vi and vj.

Now follows the de�nition of S and R:

De�nition 6.3.1 (S)

Let S = {s1, s2, . . . , sn}, with si ∈ R2, ∀i = 1, . . . , n be the set of current agents

local estimates, each one in their own reference frame. �

De�nition 6.3.2 (R)



Figure 6.1: Example of algorithm iteration involving two nodes. a) With respect

to the agents local reference frames. b) With respect to a global reference frame.

• Let

∆(t) =
dij − sj(t)

T ĉji + si(t)
T ĉij

2
,

∆⊥(t) =
si(t)

T ĉ⊥ij − sj(t)
T ĉ⊥ji

2
,

(6.2)

• R:

si(t+ 1) = ∆(t) · ĉij +∆⊥(t) · ĉ⊥ij, (6.3)

�

As a support for the algorithm description, Fig. 6.2 depicts a possible scenario

involving two nodes, namely i and j.

A couple of remarks are now in order:

• This update rule leads itself to an easy decentralized implementation of the

algorithm,

• All the parameters are local to the agents and independent to any speci�c

reference frame as they rely on a common direction given by the line of

sight between the two agents.

• From an implementation point of view, each quantity such as sj(t)
T ĉji can

be locally computed by each agent in its own coordinates frame.

• The proposed gossip algorithm allows to converge to a common point in a

2-dimensional space. As it will be shown, the convergence to the centroid

of the network is simply a consequence of the particular choice of the initial



conditions.

Lemma 6.3.3 The gossip algorithm {S,R, e}, with S,R de�ned respectively as

in (6.3.1), (6.3.2) can be equivalently stated with respect to a global common

reference frame as follows:

x(t+ 1) = W (e(t))x(t),

y(t+ 1) = W (e(t))y(t).

whereW (e(t)) is a matrix representation of the update rule R, x(t) = [x1(t), . . . , xn(t)]
T ∈

Rn, y(t) = [y1(t), . . . , yn(t)]
t ∈ Rn, and sgi(t) = [xi(t) yi(t)]

T .

Proof: Let us consider a generic update for a couple of agents {i, j}. Given
the estimates (si(t), sj(t)) at time t, according to the rule R given in (6.3.2) the

estimates at time t+ 1 would be:

si(t+ 1) = ∆(t) · ĉij +∆⊥(t) · ĉ⊥ij,

Now by substituting the ∆ according to the de�nition given in (6.2) we have:

si(t+ 1) =
1

2

(
dij − sj(t)

T ĉji + si(t)
T ĉij
)
· ĉij+

+
1

2

(
si(t)

T ĉ⊥ij − sj(t)
T ĉ⊥ji
)
· ĉ⊥ij,

At this point, let us consider the update of the agent i with respect to a global

frame as given in (6.1):



sgi(t+ 1) = Ri
1

2

(
dij − sj(t)

T ĉji + si(t)
T ĉij
)
· ĉij

+
1

2
Ri

(
si(t)

T ĉ⊥ij − sj(t)
T ĉ⊥ji
)
· ĉ⊥ij + pi

=
1

2

(
dij − sj(t)

T ĉji + si(t)
T ĉij
)
· x̂ij+

+
1

2

(
si(t)

T ĉ⊥ij − sj(t)
T ĉ⊥ji
)
· ŷij + pi

where [x̂ij, ŷij]
T are the equivalent of [ĉij, ĉ

⊥
ij]

T in a common global reference frame.

At this point, with respect to the local reference frame of agent i we have that:

xsi = si(t)
T ĉ ysi = si(t)

T ĉ⊥

xsj = dij − sj(t)
T ĉji ysj = −sj(t)

T ĉ⊥ji

which allows to re-write the previous equation as follows:

sgi(t+ 1) =

(
xsi + xsj

2

)
· x̂ij +

(
ysi + ysj

2

)
· ŷij + pi

=
xsi x̂ij + ysi ŷij + pi

2
+

xsj x̂ij + ysj ŷij + pi

2

=
sgi(t) + sgj(t)

2

Therefore according to the updating rule R given in (6.3.2) with respect to a

global reference frame we have:

sgi(t+ 1) =
sgi(t) + sgj(t)

2

sgj(t+ 1) =
sgi(t) + sgj(t)

2

Hence, we can decouple the coordinate system and study the evolution of the

states in the two di�erent axes separately:

x(t+ 1) = W (e(t))x(t),

y(t+ 1) = W (e(t))y(t).

where, if at time t edge eij = (i, j) is selected, we have:



W (eij) = I − (êi − êj) (êi − êj)
T

2
where êi = [0 . . . 0 1︸︷︷︸

i

0 . . . 0]T is a n × 1 vector with all the components equal

to 0 but the i-th component equal to 1. �

Now, let us de�ne the set of �xed points C(eij) = Fix W (eij) = {x ∈ Rn :

W (eij)x = x} and let Ĉ(t,t+∆t) =
∩

eij∈E(t,t+∆t)C(eij) be the intersection of thes

set of �xed points over time [t, t+∆t]. Now, let us de�ne the quasi projection of

x0 onto C as Qc x0 = {x ∈ C : ∥x− c∥ ≤ ∥x0 − c∥,∀c ∈ C} (60).

The following Lemma states that if the graph representing the union of the

selected edges is connected over a window of time, then the space representing

the intersection of the images of the matrices corresponding to those edges is

span{1n}.

Lemma 6.3.4 If e is such that ∀t, ∃ ∆t : G(t, t+∆t) is connected, then:

Ĉ(t,t+∆t) =
∩

eij∈E(t,t+∆t)

C(eij) = span{1n} (6.4)

where 1n = [1, . . . , 1]T is a n× 1 unit vector with all the components equal to 1.

Proof: For any given edge eij the related matrix W (eij) is an orthogonal projec-

tion matrix, i.e., W is idempotent and symmetric. Moreover:

C(eij) = Ran (W (eij)) = Ker (I −W (eij))

Let us recall that for any orthogonal projection matrix W (eij) the following prop-

erty holds (): [∩
Ran (W (eij))

]⊥
=
∪

Ker (W (eij))

Now, let us de�ne the structure of the kernel for a generic matrix W (eij)) as

follows:

Ker (W (eij)) = span{[0, . . . , 1︸︷︷︸
i

, . . . 0, . . . , −1︸︷︷︸
j

, . . . 0]T}



Note that the vector bij = [0, . . . , 1︸︷︷︸
i

, . . . 0, . . . , −1︸︷︷︸
j

, . . . 0]T can be thought

as the element of the incidence matrix I (42) for the graph G(t, t + ∆t) which

describes the link between agent i and agent j. At this point, by exploiting this

analogy along with results coming from the graph theory we know that:

rank (I) = n− c

where n is the number of vertices and c the number of connected components.

Hence, if the graph G(t, t+∆t) is connected we will have that:

rank (I) = n− 1.

Therefore:

rank (Ĉt,t+∆t) = rank (I)⊥ = 1.

Moreover, by noticing that I is by construction a row-sum matrix, the follow-

ing holds:

Ĉ(t,t+∆t) = Ran (I)⊥ = span{1n}.

�

To link the connectivity of the graph representing the union of the selected

edges to the contractive property respect to span{1n} of the product of the para-
contracting matrices W (eij), the following lemma is needed:

Lemma 6.3.5 If e is such that ∀t, ∃ ∆t : G(t, t + ∆t) is connected, then there

exists a norm such that:

∥W (eij) x− c∥ ≤ ∥x− c∥, (6.5)

∀ c ∈ Ĉ(t,t+∆t), ∀ eij ∈ E(t,t+∆t), ∀x ∈ Rn

∥Φ(t,t+∆t) x− c∥ < ∥x− c∥, (6.6)

∀ c ∈ Ĉ(t,t+∆t), ∀x ∈ Rn\Ĉ(t,t+∆t)



where Φ(t,t+∆t) =
∏

eij∈E(t,t+∆t)W (eij).

Proof: For any given edge eij the related matrix W (eij) is an orthogonal

projection matrix, i.e., W is idempotent and symmetric. Moreover, the following

holds:

∥W (eij) x∥ ≤ ∥x∥, ∀x ∈ Rn.

In our case, both the euclidian norm ∥·∥ and the in�nity norm ∥·∥∞ are suitable.

Using the euclidian norm and the fact that c = γ1 with γ ∈ R, we notice that:

∥x− c∥2 = ∥x∥2 + ∥c∥2 − 2 cTx

Therefore, the inequality (6.5) can be rewritten as follows:

∥W (eij) x− c∥ ≤ ∥x− c∥,
∥W (eij) x∥2 + ∥c∥2 − 2 cTW (eij) x≤∥x∥2 + ∥c∥2 − 2 cTx

At this point by noticing that any matrixW (eij) is a row-sum matrix the following

holds:

1T
nW (eij) = 1T

n W (eij)1n = 1n

Now, by recalling that for any c ∈ Ĉt,t+∆t we have c = γ · 1n, the following holds:

cTW (eij) = γ · 1T
n W (eij) = γ · 1T

n = cT

An therefore the previous inequality can be rewritten as follows:

∥W (eij) x∥2 − 2 cTx ≤ ∥x∥2 − 2 cTx

∥W (eij)x∥2 ≤ ∥x∥2

which by construction is always veri�ed ∀ c ∈ Ĉ(t,t+∆t), and ∀ eij ∈ E(t,t+∆t).

A similar argument holds for inequality (6.9). In particular, in this case it

should be noticed that for any matrix W (eij) the following holds:



∥W (eij) x∥ < ∥x∥, ∀x /∈ C(eij).

Therefore, if we consider the product Φ(t,t+∆t) =
∏

eij∈E(t,t+∆t) W (eij), we have

∥Φ(t,t+∆t) x− c∥ < ∥x− c∥, ∀ c ∈ Ĉ(t,t+∆t), ∀x /∈ Ĉ(t,t+∆t)

as since G(t, t +∆t) is connected, ∀x /∈ Ĉ(t,t+∆t) there will always be at least an

edge eij so that x /∈ C(eij) and therefore

∥W (eij)x∥ < ∥x∥.

�

In the above Lemma 6.3.5 it is shown that the agents estimates eventually con-

tract toward span{1n}. In the following Lemma it is shown that the trajectories

of the system actually converge to some point in span{1n}.

Lemma 6.3.6 If e is such that ∀t, ∃ ∆t : G(t, t + ∆t) is connected, then for

any sequence of intervals {li} with li = li−1 +∆ti and lj > li ∀ j > i, it holds:

d (x(li), span{1n}) → 0. (6.7)

Proof: The proof is a simple consequence of the results given in Lemma (6.3.4)

and Lemma (6.3.5). In particular, by exploiting Lemma (6.3.4) we have that for

any sequence of intervals {li}:

Ĉ(l0,l1) = Ĉ(l1,l2) = . . . = Ĉ(li−1,li) = span{1n}.

Moreover, by exploiting Lemma (6.3.5) we have that for any sequence of intervals

{li}:

∥Φ(li−1,li) x(li−1)− c∥ < ∥x(li−1)− c∥
...

∥Φ(l0,l1) x(l0)− c∥ < ∥x(l0)− c∥



Therefore:

d(x(li), span{1n}) → 0 ∀ c ∈ span{1n}

�

Theorem 6.3.7 Let us consider a gossip algorithm {S,R, e}, with S,R de�ned

respectively as in De�nition (6.3.1), and De�nition (6.3.2). If e is such that

∀t, ∃ ∆t : G(t, t+∆t) is connected, then:

lim
t→∞

sgi(t) = Risi(t) + pi =
1

n

n∑
i=1

(
Risi(0) + pi

)
, (6.8)

∀ i = 1, . . . , n.

Proof: By following Lemma (6.3.3), the proposed gossip algorithm can be re-

written in a common global reference frame. Moreover, the state evolution can

be investigated independently for each axis as follows:

x(t+ 1) = W (e(t))x(t),

y(t+ 1) = W (e(t))y(t).

Let us focus only on the x(t) axis as the same holds for the y(t) axis. Now, due

to Lemma (6.3.4) we know that for any given interval [t, t+∆t]:

Ĉ(t,t+∆t) =
∩

eij∈E(t,t+∆t)

C(eij) = span{1n}

In addition, due to Lemma (6.3.5) we know that for any given interval [t, t+∆t]

such that G(t+∆t) is connected the following holds:

∥Φ(t,t+∆t) x− c∥ < ∥x− c∥,
∀ c ∈ Ĉ(t,t+∆t), ∀x ∈ Rn\Ĉ(t,t+∆t)

Finally, due to Lemma (6.3.6) we know that exists a sequence of intervals li so

that:



d (x(li), span{1n}) → 0.

Therefore, the sequence {x(li)} converges in norm to some points in span{1n},
that is

∥x(li)− c∥ → 0 then {x(li)} → c, c ∈ span{1n}.

In addition, each single matrix W (eij) is a symmetric row-sum matrix:

1T
nW (eij) = 1T

n W (eij)1n = 1n.

Therefore, the sum of the vector components must be preserved over time at each

iteration. This implies that for a given c = γ 1n:

n∑
i=1

ci =
n∑

i=1

xi(l0)

n γ =
n∑

i=1

xi(l0)

γ =

∑n
i=1 xi(l0)

n
.

From this it follows that:

x(li) →
∑n

i=1 xi(l0)

n
1n.

In the same way, for the yg(t) we have:

y(li) →
∑n

i=1 yi(l0)

n
1n.

Therefore, for each agent i we have:

sgi(t) →


∑n

i=1 xi(l0)

n∑n
i=1 yi(l0)

n

 =
1

n

n∑
i=1

(
Risi(0) + pi

)
which proves the statement.

�



Corollary 6.3.8 Let us consider the gossip algorithm de�ned by {S,R, e} as in

Theorem 6.3.7. If each agent initializes its state si(0) = 0 to zero, then all the

agents estimates converge to the network centroid:

lim
t→∞

sgi(t) = Risi(t) + pi =
1

n

n∑
i=1

pi, ∀ i = 1, . . . , n. (6.9)

Proof: The proof follows from Theorem 6.3.7 if each agent i has si(0) = 0.

�

Algorithm 2: Reference Frame Agreement Algorithm

Data: Fi = {f1,i, f2,i}
Result: Ar

i

• Compute the versors rx,i and ry,i:

rx,i =
(f2,i − f1,i)

∥f2,i − f1,i∥
ry,i = r⊥x,i,

• Compute the translation vector ti:

ti = ∥f1,i − pi∥,

• Compute the homogeneous transformation matrix Ar
i :

Ar
i =

 Rr
i ti

0 1



6.4 Agreement on a common reference frame in a

2-D space

In Section 6.3 an algorithm for the agreement on a common point in a 2-D space

has been described. In this section, this result is used to build an algorithm to



reach an agreement on a common reference frame in a 2-D space. To this end,

by exploiting Algorithm ?? according to Theorem 6.3.7, the network of agents

�rst achieve an agreement on a set of two common points whose representation is

obviously local to the agent reference frame, i.e., Fi = {f1,i, f2,i}. Then by using

Algorithm ??, each agent builds a rotation matrix Ar
i with respect to a common

reference frame de�ned according to Fi. In order to do that, the two points

Fi = {f1,i, f2,i} can be enumerated according to the temporal order in which they

have been computed. Moreover, we may have the �rst point f1,i identify the

origin of the frame Or = f1,i and use the second point f2,i to compute a common

x versor, while the common y versor can be chosen to achieve a right-handed

orthogonal frame.

