
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Diagnosis and Identification of
Discrete Event Systems using Petri

Nets

Maria Paola Cabasino

Advisors: Alessandro Giua
Carla Seatzu

Curriculum: ING-INF/04 Automatic Control

XXI Cycle
March 2009

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Diagnosis and Identification of
Discrete Event Systems using Petri

Nets

Maria Paola Cabasino

Advisors: Alessandro Giua
Carla Seatzu

Curriculum: ING-INF/04 Automatic Control

XXI Cycle
March 2009

Dedicated to my parents

Acknowledgements

I would like to thank all the people that in these three years supported me in many ways,
making possible this work.

First and foremost I want to thank Alessandro Giua and Carla Seatzu, my supervisors, for
their support and their encouragement. They dedicated to me a lot of time and guided me
during my PhD. I felt so lucky to work with them, not only for their deep knowledge and
expertise in the field of Petri nets, but because they are so beautiful people. This thesis is the
result of the work done together in these three years.

Special thanks to Stéphane Lafortune, Christoforos Hadjicostis and Manuel Silva for their
ospitality during my stay in their group and for the great opportunity to work with them. I
would like to thank Cristian Mahulea, Laura Recalde, Yu Ru, Stefano Lai and Davide Nessi
for their fruitful collaboration.

I would like to thank Joerg Raisch, Stéphane Lafortune and Christoforos Hadjicostis for re-
viewing this thesis.

Finally, I would like to thank all my family. In particular my parents Francesca and Franco,
and my brother Alessandro, that strongly supported me during these three years, helping
me to always go ahead in the best way. I really could not have done most of the things I have
enjoyed doing. Thanks again. Last but not least, all my friends that are really a lot. They
always supported me during this period and gave me the right strength to live in happiness
these three years.

i

Diagnosi e identificazione di
sistemi ad eventi discreti mediante
reti di Petri

Riassunto

In questa tesi viene affrontato il problema della diagnosi (parte II) e dell’identificazione
(parte III) di sistemi ad eventi discreti mediante l’uso delle reti di Petri.

Il problema della diagnosi consiste nell’individuare se e quando si verifica un comporta-
mento anomalo nel sistema considerato. L’approccio presentato in questa tesi utilizza come
modello le reti di Petri discrete ipotizzando che alcune delle transizioni della rete siano non
osservabili, incluse tutte quelle transizioni che modellano i guasti. Tale approccio è basato
sul concetto di marcatura di base e di giustificazione, che ci permettono di caratterizzare
l’insieme delle marcature che sono consistenti con l’osservazione corrente, e l’insieme delle
transizioni non osservabili il cui scatto abilita l’osservazione. Questa procedura può essere
applicata a tutte quelle reti la cui sottorete non osservabile è aciclica. Se la rete è anche limi-
tata l’approccio proposto può essere notevolmente semplificato spostando molti dei calcoli
della procedura off-line, grazie alla costruzione di un grafo che è chiamato grafo base di rag-
giungibilità. Tale approccio è applicabile anche a reti di Petri etichettate, dove cioè due o più
transizioni possono avere la stessa etichetta, e dove alcune transizioni sono non osservabili.
In questa tesi è affrontato anche il problema della diagnosticabilità per reti di Petri limitate.
Un sistema è detto diagnosticabile se una volta che il guasto è accaduto siamo in grado di
individuarlo in un tempo finito. Infine la nostra procedura di diagnosi è stata confrontata
dal punto di vista dell’applicabilità e della complessità computazionale con una ben nota
procedura di diagnosi per sistemi ad eventi discreti basata su automi.

Il problema dell’identificazione consiste nel determinare, dati in ingresso una coppia di seg-
nali ingresso/uscita, un sistema che abbia come ingresso/uscita un segnale che approssima
quanto meglio quello osservato. Nel caso delle rete di Petri il comportamento osservato è il
linguaggio delle rete. In questa tesi verrà proposta una tecnica di identificazione che con-
siste nel determinare una rete di Petri che genera il linguaggio dato in ingresso. Dapprima
abbiamo considerato il problema dell’identificazione di una rete di Petri free-labeled, os-
sia una rete di Petri dove a ogni transizione è associata un’etichetta diversa. L’insieme delle
transizioni e il numero di posti della rete da identificare è dato, mentre la struttura della

iii

rete e la marcatura iniziale sono calcolate risolvendo un problema di programmazione in-
tera. Dopodiché abbiamo considerato diverse estensioni di questo approccio introducendo
informazioni aggiuntive sul modello o sulla marcatura iniziale. Inoltre abbiamo risolto il
problema di sintetizzare una rete di Petri limitata a partire da un automa che genera il suo
linguaggio. Infine, abbiamo mostrato come tale approccio può essere generalizzato al caso
delle reti etichettate. In entrambi i casi il problema di identificazione può essere risolto
tramite un problema di programmazione intera. Per ridurre la complessità computazionale
del problema di identificazione è stata proposta anche una procedura che utilizza la pro-
grammazione lineare. Un altro problema affrontato in questa tesi è il seguente: dato un
automa che rappresenta il grafo di copertura di una rete di Petri, determinare un sistema
di rete di Petri il cui grafo di copertura sia isomorfo a quello dell’automa dato. Infine abbi-
amo affrontato il problema dell’identificazione del modello dei guasti in una rete di Petri.
In particolare, abbiamo ipotizzato di conoscere il sistema senza guasti e il nostro obiettivo è
stato quello di identificare la struttura del sistema con i guasti. Dapprima abbiamo ipotiz-
zato che il linguaggio del sistema con i guasti sia completamente noto. In seguito, abbiamo
considerato che i guasti siano non osservabili.

Contents

I Preliminary 1

1 Introduction 3

1.1 Introduction . 4

1.2 Diagnosis problem . 4

1.3 Identification problem . 5

1.4 Structure of the thesis . 6

1.5 Contributions of the thesis . 8

2 Literature review 11

2.1 State of art for diagnosis . 12

2.2 State of art for identification . 17

3 Background on PNs 23

3.1 Petri net model . 24

3.2 Basic definitions . 24

3.3 Net language . 26

3.4 Structural properties . 26

3.5 Labeled Petri nets . 27

4 State of the art for diagnosis: Diagnoser Approach 29

4.1 The system model . 30

4.2 Observer automata . 31

4.3 Diagnosis . 33

v

vi CONTENTS

4.4 Diagnosability . 35

5 State of the art for identification: Theory of regions 39

5.1 Synthesis problem for labeled graphs . 40

5.2 Synthesis problem for languages . 42

5.2.1 Computing finite representations . 44

5.2.2 Basis representation . 44

5.2.3 Separating representation . 44

5.3 Computational complexity . 45

II Diagnosis 47

6 Fault detection for DES using PNs with unobservable transitions 49

6.1 Consistent markings . 50

6.2 Minimal explanations and minimal e-vectors . 51

6.3 Basis markings and j-vectors . 56

6.4 Diagnosis states . 61

6.4.1 Basic definitions . 62

6.4.2 Characterization of diagnosis states . 63

6.5 A general approach to diagnosis . 65

6.6 Diagnosis of bounded systems . 66

6.6.1 Basis reachability graph . 66

6.6.2 Diagnosis using BRG . 68

6.7 Remark . 71

7 Diagnosis of DES using labeled Petri nets 73

7.1 Consistent markings and sequences . 74

7.2 Minimal explanations and minimal e-vectors . 75

7.3 Basis markings and j-vectors . 76

7.4 Diagnosis using Petri nets . 78

7.5 Basis Reachability Graph . 80

CONTENTS vii

8 Diagnosability of bounded PNS 85

8.1 Problem Statement . 86

8.2 Modified Basis Reachability Graph . 87

8.3 Basis Reachability Diagnoser . 90

8.4 Necessary and sufficient conditions for diagnosability 94

8.5 Necessity of the MBRG . 98

8.6 Remark . 99

8.7 A comparison between Diagnoser Approach and our diagnosis approach . . . 100

9 A Comparison Between Two Tools Based on Automata and PNs 103

9.1 Diagnosis . 104

9.1.1 Diagnosis using automata . 104

9.1.2 Diagnosis using Petri nets . 105

9.2 The considered benchmark . 106

9.3 Numerical simulations . 107

III Identification 113

10 Identification of PNs from knowledge of their language 115

10.1 Basic identification procedure for free labeled Petri nets 116

10.2 Extended identification procedure for free labeled Petri nets 120

10.2.1 Structural constraints . 120

10.2.2 Synthesis of bounded Petri net systems from regular languages 123

10.2.3 Optimizing the number of places . 125

10.3 λ-free labeled Petri nets . 127

10.4 Complexity of the identification procedure . 132

10.4.1 Free labeled nets . 133

10.4.2 λ-free labeled Petri nets . 133

10.5 Numerical simulations . 134

11 Identification of unbounded PNs 139

viii CONTENTS

11.1 Coverability graph and properties . 140

11.2 Synthesis of a PN system from its unlabeled coverability graph 147

11.3 Computational complexity of the proposed procedure 156

12 Linear Programming Techniques for the Identification of PNs 159

12.1 Special constraint sets . 160

12.2 P/T net identification . 161

12.3 Place reduction . 164

12.3.1 Place pre-reduction . 164

12.3.2 Place post-reduction . 167

12.4 A comparison between theory of regions and our ID approach 171

13 Fault Model Identification with PNs 173

13.1 Motivational example . 174

13.2 Problem Statements . 174

13.2.1 Case I: Faults are Known . 175

13.2.2 Case II: Faults are Unobservable . 175

13.3 Fault Identification in Case I . 176

13.4 Fault Identification in Case II . 178

13.4.1 Preliminary Results . 179

13.4.2 IPP Formulation . 180

13.4.3 Constraints Linearization . 182

13.4.4 Complexity of the Identification Procedure 183

13.4.5 Numerical Examples . 184

IV Conclusion 187

14 Concluding remarks 189

14.1 Concluding remarks for diagnosis . 189

14.2 Concluding remarks for identification . 190

CONTENTS ix

Bibliography 193

A Language notation and definitions 205

B Equivalence relations and classes 207

C Logical constraints transformation 209

List of Figures

3.1 An example of Petri net . 25

4.1 A finite state automaton. 31

4.2 (a) automaton G of Example 4.4; (b) its observer . 33

4.3 Diagnoser Di ag (G) of automaton G in Figure 4.2.(a). 34

4.4 Automaton G of Example 4.10. 36

4.5 Diagnoser Di ag (G) of automaton G in Figure 4.4. 36

5.1 (a) A feasible place and (b) a non-feasible place w.r.t. L = {a,b, ab, aab, aba}. . . . 42

6.1 A Petri net modeling a part of a production line. 51

6.2 An example of Petri net. 58

6.3 The BRG of the net in Figure 6.1. 69

6.4 The Petri net of the Example 6.34 (a) and its BRG (b). 70

7.1 A PN system with faults ε11 and ε12. 75

7.2 The BRG of the PN in Figure 7.1. 83

8.1 The MBRG of the Petri net in Figure 7.1. 90

8.2 The BRD of the Petri net in Figure 7.1. 93

8.3 BRD with red circles for the uncertain cycles of the 1st fault class. 96

8.4 BRD with blue circles for the uncertain cycles of the 2nd fault class. 97

8.5 An example of Petri net showing the necessity of the MBRG. 99

8.6 A second example of Petri net showing the necessity of the MBRG. 100

x

LIST OF FIGURES xi

9.1 The considered benchmark. 107

9.2 The computational times tR , tBRG , tObs and tDi ag with respect to n and k (m = 1). 111

10.1 (a) PN of Example 10.7; (b) PN of the same example with an additional constraint. 120

10.2 The FSA of Example 10.11; (b) the RG of the identified net system. 125

10.3 The Petri net system of Example 10.14. 127

10.4 The results of Example 10.19. 132

10.5 The sender-receiver process. 135

11.1 Net in Example 11.3. 141

11.2 A sketch for Proposition 11.4. 142

11.3 Net in Example 11.5. 143

11.4 Nets in Example 11.15. 146

11.5 The resulting net in Example 11.22. 148

12.1 The Petri net systems in Example 12.15. 167

12.2 The Petri net systems in Example 12.18. 169

12.3 The Petri net systems in Example 12.19. 170

13.1 A motivational example. 174

13.2 A Petri net where L =L F = {ε, t1}. 176

13.3 (a) The faulty-free net system and (b) the faulty net system identified in Ex. 13.8. . 178

13.4 (a) The faulty-free net system and (b) the faulty net system identified in Ex. 13.14. 185

13.5 (a) The faulty-free net system of Example 13.15, (b) the faulty net system, (c) 185

List of Tables

6.1 The basis markings of the BRG in Figure 6.3. 68

6.2 The e-vectors of the BRG in Figure 6.3. 68

7.1 The basis markings of the BRG in Figure 7.2. 82

7.2 The e-vectors of the BRG in Figure 7.2 (given in tabular form). 82

8.1 The basis markings of the MBRG in Figure 8.1. 89

8.2 The modified minimal e-vectors of the MBRG in Figure 8.1 (given in tabular form). 89

9.1 Numerical results in the case of m = 1. 108

9.2 Numerical results in the case of m = 2. 108

9.3 Numerical results in the case of m = 3. 108

10.1 Numerical results . 136

xii

Part I

Preliminary

1

Chapter 1

Introduction

Summary

In this chapter first we present an overview on the problem of diagnosis and identification
and we give a motivation for these studies. Secondly we describe the organization of the
thesis and the topics of each chapter. Finally, we discuss the contribution of this thesis.

3

4 CHAPTER 1. INTRODUCTION

1.1 Introduction

Petri nets (PNs) were first introduced in the early 1960s by Carl Adam Petri in his PhD dis-
sertation [70]. Over the years they have been extended in many directions including time,
data, and hierarchy. PNs are particularly useful for modeling concurrent, distributed, asyn-
chronous behavior in a system, and offer a good trade-off between modeling power and an-
alytical tractability. Nowadays they are considered as one of the main formalisms for model-
ing, analysis and control of discrete event systems (DES), together with automata.

Even if PNs have been extensively studied and used in many application areas, such as man-
ufacturing, transportation and communication, there exist several problems that are still
open. In this thesis we focus on two related problems, namely the fault diagnosis and iden-
tification of DES using PNs. These problems are described in detail below.

1.2 Diagnosis problem

Failure detection and isolation in industrial systems is a subject that has received a lot of at-
tention in the past few decades. A failure is defined to be any deviation of a system from its
normal or intended behavior. Diagnosis is the process of detecting an abnormality in the sys-
tem behavior and isolating the cause or the source of this abnormality. Failures in industrial
systems could arise from several sources such as design errors, equipment malfunctions,
operator mistakes, and so on. Diagnosis of DES, such as complex automation systems, has
become more difficult and cannot be performed manually based on empirical information.
Systematic approaches for the diagnosis problem are urgently needed.

Failures are inevitable in today’s complex industrial environment. As technology advances,
as we continue to build systems of increasing size and functionality, and as we continue
to place increasing demands on the performance of these systems, then so do we increase
the complexity of these systems. Consequently (and unfortunately), we enhance the poten-
tial for systems to fail, and no matter how safe our designs are, how improved our quality
control techniques are, and how better trained the operators are, system failures become
unavoidable. Given the fact that failures are inevitable, the need for effective means of de-
tecting them is quite apparent if we consider their consequences and impacts not just on
the systems involved but on the society as a whole. Moreover we note that effective meth-
ods of failure diagnosis can not only help avoid the undesirable effects of failures, but can
also enhance the operational goals of industries. Improved quality of performance, product
integrity and reliability, and reduced cost of equipment maintenance and service are some
major benefits that accurate diagnosis schemes can provide, especially for service and prod-
uct oriented industries such as home and building environment control, office automation,
automobile manufacturing, and semiconductor manufacturing. Thus, we see that accurate
and timely methods of failure diagnosis can enhance the safety, reliability, availability, qual-
ity, and economy of industrial processes.

The need of automated mechanisms for the timely and accurate diagnosis of failures is well
understood and appreciated both in industry and in academia. A great deal of research ef-
fort has been and is being spent in the design and development of automated diagnostic sys-

1.3. IDENTIFICATION PROBLEM 5

tems, and a variety of schemes, differing both in their theoretical framework and in their de-
sign and implementation philosophy, have been proposed. From the conceptual view-point
most existing methods of failure diagnosis can be classified as (i) fault-tree based methods
([55, 56, 88, 89]); (ii) quantitative, analytical model-based methods ([42, 92, 87]); (iii) expert
systems and other knowledge-based methods ([78]); (iv) model-based reasoning methods
([33, 34, 40]); and (v) DES based methods ([6, 7, 9, 12, 30, 35, 37, 39, 44, 46, 48, 51, 57, 59, 60,
65, 71, 74, 75, 76, 77, 81, 82, 93, 94]).

Diagnosis approaches can solve two different types of problems: the problem of diagno-
sis and the problem of diagnosability. These two problems are also known in literature as
diagnosis on-line and diagnosis off-line, respectively, for their implementation standpoint.
However for the sake of clarity (since in our approach to solve the problem of diagnosis we
move some calculations off-line) in the rest of the thesis we refer to them as the diagnosis
and the diagnosability problems.

Diagnosability implies the ability to locate a fault after a finite number of observations for
any sequence (any behavior) of the system. Thus, to verify diagnosability one would need
to verify the ability to locate a fault after a finite number of observations for (most-likely) an
infinite number of behaviors; this is a challenging problem and, in the case of automata, it
can be solved with the construction of the diagnoser (albeit at a high computational cost).
On the other hand, solving a diagnosis problem means associate to each observed string
of events a diagnosis state, such as “normal” or “faulty” or “uncertain”. It is performed on-
line based on the observed sequence and it can be done relatively efficiently in the case of
automata because if one knows the system model then one only needs to keep track of the
possible pairs of states and faults at any instant in time. Of course, if one already has built a
diagnoser, one can use the diagnoser for this purpose but that would not be advisable.

1.3 Identification problem

Identification is a classical problem in system theory: given a pair of observed input-output
signals it consists in determining a system such that the input-output signals approximate
the observed ones [86]. Different problems can be solved in this framework:

• Model identification: we want to find the model of an existing system from "external"
measurements. In the literature two main problems are addressed and in general they
are associated with time-driven systems. In the first case we know the input and the
output of the system and we want to identify its internal structure. This problem is
know as black box. In the second case we know not only the input and the output of
the system but also we have some information about its structure, e.g. we know that
the system is an electrical circuit containing a resistance and a capacitor in parallel but
we do not know their value. This problem is known as grey box, because we have more
information than the previous case.

• Model synthesis: we have examples of admissible/forbidden behaviors and want to
design a system that satisfies these constraints ([1, 2, 3, 4, 10, 13, 28, 32, 38, 47, 49, 62,
63, 64, 67, 68, 80]). This problem is in general associated with DES.

6 CHAPTER 1. INTRODUCTION

• Fault identification: we want to find the model of a fault affecting a known system
([16]). This problem can be associated both with DES and time driven systems.

In this thesis we present two procedures to solve the second and the third problem men-
tioned above by solving an integer programming problem. Moreover we discuss another
approach to solve the second problem using linear programming techniques.

When we deal with the problem of identification using PNs it is common to consider as ob-
served behavior the language of the net, i.e., the set of transition sequences that can be fired
starting from the initial marking. One can also assume that some partial information on the
state is also known, however this is not the case that we present in this thesis.

1.4 Structure of the thesis

The thesis is divided into four parts. The first part, from Chapter 1 to Chapter 5, is an intro-
ductive part. The second part, from Chapter 6 to Chapter 9, is about the diagnosis of DES
using PNs. The third part, from Chapter 10 to Chapter 13, is about the identification of DES
using PNs. Finally, the forth part is dedicated to the conclusions.

In Chapter 2 we present a literature review based on the most important results found in
diagnosis and identification of DES.

In Chapter 3 we give a background on PNs and we introduce some notation that we will use
in the rest of the thesis.

In Chapter 4 we present one of the most known approach to the problem of failure diagnosis
using automata ([76], [77]). The research group of the University of Michigan introduce a no-
tion of diagnosability of DES in the framework of formal languages. Moreover, they present a
systematic procedure for detection and isolation of failure events using diagnosers and pro-
vide necessary and sufficient conditions for a language to be diagnosable. The diagnoser
performs diagnostics using on-line observations of the system behavior; it is also used to
state and verify off-line necessary and sufficient conditions for diagnosability. These condi-
tions are stated on the diagnoser.

Chapter 5 is dedicated to a brief description on the theory of regions. In particular, we pro-
pose two methods taken from the literature for synthesizing a PN starting from a labeled
graph ([45]) and starting from a given language ([64]).

The second part, dedicated to diagnosis of PNs, starts with Chapter 6 where is presented
a fault detection approach for DES using PNs. We assume that some of the transitions of
the net are unobservable, including all those transitions that model faulty behaviors. Our
diagnosis approach is based on the notion of basis marking and justification, that allow us to
characterize the set of markings that are consistent with the actual observation, and the set of
unobservable transitions whose firing enable it. Four diagnosis states are defined, each one
corresponding to a different degree of alarm. This approach applies to all net systems whose
unobservable subnet is acyclic. If the net system is also bounded the proposed approach

1.4. STRUCTURE OF THE THESIS 7

may be significantly simplified moving the most burdensome part of the procedure off-line,
thanks to the construction of a graph, called the basis reachability graph.

In Chapter 7 we focus on the diagnosis of labeled PNs, i.e., nets where two or more transitions
may share the same label. In particular we present an approach for diagnosis. The proposed
procedure is based on results on unlabeled PNs presented in Chapter 6 and allows us to
also consider events that are indistinguishable, namely events that produce an output signal
that is observable, but that is common to other events. Four diagnosis states are defined,
each one corresponding to a different degree of alarm. A procedure is given to compute the
actual diagnosis state given the current observation. We show that also in the case of labeled
bounded PNs the most burdensome part of the procedure can be moved off-line defining a
particular graph, that we call basis reachability graph.

In Chapter 8 we present an approach to solve the problem of diagnosability of bounded Petri
net systems. In particular, we first give necessary and sufficient conditions for diagnosability.
Then, we present a method to test diagnosability that is based on the analysis of two graphs
that depend on the structure of the net, including the fault model, and the initial marking.
The first graph is called basis reachability diagnoser, the second one is called modified basis
reachability graph. At the end of the chapter a comparison between our diagnosis procedure
and Diagnoser approach, presented in Chapter 4, is made.

The part dedicated to the diagnosis of PNs is concluded by Chapter 9. Here we consider two
diagnosis procedures for DES based respectively on automata and Petri nets. The first proce-
dure has been developed by the University of Michigan group and is presented in Chapter 4
while the second procedure is the one presented in this thesis in Chapter 7. We apply them
to a diagnosis benchmark and compare them in terms of computational complexity.

The part dedicated to the identification of PNs starts with Chapter 10 where we deal with the
problem of identifying a PN system, given a finite language generated by it. First we con-
sider the problem of identifying a free labeled PN system, i.e., a Petri net in which all tran-
sition labels are distinct. The set of transitions and the number of places is assumed to be
known, while the net structure and the initial marking are computed solving an integer pro-
gramming problem. Then we extend this approach in several ways introducing additional
information about the model (structural constraints, conservative components, stationary
sequences) or about its initial marking. We also treat the problem of synthesizing a bounded
net system starting from an automaton that generates its language. Moreover, we show how
the approach can also be generalized to the case of labeled PNs, where two or more transi-
tions may share the same label. In particular, in this case we impose that the resulting net
system is deterministic. In both cases the identification problem can still be solved via an
integer programming problem. Finally, we analyze the complexity of the identification ap-
proach in terms of computational time required to get an admissible solution, that may also
be optimal according to a given performance criterion. In particular, we want to investigate
how the computational time depends on the cardinality of the set of finite length strings that
describe the language, and on the chosen performance index. To this aim we consider the
language generated by a particular PN system that models a sender-receiver process. Dif-
ferent cases are examined with different number of places and transitions, and thus differ-
ent languages generated. The numerical simulations we carried out enabled us to conclude
that the computational time becomes prohibitive for languages that are described by a large

8 CHAPTER 1. INTRODUCTION

number of finite length strings, if we want to determine a solution that is optimal with re-
spect to a given performance index. On the contrary, computational times are negligible if
we limit to consider any admissible net system, e.g., the first admissible solution computed
by CPLEX when solving the optimization problem. We believe that this is not a drawback
of our procedure because in effect, when solving identification problems like this, the main
requirement is that of determining an admissible solution, not necessarily an optimal one.

In Chapter 11 we solve the following problem: given an automaton that represents the cov-
erability graph of a PN, determine a PN system whose coverability graph is isomorphic to
the automaton. The proposed approach requires solving an integer programming problem
whose set of unknowns contains the elements of the pre and post incidence matrices and
the initial marking of the net.

In Chapter 12 we show how to tackle the problem presented in Chapter 10 using linear pro-
gramming techniques, thus significantly reducing the complexity of finding a solution. How-
ever, such kind of solution cannot be optimized with respect to an objective function, as in
Chapters 10, 11. The procedure we propose identifies a net whose number of places is equal
to the cardinality of the set of disabling constraints. We provide a criterion to check if the
computed solution has a minimal number of places, and, if this is not the case, we discuss
two approaches to reduce this number. At the end of the chapter there is a comparison be-
tween our identification procedure and theory of regions approach (presented in Chapter 5).

The identification part is concluded by Chapter 13. It is well known that most of the fault
identification problems in the DES literature assume knowledge of the structure of the net
system, including the nature (and behavior) of the possible faults. In this chapter we deal
with this problem within the framework of PNs by removing the requirement that the nature
(and behavior) of the fault is known. In particular, we devise a way to identify the structure of
the faulty transitions of the system given its language. Then, we generalize this procedure to
unobservable faults, in which case the structure of the faulty system needs to be recognized
from the knowledge of the structure of the fault-free system, and the projection of the faulty
system language on the set of non-faulty events, that are assumed to be observable.

In the forth and last section of this thesis conclusions for diagnosis and identification of Petri
nets are drawn.

1.5 Contributions of the thesis

The contributions of the thesis are all collected in the second and third part and may be
summarized in the following items.

• A fault detection approach for DES using unlabeled PNs, where some transitions are
unobservable, based on the notion of basis marking and justification is given in Chap-
ter 6 (publication on the topic [21]).

• An extension of the fault diagnosis approach to labeled PNs is presented in Chapter 7
(publication on the topic [24]).

1.5. CONTRIBUTIONS OF THE THESIS 9

• Necessary and sufficient conditions for diagnosability of bounded PNs are provided
in Chapter 8 where a method to testify the diagnosability of the system is also given
(publication on the topic [23]).

• A comparison in terms of computational complexity between our diagnostic proce-
dure and the diagnostic procedure presented in Chapter 4 is presented in Chapter 9
(publication on the topic [54]).

• An identification procedure based on integer programming for free-labeled and la-
beled PNs is given in Chapter 10 (publications on the topic [18], [20]). Moreover in the
same chapter is presented an analysis on the computational complexity of this identi-
fication approach (publication on the topic [17]).

• A procedure to identify a PN starting from its coverability graph is presented in Chap-
ter 11 (publications on the topic [19], [25]).

• A procedure based on linear programming to identify a Petri net given a finite prefix of
its language is given in Chapter 12 (publication on the topic [22]).

• A way to identify the structure of the faulty transitions of a faulty system given the
language of the fault-free system is presented in Chapter 13 (publication on the topic
[16]).

Chapter 2

Literature review

Summary

Fault diagnosis and identification of systems have received considerable attention in the last
decades. In this Chapter we present a survey of the state-of-the art of these topics within the
framework of discrete event systems.

11

12 CHAPTER 2. LITERATURE REVIEW

2.1 State of art for diagnosis

The diagnosis of discrete event systems (DES) is a research area that has received a lot of at-
tention in the last years and has been motivated by the practical need of ensuring the correct
and safe functioning of large complex systems.

Fault-tree based methods

The most widely used scheme for alarm analysis, especially in the process control industry,
is based on fault trees [55, 56, 88, 89]. Fault trees provide a graphical representation of cause-
effect relationships of faults in a system. Starting from a goal violation, or, a system failure
event that is indicated by an alarm condition, a fault tree is built by reasoning backwards
from the system failure to basic or primal failures that represent the root cause of the failure.
The main drawback of this approach is that fault trees require a great deal of effort in their
construction. Moreover they pose difficulties in handling feedback systems.

Analytical redundancy methods

A vast majority of the approaches to failure diagnosis proposed in the control systems lit-
erature are based on analytical redundancy (see [42, 92, 87]). The analytical redundancy
method, addressed for continuous systems, can roughly be divided into two major steps:
(i) generation of residuals and (ii) decision and fault isolation. The residual generation pro-
cess typically involves generating residual signals by comparing predicted values of system
variables (from mathematical models of the system) with the actual observed values. These
signals are nominally near zero and get accentuated when failures do occur. In the decision
and fault isolation stage, the residuals are examined for the likelihood of faults. A major ad-
vantage of this approach is the ability to detect, not only abrupt faults (or hard failures) but
also slowly developing (or incipient) faults via trend analysis. The primary drawbacks of this
approach are the computational expenditure for the detailed on-line modeling of the pro-
cess, and more importantly, the sensitivity of the detection process with respect to modeling
errors and measurement noise. The issue of robust failure detection using analytical models
has been and is being investigated in detail.

Expert systems

Failure diagnosis by expert systems is an approach eminently suited for systems that are diffi-
cult to model, i.e., systems involving subtle and complicated interactions (among and within
components) whose outcomes are hard to predict (see [78] and references therein). The chief
drawback of expert systems is that a considerable amount of time may elapse before enough
knowledge is accumulated to develop the necessary set of heuristic rules for reliable diagno-
sis, coupled with the fact that this approach is very domain dependent, i.e., expert systems
are not easily portable from one system to another. Further, it is difficult to validate an expert
system.

2.1. STATE OF ART FOR DIAGNOSIS 13

Model-based reasoning methods

Another approach to failure diagnosis that has been investigated in the artificial intelligence
(AI) literature is that of model-based reasoning ([33, 34, 40]). The fundamental paradigm
of this approach, much like the analytical redundancy methods, is that of observation and
prediction. These model-based methods employ a general purpose model of the structure
and behaviour of the system which are constructed using standard AI technology such as
predicate logic, frames, constraints, and rules. The algorithms for diagnosis are also based
on standard techniques in AI, like theorem proving, heuristic search, constraint satisfaction,
and qualitative simulation. In general, the model based methods deal only with models of
correct behavior. There is no a priori specification of how components might fail, and a
failure is taken to be any anomaly as compared to normal behaviour.

Automata based methods

In the context of DES several original theoretical approaches have been proposed using au-
tomata.

In [59] and [60] Lin et al. propose a state-based DES approach to failure diagnosis. The prob-
lems of off-line and on-line diagnosis are addressed separately and notions of diagnosability
in both of these cases are presented. The authors give an algorithm for computing a diagnos-
tic control, i.e., a sequence of test commands for diagnosing system failures. This algorithm
is guaranteed to converge if the system satisfies the conditions for on-line diagnosability.

In [76] and [77] Sampath et al. propose an approach to failure diagnosis where the system is
modeled as a DES in which the failures are treated as unobservable events; diagnosis is the
process of detecting occurrences of these events from observed event sequences. The level
of detail in a discrete event model appears to be quite adequate for a large class of systems
and for a wide variety of failures to be diagnosed. The approach is applicable whenever fail-
ures cause a distinct change in the system status but do not necessarily bring the system to
a halt. In [76] the authors provide a definition of diagnosability in the framework of formal
languages and establish necessary and sufficient conditions for diagnosability of systems.
Also presented in [76] is a systematic approach to solve the problem of diagnosis using diag-
nosers. A more detailed presentation of this approach is presented in Chapter 4.

In [75] Sampath et al. present an integrated approach to control and diagnosis. More specif-
ically, authors present an approach for the design of diagnosable systems by appropriate
design of the system controller and this approach is called active diagnosis. They formulate
the active diagnosis problem as a supervisory control problem. The adopted procedure for
solving the active diagnosis problem is the following: given the non-diagnosable language
generated by the system of interest, they first select an “appropriate” sublanguage of this
language as the legal language. Choice of the legal language is a design issue and typically
depends on considerations such as acceptable system behavior (which ensures that the sys-
tem behavior is not restricted more than necessary in order to eventually make it diagnos-
able) and detection delay for the failures. Once the appropriate legal language is chosen,
they then design a controller (diagnostic controller), that achieves a closed-loop language
that is within the legal language and is diagnosable. This controller is designed based on the

14 CHAPTER 2. LITERATURE REVIEW

formal framework and the synthesis techniques that supervisory control theory provides,
with the additional constraint of diagnosability.

In [35] Debouk et al. address the problem of failure diagnosis in DES with decentralized
information. They propose a coordinated decentralized architecture consisting of two lo-
cal sites communicating with a coordinator that is responsible for diagnosing the failures
occurring in the system. They extend the notion of diagnosability, originally introduced in
[76] for centralized systems, to the proposed coordinated decentralized architecture. In par-
ticular, they specify three protocols that realize the proposed architecture and analyze the
diagnostic properties of these protocols.

In [12] Boel and van Schuppen address the problem of synthesizing communication proto-
cols and failure diagnosis algorithms for decentralized failure diagnosis of DES with costly
communication between diagnosers. The costs on the communication channels may be de-
scribed in terms of bits and complexity. The costs of communication and computation force
the trade-off between the control objective of failure diagnosis and that of minimization of
the costs of communication and computation. The result of this paper is an algorithm for
decentralized failure diagnosis of DES for the special case of only two diagnosers.

In [94] Zad et al. present a state-based approach for on-line passive fault diagnosis. In this
framework, the system and the diagnoser (the fault detection system) do not have to be ini-
tialized at the same time. Furthermore, no information about the state or even the condition
(failure status) of the system before the initiation of diagnosis is required. The design of
the fault detection system, in the worst case, has exponential complexity. A model reduc-
tion scheme with polynomial time complexity is introduced to reduce the computational
complexity of the design. Diagnosability of failures is studied, and necessary and sufficient
conditions for failure diagnosability are derived.

In [51] Jiang and Kumar present a method for failure diagnosis of DES with linear-time tem-
poral logic (LTL) specifications. The LTL formulas are used for specifying failures in the
system. The LTL-based specifications make the specification specifying process easier and
more user-friendly than the formal language/automata-based specifications. They can cap-
ture failures representing the violation of both liveness and safety properties, whereas the
prior formal language/automaton-based specifications can capture the failures represent-
ing the violation of only the safety properties (such as the occurrence of a faulty event or the
arrival at a failed state). Prediagnosability and diagnosability of DES in the temporal logic
setting are defined. The problem of testing prediagnosability and diagnosability is reduced
to the problem of model checking. An algorithm for the test of prediagnosability and diag-
nosability, and the synthesis of a diagnoser is obtained. The complexity of the algorithm is
exponential in the length of each specification LTL formula, and polynomial in the number
of system states and the number of specifications.

In [65] Lunze et al. describe a method for detecting and identifying faults that occur in
the sensors or in the actuators of dynamical systems with discrete-valued inputs and out-
puts. The model used in the diagnosis is a stochastic automaton. The generalized observer
scheme (GOS), which has been proposed for systems with continuous-variable inputs and
outputs, are developed for discrete systems. This scheme solves the diagnostic problem as
an observation problem. As the system under consideration is described by a stochastic au-
tomaton rather than a differential equation, the mathematical background and the diagnos-

2.1. STATE OF ART FOR DIAGNOSIS 15

tic algorithms obtained are completely different from the well-known observers developed
for continuous-variable systems. The GOS is extended here by a fault detection module to
cope with plant faults that are different from actuator or sensor faults. The diagnostic algo-
rithm consists of two steps, the first detecting the existence of a fault and the second isolating
possible sensor or actuator faults or identifying plant faults.

Petri nets based methods

Although automata models are suitable for describing DES, the use of Petri nets (PNs) offers
significant advantages because of their twofold representation: graphical and mathematical.
Moreover, the intrinsically distributed nature of PNs where the notion of state (i.e., marking)
and action (i.e., transition) is local reduces the computational complexity involved in solving
a diagnosis problem.

Among the first pioneer works dealing with PNs, we recall the work of Prock in [71] who
proposes an on-line technique for fault detection based on monitoring the number of tokens
residing into P-invariants: when the number of tokens inside P-invariants changes, then an
error is detected.

In [81] Sreenivas and Jafari employ time PNs to model the DES controller and backfiring
transitions to determine whether a given state is invalid. Later on, time PNs are employed
by Ghazel et al. [46] to propose a monitoring approach for DES with unobservable events
and to represent the “a priori” known behavior of the system, and track on-line its state to
identify the events that occur.

Hadjicostis and Veghese in [48] use PN models to introduce redundancy into the system and
additional P-invariants allow the detection and isolation of faulty markings.