6.5 Agreement on a common point in d-D space

Let us now consider a d-D dimensional case with d > 2. Each agent, which

is characterized by a position in a d-dimensional space, is able to collaborate

with the neighboring agents, i.e., agents that are within its range of sensing.

Information exchanged between agents is only the distance between them and

the direction of the line of sight with respect to their local reference frame.

In this section, we specify an interaction rule R such that an agreement on a

common point under assumptions 1 can be achieved in a d-dimensional space. We

make use of notation of the 2-d case, except that vectors are now d-dimensional.

The new de�nition for the local interaction rule is:

De�nition 6.5.1 (R)

• Let

∆(t) =
(

dij+sj(t)
T cji−si(t)

T cij
2

+ si(t)
T cij

)
, (6.10)

• R:

si(t+ 1) = si(t) + ∆(t) · cij, (6.11)

�

Some remarks are now in order:



• All the parameters are local to the agents and independent to any speci�c

reference frame as they rely on a common direction given by the line of sight

between the two agents, such computation is not a�ected by a d-dimensional

space.

• From an implementation point of view, each quantity such as sj(t)
T ĉji can

be locally computed by each agent in its own coordinates frame.

• The proposed local interaction rule di�ers from the 2-d case in that only

the projections of the estimates along the line of sight of the agents are

averaged, not the whole estimate.

It will now be proved that, if the graph representing the network is fully

connected, and each edge has a strictly positive probability to be chosen at each

instant of time, then the probability that all the agents agree on where is the

network centroid goes to one as time goes to in�nity.

Theorem 6.5.2 If the network of agents is fully connected then

∀i ∈ V, Pr

(
lim
t→∞

sgi(t) =

∑n
i=1 pi
n

)
= 1

Proof:

Given a suitable Lyapunov-like function of the state of the network, the proof

relies on a probabilistic argument to show that such a function converges to zero

as time goes to in�nity almost surely, depending on the edge selection process.

By considering two generic agents i and j, the generic con�guration at time

t given in Figure 6.2 is used as support for the proof.

Let Og be the coordinates of the network centroid in the common global refer-

ence frame. Then if the estimates of the agents are updated using Algorithm ??

and we choose

V (t) =
n∑

i=1

∥sgi(t)−Og∥22

as a candidate Lyapunov function. V (t) is a quadratic function and so is positive

for any t ≥ 0. The following manipulations show that V (t+ 1) ≤ V (t).



Figure 6.2: Example of algorithm iteration involving two nodes.

At time t only nodes i, j change their estimation, thus possibly changing the

value of V (t+ 1). Thus we have

V (t+ 1)− V (t)=∥sgi(t+ 1)−Og∥2 + ∥sgj(t+ 1)−Og∥2

− ∥sgi(t)−Og∥2 − ∥sgj(t)−Og∥2

Since the global reference frame is arbitrary we chose Og = 0 for sake of clarity.

Thus

V (t+ 1)− V (t) =

= ∥sgi(t+ 1)∥2 + ∥sgj(t+ 1)∥2 − ∥sgi(t)∥2 − ∥sgj(t)∥2

Now from the description given in Algorithm ??, we know that

si(t+ 1) = si(t) + ∆(t) · cij,

sj(t+ 1) = sj(t) + ∆(t) · cji.

where:

∆(t) =

(
dij + sj(t)

T cji − si(t)
T cij

2
+ si(t)

T cij

)
,

by de�nition cij = −cji = ĉ with ĉT ĉ = 1, the previous equation can be re-written

as

V (t+ 1)− V (t) = ∥sgi +∆ĉ∥2 + ∥sgj −∆ĉ∥2

−∥sgi∥2 − ∥sgj∥2

= sTgisgi + 2∆ĉT sgi +∆2 + sTgjsgj

−2∆ĉT sgj +∆2 − sTgisgi − sTgjsgj

= 2∆2 + 2∆ĉT (sgi − sgj)



where the temporal index has been omitted for sake of clarity.

Now, by observing the Fig. 6.2 can be noticed that ∆ is nothing more than

the projection over ĉ at time t of the vector sgj − sgi scaled by a factor of two,

∆ = ∥sgj − sgi∥
cos(α)

2

where α is the angle between sgj and sgi. Now, by substituting for ∆:

V (t+ 1)− V (t) =

= 2∆2 + 2∆ĉT (sgi − sgj)

=
∥sgj − sgi∥2 cos(α)2

2
− ∥sgj − sgi∥2 cos(α)2 ≤ 0

where

ĉT (sgi − sgj) = −ĉT (sgj − sgi)

= −∥sgi − sgj∥ cos(α).

Thus proving that V (t) is a non-increasing function of time. V (t + 1) = V (t)

each time an edge connecting two nodes who have exactly the same estimate of

the network centroid are chosen.

If V (t) ̸= 0 necessarily there exist at least two nodes in the network such

that sgi ̸= sgj ̸= Og. Since we assume that the network is fully connected, i.e.

each node has the possibility to communicate with any other node, and given that

each communication link is assumed to have a strictly positive probability to be

activated at each instant of time, then we have that the probability

Pr
(
lim
t→∞

V (t′ + t)− V (t′) < 0
)
= 1

since we are sampling a �nite set of elements an in�nite amounts of times.

Since for V (0) we have that

∀i, sgi =
∑n

i=1 pi
n

,

then

∀i ∈ V, Pr

(
lim
t→∞

sgi(t) =

∑n
i=1 pi
n

)
= 1,

thus proving the statement. �



6.6 Simulations

In order to corroborate the mathematical analysis, several simulations have been

performed by exploiting a framework developed by the authors using Matlab.

Di�erent network topologies such as fully connected, arbitrary or tetrahedrons-

based have been investigated. The following edge selection process has been

exploited for the simulations: at each time step, an agent is selected randomly

using a uniform probability distribution, it then communicates with all its neigh-

bors in random order. Such a selection process has been chosen to mimic the

expected behavior of the algorithm in a real application where communications

are sequential and asynchronous.
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Figure 6.3: Fully connected graph with 8 nodes.

Fully connected Graph

In the case of a fully connected graph the algorithms always converges, as proven

in Theorem 6.5.2. In Fig. 6.3, a con�guration where a network is deployed

according to the vertexes of a cube (8 agents) is shown. In particular, each node

converges to the right estimate of the network centroid after only few iterations.

Note that, this particular embedding was chosen only for sake of visualization

and it does not a�ect the convergence of the algorithm.

As far as the convergence time is concerned, several simulations considering

a varying number of vertexes ranging from 10 nodes to 100 nodes have been per-

formed. Results are given in Table 6.1. In detail, 10 di�erent con�gurations were

considered, each one was run 50 times and at each single iteration a deployment

was randomly generated. Table 6.1 shows the average number of iteration re-



quired to the algorithm in order to converge for each con�guration. Although

the number of iterations increases with the number of vertexes, it is important

to recall the inherent parallelism of the algorithm previously discussed which is

not revealed by this table. Indeed, at each iteration in a real context there might

be several couples of nodes performing the algorithm at the same time, while the

code running in Matlab is sequential.

Table 6.1: Convergence Rate - Fully Connected Graph

Number of Vertixes Number of Iterations

10 57

20 65

30 77

40 82

50 90

60 98

70 106

80 116

90 127

100 136
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Figure 6.4: Arbitrary graph with 7 nodes.



Arbitrary Connected Graphs

A general necessary condition for the convergence of Algorithm ?? for arbitrary

connected graphs is now given.

Theorem 6.6.1 If a network of agents with pi ∈ Rd executes Algorithm ??,

a necessary condition for the agents to have the same common estimate of the

network centroid is that each agent has at least d neighbors.

Proof: The agents perform estimation updates along the line of sight between

them, at each iteration they can adjust their estimate along only one direction.

Thus to be able to adjust their estimate in a Rd space they need at least d indepen-

dent directions over which perform their update. This condition is not su�cient,

a counter-example in Fig.6.6 is provided. �

A reason why this happens is that the algorithm involves a projection of

the agents' estimate along the line of sight with their neighbors, this may fail

to propagate enough information about the agent's estimate if the graph is not

su�ciently connected. On the other hand Theorem 6.5.2 proves that V (t) =∑n
i=1 ∥sgi(t)−Og∥22 is a non-increasing function for any arbitrary graph thus the

execution of the proposed local interaction rule may only either improve or leave

intact the current error on the estimation of the common reference point.
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Figure 6.5: Arbitrary graph with 5 nodes.

6.7 Conclusions

In this chapter a novel approach to the problem of decentralized agreement to-

ward a common point in space in a multi-agent system has been addressed. In
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Figure 6.6: Arbitrary graph with 5 nodes.

this scenario, an agent is assumed to be able to sense the distance between itself

and its neighbors and the direction in which it sees its neighbors with respect

to its local reference frame. The proposed approach allows to perform an agree-

ment on the network centroid, on a common reference frame and therefore on

a common heading. Using this information a global positioning system for the

agents using only local measurements can be achieved. Furthermore only point-

to-point asynchronous communications between neighboring agents are allowed

thus achieving robustness against random communication failures. The proposed

algorithms can be thought as general tools to locally retrieve global information

usually not available to the agents. In this way, any assumption on the absence

of a common reference frame could be relaxed and therefore, simpler algorithms

could be developed.

Collaboration among agents, which involves the computation of the relative

distance and the direction of their line of sight with respect to the local reference

frame of each agent, was limited to the exchange of the projection of the actual

estimates along the direction of the line of sight. In the 2-case the proposed

algorithm converges on arbitrary connected undirected graphs while in the d-

dimensional case network connectivity is only necessary.





Chapter 7

Fault detection and recovery in

consensus networks

7.1 Introduction

One recently discovered aspect of a Laplacian-based consensus for networked sys-

tems is its connection to the heat equation through the introduction of so-called

partial di�erence equations as discrete analogs of partial di�erential equations

(113, 114). This analogy enables the connection to traditional boundary-value

problems. In particular, it has been showed in (115? ) that the introduction

of single anchor nodes, i.e., a single, immobile agent, results in a rendezvous

at the location of that agent, provided that the underlying graph remains con-

nected. Similarly, with multiple anchor nodes, the remaining agents converge to

the convex hull spanned by the anchor nodes (115).

As a consequence of this, the immobile agents will in e�ect change the system

performance most signi�cantly in that the agents will no longer converge to the

centroid of the initial con�guration, as would otherwise be the case. Taking this

observation one step further, one way in which mobile networks, executing a

consensus-based control strategy, can be "hi-jacked" is by either adding a hostile

(immobile) agent or by rendering one agent immobile. Moreover, if the hostile

agent is moving, it would in essence be able to move all the original agents away

from the target area. This fact can be thought of as a rather extreme form of

non-robustness with respect to outliers in that outliers are given more or less
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complete control over the system performance.

In this chapter we take these observations and discuss how to add robustness

to the system in the sense that hostile/faulty agents may be identi�ed and their

in�uence nulli�ed. In particular, what we propose in this chapter is a set of tools

for achieving this in a decentralized manner under the banner of so-called motion

probes. A motion probe is a maneuver executed either by a single agent or by a

team of agents, intended to allow the agents to infer certain properties about the

network. Moreover, these movements should be such that they preserve desirable

properties, such as keeping the centroid static. We point out that such tool can

be used as a mean of identi�cation of faulty behavior (e.g. if an agent is stuck

or is not responding is probably faulty) but we do not investigate how to achieve

the task in this chapter: it will be object of future research. We show however

that within this approach it is also possible to recover the original centroid of the

good agents once the faulty agents have been identi�ed.

The outline of this chapter is as follows: In Section 7.2, we brie�y discuss

the problem under consideration in the setting of linear consensus protocols.

Section 7.3 presents a �rst result of this chapter, namely the motion probes for

preserving the rendezvous point (typically the initial centroid of the network) and

for nullifying future impacts of hostile/faulty agents. Following this, in Section

4, we present a tool for network fault recovery. It consists of a method to nullify

any contribution to the �nal rendezvous point that the faulty agents may have

caused prior to their detection. We conclude the chapter with some examples

and, in Section 5, with the concluding remarks.

7.2 Problem description

We will be considering the discrete time version of the consensus problem, even

though it should be noted that the results can be extended to the continuous time

setting in a straightforward manner. A general formulation of the linear, nearest

neighbor rule for solving the consensus problem is to let the state of the system

evolve as

x(k + 1) = Px(k), (7.1)

where P is a stochastic, indecomposable, aperiodic matrix, as discussed in (?

). Moreover, x ∈ Rn is an aggregated state vector, with each component xi



representing a scalar state associated with agent i = 1, . . . , n.

There is a tight connection between the above formulation of the consensus

problem and graph theory. In fact, we may model the network as an undirected

graph G = V × E, with V being a set of vertices V = {1, . . . , n} that represent

the agents, and where the edge set E ⊆ V × V encodes the network topology

in that (i, j) ∈ E if and only if agents i and j can share information. Based

on a matrix representation of this graph, using algebraic graph theory (42), the

graph can be encoded through its adjacency matrix A. The adjacency matrix is

an n× n matrix such that ai,j = 1 if and only if (i, j) ∈ E and is 0 elsewhere.

Let Ni ⊂ V be the set of vertices adjacent to vertex i, and let |Ni| denote
its cardinality. We can then de�ne the degree matrix ∆ as the diagonal matrix

whose diagonal entries are ∆i,i = |Ni|. Using these matrices, a standard, discrete

time model of consensus networks is the one de�ned by

x(k + 1) = (I − ϵL)x(k), (7.2)

where I is the identity matrix, L = ∆ − A is the graph Laplacian of the graph

G, and ϵ > 0. Under this dynamics, the matrix P in Equation (7.1) becomes

P = I − ϵL. (7.3)

Following the notation in (43), we will refer to P as a Perron matrix.

In the model studied in this chapter we assume that the topology of the net-

work is represented by a time varying, undirected graph G(t) = (V,E(t)), where

the edge set is time dependent, which corresponds to edges being created and dis-

appearing in the network. This could for instance be caused by communication

failures, or by the movements of the individual agents as they enter and leave

each others' sensory ranges. Again we let the neighbors of agent i at time t be

Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.
Now, as the adjacency and degree matrices are time dependent, the Laplacian

will depend on time as well and rather than explicitly computing L(t), we assume

that we have an enumeration of all possible graphs over n agents. We de�ne T

as the index set of all connected graphs

T = {i|Gi = (V,Ei) ∀Ei ⊆ V × V is connected}.