Redundancy into a given PN is used by Wu and Hadjicostis [93] to enable fault detection and
identification using algebraic decoding techniques. They consider two types of faults: place
faults that corrupt the net marking, and transition faults that cause an incorrect update of
the marking after event occurrence. Although this approach is general, the net marking has
to be periodically observable even if unobservable events occur. Analogously, Lefebvre and
Delherm [57] investigate the determination of the set of places that must be observed for the
exact and immediate estimation of faults occurrence.

Ramirez-Treviño et al. [74] employ Interpreted PNs to model the system behavior that in-
cludes both events and states partially observable. Based on the Interpreted PN model de-
rived from an on-line methodology, a scheme utilizing a solution of a programming problem
is proposed to solve the problem of diagnosis.

In [39] Dotoli et al. present a novel event-based approach for DES on-line monitoring, en-
suring timely and accurate detection of system failures. The monitor model is based on
first–order hybrid PNs, i.e., nets that make use of first order fluid approximation [5]. The
proposed fault analysis technique relies on a modular framework, so that elementary mon-
itors can be connected with other monitors to check more complex systems while avoiding
the state space explosion problem. In addition, the presented monitor detects system faults
as soon as possible, before the maximum execution time assigned to each task.

16 CHAPTER 2. LITERATURE REVIEW

Note that, all papers in this topic assume that faults are modeled by unobservable transi-
tions. However, while the above mentioned papers assume that the marking of certain places
may be observed, a series of papers have been recently presented that are based on the as-
sumption that no place is observable [6, 7, 9, 44].

In particular, Genc and Lafortune [44] propose a diagnoser on the basis of a modular ap-
proach that performs the diagnosis of faults in each module. Subsequently, the diagnosers
recover the monolithic diagnosis information obtained when all the modules are combined
into a single module that preserves the behavior of the underlying modular system. A com-
munication system connects the different modules and updates the diagnosis information.
Even if the approach does not avoid the state explosion problem, an improvement is ob-
tained when the system can be modeled as a collection of PN modules coupled through
common places.

The main advantage of the approaches of Genc and Lafortune [44] consists in the fact that, if
the net is bounded, the diagnoser may be constructed off-line, thus moving off-line the most
burdensome part of the procedure. Nevertheless, a characterization of the set of markings
consistent with the actual observation is needed. Thus, large memory may be required.

An improvement in this respect has been given by Benveniste et al. [9], Basile et al. [6, 7] and
Dotoli et al. [37].

In particular, Benveniste et al. [9] use a net unfolding approach for designing an on-line
asynchronous diagnoser. The state explosion is avoided but the on-line computation can be
high due to the on-line building of the PN structures by means of the unfolding.

In [6, 7] the diagnoser is built on-line by defining and solving Integer Linear Programming
(ILP) problems. Assuming that the fault transitions are not observable, the net marking is
computed by the state equation and, if the marking has negative components, an unobserv-
able transition has occurred. The linear programming solution provides the sequence and
detects the fault occurrences. Moreover, an off-line analysis of the PN structure reduces the
computational complexity of the ILP problem.

Dotoli et al. in [37], in order to avoid the redesign and the redefinition of the diagnoser when
the structure of the system changes, proposed a diagnoser that works on-line. In particular,
it waits for an observable event and an algorithm decides whether the system behavior is
normal or may exhibit some possible faults. To this aim, some ILP problems are defined and
provide eventually the minimal sequences of unobservable transitions containing the faults
that may have occurred. The proposed approach is a general technique since no assumption
is imposed on the reachable state set that can be unlimited, and only few properties must be
fulfilled by the structure of the PN modeling the system fault behavior.

Note that none of the above mentioned papers regarding PNs deal with diagnosability, namely
none of them provide a procedure to determine a priori if a system is diagnosable, i.e., if it is
possible to reconstruct the occurrence of fault events observing words of finite length.

In fact, whereas this problem has been extensively studied within the framework of automata
as discussed above, in the PN framework very few results have been presented.

The first contribution on diagnosability of PNs was given by Ushio et al. [82]. They extend

2.2. STATE OF ART FOR IDENTIFICATION 17

a necessary and sufficient condition for diagnosability given by Sampath et al. [76, 77] to
unbounded PN. They assume that the set of places is partitioned in observable and unob-
servable places, while all transitions are unobservable in the sense that their occurrences
cannot be observed. Starting from the PN they build a diagnoser called simple ω diagnoser
that gives them sufficient conditions for diagnosability of unbounded PNs.

Chung in [30], in contrast with Ushio’s paper, assumes that part of the transitions of the PN
modelling is observable and shows that the additional information from observed transi-
tions in general adds diagnosability to the analysed system. Moreover starting from the diag-
noser he proposes an automaton called verifier that allows a polynomial check mechanism
on diagnosability but for finite state Petri net models.

In [90] Wen and Jeng proposed an approach to test diagnosability by checking the structure
property of T-invariant of the nets. They use Ushio’s diagnoser to prove that their method
is correct, however they don’t construct a diagnoser for the system to do diagnosis. In [91]
Wen et al. present an algorithm, based on a linear programming problem, of polynomial
complexity in the number of nodes for computing a sufficient condition of diagnosability of
DES modeled by PN.

Future research in the fault diagnosis field could follow several directions. First, diagnosabil-
ity conditions are not fully investigated when PNs are used. More precisely, it is necessary
to establish if it is possible to detect with a finite delay occurrences of failures using a record
of observed events. Second, the proposed procedures are not applicable to labeled PNs that
exhibit some form of non-determinism, such as two or more transitions that share the same
label. Third, the on-line approaches have to be improved in their computational complexity
in order to apply the technique to large scale systems.

2.2 State of art for identification

Identification is a classical problem in system theory: given a pair of observed input-output
signals identification consists in determining a system such that the input-output signals
approximate the observed ones [86].

Input data are usually given in terms of behavioral descriptions (e.g., transition system, lan-
guage), and the identification (or synthesis) problem aims to address two main issues. First,
decide whether for the given behavioral specification there exists a PN (of a given class)
whose behavior coincides with the specified behavior. Secondly, provide a constructive pro-
cedure to determine the PN that satisfies the given specifications.

The idea of learning the structure of an automaton from positive examples and from coun-
terexamples has been explored since the early 80’s in the formal language domain. As an
example, we recall the early work of Gold [47] and Angluin [1].

18 CHAPTER 2. LITERATURE REVIEW

Identification of free labeled Petri nets

One of the first original approaches to the identification of safe PNs was discussed by Hiraishi
[49], who presented an algorithm for the construction of a free labeled PN model, i.e., PNs
where transitions are not labeled, from the knowledge of a finite set of its firing sequences.
In a first phase, a language is identified in the form of a finite state automaton from given
firing sequences. In a second phase, the dependency relation is extracted from the language,
and the structure of a PN is guessed. Provided that the language is generated by a special
class of nets, the algorithm uniquely identifies the original net if a sufficiently large set of
firing sequences is given.

In [67, 68] Meda and Mellado present an approach for the identification of free labeled In-
terpreted PNs. Their approach consists in observing the marking of a subset of places and,
given some additional information on the dependency between transitions, allows one to
reconstruct the part of the net structure related to unobservable places.

Bourdeaud’huy and Yim [13] propose an approach to reconstruct the incidence matrix and
the initial marking of a free labeled net given some structural information on the net, such
as the existence of P-invariants or T-invariants. This approach, that is based on logic con-
straints, can only deal with positive examples but not with counterexamples, namely it guar-
antees that the identified system generates all strings in the given language L, but it does not
guarantee that all strings that are not in L are forbidden.

In [38] Dotoli et al. present a procedure to identify a labeled PN system by the real time
observation of its dynamical evolution, assuming that the marking is partially known, the set
of transitions is unknown, and only an upper bound on the number of places is given. The
identification problem is solved using an algorithm that observes in real time the occurred
events and the corresponding output vectors: an ILP problem is defined at each observation
that allows to recursively identify a PN system. Necessary and sufficient conditions for the
correct identification of the net are given.

Theory of regions

An alternative approach, that has inspired most of the contributions in identification topic
since the early nineties, is based on the theory of regions [2, 4, 3, 10, 28, 32, 62, 63, 64]. Given a
prefix-closed language L over some alphabet T , the language-based theory of regions tries
to find a finite PN N (L) in which the transitions correspond to the symbols in the alphabet
of the language and of which all words in the language are firing sequences. The PN N (L),
whose set of places is empty and whose set of transitions contains all transitions in L , is
a finite PN in which all words are firing sequences. However, its behavior is not minimal.
Therefore, the behavior of this PN needs to be reduced, such that the PN still reproduces
all words in the language, but does not allow for more behavior. This is achieved by adding
places to the PN. The theory of regions provides a method to calculate these places, using
regions. Regions-based approaches mainly differ in the PN class and the model for the be-
havioral specifications considered.

The synthesis problem was first addressed by Ehrenfeucht and Rozenberg [41] introducing

2.2. STATE OF ART FOR IDENTIFICATION 19

regions to model the sets of states that characterize marked places. Interesting surveys on
such PN synthesis approaches have been proposed by Badouel and Darondeau in [4], and
very recently by Lorenz et al. in [64].

In [2, 4] the objective was that of deciding whether a given graph is isomorphic to the reach-
ability graph of some free labeled net and then constructing it. In [2] Badoeul et al. give
explicit algorithms for solving in polynomial time in the size of automata the synthesis prob-
lem for pure weighted PNs from a restricted class of regular languages or from finite au-
tomata. These methods have been implemented in the tool SYNET [26]. In [32] Cortadella et
al. present a method which, given a finite state model, called transition system, synthesizes
a safe, place-irredundant PN with a reachability graph that is bisimilar to the original transi-
tion system. In [3] Badouel and Darondeau provide an adaptation of the synthesis algorithm
that works in polynomial time with respect to the number of states and to the cardinality of
the alphabet for general PNs with the sequential firing rule and for PNs with step firing rule.

In [28] Carmona et al. provide an efficient synthesis approach for concurrent systems. An
algorithm for bounded PNs synthesis based on the theory of general regions is presented.
A bounded PN is always provided in case it exists. Otherwise, the events are split into sev-
eral transitions to guarantee the synthesis of a PN with bisimilar behavior. Starting from
the algorithms for synthesizing safe PNs in [32], the theory and algorithms are extended by
generalizing the notion of excitation closure from sets of states to multisets of states. The
extension covers the case of the k-bounded PNs with weighted arcs.

In [63] given a set of firing sequences, Lorenz and Juhás answer the question whether this
set equals the set of all executions of a PN. They propose a definition of regions for a partial
language. Moreover, given a partial language of firing sequences they prove a necessary and
sufficient condition (based on regions) for the partial language to be the partial language of
executions of a PN.

In [62] Lorenz et al. present an algorithm to synthesize a finite PN from a finite set of labeled
partial orders (a finite partial language). This PN has minimal non-sequential behavior in-
cluding the specified partial language. Consequently, either this net has exactly the non-
sequential behavior specified by the partial language, or there is no such PN. They finally
develop an algorithm to test whether the synthesized net has exactly the non-sequential be-
havior specified by the partial language.

In [10] Bergenthum et al. present an algorithm to synthesize a finite unlabeled PN from a
possibly infinite partial language, which is given by a term over a finite set of labeled partial
orders using operators for union, iteration, parallel composition and sequential composi-
tion. The synthesis algorithm is based on the theory of regions for partial languages pre-
sented in [63] and produces a PN having minimal net behavior including the given partial
language. The algorithm uses linear programming techniques that were already successfully
applied in [62].

In Chapter 5 will be presented in more detail the regions-based approach.

20 CHAPTER 2. LITERATURE REVIEW

Process mining and workflow problems

The discovery of formal models from event logs in information systems is known as process
mining. The term process mining refers to methods for distilling a structured process de-
scription from a set of real executions. The synthesis problem is related to process mining.
However, process mining differs from synthesis in the knowledge assumption: while in syn-
thesis one assumes a complete description of the system, only a partial description of the
system is assumed in process mining. Therefore, bisimulation is no longer a goal to achieve
in process mining. Instead, obtaining approximations that succinctly represent the log un-
der consideration are more valuable. More in detail, the essential differences with classical
approaches based on language learning are:

• there are no counterexamples;

• only a fraction of all possible behavior has been observed, i.e., processes allow for
much more traces than the ones that were observed;

• processes are concurrent and not sequential.

A survey of approaches adopted in this field can be found in [83]. In [85] van der Werf et
al. consider the problem of process discovery [84], i.e., they construct a process model de-
scribing the processes controlled by the information system by simply using the execution
log, where an execution log is a finite set of traces. They restrict their attention to the control
flow, i.e., they focus on the ordering of activities executed, rather than on the data recorded.

In [84] van der Aalst et al. address the workflow rediscovery problem. This problem is formu-
lated as follows: “Find a mining algorithm able to rediscover a large class of sound workflow-
nets on the basis of complete workflow logs.” Under the assumption that the workflow log
contains “sufficient” information, authors investigate whether it is possible to rediscover the
workflow process, i.e., for which class of workflow models is it possible to accurately con-
struct the model by merely looking at their logs. For this purpose, they use workflow nets
that are a class of PNs specifically tailored toward workflow processes.

In [27] Carmona et al. present a new method for the synthesis of PNs from event logs in the
area of process mining. This paper aims at constructing (mining) a PN that covers the be-
havior observed in the event log, i.e., traces in the event log will be feasible in the PN. More-
over, the PN may accept traces not observed in the log. Additionally, a minimality property
is demonstrated on the mined PN: no other net exists that both covers the log and accepts
less traces than the mined PN. The methods presented in the paper can mine a particular
k-bounded PN, for a given bound k.

Identification of arbitrary Petri nets

Finally we present some approaches for arbitrary PNs, namely PNs where two or more tran-
sitions can share the same label and some transitions are labeled with the empty string.

2.2. STATE OF ART FOR IDENTIFICATION 21

In [80] Sreenivas studies the minimization of PN models. Given a measure of size of a labeled
PN, he considers the existence of a procedure that takes as input a description of an arbitrary,
labeled PN, and returns a description of a (possibly different) labeled PN with the smallest
size that generates the same language as the input. This is a procedure of minimization, in
fact, in [80] is investigated the existence of minimization procedures for a variety of mea-
sures and is shown that these procedures cannot exist for PN languages for a large class of
measures. However, for families of PN languages where controllability is decidable, there can
be minimization procedures for a restricted class of measures. After showing that minimiza-
tion procedures for a family of measures are intractable for languages generated by bounded
PNs, it is argued that a similar conclusion has to be reached for any family of PN languages
that includes the family of regular languages for which there are minimization procedures.

Problems related to identification of labeled PNs have been recently studied by Ru and Had-
jicostis in [73] and by Li et al. in [58].

In [73] Ru and Hadjicostis show that if the initial marking is known, but the transition may
either be indistinguishable (they share the same label and can be simultaneously enabled)
or silent (labeled with the empty string) the number of markings that are consistent with
a given observation is at most polynomial in the length of the observation sequence (i.e.,
in the number of labels observed) even though the set of possible firing sequences can be
exponential in the length of the observation sequence. The result applies to general PNs
without any specific assumption on the structure of the PN or the nature of the labeling
function.

Finally, Li et al. [58] assume that to each transition in the given net is associated a nonneg-
ative cost which could represent its likelihood (e.g., in terms of the amount of workload or
power required to execute the transition). A recursive algorithm is proposed that, given the
structure of a labeled PN and the observation of a sequence of labels, finds the transition
firing sequence(s) that has (have) the least total cost and is (are) consistent with both the
observed label sequence and the PN. The complexity of the procedure is polynomial in the
length of the observed label sequence and is thus amenable to on-line event estimation and
monitoring.

Chapter 3

Background on Petri nets

Summary

In this chapter we recall the formalism of Petri nets used in the rest of the thesis.

23

24 CHAPTER 3. BACKGROUND ON PNS

3.1 Petri net model

Petri nets (PNs) are a discrete event system model developed in the early 1960s by C.A. Petri
in his Ph.D. dissertation[70]. They represent one of the most efficient methods to analyze
discrete event systems. PNs can be divided in discrete and timed. Moreover timed PNs are
partitioned in deterministic and stochastic. In this thesis we deal with discrete PNs that is
a logic model that allows us to represent the order of the occurrence events but not their
temporization.

The reasons because PNs are so widely used are multiple.

• PNs are a mathematical and graphical formalism to model discrete event systems.

• PNs give a compact representation of the state space. In fact they do not require to
explicitly represent all possible reachable states, but only the evolution rules.

• PNs can represent a discrete event system with an infinite number of states via a graph
with a finite number of nodes.

• PNs can represent the concept of concurrency.

• PNs give a modular representation. In fact if a system is composed by more than one
subsystems and these subsystems interact each other, then it is possible to represent
each subsystem as a PN and then, using specific constructs, combine the single units
to obtain the entire model.

3.2 Basic definitions

A Place/Transition net (P/T net) is a structure N = (P,T,Pr e,Post), where P is a set of m
places; T is a set of n transitions; Pr e : P ×T → N and Post : P ×T → N are the pr e– and
post– incidence functions that specify the weight of the arcs directed from places to tran-
sitions and from transitions to places, respectively; C = Post −Pr e is the incidence matrix.
The preset and postset of a node X ∈ P ∪T are denoted •X and X • while •X • =• X ∪X •.

A marking is a vector M : P →N that assigns to each place of a P/T net a nonnegative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T
system or net system 〈N , M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pr e(· , t) and may fire yielding the marking M ′ = M +
C (· , t) = M +C ·~t , where~t ∈ Nn is a vector whose components are all equal to 0 except the
component associated to transition t that is equal to 1. Given a sequence σ ∈ T ∗, where T ∗

is the set of all finite sequences of transitions in T including the empty string ε, we write
M [σ〉 to denote that the sequence of transitions σ is enabled at M , and we write M [σ〉 M ′

to denote that the firing of σ yields M ′. Note that in this paper we always assume that two or
more transitions cannot simultaneously fire (non-concurrency hypothesis).

Given a sequenceσ ∈ T ∗, we callπ : T ∗ →Nn the function that associates toσ a vector y ∈Nn ,
named the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the transition t is

3.2. BASIC DEFINITIONS 25

2

p1 p2

p3

p4

t1 t2

t3

t4

t5

 Figure 3.1: An example of Petri net

contained k times inσ. We denote |σ|t the number of occurrences of transition t in sequence
σ.

Example 3.1. Let us consider the PN system in Figure 3.1. The set of places is P = {p1, p2, p3, p4}
and the set of transitions is T = {t1, t2, t3, t4, t5}. The two matrices Pr e and Post are:

Pr e =




1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1


 Post =




1 0 0 0 1
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0




and the incidence matrix is

C =




0 −1 0 0 1
0 2 −1 −1 0
0 0 1 0 −1
0 0 0 1 −1


 .

The initial marking is M0 = [1 0 0 0]T . Transitions t1 and t2 are enabled at M0 and their firing
yield to markings M0 and M1 = [0 2 0 0]T , respectively. The preset and postset for transition
t2 and place p2 are •t2 = {p1}, t•2 = {p2},•p2 = {t2} and p•

2 = {t3, t4}, respectively.

Let us consider the firing sequenceσ= t1t1t2t3 firable in the considered PN at M0. The firing
vector of σ is π(σ) = [2 1 1 0 0]T , thus |σ|t 1 = 2, |σ|t 2 = |σ|t 3 = 1 and |σ|t 4 = |σ|t 5 = 0. ¥

A marking M is reachable in 〈N , M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
In such a case the state equation M = M0 +C · y holds, where y = π(σ). The set of all mark-
ings reachable from M0 defines the reachability set of 〈N , M0〉 and is denoted R(N , M0). Fi-
nally, we denote PR(N , M0) the potentially reachable set, i.e., the set of all markings M ∈Nm

for which there exists a vector y ∈ Nn that satisfies the state equation M = M0 +C · y , i.e.,
PR(N , M0) = {M ∈Nm | ∃ y ∈Nn : M = M0 +C · y}. It holds that R(N , M0) ⊆ PR(N , M0).

A PN having no directed circuit is called acyclic. For this subclass the following result holds.

Theorem 3.2. [31] Let N be an acyclic PN.

(i) If the vector y ∈Nn satisfies the equation M0+C ·y ≥~0 there exists a firing sequenceσ firable
from M0 whose firing vector is π(σ) = y.

26 CHAPTER 3. BACKGROUND ON PNS

(ii) A marking M is reachable from M0 iff there exists a non negative integer solution y satis-
fying the state equation M = M0 +C · y, i.e., R(N , M0) = PR(N , M0).

3.3 Net language

Given a PN system 〈N , M0〉 we define its free-language1 as the set of its firing sequences

L(N , M0) = {σ ∈ T ∗ | M0[σ〉}.

We also define the set of firing sequences of length less than or equal to k ∈N as:

Lk (N , M0) = {σ ∈ L(N , M0) | |σ| ≤ k}.

Finally given a language L ⊂ T ∗ and a vector y ∈Nn we denote

L (y) = {σ ∈L |π(σ) = y}

the set of all sequences in L whose firing vector is y .

3.4 Structural properties

In this section we introduce some structural properties of PNs that will be used in Subsec-
tion 10.2.1.

Definition 3.3. Let us consider a PN with m places, n transitions and incidence matrix C . A
P-vector~x : P →N, with~x 6=~0, is called:

• P-invariant: if~xT ·C =~0T ;

• P-increasing: if~xT ·C
~0T ;

• P-decreasing: if~xT ·C �~0T .

It can be shown that if~x is a P-invariant (resp., P-increasing, P-decreasing) along any evolu-
tion the sum of the markings weighted with vector~x remains constant (resp., does not decrease,
does not increase).

A T-vector~y : T →N, with~y 6=~0, is called:

• T-invariant: if C ·~y =~0;

• T-increasing: if C ·~y
~0;

1As it will appear in the following, free specifies that no labeling function is assigned to the considered PN
system.

3.5. LABELED PETRI NETS 27

• T-decreasing: if C ·~y �~0.

It can be shown that if ~y is a T-invariant the firing of a sequence of transitions whose firing
vector is ~y does not modify the number of tokens, i.e., it is a stationary sequence. If ~y is a T-
increasing the firing of a sequence of transitions whose firing vector is~y increases the number
of tokens, i.e., it is a repetitive non stationary sequence. Finally if~y is a T-decreasing the firing
of a sequence of transitions whose firing vector is~y decreases the number of tokens. ¥

A PN is said ordinary if Pr e,Post ∈ {0,1}m×n , i.e., if each arc has weight equal to one.

A marked graph is an ordinary PN such that each place has exactly one input and one output
transition.

A state machine is an ordinary PN where each transition has exactly one input and one out-
put place.

A net system 〈N , M0〉 is bounded if there exists a positive constant k such that, for M ∈
R(N , M0), M(p) ≤ k. A net is said structurally bounded if it is bounded for any initial marking.

Finally, let us consider the following definition.

Definition 3.4. Given a net N = (P,T,Pr e,Post), and a subset T ′ ⊆ T of its transitions, we
define the T ′−induced subnet of N as the new net N ′ = (P,T ′,Pr e ′,Post ′) where Pr e ′,Post ′

are the restriction of Pr e,Post to T ′. The net N ′ can be thought as obtained from N removing
all transitions in T \ T ′. We also write N ′ ≺T ′ N . ¥

3.5 Labeled Petri nets

When observing the evolution of a net, it is common to assume that each transition t is
assigned a labelϕ(t) and the occurrence of t generates an observable outputϕ(t). Ifϕ(t) = ε,
i.e., if the transition is labeled with the empty string, its firing cannot be observed. This leads
to the definition of labeled nets.

Definition 3.5. Given a PN N with set of transitions T , a labeling function ϕ : T → E ∪ {ε}
assigns to each transition t ∈ T a symbol, from a given alphabet E, or assigns to it the empty
string ε.

A labeled PN system is a 3-tuple G = 〈N , M0,ϕ〉 where N = (P,T,Pr e, Post), M0 is the initial
marking, and ϕ : T → E ∪ {ε} is the labeling function. ¥

Four classes of labeling functions may be defined.

Definition 3.6. The labeling function of a labeled PN system 〈N , M0,ϕ〉 can be classified as
follows.

• Free: if all transitions are labeled distinctly, namely a different label is associated to each
transition, and no transition is labeled with the empty string.

28 CHAPTER 3. BACKGROUND ON PNS

• Deterministic: if no transition is labeled with the empty string, and the following con-
dition2 holds: for all t , t ′ ∈ T , with t 6= t ′, and for all M ∈ R(N , M0): M [t〉 ∧ M [t ′〉 ⇒
[ϕ(t) 6=ϕ(t ′)] i.e., two transitions simultaneously enabled may not share the same label.
This ensures that the knowledge of the firing label ϕ(t) is sufficient to reconstruct the
marking that the firing of t yields.

• λ-free: if no transition is labeled with the empty string3.

• Arbitrary: if no restriction is posed on the labeling function ϕ.

¥

Each of these types of labeling is a generalization of the previous one. Furthermore all types
of labeling only depend on the structure of the net, but for the deterministic labeling that
depends both on the structure and on the behavior of the net.

In the particular case in which the labeling function is free, being an isomorphism between
the alphabet E and the set of transitions T , it is usual to choose E = T , or equivalently to
assume that the transitions are not labeled and their firing can be directly observed.

2A looser condition is sometimes given: for all t , t ′ ∈ T , with t 6= t ′, and for all M ∈ R(N , M0): M [t〉 ∧ M [t ′〉
⇒ [ϕ(t) 6= ϕ(t ′)] ∨ [Post (·, t)−Pr e(·, t) = Post (·, t ′)−Pr e(·, t ′)]. Thus two transitions with the same label may
be simultaneously enabled at a marking M , if the two markings reached from M by firing t and t ′ are the same.

3In the PN literature the empty string is denoted λ, while in the formal language literature it is denoted
ε. In this thesis we denote the empty string ε but, for consistency with the PN literature, we still use the term
λ-free for a non erasing labeling function ϕ : T → E .

Chapter 4

State of the art for diagnosis:
Diagnoser Approach

Summary

This chapter presents the seminal approach to the problem of failure diagnosis of discrete
event systems using automata ([76, 77]). Sampath et al. introduce a notion of diagnosability
of DES in the framework of formal languages. Moreover, they present a systematic proce-
dure for detection and isolation of failure events using diagnosers and provide necessary
and sufficient conditions for a language to be diagnosable. The diagnoser performs diag-
nostics using on-line observations of the system behavior; it is also used to state and verify
off-line necessary and sufficient conditions for diagnosability. These conditions are stated
on the diagnoser.

29

30 CHAPTER 4. STATE OF THE ART FOR DIAGNOSIS: DIAGNOSER APPROACH

In this chapter we present the seminal approach to the diagnosis of automata developed
by M. Sampath, S.Lafortune, D. Teneketzis, R. Sengupta and K. Sinnamohideen in [76, 77].
Definitions, propositions and algorithms of this chapter are taken from [29] to which the
reader is addressed for more details.

4.1 The system model

The system to be diagnosed is modeled as a finite state automaton.

Definition 4.1. A finite state automaton is a quintuple denoted as G = (X ,E ,δ, x0, Xm), where:

• X is a finite set of states,

• E is a finite set of events,

• δ : X ×E → X is the partial transition function,

• x0 is the initial state of the system,

• Xm ⊆ X is the set of marked states. ¥

An automaton can be represented by a graph where each state is represented by a node. The
initial state is denoted by an arrow and a final state by a double circle. If x̄ = δ(x,e) then there
exists an arc directed from node x to node x̄ labeled with symbol e. If we are not interested
to take into account a set of marked states, the automaton is reduced to G = (X ,E ,δ, x0).

Example 4.2. In Figure 4.1 is shown a finite state automaton G , where X = {x0, x1, x2}, E =
{a, b, c, d}, the initial state is equal to x0 and the set of marked states is Xm = {x0}. The partial
transition function is given by the following table:

δ a b c d

x0 x1

x1 x2 x0

x2 x2 x0

¥

The behavior of the system is described by the prefix-closed language (see Appendix A) L (G)
generated by G . Henceforth, we shall denote L (G) by L . L is a subset of E∗, where E∗

denotes the Kleene closure of the set E (see Appendix A).

The model G includes both the normal and the faulty behavior. The set of events E is par-
titioned as E = Eo ∪Eu in two disjoint subsets, where Eo is the set of observable events and
Eu is the set of unobservable events. Let E f ⊆ E denote the set of failure events which are to
be diagnosed. Let us assume that E f ⊆ Eu , since it is straightforward diagnose an observable
failure event. The set of fault events is partitioned into m disjoint subsets that represent the
set of fault classes:

4.2. OBSERVER AUTOMATA 31

x2

c

b a

d

x1

d

x0

Figure 4.1: A finite state automaton.

E f = E f 1,E f 2, . . . ,E f m .

The aim is that of identifying the occurrence, if any, of failure events, given the set of gener-
ated words containing only observable events.

In the rest of the chapter the following assumptions hold.

(A1) The language L generated by G is live. This means that there not exists a state x ∈ X
from which no event is possible.

(A2) There does not exist in G any cycle of unobservable events.

Assumption (A1) is made for the sake of simplicity. On the contrary, assumption (A2) is nec-
essary and ensures that the system G does not generate sequences of unobservable events
whose length can be infinite.

Let us define the projection operator P : E∗ → E∗
o as





P (ε) = ε
P (σ) =σ, if σ ∈ Eo ;
P (σ) = ε, if σ ∈ Eu ;
P (sσ) = P (s)P (σ), s ∈ E∗,σ ∈ E .

Thus, P simply “erases” the unobservable events in a trace.

4.2 Observer automata

To solve the diagnosis problem the considered system is represented by an automaton whose
set of events is partitioned into two disjoint subsets: the set of observable events and the set
of unobservable events. Faults are modeled by unobservable events. Thus, the considered
system is a nondeterministic automaton with unobservable transitions. A nondeterministic
automaton Gnd can always be converted in a deterministic one, that has the same generated
and marked language of Gnd . Here in the following we recall from [29] the algorithm to
transform a non deterministic automaton in a deterministic one. This automaton is called
observer corresponding to Gnd and is denoted as Obs(Gnd).

32 CHAPTER 4. STATE OF THE ART FOR DIAGNOSIS: DIAGNOSER APPROACH

Algorithm 4.3. ([29] Section 2.5.2)Construction of the Observer Obs(Gnd) of Nondetermin-
istic Automaton Gnd .

Let Gnd = (X ,E , fnd , x0, Xm) be a nondeterministic automaton, where X is the set of states, E
(con E = Eo ∪Eu), fnd is the transition function, x0 is the initial state and Xm is the set of
marked states. Then, the observer is Obs(Gnd) = (Xobs ,Eo , fobs , x0,obs , Xm,obs). Note that the
set of events of the observer is restricted to the observable events.

Step 1: Define x0,obs = εR(x0) 1. Set Xobs = {x0,obs}.

Step 2: For each B ∈ Xobs and e ∈ E, define

fobs(B ,e) = εR({x ∈ X : (∃xe ∈ B)[x ∈ fnd (xe ,e)]})

whenever fnd (xe ,e) is defined for some xe ∈ B. In this case, add the state fobs(B ,e) to Xobs . If
fnd (xe ,e) is not defined for any xe ∈ B, then fobs(B ,e) is not defined.

Step 3: Repeat Step 2 until the entire part of Obs(Gnd) has been constructed.

Step 4: Xm,obs = {B ∈ Xobs : B ∩Xm 6= ;}. ¥

The algorithm constructs the Obs(Gnd) starting from the initial node x0,obs to which corre-
sponds the initial state of Gnd and all those states that are reached from x0 firing one or more
unobservable transitions (step 1). Now, we consider all the events that are enabled at x0,obs

and we put them in a set called active set of x0,obs . For each event e ∈ E in the active set
of x0,obs we consider all states x ∈ X that can be reached from a state in x0,obs . This set of
states x ′

obs is then extended to all those state that can be reached from one a state in x ′
obs

firing one or more unobservable transitions. The extended set x ′
obs is equal to fobs(x0,obs ,e)

of Obs(Gnd). The arc going from the initial node of the observer x0,obs to the new node
x ′

obs = fobs(x0,obs ,e) is labeled e and is added to the state transition diagram of Obs(Gnd).
The procedure is iterated until the entire part of Obs(Gnd) has been constructed, i.e., until
of the successors of x0,obs and then of the successors of the other states are explored (step
3). Finally, at step 4, are computed the marked states of the observer Xm,obs as all nodes that
contain at least one x ∈ Xm .

In simple words, the observer Obs(Gnd) gives us an estimation on the possible states of the
system after an observed word w . In fact, Obs(Gnd) is a deterministic automaton that has
the same generated and accepted language of Gnd .

Example 4.4. Let us consider the automaton G in Figure 4.2.(a). The set of observable events
is Eo = {a,b,c} and the set of unobservable events, that is equal to the set of fault events,
is Eu = E f = { f }. The observer Obs(G) is shown in Figure 4.2.(b). The initial state of the
observer is x0,obs = {1,2}. It means that if no event is observed the system G can be either
in state 1 or in state 2. Analogously, if word w = a is observed the system G can be either in
state 3 or in state 5. Finally, if w = ac is observed, we are sure that the system is in state 4. ¥

1 εR(x) = fnd (x,ε), i.e., is the set of all states that are reached starting from x firing ε-transitions.

4.3. DIAGNOSIS 33

a

a

b

b

c

c

f

x1

x2 x3

x5

x4

(a)

{1, 2}

{3,5}

{4}

a

c

b

(b)

Figure 4.2: (a) automaton G of Example 4.4; (b) its observer

4.3 Diagnosis

Diagnosis problem is the problem of associate to each observed string of events a diagnosis
state, such as “normal” or “faulty” or “uncertain”. The uncertainty can be reduced continuing
to make observations. In Example 4.4 for instance (G is shown in Figure 4.2.(a) and Eu = { f }),
after observing string t = a, we do not know if the system has executed the fault event f or
not. However, after observing w = ac, we know with certainty that event f must have oc-
curred. Thus we have diagnosed the occurrence of unobservable event f after observing w .
We can automate this kind of inferencing about the past constructing an automaton that is
similar to the observer, but that contains as additional information regarding the occurrence
of fault transitions. We call this modified observer a diagnoser automaton.

Let us denote the diagnoser built from G by Di ag (G). In the following, for the sake of sim-
plicity, we consider that we are interested to diagnose a single fault event f . Diagnoser
Di ag (G) is similar to the observer Obs(G) with the difference that in each node is contained
not only a set of states where the system can be, but to each of these states is associated ei-
ther a label N or a label Y . Label N means that “ f has not occurred yet” while Y means that
“yes, f has occurred”. If a label is attached to a state x ∈ X we write xN or xY as abbreviated
notation for (x, N) or (x,Y), respectively.

From Section 2.5.3 in [29] we recall the key modifications to the construction of Obs(G) (see
Algorithm 4.3) for the purpose of building Di ag (G):

M1. When building the unobservable reach of the initial state x0 of G:

(a) Attach the label N to states that can be reached from x0 by unobservable strings in [Eu \
f]∗;

(b) Attach the label Y to states that can be reached from x0 by unobservable strings that
contain at least one occurrence of f ;

(c) If state z can be reached both with and without executing f , then create two entries in
the initial state set of Di ag (G): zN and zY .

34 CHAPTER 4. STATE OF THE ART FOR DIAGNOSIS: DIAGNOSER APPROACH

{1N, 1Y, 2Y}

{1N, 2Y}

{3Y, 5N}

{4Y}

b

c

a

c

a

Figure 4.3: Diagnoser Di ag (G) of automaton G in Figure 4.2.(a).

M2. When building subsequent reachable states of Di ag (G):

(a) Follow the rules for the transition function of Obs(G), but with the above modified way
to build unobservable reaches with state labels;

(b) Propagate the label Y . Namely, any state reachable from state zY should get the label Y
to indicate that f has occurred in the process of reaching z and thus in the process of
reaching the new state.

M3. No set of marked states is defined for Di ag (G).

Diagnoser Di ag (G) is a deterministic automaton, whose set of events is E = Eo and that
generates a language L (Di ag (G)) = P [L(G)]. Each state of Di ag (G) is a subset of X ×{N ,Y }.
Modification M1(c) implies that if a state can be reached by two paths having the same ob-
servable projection and such that one path contains the fault f and the other one does not in
a node of Di ag (G) will exist two pairs xN and xF . It means that the cardinality of Di ag (G)
is always greater than or equal to the cardinality of Obs(G).

Example 4.5. Figure 4.3 shows the diagnoser Di ag (G) of automaton G in Figure 4.2.(a),
where f is the event to be diagnosed. The cardinality of diagnoser is greater than the car-
dinality of observer, since node 1 of the system G appears once with label N and once with
both labels N and F . By Di ag (G) is evident that after the occurrence of event c we are sure
that the fault has occurred. On the other hand if we observe word w = ab we have an uncer-
tainty situation, due to the fact that we may be either in state 1, before or after the occurrence
of the fault, or in state 2 after the occurrence of the fault. ¥

As shown by Example 4.5 we can perform diagnosis by examination of the diagnoser states.
In Di ag (G) we can distinguish three different kind of states:

• negative state: if in the node of Di ag (G) for all pairs (x, l) l = N . Thus reaching this
node we are sure that fault f has not occurred yet;

• positive state: if in the node of Di ag (G) for all pairs (x, l) l = F . Thus reaching this
node we are sure that fault f has occurred;

4.4. DIAGNOSABILITY 35

• uncertain state: if in the node of Di ag (G) there exists at least one pair (x, l) such that
l = N and at least one pair (x, l), such that l = F . Thus, we cannot say nothing about
the occurrence of fault f .

Note that, In many cases, one can modify the system so that the state explicitly tracks a fault
that has occurred. For example, by adding states 2F,3F,4F in the model of Figure 4.2 (so
that the number of states increases to 8), one simply needs to track the states of the system
and not the events. This essentially reduces the diagnoser to an observer at the cost of more
states in the system model.

4.4 Diagnosability

The problem of diagnosability is the problem to determine if the system is diagnosable, i.e.,
if once a fault has occurred the system can detect its occurrence in a finite number of steps.
Let us introduce a definition of diagnosability for language that are live.

Definition 4.6. ([29] Section 2.5.3) Unobservable event f is not diagnosable in live language
L (G) if there exist two strings sN and sY in L (G) that satisfy the following conditions:

(i) sY contains f and sN does not;

(ii) sY is of arbitrarily long length after f ;

(iii) P (sN) = P (sY).

When no such pair of strings exists, f is said to be diagnosable in L (G). ¥

In other words, diagnosability requires that each fault event leads to distinct observations,
sufficient to allow the identification of the fault with a finite delay. Assumption (A1) allows
us to state that when the property of diagnosability is satisfied, we are sure that if f occurs,
then Di ag (G) will enter a positive state in a bounded number of events after the occurrence
of f .

Let us now introduce the definition of indeterminate cycle that is fundamental to test the
property of diagnosability in the diagnoser.

Definition 4.7. ([76]) Let us consider a system G and its diagnoser Di ag (G). We say that a
cycle in Di ag (G) is an indeterminate cycle if it is composed exclusively of uncertain states for
which there exist:

• a corresponding cycle (of observable events) in G involving only states that carry Y in
their labels in the cycle in Di ag (G) and

• a corresponding cycle (of observable events) in G involving only states that carry N in
their labels in the cycle in Di ag (G). ¥

36 CHAPTER 4. STATE OF THE ART FOR DIAGNOSIS: DIAGNOSER APPROACH

a

b

f

c

c

c

a

x1

x2 x3

x4
x7 x5 b

x6

Figure 4.4: Automaton G of Example 4.10.

{1N, 4Y}

{2N, 5Y} {3N, 6Y}

a

c b {1N, 4Y, 7Y} {7Y} c

c

a

Figure 4.5: Diagnoser Di ag (G) of automaton G in Figure 4.4.

The notion of indeterminate cycles is very important because their analysis gives us neces-
sary and sufficient conditions for diagnosability and gives a method to testify the property
of diagnosability of the system.

Proposition 4.8. [76] A language L without multiple failures of the same type is diagnosable
if and only if its diagnoser Di ag (G) has no indeterminate cycles for all failure types E f i .

Let us consider the following example.

Example 4.9. Consider the system G and its diagnoser Di ag (G) shown respectively in Fig-
ures 4.2.(a), 4.3 and previously introduced in Examples 4.4, 4.5. The diagnoser has a potential
indeterminate cycle. In fact, it has a cycle of uncertain cycles. Let us verify if conditions of
Definition 4.7 are satisfied. In G there exists the cycle “ 1 → 2 → 3 → 1” involving only states
that carry Y in their labels and there exists another cycle “ 1 → 5 → 1” involving only states
that carry N in their labels. Thus, this cycle is indeterminate thus the fault is not diagnosable.

¥

It is important to emphasize that the presence of a cycle of uncertain states in a diagnoser
does not necessarily imply inability to diagnose with certainty an occurrence of event f .
Consider the following example.

Example 4.10. Consider the system G and its diagnoser Di ag (G) shown respectively in Fig-
ures 4.4, 4.5, where the unique unobservable and fault event is f . The diagnoser has a poten-
tial indeterminate cycle. In fact, it has a cycle of uncertain states. However the only cycle that
can cause the diagnoser to remain in its cycle of uncertain states is the cycle “ 1→ 2 → 3 → 1”,
and these states all have the N label in the corresponding diagnoser states. The cycle of un-
certain states in the diagnoser is therefore not indeterminate. ¥

4.4. DIAGNOSABILITY 37

For the case of multiple faults, namely events belonging to the same fault class, we refer to
[29].

Chapter 5

State of the art for identification:
Theory of regions

Summary

In this chapter we present in detail the theory of regions. In particular, we propose two meth-
ods taken from the literature for synthesize a Petri net starting from a labeled graph ([45]) and
starting from a given language ([64]).

39

40 CHAPTER 5. STATE OF THE ART FOR IDENTIFICATION: THEORY OF REGIONS

One of the most popular identification approach for Petri nets(PNs) is based on the theory of
regions. In this framework two main problems have been solved:

• synthesis problem for labeled graphs: given a labeled graph decide if there exists a PN
such that its reachability graph is isomorphic to the input graph, and if such PN exists
construct it;

• synthesis problem for languages given a language L synthesize a PN such that L(N , M0) =
L , namely the language of the PN is equal to the input language.

The two synthesis problems are very similar, although the first one requires stronger as-
sumptions.

5.1 Synthesis problem for labeled graphs

One of the major contributions on the synthesis problem for labeled graph is given by [2, 4].
These works were done from a pure theoretical computer scientist’s point of view and termi-
nologies used are unfamiliar to the control community. A new and very useful interpretation
of the theory of regions using the basic notions of PNs was presented by Ghaffari et al. in
[45]. Although these authors use this new interpretation to design a control policy, we report
here their interpretation because it explains in a very easy way how the theory of regions
synthesize a PN starting from a labeled graph.

Let T be a set of transitions and G a finite oriented graph where arcs are labeled by transitions
in T . Assume that there exists a node S0 in G such that there exists a path from it to any
node. The objective of the theory of regions is to find a pure PN (N , M0), having T as its set
of transitions and characterized by its incidence matrix C and its initial marking M0, such
that its reachability graph is isomorphic to G and the marking of the node S0 is M0. Let M to
denote both a reachable marking and its corresponding node in G .

Let us consider any place p of the net (N , M0) we are synthesizing. Since (N , M0) is pure, i.e.,
the net is loop free, p can be fully characterized by its corresponding incidence vector C (p, ·).

For any transition t that is firable at any marking M , i.e., t is the label of an outgoing arc of
the node M in G , the following equation holds:

M ′(p) = M(p)+C (p, t), ∀(M , M ′) ∈G and M [t〉M ′ (5.1)

where M ′ is the new marking, or equivalently, the destination node of arc t .

Consider now any nonoriented cycle γ of the reachability graph. Applying the state equation
to nodes in γ and summing them up gives the following cycle equation:

∑
t∈T

C (p, y) ·~γ[t] = 0, ∀γ ∈ S (5.2)

5.1. SYNTHESIS PROBLEM FOR LABELED GRAPHS 41

where ~γ[t] denotes the algebraic sum of all occurrences of t in γ and S is the set of nonori-
ented cycles of the graph. ~γ denotes the firing vector of γ.

Consider now each node M of the reachability graph G . According to the definition of G ,
there exists a nonoriented path ΓM from the initial state M0 to M . Applying (5.1) along the
path leads to M(p) = M0(p)+C (p, ·)~ΓM , where~ΓM is the firing vector of the path ΓM . There
may exist several paths from M0 to M . Under the cycle equations, the product C (p, ·)~ΓM is
the same for all these paths. As a result, the path ΓM can be arbitrarily chosen.

The reachability of any marking M in G implies that

M0(p)+C (p, ·)~ΓM ≥ 0, ∀M ∈G (5.3)

which will be called the reachability condition.

It is now clear that the cycle equations and the reachability conditions hold for any place p of
the net (N , M0). Unfortunately, these equations are not sufficient to obtain the reachability
graph G . In order to obtain exactly the reachability graph G , for each pair (M , t) such that M
is a reachable marking of G and t is a transition not firable at M , t should be prevented from
happening by some place p. Since the net is pure, t is prevented from happening at M by a
place p iff

M0(p)+C (p, ·)~ΓM +C (p, t) ≤−1. (5.4)

Relation (5.4) is called the event separation condition of (M , t).

The set of all possible pairs (M , t) where M is a reachable marking and t is not firable at M
are called the set of event separation instances.

One last condition for having the same reachability graph is to ensure that the markings are
different one from another. This is the so-called state separation condition and is as follows:

∀M , M ′ ∈G , ∃p such that M(p) 6= M ′(p). (5.5)

The following theorem gives necessary and sufficient conditions to find a PN whose reacha-
bility graph is isomorphic to the one that is given.

Theorem 5.1. [45] There exists a PN (N , M0) with G as its reachability graph iff there exists a
set P of places (M0(p),C (p, ·)) such that

1. each place p satisfies cycle equation (5.2) and reachability conditions (5.3),

2. the set of places P satisfies the state separation conditions (5.5), and

3. for each transition t not firable at a reachable marking M, there exists a place p that
satisfies the event separation condition (5.4) of (M , t).

42 CHAPTER 5. STATE OF THE ART FOR IDENTIFICATION: THEORY OF REGIONS

 �

�
 ��

�

�
 ��

(a) (b)

2

�

�
 ��

(c)

2n

n n

Figure 5.1: (a) A feasible place and (b) a non-feasible place w.r.t. the language L =
{a,b, ab, aab, aba}.

5.2 Synthesis problem for languages

If the behavior of the PN system to be identified is expressed in terms of the language L it
can generate, the basic idea of region-based approaches can be summarized as follows [64].

The set of transitions is initially assumed equal to the alphabet E over which L is defined,
namely T = E , while the set of places is assumed empty. In such a case, the resulting net
generates each execution in L . To find an exact solution to the identification problem,
this language is then restricted adding feasible places, namely places guaranteeing that L ⊆
L(N , M0), where 〈N , M0〉 is the resulting system.

In particular, the basic idea is to add all places that are feasible so as to minimize the lan-
guage L(N , M0), while guaranteing that L ⊆ L(N , M0). However, since the set of feasible
places is in general infinite [64], a finite subset should be appropriately selected. Feasible
places are defined through a so called region of the given language L , that identifies a de-
pendency between two sets of transitions.

Let us consider an example to better clarify the concept.

Example 5.2. Let us consider the language L = {a,b, ab, aab, aba} over the finite alphabet
E = {a,b}. We want to synthesize a PN such that L(N , M0) =L . If we consider the PN having
two transitions t1 = a and t2 = b and no places then for sure L ⊂ L(N , M0). In Figure 5.1.(a) is
shown an example of feasible place and in Figure 5.1.(b) is shown an example of non-feasible
place w.r.t. the language L . In fact, while in the PN shown in Figure 5.1.(a) L ⊂ L(N , M0), in
the PN in Figure 5.1.(b) L 6⊂ L(N , M0), in fact the word aba is not an execution of the PN. It
is easy to see, looking at Figure 5.1.(c), that the set of feasible places is in general infinite. In
fact for each n ∈N the place is feasible. ¥

In [64] the synthesis problem is presented for several class of PNs (Petri nets, elementary
nets, PNs with inhibitor arcs and elementary nets with inhibitor arcs) and for different lan-
guage type (finite or regular classical language, trace languages and partial languages). More-
over two different types of regions (transition-region and token flow-region) are used for the
definition of feasible places. They show that for both types the set of all regions of a given
language L equals the set of non-negative integral solutions of a possibly infinite linear sys-
tem of the form AL · x ≤ bL . For finite or regular languages, this representation of regions is
used to define computable finite representations of the infinite set of all regions.

5.2. SYNTHESIS PROBLEM FOR LANGUAGES 43

In this chapter we present only one of these cases that is the closest to our approach: synthe-
sis problem where the input language is a classical language, the net to identify is a PN and
the region type used is the transition-region. Let us show how a region for the definition of a
feasible place can be defined for this case.

A transition-region r directly defines a PN place pr by determining the numbers m0(pr) and
Pr e(pr , t), Post (pr , t) for t ∈ T . If T = t1, ..., tn , then r is given as a (2n+1)-tuple r = (r0, ...,r2n)
of non-negative integers. Its components define these numbers via m0(pr) = r0, Pr e(pr , ti) =
ri and Post (pr , ti) = rn + i for i ∈ {1, ...,n}.

Example 5.3. Let us consider the PNs in Figure 5.1.(a),(b). If we consider t1 = a and t2 = b
the place of the PN in Figure 5.1.(a) is defined by r(a) = (1,1,1,2,0) and the place of the PN in
Figure 5.1.(b) by r(b) = (1,1,1,1,0). ¥

Since a region r is intended to define a feasible place pr , it is required to satisfy a property
(f)L ensuring that pr is feasible w.r.t. L . Let us define a transition-region.

Definition 5.4. A tuple r as above is called a transition-region if it satisfies (f)L . ¥

The property (f)L depends on the considered net class and on the type of L .

Theorem 5.5. A tuple r satisfies (f)L if and only if pr is feasible w.r.t. L .

That means the regions of L exactly define feasible places.

Remember that pr is feasible w.r.t. L if the net resulting from adding pr still generates L .
The property (f)L given a classical language as input and a PN as net to synthesize, is defined
as follows.

For each w = w ′am ∈L it holds

r0 −
n∑

i=1
|w |ti

1ri +
n∑

i=1
|w ′|ti rn+i ≥ 0.

This is the case if and only if aw · r ≤ 0 for aw = (aw,0, . . . , aw,2n) defined by

aw, j =




−1 if j = 0,
|w |t j if j ∈ {1, . . . ,n},
−|w ′|t j−n if j ∈ {n +1, . . . ,2n}.

Example 5.6. Let us denote t1 = a and t2 = b. For the the place of the PN in Figure 5.1.(b) de-
fined by r(b) = (1,1,1,1,0) there holds for w = aba: aw = (−1, |w |t 1 , |w |t 2 ,−|ab|t 1 ,−|ab|t 2) =
(−1,2,1,−1,−1) and aw · r(b) = 1 > 0. Thus r(b) is not a region of L = {aba} and this place is
non-feasible w.r.t. L . On the other side, for the place of the PN in Figure 5.1.(a), defined by
r(a) = (1,1,1,2,0), there holds for w = aba: aw · r(a) = 0. Thus r(a) is a region of L and this
place is feasible w.r.t. L . ¥

1For a classicla language L and w ∈ L , |w |a denotes the number of a’s occurring in w . For example
|aba|a = 2.

44 CHAPTER 5. STATE OF THE ART FOR IDENTIFICATION: THEORY OF REGIONS

5.2.1 Computing finite representations

As shown in the last paragraph, property (f)L can be encoded by a system of linear equations
or inequations of the form AL · r = 0 for a matrix AL . Each row of AL reflects one condition
of (f)L , that means AL has in general infinite many rows. But there are several cases, when
AL can be chosen with finite many rows. If L is finite then this is obviously the case. If L is
infinite, then there are finite representations of L allowing to chose AL to be finite.

In other words, r is a region if and only if it is possible to define a finite matrix AL such that r is
a non-negative integer solution of AL · r ≤ 0. Then the set of regions can be computed as the
set of nonnegative integer solutions of such a system. There are two possibilities to define a
finite representation of such a set of solutions: the basis representation and the separating
representation, that we briefly explain in the following two subsections.

5.2.2 Basis representation

For systems of the form AL · r ≤ 0 there is a so called basis representation of the set of all
nonnegative solutions. That means there are nonnegative basis-solutions y1, . . . , yn such that
each solution x is a nonnegative linear combination of y1, . . . , yn of the form x =∑n

i=1λi yi for
real numbers λ1, . . . ,λn ≥ 0.

In the case that all values in AL are integral (this is the case here) also the values of y1, . . . , yn

can be chosen integral. If pi is the place defined by yi and N f i n is the net containing exactly
the places p1, . . . , pn , then it is shown that L(N f i n) = L(Nsat), where L(Nsat) is the smallest net
language satisfying L ⊆ L(Nsat). That means N f i n is the best approximation to a solution of
the synthesis problem generating L . Since from the construction it is not clear whether N f i n

is an exact solution of the synthesis problem, it is finally necessary to test whether L(N f i n) =
L or not. N f i n is called basis representation of Nsat .

5.2.3 Separating representation

Another idea is to separate behavior specified in L from behavior not specified in L by a
finite set of regions. For this, one defines a finite set Lc with L ∩Lc = ; satisfying that
L(N)∩Lc = ; =⇒ L(N) = L for each net N . Then for each w ∈ Lc one tries to find a re-
gion rw such that w is not an execution of the net having the place prw , i.e., a region which
separates L from w . If such a region exists, then the corresponding place is added to the
net N f i n called separating representation of Nsat . There is an exact solution of the synthesis
problem if and only if for each w ∈Lc there is such a region rw . In case L is a net language,
it holds L(N f i n) = L(Nsat) = L , that means N f i n is a possible solution. In case L is not a
net language, it holds L(Nsat) ⊆ L(N f i n) but in general not L(Nsat) = L(N f i n). Thus, the sep-
arating representation in general is not the best approximation to a solution of the synthesis
problem generating L (in opposite to the basis representation). On the other hand, it can
be defined and computet not only for PNs and inhibitor nets, but also for sane and ordinary
PNs, while basis representation cannot. It is easy to define and compute a separating repre-
sentation for finite languages. The definition of the finite set Lc depends on the considered

5.3. COMPUTATIONAL COMPLEXITY 45

language type. The elements of Lc are called wrong continuations. In each case, a wrong
continuation is an execution in L extended by some subsequent event.

Example 5.7. Let us consider the classical language L = b, a, ab, aba, aab. The finite set
Lc = {w t | w ∈L , t ∈ T, w t ∉L } = {ba,bb, abb, abab, abaa, aabb, aaba}. ¥

A region separating L from some w ∈ Lc is computed as an arbitrary solution of an ade-
quate linear inequation system. Such a system consists of the equations/inequations given
by AL defining regions and an additional row dw . The row is defined in such a way that
dw · r < 0 if and only if w is not an execution of the net having the place pr .

For the case that we treat above (transition-regions and PNs), the row dw is defined in a
similar way as the rows of AL . For each w ∈ L there is a row aw of AL such that w is an
execution of a net N if and only if all places pr of N satisfy aw ·r ≤ 0. That means, w is not an
execution of a net N if and only if there is a place pr of N satisfying aw · r > 0. Thus dw can
be defined as dw =−aw for w ∈Lc .

5.3 Computational complexity

Regarding the synthesis problem for labeled graph, in literature can be found that theory of
regions approaches have a complexity that is polynomial in the number of states and events
of the graph taken as input. However to verify if there is a set of regions admissible for the
given graph and compute them, it is necessary to verify that for all states of the graph sepa-
ration properties are verified (see [3]) and this can require an exponential time.

Analogously, for the problem of synthesizing a PN given a language as input the computa-
tional complexity is exponential. In fact, the separating representation can be computed in
polynomial time, if the regular language is given by a regular expression in a special form.
However computing this special form (from an arbitrary one) needs exponential size in the
worst case.

Part II

Diagnosis

47

Chapter 6

Fault detection for discrete event
systems using Petri nets with
unobservable transitions

Summary

In this chapter we present a fault detection approach for discrete event systems using Petri
nets. We assume that some of the transitions of the net are unobservable, including all those
transitions that model faulty behaviors. Our diagnosis approach is based on the notion of
basis marking and justification, that allow us to characterize the set of markings that are
consistent with the actual observation, and the set of unobservable transitions whose firing
enable it. This approach applies to all net systems whose unobservable subnet is acyclic.
If the net system is also bounded the proposed approach may be significantly simplified
moving the most burdensome part of the procedure off-line, thanks to the construction of a
graph, called the basis reachability graph.

49

50 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

6.1 Consistent markings

In this chapter we assume that the set of transitions T is partitioned in two subsets To and
Tu , i.e., T = To ∪Tu and To ∩Tu = ;. The set To includes all transitions that are observable,
while Tu includes unobservable or silent transitions.

We denote as no (resp., nu) the cardinality of set To (resp., Tu), and as Co (resp., Cu) the
restriction of the incidence matrix to To (Tu).

Definition 6.1. Let N = (P,T,Pr e,Post) be a net with T = To∪Tu . We define the following two
operators.

• The projection over To is Po : T ∗ → T ∗
o defined as: (i) Po(ε) = ε; (ii) for all σ ∈ T ∗ and

t ∈ T , Po(σt) = Po(σ)t if t ∈ To , and Po(σt) = Po(σ) otherwise.

• The projection over Tu is Pu : T ∗ → T ∗
u defined as: (i) Pu(ε) = ε; (ii) for all σ ∈ T ∗ and

t ∈ T , Pu(σt) = Pu(σ)t if t ∈ Tu , and Pu(σt) = Pu(σ) otherwise. ¥

Given a sequence σ ∈ L(N , M0), we denote w = Po(σ) the corresponding observed word.

Definition 6.2. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
w ∈ T ∗

o be an observed word. We define

L (w) = P−1
o (w)∩L(N , M0) = {σ ∈ L(N , M0) | Po(σ) = w},

the set of firing sequences consistent with w ∈ T ∗
o . ¥

Definition 6.3. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
w ∈ T ∗

o be an observed word. We define

C (w) = {M ∈ R(N , M0) | ∃σ ∈L (w) : M0[σ〉M} ,

the set of markings consistent with w ∈ T ∗
o . ¥

In plain words, given an observation w , L (w) is the set of sequences that may have fired,
while C (w) is the set of markings in which the system may actually be.

Example 6.4. Let us consider the net system in Fig. 6.1. It represents a production line pro-
cessing damaged parts, namely metallic slabs where two plates instead of one, have been
placed in a wrong decentralized position. When a damaged part is ready to be processed
(tokens in p1) slabs and plates are separated (transition t1) and the two plates are sent in
the upper line (modeled by places p2, p3, p4, p5, p6), while the slab is sent in the lower
line (modeled by places p7, p8, p9, p10, p11). In the two lines parts are processed, namely
smoothed, cleaned up, painted and polished (this corresponds to the firing of transitions ε3

to ε10). Finally one metallic plate is inserted in the slab in the correct position (transition t2).
The second plate is used again for other slabs, but this part of the process is not modeled
here.

6.2. MINIMAL EXPLANATIONS AND MINIMAL E-VECTORS 51

ε7

p2 ε3 ε4 ε5 ε6 p4 p3 p5 p6

p7 ε8 ε9 ε10
p9 p8 p10 p11

p12

t2

ε13

p13
ε11 ε12

p1

t1

2

p14

Figure 6.1: A Petri net modeling a part of a production line.

We assume that To = {t1, t2} and Tu = {ε3,ε4, . . . ,ε13}, where for a better understanding unob-
servable transitions have been denoted εi rather than ti .

Assume no event is observed, namely w = ε. It is L (ε) = {ε,ε13,ε13ε5,ε13ε5ε6} and C (ε) =
{M0, M1, M2, M3}, where M0 is the initial marking, M1 = [1 0 0 1 0 0 0 0 0 0 0 0 1 0]T , M2 =
[1 0 0 0 1 0 0 0 0 0 0 0 1 0]T and M3 = [1 0 0 0 0 1 0 0 0 0 0 0 1 0]T .

Now, assume t1 is observed. Transition t1 is enabled at the initial marking, thus the firing of
no unobservable transition is necessary to enable it. After the firing of t1 several sequences
of unobservable transitions are enabled, and several markings are thus consistent with the
actual behavior. In particular, all sequences t1ε3, t1ε3ε3, t1ε3ε3ε4, t1ε3ε3ε4ε4ε13, . . ., t1ε7,
t1ε7ε8, . . ., etc. may have fired given the actual observation, and C (w) includes all markings
that are reached firing the above sequences.

Now, let us consider w = t2. In such a case no sequence of unobservable transitions may
enable it. Therefore, C (t2) =L (t2) =;.

Finally, let us consider w = t1t2. In such a case we obtain

L (t1t2) = {t1ε3ε4ε5ε6ε7ε8ε9ε10t2, ε13t1ε3ε4ε5ε6ε5ε6ε7ε8ε9ε10t2,
t1ε3ε11ε8ε9ε10ε13ε5ε6t2, ε13t1ε3ε7ε8ε9ε10ε5ε6, . . .},

C (t1t2) = {[0 1 0 0 0 0 0 0 0 0 0 1 1 1]T , [0 1 0 0 0 1 0 0 0 0 0 1 1 0]T ,

[0 1 0 0 0 0 1 0 0 0 0 1 0 0]T , [0 1 1 0 0 0 0 0 0 0 0 1 1 0]T , . . .},

where dots denote all other sequences that may have fired and all other markings consistent
with t1t2, respectively (that have not been reported here for the sake of conciseness). ¥

6.2 Minimal explanations and minimal e-vectors

In this section we provide some basic definitions that will be useful in the following.

52 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

Definition 6.5. Given a marking M and an observable transition t ∈ To , we define

Σ(M , t) = {σ ∈ T ∗
u | M [σ〉M ′, M ′ ≥ Pr e(·, t)}

the set of explanations of t at M, and we define

Y (M , t) = {e ∈Nnu | ∃σ ∈Σ(M , t) : π(σ) = e}

the e-vectors (or explanation vectors), i.e., firing vectors associated to the explanations. ¥

Thus Σ(M , t) is the set of unobservable sequences whose firing at M enables t .

Among the above sequences we want to select those whose firing vector is minimal. The
firing vector of these sequences are called minimal e-vectors.

Definition 6.6. Given a marking M and a transition t ∈ To , we define

Σmin(M , t) = {σ ∈Σ(M , t) | @ σ′ ∈Σ(M , t) : π(σ′)�π(σ)}

the set of minimal explanations of t at M, and we define

Ymin(M , t) = {e ∈Nn
u | ∃σ ∈Σmin(M , t) : π(σ) = e}

the corresponding set of minimal e-vectors. ¥

Similar definitions have also been given in [11, 52].

Example 6.7. Let us consider the net system in Figure 6.1 already considered in Example 6.4.
We compute the set of the minimal e-vectors for some markings. The e-vectors correspond
to the unobservable transitions from ε3 to ε13.

It holds that Σ(M0, t1) = J (t1) = {ε}. Then Σ(M0, t2) = J (t2) = ;. Finally, let M1 = M0 +
C (·, t1) = [0 2 0 0 0 0 1 0 0 0 0 0 1 1]T . Then Σ(M1, t2) =J (t1t2) (see Example 6.4) and

Ymin(M1, t2) = { [1 1 1 1 1 1 1 1 0 0 0]T , [2 1 1 1 0 1 1 1 1 0 0]T ,
[1 0 1 1 0 1 1 1 1 0 1]T , [0 0 1 1 1 1 1 1 0 0 1]T },

i.e., the firing vectors relative to sequences in J (t1t2). ¥

In [31] Corona et al. proved the following important result. We say that a P/T net is backward
conflict-free if ∀p ∈ P |•p| ≤ 1, i.e., if each place has at most one input transition.

Theorem 6.8. [31] Let N = (P,T,Pr e,Post) be a Petri net with T = To ∪Tu . If the Tu-induced
subnet is backward conflict-free, then |Ymin(M , t)| = 1.

Different approaches can be used to compute Ymin(M , t), e.g., see [11, 52].

In this thesis we suggest an approach that find all vectors in Ymin(M , t) if applied to nets
whose Tu-induced subnet is acyclic (but not necessarily backward conflict-free). It simply
requires algebraic manipulations, and is inspired by the procedure proposed by Martinez

6.2. MINIMAL EXPLANATIONS AND MINIMAL E-VECTORS 53

and Silva [66] for the computation of minimal P-invariants. It can be briefly summarized by
the following algorithm.

Note that the proposed approach can also be applied to Tu-induced subnets that are not
acyclic. However, in this case the algorithm may enter a loop: to guarantee to terminate in a
finite number of steps we need to add suitable termination criteria.

Algorithm 6.9. [Computation of Ymin(M , t)]

Input: a Petri net N whose unobservable subnet is acyclic,
the set of unobservable transitions Tu

a marking M,
an observable transition t .

Output: Ymin(M , t).

1. Let Γ := C T
u Inu×nu

A B
where A := (M −Pr e(·, t))T , B :=~0 T

nu
.

2. While A ≥ 0T

2.1 Choose an element A(i∗, j∗) < 0.
2.2 Let I+ = {i | C T

u (i , j∗) > 0}.
2.3 For all i ∈I+

2.3.1 add to [A | B] a new row [A(i∗, ·)+C T
u (i , ·) | B(i∗, ·)+e T

i]
where ei is the i -th canonical basis vector.

2.4 Remove the row [A(i∗, ·) | B(i∗, ·)] from the table.
End while

3. Remove from B any row that covers other rows.
4. Each row of B is a vector in Ymin(M , t).

¥

The above algorithm can be explained as follows.

Given a marking M and a transition t , Algorithm 6.9 computes the minimal e-vectors , i.e.,
the firing vectors of unobservable sequences whose firing at M is necessary to enable t .

At step 1 a row vector is defined, A = A(1, ·), that has a number of columns equal to the
number of places of the net. This vector contains a negative element A(1, j) if place p j does
not enable t at M , and the value |A(i , j)| denotes the number of tokens missing from p j to
enable t . B initially is a null firing vector.

At step 2.1 we check if there exists an unobservable transition whose firing may increase the
number of tokens in p j , if so we consider all possible such firings (of one single transition)
computing the markings reached by each of these firings, and vector B , in the right part of the
table, denotes the corresponding firing vector. These new markings and the corresponding
firing vectors will be the new rows of matrix A, while the previous row is removed.

The while loop is repeated until all markings represented by matrix A have nonnegative com-
ponents.

54 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

Note that at step 2.3 it may be possible that the new row [A(i∗, ·)+C T
u (i , ·) | B(i∗, ·)+ e T

i] is
identical to a row already in the table: if such is the case it is not necessary to add it.

A detailed example of application of Algorithm 6.9 is given in Example 6.10.

Example 6.10. Let us consider the net in Figure 6.1. Let M = [0 0 0 0 0 0 1 0 0 0 0 1 0 1]T and
t = t2. Being

Cu =

ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13


0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 0 0
0 1 −1 0 0 0 0 0 0 0 1
0 0 1 −1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 1 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 −1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 −1




,
Pr e(·, t2) =




0
0
0
0
0
1
0
0
0
0
1
0
0
0




,

we first assume

Γ=

0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1 0 0 −1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 −1 1 0 0 0 −1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

thus there are two elements of A, namely A(1,6) and A(1,11), that are negative. We consider
A(1,11) < 0. In such a case I+ = {8}, thus by step 2.3.1 of Algorithm 6.9 we add the following
row to Γ:

0 0 0 0 0 −1 1 0 0 −1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

obtained from the first row of A by adding the 8th row of Γ.

6.2. MINIMAL EXPLANATIONS AND MINIMAL E-VECTORS 55

Now we remove the row Γ(12, ·) from the table (step 2.4) and we restart the procedure be-
cause the matrix A still contains negative elements, namely A(1,6) and A(1,10). Let us con-
sider A(1,10). In such a case I+ = {7}, thus we add the following row to Γ:

0 0 0 0 0 −1 1 0 −1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0

obtained from the first row of A by adding the 7th row of Γ.

Now we remove Γ(12, ·) from the table and we restart the procedure because there are still
negative elements in A: A(1,6) and A(1,9). We focus on A(1,6) thus I+ = {4}. By step 2.3.1
we add the following row to Γ:

0 0 0 0 −1 0 1 0 −1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0

and remove Γ(12, ·) from the table. We have still two negative elements in A: A(1,5) and
A(1,9). we select A(1,9) thus I+ = {6}. The new row to add to Γ is:

0 0 0 0 −1 0 1 −1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0

obtained from the first row of A by adding the 6th row of Γ. Now we remove Γ(12, ·) from the
table and because there are still negative elements in A, namely A(1,5) and A(1,8), we restart
the procedure. We consider A(1,8) thus I+ = {5,9} and we add two new rows to Γ:

0 0 0 0 −1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0

0 0 −1 0 −1 0 1 0 0 0 0 1 −1 1 0 0 0 1 0 1 1 1 1 0 0

obtained from the first row of A by adding the 5th and the 9th row of Γ, respectively. Now we
remove Γ(12, ·) from the table and we restart the procedure because A still contains negative
elements. These are: A(1,5), A(2,3), A(2,5), A(2,13). We choose A(2,13) thus I+ = ;. We
remove the second line of A and A(1,5) is the only negative element. In such a case I+ =
{3,10} thus we add the following two rows to Γ:

0 0 0 −1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 1 −1 1 0 0 0 1 1 1 1 1 0 1 0

obtained from the first row of A by adding the 3rd and the 10th row ofΓ, respectively. Now we
remove Γ(12, ·) from the table and we restart the procedure. Matrix A contains the following
negative elements: A(1,4), A(2,10), A(2,13). We choose A(2,13) thus I+ =;, and we have to
remove the second line of A. Now, in A there is only one negative element, i.e., A(1,4), and
I+ = {2,11}. By step 2.3.1 of Algorithm 6.9 we add the following two new rows to Γ:

0 0 −1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1

obtained from the first row of A by adding the 2nd and the 11th row of Γ, respectively. Now
we remove Γ(12, ·) from the table and we restart the procedure because there is a negative
element in A, namely A(1,3). Moreover, it holds I+ = {1}, and the new row to add to Γ is:

0 −1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0

56 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

obtained from the first row of A by adding the 1st row of Γ. We remove Γ(12, ·) and observe
that A(2,2) is negative, and I+ is empty. Thus, we remove the second line of A. Now we stop
because all elements of A are non negative.

Because we have only one line, obviously no line covers the others, and we conclude that the
row of B , namely

| 0 0 1 1 1 1 1 1 0 0 1 |
is the only element of Ymin(M , t). ¥

6.3 Basis markings and j-vectors

In this section we introduce two of the most important concepts for our approach: basis
markings and j-vectors. A basis marking Mb is a marking reached from the initial marking
M0 with the firing of the observed word w and of all unobservable transitions whose firing
is necessary to enable w . A j-vector y ∈ Jmin(M0, w) is the firing vector of a sequence of
unobservable transitions whose firing is necessary to reach Mb .

Definition 6.11. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
σ ∈ L(N , M0) be a firable sequence and w = Po(σ) the corresponding observed word. We define
the set of justifications of w as

J (w) = {
σu ∈ T ∗

u | [∃σ ∈L (w) :σu = Pu(σ)]∧ [6 ∃σ′ ∈L (w) : σ′
u = Pu(σ′)∧π(σ′

u)�π(σu)
]}

.

Moreover, we define

Jmin(M0, w) = {y ∈Nn
u | ∃σu ∈J (w) :π(σu) = y}

the corresponding set of j-vectors. ¥

In simple words, J (w) is the set of sequences of unobservable transitions interleaved with
w whose firing enable w and whose firing vector is minimal. The firing vectors of these
sequences are called j-vectors.

Definition 6.12. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
w be a given observation and σu ∈J (w) be one of its justifications. The marking

Mb = M0 +Cu · y +C · y ′, where y =π(σu), y ′ =π(w),

i.e., the marking reached firing w interleaved with the justificationσu , is called basis marking
and y is called its j-vector (or justification-vector). ¥

Obviously, because in general more than one justification exists for a word w (the set J (w)
is generally not a singleton), the basis marking may be not unique as well. Furthermore, two
or more j-vectors may correspond to the same basis marking.

6.3. BASIS MARKINGS AND J-VECTORS 57

Note however that under appropriate assumptions on the Tu-induced subnet, the unique-
ness of Mb may be ensured by the uniqueness of the j-vector. In particular, in [31] Corona
et al. proved that this is true if the Tu-induced subnet is backward conflict-free, since in this
case for each observation w there is only one justification.

Definition 6.13. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
w ∈ T ∗

o be an observed word. We define

M (w) = {
(M , y) | ∃σ ∈L (w) : M0[σ〉M ∧M ∈ Mb ∧ y ∈ Jmin(M0, w)

}

the set of couples (basis marking - relative j-vector) that are consistent with w ∈ T ∗
o . ¥

Note that the set M (w) does not keep into account the sequences of observable transitions
that may have actually fired. It only keeps track of the basis markings that can be reached
and of the firing vectors of the sequences of unobservable transitions that have fired to reach
them. Indeed this is the information really significant when performing diagnosis. The no-
tion of M (w) is fundamental to provide a recursive way to compute the set of j-vectors.

Proposition 6.14. Given a net system 〈N , M0〉 where N = (P,T,Pr e,Post) and T = To∪Tu and
whose Tu-induced subnet is acyclic. Let w = w ′t be a given observation. The set Jmin(M0, w)
is defined as

Jmin(M0, w) ⊆ {y ∈Nnu | y = y ′+e : y ′ ∈ Jmin(M0, w ′), e ∈ Jmin(M ′
b , t)}

where M ′
b = M0 +Cu · y ′+Co ·π(w ′).