In fact, we will assume that the graph that is currently encoding the network

topology is connected, i.e., its index belongs to T , and the linear consensus dy-

namics that we will employ can thus be given for k ≥ 0 by

x(k + 1) = Pi(k)x(k) x(0) = x0, i(k) ∈ T. (7.4)

Where x0 is the initial state of the system. We slightly generalize the dynamics

given by (7.3) assuming that the system matrix Pi(k) (corresponding to the con-

nected graph that describes the network topology at time k, i.e., Gi(k)) is given

by

Pi(k) = I − ϵDLi(k), (7.5)

where D is a positive de�nite, diagonal matrix representing the speed (or gain) of

each agent. Obviously for D = I (i.e., all agents have the same speed) equation

(7.5) gives a Perron matrix.

It is straightforward to verify that Pi in Equation (7.5) is a stochastic, in-

decomposable, aperiodic matrix for any su�ciently small, positive ϵ ≥ 0. This

follows since Pi = I − ϵDLi = I − ϵD(∆i − Ai). Hence, for the diagonal entries

of Pi to be positive, we need Pi = I − ϵD∆i to be positive. This means that the

diagonal entries of Pi are 1− ϵdj∆i,jj. But, we know for sure that the maximum

degree that a node can have is equal to n − 1, where n is the total number of

agents, so an upper bound on ϵ such that the assumption on Pi is satis�ed is that

ϵ < minj 1/(dj(n− 1)), where dj is the jth diagonal entry of D.

7.3 Motion Probes

In this section we provide the basic tool - the so-called motion probe - for detection

of misbehavior in a multi-agent system with single integrator dynamics that is

running a linear consensus algorithm.

The formulation of the consensus dynamics in Equation (7.5) is only valid as

long as all agents are executing the prescribed control laws. However, if a subset

of the agents do not, the dynamics change and one would typically like to be able

to detect this change in dynamics and mitigate its e�ects. For this, we propose

to let individual agents perform controlled movements that is somewhat di�erent

from the pure consensus dynamics in order to excite the system.



In fact, the main contribution in this chapter is the characterization of what

movements the agents should perform to excite the network so that tasks such

as intruder and fault detection can be carried out so that the network initial

weighted average stays invariant after the process.

To study the evolution of such systems we need to point out the connection

between this formulation of the consensus dynamics and that of discrete time

Markov chains. In fact, one can think of Pi as being the transition matrix in a

Markov chain, with a corresponding, unique stationary distribution πi such that

limk→∞ P k
i = 1πT

i , where 1 is the vector with ones in each entry.

The following result can then be directly obtained:

Lemma 7.3.1 The stationary distribution of

P(t) =
t−1∏
k=0

Pi(k)

for any t ≥ 1, where Pi(k) = I − ϵD Li(k), i(k) ∈ T , is

π = D−11α

with α being a normalizing scalar such that
∑n

j=1 πj = 1.

Although the proof follows directly from the basic properties of stochastic,

indecomposable, aperiodic matrices, we state it here for the sake of completeness.

Proof: The proof is given in two steps:

1) The stationary distribution of Pi = I − ϵDLi, i ∈ T , always exists because (as

discussed above) Pi is a stochastic, indecomposable, aperiodic matrix as long as

ϵ is su�ciently small. And, this stationary distribution satis�es πT
i Pi = πT

i , i.e.,

πT
i (I − ϵDLi) = πT

i , which in turn implies that

πT
i DLi = 0.

Since Li is the Laplacian of the connected undirected graph Gi, it is symmetric

with 1 as the unique eigenvector such that 1TLi = 0. This implies that πT
i D =

β1T for some β ∈ R. Hence, the stationary distribution of Pi, normalized such

that
∑n

j=1 πij = 1 is

πi = D−11α,



with α normalizing the distribution such that
∑n

j=1 πij = 1.

In fact, since we produce the normalized stationary distribution, α only de-

pends on D. Hence, πi is only a function of D, i.e., it is not a function of i, which

means that the stationary distribution of any Pi, i ∈ T , is

πT = D−11α,

with a normalizing α.

2) Since we have just established that Pi for any i ∈ T has the same stationary

distribution de�ned by D, it follows that

πTP(t) = πT

t−1∏
k=0

Pi(k) = πTPi(t−1)

t−2∏
j=0

Pi(j)

= πT

t−2∏
j=0

Pi(j) = πT ,

and hence

πT = D−11α,

with α normalizing the distribution such that
∑n

j=1 πj = 1, which concludes the

proof. �
Now, what we want is to move a subset of the agents in such a manner that we

can infer certain properties of the network. However, at the same time we want to

make sure that certain other properties of the network stay the same at the end

of the moment. In particular, we will use Lemma 7.3.1 to establish constraints

on the movements (or motion probes) that preserve the weighted average of the

initial states.

In order to allow for the agents to exert a control action di�erent from the

consensus-based maneuver, we assume that the network behavior can be described

by:

x(k + 1) = Pi(k)x(k) +Bu(k) x(0) = x0, i(k) ∈ T. (7.6)

Here B is an n× n matrix whose is typically the identity matrix, u is a vector of

inputs whose its ith component ui being the scalar input exerted by agent i.

Theorem 7.3.2 Given the network dynamics in Equation (7.6). If

t−1∑
k=0

u(k) = 0,



then

πTx(t) = πTx(0),

where π is the stationary distribution in Lemma 7.3.1.1

Proof: We have that

x(t) =
t−1∏
k=0

Pi(k)x(0) +
t−1∑
k=0

k∏
j=0

Pi(j)Bu(k).

Multiplying by πT on both sides of the above equation and observing that π is

the stationary distribution of Pi ∀i ∈ T , we get

πTx(t) = πTx(0) +
t−1∑
k=0

πTBu(k).

Since πTB does not depend on k it can be taken out of the summation as

πTx(t) = πTx(0) + πTB
t−1∑
k=0

u(k).

By hypothesis,
∑t−1

k=0 u(k) = 0, and hence

πTx(t) = πTx(0),

which concludes the proof. �
The previous theorem can be understood in the context of the partial dif-

ference equation analogy with the heat equation. Any agent applying an input

can be seen as an agent that is "warming up" or "cooling down" the network,

depending on the sign of the input. Since the system is conservative (no heat

can �ow away), in order to recover the initial thermal equilibrium point the only

information needed is how much heat has �own in or out from the network. This

quantity corresponds to the integral of the applied input. Hence, if the integral

is zero, the total heat present in the network has been preserved, and the initial,

1 If the n agents are moving in a m−dimensional space, the extension to Rn×m requires the

presence of a relative inertial reference for each agent. This means that the assumption that∑k−1
i=0 u(i) = 0 needs to hold for u ∈ Rn×m.



thermal equilibrium point will be reached under the regular evolution of the heat

equation.

It should moreover be pointed out that such a motion probe can be performed

by any agent in a completely decentralized fashion since no information is required

to �ow through the network for its computation. In other words, the motion probe

can be used to achieve a variety of tasks like obstacle avoidance, failure detection

(i.e., if an agent does not react to the motion probe it is clearly not running

the consensus algorithm), and connectivity preservation (an agent may just slow

down to avoid disconnection with a far agent and then speed up later to preserve

the centroid). And, this is done while preserving the weighted centroid of the

network, as per Theorem 7.3.2.

7.4 Fault recovery

If we assume that we have been able to locate a faulty agent (perhaps using the

motion probe discussed in the previous section), what we would like to do is to

isolate that agent from the network. Moreover, we would like to not only cancel

out that agent's e�ect on the system after recovery, but also to nullify the agents

total e�ect, from time t = 0 and onwards. The reason why this might be useful

can for instance be seen in a networked robot system where we do not want to let

the faulty agent drag the team away from the desired rendezvous point. Similarly,

in a sensor network, we typically need to eliminate the contribution from a faulty

sensor.

We will let the network topology be static in the following paragraphs, even

though it should be noted that all the computations will still hold under slightly

more general assumptions (as discussed later). We assume that the agents are

ordered in such a way that the �rst n−m agents are non-faulty, and the remaining

m agents are faulty. In fact, we let the system dynamics be given by

x(k + 1) = P̂ x(k) + B̂u(k) x(0) = x0. (7.7)

Here B̂ is

B̂ =

[
Bg 0n−m×m

0m×n−m Bf

]
(7.8)



where Bg and Bf are the input matrices of respectively the good and the faulty

agents and Bg corresponds to the identity matrix with the appropriate dimen-

sions. Bg is assumed to be the identity matrix since this system represent a

collection of agents that though collaborating to achieve a common goal need to

perform some tasks on their own (i.e., motion probes or else). However, P̂ is no

longer a Perron matrix.

P̂ can be expressed as follows: As in the previous section, we let D denote

the positive de�nite, diagonal weight (or gain) matrix associated with each agent.

Moreover, let Wf be the n× n matrix whose entries are zeros except the bottom

right n×m block which is the identity matrix.

Wf =

[
0n−m×n−m 0n−m×m

0m×n−m Im×m

]
Using this notation P̂ becomes

P̂ = I − ϵD(L−WfL), (7.9)

where L is the graph Laplacian.

It is straightforward to show that P̂ in Equation (7.9) can be written as the

following, partitioned block matrix:

P̂ =

[
Pg Df

0m×n−m Im×m

]
(7.10)

Here Df is a (n−m)×m matrix whose elements in the ith row are non-zero only

corresponding to faulty agents neighbors of agent i.

In the following we denote ug the inputs to the good agents and uf the inputs

of the faulty ones. Since P̂ is block diagonal, we can now write the dynamics of

the non-faulty agents (denoted by xg) and view the position of the faulty agents

(xf ) as inputs. We moreover recall that uf will not a�ect xg directly, and we get

the following partitioned system:

xg(k + 1) = Pgxg(k) +Dfxf (k) +Bgug(k) (7.11)

xf (k + 1) = xf (k) +Bfuf (k).

Viewed at the level of the individual non-faulty agents, the dynamics of agent

i is in fact given by

xi(k + 1) = xi(k)− ϵdi
∑
j∈Ni

(xi − xj) + ui(k),



where, as before, Ni is the set of vertices adjacent to vertex i. Letting F =

{i | agent i is faulty} allows us to separate the contributions to the non-faulty

agent's evolution as

xg,i(k + 1) = xg,i(k)− ϵdi

 ∑
j∈Ni/F

(xg,i − xg,j)
∑

j∈Ni∩F

(xg,i − xf,j)

+ ui(k).

We may call Ps the matrix that describes the dynamic of the good agents

and see as input the distance between the faulty agents and their neighbors and

corresponds to Ps = I − ϵDLi where Li is the subgraph induced by the good

agents. With simple algebraic manipulations one may note that Ps = Pg + H

where H is a n −m × n −m diagonal matrix whose ith element corresponds to

the number of faulty agents in the neighborhood of agent i multiplied by ϵdi:

H = ϵDdiag
(

|N1 ∩ F | · · · |Nn−m ∩ F |
)

The following theorem provides a tool for network recovery after some agents

have been disconnected from the network for some reason and it is of interest to

nullify their contribution to the �nal state of the network. The theorem is stated

for a �xed connected topology and then the result is extended to the case of a

switching topology.

Theorem 7.4.1 Let the network of agents be described by Equation (7.11). If

the following conditions hold:

1. At time t0 all m faulty agents have been detected.

2. The neighbors of faulty agents apply a control input such that at time t

t∑
k=t0

urec(k) = −
t0−1∑
k=0

(Dfxf (k)−Hxg(k)).

Then, at time t a complete recovery of the weighted average of the initial states

of the non-faulty agents has been performed, i.e.,

πTxg(0) = πTxg(t).



If, furthermore, the induced subgraph of G containing all the non-faulty agents

is connected after time t

lim
k→∞

xg(t+ k) = 1πTxg(0).

Proof: The states of the non-faulty agents follow the equation

xg(k + 1) = Pgxg(k) +Dfxf (k) +Bgug(k).

What each non-faulty agent can actually measure, in the proposed discrete time

consensus algorithm, is the di�erence between its own state and all the neighbors'.

The generic neighbor i of a faulty agent j sees as input

Nij(k) = eTi (Dfeje
T
j xf (k)−Hxg(k))

and can easily keep the information about the total contribution from each neigh-

bor by remembering
∑t0−1

k=0 Nij(k). The evolution of the system can now be de-

scribed by the following equations:

xg(k + 1) = Psxg(k) +Dfxf (k)−Hxg(k) +Bgug(k)

xg(0) = xg0

xf (k + 1) = xf (k) +Bfuf (k) xf (0) = xf0.

We recall that Ps = Pg +H is a stochastic, indecomposable, aperiodic matrix

by construction since Ps = I − ϵDLs( G), where Ls(G) is the Laplacian of the

induced subgraph of the non-faulty agents (that is assumed to be connected).

The states of the good agents at time t0 as function of the faulty agents and their

initial state can be written as:

xg(t0) = P t0
s xg(0) +

t0−1∑
k=0

P k
s N(k) +

t0−1∑
k=0

P k
s Bgug(k).

At time t0 all the faulty agents are detected and each neighbor of a faulty

node is disconnected. Then, after an arbitrary number of time steps, each agent

that was a neighbor of a faulty one applies the proposed control input based on

the information preserved locally about the contribution of the faulty neighbor to



its dynamic. For this, let ûg = ug +urec be the non-faulty agents' inputs between

time t0 and t, where ug is any input that the non-faulty (good) agents may want

to perform (i.e., a motion probe or else) and urec is the recovery input. When, at

time t, each agent stops applying the recovery input, the state of the network is

xg(t) = P t−t0
s (P t0

s xg(0) +

t0−1∑
k=0

P k
s N(k)

+

t0−1∑
k=0

P k
s ug(k)) +

t−1∑
k=t0

P k
s Bgûg(k).

Multiplying both sides of the above equation by the stationary distribution of Ps,

πT :

πTxg(t) = πTP t−t0
s (P t0

s xg(0) +

t0−1∑
k=0

P k
s N(k)

+

t0−1∑
k=0

P k
s Bgug(k)) + πT

t−1∑
k=t0

P k
s Bgûg(k),

since πTP k
s = πT , ∀k ≥ 0, we get

πTxg(t) = πTxg(0) + πT

t0−1∑
k=0

N(k) + πTBg

t0−1∑
k=0

ug(k)

+ πTBg

t−1∑
k=t0

ûg(k).

Recalling that Bg is the identity matrix and ûg = ug + urec gives

πTxg(t) = πTxg(0) + πT

t0−1∑
k=0

N(k) + πT

t0−1∑
k=0

ug(k)

+ πT

t−1∑
k=t0

ug(k) + πT

t−1∑
k=t0

urec(k).

Since
t∑

k=t0

urec(k) = −
t0−1∑
k=0

N(k)



we get

πTxg(t) = πTxg(0) + πT

t−1∑
k=0

ug(k).