Proof: It follows from Definitions 6.6, 6.11 and 6.12. In particular, it follows from the fact that
in Petri nets where the unobservable subnet is acyclic basis markings completely character-
ized the set of consistent markings, as it will be shown in Theorem 6.20. ¤

In simple words, the set of j-vectors Jmin(M0, w) is a subset of the set obtained by summing
up the j-vectors in Jmin(M0, w ′) that lead to a basis marking M ′

b that either enable t or enable
a sequence of unobservable transitions enabling t , plus the vectors in Jmin(M ′

b , t). It is a sub-
set since a firing vector y ∈ Jmin(M0, w) obtained summing the two vectors y ′ ∈ Jmin(M0, w ′)
and e ∈ Jmin(M ′

b , t) could be not minimal as shown by the following example.

Example 6.15. Let us consider the Petri net in Figure 6.2. Let M0 = [0 0]T .

Let us consider the observation w = t1. The set of justification is J (t1) = {ε1,ε2}.

Let us now consider w = t1t2. The set of justification is J (t1t2) = {ε2}. The firing sequence
ε1ε2 is not a justification, because it is not minimal since it covers ε2, i.e., π(ε2) <π(ε1ε2). ¥

The following example will clarify the concepts previously introduced.

Example 6.16. Let us consider the net system in Figure 6.1. Let M0 be the marking shown in
the figure.

58 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

ε�

ε�

�� �� �� ��
Figure 6.2: An example of Petri net.

Let us consider the observation w = t1. It holds J (t1) = {ε} and Jmin(M0, t1) = {~0}, thus the
basis marking associated to w = t1 is

Mb = M0 +C (·, t1) = [0 2 0 0 0 0 1 0 0 0 0 0 1 1]T

and its j-vector is~0. Thus M (t1) = {(Mb ,~0)}.

Now, let us consider w = t1t2. In such a case the set of justifications are

J (t1t2) = { ε3ε4ε5ε6ε7ε8ε9ε10, ε3ε4ε5ε6ε3ε11ε8ε9ε10,
ε3ε11ε8ε9ε10ε13ε5ε6, ε7ε8ε9ε10ε13ε5ε6, . . .}

where dots denote all other sequences (that have not been reported here for sake of concise-
ness) that are enabled at Mb and that have the same firing vector of the previous ones. The
set of j-vectors is

Jmin(M1, t2) = { [1 1 1 1 1 1 1 1 0 0 0]T , [2 1 1 1 0 1 1 1 1 0 0]T ,
[1 0 1 1 0 1 1 1 1 0 1]T , [0 0 1 1 1 1 1 1 0 0 1]T }.

Now, let
e1 = [1 1 1 1 1 1 1 1 0 0 0]T , e2 = [2 1 1 1 0 1 1 1 1 0 0]T ,
e3 = [1 0 1 1 0 1 1 1 1 0 1]T , e4 = [0 0 1 1 1 1 1 1 0 0 1]T },

the basis markings reached after the firing of w are:

M 1
b = Mb +Cu ·e1 +C (·, t2) = [0 1 0 0 0 0 0 0 0 0 0 1 1 1]T ,

M 2
b = Mb +Cu ·e2 +C (·, t2) = [0 0 0 0 0 0 1 0 0 0 0 1 0 1]T ,

M 3
b = Mb +Cu ·e3 +C (·, t2) = [0 1 0 0 0 0 1 0 0 0 0 1 0 0]T ,

M 4
b = Mb +Cu ·e4 +C (·, t2) = [0 2 0 0 0 0 0 0 0 0 0 1 1 0]T ,

thus M (t1t2) = {(M 1
b ,e1), (M 2

b ,e2), (M 3
b ,e3), (M 4

b ,e4)} and Jmin(M0, w)

= Jmin(M1, t2) being Jmin(M0, t1) = {~0}.

Now, let us consider w = t1t2t2. It is easy to verify that

Jmin(M 1
b , t2) = {e3}, Jmin(M 2

b , t2) = {e4},
Jmin(M 3

b , t2) = {e1}, Jmin(M 4
b , t2) = {e2}.

As a consequence at w = t1t2t2 we only have one j-vector because

M 5
b = M 1

b +Cu ·e3 +C (·, t2)
= Mb +Cu · (e1 +e3)+2C (·, t2),

M 6
b = M 2

b +Cu ·e4 +C (·, t2)
= Mb +Cu · (e2 +e4)+2C (·, t2),

M 7
b = M 3

b +Cu ·e1 +C (·, t2)
= Mb +Cu · (e3 +e1)+2C (·, t2),

M 8
b = M 4

b +Cu ·e2 +C (·, t2)
= Mb +Cu · (e4 +e2)+2C (·, t2).

6.3. BASIS MARKINGS AND J-VECTORS 59

In particular, it holds that y1 = e1 +e3 = e2 +e4. Moreover,

M 5
b = M 6

b = M 7
b = M 8

b = [0 0 0 0 0 0 0 0 0 0 0 2 0 0]T ,

thus there is only one basis marking at w = t1t2t2.

Finally, M (t1t2t2) = {(M 5
b , y1)} and Jmin(M0, w) = {y1}. ¥

The set M (w), that includes all couples (basis marking - relative j-vector) that are consistent
with an observation w , can be easily constructed using the procedure informally presented
in the previous example. The following algorithm formalizes this procedure. Note that, as
for the Algorithm 6.9 the Petri net used as input must have the Tu-induced subnet acyclic.

Algorithm 6.17. [Computation of the basis markings and j-vectors]

Input: a Petri net 〈N , M0〉 whose unobservable subnet is acyclic,
the set of unobservable transitions Tu ,
the observed word w.

Output: M (w).
1. Let w = ε.
2. Let M (w) = {(M0,~0)}.
3. Wait until a new transition t fires.

4. Let w ′ = w and w = w ′t .
5. Let M (w) =;.
6. For all M ′ such that (M ′, y ′) ∈M (w ′) , do

6.1. for all e ∈ Jmin(M ′, t), do
6.1.1. let M = M ′+Cu ·e +C (·, t),
6.1.2. for all y ′ such that (M ′, y ′) ∈M (w ′), do

6.1.2.1. let y = y ′+e,
6.1.2.2. let M (w) =M (w)∪ {(M , y)}.

7. Remove from M (w) any pair (M , y) for which there exists another pair (M ′, y ′)
such that y covers y ′.

8. Goto step 3.

¥

In simple words, the above algorithm that is based on Proposition 6.14 can be explained as
follows. We assume that a certain word w (that is equal to the empty string at the initial
step) has been observed. Then, a new observable transition t fires. We consider all basis
markings at the observation w ′ before the firing of t , and we select among them those that
may have allowed the firing of t , also taking into account that this may have required the
firing of appropriate sequences of unobservable transitions. In particular, we focus on the
minimal explanations, and thus on the corresponding minimal e-vectors (step 6.1). Finally,
we update the set M (w) including all couples of new basis markings and j-vectors, taking
into account that for each basis marking at w ′ it may correspond more than one j-vector.

Let us now introduce the following result that will be useful in the rest of the paper.

60 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

Definition 6.18. Let 〈N , M0〉 be a net system where N = (P,T,Pr e,Post) and T = To ∪Tu . Let
w ∈ T ∗

o be an observed word. We denote

Mbasi s(w) = {M ∈Nm | ∃y ∈Nnu and (M , y) ∈M (w)}

the set of basis markings at w. Moreover, we denote as

Mbasi s =
⋃

w∈T ∗
o

Mbasi s(w)

the set of all basis markings for any possible observation w. ¥

Fact 6.19. Given a bounded net system 〈N , M0〉 with N = (P,T,Pr e,Post) and T = To∪Tu , the
set Mbasi s is finite.

Proof: It follows from the fact that the set of basis markings is a subset of the reachability set,
that is finite because the net system is bounded. ¤

We conclude this section showing that our approach based on basis markings is able to char-
acterize completely the reachability set under partial observation.

We start with a result that characterizes the firing sequences. In the following theorem we
show that a sequence σ̃ is consistent with observation w if and only if there exists an equiv-
alent sequence (i.e., a sequence with the same observed sequence) that is the concatenation
of two subsequences: the first one reaches a basis marking in M (w) and the second one
contains only unobservable transitions.

Theorem 6.20. Let us consider a net system 〈N , M0〉 whose unobservable subnet is acyclic.
There exists a sequence σ̃ ∈ T ∗ such that M0[σ̃〉M̃ with observable projection Po(σ̃) = w and
firing vector π(σ̃) = ỹ if and only if there also exists a couple (M , y) ∈M (w) and an unobserv-
able sequence σ′′ ∈ T ∗

u such that M [σ′′〉M̃ and ỹ =π(w)+ y +π(σ′′).

Proof: We prove this result by induction on the length of the observed string w .

(Basis step) For w = ε the result obviously holds.

(Inductive step) Assume the result holds for v ∈ T ∗
o . We prove it holds for w = v t where t ∈ To .

(Only if). If there exists a sequence σ̃ ∈ T ∗ such that M0[σ̃〉M̃ with Po(σ̃) = w and π(σ̃) = ỹ
then there exist sequences σ′ and σ′′ such that

M0[σ′〉M ′[t〉M ′′[σ′′〉M̃

where Po(σ′) = v , and σ′′ ∈ T ∗
u . By induction, there exists (M , y) ∈M (v) such that

M0[σ′
a〉M [σ′

b〉M ′[t〉M ′′[σ′′〉M̃ (6.1)

where Po(σ′
a) = v , π(σ′

a) =π(v)+ y and σ′
b ∈ T ∗

u .

Now, by definition of minimal explanation, there exists at least one sequenceσ′
c ∈Σmin(M , t)

such that π(σ′
c) ≤π(σ′

b) and

6.4. DIAGNOSIS STATES 61

M0[σ′
a〉M [σ′

c〉M ′
c [t〉M ′

d (6.2)

where (M ′
d , y +π(σ′

c)) ∈M (v t) =M (w).

Furthermore, from (6.1) and (6.2) the following state equation holds

M ′
d +Cu(π(σ′

b)−π(σ′
c)) = M ′′ ≥~0

Since the Tu-induced subnet is acyclic, by Theorem 3.2.(i) there exists a sequence σ′
d ∈ T ∗

u
with π(σ′

d) =π(σ′
b)−π(σ′

c) such that M ′
d [σ′

d 〉M ′′ and we can finally write

M0[σ′
a〉M [σ′

c〉M ′
c [t〉M ′

d [σ′
d 〉M ′′[σ′′〉M̃

where σ′
dσ

′′ ∈ T ∗
u . This proves the result.

(If). If there exists a couple (M , y) ∈M (w) and a σ′′ ∈ T ∗
u such that M [σ′′〉M̃ and ỹ = π(w)+

y +π(σ′′) then there exists σ′ ∈ T ∗ such that M0[σ′〉M [σ′′〉M̃ with Po(σ′) = v t = w and hence
M0[σ〉M̃ with σ=σ′σ′′.

Note that the if statement holds even if the unobservable subnet is not acyclic. ¤

Based on the above theorem we can prove that, for any w ∈ T ∗
o the set of consistent markings

C (w) may be characterized in terms of a number of linear algebraic constraints. In particu-
lar, the number of constraints depends on the number of basis markings at w .

Corollary 6.21. Let us consider a net system 〈N , M0〉 whose unobservable subnet is acyclic. For
any w ∈ T ∗

o it holds that

C (w) = {M ∈Nm | M = Mb +Cu · y : y ≥~0 and Mb ∈Mbasi s(w)}.

Proof: Trivially follows from Theorems 3.2 and 6.20. ¤

The above result is particularly important in the case of bounded net systems, because by
Proposition 6.19, in such a case the number of constraints is finite for any observation w .

6.4 Diagnosis states

Let us consider a system modeled as a P/T net whose transitions set is partitioned into the
set of observable and unobservable transitions, i.e., T = To ∪Tu .

Assume that a certain number of anomalous (or fault) behaviors may occur in the system.
The occurrence of a fault behavior corresponds to the firing of an unobservable transition,
but there may also be other transitions that are unobservable as well, but whose firing corre-
sponds to regular behaviors. Then, assume that fault behaviors may be divided into r main

62 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

classes (fault classes), and we are not interested in distinguishing among fault events in the
same class.

This can be easily modeled in Petri net terms assuming that the set of unobservable transi-
tions is partitioned into two subsets, namely

Tu = T f ∪Tr eg

where T f includes all fault transitions and Tr eg includes all transitions relative to unobserv-
able but regular events. The set T f is further partitioned in r subsets, namely,

T f = T 1
f ∪T 2

f ∪ . . .∪T r
f

where all transitions in the same subset correspond to the same fault class. We will say that
the i -th fault has occurred when a transition in T i

f has fired.

In the following subsection we introduce the definition of diagnoser and diagnosis state.

6.4.1 Basic definitions

Definition 6.22. A diagnoser is a function ∆ : T ∗
o × {T 1

f ,T 2
f , . . . ,T r

f } → {0,1,2,3} that associates

to each observation w and to each fault class T i
f , i = 1, . . . ,r , a diagnosis state.

∆(w,T i
f) = 0 if for all σ ∈L (w) and for all t f ∈ T i

f it holds t f 6∈σ.

In such a case the i th fault cannot have occurred, because none of the firing sequences
consistent with the observation contains fault transitions of class i .

∆(w,T i
f) = 1 if:

(i) there exist σ ∈L (w) and t f ∈ T i
f such that t f ∈σ but

(ii) for all σ ∈J (w) and for all t f ∈ T i
f it holds that t f 6∈σ.

In such a case a fault transition of class i may have occurred but is not contained in any
justification of w.

∆(w,T i
f) = 2 if there exist σ,σ′ ∈J (w) such that:

(i) there exists t f ∈ T i
f such that t f ∈σ;

(ii) for all t f ∈ T i
f , t f 6∈σ′.

In such a case a fault transition of class i is contained in one (but not in all) justification
of w.

∆(w,T i
f) = 3 if for all σ ∈L (w) there exists t f ∈ T i

f such that t f ∈σ.

In such a case the i th fault must have occurred, because all firable sequences consistent
with the observation contain at least one fault transition of class i . ¥

6.4. DIAGNOSIS STATES 63

The diagnosis states 1 and 2 correspond both to cases in which a fault may have occurred but
has not necessarily occurred. The main reason to distinguish between them is the following.
In the state 1 the observed behavior does not suggest that a fault has occurred because all
minimal sequences leading to w are fault free. On the contrary, in the state 2 at least one of
the justifications of the observed behavior contains one transition in the class.

Note that in practice diagnosis state 1 represents a situation that is common in many real
applications. As an example, breaking a valve in a chemical plant may occur anytime thus
all the states reached without a fault never fall into the diagnosis state 0 but in the diagnosis
state 1.

Example 6.23. Consider the net system in Figure 6.1. Assume that two different fault behav-
iors (fault classes) may occur: (1) either a plate is moved to the lower line or a slab is moved
to the upper line (T 1

f = {ε11,ε12}); (2) a plate of a different type (e.g., different material, or

different size) enters the upper line (T 2
f = {ε13})

Finally, let all the other unobservable transitions belong to set Tr eg , this is Tr eg = {ε3,ε4, . . . ,ε10}.

Consider ω= ε. As discussed in Example 6.16, it holds J (ε) =L (ε) = {ε}. Then, we may ob-
serve that transition ε13 ∈ T 2

f may fire at M0, while the other fault transitions are not enabled

at M0. Therefore, we conclude that ∆(ε,T 1
f) = 0 and ∆(ε,T 2

f) = 1.

Now, let us consider ω = t1. As already discussed in Example 6.16, it is J (t1) = {ε} thus no
fault transition may be contained in a justification of w . On the contrary, all fault transitions
are contained in at least one sequence in L (t1). Thus, ∆(t1,T 1

f) =∆(t1,T 2
f) = 1.

Let us now focus on the observation ω = t1t2. By looking at Example 6.4, it is easy to con-
clude that ∆(t1t2,T 1

f) = ∆(t1t2,T 2
f) = 2. In fact, all fault transitions are contained in at least

one sequence in J (t1t2), but there are also justifications of t1t2 that do not contain fault
transitions.

Finally, let ω = t1t2t2. In such a case it holds ∆(ω,T 1
f) = ∆(ω,T 2

f) = 3 because as it can be
easily verified, all justifications of w contain transitions of both classes. ¥

The on-line computation of the sets L (w) and J (w) may be computational demanding in
large scale systems, thus in the following we suggest two alternative procedures to compute
diagnosis states. These procedures are based on the notions of minimal explanations, min-
imal e-vectors, and basis markings, that are presented in the following two sections. Both
procedures apply to net systems whose unobservable subnet is acyclic, and the second one
also requires that the net system is bounded.

6.4.2 Characterization of diagnosis states

In this subsection we provide some results that enable us to characterize the diagnosis states
starting from the knowledge of the set M (w). The following proposition allows us to es-
timate the value of a diagnosis state, reached after the observation of a word w , from the
analysis of the set M (w) defined in Definition 7.8.

64 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

Proposition 6.24. Consider an observed word w ∈ T ∗
o .

∆(w,T i
f) ∈ {0,1} iff for all (M , y) ∈M (w) and for all t f ∈ T i

f it holds y(t f) = 0.

∆(w,T i
f) = 2 iff there exist (M , y) ∈M (w) and (M ′, y ′) ∈M (w) such that:

(i) there exists t f ∈ T i
f such that y(t f) > 0,

(ii) for all t f ∈ T i
f , y ′(t f) = 0.

∆(w,T i
f) = 3 iff for all (M , y) ∈M (w) there exists t f ∈ T i

f such that y(t f) > 0.

Proof: It trivially follows from the definition of the diagnosis states and from Theorem 6.20.

¤

From the only analysis of M (w) it is possible to determine the states 2 and 3, while to distin-
guish between states 0 and 1 further analysis is necessary. The following proposition shows
how the states 0 and 1 can be distinguished with respect to the reachability of the unobserv-
able net.

Proposition 6.25. Consider an observed word w ∈ T ∗
o such that ∀(M , y) ∈M (w) and ∀t f ∈ T i

f
it holds y(t f) = 0.

∆(w,T i
f) = 0 if ∀ (M , y) ∈ M (w) and ∀t f ∈ T i

f there does not exist a sequence σ ∈ T ∗
u

such that M [σ〉 and t f ∈σ.

∆(w,T i
f) = 1 if ∃ at least one (M , y) ∈M (w) and a sequenceσ ∈ T ∗

u such that for at least

one t f ∈ T i
f , M [σ〉 and t f ∈σ.

Proof: It follows from the fact that by Proposition 6.24 ∆(w,T i
f) ∈ {0,1} if all the minimal

justifications of w contain no fault transition of class i . However, by Definition 7.11, the
diagnosis state is equal to zero if at each basis marking M at w no fault transition of class i is
enabled. On the contrary the diagnosis state is equal to one if at least one fault transition of
class i is enabled at one basis marking M at w . ¤

If the unobservable subnet is acyclic the following proposition allows us to distinguish be-
tween the states 0 and 1 solving a trivial integer linear programming problem.

Proposition 6.26. For a Petri net whose unobservable subnet is acyclic, let w ∈ T ∗
o be an ob-

served word such that for all (M , y) ∈M (w) it holds y(t f) = 0 ∀ t f ∈ T i
f .

Let us consider the constraint set

T (M) =





M +Cu · z ≥~0,∑
t f ∈T i

f

z(t f) > 0,

z ∈Nnu .

(6.3)

6.5. A GENERAL APPROACH TO DIAGNOSIS 65

∆(w,T i
f) = 0 if ∀ (M , y) ∈M (w) the constraint set (6.3) is not feasible.

∆(w,T i
f) = 1 if ∃ (M , y) ∈M (w) such that the constraint set (6.3) is feasible.

Proof: Follows from Proposition 6.25 and the fact that if the unobservable subnet is acyclic,
the constraint set (6.3) characterizes the reachability set of the unobservable net. Thus, there
exists a sequence containing a transition t f ∈ T i

f firable at M on the unobservable subnet if
and only if T (M) is feasible. ¤

Example 6.27. Consider again the net system in Figure 6.1.

Let w = ε. It holds M (ε) = {(M0,~0)} thus by Proposition 6.24, ∆(ε,T 1
f) = ∆(ε,T 2

f) = {0,1}.
To completely determine the diagnosis states we need to verify if the integer constraints set
defined in Proposition 6.26 admit solutions. This is not true in the case of the first class, while
it is the case for the second class. Therefore we conclude that ∆(ε,T 1

f) = 0 and ∆(ε,T 2
f) = 1,

that is in accordance with Example 6.23. ¥

6.5 A general approach to diagnosis

On the basis of the results presented in the previous Section 6.4.2, if the Tu-induced net is
acyclic, diagnosis may be carried out by simply looking at the set M (w) for any observed
word w and, should the diagnosis state be either 0 or 1, by additionally evaluating if the
corresponding integer constraint set (6.3) admits a solution.

The main steps of the procedure are summarized in the following algorithm.

Algorithm 6.28. [A general approach to diagnosis]

Input: a Petri net 〈N , M0〉 whose unobservable subnet is acyclic,
the set of unobservable transitions Tu ,
the fault classes {T i

f }i=1,...,r ,

the observed word w.
Output: the diagnosis states.
1. Let w = ε.
2. Let M (w) = {(M0,~0)}.
3. Wait until a new transition t fires.
4. Let w ′ = w and w = w ′t .
5. Let M (w) =;. [Computation of M (w)]
6. For all M ′ such that (M ′, y ′) ∈M (w ′) , do

6.1. for all e ∈ Jmin(M ′, t), do
6.1.1. let M = M ′+Cu ·e +C (·, t),

6.1.1.1. for all y ′ such that (M ′, y ′) ∈M (w ′), do
6.1.1.1.1. let y = y ′+e,
6.1.1.1.2. let M (w) =M (w)∪ {(M , y)}.

7. For all i = 1, . . . ,r , do [Computation of the diagnosis states]

66 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

7.1. if ∀ (M , y) ∈M (w) and ∀t f ∈ T i
f it holds y(t f) = 0, do

7.1.1. if ∀ (M , y) ∈M (w) T (M) is not feasible, do
7.1.1.1. let ∆(w,T i

f) = 0,

7.1.2. else
7.1.2.1. let ∆(w,T i

f) = 1,

7.2. if ∃ (M , y) ∈M (w) and (M ′, y ′) ∈M (w) such that:
(i) ∃t f ∈ T i

f such that y(t f) > 0, (ii) ∀t f ∈ T i
f , y ′(t f) = 0, do

7.2.1. let ∆(w,T i
f) = 2,

7.3. if ∀ (M , y) ∈M (w) ∃t f ∈ T i
f such that y(t f) > 0, do

7.3.1. let ∆(w,T i
f) = 3.

8. Goto step 3.

¥

In simple words, steps 1 to 6 coincide with those of Algorithm 6.17, while in step 7 we com-
pute the diagnosis states using Propositions 6.24 and 6.26.

6.6 Diagnosis of bounded systems

The diagnosis approach presented in the previous sections applies both to bounded and
unbounded Petri nets having the unobservable subnet acyclic. In this section we focus on
bounded Petri nets and propose an original technique to design an observer to be used to
solve the problem of diagnosis. Note that in this case the problem can be associated to the
one solved in the automata case. However, as will be discussed later, our approach has the
main advantage to reduce the computational complexity using the notion of basis marking.

6.6.1 Basis reachability graph

The proposed observer is based on the construction of a deterministic graph, that we call
basis reachability graph (BRG). As discussed later, the main advantage of using BRG is that it
enables us to move off-line most of the computations.

Definition 6.29. The BRG is a deterministic graph that has as many nodes as the number of
possible basis markings.

To each node is associated a different basis marking and a row vector with as many entries as
the number of fault classes. The entries of this vector may only take binary values: 1 if T (M)
is feasible, where M is the the basis marking, 0 otherwise.

Arcs are labeled with observable transitions and e-vectors. More precisely, an arc exists from
node containing the basis marking M to node containing the basis marking M ′ if and only if
there exists an observable transition t for which an explanation exists at M and the firing of t
and one of its minimal explanations leads to M ′. The arc going from M to M ′ is labeled (t ,e),
where e ∈ Ymin(M , t) and M ′ = M +Cu ·e +C (·, t). ¥

6.6. DIAGNOSIS OF BOUNDED SYSTEMS 67

Note that the number of nodes of the BRG is always finite by Proposition 6.19. Moreover,
the row vector of binary values associated to the nodes of the BRG allows us to distinguish
between the diagnosis state 1 or 0.

The following algorithm provides a systematic procedure to compute the BRG. Also in this
case the Petri net used as input must have the Tu-induced subnet acyclic.

Algorithm 6.30. [Computation of the BRG]

Input: a Petri net 〈N , M0〉 whose unobservable subnet is acyclic,
the set of unobservable transitions Tu ,
the fault classes {T i

f }i=1,...,r .

Output: the BRG.
1. Label the initial node (M0, x0) where ∀i = 1, . . . ,r ,

x0(T i
f) =

{
1 if T (M0) is feasible,
0 otherwise.

Assign no tag to it.
2. While nodes with no tag exist select a node with no tag and do

2.1. let M be the marking in the node,
2.2. for all t such that Ymin(M , t) 6= ;, do

2.2.1. for all e ∈ Ymin(M , t), do
2.2.1.1. let M ′ = M +Cu ·e +C (·, t),
2.2.1.2. if @ a node with M ′, do

2.2.1.2.1. add a new node to the graph containing the couple (M ′, x ′)
where ∀i = 1, . . . ,r ,

x ′(T i
f) =

{
1 if T (M ′) is feasible,
0 otherwise.

2.3. tag the node "old".
3. Remove all tags.

¥

The algorithm constructs the BRG starting from the initial node to which it corresponds the
initial marking and the row vector of binaries defining which classes of faults may occur
at M0. Now, we consider all observable transitions for which a minimal explanation at M0

exists. For any of these transitions t ∈ To we compute the marking resulting from firing t
at M0 +Cu · e, for any e ∈ Jmin(M0, t). If a marking not contained in the previous nodes is
obtained, a new node is added to the graph. The arc going from the initial node to the new
node is labeled (t ,e). The procedure is iterated until all basis markings have been considered.
Note that the notion of basis marking allows us to represent the state space in a compact
manner. Thus, for any input Petri net, we need to enumerate only a subset of the reachability
space.

The following example clarifies this.

Example 6.31. In Figure 6.3 we have reported the BRG of the net system in Figure 6.1. The
notation used in Figure 6.3 is detailed in Tables 7.1 and 7.2.

68 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

M0 [1 0 0 0 0 0 0 0 0 0 0 0 1 1]T

M1 [0 2 0 0 0 0 1 0 0 0 0 0 1 1]T

M2 [0 1 0 0 0 0 0 0 0 0 0 1 1 1]T

M3 [0 0 0 0 0 0 1 0 0 0 0 1 0 1]T

M4 [0 1 0 0 0 0 1 0 0 0 0 1 0 0]T

M5 [0 2 0 0 0 0 0 0 0 0 0 1 1 0]T

M6 [0 0 0 0 0 0 0 0 0 0 0 2 0 0]T

Table 6.1: The basis markings of the BRG in Figure 6.3.

ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13

e1 1 1 1 1 1 1 1 1 0 0 0
e2 2 1 1 1 0 1 1 1 1 0 0
e3 1 0 1 1 0 1 1 1 1 0 1
e4 0 0 1 1 1 1 1 1 0 0 1

Table 6.2: The e-vectors of the BRG in Figure 6.3 (for clearness of presentation they are given
in tabular form rather than in vectorial form).

Each node of the graph contains a different basis marking and a row vector that has two
entries as the number of fault classes. As an example, the vector [0 1] is associated to M0

because T (M0) is feasible for the first fault class and unfeasible for the second fault class.

Then, there is an arc labeled (t1,~0) from M0 to M1 because t1 is enabled at M0 and its firing
leads to M1. Note that in such a case Jmin(M0, t1) = {~0}.

Furthermore, there are four arcs exiting from node M1, all labeled t2 and containing min-
imal explanations e1,e2,e3 and e4, respectively, and leading to nodes containing markings
M2, M3, M4 and M5, respectively.

Note that, by looking at the BRG we can also read all sequences of observable words, that is
finite in the case at hand, and equal to {ε, t1, t1t2, t1t2t2}.

Moreover note that for all the j-vectors in Table 7.2 the component associated to ε12 is equal
to 0. This means that ε12 cannot be never detected. ¥

6.6.2 Diagnosis using BRG

The following algorithm summarizes the main steps of the on-line diagnosis carried out by
looking at the BRG. The Petri net used as input must have the Tu-induced subnet acyclic.

Algorithm 6.32. [Diagnosis using the BRG]

Input: a Petri net 〈N , M0〉 whose unobservable subnet is acyclic,

6.6. DIAGNOSIS OF BOUNDED SYSTEMS 69

M0, [0 1] M1, [1 1] 1 0,t
�

M2, [1 1]

M3, [0 1]

M4, [0 0]

M5, [1 0]

M6, [0 0]

2 1
,t e 2 3

,t e

2 2
,t e 2 4

,t e

2 2
,t e

2 1
,t e

42 ,t e

2 3
,t e

Figure 6.3: The BRG of the net in Figure 6.1.

the set of unobservable transitions Tu ,
the fault classes {T i

f }i=1,...,r ,

the BRG.
Output: the diagnosis states.
1. Let w = ε.
2. Let M (w) = {(M0,~0)}.
3. Wait until a new transition t fires.
4. Let w ′ = w and w = w ′t .
5. Let M (w) =;, [Computation of M (w)]
6. For all nodes containing M ′ such that (M ′, y ′) ∈M (w ′), do

6.1. for all arcs exiting from the node containing M ′, do
6.1.1. let M = M ′+Cu ·e +C (·, t),
6.1.2. for all y ′ such that (M ′, y ′) ∈M (w ′), do

6.1.2.1. let y = y ′+e,
6.1.2.2. let M (w) =M (w)∪ {(M , y)},

7. for all i = 1, . . . ,r , do [Computation of the diagnosis state]
7.1. if ∀ (M , y) ∈M (w) and ∀t f ∈ T i

f it holds y(t f) = 0, do

7.1.1. if ∀ (M , y) ∈M (w) it holds x(i) = 0,
where x is the binary vector in the node M, do

7.1.1.1. let ∆(w,T i
f) = 0,

7.1.2. else
7.1.2.1. let ∆(w,T i

f) = 1,

7.2. if ∃ (M , y) ∈M (w) and (M ′, y ′) ∈M (w) such that:
(i) ∃t f ∈ T i

f such that y(t f) > 0, (ii) ∀t f ∈ T i
f , y ′(t f) = 0, do

7.2.1. let ∆(w,T i
f) = 2,

7.3. if ∀ (M , y) ∈M (w) ∃t f ∈ T i
f such that y(t f) > 0, do

7.3.1. let ∆(w,T i
f) = 3.

8. Goto step 3.

70 CHAPTER 6. FAULT DETECTION FOR DES USING PNS WITH UNOBSERVABLE TRANSITIONS

M0, [0] M1, [1]

ε3

p1

t1

(a) (b)

p3

t2

p2 t1, 0

t2, 1

Figure 6.4: The Petri net of the Example 6.34 (a) and its BRG (b).

¥

Steps 1 to 6 of Algorithm 6.32 enable us to compute the set M (w). When no event is ob-
served, namely w = ε, then M (w) = {(M0,~0)}. Now, assume that a transition t is observed.
We include in the set M (t) all couples (M , y) such that an arc labeled t exits from the initial
node and ends in a node containing the basis marking M . The corresponding value of y is
equal to the e-vector in the arc going from M0 to M , being~0 the j-vector relative to M0. In
general, if w ′ is the actual observation, and a new transition t fires, we consider all couples
(M ′, y ′) ∈ M (w ′) and all nodes that can be reached from M ′ with an arc labeled t . Let M be
the basis marking of the generic resulting node. We include in M (w) = M (w ′t) all couples
(M , y), where for any M , y is equal to the sum of y ′ plus the e-vector labeling the arc from M ′

to M .
Step 7 of Algorithm 6.32 computes the diagnosis state. Let us consider the generic i th fault
class. If ∀(M , y) ∈M (w) and ∀t f ∈ T i

f it holds y(t f) = 0, we have to check the i th entry of all
the binary row vectors associated to the basis markings M , such that (M , y) ∈M (w). If these
entries are all equal to 0, we set ∆(w,T i

f) = 0, otherwise we set ∆(w,T i
f) = 1. Finally, steps 7.1

and 7.3 are exactly the same of Algorithm 6.28.

Example 6.33. Consider the BRG in Figure 6.3 relative to the net system in Figure 6.1, where
T 1

f = {ε11,ε12} and T 2
f = {ε13}.

Let w = ε. By looking at the BRG we establish that ∆(ε,T 1
f) = 0 and ∆(ε,T 2

f) = 1, because the
first entry of the row vector in the node M0 is 0, while its second entry is equal to 1.

Now, let us consider w = t1t2. In such a case M (w) = {(M2, y1), (M3, y2), (M4, y3), (M5, y4)},
where

y1 =~0+e1 = e1,
y2 =~0+e2 = e2,
y3 =~0+e3 = e3,
y4 =~0+e4 = e4.

It holds ∆(t1t2,T 1
f) = 2 being y2(ε11) = y3(ε11) = 1 and y1(ε11) = y4(ε11) = y j (ε12) = 0 for j =

1,4. Analogously, ∆(t1t2,T 2
f) = 2 being y3(ε13) = y4(ε13) = 1 and y1(ε13) = y2(ε13) = 0.

Finally, for w = t1t2t2 it holds ∆(t1t2t2,T i
f) = 3 for i = 1,2. In fact M (w) = {(M6, y5), (M6, y6)},

where y5 = y1+e3 = y3+e1, y6 = y2+e4 = y4+e2, and y5(ε11) = y6(ε11) = 1, y5(ε13) = y6(ε13) =
1.

¥

6.7. REMARK 71

In the previous example we considered a net that does not contain repetitive sequences and
the corresponding BRG is acyclic. In such a case, we could also determine off-line the j-
vector associated to each basis marking.

However, our procedure applies to the more general case of bounded Petri nets with repeti-
tive sequences, to which a cyclic BRG corresponds. For this class of nets we need to compute
the j-vector of a basis marking on-line as shown in the following example.

Example 6.34. Consider the bounded Petri net shown in Figure 6.4(a), where To = {t1, t2} and

Tu = {ε3}. We assume that the only fault that can occur is T f
1 = {ε3}. This net contains the

repetitive sequence t1ε3t2 that can fire infinitely often, hence its BRG is cyclic as shown in
Figure 6.34(b), where the basis markings are M0 = [1 0 0]T and M1 = [0 1 0]T .

It is easy to verify that in this case we cannot associate off-line j-vectors to basis markings. In
fact when the observed word is w = ε the j-vector associated to node M0, [0] is [0], hence the

diagnosis state is ∆(ε,T f
1) = 0. On the contrary, after w = t1t2 fires we reach the same basis

marking M0, [0] but now its j-vector is [1], and the diagnosis state is changed to∆(t1t2,T f
1) =

3.

¥

6.7 Remark

In this section we briefly remark on the hypothesis of acyclicity made in this chapter.

This assumption, that is analogous to the classical hypothesis of acyclicity of the subgraph
in the theory of automata, allows us to:

• study the reachability of the unobservable subnet with the state equation;

• devise an easy algorithm for the computation of the firing vectors relative to justifica-
tions.

In particular, the first item implies that we can distinguish between the diagnosis states 0 and
1 in an efficient way (solving an integer programming problem). However, the hypothesis of
acyclicity could also be removed.

In this case

• Algorithm 6.9 for the computation of Ymin(M , t),

• Proposition 6.14 and Algorithm 6.17 for the computation of basis markings and j-vectors,

• Theorem 6.20, Proposition 6.26,

• Algorithms 6.28, 6.30, 6.32,

do not apply anymore.

Chapter 7

Diagnosis of discrete event
systems using labeled Petri nets

Summary

In this chapter we focus on the diagnosis of labeled PNs, i.e., nets where two or more tran-
sitions may share the same label. In particular we present an approach for diagnosis. The
proposed procedure is based on results on labeled PNs and allows us to also consider events
that are indistinguishable, namely events that produce an output signal that is observable,
but that is common to other events. Four diagnosis states are defined, each one correspond-
ing to a different degree of alarm. A procedure is given to compute the actual diagnosis state
given the current observation. We also show that, in the case of bounded net systems, the
most burdensome part of the procedure can be moved off-line defining a particular graph,
that we call Basis Reachability Graph.

73

74 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

7.1 Consistent markings and sequences

In this section we introduce some notations and definitions that we will use in the rest of the
chapter.

A labeling function ϕ : T → L ∪ {ε} assigns to each transition t ∈ T either a symbol from a
given alphabet L or the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions
in Tu are called unobservable or silent.