Then, if ug is identically null or is the resulting of tasks accomplished with motion

probes we know that
τ−1∑
k=0

u(k) = 0, ∀τ ≥ t0,

and thus

πTxg(t) = πTxg(0),

thus proving the �rst part of the theorem.

If furthermore G stays connected after all the faulty agents have been removed

from the network, the hypothesis for the consensus algorithm to converge are

satis�ed and:

lim
k→∞

xg(k) = 1πTxg(0),

and the second part of the theorem follows. �

We point out the following main features of the proposed recovery procedure:

1. Only the agents that are neighbors to a faulty agent need to apply the

recovery input.

2. The information needed by the generic agent to recover after detection is

Nij(k) = eTi (Dfeje
T
j xf (k)−Hxg(k))

that essentially consists of the summation of the di�erence between its state

and the faulty neighbor's (i.e., their distance) starting from the initial in-

stant of time, i.e., a single variable for each neighboring agent.

3. Any agent that has detected a faulty agent in its neighborhood may apply

the recovery at any time. There is no need that all the faulty agents are

detected at the same time. The recovery procedure may then be applied in

an asynchronous way.



The extension of the previous theorem to the switched topology case needs

a brief introduction. If the agents have an identifying ID such that through

communication any agent is able to identify any other, then the extension to the

switched topology case is trivial if we assume that the ID of the faulty nodes

can be broadcasted through the network. In such a case, what an agent needs

to perform is simply the proposed recovery procedure. The only di�erence lies in

the fact that the set of neighbors may change and so more memory is needed to

remember the total contribution from all of the past neighbors. Such a quantity

of memory in the worst case corresponds to (n − 1)N variables, where n is the

number of agents and N is the dimension of the space in which they are moving.1

Next we give an example of fault recovery for a simpli�ed case of a network

of unmanned aerial vehicles. These UAVs are assumed to be tasked with �ying

at the same height while avoiding be dragged to the ground when one of them is

shot down. These agents are moreover assumed to be aware only of the relative

distances of the neighbors.

Example 7.4.2 Let the evolution of the network of agents in Figure 7.2 represent

a set of unmanned aerial vehicles that need to rendezvous at a certain altitude,

described by

x(k + 1) = Px(k),

where

P = I − ϵ


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3


and x(0) = [66.12 62.24 68.86 69.33]T . The rendezvous point is then at 66.64

and we note that the average of the states of the non-faulty agents 1, 2 and 3 is

65.74 at the initial time. The evolution of such network is shown in Figure 7.1.

1If this hypothesis does not hold but the topology is slowly switching, in the sense that

detection is "fast" respect to changes in the network, then a su�cient condition for fault recovery

with no communication and limited memory is that from the instant of time that agent i

becomes faulty until the time in which the fault detection occurs the neighbors of agent i do

not decrease in number (in the sense that new neighbors are welcomed but no neighbor may

leave Ni). In such a case any agent needs to remember the contribution of only its actual

neighbors.
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Figure 7.1: Evolution of the network of agents in Example 7.4.2.

The agents perform the consensus algorithm on their altitude when at k = 50

agent 4 is shot down and starts falling to the ground as shown in Figure 7.1. The

other agents, still unaware of what happened try to follow his movements, being

dragged to the ground themselves. The dynamic of the network during this period

is described by:

xg(k + 1) =

I − ϵ

 3 −1 −1

−1 3 −1

−1 −1 3


xg(k)− ϵ

−1

−1

−1

 xf (k)

xf (k + 1) = xf (k) + u(k).

Then at time k = 200 by some means the neighbors of the broken agent real-

ize that agent 4 was broken (i.e., identify the suspicious behavior and execute a

motion probe or through other means achieve the same result). Agent 4 is then

disconnected from the neighbors, the dynamic of the network then becomes:

xg(k + 1) =

I − ϵ

 2 −1 −1

−1 2 −1

−1 −1 2


 xg(k) + ϵ

11
1

u(k)

Where u(k) is the recovery input. In this example all the agents detect the

misbehavior, disconnect the faulty agent and apply the recovery input at the same



instant of time for clarity sake. All this operations may take place at di�erent

instants of time in a real application.

Agent 1 knows the summation of inputs due to agent 4

k−1∑
i=0

x1(i)− x4(i) = 72.8

Agent 2 knows
k−1∑
i=0

x2(i)− x4(i) = −48.2

Agent 3 knows
k−1∑
i=0

x2(i)− x4(i) = 158.42

So all of them need to apply an input whose summation over a �nite number

of steps is opposite to the one applied by the broken agent. For simplicity the

chosen input is constant with a length of 100 time steps (i.e., the agents are

completely free to do whatever they like as long as the total contribution of agent

4 is nulli�ed). Such inputs for agent 1, 2 and 3 are:

urec,1(k) = −0.72, k = 201, . . . , 300

urec,2(k) = 0.48, k = 201, . . . , 300

urec,3(k) = 1.58, k = 201, . . . , 300

and zero elsewhere.

When they all �nish applying the recovery at time 300, we note in Figure

7.1 that the average of their altitudes has become exactly their average at the

initial instant of time, namely 65.74. From this point on the network evolves

as a standard consensus network, reaching a practical rendezvous around time

k = 400. �

7.5 Fault Diagnosis

In this section we focus on how to add robustness to the consensus algorithm by

providing a method of active fault diagnosis and identi�cation to be paired with

the fault recovery algorithm. The main contribution of this work is:
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Figure 7.2: Network of agents in Example 7.4.2.

1. A classi�cation of some faults in a sensor network that disrupt the consensus

dynamics.

2. A heuristic to classify suspected behavior of the nodes when a fault is likely.

3. The application of a method developed in (99) to actively probe the nodes

suspected to be faulty.

4. An heuristic to identify faulty nodes once they have been probed.

5. The application of a method developed in (99) to recover the network con-

vergence property after a fault has been detected.

We consider two di�erent kinds of faults.

1. Stuck at : This fault is usually due to faults in the electronics of the sensor:

it consists in a sensor that is "stuck" at an arbitrary value. This makes

the nodes that correctly follow the prescribed communication protocol drift

away toward the faulty node value.

2. Divergence fault : This fault is due to software or hardware failure: it

consists in a sensor constantly increasing (or decreasing) its state value in-

de�nitely (or until a saturation occurs). This makes the nodes that correctly

follow the communication protocol drift away in the direction of the faulty

node value.

Our approach for diagnosis and recovery can be summarized into three steps

that the single nodes can apply independently and asynchronously:

1. Detection of suspicious behavior : This step is performed by each node

toward each of its neighbors. The detection of suspicious behavior is carried

out by observing the neighbors' states and checking through a set of rules

the presence of anomalous behavior.



2. Fault identi�cation : This step is performed by the nodes who identi�ed

a suspicious behavior in one of their neighbors. It consists in applying an

appropriate input to the network and check the reaction of the suspected

node to identify an eventual fault.

3. Fault recovery : This step is performed by each neighbor of a faulty node

once its faulty behavior has been detected. It allows the sensor network to

disconnect the faulty node and recover the average of the initial states as if

the faulty node had never in�uenced the network dynamics.

Detection of suspicious behavior

In our approach each node constantly observes the neighbors states checking for

suspicious behavior. In the following we identify some behaviors associated with

their respective fault and we will refer to them as "suspicious" throughout the

rest of the chapter.

1. Stuck at : This fault is characterized by a node that doesn't update anymore

its state but remains visible to its neighbors. To identify such behavior is

su�cient to check whether the state of a particular node is not equal to the

neighbors' state and it is not changing. In the general case the state of a

healthy node may not change only if it already corresponds to the average of

the initial states and the rest of the network is in a very unlikely trajectory

that keeps the input of such node always equal to zero. A rule of the thumb

to detect such behavior is simply to check whether the neighbor state is

not changing for a su�ciently long time despite the di�erence between the

node state and the suspected node state is di�erent from zero and greater

than an appropriate ε small enough such that this kind of behavior can be

detected before all the nodes converge to the same value.

2. Multiple stuck at faults : In this case as discussed in (115), the states of

the nodes converge toward a value in the convex hull spanned by the nodes

stuck at a certain value. This kind of fault is easily detected by observing

that the nodes do not reach the same state after a su�ciently long time

(where for su�ciently long we mean 4− 5 times the slowest time constant



given by the second largest eigenvalue that corresponds to the algebraic

connectivity of the graph representing the network).

3. Divergence fault : This fault is characterized by an inde�nite constant in-

crement (or decrement) of the node's state. This kind of fault can be due for

instance to software or hardware bugs. This fault prevents the network to

converge toward a common value. As such it can be identi�ed by detecting

the sustained increments (or decrements) of the node through model based

identi�cation techniques.

Algorithm description

We now present the actual algorithm run by each node to perform identi�ca-

tion and fault recovery. The generic node i runs the following algorithm with

parameters.

• ∆: a sliding window horizon. This value should be comprised between the

slowest and fastest time constant in the system.

• ε: a threshold to determine if a node value has remained constant; it will

be used to identify a "stuck at" node.

• γ: a threshold to determine if agent j is suspected to be a�ected by a

"divergence fault".

• Tmax: roughly an estimation of the consensus convergence time; a good

choice is 4− 5 times the slowest time constant given by the graph algebraic

connectivity.

Algorithm 8 (Diagnostic Algorithm)

1. Let t = 0;

2. While t ≤ Tmax, do

3. For each neighbor j ∈ Ni:

If |xj(t+ k)− xj(t)| < ε, ∀k = 0, . . . ,∆, or



if |xj(t+ 1 + k)− xj(t+ k)| > γ > 0,∀k = 0, . . . ,∆,

label that node as suspected.

4. If at least one neighbor j is labeled as suspected, execute a motion probe

and observe its reaction.

5. If during the execution of the motion probe, node j does not change behavior,

namely if it remains stuck at its value within a threshold ε or it continues

to diverge within a certain threshold γ, label it as faulty.

6. For each neighbor j labeled as faulty, disconnect it and execute the recovery

for node j.

7. end while.

8. Stop.

7.6 Simulations

In this section simulations are provided to show the e�ectiveness of the heuristics.

We take the sensor network in Figure 7.3 as case study for the following examples.

The network consists in 9 sensors labeled Si : i = 1, . . . , 9, that at time t0 = 0

perform a measurement and then fuse such information by performing iterative

averaging based on the Laplacian of the network graph. In the following the

convergence time will be shown as number of iterations. The initial state of the

network has been taken randomly with a uniform distribution between 0 and 10:

x(t0) =
[0.7818; 4.4268; 1.0665; 9.6190; 0.0463

0.0463; 7.7491; 8.1730; 8.6869; 0.8444]

'Stuck at' fault

In Figure 7.4 is shown the evolution of the state of the sensor network. At time

T1 = 50 the sensor node S1 experience a fault and remains stuck at a value around

2.4. As a consequence if the fault recovery algorithm proposed in this chapter is

not applied we may see that all the nodes wrongly converge toward the state of

the faulty node disrupting the information retrieved from the measurements.
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Figure 7.3: The sensor network topology used for the simulations.

In Figure 7.5 is shown the evolution of the same network when the proposed

algorithm is implemented. At time T1 = 50 the sensor node S1 breaks again. The

neighbors of sensor S1, namely sensor S2 and S3, after some time (the amount of

such time is a design parameter that has to be estimated as function of the worst

case convergence time) detect the suspicious behavior of node S1 and perform

a Motion Probe. The Motion Probe performed has been chosen to be a single

period lasting 20 iterations of a square wave with amplitude equal to 0.1. Both

sensors after performing the Motion Probe detect the faulty behavior of node S1

that is not reacting. Consequently they disconnect it from the network and apply

the recovery algorithm nullifying its entire contribution to the network. From this

point on the network evolves as a standard consensus network and converges to

the average of the initial state of the healthy nodes.

'Multiple Stuck at' faults

We now study the case of multiple stuck at faults and show how the recovery

algorithm can be applied asynchronously with respect to each of its phases.

In Figure 7.6 is shown the evolution of the sensor network in Figure 7.3 for

the same initial conditions as for previous simulations. At time T1 = 50 sensor

S1 stops updating its states. At time T2 = 150 also sensor S7 stops updating.

At this point the sensor network does not converge anymore to a common value

but each sensor state converges toward a point in the convex hull spanned by the

faulty nodes values. In this condition any attempt to retrieve information about

the original average of the measurements would fail since each node presents a
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Figure 7.4: Evolution of a sensor network with a single "stuck at" fault.
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Figure 7.5: Evolution of a sensor network with a single "stuck at" fault when the

fault recovery procedure is implemented.
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Figure 7.6: Evolution of a sensor network with multiple "stuck at" faults.

di�erent estimate.

In Figure 7.7 is shown the evolution of the same network with two faulty

nodes implementing the proposed algorithm for recovery. At time T1 = 50 sensor

S1 is stuck; at time T2 = 150 sensor S7 is stuck as well. At time T3 sensors

S2 and S3 suspect of the behavior of node S1 and perform a Motion probe. At

time T4 sensors S2 and S3 detect the faulty behavior of node S1, disconnect it

from the network and apply the recovery input to nullify its contribution. At

time T5 sensors S4 and S5 (neighbors of S7) detect the suspicious behavior of the

second faulty nodes, S7, while sensor S9 for some reason does not recognize such

behavior. At time T6 sensors S4 and S5 complete the motion probe, detect no

reaction and disconnect form sensor S7 nullifying its contribution. After some

time also node S9 detects the suspicious behavior of node S7 and at time T7 it

disconnects it and applies the recovery. At this point the network of the remaining

nodes, that despite the faulty nodes remained connected, converges toward the

initial average of the healthy nodes' states. This simulation gives an example of

how the phases of fault identi�cation and recovery can be applied asynchronously

by the neighbors of the faulty nodes.
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Figure 7.7: Evolution of a sensor network with multiple "stuck at" faults when

the fault recovery procedure is implemented.

'Divergence' faults

In this last set of simulations we show how the proposed method for fault iden-

ti�cation and recovery can be applied also to di�erent or more general kinds of

fault.

In Figure 7.8 is shown the sensor network in Figure 7.3 performing consensus.

Here at time t = T1 node S1 starts to disobey to the consensus protocol and

starts to increase (in such a case, linearly) inde�nitely its value due to a software

or hardware bug. The remaining nodes in the network unaware of the fault start

following its path and the original measurements are lost.

In Figure 7.9 is shown the same network with the same initial conditions as

the previous examples with a fault at sensor S1 at t = T1 when the fault recovery

and identi�cation procedure is implemented. This time the neighbors of sensor S1

detect its suspicious behavior thanks to a fault model embedded in their memory.

As soon as they detect a neighbor increasing or decreasing at a certain rate they

execute a motion probe and wait for the node's reaction. Since node S1 does

not change its behavior as function of the inputs given by nodes 2 and 3, it is

correctly identi�ed as faulty and disconnected from the network.

Remark 7.6.1 Since the algorithm is decentralized, the overhead required is pro-
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Figure 7.8: Evolution of a sensor network with single divergence fault.
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Figure 7.9: Evolution of a sensor network with single divergence fault when the

fault recovery procedure is implemented.



portional to the average degree of the network. If the average degree of the net-

work is constant as the number of nodes increases, the trade-o� between over-

head/performance improves. Furthermore, the presence of only one faulty node

disrupts the network convergence properties with any number of nodes. It be-

comes clear that as the number of nodes increases, the probability of node failure

increases and the fault diagnosis and recovery algorithm becomes essential.

7.7 Conclusions

In this chapter we consider the problem of how to move agents in a networked

system in such a way that they do not change the desired rendezvous point

during the maneuver. Such movements are referred to as motion probes. And,

in particular, we show how such motion probes can be used to identify faulty

agents that do not exhibit the prescribed dynamical behavior. Moreover, once

these faulty agents have been identi�ed, we show how to nullify their impact

on the behavior of the non-faulty agents. We also outline some particularly

promising directions for future research in this new area of motion probes for

exciting networked control systems.



Chapter 8

Consensus based decentralized

Laplacian Spectrum estimation

8.1 Introduction

Nowadays a great e�ort is made by the research community to provide coordina-

tion and estimation algorithms for networked multi-agent systems (6, 7, 24, 50).

Such systems represent an ideal abstraction of actual networks of mobile robots

that are envisioned to perform the most various kind of tasks in the future.

A key feature of any implementation of a networked multi-agent system is the

network topology. Algebraic graph theory (42) is widely known to provide pow-

erful tools and abstractions to describe networks of agents, e.g., proximity graphs

(16). In particular, the representation of the network topology of a multi-agent

system by graphs (116), where nodes represent agents and edges represent the

existence of an interaction between them, has proven to be a powerful modeling

tool.

In algebraic graph theory a great e�ort has been made to characterize the

topological properties of a graph. The spectral analysis has proven to be an e�ec-

tive tool to achieve that. The key idea is to encode a graph topology through a

matrix and then investigate its properties from an algebraic standpoint. Unfortu-

nately this approach cannot be used in a networked system due to its centralized

nature. In order to overcome such a limitation, we have switched the point of

view: instead of investigating the properties of the matrix encoding the graph

143



from an algebraic perspective, we have encoded the same properties within a dy-

namical system which is distributed by nature and from which these properties

can be retrieved by applying tools coming from the signal processing theory.

In this chapter a novel algorithm based on local interactions between agents

to retrieve information concerning the eigenvalues of the whole network is pro-

posed. The availability of this information in a decentralized fashion paves the

way for the design of new control and estimation algorithms. The basic idea of

the algorithm is to make the state of the agents oscillate only at frequencies cor-

responding to the eigenvalues of the network topology. In this way, the problem

of decentralized eigenvalues estimation is mapped into a problem of signal pro-

cessing that each agent can e�ciently and independently solve by applying the

Fast Fourier Transform (FFT) algorithm. We present our theory in continuous

time. The content of this chapter has been published in (117).

We point out that while the proposed method is adapted to estimate the

eigenvalues of the Laplacian matrix, it can be trivially extended to any other

symmetric positive semi-de�nite matrix.

8.2 Related literature

The second smallest eigenvalue of the laplacian matrix, i.e., the algebraic connec-

tivity of the communication graph, plays a crucial rule in the convergence time of

various control and estimation algorithms (23). Several works can be found in the

literature dealing with the estimation (and control) of the algebraic connectivity.

In (118) a geometric analysis of wireless connectivity in vehicle networks is

proposed. In this work, the authors introduce a localized notion of connectivity

and propose a function to measure its robustness which is proven to provide a

su�cient condition for global connectedness of the network under certain condi-

tions.

In (119) a decentralized algorithm to increase the connectivity of a multi-

agent system is proposed. The authors introduce a decentralized supergradient

algorithm which allows to maximize the algebraic connectivity. In particular,

the authors prove that a supergradient direction for the algebraic connectivity

is a function of the corresponding eigenvector whose computation is carried out

by the Decentralized Orthogonal Iteration Algorithm, while the control action



aiming to drive the swarm toward a con�guration corresponding to the optimal

Laplacian is based on a potential �ow approach.

In (120) a potential �eld for maintaining connectivity of mobile networks is

proposed. The authors consider the problem of controlling a network of agents

so that the resulting motion always preserves the connectivity property of the

network itself. To this end, the connectivity condition is translated to di�eren-

tiable constraints on the individual agent motion by considering the dynamics of

the Laplacian matrix and its spectral properties. Arti�cial potential �elds are

then used to drive the agents to con�gurations away from the undesired space of

disconnected networks while avoiding collisions with each other.

In (121) the problem of controlling a group of agents so that the resulting

motion always preserves the connectivity property of the underlying network is

faced. The authors propose a distributed feedback and provably correct control

framework that imposes no restrictions on the network topology other than the

desired connectivity speci�cation. The approach is based on a key control de-

composition, where connectivity control of the network structure is performed in

the discrete space of graphs and relies on local estimates of the network topol-

ogy, algebraic graph theory, and market-based control, while motion control of

the agents is performed in the continuous con�guration space by means of local

potential �elds used to maintain nearest neighbor links.

In (122) a decentralized estimation procedure that allows each agent to track

the algebraic connectivity of a time-varying graph is proposed. The authors

propose a decentralized power iteration algorithm that estimates the eigenvector

corresponding to the second smallest eigenvalue of a weighted Laplacian matrix.

This eigenvector estimation procedure is then exploited to estimate the algebraic

connectivity of a graph. This information is used by a decentralized controller

which aims to maintain the global connectivity of the graph over time.

In (123) the connectivity maintenance problem for ad-hoc networks of robotic

agents with double integrator dynamics is investigated. In particular, the prob-

lems whether control inputs can be de�ned for each agent in order to maintain net-

work connectivity and whether it is possible to compute the closest connectivity-

maintaining controls in a distributed fashion by assuming certain desired controls

are given to the agents are addressed.

In Sahai T. et al. 2010 (? ) the problem of computing with a decentralized



algorithm the eigenvectors and eigenvalues of the Laplacian matrix is addressed

with a similar approach respect to Franceschelli et al. 2009 (117). The authors

propose the use of the discrete wave equation as local inetraction rule in a net-

work of agents to induce an oscillating behavior so that the computation of the

fast Fourier transform by the generic agent yields the local component of every

eigenvector of the Laplacian matrix. Their work di�ers with respect to (117) in

that they use a di�erent local interaction rule to produce the oscillating behavior

and propose the application of the method to clustering problems by showing its

improved convergence time respect to the state of the art algorithms based on

random walks.

The proposed approach presents several advantages compared to the results

which can be found in the literature. First of all, it is decentralized by nature

and it does not require any additional e�ort for the decentralization of centralized

techniques such as in the case of the Power Iteration Algorithm or the Orthogo-

nal Iteration Algorithm . Secondary, it does provide an estimate of the algebraic

connectivity with a prede�ned accuracy in a �nite time, while all the other ap-

proaches provide estimates with an asymptotic convergence with no information

concerning the achievable accuracy. Finally, our approach provides not only an

estimate of the algebraic connectivity but for the whole spectrum of the graph de-

scribing the network topology, thus providing additional information which could

be used for several control purposes.

8.3 Problem description

Let us consider a network of agents whose interactions can be described by a time

varying graph G(t) = {V,E(t)}. V = {1, . . . , n} is the set of nodes, where n is

the number of agents. E(t) ⊆ {V × V } is the set of edges: an edge ei,j(t), with

i ̸= j, exists between nodes i and j at time t if agent i interacts with agent j at

time t.

We de�ne A(t) the time varying adjacency matrix: it is a n×n matrix whose

generic element ai,j(t) = 1 if i ̸= j and ei,j(t) ∈ E(t), ai,j(t) = 0 otherwise. The

number of the incoming edges ∆i of node i is called the indegree. We de�ne ∆(t)

as the degree matrix: it is a n× n time varying diagonal matrix whose elements

are ∆i(t), i.e., the indegree of node i at time t.



In the following we will refer to Ni(t) as the neighborhood of agent i, namely

the set of indices of the agents directly connected through an edge with agent i

at time t. Clearly, it is |Ni(t)| = ∆i(t).

Finally we de�ne the time varying Laplacian of graph G as LG(t) = ∆(t)−A(t).

To simplify the notation we will refer to it as L(t) implying its dependence on G.

Let us now review some properties of the Laplacian of an undirected graph.

First of all, L is a weakly diagonal dominant symmetric matrix by construction.

Furthermore we have that the row sum and the column sum are each equal to

zero. In particular any graph Laplacian has always at least one null structural

eigenvalue whose corresponding eigenvector is the vector of ones 1 of appropri-

ate dimensions; in other words ∀ G, L1 = 0 and 1TL = 0T . The number of

null eigenvalues corresponds to the number of connected components of G and

Rank(L) = n−c, where n is the number of nodes and c is the number of connected

components of G (24).

Furthermore, being the Laplacian a real symmetric matrix all its eigenvalues

are real. In addition, according to the Gershgorin disc theorem they are all

positive and can be located in [0, 2∆max], where ∆max is the maximum degree

between the nodes in the graph.

We point out that while we are focused on determining the eigenvalues of L

we can carry out the very same analysis for di�erent matrices encoding a graph

G as long as they are symmetric and possibly positive semi-de�nite. One of such

matrices is the normalized Laplacian for which it is known that the maximum

eigenvalue is always unitary thus avoiding any issues regarding the optimal sam-

pling frequency to be used. We presented the method focusing on the standard

Laplacian since it has more evident applications in multi-agent systems. In par-

ticular, if a multi-agent system employs a feedback based on the Laplacian, the

knowledge of the spectrum of the network not only provides critical information

on the topology itself but also on the dynamical system that encodes the network

topology.



8.4 Proposed algorithm

The proposed algorithm consists of each agent performing the following state

updating rule: {
ẋi(t) =

∑
j∈Ni(t)

(zi(t)− zj(t)) ,

żi(t) = −
∑

j∈Ni(t)
(xi(t)− xj(t)) .

(8.1)

The behavior of the network state when each agent performs the above up-

dating rule can be described by the following time varying autonomous linear

system: [
ẋ(t)

ż(t)

]
= A(t) ·

[
x(t)

z(t)

]
(8.2)

where

A(t) =

[
0 L(t)

−L(t) 0

]
(8.3)

and 0 is the null n× n matrix.

This is a linear switching system, where the linear autonomous dynamics

change abruptly when an edge is added or removed from the network.

In the following we will refer to A as the matrix governing the dynamics of

the linear system during any interval of time in which no topology change occurs.

Note that for any network topology the matrix A is skew symmetric (i.e.,

AT = −A). Moreover, any skew symmetric matrix has eigenvalues only on the

imaginary axis of the Gauss plane. In particular, as proved in the following

theorem, the eigenvalues of A can be analytically derived from the eigenvalues of

the Laplacian matrix L.

Theorem 8.4.1 Let G be an undirected graph with Laplacian L. Let matrix A

be de�ned as in eq. (8.3). To any eigenvalue λL of L it corresponds a couple of

complex and conjugates eigenvalues λA, λ̄A of A, namely λA, λ̄A = ±jλL, whose

corresponding eigenvectors are as follows:

vλA
=
[
vλL

jvλL

]T
, v̄λ̄A

=
[
vλL

− jvλL

]T
Proof:



By de�nition, the eigenvalues of A are the solutions of

det(A− λI) = det

([
−λI L(t)

−L(t) −λI

])
= 0.

Since A is a block matrix whose blocks commute (124), then

det(A− λI) = det
(
λ2I + L2

)
= 0.

Hence,

det
(
L2 + λ2I

)
= det (L+ jλI) det (L− jλI) = 0.

Let us now recall that λL are the eigenvalues of the Laplacian matrix L, that is:

det(L− λLI) = 0 which are all real and positive. Therefore, by substituting λL =

−jλ within the term det (L+ jλI) and λL = jλ within the term det (L− jλI),

we obtain: λA, λ̄A = ±jλL, thus proving the �rst statement. Now, by de�nition,

the eigenvectors of A are the solutions of:[
0 L

−L 0

]
·

[
v′

v′′

]
= λA

[
v′

v′′

]
from which by substituting λA = j λL, we obtain the following linear system of

equations: {
L v′′ = λA v′

−L v′ = λA v′′
.

Now, by substituting λA = j λL, we obtain:{
L v′′ = j λL v

′

−L v′ = j λL v
′′

for which a possible solution is [vλL
, jvλL

]T . The same argument holds for the

conjugate eigenvalue λ̄A = −j λL for which a possible solutions is [vλL
, −jvλL

]T .

�

Remark 8.4.2 It is relevant to point out that a di�erent choice of eigenvectors

of A corresponding to the null eigenvalue is the following:

vλA
=
[
1 0

]T
, v̄λA

=
[
0 1

]T
.



Indeed, this representation was used in (117) to prove part of the result given in

Theorem 8.4.3, namely that the DC component of the trajectory of xi(t) corre-

sponds to the average of the initial states.

�

By Theorem 8.4.1 it follows that each state of each agent follows an oscillating

trajectory which is a linear combination of sinusoids oscillating at and only at

frequencies corresponding to the eigenvalues of the network at time t, as detailed

by Theorem 8.4.3. Note that, when a topology switch occurs a phase and module

shift are experienced in frequency, while the state trajectory remains continuous

for each agent.

In the following we assume that the m distinct eigenvalues of the Laplacian

are labeled as follows: 0 = λ1 < λ2 < · · · < λm.

Theorem 8.4.3 Let us consider a system described by eq. (8.2) relative to a

network whose graph G is connected. Let x(0) = x0 and z(0) = z0 be the state

initial conditions. Let δ(·) be the Dirac's delta function. Let λj be an eigenvalue of

the Laplacian matrix L of graph G and m the number of distinct eigenvalues. Let

v1 be the unitary norm eigenvector corresponding to λ1 = 0, and v
(k)
j , k = 1, . . . , νj

be the νj unitary norm eigenvectors associated to λj > 0.

The module of the Fourier transform of the i-th state components xi(t) and

zi(t), i = {1, . . . , n}, can be written as:

|F[xi(t)]| = |Xi(f)| = a1,i δ(0) +
m∑
j=2

aj,i
2

δ(f ± λj/2π),

|F[zi(t)]| = |Zi(f)| = b1,i δ(0) +
m∑
j=2

bj,i
2

δ(f ± λj/2π),

In addition, the coe�cients aj,i and bj,i are given by:

� For λ1 = 0 (ν1 = 1 since the graph is connected):

a1,i = v1(i) v
T
1 x(0) =

1Tx(0)

n
, b1,i = v1(i) v

T
1 z(0) =

1T z(0)

n
. (8.4)

� For λj > 0 and νj ≥ 1 :

aj,i = bj,i =

√[∑νj
k=1

(
v
(k)
j (i)v

(k)
j

T
x(0)

)]2
+
[∑νj

k=1

(
v
(k)
j (i)v

(k)
j

T
z(0)

)]2
,

(8.5)



Proof:

The state trajectory of xi(t) is a linear combination of the system modes. Since

A is skew symmetric, and any skew symmetric matrix is a normal matrix, i.e.