We denote as To the set of transitions labeled with a symbol in L. Transitions in To are called
observable because when they fire their label can be observed. Note that in this chapter we
assume that the same label l ∈ L can be associated to more than one transition. In particular,
two transitions t1, t2 ∈ To are called indistinguishable if they share the same label, i.e.,ϕ(t1) =
ϕ(t2). The set of transitions sharing the same label l are denoted as Tl .

In the following we denote as Cu (Co) the restriction of the incidence matrix to Tu (To) and
denote as nu and no , respectively, the cardinality of the above sets.

Moreover, given a sequence σ ∈ T ∗, Pu(σ), resp., Po(σ), given in Definition 6.1, denotes the
projection of σ over Tu , resp., To .

We denote as w the word of events associated to the sequence σ, i.e., w = Po(σ). Note that
the length of a sequence σ (denoted |σ|) is always greater than or equal to the length of the
corresponding word w (denoted |w|). In fact, if σ contains k ′ transitions in Tu then |σ| =
k ′+|w|.

Definition 7.1. Let 〈N , M0〉 be a labeled net system with labeling function ϕ : T → L ∪ {ε},
where N = (P,T,Pr e,Post) and T = To ∪Tu . Let w ∈ L∗ be an observed word. We define

S (w) = {σ ∈ L(N , M0) | Po(σ) = w}

the set of firing sequences consistent with w ∈ L∗, and

C (w) = {M ∈ R(N , M0) | ∃σ ∈ T ∗ : Po(σ) = w ∧ M0[σ〉M }

the set of markings consistent with w ∈ L∗. ¥

In plain words, given an observation w , S (w) is the set of sequences that may have fired,
while C (w) is the set of markings in which the system may actually be.

Example 7.2. Let us consider the PN in Figure 7.1. Let us assume To = {t1, t2, t3, t4, t5, t6, t7}
and Tu = {ε8,ε9,ε10, ε11,ε12,ε13}, where for a better understanding unobservable transitions
have been denoted εi rather than ti . The labeling function is defined as follows: ϕ(t1) = a,
ϕ(t2) =ϕ(t3) = b, ϕ(t4) =ϕ(t5) = c, ϕ(t6) =ϕ(t7) = d .

First let us consider w = acd . The set of firing sequences that are consistent with w is
S (w) = {t1t5t6, t1t5ε12ε13t7}, and the set of markings consistent with w is C (w) = {[0 1 0 0 0
0 0 1 0 0 0]T }. Thus two different firing sequences may have fired (the second one also in-
volving silent transitions), but they both lead to the same marking.

7.2. MINIMAL EXPLANATIONS AND MINIMAL E-VECTORS 75

a

b
ε10

c
ε8

t1

t2

t4 p1

p3 p4 p2

t3

b

p5

p6 p7 c

ε12
t5
p9 p8

d

t6

ε13

p10 p11 d

t7

ε11

ε9

Figure 7.1: A PN system with faults ε11 and ε12.

On the contrary, different markings can be reached if we consider w = ab. In particular, the
set of firing sequences that are consistent with w is S (w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10,
t1t2ε8ε11}, and the set of markings consistent with w is C (w) = {[0 0 1 0 0 0 0 1 0 0 0]T , [0 0 0 1

0 0 0 1 0 0 0]T , [0 0 0 0 1 0 0 1 0 0 0]T , [0 1 0 0 0 0 0 1 0 0 0]T , [0 0 0 0 0 1 0 1 0 0 0]T }. ¥

7.2 Minimal explanations and minimal e-vectors

In Chapter 6 we have introduced the definitions of minimal explanation and minimal e-
vectors for free-label Petri nets (Definition 6.6). In the case of labeled PNs what we observe
are symbols in L. Thus, it is useful to compute the following sets.

Definition 7.3. Given a marking M and an observation l ∈ L, we define the set of minimal
explanations of l at M as

Σ̂min(M , l) =∪t∈Tl ∪σ∈Σmin(M ,t) {(t ,σ)},

i.e., the set of pairs (transition labeled l ; corresponding minimal explanation), and we define
the set of minimal e-vectors of l at M as

Ŷmin(M , l) =∪t∈Tl ∪e∈Ymin(M ,t) {(t ,e)},

i.e., the set of pairs (transition labeled l ; corresponding minimal e-vector). ¥

Obviously, Σ̂min(M , l) and Ŷmin(M , l) are a generalization of the sets of minimal explanations
and minimal e-vectors introduced for unlabeled PNs with unobservable transitions. More-
over, in the above sets Σ̂min(M , l) and Ŷmin(M , l) different sequencesσ and different e-vectors
e, respectively, are associated in general to the same t ∈ Tl .

76 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

Example 7.4. Let us consider the PN in Figure 7.1 previously introduced in Example 7.2.

Let us consider M = [0 0 1 0 0 0 0 1 0 0 0]T and l = b. The set of minimal explanations of
b at M is Σ̂min(M ,b) = {(t2,ε8ε9ε10), (t3,ε8ε11)}. The set of minimal e-vectors is Ŷmin(M ,b) =
{(t2, [1 1 1 0 0 0]), (t3, [1 0 0 1 0 0])}. ¥

7.3 Basis markings and j-vectors

In Chapter 6 the notions of basis markings and j-vectors have been defined for unlabeled PNs
where some transitions are unobservable.

Here we basically use the same definitions, but with a slight but crucial difference: in the
previous chapter the unique form of nondeterminism is the presence of unobservable tran-
sitions, in this chapter we have two forms of nondeterminism due to the presence of unob-
servable and indistinguishable transitions. In fact, in the case of labeled PNs the observation
w is a sequence of labels, namely w ∈ L∗. In general several sequences σo ∈ T ∗

o may corre-
spond to the same w , i.e., there are several sequences of observable transitions such that
Po(σo) = w that may have actually fired. Moreover, in general, to any of such sequences σo

a different sequence of unobservable transitions interleaved with it is necessary to make it
firable at the initial marking. Thus, again we need to define sets of couples. In particular,
we introduce the following definition of couples (sequence of transitions in To labeled w ;
corresponding justification).

Definition 7.5. Let 〈N , M0〉 be a net system with labeling function ϕ : T → L ∪ {ε}, where N =
(P,T,Pr e,Post) and T = To ∪Tu . Let w ∈ L∗ be a given observation. We define

Ĵ (w) = { (σo ,σu), σo ∈ T ∗
o , Po(σo) = w, σu ∈ T ∗

u | [∃σ ∈S (w) : σo = Po(σ), σu = Pu(σ)]∧[6 ∃σ′ ∈S (w) : σo = Po(σ′), σ′
u = Pu(σ′)∧ π(σ′

u)�π(σu)
]}

the set of couples (sequence σo ∈ T ∗
o with Po(σo) = w; corresponding justification of w).

Moreover, we define

Ŷmin(M0, w) = {(σo , y), σo ∈ T ∗
o , Po(σo) = w, y ∈Nnu | ∃(σo ,σu) ∈ Ĵ (w) :π(σu) = y}

the set of couples (sequence σo ∈ T ∗
o with Po(σo) = w; corresponding j-vector). ¥

In simple words, Ĵ (w) is the set of pairs whose first element is the sequenceσo ∈ T ∗
o labeled

w and whose second element is the corresponding sequence of unobservable transitions
interleaved with σo whose firing enables σo and whose firing vector is minimal. The firing
vectors of these sequences are called j-vectors.

Definition 7.6. Let 〈N , M0〉 be a net system with labeling function ϕ : T → L ∪ {ε}, where
N = (P,T,Pr e,Post) and T = To ∪Tu . Let w be a given observation and (σo ,σu) ∈ Ĵ (w) be a
generic couple (sequence of observable transitions labeled w; corresponding minimal justifi-
cation). The marking

Mb = M0 +Cu · y +Co · y ′, y =π(σu), y ′ =π(σo),

7.3. BASIS MARKINGS AND J-VECTORS 77

i.e., the marking reached firing σo interleaved with the minimal justification σu , is called
basis marking and y is called its j-vector (or justification-vector). ¥

Obviously, because in general more than one justification exists for a word w (the set Ĵ (w)
is generally not a singleton), the basis marking may be not unique as well.

Proposition 7.7. Given a net system 〈N , M0〉 with labeling function ϕ : T → L ∪ {ε}, where
N = (P,T,Pr e,Post), T = To ∪Tu and whose Tu-induced subnet is acyclic. Let w = w ′l be a
given observation.

The set Ĵmin(M0, wl) is defined as:

Ĵmin(M0, wl) ⊆ {(σo , y) | σo =σ′
0t ∧ y = y ′+e : (σ′

o , y ′) ∈ Ĵmin(M0, w), (t ,e) ∈ Ĵmin(M ′
b , l)

and ϕ(t) = l },

where M ′
b = M0 +Cu · y ′+Co ·σ′

o .

Proof: It trivially follows from Definitions 7.3, 7.5 and 7.6 and from the fact that, as shown in
Theorem 6.20, in Petri nets where the unobservable subnet is acyclic basis markings com-
pletely characterized the set of consistent markings. ¤

Let us finally introduce the following definition.

Definition 7.8. Let 〈N , M0〉 be a net system with labeling function ϕ : T → L ∪ {ε}, where N =
(P,T,Pr e,Post) and T = To ∪Tu . Let w ∈ L∗ be an observed word. We define

M (w) = {
(M , y) | (∃σ ∈S (w) : M0[σ〉M) ∧ (∃(σo ,σu) ∈ Ĵ (w) :
σo = Po(σ), σu = Pu(σ), y =π(σu))

}

the set of couples (basis marking; relative j-vector) that are consistent with w ∈ L∗. ¥

Note that the set M (w) does not keep into account the sequences of observable transitions
that may have actually fired. It only keeps track of the basis markings that can be reached
and of the sequences of unobservable transitions that have fired to reach them. Indeed, this
is the information really significant when performing diagnosis.

Example 7.9. Let us consider the PN in Figure 7.1 previously introduced in Example 7.2.

Let us assume w = acd . The set of justifications is Ĵ (w) = {(t1t5t6,ε), (t1t5t7,ε12ε13)} and the
set of j-vectors is Ĵmin(M0, w) = {(t1t5t6,~0), (t1t5t7, [0 0 0 0 1 1]T)}. The above j-vectors lead to
the same basis marking Mb = [0 1 0 0 0 0 0 1 0 0 0]T thus M (w) = {(Mb ,~0), (Mb , [0 0 0
0 1 1]T)}.

Now, let us consider w = ab. In this case Ĵ (w) = {(t1t2,ε)}, Ĵmin(M0, w) = {(t1t2,~0)} and the
basis marking is the same as in the previous case, namely Mb = [0 1 0 0 0 0 0 1 0 0 0]T , thus
M (w) = {(Mb ,~0)}. ¥

The set M (w) can be easily constructed using the following algorithm. Note that, the Petri
net used as input must have the unobservable subnet acyclic, since this assumption is nec-
essary for the computation of the minimal explanations.

78 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

Algorithm 7.10. [Computation of the basis markings and j-vectors]

1. Let w = ε.
2. Let M (w) = {(M0,~0)}.
3. Wait until a new label l is observed.
4. Let w ′ = w and w = w ′l .
5. Let M (w) =;.
6. For all M ′ such that (M ′, y ′) ∈M (w ′) , do

6.1. for all t ∈ Tl , do
6.1.1. for all e ∈ Ymin(M ′, t), do
6.1.1.1. let M = M ′+Cu ·e +C (·, t),
6.1.1.2. for all y ′ such that (M ′, y ′) ∈M (w ′), do

6.1.2.1. let y = y ′+e,
6.1.2.2. let M (w) =M (w)∪ {(M , y)}.

7. Remove from M (w) any pair (M , y) for which there exists another pair (M ′, y ′)
such that y covers y ′.

8. Goto step 3.

¥

In simple words, the above algorithm can be explained as follows. We assume that a certain
word w (that is equal to the empty string at the initial step) has been observed. Then, a new
observable t fires and we observe its label ϕ(t) (e.g., l). We consider all basis markings at
the observation w ′ before the firing of t , and we select among them those that may have
allowed the firing of at least one transition t ∈ Tl , also taking into account that this may have
required the firing of appropriate sequences of unobservable transitions. In particular, we
focus on the minimal explanations, and thus on the corresponding minimal e-vectors (step
6.1.1). Finally, we update the set M (w) including all couples of new basis markings and j-
vectors, taking into account that for each basis marking at w ′ it may correspond more than
one j-vector.

Following definition 6.18 we denote Mbasi s(w) the set of basis markings at w and Mbasi s the
set of all basis markings for any observation w . Moreover, following Corollary 6.20, given a
Petri net whose unobservable subnet is acyclic, for any w ∈ T ∗

o , the set of consistent markings
can be computed using the set of basis marking at w :

C (w) = {M ∈Nm | M = Mb +Cu · y : y ≥~0 and Mb ∈Mbasi s(w)}.

7.4 Diagnosis using Petri nets

Assume that the set of unobservable transitions is partitioned in two subsets, namely Tu =
T f ∪Tr eg where T f includes all fault transitions (modeling anomalous or fault behavior),
while Tr eg includes all transitions relative to unobservable but regular events. The set T f

is further partitioned into r different subsets T i
f , where i = 1, . . . ,r , that model the different

fault classes.

7.4. DIAGNOSIS USING PETRI NETS 79

The following definition introduces the notion of diagnoser for labeled PNs.

Definition 7.11. A diagnoser is a function ∆ : L∗× {T 1
f ,T 2

f , . . . ,T r
f } → {0,1,2,3} that associates

to each observation w ∈ L∗ and to each fault class T i
f , i = 1, . . . ,r , a diagnosis state.

• ∆(w,T i
f) = 0 if for all σ ∈S (w) and for all t f ∈ T i

f it holds t f 6∈σ.

In such a case the i th fault cannot have occurred, because none of the firing sequences
consistent with the observation contains fault transitions of class i .

• ∆(w,T i
f) = 1 if:

(i) there exist σ ∈S (w) and t f ∈ T i
f such that t f ∈σ but

(ii) for all (σo ,σu) ∈ Ĵ (w) and for all t f ∈ T i
f it holds that t f 6∈σu .

In such a case a fault transition of class i may have occurred but is not contained in any
justification of w.

• ∆(w,T i
f) = 2 if there exist (σo ,σu), (σ′

o ,σ′
u) ∈ Ĵ (w) such that

(i) there exists t f ∈ T i
f such that t f ∈σu ;

(ii) for all t f ∈ T i
f , t f 6∈σ′

u .

In such a case a fault transition of class i is contained in one (but not in all) justification
of w.

• ∆(w,T i
f) = 3 if for all σ ∈S (w) there exists t f ∈ T i

f such that t f ∈σ.

In such a case the i th fault must have occurred, because all firable sequences consistent
with the observation contain at least one fault in T i

f . ¥

Example 7.12. Let us consider the PN in Figure 7.1 previously introduced in Example 7.2.

Let T f = {ε11,ε12}. Assume that the two fault transitions belong to different fault classes, i.e.,
T 1

f = {ε11} and T 2
f = {ε12}.

Let us observe w = acd . Then ∆(w,T 1
f) = 0 and ∆(w,T 2

f) = 2, being Ĵ (w) = {(t1t5t6,ε),
(t1t5t7,ε12ε13)} and S (w) = {t1t5t6, t1t5ε12ε13t7}.

Now, let us consider w = ab. In this case ∆(w,T 1
f) = 1 and ∆(w,T 2

f) = 0, being Ĵ (w) =
{(t1t2,ε)} and S (w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}. ¥

The following two results proved in Chapter 6 for unlabeled PNs still hold in the case of la-
beled PNs.

Proposition 7.13. Consider an observed word w ∈ L∗.

• ∆(w,T i
f) ∈ {0,1} iff for all (M , y) ∈M (w) and for all t f ∈ T i

f it holds y(t f) = 0.

80 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

• ∆(w,T i
f) = 2 iff there exist (M , y) ∈M (w) and (M ′, y ′) ∈M (w) such that:

(i) there exists t f ∈ T i
f such that y(t f) > 0,

(ii) for all t f ∈ T i
f , y ′(t f) = 0.

• ∆(w,T i
f) = 3 iff for all (M , y) ∈M (w) there exists t f ∈ T i

f such that y(t f) > 0.

The following proposition shows how to distinguish among states 0 and 1.

Proposition 7.14. For a PN whose unobservable subnet is acyclic, let w ∈ L∗ be an observed
word such that for all (M , y) ∈M (w) it holds y(t f) = 0 ∀ t f ∈ T i

f .

Let us consider the constraint set

T (M) =





M +Cu · z ≥~0,∑
t f ∈T i

f

z(t f) > 0,

z ∈Nnu .

(7.1)

• ∆(w,T i
f) = 0 if ∀ (M , y) ∈M (w) the constraint set (7.1) is not feasible.

• ∆(w,T i
f) = 1 if ∃ (M , y) ∈M (w) such that the constraint set (7.1) is feasible.

On the basis of the above two results, if the Tu-induced net is acyclic, diagnosis may be car-
ried out by simply looking at the set M (w) for any observed word w and, should the diag-
nosis state be either 0 or 1, by additionally evaluating if the corresponding integer constraint
set (7.1) admits a solution.

Example 7.15. Let us consider the PN in Figure 7.1 where T 1
f = {ε11} and T 2

f = {ε12}.

Let w = acd . It is M (w) = {(Mb ,~0), (Mb , [0 0 0 0 1 1]T)}, where Mb = [0 1 0 0 0 0 0 1 0 0
0]T has been computed in Example 7.9. It is ∆(w,T 1

f) = 0 being T (Mb) not feasible.

Let w = ab. In this case M (w) = {(Mb ,~0)}, where Mb = [0 0 1 0 0 0 0 1 0 0 0]T as in the previous
case. Being T (Mb) feasible only for the fault class T 1

f it holds ∆(w,T 1
f) = 1 and ∆(w,T 2

f) = 0.

¥

7.5 Basis Reachability Graph

In Chapter 6 we have shown that in the case of bounded PNs a useful tool to perform diag-
nosis is the Basis Reachability Graph (BRG). In this section we show how the BRG can still be
defined in the case of arbitrary labeled PNs.

The BRG is a deterministic graph that has as many nodes as the number of possible basis
markings. To each node is associated a different basis marking M and a row vector with as

7.5. BASIS REACHABILITY GRAPH 81

many entries as the number of fault classes. The entries of this vector may only take binary
values: 1 if T (M) is feasible, 0 otherwise.

Arcs are labeled with observable events in L and e-vectors. More precisely, an arc exists from
a node containing the basis marking M to a node containing the basis marking M ′ if and
only if there exists a transition t for which an explanation exists at M and the firing of t and
one of its minimal explanations leads to M ′. The arc going from M to M ′ is labeled (ϕ(t),e),
where e ∈ Ymin(M , t) and M ′ = M +Cu ·e +C (·, t).

Note that the number of nodes of the BRG is always finite being the set of basis markings
a subset of the set of reachable markings, that is finite being the net bounded. Moreover,
the row vector of binary values associated to the nodes of the BRG allows us to distinguish
between the diagnosis state 1 or 0.

The main steps for the computation of the BRG in the case of labeled PNs are summarized
in the following algorithm.

Algorithm 7.16. [Computation of the BRG]

1. Label the initial node (M0, x0) where ∀i = 1, . . . ,r ,

x0(T i
f) =

{
1 if T (M0) is feasible,
0 otherwise.

Assign no tag to it.
2. While nodes with no tag exist, select a node with no tag and do

2.1. let M be the marking in the node (M , x),
2.2. for all l ∈ L

2.2.1. for all t : L(t) = l ∧Ymin(M , t) 6= ;, do
for all e ∈ Ymin(M , t), do
let M ′ = M +Cu ·e +C (·, t),
if @ a node with the first element of the couple equal to M ′, do

add a new node to the graph containing (M ′, x ′) where ∀i = 1, . . . ,r ,

x ′(T i
f) =

{
1 if T (M ′) is feasible,
0 otherwise.

and arc (l ,e) from (M , x) to (M ′, x ′)
else

add arc (l ,e) from (M , x) to (M ′, x ′) if it does not exist yet
2.3. tag the node "old".

3. Remove all tags.

¥

The algorithm constructs the BRG starting from the initial node to which it corresponds the
initial marking and a binary vector defining which classes of faults may occur at M0. Now,
we consider all the labels l ∈ L such that there exists a transition t with L(t) = l for which
a minimal explanation at M0 exists. For any of these transitions we compute the marking
resulting from firing t at M0 +Cu · e, for any e ∈ Ymin(M0, t). If a couple (marking, binary
vector) not contained in the previous nodes is obtained, a new node is added to the graph.

82 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

M0 [1 0 0 0 0 0 0 0 0 0 0]T

M1 [0 1 0 0 0 0 0 1 0 0 0]T

M2 [0 1 0 0 0 0 0 0 1 0 0]T

M3 [0 0 1 0 0 0 0 1 0 0 0]T

M4 [0 0 1 0 0 0 0 0 1 0 0]T

M5 [0 0 0 0 0 0 1 1 0 0 0]T

M6 [0 0 0 0 0 0 1 0 1 0 0]T

Table 7.1: The basis markings of the BRG in Figure 7.2.

ε8 ε9 ε10 ε11 ε12 ε13

e1 0 0 0 0 1 1
e2 1 1 1 0 0 0
e3 1 0 0 1 0 0

Table 7.2: The e-vectors of the BRG in Figure 7.2 (given in tabular form).

The arc going from the initial node to the new node is labeled (l ,e). The procedure is iterated
until all basis markings have been considered.

An example clarifies the previous concepts.

Example 7.17. Let us consider the PN in Figure 7.1, where To = {t1, t2, t3, t4, t5, t6, t7}, Tu =
{ε8,ε9, ε10,ε11, ε12,ε13}, T 1

f = {ε11} and T 2
f = {ε12}. The labeling function is defined as follows:

ϕ(t1) = a, ϕ(t2) =ϕ(t3) = b, ϕ(t4) =ϕ(t5) = c, ϕ(t6) =ϕ(t7) = d .

The BRG relative to the net system in Figure 7.1 is shown in Figure 7.2. The notation used in
Figure 7.2 is detailed in Tables 7.1 and 7.2.

Each node contains a different basis marking and a binary row vector of dimension two,
being two the number of fault classes.

As an example, the binary vector [0 0] is associated to M0 because T (M0) is not feasible for
both fault classes. From node M0 to node M1 there is one arc labeled a and with the null
vector as minimal explanation. The node containing the basis marking M2 has binary vector
[0 1], because T (M2) is feasible only for T 2

f . Node (M2, [0 1]) has two output arcs both labeled

with d and both directed to node (M1, [0 0]) with two different minimal explanations~0 and
e1, respectively, plus another output arc (b,~0) directed to node (M4, [1 1]). ¥

The following algorithm summarizes the main steps of the on-line diagnosis carried out by
looking at the BRG.

Algorithm 7.18. [Diagnosis using the BRG]

1. Let w = ε.

7.5. BASIS REACHABILITY GRAPH 83

M0, [0 0]

a,0

M1, [0 0]

M2, [0 1]

d,0
c,0

M6, [0 1]

d,e1

b, e3

M3, [1 0]

M4, [1 1]

b,0

b,e2

b,0

M5, [0 0]
b, e3

b,e2

d,0

c,0

c,0

c,0
d,e1

c,0

d,0 d,e1

Figure 7.2: The BRG of the PN in Figure 7.1.

2. Let M (w) = {(M0,~0)}.
3. Wait until a new observable transition fires. Let l be the observed event.
4. Let w ′ = w and w = w ′l .
5. Let M (w) =;, [Computation of M (w)]
6. For all nodes containing M ′ : (M ′, y ′) ∈M (w ′), do

6.1. for all arcs exiting from the node with M ′, do
6.1.1. let M be the marking of the output node and e be the minimal e-vector on the edge

from M ′ to M,
6.1.2. for all y ′ such that (M ′, y ′) ∈M (w ′), do

6.1.2.1. let y = y ′+e,
6.1.2.2. let M (w) =M (w)∪ {(M , y)},

7. for all i = 1, . . . ,r , do [Computation of the diagnosis state]
7.1. if ∀ (M , y) ∈M (w) ∧ ∀t f ∈ T i

f it is y(t f) = 0, do

7.1.1. if ∀ (M , y) ∈M (w) it holds x(i) = 0, where x is the binary vector in node M, do
7.1.1.1. let ∆(w,T i

f) = 0,

7.1.2. else
7.1.2.1. let ∆(w,T i

f) = 1,

7.2. if ∃ (M , y) ∈M (w) and (M ′, y ′) ∈M (w) s.t.:
(i) ∃t f ∈ T i

f such that y(t f) > 0,

(ii) ∀t f ∈ T i
f , y ′(t f) = 0, do

7.2.1. let ∆(w,T i
f) = 2,

7.3. if ∀ (M , y) ∈M (w) ∃t f ∈ T i
f : y(t f) > 0, do

7.3.1. let ∆(w,T i
f) = 3.

8. Goto step 3.

¥

Example 7.19. Let us consider the PN in Figure 7.1 and its BRG in Figure 7.2.

84 CHAPTER 7. DIAGNOSIS OF DES USING LABELED PETRI NETS

Let w = ε. By looking at the BRG we establish that ∆(ε,T 1
f) =∆(ε,T 2

f) = 0 being both entries
of the row vector associated to M0 equal to 0.

Now, let us consider w = ab. In such a case M (w) = {(M3,~0)}. It holds ∆(ab,T 1
f) = 1 and

∆(ab,T 2
f) = 0 being the row vector in the node equal to [1 0].

Finally, for w = abbc it holds ∆(abbc,T 1
f) = 2 and ∆(abbc,T 2

f) = 1. In fact M (w) = {(M4, y1),
(M5, y2), (M5, y3)}, where y1 = e2 and y2 = y3 = e3, and the row vectors associated to M4, M5

and M6 are respectively [1 1], [0 0] and [0 1]. ¥

Chapter 8

Diagnosability of bounded Petri
nets

Summary

In this chapter we present an approach to solve the problem of diagnosability of bounded
Petri net systems. In particular, we first give necessary and sufficient conditions for diagnos-
ability. Then, we present a method to test diagnosability that is based on the analysis of two
graphs that depend on the structure of the net, including the fault models, and the initial
marking. The first graph is called basis reachability diagnoser, the second one is called mod-
ified basis reachability graph. At the end of the chapter a comparison between our diagnosis
procedure and Diagnoser approach, presented in Chapter 4, is made.

85

86 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

8.1 Problem Statement

Assume that the set of transitions is partitioned as T = To ∪Tu , where To is the set of observ-
able transitions, and Tu is the set of unobservable transitions.

When an observable transition fires we observe its label, thus our observations consist in
sequences of symbols in the alphabet L.

The set of unobservable transitions is partitioned in two subsets, namely Tu = T f ∪ Tr eg

where T f includes all fault transitions (modeling anomalous or fault behavior), while Tr eg

includes all transitions relative to unobservable but regular events. The set T f is further par-
titioned into r different subsets T i

f , where i = 1, . . . ,r , that model the different fault classes.

In this chapter we deal with the problem of diagnosability of a bounded Petri net system.

Definition 8.1. A Petri net system 〈N , M0〉 having no deadlock after the occurrence of transi-
tion t f ∈ T i

f , for i = 1, . . . ,r , is said diagnosable with respect to (wrt) the fault class T i
f if there

do not exist two sequences σ1 and σ2 in T ∗ satisfying the following conditions:

• Po(σ1) = Po(σ2),

• ∀t f ∈ T i
f , t f ∉σ1,

• ∃ at least one t f ∈ T i
f such that t f ∈σ2,

• σ2 can be made arbitrarily long after a fault t f ∈ T i
f . ¥

The previous definition of diagnosability of Petri nets is inspired by the definition of diag-
nosability for languages introduced in [29].

Definition 8.2. A Petri net system 〈N , M0〉 is said diagnosable if it is diagnosable wrt all fault
classes. ¥

Note that the diagnosability of a system does not imply that we are able to distinguish among
transitions in the same class. It simply implies that if one or more transitions in a given fault
class have fired, then after a finite number of observations we are able to establish that at
least one transition of that class has fired.

In this chapter we investigate the problem of providing necessary and sufficient conditions
for diagnosability. In particular, we consider labeled Petri net systems under the following
assumptions.

A1) The net system 〈N , M0〉 is bounded and does not deadlock after the firing of any fault
transition.

A2) The Tu-induced net is acyclic.

A3) The labeling function ϕ : To → L may associate the same label to different transitions.

8.2. MODIFIED BASIS REACHABILITY GRAPH 87

A4) The structure of N is known as well as the initial marking M0.

Note that, the necessity of assumption (A2) is discussed at the end of Chapter 6.

8.2 Modified Basis Reachability Graph

The Basis reachability Graph (BRG), introduced in Chapter 6 for unlabeled Petri nets and
successively in Chapter 7 for labeled Petri nets, needs to be modified if we want to use it
as an auxiliary tool to establish if the system is diagnosable. In fact, BRG is an automaton
whose set of events coincides with the set of observable transitions. As it will be shown in
Section 8.5, in certain cases we need to know if the fault occurs which states are reached, and
this information is not included in the BRG. To this aim we define a new graph, that we call
Modified Basis Reachability Graph (MBRG) that contains this information.

The MBRG is a deterministic graph whose nodes contain two elements (M , x): M ∈ Nm is
a marking defined as below, and x is row vector in {0,1}r where x(i) = 1 if T (M) in (7.1) is
feasible wrt the i th class, x(i) = 0 otherwise.

Markings M in the nodes are defined as basis markings computed assuming that all fault
transitions are observable. This means that minimal explanations are restricted to transi-
tions in Tr eg .

In the following we denote as Y mod
min (M , t) the set of minimal e-vectors restricted to Tr eg , and

Cr eg the restriction of the incidence matrix to Tr eg .

Arcs may be labeled in two different ways depending on the associated event.

In the case of events corresponding to the firing of transitions in To , the label contains three
informations summarized as (l (t),e), where l ∈ L is the observed label, t is the transition
labeled l whose firing at the input node is enabled by a sequence of regular transitions with
firing vector e ∈ Y mod

min (M , t), and that leads to the marking in the output node.

In the case of events corresponding to the firing of fault transitions the label only contains
two informations summarized as (t f ,e), where t f ∈ T f is the fault transition whose firing at
the input node is enabled by a sequence with firing vector e ∈ Y mod

min (M , t), and that leads to
the marking in the output node.

A formal algorithm for the construction of the MBRG can be written as follows.

Algorithm 8.3. [Computation of the MBRG]

1. Label the initial node (M0, x0) where ∀i = 1, . . . ,r ,

x0(T i
f) =

{
1 if T (M0) is feasible,
0 otherwise.

Assign no tag to it.
2. While nodes with no tag exist

1 select a node with no tag,
2.2 let (M , x) be the selected node,

88 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

2.3 for all l ∈ L
2.3.1 for all t : L(t) = l ∧Y mod

min (M , t) 6= ;, do
• for all e ∈ Y mod

min (M , t), do
• let M ′ = M +Cr eg ·e +C (·, t),
• if @ already a node with M ′, do

• add a new node to the graph containing the couple (M ′, x ′)
where ∀i = 1, . . . ,r ,

x ′(T i
f) =

{
1 if T (M ′) is feasible,
0 otherwise.

• add arc (l (t),e) from node (M , x) to node (M ′, x ′)
2.4 for all i = 1, . . . ,r : x(T i

f) = 1

2.4.1 for all t f ∈ T i
f : Y mod

min (M , t f) 6= ;, do

• for all e ∈ Y mod
min (M , t f), do

• let M ′ = M +Cr eg ·e +C (·, t f),
• if @ already a node with M ′, do

• add a new node to the graph containing the couple (M ′, x ′)
where ∀i = 1, . . . ,r ,

x ′(T i
f) =

{
1 if T (M ′) is feasible,
0 otherwise.

• add arc (t f ,e) from node (M , x) to node (M ′, x ′)
2.5 tag the node (M , x) "old".

3. Remove all tags.

¥

The algorithm constructs the MBRG starting from the initial node to which it corresponds
the initial marking and a binary vector defining which classes of faults may occur at M0. Now,
we consider all labels l ∈ L (step 2.3) and all fault classes i = 1, . . . ,r (step 2.4) such that there
exists a transition t with L(t) = l or a fault transition t f ∈ T i

f for which a minimal explanation

at M0 exists. For any of such transitions, that can be either t ∈ To or t f ∈ T i
f , we compute

the marking M ′ resulting from its firing at M0 +Cu · e (e ∈ Y mod
min (M0, t) or e ∈ Y mod

min (M0, t f),
respectively). If a new couple (marking, binary vector) is obtained, a new node is added to
the graph, containing the resulting marking M ′ and the corresponding vector x ′. The arc
going from the initial node to the new node is either labeled (l (t),e) or (t f ,e), depending on
the considered event. The procedure is iterated until all nodes have been examined.

Note that if the net is bounded the procedure terminates in a finite number of steps because
the number of nodes is upper limited by the cardinality of the set R(N , M0).

Example 8.4. Let us consider the PN in Figure 7.1, where To = {t1, t2, t3, t4, t5, t6, t7}, Tu =
{ε8,ε9, ε10,ε11, ε12,ε13}, T 1

f = {ε11} and T 2
f = {ε12}. The labeling function is defined as follows:

ϕ(t1) = a, ϕ(t2) =ϕ(t3) = b, ϕ(t4) =ϕ(t5) = c, ϕ(t6) =ϕ(t7) = d .

The MBRG relative to the net system in Figure 7.1 is shown in Figure 8.1. The notation used
in Figure 8.1 is detailed in Tables 8.1 and 8.2.

8.2. MODIFIED BASIS REACHABILITY GRAPH 89

M0 [1 0 0 0 0 0 0 0 0 0 0]T

M1 [0 1 0 0 0 0 0 1 0 0 0]T

M2 [0 1 0 0 0 0 0 0 1 0 0]T

M3 [0 0 1 0 0 0 0 1 0 0 0]T

M4 [0 0 1 0 0 0 0 0 1 0 0]T

M5 [0 0 0 0 0 0 1 1 0 0 0]T

M6 [0 0 0 0 0 0 1 0 1 0 0]T

M7 [0 1 0 0 0 0 0 0 0 1 0]T

M8 [0 0 0 0 0 1 0 1 0 0 0]T

M9 [0 0 0 0 0 1 0 0 1 0 0]T

M10 [0 0 1 0 0 0 0 0 0 1 0]T

M11 [0 0 0 0 0 1 0 0 0 1 0]T

M12 [0 0 0 0 0 0 1 0 0 1 0]T

Table 8.1: The basis markings of the MBRG in Figure 8.1.

ε8 ε9 ε10 ε13

e1 1 1 1 0
e2 1 0 0 0
e3 0 0 0 1

Table 8.2: The modified minimal e-vectors of the MBRG in Figure 8.1 (given in tabular form).

Each node contains a different marking and a vector with two entries (because there are two
fault classes). As an example, vector [0 0] is associated to M0 because T (M0) is not feasible
for both fault classes. On the contrary, vector [0 1] is associated to M2 because T (M2) is not
feasible for the first fault class but is feasible for the second fault class. In fact, fault transition
ε12 is enabled at M2.

Arcs are labeled either by (label (relative transition), corresponding modified minimal e-
vector) (see e.g. (c(t5),~0) from M3 to M4), or by (unobservable transition, corresponding
modified minimal e-vector) (see e.g. (ε11,~e2) from M3 to M8).

Finally, let us observe that not all the markings in the MBRG are basis markings. Precisely,
markings from M0 to M6 are basis markings, while markings from M7 to M12 are markings
reached firing a fault transition. This shows that the computational complexity required
to solve the problem of diagnosability is greater than the complexity required to perform
diagnosis. Note however, that the number of markings in the MBRG is equal to the number
of consistent markings only in the worst case, but in general is smaller, as in this example. ¥

90 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

 �
(�2)� 0 M0, [0 0]

M1, [0 0]

0

ε11, e2

�
(�1)� 0

M3, [1 0]

0

M8, [0 0]

0

M5, [0 0]

0

�
(�3)� 0 �

(�5)� 0 �
(�6)� 0
M2, [0 1]

�
(�2)� 0 �

(�5)� 0 �
(�6)� 0

M4, [1 1]

�
(�5)� 0 �

(�6)� 0
M9, [0 1]

�
(�3)� 0 �

(�5)� 0 �
(�6)� 0
M6, [0 1]

ε12 � 0
M7, [0 0]

�
(�2)� 0

M10, [1 0]
ε11, e2 	(
3)� 0 ε12 � 0 ε12 � 0 ε12 � 0

M11, [0 0]

ε11, e2

M12, [0 0]

�
(
7)� e3�

(
7)� e3 �
(
7)� e3 �

(
7)� e3 �
(
4)� 0 �

(�4)� 0
�

(�4)� 0 �
(�2)�e1

�
(�2)� e1�

(�2)� e1
Figure 8.1: The MBRG of the Petri net in Figure 7.1.

8.3 Basis Reachability Diagnoser

In this section we define a diagnoser called Basis Reachability Diagnoser (BRD). It is a non-
deterministic graph that, used in addition with the MBRG, allows us to state necessary and
sufficient conditions for diagnosability.