A∗ ·A = A ·A∗, thanks to the Spectral Theorem it is always diagonalizable through

a unitary matrix1. Thus all the eigenvalues have geometric multiplicity equal to

their algebraic multiplicity (or equivalently, unitary index). By Theorem 8.4.1 to

each Laplacian eigenvalue λj it corresponds a couple of pure imaginary eigenval-

ues of A equal to λA, λ̄A = ±jλj. Therefore, for an agent i the state trajectory

xi(t) is equal to:

xi(t) = a1,i +
m∑
j=2

aj,i sin(λjt+ ϕj),

that is, a dc component plus a linear combination of sinusoids whose amplitudes

and phase shifts are function of the initial conditions and of the graph topology.

Now, we compute the coe�cients of the module of the Fourier transform of

xi(t). When referring to the eigenvalues and eigenvectors of L, λLi
and vλLi

for

i = 1, . . . , n, we drop the subscripts L and λL, respectively, and refer to them as

λi and vi for i = 1, . . . , n instead.

Since A is a skew-symmetric matrix, it can be diagonalized by means of a uni-

tary matrix V such that A = V DV ∗, where D is a diagonal matrix whose elements

are arranged as D = diag{jλ1, jλ2, . . . , jλn, −jλ1, −jλ2, . . . , −jλn},
and V is a complex matrix whose columns are the eigenvectors of A. Further-

more, applying Theorem 8.4.1, matrix V is rearranged to match the disposition

of the eigenvalues of D as follows:

V =

[
v1 v2 . . . vn v1 v2 . . . vn

jv1 jv2 . . . jvn −jv1 −jv2 . . . −jvn

]
.

In the following it is assumed that vi, i = 1, . . . , n, are normalized eigenvectors

such that ∥vλi
∥ = 1. To keep this notation we need to normalize the eigenvectors

of A such that V V ∗ = I, thus

∥∥∥∥α[vi jvi

]T∥∥∥∥ = 1.

By simple manipulations we �nd α = 1√
2
. The state trajectories of the system

1A unitary matrix U is a complex matrix such that U∗U = UU∗ = I, where U∗ is the

complex conjugate of U .



are captured by the matrix exponential which takes the following form in our case:

eAt = V eDtV ∗ =

1
2

[
v1 . . . vn v1 . . . vn

jv1 . . . jvn −jv1 . . . −jvn

]


ejλ1t

. . .

ejλnt

e−jλ1t

. . .

e−jλnt





vT1 −jvT1
. . . . . .

vTn −jvTn
vT1 jvT1
. . . . . .

vTn jvTn


.

It follows that the state trajectory xi of agent i has the following form:

xi(t) =
1

2

[
v1(i) v2(i) . . . vn(i) v1(i) v2(i) . . . vn(i)

]
eDtV ∗

[
x(0)

z(0)

]
,

and by highlighting with respect to a given eigenvalue λj we have:

xi(t) =
1

2

[
. . . vj(i) . . . vj(i) . . .

]


. . .

ejλjt

. . .

e−jλjt

. . .




. . .

vTj x(0)− jvTj z(0)

. . .

vTj x(0) + jvTj z(0)

. . .

 .

By some manipulations we �nd:

xi(t) =
∑n

j=1

[
1
2
vj(i)e

jλjt(vTj x(0)− jvTj z(0)) +
1
2
vj(i)e

−jλj(vTj x(0) + jvTj z(0))
]

=
∑n

j=1

[
vj(i)

(
cos(λjt)v

T
j x(0) + sin(λjt)v

T
j z(0)

)]
thus, according to the notation of Theorem 8.4.3, the coe�cient aj,i associated to

the eigenvalue λj for the i-th agent can be written as:

� For λ1 = 0 and ν1 = 1:

a1,i = v1(i) v
T
1 x(0)=

1√
n

1Tx(0)√
n

=
1Tx(0)

n

where v1 =
1√
n
1 is the unitary norm eigenvector associated to λ1 (see Lemma 8.4.1

and the following Remark 8.4.2).



� For λj > 0 and νj ≥ 1 :

aj,i =

√[∑νj
k=1

(
v
(k)
j (i)v

(k)
j

T
x(0)

)]2
+
[∑νj

k=1

(
v
(k)
j (i)v

(k)
j

T
z(0)

)]2
.

A similar reasoning can be repeated for the computation of the coe�cients

bj,i's.

In particular, the trajectory of zi(t) is:

zi(t) =
1

2

[
. . . jvj(i) . . . −jvj(i) . . .

]


. . .

ejλjt

. . .

e−jλjt

. . .




. . .

vTj x(0)− jvTj z(0)

. . .

vTj x(0) + jvTj z(0)

. . .


and by some manipulations it follows:

zi(t) =
∑n

j=1

[
1
2
jvj(i)e

jλjt(vTj x(0)− jvTj z(0))− 1
2
jvj(i)e

−jλjt(vTj x(0) + jvTj z(0))
]

=
∑n

j=1

[
1
2
jvj(i)

(
ejλjtvTj x(0)− e−jλjtvTj x(0)

)
+ 1

2
vj(i)

(
ejλjtvTj z(0) + e−jλjtvTj z(0)

)]
=

∑n
j=1

[
−1

2
vj(i) 2 sin(λjt)v

T
j x(0) +

1
2
vj(i) 2 cos(λjt)v

T
j z(0)

]
=

∑n
j=1

[
vj(i)

(
− sin(λjt)v

T
j x(0) + cos(λjt)v

T
j z(0)

)]
.

Thus, according to the notation of Theorem 8.4.3, the coe�cient bj,i associated

to the eigenvalue λj for the i-th agent can be written as:

� For λ1 = 0 and ν1 = 1:

b1,i = v1(i) v
T
1 z(0) =

1√
n

1T z(0)√
n

=
1T z(0)

n
.

� For λj > 0 and νj ≥ 1:

bj,i =

√[∑νj
k=1

(
v
(k)
j (i)v

(k)
j

T
x(0)

)]2
+
[∑νj

k=1

(
v
(k)
j (i)v

(k)
j

T
z(0)

)]2
.

�



The above theorem states the key result. In fact, it implies that each agent

can e�ciently and independently solve the eigenvalues estimation problem by

simply using the Fast Fourier Transform (FFT) algorithm.

Note that, the correct estimation of the eigenvalues is guaranteed by hav-

ing a dwell-time for the switching topology greater than the time window used

to acquire enough samples for the FFT computation, as it will be detailed in

Section 8.5.

This approach allows to detect in a decentralized way changes in the network

topology, such as network disconnections, changing in the formation of the agents,

loss of crucial links that decrease the network algebraic connectivity and so on.

Remark 8.4.4 Two important remarks are now in order:

- The value of xi(t) can be seen as the output of the i-th agent. Now, if the

system is not observable from the output xi(t) then some coe�cients aj can

be null and thus the corresponding mode cannot be detected by agent i. This

implies that the corresponding Laplacian eigenvalue λj cannot be estimated

by agent i. The observability properties of system (8.2) are addressed in

Theorem 8.4.6.

- Since we are looking at the modulus of the spectrum of xi(t), if an eigenvalue

has algebraic multiplicity greater than one it will result in a single line of

higher amplitude. The problem of how to estimate the multiplicity of the

eigenvalues will be object of future research. �

Remark 8.4.5 Theorem 8.4.3 highlights the usefulness of the proposed local in-

teraction rule: not only the eigenvalues of the network can be easily identi�ed but

also the components of the corresponding eigenvectors relative to the agent are

directly linked to the magnitude of the frequency peaks. A �rst direct consequence

is that the proposed approach is an alternative solution to the consensus problem

in that the agents cooperate in such a way that their DC component corresponds

to the average of their initial conditions. �

Observability of the system modes

The observability and controllability of the graph Laplacian has been studied

in (125, 126). Regarding observability, the authors of (125) have developed a



framework to study the observability of L from a graph theoretical perspective. In

particular, they have found out that equitable partitions are a relevant topological

feature that a�ects observability. Furthermore, their result is relevant to the case

in which we want to build a network that is observable.

If a network implements the local updating rule in eq. (8.1) the states of all

the agents oscillate at the frequencies given by the eigenvalues of L. If system

(8.2) is not observable with respect to a given output matrix then its outputs

oscillate only at the frequencies given by the observable modes of L.

The following theorem enables us to conclude that the observability properties

of system (8.2) are strictly related to the observability properties of the graph

Laplacian, and so to the results concerning observability provided in (125).

Theorem 8.4.6 Let A be the matrix describing the group dynamics as in (8.3).

Let C be a n× n matrix. Let

A =

[
0 L

−L 0

]
and Ĉ =

[
C 0

0 C

]
.

(A, Ĉ) is observable i� (L, C) is observable.

Proof: The observability matrix of the augmented systems is

Ô =
[
ĈT

(
ĈA
)T (

ĈA2
)T ...

(
ĈA2n−1

)T ]T
and one can readily verify that for k ∈ N it holds

ĈA2k = (−1)k

[
CL2k 0

0 CL2k

]
and ĈA2k+1 = (−1)k

[
0 CL2k+1

−CL2k+1 0

]
.

Hence by simple row permutation (and multiplication by −1 if required) it holds

rank Ô = rank


O 0

OLn 0

0 O

0 OLn

 = 2 rank O

where O(L, C) is the observability matrix of (L, C).

Thus, it follows that (A, Ĉ) is observable i� (L, C) is observable. �



The above theorem points out that, even if the system is not observable from

a single agent perspective, it will always be observable if matrix C is the identity

matrix, i.e., if we consider all the information that agents locally retrieve.

Moreover, even if each agent cannot observe all the eigenvalues in a decen-

tralized way, a speci�c consensus algorithm can be implemented on certain par-

ticularly signi�cant eigenvalues, e.g., the largest one, or the second smallest one.

This opens up to the scenario of consensus on the eigenvalues.

8.5 Implementation issues of the approach

The proposed interaction rule (8.2) is described as a marginally stable linear

system since all the eigenvalues lie on the imaginary axis. The stability of the

model of a physical system with eigenvalues exactly on the imaginary axis is

not considered to be robust because even the slightest parameter uncertainties

may render the system unstable. In our case there is no parameter uncertainty

because system (8.2) is based on the Laplacian matrix whose elements depend

only on the number of links between the agents and for any network topology

system (8.2) is only marginally stable. Furthermore we point out that since no

sensing/measurements are involved, no noise is generated from the application of

the local interaction rule. The only possible noise e�ects come from quantization

and communication link.

Estimation Accuracy

In this section, the estimation accuracy by means of FFT analysis is investi-

gated. As a term of comparison the idea proposed in (122) is considered. In

their work, the authors propose a decentralized estimation procedure that allows

each agent to track the algebraic connectivity of a time-varying graph. In order

to achieve that, the authors introduce a decentralized power iteration algorithm

that enables each agent i to compute an estimate of the i-th component of the

eigenvector corresponding to the second smallest eigenvalue of a weighted Lapla-

cian matrix. The most important di�erence among the approach described in

(122) and the solution proposed in this work is the convergence time of the al-

gorithm. Indeed, the solution presented in (122) allows to achieve an asymptotic



tracking of the algebraic connectivity while our approach allows to compute an

estimate in �nite time. Furthermore, the estimation accuracy can be considered

as a design parameter in our approach, while it is not characterized in (122). In

particular, let us assume a certain accuracy ∆f is required for the estimation of

the algebraic connectivity, i.e., λ2. Furthermore, the highest possible frequency

of the sinusoids is fc =
ωc

2π
<

n

π
, therefore the sampling frequency can be chosen

accordingly as fs =
n

π
. At this point, by recalling the relationship which links

the frequency resolution to the sampling frequency we obtain that the number

samples required to achieve a given accuracy is m =
fs
∆f

=
n

∆f π
. This implies

that if the acquisition time to take one sample of the evolution of system (8.2) is

Ts then to achieve the desired frequency resolution we need to sample (8.2) for

T = mTs units of time. If the which by substituting m becomes T =
fs
∆f

Ts.

Dwell Time

In this section, the dwell-time Td, i.e., the minimum time between topology

switching, required for the FFT analysis is investigated. Generally speaking,

the FFT acquisition time T must be at least equal to the maximum period of

the signal to be analyzed. In this context, since a linear combination of sinusoids

is considered, the acquisition time T = mTs, where m is the number of samples

and Ts is the sampling time, must be at least equal to the longest period of one

of the sinusoids, Tc =
2π

ωc

. Note that, by assuming the number of agents n to

be available, an upper bound for the total numebr of samples required can be

easily obtained by exploiting the Gershgorin disc theorem and by recalling that

ωc ≤ 2∆max with ∆max ≤ n − 1. This implies that m ≥ n

π
. Therefore, for any

network topology on n agents, the dwell-time for topology switchings must be at

least Td > mTs or equivalently Td >
n

∆f π
Ts, where Ts is the time required to

obtain one sample of the network evolution from an agent. In order to be able

to record a su�cient number of samples for the FFT analysis, Td >
n

∆f π
Ts is

a su�cient condition, if a topology switching occurs before such dwell time then

the spectrum of the two network topologies will be superimposed in the output of

the FFT, this behavior is not completely undesirable in that it allows to actually

detect that a topology change has taken place even if we do not know the actual



topology.

Simulations

In order to corroborate the mathematical results, simulations have been per-

formed by exploiting the 4th Order Runge-Kutta Method (RK4) for the approx-

imation of solutions of ordinary di�erential equations to simulate system (8.2).

Fig. 8.1 shows a possible embedding of a network topology involving 6 agents.

1

2

3

4

5

6

Figure 8.1: Network topology with 6 agents.

Fig. 8.2 shows the related spectrum observed by the node with ID = 1 with

respect to the output associated to the state variable x1(t).

It can be noticed that the magnitude of the FFT shown in Fig. 8.2 has a dc

component equal to zero. This is obtained according to Theorem 8.4.3 by having

each agent i initializing its xi = 0. Moreover, the nested box in Fig. 8.2, gives

a more detailed view of the peaks. Indeed, these are exactly all the eigenval-

ues of the Laplacian matrix associated to this network topology (neglecting the

null structural eigenvalue λ1 = 0): σ(L) = [0, 0.88, 1.45, 2.53, 3.86, 5.36]. In ad-

dition, a leakage e�ect in the computed spectrum is experienced due to the non

periodic nature of the block of the data recorded.

Fig. 8.3 shows a random network topology involving 20 agents. Fig. 8.4 shows

the related spectrum observed by the node with ID = 3 with respect to the

output associated to the state variable x3(t).
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Figure 8.2: Spectrum of the dynamic matrix describing a network composed

of 6 agents computed by the agent with ID = 1 with respect to the output

associated to the state variable x1(t). Eigenvalues of the Laplacian matrix are:

σ(L) = [0, 0.88, 1.45, 2.53, 3.86, 5.36].

The nested box in Fig. 8.4, gives a more detailed view of the peaks highlighting

the equivalence with the eigenvalues of the Laplacian matrix associated to this

network topology (neglecting the structural eigenvalue λ1 = 0):

σ(L) = [0, 1.63, 2.11, 2.75, 3.62, 4.09, 4.26, 4.75,

5.10, 5.75, 6.52, 6.74, 7.37, 7.63, 8.30, 8.39,

9.32, 9.69, 10.75, 11.18].

So far, two possible network topologies have been considered and related spec-

trums have been analyzed. In the following, a switching topology for a network

composed of 6 agents is investigated. Fig. 8.5 depicts the topology variation over

time. In detail, starting from the topology depicted in Fig. 8.5-a, a few connec-

tions among agents are dropped and a few new connections are created over time

in such a way to reach the ring topology given in Fig. 8.5-d.

Fig. 8.8 shows how the spectrum varies over time according to the topology

variation, with respect to the output x1(t) observed by the agent with ID = 1. In
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Figure 8.3: Network with 20 agents.

particular, besides the dc component which is null according to Theorem 8.4.3, 5

peaks are observed in the starting topology (Fig. 8.6-a). After the �rst and second

variations happen, it can be observed how the number of peaks remains equal to

5 while their location changes in frequency according to the variation of the eigen-

values associated to the related Laplacian graphs (Fig. 8.6-b and Fig. 8.6-c). A

di�erent scenario is obtained once the ring topology is reached as only 3 peaks are

recognized (Fig. 8.8-d). Indeed, the related Laplacian graph has two eigenvalues

with algebraic multiplicity equal to 2, namely λ1 = 1 and λ2 = 3.

Finally, a transition step should be noticed in the spectrogram for each topol-

ogy variation where peaks are not clearly de�ned. Indeed, this can be explained

by the fact that during a topology transition the block of data used for the FFT

algorithm is composed of data related to two di�erent topologies. This infor-

mation, as previously stated, could be e�ectively used as a reliable indicator to

recognize when a variation happens.

Figure 9.2 describes a network of vehicles whose formation changes over time.

In particular, on the left side the topology variation with respect to time is given,

while on the right side the evolution of the average value of the agents and the

estimated average value from the DC component of the FFT.
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Figure 8.4: Spectrum of the dynamic matrix describing the �rst network topology

composed of 20 agents computed by the agent with ID = 3 with respect to the

output associated to the state variable x3(t).

Figure 8.8 shows the spectrogram of the time varying topology shown in Fig-

ure 9.2 computed the agent i with respect to its state variable xi(t). Note that,

an additive zero mean gaussian noise was added to the state updating rule given

by eq. (8.1).

8.6 Conclusions

In this chapter a novel decentralized algorithm to estimate the Laplacian spectrum

of a network has been proposed. Each agent interacts with its neighbors so that its

state oscillates at the frequencies corresponding to the eigenvalues of the network

topology. In this way the estimation problem is reduced to a problem of signal

processing solvable by using the FFT algorithm.

A theoretical analysis of the proposed techniques along with numerical sim-

ulations has been provided. Note that this technique could be extended to the
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Figure 8.5: Topology variation with respect to time for a network composed of 6

agents.

case of a weighted graph.
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Figure 8.6: Spectrogram of the time varying topology shown in Fig. 9.2 computed

by the agent with ID = 1 with respect to the output associated to the state variable

x1(t).
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Figure 8.7: Left: Topology variation with respect to time for a network composed

of 5 agents. Right: Evolution of the average value of the agents and the estimated

average value from the DC component of the FFT.
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Figure 8.8: Spectrogram of the time varying topology shown in Fig. 9.2 computed

the agent with ID = 1 with respect to the output associated to the state variable

x1(t).



Chapter 9

Spectrum based Controllability,

observability and topology

estimation

9.1 Introduction

Multi-agent systems composed by networks of unmanned mobile vehicles are envi-

sioned to perform the most various tasks in the near future. The design of control

algorithms for such systems poses several challenges to achieve robustness and

scalability. So far such properties are expected to be achieved by decentralized

control algorithms that make locally use of available information (7, 16, 24, 50).

A signi�cant example of a multi-agent system is one involving agents with

simple integrator dynamics under Laplacian feedback (24). While the model of

the agents' dynamics is clearly oversimpli�ed, the network model has just the right

complexity to capture several relevant features of a networked system linked to

the topology of the network. Furthermore such model is widely accepted to be a

good starting point in modeling leader-follower networks of mobile vehicles (127)

with the aim of allowing a single pilot to control a multitude of mobile vehicles

with limited available information.

In this chapter we build on the idea presented in chapter 8 to use the in-

formation about the spectrum of the network to infer in a decentralized fashion

properties such as controllability, observability and, more in general, its topology.
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The quest for linking controllability and observability of a system under Lapla-

cian feedback has been previously undertaken by (125, 126, 128, 129). In (129)

a graph theoretic su�cient condition for controllability has been developed. It

turned out that controllability and, by duality, observability depend on the exis-

tence of external equitable partitions on the graph representing the network. In

this work we show how this graph theoretical characterization is linked to some

algebraic facts related to the spectrum of the network. Furthermore our condition

is locally checkable online.

Controllability and observability are useful properties if the network topology

is known. Thankfully another application of the information about the spectrum

of a network is the estimation of its topology. In general, the spectrum is not

necessarily a unique identi�er for a given topology. Moreover, in multi-agent

systems we may be interested in the subproblem of estimating when a particular

topology known a priori has been achieved. The target topology in which the

agents are supposed to be in their nominal state of operations can be built so

that it is identi�able by its spectrum. A strong application of this information

is the enabling of a simple Luenberger observer to estimate correctly the relative

position of each agent in the network with respect to the leader in absence of

communication, GPS or common reference frames. In this chapter we show how

line and lattice formations composed by a convoy of n agents can be identi�ed

by their corresponding spectrum.

We point out that the theory presented in this chapter can be easily extended

to heterogeneous networks where a di�erent weight is associated to each link.

This chapter is structured as follows:

• In Section 9.2 we provide some background on leader-follower networks.

• In Section 9.3 we present a decentralized method to check for observability

and controllability.

• In Section 9.4 we propose the use of the spectrum of a graph for formation

identi�cation and provide an example of application of involving a convoy

of vehicles.



9.2 Background on leader-follower networks

In multi-agents systems, it is common to let the nodes of a graph represent the

agents, and to let the arcs in the graph represent the inter-agent communication

links. In fact, this interaction graph plays a central role in representing the

information �ow among the agents, and in de�ning the properties of the system.

Let the undirected graph G be given by the pair (V,E), where V = {1, . . . , n}
is a set of n vertices, and E is a set of edges. Two nodes j and k are neighbors

if (j, k) ∈ E, and the set of the neighbors of the node j is de�ned as Nj = {k :

(j, k) ∈ E}. The degree of a node is given by the number of its neighbors, and a

graph G is connected if there is a path between any pair of distinct nodes, where a

path i0i1 . . . iS is a �nite sequence of nodes such that ik−1 ∈ Nk with k = 1, 3 . . . S.

We let the state of each node, xi, be a scalar. (This does not a�ect the

generality of the derived results.) The standard, consensus algorithm consists in

each agent performing the following state update law

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), (9.1)

or equivalently ẋ(t) = −Lx(t), where x(t) is the vector with the states of all

nodes at time t, and L is the graph Laplacian. L can be obtained as IIT , where

I ∈ Rn×p, (p being the number of edges), is the incidence matrix of the graph,

de�ned as

[I]kl =


1 if node k is the head of the edge l

−1 if node k is the tail of the edge l

0 otherwise,

given an arbitrary orientation of the edges.

Under some connectivity conditions, the consensus algorithm (9.1) is guar-

anteed to converge, i.e. limt→+∞ xi(t) = g, i ∈ {1, . . . , n}, where g is a con-

stant depending on L, and on the initial conditions x0 = x(0). See for example

(130, 131, 132).

As in (133, 134, 135), we imagine that a subset of the agents have superior

sensing, computation, or communication abilities. We thus partition the node set

V into a leader set L of cardinality nl, and a follower set F of cardinality nf , so

that L ∩ F = ∅ and L ∪ F = V .



Leaders di�er in their state update law in that they can arbitrarily update

their positions, while the followers execute the agreement procedure (9.1), and

are therefore controlled by the leaders.

Under the assumption (without loss of generality) that the �rst nf agents are

followers, and the last nl = n− nf are leaders, the introduction of leaders in the

network induces a partition of the incidence matrix I as

I =

[
If

Il

]
,

where If ∈ Rnf×p, Il ∈ Rnl×p, and the subscripts f and l denote respectively the

a�liation with the leaders and followers set. As a result, the graph Laplacian L

becomes

L =

[
Lf Lfl

LT
fl Ll

]
, (9.2)

with Lf = IfI
T
f ∈ Rnf×nf , Ll = IlI

T
l ∈ Rnl×nl and Lfl = IfI

T
l ∈ Rnf×nl .

The system we now consider is the controlled agreement dynamics, in which

agents evolve through the Laplacian-based dynamics
ẋ = −Lfx− Lflxl

ẋl = u

y = −LT
flx− Llxl

(9.3)

where x is the state vectors of the followers, and u(t) denotes the exogenous

control signal dictated by the leaders.

In the proposed approach all the agents (both followers and the leader) sim-

ulate system (8.2) and estimate the eigenvalues of L as described in chapter 8.

We now recall that the leader-followers network evolves according to

{
ẋ = −Lfx− Lflxl

ẋl = u(t)
(9.4)

The leader has full access to the state of its neighbors and as such it is able

to estimate

y = −LT
flx− Llxl (9.5)



It follows that if the leader applies the following feedback control law,

u(t) = −LT
flx− Llxl + û(t) (9.6)

including the state of the leader with the others, the networked system can

be described by 

[
ẋ

ẋl

]
= −L

[
x

xl

]
+Bu

y = C

[
x

xl

] (9.7)

where C = BT = [0, . . . , 0, 1].

9.3 Spectrum based decentralized check for ob-

servability and controllability

In this section we present a method for the decentralized online veri�cation of

observability and controllability in a multi-agent system. In the following it is

assumed that the agents execute algorithm 8.2 and thus each agent estimates the

eigenvalues (without multiplicity) observable from its position by taking only its

own state trajectory as output. The basic idea is to exploit the properties of

algorithm (8.2) to locally estimate the spectrum of the network and then link

this information to check for observability and controllability. Such link is made

possible by the fact that the modes of system (8.2) are observable if and only if

the modes of system (9.7) are observable.

We now provide some basic helpful facts of linear system theory.

Lemma 9.3.1 System (9.4) is controllable i� system (9.7) is controllable.

Proof:



System (9.4) di�ers from system (9.7) in that the leader applies the following

feedback control law

u(t) = −LT
flx− Llxl + û(t),

where û(t) is an input with the same dimensions as u(t). If the system is con-

trollable with such feedback it is controllable also with u(t) = û(t) since the input

enters only in the row corresponding to xl. Necessity comes from the fact that

if system (9.7) is not controllable from û(t) then it is not controllable from any

input entering in the row of xl and thus also

ū(t) = û(t) + LT
flx+ Llxl = u(t),

proving the statement. �

Lemma 9.3.2 If the Laplacian matrix L of graph G has eigenvalues with multi-

plicity greater than one, then system (9.7) is not observable/controllable.

Proof:

See (136) chapter 9.5. �

In the following theorem a su�cient and necessary condition for observability

and controllability veri�cation is given. Such condition involves only the local

information available to agent i if the total number of agents n is known.

Theorem 9.3.3 Let the network of agents be represented by a connected graph G.

Assume each agent simulates system (8.2) to estimate the Laplacian eigenvalues

by applying the FFT algorithm to its state trajectory. Let agent i know the total

number of agents n connected to the network. Then the network described by

{
ẋ = −Lfx+ Lflu

y = LT
flx

(9.8)

is observable and controllable from agent i i� agent i observes n distinct eigen-

values,.



Proof:

- Su�ciency:

Assume agent i observes n modes of system (8.2) and they are distinct, then

by taking as output the matrix C = [0, . . . , 1, 0, . . .] with 1 in the i-th element, we

have that observability matrix (C,L) is full rank due to theorem 8.4.6. Due to

lemma 9.3.1 if system (9.7) is controllable so is system (9.8). Furthermore since

system (9.8) is symmetric and C = BT , by duality the system is also controllable.

- Necessity:

Assume agent i estimates n distinct eigenvalues, assume system (8.2) is ini-

tialized with an initial condition not orthogonal to any of its eigenvector. If sys-

tem (9.8) is not observable, then the observability matrix (C,L) must be rank

de�cient and so has to be the observability matrix for system (8.2). It follows

that if system (8.2) is not observable, then by de�nition the number of observable

modes must be less then n which is a contradiction. Furthermore observability

of system (9.7) is a necessary condition for the observability of system (9.8), the

same goes for controllability. �

The above theorem allows the agents to estimate in a decentralized fashion

some relevant properties of the network if the number of agents is known. Note

that the necessary condition holds only if system (8.2) is initialized with a proper

initial condition so that all the system modes are excited. Now suppose that the

total number of agents is not known and that the actual network is eventually

not controllable nor observable. We are interested in �nding the dimension of the

controllable/observable subspace from any given agent. The following theorem

characterizes the dimension of the controllable/observable subspace as function

of the number of observable eigenvalues estimated by algorithm 8.2.

Theorem 9.3.4 Assume each agent estimates the eigenvalues of system (8.2),

by applying the FFT algorithm to its state trajectory. Assume agent i estimates

a number of distinct eigenvalues mi.



The dimension of the controllability/observability subspace from agent i is

equal to mi.

Proof:

Assume agent i observes mi eigenvalues executing algorithm 8.2. Thanks to

theorem 8.4.6 we have that

rank(O(A, Ĉ)) = 2rank(O(L, C)).

Since the eigenvalues of system A are purely imaginary, pairwise conjugate

and equal to the eigenvalues of L in modulus, we have

rank(O(L, C)) = mi.

�

Remark 9.3.5 Theorem 9.3.4 holds if system (8.2) is initialized with a proper

initial condition so that each system mode is excited. In the case such condi-

tion cannot be guaranteed, then the dimension of the controllability/observability

subspace from agent i is clearly greater than or equal to mi. �

9.4 Spectrum based Formation Identi�cation

The idea of estimating topological features of a graph from its spectrum has

been around for quite some time in algebraic graph theory. Unfortunately it has

been shown that the spectrum of a graph is not a unique identi�er for its topology.