Definition 8.5. The BRD is a nondeterministic graph where each node contains the following
items:

• one or more triples (M , x,h), where:

– M is a basis marking;

– x ∈ {0,1}|T f | is a row vector whose i th entry is equal to 1 if T (M) is feasible wrt the
i th class, and is equal to 0 otherwise;

– h ∈ {N ,F }|T f | is a row vector whose i th entry is equal to N if reaching M from M0

no fault in T i
f has occurred, and is equal to F otherwise;

• r tags∆i , i = 1, . . . ,r , that represent the diagnosis state of the node wrt the r fault classes.

Finally, arcs are labeled with a symbol in L. ¥

The BRD can be easily computed starting from the MBRG. In particular, the values of M and
x are readable from the MBRG by only looking at the nodes containing basis markings.

The values of h can be deduced by looking at the path(s) from M0 to the corresponding value
of M (denoted as M0 Ã M). If there exists a path M0 Ã M containing fault transitions in

8.3. BASIS REACHABILITY DIAGNOSER 91

the i th class, then to the couple M , x it is associated a value of h(i) = F . If there exists a
path M0 Ã M containing no fault transition in the i th class, then to the couple M , x it is
associated a value of h(i) = N . Note that, since in general there may exist more than one
path going from M0 to M , one containing a fault in T i

f and another not, then the couple M ,

x may appear twice in the same node, both with h(i) = F and with h(i) = N .

The diagnosis state for each fault class is trivially obtained by definition just looking at the
last two entries of all triples in the node.

The following algorithm summarizes the main steps for the construction of the BRD. Note
that to simplify the notation, we assume that each class only includes one fault transition,
thus |T f | = r . The extension to the more general case is trivial and is not reported here.

Algorithm 8.6. [Computation of the BRD]

1. Label the initial node d0 = (M0, x0,h0), h0 = N r .
For i = 1, . . . ,r , if x0(i) = 0 then ∆i = 0, else ∆i = 1.
Assign no tag to it.

2. While nodes with no tag exist
2.1 select a node d with no tag and do
2.2 for all l ∈ L

2.2.1 for all M ∈ d : Ymin(M , t) 6= ; for some transition t : L(t) = l
• for all triples with marking M in d

• let d̃ =;
• for all output arcs of (M , x) in the MBRG labeled l , do

• let (M ′, x ′) be the output node in the MBRG,
• let{

h′(i) = N if h(i) = N
h′(i) = F if h(i) = F

• let d̃ = d̃ ∪ {(M ′, x ′,h′)}
• for all output paths of (M , x) in the MBRG labeled σ f l such that
π(σ f) ∈ Ymin(M , t) and L(t) = l ,

• let (M ′, x ′) be the final node in the MBRG,
• let




h′(i) = N if h(i) = N ∧ t fi ∉ M Ã M ′

h′(i) = F if h(i) = F
h′(i) = F if h(i) = N ∧ t fi ∈ M Ã M ′

• let d̃ = d̃ ∪ {(M ′, x ′,h′)}
• if ∀ M ′ ∈ d̃ it is h′(i) = N and x ′(i) = 0, then

• let ∆i = 0
• else if ∀M ′ ∈ d̃ it is h′(i) = N and x ′(i) = 1, then

• let ∆i = 1
• else if ∃(M ′, x ′,h′) ∈ d̃ : h′(i) = N and ∃(M ′′, x ′′,h′′) ∈ d̃ : h′′(i) = F , then

• let ∆i = 2
• else if ∀ M ′ ∈ d̃ it is h′(i) = F , then

• let ∆i = 3
2.2.2 if @ a node d̄ = d̃ in the graph then

• add a new node d̃ to the graph

92 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

2.2.3 add arc l from d to d̃
2.3 tag d old.
2.4 Goto step 2.1.

3. Remove all tags.

¥

The algorithm constructs the BRD starting from the initial node to which it corresponds a
triple (M0, x0,h0), where M0 and x0 are the components of the initial node of the MBRG and
h0 = N r . Its diagnosis state ∆i is set to zero if no fault transition in T i

f may have occurred
from the initial marking, namely if the entry of x0 associated to the only (for assumption)
fault transition t fi ∈ T i

f is null, otherwise ∆i is set to one.

Starting from the initial node and looking at the MBRG we focus on the set of basis markings
that are reachable firing transitions with label l at M0, either immediately or after the firing
of one or more fault transitions.

The new node will be composed by all triples (M ′, x ′,h′) such that the couple (M ′, x ′) is
reached in the MBRG either firing a transition labeled l at M0, or firing a minimal explana-
tion containing one or more fault transitions and then the considered label l ; h′ is computed
considering h0 and all paths from M0 to M ′ (M0 Ã M ′) in the MBRG.

Finally, for each node the diagnosis state ∆i depends on the i th entry of the two vectors x
and h of all the markings appearing the node.

The procedure is iterated until all nodes have been explored.

Example 8.7. In Figure 8.2 is reported the BRD of the Petri net in Figure 7.1.

The initial node contains the triple (M0, [0 0], [N N]) and its diagnosis states are ∆1 =∆2 = 0
being ~x0 = [0 0]. From this node a is enabled and it leads to node (M1, [0 0], [N N]), where
M1 = [0 1 0 0 0 0 0 1 0 0 0]T . Also for this node diagnosis states are ∆1 =∆2 = 0.

Now, let us consider w = abb. In this case we reach node containing the two triples (M3, [1 0],
[N N]) and (M5, [0 0], [F N]), where M3 = [0 0 1 0 0 0 0 1 0 0 0]T and M5 = [0 0 0 0 0 0 1 1 0 0 0]T .
In fact, could have fired either observable transitions t1t2t2 or t1t2t3. Diagnosis states are
∆1 = 2, being h3(1) = N and h5(1) = F , and∆2 = 0, since h3(2) = h5(2) = N and x3(2) = x5(2) =
0 (where x j (i) and h j (i) indicate the entries of vectors~x,~h associated to marking M j wrt to
the fault class i).

Finally, let us consider w = abbcc. In this case we reach node containing the two triples
(M5, [0 0], [F N]) and (M6, [0 1], [F N]), where M6 = [0 0 0 0 0 0 1 0 1 0 0]T . Diagnosis states
are ∆1 = 3, being h5(1) = h6(1) = F , and ∆2 = 1, since h5(2) = h6(2) = N and x6(2) = 1.

Note that in the nodes of the BRD there are only basis markings. ¥

8.3. BASIS REACHABILITY DIAGNOSER 93

M0, [0 0], [N N] ∆=
�

 �
M1, [0 0], [N N] ∆=

�

M3, [1 0], [N N] ∆1=1

 ∆2=0

� �� � ��� �
�M3, [1 0], [N N] ∆1=2

M5, [0 0], [F N] ∆2=0

M2, [0 1], [N N] ∆1=0

 ∆2=1

M4, [1 1], [N N] ∆1=1

 ∆2=1

M4, [1 1], [N N] ∆1=2

M5, [0 0], [F N] ∆2=1

M6, [0 1], [F N]

�
M5, [0 0], [F N] ∆1=3

M6, [0 1], [F N] ∆2=1

�
� �

M1, [0 0], [N N] ∆1=0

M1, [0 0], [N F] ∆2=2

M3, [1 0], [N N] ∆1=1

M3, [1 0], [N F] ∆2=2

M4, [1 1], [N N] ∆1=2

M6, [0 1], [F N] ∆2=1

M6, [0 1], [F N] ∆1=3

 ∆2=1

�� �� �� �
M2, [0 1], [N N] ∆1=0

M2, [0 1], [N F] ∆2=2

M4, [1 1], [N N] ∆1=1

M4, [1 1], [N F] ∆2=2

M3, [1 0], [N N] ∆1=2

M3, [1 0], [N F]

M5, [0 0], [F N] ∆2=2

M5, [0 0], [F F]

���� � �
M4, [1 1], [N N] ∆1=2

M4, [1 1], [N F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

M4, [1 1], [N N]

M4, [1 1], [N F]

M5, [0 0], [F N] ∆1=2

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

���
� �

� �
M6, [0 1], [F N] ∆1=3

M6, [0 1], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

� �
�

� �
�

��
Figure 8.2: The BRD of the Petri net in Figure 7.1.

94 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

8.4 Necessary and sufficient conditions for diag-
nosability

In this section we provide necessary and sufficient conditions for diagnosability based on the
notions of uncertain and indeterminate cycles. These conditions can be verified using the
BRD in conjunction with the MBRG. In particular, first we have to check if the BRD contains
an uncertain cycle, namely a potential indeterminate cycle, and then using the MBRG verify
if that cycle is indeterminate or not.

Definition 8.8. Let γ be a cycle in the BRD with observable projection ρ ∈ L∗ and let p ∈ L∗ be
a path from the initial node to any node of the cycle. The cycle γ is uncertain wrt a fault class
T i

f if it only includes states with ∆i = 2, or ∆i = 1, or ∆i = 1 and ∆i = 2. ¥

Definition 8.9. Let γ be an uncertain cycle in the BRD with observable projection ρ ∈ L∗ and
let p ∈ L∗ be a path from the initial node to any node of the cycle. The cycle γ is indeterminate
wrt a fault class T i

f if in the MBRG there exist two cycles γ1 and γ2 satisfying the following three

conditions:

(i) their observable projection is equal to ρ;

(ii) there exist two paths p1 and p2 with observable projection p, that from the initial node
in the MBRG enable γ1 and γ2;

(iii) Both γ2 and p2 do not contain a fault in T i
f , while either γ1 or p1 or both contain a fault

in T i
f . ¥

The following example well clarifies the above definition.

Example 8.10. Let us consider the BRD in Figure 8.2 that corresponds to the Petri net in
Figure 7.1.

In Figures 8.3 and 8.4 are reported the uncertain cycles for the first and the second fault class,
respectively.

Let us consider two uncertain cycles for the first fault class. First let us γ= [(M3, [1 0], [N N]),
(M5, [0 0], [F N])] b−→[(M3, [1 0], [N N]), (M5, [0 0], [F N])], for which ρ = b and p = (M0, [0 0],
[N N]) a−→(M1, [0 0], [N N]) b−→(M3, [1 0], [N N]) b−→. Looking at the MBRG in Figure 8.1, it is easy
to see that conditions of Definition 8.9 are not satisfied. In fact, does not exist a path p1,
containing fault ε11, having the same observable projection of p and that enable a cycle γ1

such that Po(γ1) = ρ. Therefore this cycle is not indeterminate.

Let us consider now the uncertain cycle [(M1, [0 0], [N N]), (M1, [0 0], [N F])] c−→ [(M2, [0 1],
[N N]), (M2, [0 1], [N F])] d−→ [(M1, [0 0], [N N]), (M1, [0 0], [N F])], that has ρ = cd and p =
(M0, [0 0], [N N]) a−→(M1, [0 0], [N N]) c−→(M2, [0 1], [N N]) d−→. In this case the three conditions of
Definition 8.9 are satisfied, therefore the cycle ρ is indeterminate. In fact, in the MBRG there
exist two cycle γ1 = (M1, [0 0])c(t5)−−−→(M2, [0 1])ε12−→(M7, [0 0])d(t7)−−−→(M1, [0 0]) and γ2 = (M1, [0 0])

c(t5)−−−→(M2, [0 1])d(t6)−−−→(M1, [0 0]) having the same observable projection ρ and there exist two

8.4. NECESSARY AND SUFFICIENT CONDITIONS FOR DIAGNOSABILITY 95

paths p1 = p2 = (M0, [0 0])a(t1)−−−→(M1, [0 0])c(t5)−−−→(M2, [0 1])d(t6)−−−→ having the same observable

projection of p and that from the initial node enable γ1 and γ2. Finally both p2 and γ2 do not
contain fault transition ε11, while γ1 contains ε11.

Finally, let us consider an uncertain cycle for the second fault class composed by states hav-
ing ∆2 = 1. The considered cycle in the BRD is γ = (M6, [0 1], [F N]) c−→ (M6, [0 1], [F N]), for
which ρ = c and p = (M0, [0 0], [N N]) a−→ (M1, [0 0], [N N]) b−→ (M3, [1 0], [N N]) c−→(M4, [1 1],
[N N]) b−→ [(M4, [1 1], [N N]), (M6, [0 1], [F N])] c−→. Looking at the MBRG in Figure 8.1 we can see
that this cycle is indeterminate since conditions of Definition 8.9 are satisfied. In fact, in the
MBRG there exist two cycleγ1 = (M6, [0 1])c(t4)−−−→ (M6, [0 1]) andγ2 = (M12, [0 0])c(t4)−−−→(M12, [0 0])

having the same observable projection ρ and there exist two paths p1 = (M0, [0 0])a(t1)−−−→(M1,

[0 0])b(t2)−−−→(M3, [1 0]) c(t5)−−−→(M4, [1 1]) ε11−→(M9, [0 1])b(t3)−−−→(M6, [0 1])c(t4)−−−→ and p2 = (M0, [0 0])a(t1)−−−→
(M1, [0 0])b(t2)−−−→ (M3, [1 0])c(t5)−−−→ (M4, [1 1]) ε11−→(M9, [0 1]) b(t3)−−−→(M6, [0 1])ε12−→(M12, [0 0])c(t4)−−−→ hav-

ing the same observable projection of p and that from the initial node enable γ1 and γ2.
Finally both p2 and γ2 do not contain fault transition ε12, while p1 contains ε12. ¥

The following theorem allow us to test diagnosability looking for indeterminate cycles in the
BRD.

Theorem 8.11. A net system 〈N , M0〉 satisfying assumptions (A1) to (A4) is diagnosable wrt
the fault class T i

f iff its BRD has no cycle that is indeterminate wrt T i
f .

Proof. We prove the if and only if statements separately.

(If) Assume by contradiction that an indeterminate cycle labeled ρ exists in the BRD. More-
over, we assume that in the MBRG there exist two cycles γ1 and γ2 satisfying conditions (i) to
(iii) in Definition 8.9. This obviously implies that there exist two sequences relative to p1γ1

and p2γ2 having the same observable projection, one containing a fault in the i th class and
the other one not, that can be made arbitrary long, because γ1 and γ2 can be repeated an
arbitrary large number of times. Thus, by Definition 8.1 the system is not diagnosable wrt to
the i th class.

(Only if) Assume that the BRD has no cycle that is indeterminate wrt T i
f . By Definition 8.1

the other sequences that may potentially lead to a violation of the diagnosability property
because they have the same observable projection and can be made arbitrary long, are those
corresponding to cycles with one of the following features: (1) they include at least one node
with∆i = 0; (2) they only include nodes with∆i = 3; (3) they include nodes with∆i = 1 and/or
∆i = 2 but they are not indeterminate.

Case (1) means that after a finite number of observed events (at most equal to the number
of events of the cycle in the BRD) it is possible to be sure that no fault has occurred, thus the
third item of Definition 8.1 may never happen.

Case (2) means that a fault has occurred for sure, thus the second item of Definition 8.1 may
never hold.

Case (3) means that there do not exist two sequences σ1 and σ2 having the same observable
projection where σ2 can be made arbitrary long, namely there do not exist two sequences

96 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

M0, [0 0], [N N] ∆=
�

 �
M1, [0 0], [N N] ∆=

�

M3, [1 0], [N N] ∆1=1

 ∆2=0

� �� � ��� �
�M3, [1 0], [N N] ∆1=2

M5, [0 0], [F N] ∆2=0

M2, [0 1], [N N] ∆1=0

 ∆2=1

M4, [1 1], [N N] ∆1=1

 ∆2=1

M4, [1 1], [N N] ∆1=2

M5, [0 0], [F N] ∆2=1

M6, [0 1], [F N]

�
M5, [0 0], [F N] ∆1=3

M6, [0 1], [F N] ∆2=1

�
� �

M1, [0 0], [N N] ∆1=0

M1, [0 0], [N F] ∆2=2

M3, [1 0], [N N] ∆1=1

M3, [1 0], [N F] ∆2=2

M4, [1 1], [N N] ∆1=2

M6, [0 1], [F N] ∆2=1

M6, [0 1], [F N] ∆1=3

 ∆2=1

�� �� �� �
M2, [0 1], [N N] ∆1=0

M2, [0 1], [N F] ∆2=2

M4, [1 1], [N N] ∆1=1

M4, [1 1], [N F] ∆2=2

M3, [1 0], [N N] ∆1=2

M3, [1 0], [N F]

M5, [0 0], [F N] ∆2=2

M5, [0 0], [F F]

���� � �
M4, [1 1], [N N] ∆1=2

M4, [1 1], [N F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

M4, [1 1], [N N]

M4, [1 1], [N F]

M5, [0 0], [F N] ∆1=2

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

���
� �

� �
M6, [0 1], [F N] ∆1=3

M6, [0 1], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

� �
�

� �
�

��
Figure 8.3: The BRD of the Petri net in Figure 7.1 with red circles for the uncertain cycles of
the first fault class.

8.4. NECESSARY AND SUFFICIENT CONDITIONS FOR DIAGNOSABILITY 97

M0, [0 0], [N N] ∆=
�

 �
M1, [0 0], [N N] ∆=

�

M3, [1 0], [N N] ∆1=1

 ∆2=0

� �� � ��� �
�M3, [1 0], [N N] ∆1=2

M5, [0 0], [F N] ∆2=0

M2, [0 1], [N N] ∆1=0

 ∆2=1

M4, [1 1], [N N] ∆1=1

 ∆2=1

M4, [1 1], [N N] ∆1=2

M5, [0 0], [F N] ∆2=1

M6, [0 1], [F N]

�
M5, [0 0], [F N] ∆1=3

M6, [0 1], [F N] ∆2=1

�
� �

M1, [0 0], [N N] ∆1=0

M1, [0 0], [N F] ∆2=2

M3, [1 0], [N N] ∆1=1

M3, [1 0], [N F] ∆2=2

M4, [1 1], [N N] ∆1=2

M6, [0 1], [F N] ∆2=1

M6, [0 1], [F N] ∆1=3

 ∆2=1

�� �� �� �
M2, [0 1], [N N] ∆1=0

M2, [0 1], [N F] ∆2=2

M4, [1 1], [N N] ∆1=1

M4, [1 1], [N F] ∆2=2

M3, [1 0], [N N] ∆1=2

M3, [1 0], [N F]

M5, [0 0], [F N] ∆2=2

M5, [0 0], [F F]

���� � �
M4, [1 1], [N N] ∆1=2

M4, [1 1], [N F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

M4, [1 1], [N N]

M4, [1 1], [N F]

M5, [0 0], [F N] ∆1=2

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

���
� �

� �
M6, [0 1], [F N] ∆1=3

M6, [0 1], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F] ∆2=2

M5, [0 0], [F N] ∆1=3

M5, [0 0], [F F]

M6, [0 1], [F N] ∆2=2

M6, [0 1], [F F]

� �
�

� �
�

��
Figure 8.4: The BRD of the Petri net in Figure 7.1 with blue circles for the uncertain cycles of
the second fault class.

98 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

satisfying the conditions in Definition 8.1. ¤

Corollary 8.12. A net system 〈N , M0〉 satisfying assumptions (A1) to (A4) is diagnosable iff its
BRD has no cycle that is indeterminate wrt any fault classes. ¥

The following example shows how test diagnosability of the system.

Example 8.13. Let us consider the Petri net system in Figure 7.1 whose BRD is given in Fig-
ure 8.2. From the analysis on the indeterminate cycles reported in Example 8.10 we can
conclude that the system is not diagnosable wrt both fault classes.

Note that, as soon as you find an indeterminate cycle for a fault class you can conclude that
the system is not diagnosable wrt that fault class. On the contrary, to establish if a system is
diagnosable wrt to a fault class it is necessary to examine all uncertain cycles for that fault
class and show that none is indeterminate. ¥

8.5 Necessity of the MBRG

As already discussed, the BRG does not give us all information necessary to establish if a sys-
tem is diagnosable or not. In this section we show with two examples why the construction
of the MBRG is necessary.

Let us consider the Petri net in Figure 8.5.(a), where the set of observable transitions is
To = {t1, t2, t3, t4} and the set of unobservable transitions, that coincides with the set of fault
transitions, is Tu = T f = { f }. Thus there is just one fault class. The labeling function is
L (t1) = a, L (t2) = b, L (t3) = c and L (t4) = d . The BRD shown in Figure 8.5.(d) has a cycle
of states having diagnosis state ∆= 1. To understand if the system is diagnosable we need to
know if after the fault f occurs, the behavior of the net system changes or not. The problem
is that the BRG, shown in Figure 8.5.(b), shows that the fault may have occurred starting from
both states having diagnosis state ∆= 1 in the BRD, but it does not specify if the fault occurs
which states are reached. In this case the net system is diagnosable, since as shown by the
MBRG (shown in Figure 8.5.(c)) if the fault f occurs the behavior of the net changes, i.e., if
the f occurs either the label c or the label d is observed.

Now, let us consider the Petri net in Figure 8.6.(a), where the set of observable transitions
is To = {t1, t2} and the unique unobservable and fault transition is f , namely Tu = T f = { f }.
The labeling function is L (t1) = a, L (t2) = b. The BRD shown in Figure 8.6.(d) has a cycle of
states having diagnosis state∆= 1. Also in this case the analysis of the BRG, shown in Figure
8.6.(b), is not sufficient to understand what happens after the fault occurs. On the contrary,
using the MBRG (shown in Figure 8.6.(c)) it can be noticed that the system shows the same
behavior before the fault occurs and after the fault has occurred. Then, the system is not
diagnosable.

8.6. REMARK 99

� [1 0 0 0], 1 [0 1 0 0], 1 ��

�
1 �
3

 [0 0 0 1], 0

�
(b)

�
 �

�
2

(a)

�
 �

4

�
 �

 [0 0 1 0], 0

� � �
�

1 �
2 �

3
�

4

 [1 0 0 0], 1,N ∆=1

c

(d)

(c)

d

 [0 1 0 0], 1,N ∆=1

 b

a

 [0 0 1 0], 0,F ∆=3

c

d

 [0 0 0 1], 0,F ∆=3

d

c

 [1 0 0 0], 1

 [0 1 0 0], 1

f

 [0 0 0 1], 0

b

 [0 0 1 0], 0

f

a

Figure 8.5: (a) An example of PN, (b) its BRG, (c) it MBRG, (d) its BRD.

8.6 Remark

In this chapter we presented an approach to solve the problem of diagnosability of bounded
Petri nets based on the concept of basis marking, that allows us to represent the reachability
space in a compact manner. We first give a necessary and sufficient condition for diagnos-
ability. Then, we provide a method to test the diagnosability that is based on the analysis of
a diagnoser that we call basis reachability diagnoser, in conjunction with another graph (that
is used for the construction of the diagnoser) called modified basis reachability graph. The
computational complexity to compute diagnosability is greater than the the complexity to
perform diagnosis. In fact, in this case we need to take into account not only basis markings,
but also all markings reachable firing a fault transition. Note however, that the number of
markings in the MBRG is equal to the number of consistent markings only in the worst case,
but in general is smaller.

100 CHAPTER 8. DIAGNOSABILITY OF BOUNDED PNS

 [2 0], 1 [1 1], 1 ��
 ��0

(b)

��

(a)

�
 �

��0�

 [0 2], 0 ��0��0	
1 	
2

��1

 [2 0], 1,N ∆=1

(d)

b

a

 [2 0], 1

 [1 1], 1

b

(c)

a, f

 [0 2], 0

b

a, f

 [1 1], 1,N ∆=1

 [2 0], 1,F ∆=3

b

 [0 2], 0,N ∆=0

a b

b

 [1 1], 1,F ∆=3

a b

 [0 2], 0,F ∆=3

a b

Figure 8.6: (a) An example of PN, (b) its BRG, (c) it MBRG, (d) its BRD.

8.7 A comparison between Diagnoser Approach and
our diagnosis approach

The diagnosis approach presented in Chapter 4, that is based on automata, and our diagno-
sis approach, described in Chapters 6, 7, 8, that is based on Petri nets, have many analogies
that can be summarized as follow.

• In the first case the set of fault events is a subset of the set of unobservable events.
Analogously, in the Petri net case the set of fault transitions is a subset of the set of
unobservable transitions.

• The automata approach can be applied to arbitrarily labeled nondeterministic finite
state automaton (NFSA). Analogously, the Petri net approach can be applied to arbi-
trarily labeled Petri nets, as shown in Chapter 7.

• Both approaches allow to check diagnosability of the given system.

8.7. A COMPARISON BETWEEN DIAGNOSER APPROACH AND OUR DIAGNOSIS APPROACH 101

The advantages of our approach wrt Diagnoser approach are due to the fact that we use Petri
nets. In fact, automata provide a general framework for establishing fundamental properties
of DES. They are not convenient or intuitive models for practical systems, however, because
of the large number of states that have to be introduced to represent several interacting sub-
systems. Moreover, the lack of structure in automata models limits the possibilities for de-
veloping computationally efficient algorithms for diagnosis. Petri nets have been proposed
as an alternative modeling formalism for DES to exploit purported advantages Petri nets of-
fer over automata models. Petri net models are generally more compact and more powerful
than automata models.

In particular, the main advantage of our approach consists in the fact that we only need to
enumerate basis markings, that are a subset of the set of reachable markings. This advan-
tage become substantial when we deal with systems having a big number of unobservable
transitions in series (as will be shown in Chapter 9). As an example, for the Petri net in Figure
6.1, the set of basis markings for the observed word w = t1t2 has cardinality equal to 4 while
the set of consistent markings has cardinality equal to 68, as shown in Chapter 6.

Moreover, we can also deal with unbounded systems, namely systems with an infinite state
space. On the contrary, the automata approach is based on NFSA, thus it can only deal with
systems with finite state space.

In spite of all that, Diagnoser approach is more suitable if we deal with systems that do not
have an extended state space. In fact, in this case we do not have to introduce the heavy
notation of our approach.

Another disadvantage of our approach wrt Diagnoser approach, is that it requires a stronger
assumption on the structural conditions of the unobservable systems. In fact, automata ap-
proach only requires that no cycle of unobservable events may happen after the occurrence
of fault events, while our approach requires that unobservable subnet is acyclic.

A comparison between the two diagnostic procedures from a computational point of view is
presented in Chapter 9.

Chapter 9

A Comparison Between Two
Diagnostic Tools Based on
Automata and Petri Nets

Summary

In this chapter we consider two diagnosis procedures for discrete event systems based re-
spectively on automata and Petri nets. We apply them to a diagnosis benchmark and com-
pare them in terms of computational complexity. As a result we conclude that the Petri net
approach presents significant advantages in terms of computational complexity.

Note that this chapter is based on paper [54] that has been written before we developed the
procedure to perform diagnosability of Petri nets, described in Chapter 8. Then the compar-
ison has been done between the automata tool, that allows to perform on-line diagnosis and
diagnosability, and Petri nets tool, that only allows to perform on-line diagnosis. This fact
has to be considered in the simulations results that reveal a significant advantage in terms of
computational complexity using the Petri nets tool. Our future work will be that of develop-
ing a tool for the diagnosability of a Petri net and providing a new comparison between this
tool and automata tool.

103

104 CHAPTER 9. A COMPARISON BETWEEN TWO TOOLS BASED ON AUTOMATA AND PNS

9.1 Diagnosis

In this section we briefly recall the diagnosis approach using automata introduced in Chap-
ter 4. Then, we introduce the diagnosis approach using Petri nets presented in Chapter 6.
Finally, we compare the two diagnosis procedures.

Note that this chapter is based on paper [54] that has been written before we developed the
procedure to perform diagnosability of Petri nets, described in Chapter 8. Then the compar-
ison has been done between the automata tool, that allows to perform on-line diagnosis and
diagnosability, and Petri nets tool, that only allows to perform on-line diagnosis. This fact
has to be considered in the simulations results that reveal a significant advantage in terms of
computational complexity using the Petri nets tool. Our future work will be that of develop-
ing a tool for the diagnosability of a Petri net and providing a new comparison between this
tool and automata tool.

9.1.1 Diagnosis using automata

The system to be diagnosed is modeled by a NFSA. Faults are modeled by unobservable
events, but there may also exist other events that represent legal behaviors that are unob-
servable as well. Thus we assume that the set of events can be partitioned as E = Eo ∪Eu ,
where Eo is the set of observable events, and Eu is the set of unobservable events. The set of
fault events is denoted E f and it holds E f ⊆ Eu . The set E f can be further partitioned into r
different subsets E i

f , where i = 1, . . . ,r , that model the different fault classes.

Given a NFSA G = (X ,E ,∆, x0) it is always possible to define a DFSA, called observer of G ,
Obs(G). The projection on Eo of the language generated by G coincides with the language
generated by the observer Obs(G), namely with L (G). Each state of Obs(G) is composed by
a subset of X . In particular, the initial state of the observer x0obs includes x0 and all the states
of G that are reachable starting from x0 executing one or more unobservable events in G .
Analogously, a generic state reachable from x0obs with an observable sequence of events w ∈
E∗

o is composed by the set of states that are reachable in G from the states in x0obs executing
w interleaved with zero or more unobservable events.

The diagnoser Di ag (G) is a DFSA as well and it can be built with the same procedure used for
the observer. The states of Di ag (G) are composed by ordered sets of r+1 entries, {x, l1, l2, . . . , lr },
where x ∈ X is a state of G and li ∈ {Fi , Ni } is the label associated to the i th fault class. In par-
ticular, li = Fi if x has been reached firing at least one fault event of class i , otherwise li = Ni .

Note that the state of a diagnoser may contain two different sets relative to the same state
x ∈ X and the same fault class, namely {x, l1, . . . , li , . . . , lr } and {x, l1, . . . , l ′i , . . . , lr } where li = Fi

and l ′i = Ni . This happens when the same state x can be reached in G executing words that
contain fault events in the i th class and words not containing them.

The states of Di ag (G) can be classified as follows.

• Positive state to the i th class: all entries relative to the i th class are equal to Fi . This
means that if the word that leads to such a state is observed, then we can be sure that

9.1. DIAGNOSIS 105

a fault event in the i th class has occurred.

• Negative state to the i th class: all entries relative to the i th class are equal to Ni . This
means that if the word that leads to such a state is observed, then we can be sure that
no fault event in the i th class has occurred.

• Uncertain state to the i th class: it includes both sets labeled with Ni and sets labeled
with Fi . In such a case a fault event may either have occurred or not.

The diagnoser can be used to solve two different types of problems.

• Diagnosis: given a sequence of observable events w it allows to determine, for each
class, if a fault in that class has occurred for sure or not, or it may have occurred, but
we cannot be sure of this.

This is equivalent to establish if the state of the diagnoser that is reached executing w
is respectively, positive, negative or uncertain to each class.

• Diagnosability: it allows to determine if a system is diagnosable, i.e., if it is possible to
reconstruct the occurrence of fault events observing words of finite length (see Defini-
tion 4.6).

9.1.2 Diagnosis using Petri nets

Faults are modeled by unobservable transitions, but there may also exist other transitions
that represent legal behaviors that are unobservable as well. Thus we assume that the set of
transitions can be partitioned as T = To ∪Tu , where To is the set of observable transitions,
and Tu is the set of unobservable transitions. The set of fault transitions is denoted T f and
it holds T f ⊆ Tu . The set T f can be partitioned into r different subsets T i

f , where i = 1, . . . ,r ,
that model the different fault classes.

The diagnosis with Petri nets is based on two main notions: j-vector (or justification-vector)
and basis marking.

Given an observation w ∈ T ∗
o , we denote as J (w) the set of justifications, i.e., the set of min-

imal sequences of unobservable transitions interleaved with w and whose firing enables w .
We denote as j-vectors the firing vectors relative to the justifications in J (w).

Finally, the set of basis markings at w Mbasi s(w) is the set of markings reached from M0 firing
w interleaved with a justification σu ∈ J (w). The generic marking in Mbasi s(w) is denoted
Mb .

The diagnoser is a function∆ : T ∗
o ×{T 1

f , . . . ,T r
f } −→ {0,1,2,3} that associates to each observa-

tion w and to each fault class T fi , i = 1, . . . ,r , a diagnosis state.

• 0: the i th fault cannot have occurred because none of the firing sequences consistent
with the observation contains fault transitions of class i .

106 CHAPTER 9. A COMPARISON BETWEEN TWO TOOLS BASED ON AUTOMATA AND PNS

• 1: a fault transition of class i may have fired but is not contained in any justification of
w .

• 2: a fault transition of class i is contained in one (but not in all) justifications of w .

• 3: the i th fault must have occurred, because all firable sequences consistent with the
observation contain at least one fault transition of class i .

In Chapter 6 we shown that the procedure to evaluate the diagnosis states may be carried out
by simply performing matrix multiplications and evaluating the feasibility of certain integer
constraint sets. Such a procedure may be applied to all net systems whose unobservable
subnet is acyclic.

Clearly, the most burdensome part of the proposed procedure consists in evaluating the fea-
sibility of a finite number of integer constraint sets. However, as shown in Chapter 6, in the
case of bounded net systems this computation may be moved off-line. An oriented graph,
that we call basis reachability graph (BRG) may be constructed off-line, that summarizes all
the information required for diagnosis. Then, given any observable word w , for any fault
class T i

f , we may evaluate the corresponding diagnosis state by simply looking at the BRG.

9.2 The considered benchmark

The benchmark describes a family of manufacturing systems characterized by three param-
eters: n, m and k.

• n is the number of production lines.

• m is the number of units of the final product that can be simultaneously produced.
Each unit of product is composed of n parts.

• k is the number of operations that each part must undergo in each line.

To obtain one unit of final product n orders are sent, one to each line; this is represented
by observable event ts . Each line will produce a part (all parts are identical) and put it in its
final buffer. An assembly station will take one part from each buffer (observable event te) to
produce the final product.

The part in line i (i = 1, . . . ,n) undergoes a series of k operations, represented by unobserv-
able events εi ,1,εi ,2, · · · ,εi ,k .

After this series of operations two events are possible: either the part is regularly put in the
final buffer of the line, or a fault may occur.

• Putting the part in the final buffer of line 1 corresponds to unobservable event ε1,k+1,
while putting the part in the final buffer of line i (i = 2, . . . ,n) corresponds to observable
event ti ,k+1.

9.3. NUMERICAL SIMULATIONS 107

 p1,1

 ε1,1

 p1,2

 p1,k

 p1,k+2

 p1,k+1

 ε1,k+1

 ε1,k

 p2,1

 ε2,1

 p2,2

 p2,k

 p2,k+2

 p2,k+1

 t2,k+1

 ε2,k

 pn,1

 εn,1

 pn,2

 pn,k

 pn,k+2

 pn,k+1

 tn,k+1

 εn,k
 f1 f2 fn-1

 ts

 te

 p0 m

Figure 9.1: The considered benchmark.

• There are n − 1 faults, represented by unobservable events fi (i = 1, . . . ,n − 1). Fault
fi moves a part from line i to line i + 1. Note that on line i (i = 1, . . . ,n − 1) the fault
may only occur when the part has finished processing and is ready to be put in its final
buffer; the part goes to the same processing stage in line i +1.

A Petri net model of this system is shown in Figure 9.1, where thick transitions represent
observable event and thin transitions represent unobservable events.

9.3 Numerical simulations

In this section we compare the tool we developed in Matlab [72], that implements the Petri
net procedure, and the UMDES library [53] that implements the automata procedure. In
particular, such a comparison is carried out on the benchmark introduced in Section 9.2,
whose Petri net model is sketched in Figure 9.1, while the automaton model corresponds to
the reachability graph of the Petri net system that is not reported here for sake of brevity.

Several numerical simulations have been run for different values of n, k and m, that are
summarized in Tables 9.1, 9.2 and 9.3.

Note that for sake of simplicity we assumed that all faults belong to the same class.

All simulations have been run on a PC Intel with a clock of 1.80 GHz.

108 CHAPTER 9. A COMPARISON BETWEEN TWO TOOLS BASED ON AUTOMATA AND PNS

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Di ag | tDi ag [sec]

2 1 15 0.011 5 < 0.03 4 0.053 12 0.048
2 2 24 0.019 5 < 0.03 15 0.060 39 0.049
2 3 35 0.026 5 0.032 22 0.059 58 0.050
2 4 48 0.038 5 0.032 34 0.060 88 0.053

3 1 80 0.074 17 0.12 51 0.061 151 0.056
3 2 159 0.234 17 0.145 228 0.063 698 0.084
3 3 274 0.693 17 0.15 494 0.073 1480 0.155
3 4 431 1.85 17 0.15 794 0.12 2405 0.31

4 1 495 2.52 69 0.51 4172 0.619 14009 16.66
4 2 1200 19.04 69 0.57 32132 319.6 126041 4874
4 3 2415 95.33 69 0.67 120083 6169.4 o.t. o.t.
4 4 4320 368.8 69 0.766 o.t. o.t. n.c. n.c.

5 1 3295 203.6 305 4.82 o.m. o.m. n.c. n.c.
5 2 o.t. o.t. 305 5.06 n.c. n.c. n.c. n.c.
5 3 o.t. o.t. 305 6.37 n.c. n.c. n.c. n.c.
5 4 o.t. o.t. 305 6.6 n.c. n.c. n.c. n.c.