In other words, if two graphs are identical except for a relabeling of their nodes

then necessarily the two spectra are identical. On the other hand there exists

several graphs which are co-spectral with many others (137, 138, 139). In this

section we focus on the practical uses of this notion for the identi�cation of regular

structures such as formations of multi-agent systems.



A vast literature that deals with achieving some desired formation, e.g. (7,

140, 141, 142, 143), in a multi-agent system possibly in a decentralized fashion

exists. A relevant issue in such decentralized approaches is to understand when

such formation has been actually achieved so that the agents can switch mode of

operation to something else.

It is clear that if the achievement of a formation could be linked directly to the

spectrum of its topology then algorithm 8.2 could provide an instance of solution

to such problem.

A relevant class of graph topologies that serve our cause are those structured

graphs whose eigenvalues are known analytically as function of the number of

nodes.

The �rst of such graphs is the line graph, or path Pn of n agents whose

eigenvalues are

λ(Pn) = 4 sin(
πi

2n
)2, ∀i = 0, . . . , n− 1. (9.9)

This fact is relevant to practical applications in that the line graph is both con-

trollable and observable for leader-follower networks. Furthermore it has obvious

applications in the control of convoys of ground vehicles.

Since the cartesian product of graphs has eigenvalues equal to any combination

of summation of the eigenvalues of the original graphs (144), we have that the

n×m grid has eigenvalues given by

λ(Gn×m) = 4 sin(
πi

2n
)2 + 4 sin(

πj

2n
)2, ∀i, j = 0, . . . , n− 1.

The grid graph has signi�cant applications in the coverage problem for both

multi-agents systems and sensor networks.

Consider a simpler application in which agents are organizing as a convoy for

moving toward a goal. Suppose that the leader knows the number of agents of

the network and the desired topology which is determined by the eigenvalues of

the Laplacian Matrix. Furthermore, suppose that each agent is provided with a

decentralized controller which is able to chose its neighbors in order to reach the

desired topology.

Starting from the initial point and structure of Figure 9.1(a), the communi-

cation links among nodes are changing (Figure 9.1(b)) to the �nal structure of

Figure 9.1(c).
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Figure 9.1: The initial structure of the convoy (a) and its modi�cations (b) toward

the desired topology (c).

Figure 9.2 shows the evolution of the eigenvalues of the Laplacian matrix as-

sociated with networks of Figure 9.1(a), 9.1(b), 9.1(c). For every t it reports the

Fast Fourier Trasform (FFT) to a su�ciently long time window (of size Tw) of

the trajectory of the state of the system (8.2) in the interval [t − Tw, t] which

is composed by a linear combination of sinusoids with frequencies corresponding

to the Laplacian eigenvalues of the network. It is clear that, since the window

is sliding, we are able to capture the eigenvalues of the Laplacian matrix associ-

ated to the network Figure 9.1(c) ∀t ∈ [0, Tf ] with all their modi�cation to the

�nal set-up. In particular from Figure 9.2, we can see that the topology in Figure

9.1(a) is not completely controllable and observable from the leader. Since its has

eigenvalues located in λ(G1) = [0, 1.4, 3, 3, 3, 5.5] the lack in the observability and

controllability is due to the multiplicity of the eigenvalues 3. Indeed, the topology

in Figure 9.1(b) is completely controllable and observable from the leader since all

the eigenvalues of this structure are distinct. As it is not a line-graph its spectrum

cannot be calculated analytically and it results λ(G2) = [0, 0.7, 2.1, 3.4, 4.5, 5.1].

At last, Figure 9.2 shows that the network in Figure 9.1(c) is completely con-

trollable and observable. Since it is a line-graph its eigenvalues can be calculated

according to (9.9) and they result λ(G3) = [0, 0.2, 1, 2, 3, 3.7].

It is clear that this context emphasize the importance of the proposed method:

by executing the decentralized check all agents are able to investigate about the

eigenvalues of the network 9.2 and to settle whether the network is changed and

whether the actual con�guration is the desired one, for example observable. Only

in the latter case, the leader, from which the network is completely observable, is
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Figure 9.2: Spectrogram of the switching topology in �gure 9.1(a),9.1(b),9.1(c)

obtained by algorithm 8.2.

interested in reconstruct the connection scheme through which it is able to know

all information regarding the other node in the network.

9.5 Conclusions

In this chapter we proposed a decentralized method for online checking of con-

trollability and observability of a network of single integrators with Laplacian

feedback under the assumption of unknown network topology. The method ex-

ploits the knowledge of the eigenvalues of the linear dynamics made available by

the algorithm proposed in (117). We proposed the use of the spectrum of the

network of a multi-agent system to identify when a desired formation has been

achieved. We introduced examples of formations whose eigenvalues are known

analytically and can be identi�ed through such method.





Chapter 10

Conclusions

In this thesis several algorithms that address consensus related problems for sev-

eral di�erent applications have been presented. They represent improvements

with respect to the state of the art in the exploitation of emergent behavior

to solve problems arising in the multi-agent systems. The several contributions

consists in:

• The algorithms for discrete consensus presented in chapter 3 and 4 to ad-

dress particular quantization issues of consensus algorithms with assump-

tions borrowed from load balancing problems and applications to sensor

networks. These algorithms are superior in that address problems state-

ments with more general assumptions and improvements on the convergence

properties respect to the state of the art

• The algorithm presented in Chapter 5 is the �rst known to provide a

solution to the consensus on the average problem on arbitrary directed

graphs for real valued scalar agents.

• The algorithms presented in Chapter 6 are the �rst to provide a method

for agreement toward a common point in space in absence of a common ref-

erence frame and pairwise asynchronous communications with agents able

only to sense the distance between themself and their neighbors and the di-

rection in which they see their neighbors with respect to their local reference

frame.
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• The fault diagnosis and recovery algorithms presented in Chapter 7 are

the �rst to address fault diagnosis for sensor networks implementing the

consensus algorithm with the assumption of unknown network topology

and only local state information in a decentralized way.

• The algorithm presented in Chapter 8 is a signi�cant improvement in

the decentralized estimation of the Laplacian spectrum of a network in

that it allows to estimate all the eigenvalues of the Laplacian matrix by

means of the standard FFT algorithm in �nite time. The state of the art

consisted in the use of several algorithms to �rst estimate asymptotically

all the eigenvectors and then all the corresponding eigenvalues separately.

Furthermore in Chapter 9 such algorithm is exploited to infer properties

of leader-follower networks such as controllability and observability of a

leader-follower network. Finally the use of the Laplacian spectrum of the

network of a multi-agent system is proposed as tool to identify when a

desired formation is achieved.

The research problems presented in this thesis have left many open problems

and paved the way for novel research directions in multi-agent systems.

• The improvement of the convergence properties of the algorithms for dis-

crete consensus may possibly be extended to more general graph structures

such as trees instead of hamiltonian graphs.

• The algorithm presented inChapter 5for consensus on the average problem

on arbitrary directed graphs presents great challenges in the proof of its

convergence properties. In particular it an instance of randomized algorithm

which almost surely converge in probability but that does not satisfy any

of the common properties exploited in the study of stability switched linear

systems.

• The algorithms presented in Chapter 6 for agreement in absence of com-

mon reference frame solve the problem in a 2-D space if the network is

connected. On the other hand for the d-D case network connectivity is

merely necessary but not su�cient. The characterization of all the graph

topologies that allow convergence would be a great advance, especially for

the 3-D case.



• The fault diagnosis and recovery algorithms presented in Chapter 7 per-

form the best on static network topologies. Extensions to the switching

topology case would be challenging.

• The algorithm presented in Chapter 8 allows the Laplacian spectrum of a

network to be known e�ciently by the agents, thus further ideas on how to

exploit this information, of which some where presented in chapter 9, are

expected to be proposed, especially regarding the inferring of topological

properties of the network.
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Appendix A

Appendix

A.1 Algebraic graph theory

In this thesis we make extensive use of notation from algebraic graph theory. In

the description of a multi-agent system we usually describe the pattern of cou-

plings between the agents with a graph G = {V,E} where V = {1, . . . , n} is the

set of n nodes or vertices that represent the agents. In this dissertation "nodes"

and "agents" are used as synonyms we referring to a graph. For convenience the

generic vertex i may sometime be referred to as vi. The set of edges E ⊆ {V ×V }
represents the existence of an interaction between any given couple of nodes. If

not otherwise stated, graph G is considered to be a directed graph (digraph in

short), i.e., to each edge (i, j) we associate a direction, we call head of the edge

node i and tail node j, �nally we say that edge (i, j), which sometime is referred

as ei,j in short, goes from node j to node i.

A loop is an edge whose endpoints are the same, in this dissertation we always

assume that there are no loops in G. A walk wi,j from node i to node j in G is

an alternate sequence of vertices and edges, for instance

w1,3 = v1, e1,2, v2, e3,2, v3.

In a walk we consider a sequence of vertices who may be head or tail of the

incident edge, disregarding its direction, as long as there exist an edge connectivity

any two consecutive nodes in the walk.

A path pi,j from node i to node j in G is an alternate sequence of vertices and
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edges, for instance

p1,3 = v1, e1,2, v2, e2,3, v3.

In a path we consider a sequence of vertices who are tail of the sequent edge

and whose next vertex is a head for the same edge. A path between node i and

j exists only if there exists a sequence of nodes and edges that can be visited

respecting the direction of the edges.

In an undirected graph in which edges do not have a direction, a walk is

equivalent to a path.

We now give various kinds of connectivity de�nitions depending on some prop-

erties of graph G.

• Disconnected - We say that graph G is disconnected if there exists two nodes

i and j and there does not exist a walk from i to j.

• Weakly connected - We say that graph G is weakly connected if for any

couple of nodes i, j ∈ V there exists a walk between i and j.

• Quasi-strongly connected - We say that graph G is quasi-strongly connected

if from each node i ∈ V there exist a path to node w.

• Strongly connected - We say that graph G is strongly connected if there

exists a path between each pair of nodes i, j,∈ V .

If graph G is undirected, we only distinguish between the case in which it is

disconnected or connected.

Dynamic case

Since we are interested in multi-agent systems with a time-varying topology we

often make use of time-varying graphs G(t) = {V,E(t)} where V = {1, . . . , n} is

the set of nodes and E(t) ⊆ {V × V } is the time-varying set of edges that map

each instant of time into a set of edges E : R −→ E. We de�ne the union of graph

G1 = {V1, E1} and G2 = {V2, E2} as the graph G = G1

∪
G2 = {V1

∪
V2, E1

∪
E2

whose vertex and edge set is the union of those of G1 and G2. Given an interval

of time [t, t′] we de�ne the union graph G[t, t′] over an interval of time as



G[t, t′] =
t′∪

τ=t

G(τ).

A property P of a dynamic graph G(t) is said to be uniform if for any t, there

exists T > 0 such that in the union graph

G[t, t+ T ] =
t+T∪
τ=t

G(τ),

P holds.

A dynamic graph G(t) is thus uniformly strongly connected if for any t there

exists T in which G[t, t+ T ] is strongly connected.

A.2 Graph spectral analysis and Multi-agent sys-

tems

Graph spectral analysis is a well established research area concerned with the

characterization of the properties of a graph by its spectrum. As an example,

the topology of a graph can be classi�ed by its spectrum (145, 146, 147) and

this may have practical applications, such as matching the actual spectrum of a

network representing a formation to the one of a target formation to check wether

it has been achieved. The reader is referred to (42, 144) for a detailed overview

of results on this topic.

In this appendix we list some facts of graph spectral analysis that allow topo-

logical properties of a graph to be inferred by its spectrum, see (42, 144) for

further details.

Note that in the following, for simplicity of presentation, we will denote as

0 = λ1 < λ2 < · · · < λm, m ≤ n, the set of distinct eigenvalues of the Laplacian

matrix L. Moreover, we denote as λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n the set of eigenvalues of

L, where two or more λ̂i's coincide if their multiplicity is greater than 1.

• The graph diameter. It is a critical parameter in telecommunication net-

works since it in�uences the maximum number of hops that a packet needs

to perform before reaching a destination. Let m be the total number of



distinct eigenvalues of L. Then its diameter D is bounded by:

D ≤ m− 1.

Furthermore, we have the following upper bound

D ≤ 4

nλ2

,

where n is the total number of agents.

• The number of nodes, which is usually assumed not to be known in the

contest of multi-agent systems, is clearly equal to the number of eigenvalues

with their multiplicity. Thus, given the number of distinct eigenvalues m,

we have the following bound:

n ≥ m.

• Let E ⊆ {V × V } be the set of edges and let ∆i be the degree of agent i.

Then the total number of links in the network is bounded by:

|E| = 1

2
Tr(L) ≤ 1

2

m∑
i=1

λi =
1

2

m∑
i=1

∆i

where Tr(L) denotes the trace of L. Note that if all the eigenvalues are

distinct, i.e., m = n, then the inequality becomes an equality. Conversely,

in the case of some eigenvalues with multiplicity higher than one it simply

gives a lower bound to the number of edges.

• Let K0 be the vertex connectivity, namely the minimal number of vertices

(agents) whose removal disconnects the network. Let K1 be the edge con-

nectivity, namely the minimal number of edges whose removal disconnects

the network. Let δmin be the minimum degree, then:

λ2 ≤ K0 ≤ K1 ≤ δmin.

• Let a bridge be an edge whose removal disconnects the network. A graph G

has edge connectivity 1 if and only if it has a bridge. Thus the graph does

not have a bridge if λ2 > 1 (42).



• Given a graph G, if we add an edge to form G′ then:

λ2(G) ≤ λ2(G
′) ≤ λ2(G) + 2.

• Let ∆ave be the average degree in the network, computed by executing a

simple consensus algorithm. Then if all the eigenvalues are distinct:

n =

∑
i=1,...,n λi

∆ave

.

It follows that if we can monitor the number of agents connected to the net-

work online, we can easily detect network disconnections in a decentralized

way.

• The graph topology can be classi�ed by its spectrum. In (145, 146, 147)

and therein references, the shape of the spectrum of a given network is

used to characterize its topology. For instance given a formation, we can

match the actual spectrum of the network to the spectrum of the desired

formation to check whether it has been achieved. This can only verify that

the formation graph is co-spectral with the desired one.

• Since topological changes of the network in�uence directly the graph spec-

trum, an interesting research problem is to study spectral variations induced

by adding or removing edges. In (148) for instance, authors investigate how

the Laplacian spectral radius changes when rewiring a network by adding

and removing some edges from one vertex to another.

• Complex networks are renown to be characterized by their spectra. The

ability to estimate the whole spectra of a network allows to assess the kind

of complex network in place, such information is specially helpful when the

objective is to rewire a network such that it matches some particular kind of

complex network to achieve its properties like robustness to random failure

or high algebraic connectivity.
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