Table 9.1: Numerical results in the case of m = 1.

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Di ag | tDi ag [sec]

2 1 96 0.094 17 0.078 349 0.125 3864 1.764
2 2 237 0.521 17 0.078 9849 9.754 o.m. o.m.

3 1 1484 27.19 140 1.17 o.t. o.t. n.c. n.c.
3 2 5949 648.8 140 1.031 o.t. o.t. n.c. n.c.

4 1 28203 20622 1433 86 o.t. o.t. n.c. n.c.
4 2 o.t. o.t. 1433 86.4 n.c. n.c. n.c. n.c.

Table 9.2: Numerical results in the case of m = 2.

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Di ag | tDi ag [sec]

2 1 377 1.221 39 0.25 o.t. o.t. n.c. n.c.
2 2 1293 19.038 39 0.25 o.t. o.t. n.c. n.c.

3 1 12048 2978 553 7.65 o.t. o.t. n.c. n.c.
3 2 o.t. o.t. 553 7.55 n.c. n.c. n.c. n.c.

4 1 o.t. o.t. 9835 2392.3 n.c. n.c. n.c. n.c.
4 2 o.t. o.t. 9835 2395.3 n.c. n.c. n.c. n.c.

Table 9.3: Numerical results in the case of m = 3.

• Columns 1 and 2 show the values of n and k.

• Column 3 shows the number of nodes |R| of the reachability graph, and thus the num-

9.3. NUMERICAL SIMULATIONS 109

ber of states of the NFSA modeling the system.

• Column 4 shows the time tR in seconds we spent to compute the reachability graph
using a function we developed in Matlab.

• Column 5 shows the number of nodes |BRG| of the BRG.

• Column 6 shows the time tBRG in seconds we spent to compute the BRG using a func-
tion we developed in Matlab [72].

• Column 7 shows the number of nodes |Obs| of the observer.

• Column 8 shows the time tObs in seconds we spent to compute the observer using the
UMDES library [53].

• Column 9 shows the number of nodes |Di ag | of the diagnoser.

• Column 10 shows the time tDi ag in seconds we spent to compute the diagnoser using
the UMDES library [53].

Note that, since in some cases the times to run simulations are very short, in order to mini-
mize the variance of such times — related to the concurrency of the processes executed by
the processor — the average time over several simulations has been computed. In particu-
lar, the first 9 rows of Table 9.1 and the first row of Table 9.2 show the average time over 100
simulations. The 10th row of Table 9.1 shows the average time over 20 simulations. In all the
other cases only one simulation has been run.

Some boxes of the above tables contain non numerical values.

• o.t . (out of time): denotes that the corresponding value has not been computed within
6 hours;

• n.c. (not computable): denotes that the corresponding value cannot be computed: e.g.,
if the observer is o.t. the corresponding diagnoser cannot be evaluated;

• o.m. (out of memory): denotes that the corresponding value has not been computed
because the virtual memory of the calculator has run out.

Tables 9.1, 9.2 and 9.3 show that the time spent to compute the reachability graph, the ob-
server and the diagnoser highly increases with the dimension of the net, namely with n and
k, and with the number of products m. In same cases it has been even impossible to com-
pute them.

On the contrary, the time spent to compute the BRG is always reasonable even for high values
of n, k and m.

We can observe that there is not a clear relationship between the number of nodes of the
reachability graph and the number of nodes of the observer. As an example, let us consider
the two cases: n = 3, k = 3, m = 1 and n = 2, k = 2, m = 2. In the first case the number

110 CHAPTER 9. A COMPARISON BETWEEN TWO TOOLS BASED ON AUTOMATA AND PNS

of nodes of the reachability graph is |R| = 274 and the number of nodes of the observer is
|Obs| = 494. In the second case |R| = 237 < 274 and |Obs| = 9849 >> 494.

We can also observe that, as expected, the number of states of the diagnoser |Di ag | is greater
than the number of states of the observer |Obs|. Thus, it is always possible to construct the
observer if it is possible to construct the diagnoser, but not viz (e.g., n = 4, k = 3, m = 1).
However, there is not a clear relationship between the complexity in evaluating them. As an
example let us consider the two cases: n = 4, k = 2, m = 1 and n = 2, k = 2, m = 2. In the first
case |Obs| = 32132 and it has been possible to also compute the diagnoser. In the second
case |Obs| = 9849 << 32132 and it has not been possible to compute the diagnoser within 6
hours.

Tables 9.1, 9.2 and 9.3 also show that the number of nodes of the BRG only depends on n and
m, while it is invariant with respect to k. Only the contrary, |R|, |Obs| and |Di ag | also highly
increases with k.

The relationship among the time to compute the reachability graph, the BRG, the observer
and the diagnoser, respectively, and the values of n and k is better highlighted in Figure 9.2
in the case of m = 1.

Looking at Figure 9.2 it can be noticed that while tBRG slowly increases with n and k, tR , tObs

and tDi ag highly depend on these parameters. Moreover, while the BRG is computable for all
considered values of n and k, the reachability graph is only computable for n ≤ 4 if k ≥ 2; the
observer is only computable for n ≤ 3 if k = 4, and for n ≤ 4 if k = 1,2,3; finally, the diagnoser
is only computable for n ≤ 3 if k = 3,4, and for n ≤ 4 if k = 1,2.

On the basis of the above simulations we can conclude that from a computational point of
view, the Petri net tool is better than the automata tool. In particular, in several cases we
realized that the diagnoser cannot be built at all (at least in a reasonable time), while the
BRG can always be computed in a sufficiently small time.

This is not surprising: in fact thanks to the basis markings the reachability space can be
described in a compact manner. On the contrary the automata approach is based on an
exhaustive enumeration of all reachable states. This advantage is particularly evident in the
case of concurrent systems [15].

On the other hand, as already highlighted above, the Petri net approach considered in this
chapter is only applicable when performing on-line diagnosis, while the automata approach
also provides necessary and sufficient conditions for diagnosability.

We can finally observe that the small number of simulations we have been able to carry on
using automata does not allow us to evaluate how the computational complexity is related
to n and k in the automata approach. However, we can conjecture an exponential depen-
dence on n since the computational time varies from few seconds to “out of time” slightly
increasing n.

Evaluating the dependence on k is even more difficult: for m = 1 and n = 2 the times to
compute the diagnoser are very small and comparable for all values of k; for m = 1 and n = 3
the time is still reasonable for all values of k, even if it increases approximately in a linear
way with k; for m = 1 and n = 4 it becomes “out of time” for k = 3.

9.3. NUMERICAL SIMULATIONS 111

2 3 4 5
10

−2

10
−1

10
0

10
1

10
2

10
3

n

t
R

 [sec]

k=1
k=2
k=3
k=4

2 3 4 5

10
−4

10
−2

10
0

n

t
BRG

 [sec]

k=1
k=2
k=3
k=4

2 3 4
10

−2

10
0

10
2

10
4

n

t
Obs

 [sec]

k=1
k=2
k=3
k=4

2 3 4
10

−2

10
0

10
2

10
4

n

t
Diag

 [sec]

k=1
k=2
k=3
k=4

Figure 9.2: The computational times tR , tBRG , tObs and tDi ag with respect to n and k, in the
case of m = 1.

Discussion

We have compared the complexity of solving the WODES benchmark problem with two dif-
ferent tools, one using the BRG and the other one using the diagnoser. The diagnoser has
size which is exponential in the number of system states, whereas the size of the BRG is lin-
ear in the size of the state space, being at most equal to the size of the reachability graph.
Thus, it was expected that the second tool should have better performance.

Note however, that it does not necessarily follow that Petri nets diagnosis approaches are
better than automata based approaches. We remind that there also exist other automata
based approaches that do not require an exhaustive enumeration of the diagnoser states. As
an example, in [94], a subgenerator of the Reachability Transistion System (RTS) reachable
from the initial state, is used in a similar fashion as the BRG. Since the system states that are
only on unobservable trajectories do not show up in the reachable subgenerator of RTS, the
size of the reachable subgenerator of RTS is also smaller than the original system. It would
be interesting to test the WODES benchmark problem on a tool based on this approach and
compare with the results obtained using our tool.

Part III

Identification

113

Chapter 10

Identification of Petri nets from
knowledge of their language

Summary

In this chapter we deal with the problem of identifying a Petri net system, given a finite lan-
guage generated by it. First we consider the problem of identifying a free labeled Petri net
system, i.e., all transition labels are distinct. The set of transitions and the number of places
is assumed to be known, while the net structure and the initial marking are computed solv-
ing an integer programming problem. Then we extend this approach in several ways intro-
ducing additional information about the model (structural constraints, conservative com-
ponents, stationary sequences) or about its initial marking. We also treat the problem of
synthesizing a bounded net system starting from an automaton that generates its language.
Moreover, we show how the approach can also be generalized to the case of labeled Petri
nets, where two or more transitions may share the same label. In particular, in this case we
impose that the resulting net system is deterministic. In both cases the identification prob-
lem can still be solved via an integer programming problem. Finally, we analyze the com-
plexity of such an approach in terms of computational time required to get an admissible
solution, that may also be optimal according to a given performance criterion

115

116 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

10.1 Basic identification procedure for free labeled
Petri nets

In this section we describe the identification procedure for free labeled Petri nets. As men-
tioned in Subsection 3.5 for this type of Petri nets we assume E = T without any loss of gen-
erality.

The problem we consider in this section can be formally stated as follows.

Problem 10.1. Let L ⊂ T ∗ be a finite prefix-closed language (see Appendix A), and

k = max
σ∈L

|σ|

be the length of the longest string in L . Choosing a set of places P of cardinality m we want to
identify the structure of a net N = (P,T,Pr e,Post) and an initial marking M0 such that

Lk (N , M0) =L .

We also assume that a nonnegative integer K is given such that the following condition1 holds:

max
i

M0(pi)+k ·max
i , j

Post (i , j) ≤ K .

The unknowns we want to determine are the elements of the two matrices Pr e, Post ∈Nm×n

and the elements of the vector M0 ∈Nm . ¥

Let us consider the following definitions that we will be useful in the identification proce-
dure.

Definition 10.2. Given two pairs (σ, t) and (σ′, t ′) we say that

(σ, t) ≡ (σ′, t ′)

if π(σ) =π(σ′) and t = t ′. ¥

It is easy to verify that the relation introduced in Definition 10.2 is an equivalence relation
(see Appendix B). Thus two pairs (σ, t) and (σ′, t ′) havingσ andσ′ with the same firing vector
and where t and t ′ are equal, belong to the same equivalence class.

Definition 10.3. Let L ∈ T ∗ be a finite prefix-closed language and let k ∈ N be defined as in
Problem 10.1.

We define the following sets

E ′ = {(σ, t j) |σ ∈L , |σ| < k,σt j ∈L },

1 This assumption is purely technical, as mentioned in Remark 10.5, and since K can be chosen arbitrarily
large does not pose any practical limitation.

10.1. BASIC IDENTIFICATION PROCEDURE FOR FREE LABELED PETRI NETS 117

E = E ′|≡, (10.1)

D′ = {(σ, t j) |σ ∈L , |σ| < k,σt j 6∈L },

D =D′|≡, (10.2)

where E and D are the sets containing only one element of each equivalent class for the ≡
relation in Definition 10.2. ¥

A solution to the above identification problem can be computed thanks to the following the-
orem, that provides a linear algebraic characterization of the place/transition nets with m
places and n transitions such that Lk (N , M0) =L .

Theorem 10.4. A net system 〈N , M0〉 is a solution of the identification problem (10.1) if and
only if it satisfies the following set of linear algebraic constraints

Gm(E ,D) ,





M0 +Post · y −Pr e · (y +~t j) ≥~0 ∀(σ, t j) ∈ E (a)
−K Sσ, j +M0 +Post · y −Pr e · (y +~t j) ≤−~1m ∀(σ, t j) ∈D (b)
~1 T Sσ, j ≤ m −1 ∀(σ, t j) ∈D (c)
M0 ∈Nm (d)
Pr e,Post ∈Nm×n (e)
Sσ, j ∈ {0,1}m (f)

(10.3)
where y =π(σ) and E , D are given in Eq. (10.1), Eq. (10.2), respectively.

Proof.

• Assume that σt j ∈L , where σ ∈ T ∗ and t j ∈ T . Then transition t j is enabled from the
marking Mσ = M0 + (Post −Pr e) · y and the following relation must hold

Mσ ≥ Pr e(·, t j).

This relation can be rewritten as

M0 +Post · y −Pr e · (y +~t j) ≥~0m . (10.4)

• Assume that σ ∈ L and σt j 6∈ L , where σ ∈ T ∗ and t j ∈ T . Then transition t j is not
enabled from the marking

Mσ = M0 + (Post −Pr e) · y,

that is for at least one place pi it must hold

Mσ(pi) < Pr e(pi , t j).

118 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

We first observe that that each component of Mσ is less than or equal to K , as defined
in Problem 10.1. In fact it holds:

K ≥ max
i

M0(pi)+k ·max
i , j

Post (i , j)

≥ max
i

M0(pi)+|σ| ·max
i , j

Post (i , j)

≥ max
i

Mσ(pi).

(10.5)

We now define a vector

Sσ, j =




s1
...

sm


 ∈ {0,1}m ,

such that for all i = 1, . . . ,m it holds

si = 0 =⇒ Mσ(pi) < Pr e(pi , t j).

The i -th component of Sσ, j (for i = 1, . . . ,m) must satisfy the equation

−K si +Mσ(pi)−Pr e(pi , t j) < 0, (10.6)

so that if si = 0 it must hold Mσ(pi)−Pr e(pi , t j) < 0, while if si = 1 equation (10.6) is
trivially verified thanks to equation (10.5). In vector form (and taking into account that
all variables are integers) equation (10.6) rewrites:

−K Sσ, j +M0 +Post · y −Pr e · (y +~t j) ≤−~1m . (10.7)

Finally, there exists at least a place that disables t j if

m∑
i=1

si ≤ m −1, (10.8)

so that at least one si is null. In vector form this equation rewrites

~1 T Sσ, j ≤ m −1. (10.9)

¤

Remark 10.5. Let us briefly comment about the constant K defined in Problem 10.1.

In Theorem 10.4, for any pair (σ, t j) ∈ D one has to look for at least one place that disables t j

after σ. This or condition, as discussed in Appendix C, may be rewritten in a simpler form if
an upper bound on the absolute value of the variables involved in the constraints is given.

In practice, in Problem 10.1 it is sufficient to pick K very large. We also mention that many
software tools allow the definition of an arbitrary large constant.

10.1. BASIC IDENTIFICATION PROCEDURE FOR FREE LABELED PETRI NETS 119

In general the solution of the set (10.3) is not unique, thus there exists more than one Petri
net system 〈N , M0〉 such that Lk (N , M0) = L . To select one among these Petri net systems
we choose a given performance index and solving an appropriate IPP (Integer Programming
Problem) we determine a Petri net system that minimizes the considered performance in-
dex2. In particular, if f (M0,Pr e,Post) is the considered performance index, an identification
problem can be formally stated as follows.

Problem 10.6. Let us consider the identification problem (10.1) and let f (M0,Pr e,Post) be
a given performance index. The solution to the identification problem (10.1) that minimizes
f (M0, Pr e,Post) can be computed by solving the following IPP

{
min f (M0,Pr e,Post)
s.t. Gm(E ,D).

(10.10)

¥

Of particular interest are those objective functions that are linear in the unknowns, so that
the problem to solve is a linear integer programming problem. As example of a linear objec-
tive function, assume we want to determine a Petri net system that minimizes the weighted
sum of the tokens in the initial marking and of the arc weights. The general case is:

f (M0,Pr e,Post) =
m∑

i=1

(
ai ·M0(pi)+

(
n∑

j=1
bi , j ·Pr e(pi , t j)+ ci , j ·Post (pi , t j)

))
, (10.11)

where ai ,bi , j and ci , j are given coefficients.

A typical choice, that we follow in the rest of the paper, is that of choosing all coefficients
equal to 1. In this case (11.6) can be rewritten:

f (M0,Pr e,Post) =~1T
m ·M0 +~1T

m · (Pr e +Post) ·~1n .

Example 10.7. Let L = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1} and m = 2, thus k = 3. Assume that we
want to determine the Petri net system that minimizes the sum of initial tokens and all arcs
such that L3(N , M0) =L . This requires the solution of an IPP of the form (10.10) where

E = E ′ = {(ε, t1), (t1, t1), (t1, t2), (t1t2, t1), (t1t1, t2)}

and
D =D′ = {(ε, t2), (t1t2, t2), (t1t1, t1)}.

The procedure identifies a net system with

Pr e =
[

1 0
0 1

]
, Post =

[
0 1
0 0

]
, M0 =

[
2
0

]

namely the net system in Figure 10.1.a. ¥

2Clearly, also in this case the solution may be not unique.

120 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

t1

t2

p2p1

(a)

t1

t2

p2p1

(b)

Figure 10.1: (a) The Petri net system of Example 10.7; (b) the Petri net of the same example
when the additional constraint m1 +m2 = const is added.

10.2 Extended identification procedure for free la-
beled Petri nets

In many cases the available information on the net to identify is not limited to samples of its
language. As an example, it may be known that the net has a particular structure, or some
partial information on the initial marking (in terms of available resources) may be given.

In this section it is shown how this additional information can easily be incorporated in the
identification procedure previously described.

10.2.1 Structural constraints

P-vectors

Assume that some places of the net are known to belong to a conservative component, i.e.,
the weighted sum of their tokens in the component remains constant during any evolution.
This is equivalent to say that some P-invariants for the net are known (see Definition 3.3).

More generally the knowledge of any P-vector may be taken into account adding to Prob-
lem 10.10 a suitable set of constraints.

• Assume ~x ∈ Rm is P-invariant. We need to add to Problem 10.10 the following con-
straint

~xT (Post −Pr e) =~0T
n

that imposes~xT ·C =~0T
n .

• Assume ~x ∈ Rm is P-increasing. We need to add to Problem 10.10 the following con-
straints

{
~xT (Post −Pr e) ≥~0T

n
~xT (Post −Pr e)~1n ≥ 1

The first constraint imposes that~xT ·C ≥~0T
n and the second one imposes that~xT ·C 6=

~0T
n .

10.2. EXTENDED IDENTIFICATION PROCEDURE FOR FREE LABELED PETRI NETS 121

• Assume ~x ∈ Rm is P-decreasing. We need to add to Problem 10.10 the following con-
straints

{
~xT (Post −Pr e) ≤~0T

n
~xT (Post −Pr e)~1n ≤−1

The first constraint imposes that~xT ·C ≤~0T
n and the second one imposes that~xT ·C 6=

~0T
n .

T-vectors

Assume that a given firing sequence is known to be stationary, i.e., the number of the tokens
of the net is not modified by the firing of this sequence. This is equivalent to say that some
T-invariants for this net are known (see Definition 3.3).

More generally the knowledge of any T-vector may be taken into account adding to Prob-
lem 10.10 a suitable set of constraints.

• Assume~y ∈Rn is T-invariant. We need to add to Problem 10.10 the following constraint

(Post −Pr e)~y =~0m

that imposes C ·~y =~0m .

• Assume ~y ∈ Rn is T-increasing. We need to add to Problem 10.10 the following con-
straints

{
(Post −Pr e) ·~y ≥~0m
~1T

m(Post −Pr e)~y ≥ 1

The first constraint imposes that C ·~y ≥~0T
m and the second one imposes that C ·~y 6=~0T

m .

• Assume ~x ∈ Rm is T-decreasing. We need to add to Problem 10.10 the following con-
straints

{
(Post −Pr e) ·~y ≤~0m
~1T

m(Post −Pr e)~y ≤−1

The first constraint imposes that C ·~y ≤~0T
m and the second one imposes that C ·~y 6=~0T

m .

Example 10.8. Let us consider again the case of Example 10.7 but assume the net is known
to be conservative. In particular, the sum of the tokens in places p1 and p2 remains constant.
To this aim we solve an IPP of the form (10.10) with the addition of a constraint of the form
of (10.2.1), where~x = [1 1]T . We identify a net system with

Pr e =
[

1 0
0 1

]
, Post =

[
0 1
1 0

]
, M0 =

[
2
0

]

namely the net in Figure 10.1.b. ¥

122 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

Net subclasses

In this subsection we consider the constraints that we need to add to Problem 10.10 to en-
sure that the identified net belongs to some particular subclasses of nets defined in Subsec-
tion 3.4.

• Ordinary:
Pr e,Post ∈ {0,1}m×n .

• Marked graph: {
Pr e ·~1n = 1
Post ·~1n = 1.

• State machine: {
~1T

m ·Pr e = 1
~1T

m ·Post = 1.

All these results follow immediately from the definitions in Subsection 3.4.

Constraints on the initial marking

A type of general constraints that can be imposed on the markings of a Petri net is called
GMEC (Generalized Mutual Exclusion Constraint) and can be represented by the couple
(~w ,k), where ~w ∈Zm ,k ∈Z. This constraint defines a set of legal markings:

M (~w ,k) = {M ∈Nm | ~w T M ≤ k}.

If it is known that M0 ∈M (~w ,k) then the constraint

~w T M0 ≤ k,

should be added to Problem 10.10.

For example consider a Petri net with an initial marking that can not contain a number of
tokens greater than 1 in places p1 and p2. In this case we need to impose as additional
constraint

M(p1)+M(p2) ≤ 1.

Structural decomposition

We can impose a structural decomposition of the net in a given number r of subnets. Let

P = P1 ∪P2 ∪ . . .∪Pr

be a given partition of P . Assume that for all t ∈ T we are given a setΠ(t) ⊂ {1, . . . ,r } such that
q ∈Π(t) implies •t•∩Pq = ;. In plain words, Π(t) represents the set of indices of Pq ’s such
that t has no input/output arc from/to a place in Pq .

10.2. EXTENDED IDENTIFICATION PROCEDURE FOR FREE LABELED PETRI NETS 123

This can be imposed adding to Problem (10.10) the following set of linear constraints for all
t ∈ T : ∑

q∈Π(t)

∑
p∈Pq

(Pr e(p, t)+Post (p, t)) = 0.

10.2.2 Synthesis of bounded Petri net systems from regular
languages

In this section we assume that the net system we want to synthesize is bounded, and thus its
language is regular. The language is given in terms of a finite state automaton G = (Q,T,δ, q0)
where Q is the set of states, the alphabet T is the set of transitions of the net, δ : Q ×T →Q is
the transition function, and q0 is the initial state.

We consider the following problem.

Problem 10.9. Let G = (Q,T,δ, q0) be a given finite state automaton. Given a set of places P
of cardinality m and a nonnegative integer K , we want to identify the structure of a bounded
net N = (P,T,Pr e,Post) and an initial marking M0 such that L(N , M0) =L (G), and

max
i

M0(pi)+k ·max
i , j

Post (i , j) ≤ K .

The unknowns we want to determine are the elements of the two matrices Pr e, Post ∈Nm×n

and the elements of the vector M0 ∈Nm . ¥

The identification procedure previously defined considers sequences of bounded length. An
automaton is able to generate sequences of unbounded length every time that there is a
cycle. Thus we have to distinguish between sequences that pass through cycles (that can
be extended indefinitely) and sequences that do not pass through cycles (whose length is
finite).

We say that a firing sequence σ
′ ≺ σ if σ

′
is a strict prefix of σ, i.e., if σ = tα1 tα2 . . . tαk and

σ
′ = tα1 tα2 . . . tαr with r < k. In following we denote as

Γ(G) = {σ ∈ T ∗ | δ(q,σ) = q ∧ ∀σ′
,σ

′′ ≺σ δ(q,σ′) 6= δ(q,σ
′′
)} (10.12)

the set of elementary cycles of the automaton. We define the set of the firing vectors associ-
ated to the firing sequences in Γ(G) as

Y (G) = {~ξ ∈Nn | ∃ σ ∈ Γ(G) : ~ξ=π(σ)}}. (10.13)

We define the set of sequences that are generated by the automaton without passing through
a cycle as

Lac (G) = {σ ∈ T ∗ | ∀ u, v ¹σ, u 6= v ⇒ δ(q0,u) 6= δ(q0, v)} ⊆L (G), (10.14)

where L (G) denotes the language generated by the automaton.

Finally we define the following sets

124 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

E ′ = {(σ, t) |σ ∈Lac (G),σt ∈L (G)},

E = E ′|≡, (10.15)

D′ = {(σ, t) |σ ∈Lac (G),σt 6∈L },

D =D′|≡, (10.16)

where E and D are the sets containing only one element of each equivalent class for the ≡
relation in Definition 10.2.

Theorem 10.10. A bounded net system 〈N , M0〉 is a solution of the identification problem
(10.9) if and only if it satisfies the following set of linear algebraic constraints

{
Gm(E ,D) (a)
(Post −Pr e) ·~ξ=~0 ∀~ξ ∈ Y (G) (b)

(10.17)

where E and D are given in (10.15), (10.16), respectively.

Proof.

We just give a sketch of the proof. First consider a word σ′ = σt where σ ∈ Lac (G). Then
Gm(E ,D) contains enough constraints to ensure thatσ andσ′, or σ and not σ′ are generated
by any net solution of (18) according to the case σ′ ∈L (G) or σ′ ∉L (G).

Consider next a word σ′ = σt where σ ∈ L (G) \ Lac (G). Then σ = σ1 uσ2 where u 6= ε and
δ(q0,σ1) = δ(q0,σ1 u), hence σ1σ2 ∈ L (G) , and the firing count vector of u is a T-invariant
of any net solution of (18). In other words, such a net generates σ t if and only if it generates
σ1σ2 t , and sinceσ1σ2 is strictly shorter thanσ, the theorem follows by induction on words.

¤

Example 10.11. Let us consider the finite state automaton G in Figure 10.2.a. It holds Y (G) =
{[1 1]T } and Lac (G) = {ε, t1, t1t1} thus E = E ′ = {(ε, t1), (t1, t1), (t1, t2), (t1t1, t2)} and D = D′ =
{(ε, t2), (t1t1, t1)}. Now, assume that we want to determine the Petri net system that minimizes
the sum of initial tokens and all arcs.

For m = 1 we get no feasible solution, while for m = 2 we find the net system in Figure 10.1.b
whose reachability graph is shown in Figure 10.2.b. Note that in this particular case the
reachability graph of the net is isomorphic to the given automaton G , but this is not neces-
sarily guaranteed by our procedure. The problem of finding a net whose reachability graph
is isomorphic to that of an automaton is addressed in the theory of regions as discussed in
Chapter 5. ¥

10.2. EXTENDED IDENTIFICATION PROCEDURE FOR FREE LABELED PETRI NETS 125

t1 t1

t2t2

(a)

t1 t1

t2t2

(b)2 0 1 1 0 2

q0 q1 q2

Figure 10.2: (a) The finite state automaton G of Example 10.11; (b) the reachability graph of
the identified net system.

10.2.3 Optimizing the number of places

In the previous formulation we assumed that the number m of places is given. In this sub-
section we remove this assumption and consider the following identification problem.

Problem 10.12. Let us consider an identification problem in the form (10.1) where m is only
known to be less than or equal to a given value m̄, and let f (m, M0,Pr e,Post) be a given per-
formance index. The solution of the identification problem that minimizes f (m, M0,Pr e,Post)
with the smallest number of places can be computed solving the following nonlinear IPP

{
min
m≤m̄

min f (m, M0,Pr e,Post)

s.t. Gm(E ,D).
(10.18)

A trivial solution to the identification problem 10.12 consists in solving IPP of the form (10.10)
for increasing values of m, until a feasible solution is obtained.

The following theorem provides an alternative approach to do this, that simply requires the
solution of one IPP, while guaranteeing the optimality of the solution both in terms of mini-
mum number of places and in terms of the chosen performance index.

Theorem 10.13. Solving the identification problem 10.12 is equivalent to solving the follow-
ing IPP: 




min K ·~1T
m̄~z + f (m̄, M0,Pr e,Post)

s.t. Gm̄(E ,D)
K ·~z −Pr e ·~1n −Post ·~1n ≥~0m̄

zi+1 ≤ zi , i = 1, . . . ,m̄ −1
~z ∈ {0,1}m̄

(10.19)

for a sufficiently large constant K (K must be such that the minimization of the first term of
the objective function has priority over the minimization of its second term).

In particular, let us denote as~z∗, M̄∗
0 , Pr e

∗
and Post

∗
the solution of (10.19), and let m∗ be

the number of nonzero components of~z∗.

126 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

Let M∗
0 be the vector obtained from M̄∗

0 by only keeping its first m∗ components. Analogously,

let Pr e∗ and Post∗ be the matrices obtained from Pr e
∗

and Post
∗

, respectively, by only keep-
ing their first m∗ rows.

Then, m∗, M∗
0 , Pr e∗, Post∗ is a solution of the identification problem 10.12.

Proof.

Let us first observe that if zi = 1, then the corresponding constraint

K −Pr e(pi , ·) ·~1n −Post (pi , ·) ·~1n ≥ 0

is trivially verified being K a very large constant.

On the contrary, if zi = 0, the new constraint becomes

−Pr e(pi , ·) ·~1n −Post (pi , ·) ·~1n ≥ 0

whose only admissible solution is Pr e(pi , ·) = Post (pi , ·) =~0T
n . Place pi is in this case redun-

dant and can be removed without affecting the language of the net.

Since our main goal in (10.19) is that of minimizing~1T
m~z, the optimal solution~z∗ will have

as many zeros as possible, compatibly with the other constraints. Moreover, being zi+1 ≤
zi , i = 1, . . . ,m̄ −1, zero is assumed by the last components of~z∗. ¤

In the previous theorem the chosen performance index allows one to solve in one shot a two-
criteria optimization problem using a procedure based on global priorities [14]. In this case
we have a multi–objective performance in which the goals have different priorities. We first
look for all solutions that optimize the first goal, i.e., the number of places, and then among
them we look for those that optimize the second goal.

Example 10.14. Let

L = {ε, t1, t1t2, t1t3, t1t2t1, t1t2t3, t1t3t1, t1t3t2}

thus k = 3. Assume that we want to determine the Petri net system that minimizes the sum
of initial tokens and all arcs such that L3(N , M0) =L . This requires the solution of an IPP of
the form (10.10) where

E = E ′ = {(ε, t1), (t1, t2), (t1, t3), (t1t2, t1), (t1t2, t3), (t1t3, t1), (t1t3, t2)}

and
D =D′{(ε, t2), (ε, t3), (t1, t1), (t1t2, t2), (t1t3, t3)}.

We assume that the total number of places is bounded by m̄ = 5 and we choose the constant
K = m̄ ·n ·104 = 15 ·104.

The procedure identifies a net system with m = 3 and

Pr e =



1 0 0
0 1 0
0 0 1


 , Post =




0 1 1
1 0 0
1 0 0


 ,

10.3. λ-FREE LABELED PETRI NETS 127

p1

p2

p3

t2

t3

t1

Figure 10.3: The Petri net system of Example 10.14.

M0 =



1
0
0


 ,

namely the net system in Figure 10.3. ¥

10.3 λ-free labeled Petri nets

In this section we show how the above results can be extended to the case of λ-free labeled
Petri nets.

We consider ϕ : T → E a labeling function over E and we denote the set of transitions that
are labeled by symbol e as:

Te = {t ∈ T | ϕ(t) = e} = {t e
1 , . . . , t e

ne
}, e ∈ E

where ne = |Te|. Obviously it holds
T =

⋃
e∈E

Te ,

i.e., the the labeling equivalence induces a partition of T .

We say that an event e is ambiguous if ne > 1, i.e., there exists more than one transition t
such that ϕ(t) = e, otherwise we say that the event e is not-ambiguous. Analogously, we say
that a transition t is ambiguous if its label is also associated to other transitions, otherwise a
transition t is said to be not-ambiguous.

We denote w =ϕ(σ) the word of events associated to sequence σ.

Given a labeled Petri net system 〈N , M0〉 we define its λ-free labeled language as the set of
words in E∗ generated from the initial marking M0, namely,

LE (N , M0) = {w ∈ E∗ | ∃σ ∈ T ∗ : M0[σ〉, ϕ(σ) = w}.

We also denote LE
k (N , M0) the set of words in LE (N , M0) of length less than or equal to k ∈N,

i.e.,
LE

k (N , M0) = {w ∈ LE (N , M0) | |w| ≤ k}.

128 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

Problem 10.15. Assume we are given a set of places P = {p1, . . . , pm} and a set of transitions
T = {t1, . . . , tn}. Let ϕ : T → E be a given labeling function over E whose equivalence classes Te

are known. Let L ⊂ E∗ be a given finite prefix-closed language over E∗, and

k = max
w∈L

|w|

be the length of the longest word in L .

We want to identify the structure of a deterministic3 net N = (P,T,Pr e,Post) labeled byϕ and
an initial marking M0 such that

LE
k (N , M0) =L .

We also assume that a nonnegative integer K is given such that the following condition holds:

max
i

M0(pi)+k ·max
i , j

Post (i , j) ≤ K .

The unknowns we want to determine are the elements of the two matrices

Pr e = {ei , j } ∈Nm×n and Post = {oi , j } ∈Nm×n

and the elements of the vector

M0 =
[

m0,1 m0,2 · · · m0,m
]T ∈Nm .

¥

Let us consider the following definitions that we will use in the following.

Definition 10.16. Given two pairs (w,e) and (w ′,e ′) we say that

(w,e) ≡ (w ′,e ′)

if ∀ e ∈ E |w |e = |w ′|e and e = e ′. ¥

It is easy to verify that the relation introduced in Definition 10.16 is an equivalence relation
(see Appendix B). Thus two pairs (w,e) and (w ′,e ′) having the same cardinality of the event
e ∈ E , for each event e of the alphabet, and where e and e ′ are equivalent, belong to the same
equivalence class.

Definition 10.17. Let L ∈ E∗ be a finite prefix-closed language and let k ∈N be defined as in
Problem 10.15.

We define the following sets

E = {(w,e) | w ∈L , |w| < k, we ∈L },

3Determinism is a desirable property and we assume the net enjoys it. However, it may also be possible to
solve this problem without assuming that the net be deterministic.

10.3. λ-FREE LABELED PETRI NETS 129

E = E ′|≡, (10.20)

D′ =D = {(w,e) | w ∈L , |w| < k, we 6∈L },

D =D′|≡, (10.21)

where E and D are the sets containing only one element of each equivalent class for the ≡
relation in Definition 10.16. ¥

The following theorem provides a linear algebraic characterization of the deterministic la-
beled Petri net systems with m places, n transitions and labeling functionϕ such that LE

k (N , M0) =
L .

Theorem 10.18. A solution to the identification problem (10.15) satisfies the following set of
linear algebraic constraints

Gm(E ,D,ϕ) ,




Mw −Pr e(·, t e
1) ≥−ze,w

1 · ~K
...

Mw −Pr e(·, t e
ne

) ≥−ze,w
ne

· ~K
Mwe −Mw −Post (·, t e

1)+Pr e(·, t e
1) ≤ ze,w

1 · ~K
Mwe −Mw −Post (·, t e

1)+Pr e(·, t e
1) ≥−ze,w

1 · ~K
...

Mwe −Mw −Post (·, t e
ne

)+Pr e(·, t e
ne

) ≤ ze,w
ne

· ~K
Mwe −Mw −Post (·, t e

ne
)+Pr e(·, t e

ne
) ≥−ze,w

ne
· ~K

ze,w
1 + . . .+ ze,w

ne
= ne −1

ze,w
1 , . . . , ze,w

ne
∈ {0,1}

∀(w,e) ∈ E (a)

−K S̄(w, t e
j)+Mw −Pr e(·, t e

j) ≤−~1 ∀(w,e) ∈ E : |Te| > 1, ∀t e
j ∈ Te (b)

~1T S̄(w, t e
j) ≤ m − ze,w

j ∀(w,e) ∈ E : |Te| > 1, ∀t e
j ∈ Te (c)

−K S(w, t e
j)+Mw −Pr e(·, t e

j) ≤−~1 ∀(w,e) ∈D, ∀t e
j ∈ Te (d)

~1 T S(w, t e
j) ≤ m −1 ∀(w,e) ∈D, ∀t e

j ∈ Te (e)

Mw ∈Nm , ∀w ∈L (f)

Pr e,Post ∈Nm×n (g)

S(w, t e
j) ∈ {0,1}m (h)

S̄(w, t e
j) ∈ {0,1}m (i)

(10.22)
where E and D are defined in Eq. (10.20), Eq. (10.21), respectively.

Proof.

130 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

• Assume that we ∈ L , where w ∈ E∗ and e ∈ E . Then at least one transition t e
j ∈ Te

should be enabled at Mw , or equivalently, for at least one t e
j ∈ Te it should hold:

Mw ≥ Pr e(·, t e
j).

Thus, following again the procedure in Appendix C to convert the logical or operator
in terms of linear constraints, we can write:





Mw −Pr e(·, t e
1) ≥−ze,w

1 · ~K
...
Mw −Pr e(·, t e

ne
) ≥−ze,w

ne
· ~K

ze,w
1 + . . .+ ze,w

ne
= ne −1

ze,w
1 , . . . , ze,w

ne
∈ {0,1}

If ze,w
j = 0 it means that t e

j ∈ Te may fire at Mw , and the marking Mwe reached after its
firing is

Mwe = Mw +Post (·, t e
j)−Pr e(·, t e

j).

that satisfies the following set of linear inequalities:





Mwe −Mw −Post (·, t e
1)+Pr e(·, t e

1) ≤ ze,w
1 · ~K

Mwe −Mw −Post (·, t e
1)+Pr e(·, t e

1) ≥−ze,w
1 · ~K

...
Mwe −Mw −Post (·, t e

ne
)+Pr e(·, t e

ne
) ≤ ze,w

ne
· ~K

Mwe −Mw −Post (·, t e
ne

)+Pr e(·, t e
ne

) ≥−ze,w
ne

· ~K

Now, if we want the net to be deterministic, we must impose that, whenever |Te| > 1,
only one transition t e

j ∈ Te is enabled at Mw .

From the above constraints we know that transition t e
k ∈ Te such that ze,w

k = 0 is en-
abled at Mw . Thus, we need to impose additional constraints in order to be sure that,
for all the other transitions t e

j , j 6= k, for which ze,w
j = 1, it holds that

Mw −Pr e(·, t e
j)�~0.

In order to do this, for all t e
j ∈ Te we introduce a vector of binary variables S̄(w, t e

j) that
satisfies the following set of linear inequalities:

{
−K S̄(w, t e

j)+Mw −Pr e(·, t e
j) ≤−~1

~1T S̄(w, t e
j) ≤ m − ze,w

j

If ze,w
j = 0, then all entries of S̄(w, t e

j) may be unitary, thus adding no additional con-

straint (the corresponding inequality is trivially verified). On the contrary, if ze,w
j = 1,

then at least one entry of S̄(w, t e
j) is null, thus making t e

j not enabled at Mw . Being

ze,w
1 + . . .+ ze,w

ne
= ne −1, we can be sure that only one transition labeled e is enabled at

Mw .

10.3. λ-FREE LABELED PETRI NETS 131

• Assume w ∈L and we ∉L . Then for all t e
j ∈ Te the following set of linear constraints

should be satisfied:




−K ·S(w, t e
j)+Mw −Pr e(·, t e

j) ≤−~1m

~1 ·S(w, t e
j) ≤ m −1

S(w, t e
j) ∈ {0,1}m .

¤

As in the free labeled case, it may be possible to associate to our constraints a performance
index to solve an integer programming problem and find, if there exists, the optimal solution.

Example 10.19. Let us now consider a numerical example taken from [79] where m = n = 3,
ϕ(t1) = a, ϕ(t2) =ϕ(t3) = b and the net language is L ′ = {ar bq , r ≥ q ≥ 0}.

Assume we want to minimize the sum of initial tokens and the sum of all arcs.

Let us first assume that k = 3, thus

L = {ε, a, aa, ab, aaa, aab}.

This implies that
E = E ′ = {(ε, a), (a, a), (a,b), (aa, a), (aa,b)}

and
D =D′ = {(ε,b), (ab, a), (ab,b)}.

The resulting net system is such that

M0 =
[

0 1 0
]T

,

Pr e =



0 0 1
1 2 0
0 0 0


 , Post =




0 0 0
2 0 0
0 0 0


 ,

namely that represented in Figure 10.4.a.

Note that another optimal solution is given by the net in figure (b) if we remove the arc from
t2 to p1 and the arc from p3 to t3.

Then, assume k = 4, thus

L = {ε, a, aa, ab, aaa, aab, aaaa, aaab, aabb}.

This implies that

E = E ′ = {(ε, a), (a, a), (a,b), (aa, a), (aa,b), (aaa, a), (aaa,b), (aab,b)}

and
D =D′ = {(ε,b), (ab, a), (ab,b), (aab, a)}.

132 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

p1 t3

b

t1 t2p2

(a)
ba

p3

k = 3

k = 4,5

2 2

p2

t1 a

p3

t3 b

p1

t2 b

(b)

k ≥ 6

p2

t1 a

p3

t3 b

p1

t2 b

(c)

Figure 10.4: The results of Example 10.19.

The resulting net system is such that

M0 =
[

0 1 0
]T

,

Pr e =



0 0 1
1 1 0
0 1 1


 , Post =




0 1 0
1 0 0
1 0 0


 ,

namely that represented in Figure 10.4.b.

The same net system is also obtained if k = 5, while the net system in figure (c) is obtained if
k ≥ 6 (that coincides with the net in [79]). ¥

Finally, we note that with the technique presented in the previous section we can also lift the
requirement that the number of places is known.

It is also possible to deal with the case in which the cardinality of the set Te for all e ∈ E is not
known a priori but only an upper bound on its value is known. This extension however is not
straightforward and it will be left for future research.

10.4 Complexity of the identification procedure

In this section we discuss the complexity of the IPPs we must solve to identify a net. This
complexity is given in terms of number of constraints and number of unknowns. Note how-
ever that it is well known that an IPP is an NP-hard problem itself.

10.4. COMPLEXITY OF THE IDENTIFICATION PROCEDURE 133

10.4.1 Free labeled nets

Let n be the cardinality of T , k the length of the longest string in L , and νr (for r = 0, . . . ,k)
the number of pairs (σ, t) ∈ E such that |σt | = r .

Then the constraint set (10.3) contains
∑k

r=1νr constraints of type (a) and
∑k−1

r=0 (nνr −νr+1)
constraints of type (b) and of type (c). The total number of scalar constraints is thus:

cfree = m

(
k∑

r=1
νr

)
+ (m +1)

(
k−1∑
r=0

(nνr −νr+1)

)
.

The total number of unknowns is

ufree = m +2(m ×n)+m

(
k−1∑
r=0

(nνr −νr+1)

)
.

Note that given a value of k and of n, it is possible to find a worst case bound for ρ =∑k−1
r=0 (nνr −νr+1). In fact, it holds:

ρ =∑k−1
r=0 (nνr −νr+1) = nν0 + (n −1)

(∑k−1
r=1 νr

)−νk = n + (n −1)
(∑k−1

r=1 νr
)−νk .

This expression is maximized if we assume νk = 0 while all other νr must take the largest
value, i.e., νr = nr . Hence we have

ρ ≤ n + (n −1)(n +·· ·+nk−1) = nk ,

and the total number of unknowns in the worst case is

ufree = m +2(m ×n)+m nk = m(1+2n +nk) =O (m nk),

i.e., it has exponential complexity with respect to k.

10.4.2 λ-free labeled Petri nets

Let τ= maxe∈E |Te|, and as we have considered in the previous subsection, k be the length of
the longest string in L , and νr (for r = 0, . . . ,k) be the number of pairs (w,e) ∈ E such that
|we| = r .

In the worst case the set (10.22) has

cλ-free = [(4m +1)τ+1]

(
k∑

r=1
νr

)
+ (m +1)τ

(
k−1∑
r=0

(nνr −νr+1)

)

constraints. Indeed, in such a case, we have (3mτ+1)
(∑k

r=1νr
)

constraints of type (a), (m +
1)τ

(∑k
r=1νr

)
constraints of type (b) plus (c), and (m +1)τ

(∑k−1
r=0 (nνr −νr+1)

)
constraints of

type (d) and (e).

134 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

Moreover, we have that the number of unknowns is

uλ-free = m +2mn +m

(
k∑

r=1
νr

)
+τ

(
k∑

r=1
νr

)
+mτ

(
k∑

r=1
νr

)
+mτ

(
k−1∑
r=0

(nνr −νr+1)

)

where each term corresponds, respectively, to: M0; Pr e and Post ; Mw ; the binary variables
ze,w

j ; the binary vectors S̄(w, t e
j); the binary vectors S(w, t e

j).

As shown in the previous subsection we can take:

ρ ≤ n + (n −1)(n +·· ·+nk−1) = nk ,

and then the total number of unknowns in the worst case is

uλ-free =O (mτnk),

and keeping in mind that τ≤ n we can also write

uλ-free =O (mnk+1).

Also in this case we have an exponential complexity with respect to k.

10.5 Numerical simulations

In this section we analyze the complexity of the identification approach here proposed in
terms of computational time required to get an admissible solution, that may also be optimal
according to a given performance criterion.

In particular, we want to investigate how the computational time depends on the cardinality
of the set of finite length strings that describe the language, and on the chosen performance
index.

To this aim we consider the language generated by a particular Petri net system that models
a sender-receiver process. Different cases are examined with different number of places and
transitions, and thus different languages generated.

As pointed out in the following of the section, the numerical simulations we carried out en-
abled us to conclude that the computational time becomes prohibitive for languages that
are described by a large number of finite length strings, if we want to determine a solution
that is optimal with respect to a given performance index. On the contrary, computational
times are negligible if we limit to consider any admissible net system, e.g., the first admissible
solution computed by CPLEX when solving the optimization problem. We believe that this
is not a drawback of our procedure because in effect, when solving identification problems
like this, the main requirement is that of determining an admissible solution, not necessarily
an optimal one.

Let us consider the Petri net system in Figure 10.5 consisting of 2(q +1) places and 2q tran-
sitions. It models a sender-receiver process. In particular, places pi , with i = 1, ...q , model

10.5. NUMERICAL SIMULATIONS 135

p1

p2

pq p2q

q

p2q+1

p2q+2

t1

tq

tq+1

t2q

pq+2

pq+1

sender receiver

Figure 10.5: The sender-receiver process.

the sender process; places pi , with i = q + 1, ...,2q , model the receiver process, and places
pi , with i = 2q + 1,2q + 2, correspond to the communication channels between the two
processes. When place p1 is marked (as in Figure 10.5) the sender is ready to transmit a
message. After the firing of t1 the message is in the channel, ready to be received, pro-
vided that the receiver is also ready, namely that place pq+1 is marked. Now, transitions
t2, . . . , tq−1, tq+1, . . . , t2q can fire. In particular the firing of t2q corresponds to the acknowl-
edge from the receiver. Finally, the receipt from the sender is modeled by transition tq .

In this section we present the results of various identification problems carried out consider-
ing different values of q , namely q = 2, . . . ,6. In particular, our goal here is that of synthesizing
a net system that generates the same language of the net system in Figure 10.5.

Note that for sake of brevity we do not report here the language L = Lk (N , M0), but we limit
to observe that k = 2q . Moreover, in order to obtain a net system that generates exactly the
same language we also need to impose the minimal T-invariant~y =~1n .

Note that we do not need to impose the P-invariants corresponding to the sender and the
receiver. In fact, our requirement here is not that of obtaining exactly the net system in Fig-
ure 10.5, but a net system that generates the same language.

For any q we considered two different cases. In particular, using the notation of IPP (10.19),
we assume:

(C1) J = K̄ ·~1T
m̄~z +~1T

m̄ ·M0 +~1T
m̄ · (Pr e +Post) ·~1n ,

(C2) J =~1T
m̄ ·M0.

Therefore, in case (C1) we assume that the number of places is not known a priori, and our
goal is that of determining among all the net systems that satisfy the given language specifi-
cations, that one who minimizes the number of places, the initial number of tokens and the
arc weights.

In case (C2) we assign no weight on the number of places because we assume it is given. Our
goal here is simply that of minimizing the number of tokens in the initial marking.

136 CHAPTER 10. IDENTIFICATION OF PNS FROM KNOWLEDGE OF THEIR LANGUAGE

 First integer
 solution

Optimal
solution
(max 1 hour)

% after
1 hour

C1 0,03 sec
(141)

0,03 sec
(141)

0%
q=2

C2 <0,01 sec
(113)

<0,01 sec
(113)

0%

C1 < 4 sec
(598)

 16,71%
q=3

C2 <0,6 sec
(607)

0,78 sec
(2744)

0%

C1 < 29 sec
(1706)

 59,91%
q=4

C2 <8 sec
(2479)

 50,00%

C1 <200 sec
(3855)

 75,05%
q=5

C2 <20 sec
(3625)

 75,00%

C1 < 65 sec
(6949)

 97,61%
q=6

C2 <20 sec
(6067)

 50,00%

Table 10.1: Numerical results

We carried out all numerical simulations using an appropriate tool we developed in MAT-
LAB: given the language L = Lk (N , M0), the structural constraints, and an upper bound on
the number of places m̄, it generates the set of constraints of IPP (10.19) in the syntax of
CPLEX; then, given the desired performance index, the resulting IPP can be directly solved
using ILOG CPLEX.

For both cases C1 and C2, and for any value of q , we limit the computational time to one
hour. This constraint did not allow us to obtain the optimal solution in all cases examined.

Simulations have been run on a PC Athlon 64, 4000+ processor. Numerical results are sum-
marized in Table 10.1.

In the first column we have reported the time (in seconds) and the number of iterations
(between parenthesis) to find the first admissible solution.

In the second column we may have either an empty box or two numbers. The box is empty
if CPLEX is not able to compute the optimal solution within an hour. If an optimal solution
is determined within an hour, in the corresponding box we can read the time in seconds it
took to compute it, and the number of iterations between parenthesis.

In the third column we reported a measure of the distance (as a percentage) between the
optimal solution and the solution computed within an hour. If such a value is equal to 0%
it means that the optimal solution has been obtained in the allowed time. As large is the
percentage, as far the solution is from the optimum.

From Table 10.1 we can be easily observe that the optimal solution can be computed within
an hour only for q = 2 (both in case C1 and C2), and for q = 3 (in case C2). In all the other
cases the number of constraints was too high, and regardless of the considered performance

10.5. NUMERICAL SIMULATIONS 137

index, one hour was not enough to determine the optimal solution. In particular, the dis-
tance from the optimal solution in quite all cases examined also depend on the considered
performance index (case C1 or C2).

Note however that this is not a serious limitation of our procedure because in general, when
computing an identification problem, we are mainly interested in determining an admissi-
ble solution, rather than an optimal one. As it can be seen by looking at the first column of
Table 10.1, the computational times are very very short also for large values of q if we con-
sider an arbitrary solution, e.g., the first admissible one computed by CPLEX when solving
an optimization problem.

Note that in case C1 we assumed that m̄ = 2q +2 but we always found out a net with a mi-
nor number of places. This is not surprising because we are not imposing the P-invariants
relative to the sender and the receiver, thus the structure of the net is different even if the
language generated is the same.

Chapter 11

Identification of unbounded Petri
nets from their coverability graph

Summary

In this chapter we solve the following problem: given an automaton that represents the cov-
erability graph of a Petri net, determine a Petri net system whose coverability graph is iso-
morphic to the automaton.

The proposed approach requires solving an integer programming problem whose set of un-
knowns contains the elements of the pre and post incidence matrices and the initial marking
of the net.

139

140 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

11.1 Coverability graph and properties

One technique used for the analysis of unbounded PNs is based on the construction of the
coverability tree/graph (see also [69]) that provides a description in finite terms of the infinite
reachability set. In particular, each node of the graph is labeled with an m dimensional row
vector whose entries may either be integer number or may be equal to the special symbolω,
while arcs are elements in T . The symbol ω denotes that the marking of the corresponding
place may grow indefinitely. Note that for all n ∈N it holds ω> n and ω±n =ω.

Algorithm 11.1. Construction of the coverability tree for 〈N , M0〉.

1. Label the root node q0 with the initial marking M0 and tag it "new".

2. While a node tagged "new" exists do

a) Select a node q tagged "new" and let M be its label.

b) For all t enabled at M, i.e., such that M ≥ Pr e(·, t):

i. Let M ′ = M +C (·, t) be the marking reached from M firing t .

ii. Let q̄ be the first node met on the backward path from q to q0 whose label is
M̄ � M ′. If such a node exists then for all p ∈ P such that M ′(p) > M̄(p) let
M ′(p) =ω.

iii. Add a new node q ′ and label it M ′.
iv. Add an arc labeled t from q to q ′.
v. If there exists already in the tree a node with label M ′, then tag node q ′ "du-

plicate", else tag it "new".

c) Untag node q.

¥

From the coverability tree (CT) one can obtain the CG by fusing duplicate nodes with the un-
tagged node with the same label: one can always convert a CT in a graph and viz. Note that,
this algorithm can also be used to compute the reachability tree (and then the reachability
graph) skipping the test at step 2.b.ii.

In the construction of the CT the existence of a sequenceσ that leads from a marking M̄ to a
greater marking M ′ is identified at step 2.(b).i i . The components that by the repeated firing
of such a sequence σ grow unbounded are denoted with a special symbol ω. Note that if
M̄ contains no ω components then σ is an increasing sequence. However, if M̄ contains ω
components we can only say thatσ is increasing for all places p such that M̄(p) <ω: nothing
can be said for the remaining places.

Definition 11.2. Let us now consider a node q ′ labeled with a marking M ′ that has one or
more components changed to ω at step 2.(b).i i of Algorithm 11.1. With the notation used in
step 2.(b).i i , we also denote q̄ the node covered by q ′ and q the node father of q ′.

11.1. COVERABILITY GRAPH AND PROPERTIES 141

t1

t2

p1

p3

(a)

t3 t4

[1 0 0] dup

t3,t4

[0 1 0] [1 0 ω] [0 1 ω] [1 0 ω]
t1 t2 t1 t2

t3,t4

[1 ω ω] [0 ω ω]

t2 t2
 [ω ω ω] [ω ω ω]

[0 ω ω]
t3,t4 dup

dup

(b)

[1 ω ω]

t1,t2,t3,t4
[0 ω ω]

dup

t1

t3,t4

dup

[ω ω ω]

dup

t3,t4

q0 q1

q2 q3

t1 t2 t1

t2 t3,t4
 q4

q5

t1,t2,t3,t4

t3,t4

t1

(d)

q6

t3,t4
 t2 t2

t3,t4

[1 0 0] [0 1 0] [1 0 ω] [0 1 ω]
t1 t2 t1

t2 t3,t4
 [1 ω ω] [0 ω ω]

t1,t2,t3,t4

t1

(c)

t3,t4

[ω ω ω]

t3,t4

t2 t2

p2

Figure 11.1: Net in Example 11.3.

• Node q ′ is called an ω-increasing node and the corresponding marking is called an ω-
increasing marking.

• The production associated to the path on the graph

π : q̄
σ′
−→ q

t−→ q ′ (11.1)

is called an ω-increasing production.

• We also define for any production of the form in eq. (11.1): ν(π) the set of all nodes of the
production, s(π) = q̄ the start node of the production, l (π) = q the last-but-one node,
e(π) = q ′ the end node, and `(π) =σ′t the corresponding sequence. ¥

Example 11.3. Let us consider the net in Figure 11.1.(a), whose CT is given in Figure 11.1.(b).
The CG is shown in Figure 11.1.(c). This net and the successive ones do not have a particular
physical meaning; we only use them to demonstrate properties of interest.

Sequence t1t2 is a repetitive sequence that from M0 = [1 0 0]T yields [1 0 1]T increasing the
marking of place p3: hence in the CG we have anω-increasing productionπ : q0t1q1t2q2 that
from s(π) = q0 leads to node e(π) = q2 with label M2 = [1 0 ω]T .

Sequence t3 from [1 0 ω]T yields [1 ω ω]T increasing the marking of place p2: hence in the
CG we have anω-increasing productionπ : q2t3q4 that from s(π) = q2 leads to node e(π) = q4

with label M4 = [1 ω ω]T (in this case l (π) = s(π)). Note that although t3 is an ω-increasing
sequence, it is not a repetitive sequence because it decreases the marking of place p3. ¥

Now, let us show a sufficient condition for the ω-increasing productions.

142 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

'q

'π

q

π

Figure 11.2: A sketch for Proposition 11.4.

Proposition 11.4. Let us consider a CG G of a Petri net and a node q ′ of G . If there exists in
the graph a node q̄ 6= q ′ and a production π such that:

s(π) = q̄ , e(π) = q ′

and there exists another production π′ such that:

s(π′) = e(π′) = q ′, `(π) = `(π′) =σ, ν(π)∩ν(π′) = {q ′}

then q ′ is an ω-increasing node and π is the corresponding ω-increasing production.

(see Fig. 11.2 where π= q̄
σ−→ q ′ and π′ = q ′ σ−→ q ′).

Proof. As explained in the construction of the CT, a node q ′ is labeled by an ω-increasing
marking M ′ if and only if there exists a node q̄ labeled by a marking M̄ and a sequence σ such
that M̄ [σ〉M̄ ′ where M̄ � M̄ ′ and M ′(p) = ω for all those places p such that M̄ ′(p) > M̄(p),
and M ′(p) = M̄ ′(p) for all other places. Now since σ is enabled at M̄ it is also enabled at the
greater marking M ′; however since its firing does not change the marking of a place p such
that M ′(p) <ω, its firing from M ′ leads back to M ′. Finally, we observe that π is ω−increasing
iff e(π) (hence1 all nodes in ν(π′)) contains at least one moreω−component with respect to all
nodes in ν(π) \ e(π); this implies that ν(π)∩ν(π′) = e(π). ¤

Proposition 11.4 gives us only sufficient conditions for the identification of ω-increasing se-
quences given a CG as shown in the following example.

Example 11.5. Let us consider the Petri net in Figure 11.3.(a), whose CG is given in Fig-
ure 11.3.(b).

Sequence t1t2 is a repetitive sequence that from M0 = [1 0]T yields [1 1]T increasing the mark-
ing of place p2: hence in the CG we have anω-increasing productionπ : [1 0]T t1[0 2]T t2[1 1]T

that from s(π) = [1 0]T leads to node e(π) = [1 ω]T . It is easy to verify that the ω-increasing
production associated with t1t2 does not satisfy conditions of Proposition 11.4. ¥

For the sake of simplicity we want to consider Petri nets whose increasing sequences can be
easily recognized looking at the CG using Proposition 11.4. Thus, in the rest of this chapter
the following assumption holds.

(A1) We want to identify Petri nets for which Proposition 11.4 gives necessary and sufficient
conditions.

Let us introduce the following notation.

1This result is formally proved by Proposition 11.10.

11.1. COVERABILITY GRAPH AND PROPERTIES 143

[1 0]

(b) (a)

p1 t2 t1 p2 2
[0 2]

t1 t1 t2 [0 ω]

[ω ω]

t2 t2

t1,t2

[1 ω]

Figure 11.3: Net in Example 11.5.

• O is the set of all ω-increasing markings,

• Π is the set of ω-increasing productions,

• Πk is the set of ω-increasing productions that end in qk .

Example 11.6. From the graph in Figure 11.1.(d) we recognize the following nodes as asso-
ciated to ω-increasing markings:

• q2. With the notation used in the proof of the previous proposition, q̄ = q0 and the
corresponding ω-increasing production is π= q0t1q1t2q2.

• q4 (resp., q5). Here q̄ = q2 (resp., q̄ = q3) and the two corresponding ω-increasing
productions are π= q2t3q4 or π′ = q2t4q4 (resp., π= q3t3q5 or π′ = q3t4q5).

• q6. We have two choices for q̄ : q̄ = q4 and q̄ = q5. The corresponding ω-productions
are π= q4t2q6 and π′ = q5t2q6.

¥

Let us introduce some equivalence classes that will be useful in the following of this chapter.

Definition 11.7 (Set of ω components). Given a node q of a CG we define

Ω(q) = {p ∈ P | q is labeled with M , M(p) =ω}

the set of places associated to ω components in node q. ¥

The set of ω components induces two relations on the nodes of a CG.

Definition 11.8. Given two nodes q and q ′ we say that:

• q ≡ q ′ if Ω(q) =Ω(q ′).

• q ¹ q ′ (resp., q ≺ q ′) if Ω(q) ⊆Ω(q ′) (resp., Ω(q)(Ω(q ′)).

¥

144 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

One can immediately verify that the first one is an equivalence relation while the second one
is a partial order relation. It is thus possible to partition the set of nodes according to the
equivalence classes of ≡ and to order them according to ≺.

Example 11.9. In the graph in Figure 11.1.(c), we recognize the following equivalence classes:

Q0 = {q0, q1}, Q1 = {q2, q3}, Q2 = {q4, q5}, Q3 = {q6}.

These classes are ordered as shown in the following Hesse diagram

Q0 −→Q1 −→Q2 −→Q3

where an arc from Qi to Q j denotes that Qi ≺Q j . In this particular case, the classes are also
completely ordered. ¥

Here we consider the problem of determining, given a graph G whose edges are labeled with
elements of T , a net 〈N , M0〉 with set of transitions T , for which assumption A1 holds and
such that its CG is isomorphic to G . Note that the input of our procedure is not a graph such
as the one in Figure 11.1.(c) where each node is labeled by a marking, but an unlabeled graph
such as the one in Figure 11.1.(d), where no information is given on the places.

Our identification procedure requires at first to partition the nodes of the graph into equiva-
lence classes for the ≡ relation (we call this partition Q) and to order them. We first observe
that although the unlabeled graph does not contain enough information to exactly recon-
struct such a partition, it allows one to determine a partition Q̂ that refines2 Q.

Here we prove that this is possible just looking at the unlabeled graph — such as the one in
Figure 11.1.(d).

We start with the following elementary observation.

Proposition 11.10. Let us consider two nodes qi and q j such that

qi
t−→ q j

then the following results hold:

(i) qi ¹ q j ,

(ii) qi ≺ q j iff ∃ π ∈Π j and l (π) = qi .

Proof. (i) Assume nodes qi and q j are labeled, respectively, M and M ′. In the construction of
the CT whenever a marking M is such that M(p) =ω, then the firing of an enabled transition
t from M leads to M ′ = M +C (·, t), hence M ′(p) = M(p)+C (p, t) =ω+C (p, t) =ω.

(ii) Follows from the fact that an ω is introduced in the graph only by an ω-increasing pro-
duction. ¤

2Partition Q̂ refines partition Q iff for all q it holds Q̂[q] ⊆Q[q], where Q[q] denotes the class that contains
q .

11.1. COVERABILITY GRAPH AND PROPERTIES 145

This means that along any path of a CG the nodes that one encounters are ordered with
respect to (wrt) ¹. Moreover, the number ofω-components only increases when reaching an
ω-increasing marking from an ω-increasing sequence.

Example 11.11. Let us consider the graph in Figure 11.1.(c) whose node labeling is shown in
Figure 11.1.(d). It is easy to observe that q0 ≡ q1 because both of them contain no ω- com-
ponent. We can also say that q1 ≺ q2, in fact q1 contains no ω-component while q2 contains
one. In the same way we can say that q2 ≡ q3, q2 ≺ q4, q3 ≺ q5, q4 ≡ q5 and q4, q5 ≺ q6. ¥

We can finally state the procedure to partition an unlabeled CG in equivalence classes. In
the following algorithm we will say that given two subsets of nodes Q̂i and Q̂ j (with i 6= j)
the following predicate holds:

• c(i , j): if there exist two nodes q ′ ∈ Q̂i and q ′′ ∈ Q̂ j such that δ(q ′, t) = q ′′ for some
transition t ∈ T and it does not exist anω-increasing production π ∈Π such that l (π) =
q ′ and e(π) = q ′′.

Algorithm 11.12. Partition of an unlabeled coverability tree

1. Consider an initial partition of the graph in strongly connected components,

Q̂0 ∪Q̂1 ∪·· ·∪Q̂k

where Q̂0 is the component containing the initial node q0 and k + 1 is the number of
such components.

2. While there exist Q̂i and Q̂ j such that c(i , j) do merge Q̂i and Q̂ j .

3. The final partition is
Q̂0 ∪Q̂1 ∪·· ·∪Q̂r , r ≤ k.

¥

Example 11.13. Consider the graph in Figure 11.1.(d). The initial partition is Q̂0 = {q0}, Q̂1 =
{q1}, Q̂2 = {q2, q3}, Q̂3 = {q4}, Q̂4 = {q5} and Q̂5 = {q6}.

At step 2 of Algorithm 11.12 we merge Q̂0 with Q̂1 and we also merge Q̂3 with Q̂4. The
resulting final partition is Q̂0 = {q0, q1},Q̂1 = {q2, q3},Q̂2 = {q4, q5},Q̂3 = {q6} that coincides
with the partition Q in equivalence classes discussed in Example 11.9. ¥

In the previous example the algorithm determines the exact partition Q in equivalence classes.
In general the following result holds.

Proposition 11.14. The partition Q̂ determined by Algorithm 11.12 is a refinement of the
partition Q in equivalence classes for the ≡ relation.

Proof. We first note that the initial partition refines Q. In fact, according to Proposition 11.10.i
if two nodes qk and q j belong to the same strongly connected component, then qk ¹ q j and
q j ¹ qk , hence qk ≡ q j .

146 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

p2

2

2

t4

t3

t2

t1

p3

p2

p1

(a)

p4

t4

t3

t2

t1

p3

p1

(b)

t3 t4

t3
[0 0 1] [0 1 0]

t4

t2

[0 0 ω] [0 ω 0]

[1 0 0]
t1

(c)

t4

t3 t4

t3
[0 0 1 0] [0 1 0 0]

t2

[0 0 1 ω] [0 1 0 ω]

[1 0 0 0]
t1

(d)

q0

 t3

(e)

q3

q4
 t4

t3
 q1
 t4

t2 t1

q2

Figure 11.4: Nets in Example 11.15.

Secondly, we observe that the classes that are merged at step 2 of the algorithm belong
to the same equivalence class being joined by a transition that is not the terminal path of
an ω-increasing production, hence no component is changed to ω according to Proposi-
tion 11.10.ii.

¤

Example 11.15. Let us consider the nets in Figures 11.4.(a) and (b). The CG of these nets
are given in (c) and (d), respectively, while the unlabeled graph is reported in (e) and is the
same in the two cases. In the case of the net in Figure 11.4.(a) the equivalence classes are:
Q0 = {q0, q1, q2}, Q1 = {q3}, Q2 = {q4}, while in the case of the net in Figure 11.4.(b) the
equivalence classes are: Q0 = {q0, q1, q2}, Q1 = {q3, q4}.

Thus in this case we cannot exactly reconstruct the equivalence classes by simply looking at
the unlabeled graph. In particular, our algorithm always finds the final partition of the CG of
the net in Figure 11.4.(a), that is a refinement of the CG of the net in Figure 11.4.(b). ¥

We finally introduce the notion of ω-stationary sequence.

Definition 11.16. A sequence σ is ω-stationary wrt a subset of places P ′ ⊆ P if x = C ·π(σ) is
such that x(p) = 0, for all p ∈ P ′. ¥

In simple words, a sequence σ is ω-stationary with respect to P ′ ⊆ P if its firing does not
produce a variation in the marking in places P ′.

Proposition 11.17. In a CG G of a Petri net, a production π with s(π) = q corresponds to a
sequence ω-stationary wrt Ω(q) iff e(π) = q .

Proof. Follows from the previous definition, because a sequence σ is ω-stationary wrt Ω(q)
if and only if it does not modify the token content of places that are not associated to ω

components, i.e., if and only if e(π) = q . ¤

11.2. SYNTHESIS OF A PN SYSTEM FROM ITS UNLABELED COVERABILITY GRAPH 147

A production π such that σ = `(π) is a stationary sequence, is an ω-stationary production.
However, there may also existω-stationary productions that do not correspond to stationary
sequences.

Example 11.18. Let us consider the net in Figure 11.1. Here σ = t3 is an ω-stationary se-
quence wrt Ω(q4) =Ω(q5) = {p2, p3} and wrt Ω(q6) = {p1, p2, p3}. The firing of t3 from any of
these nodes corresponds to a cycle. ¥

11.2 Synthesis of a PN system from its unlabeled
coverability graph

Problem 11.19. Let G = (Q,T,δ, q0) be a given finite state automaton. Choosing a set of
places P of cardinality m, we want to identify the structure of a free-labeled Petri net N =
(P,T,Pr e,Post) and an initial marking M0 such that assumption A1 is satisfied and the CG of
〈N , M0〉 is isomorphic to G .

The unknowns we want to determine are the elements of the two matrices Pr e, Post ∈Nm×n

and the elements of the vector M0 ∈Nm . ¥

In this section we provide a set of linear algebraic constraints and we prove that a net system
〈N , M0〉 satisfying assumption A1 is a solution of Problem 11.19 if and only if it satisfies the
given set of constraints. The proof will be a sketch, in the sense that we explain the meaning
of each type of constraints.

In the previous section we have characterized the information on the net that can be ex-
tracted from the CG in terms of its language and ofω-increasing andω-stationary sequences.
However, to ensure that the synthesized net has a CG isomorphic to the given one, it is also
necessary to impose two additional types of constraints.

The first type of constraints requires that if in the graph two sequencesσk andσ′
k lead to the

same node qk , then for all places p 6∈Ω(qk) it should hold

M0(p)+C (p, ·) · yk = M0(p)+C (p, ·) · y ′
k , (11.2)

where yk =π(σk) and y ′
k =π(σ′

k).

To do this we introduce the following definition.

Definition 11.20. Given a node qk ∈ Q we denote πk a minimal3 production starting from
q0 and ending in qk . We also denote σk = `(πk) the associated sequence and yk the corre-
sponding firing vector, that will be used to represent the marking Mk = M0+C ·yk associated
to node qk . ¥

Sequence σk will be used to identify node qk while other sequences σ′
k yielding the same

marking will have to satisfy (11.2).
3By minimal we mean that the production does not contain twice the same node. More than one such

production may exist: we arbitrarily choose one.

148 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

t1, t2

[0]

[1]

(b) (a)

p1

t2

t1

[1 0]

[0 0] [0 1]

t1 t2

(e)

(d)

p1

t2

t1 t1 t2

(f)

q0

q1 q2

t1, t2

(c)

q1

q0

Figure 11.5: The resulting net in Example 11.22.

The second condition is the dual of the previous one. Assume that the graph contains two
nodes qk and q j that are equivalent in the sense that all productions that start from them
cannot be distinguished neither in terms of language nor in terms of ω-increasing nor of ω-
stationary sequences. To make sure that in the graph of the synthesized net these two nodes
are not collapsed into a single one, we need to specify that either the two nodes belong to
two different classes, i.e.,Ω(qk) 6=Ω(q j), or they differ for at least a component different from
ω, i.e., there exists p 6∈Ω(qk)∪Ω(q j) such that

M0(p)+C (p, ·) · yk 6= M0(p)+C (p, ·) · y j . (11.3)

The nodes that must be distinguished are the nodes that satisfy the following notion of
bisimilarity.

Definition 11.21. Given a finite state automaton G = (Q,T,δ, q0). Let q, q ′ ∈Q. We say that
q is simulated by q ′ if the following conditions hold.

• (Language equivalence.) δ(q,σ) is defined ⇒ δ(q ′,σ) is defined, for any σ ∈ T ∗.

• (ω-increasing equivalence.) If π1 is a production and π2 is an ω-increasing produc-
tion such that s(π1) = q and e(π1) = s(π2) ⇒ there exists a production π′

1 and an ω-
increasing production π′

2 such that s(π′
1) = q ′, e(π′

1) = s(π′
2), `(π1) = `(π′

1) and `(π2) =
`(π′

2) (where s(π),e(π) and l (π) are defined in Definition 11.2).

• (ω-stationary equivalence.) If π1 is a production and π2 is an ω-stationary produc-
tion such that s(π1) = q and e(π1) = s(π2) ⇒ there exists a production π′

1 and an ω-
stationary production π′

2 such that s(π′
1) = q ′, e(π′

1) = s(π′
2), `(π1) = `(π′

1) and `(π2) =
`(π′

2) (where s(π),e(π) and l (π) are defined in Definition 11.2).

We say that q, q ′ ∈Q are bisimilar if q is simulated by q ′ and q ′ is simulated by q . ¥

Example 11.22. Let us consider the net system in Figure 11.5.(d) whose CG is shown in (e),
while the unlabeled graph is reported in (f). It is immediate to verify that nodes q1 and q2

are bisimilar. ¥

11.2. SYNTHESIS OF A PN SYSTEM FROM ITS UNLABELED COVERABILITY GRAPH 149

We finally introduce the notation to describe enabling and disabling of transitions.

• E = {(q, t) ∈Q ×T | δ(q, t) is defined} is the set of couples (state q – transition t) such
that t is enabled at the state q of G .

• D = {(q, t) ∈ Q ×T | δ(q, t) is not defined} is the set of couples (state q – transition t)
such that t is not enabled at the state q of G .

The following theorem characterizes the set of solutions to Problem 11.19.

Theorem 11.23. A net system 〈N , M0〉 is a solution of the identification problem 11.19 if and
only if it satisfies the following linear algebraic constraints.

(a) Enabling constraints: ∀ (qk , t j) ∈ E let

M0 +C · yk +K ·~sc(k) ≥ Pr e ·~t j

where yk is chosen as in Definition 11.20 and K is a very large constant (K must be larger
than the maximum expected weight of pre and post arcs).

(b) Constraints related to ω-increasing sequences: ∀ qk ∈O and ∀ π ∈Πk let




C · y −~sc(k) +K ·~sc(i) ≥~0 (b1)
−C · y +K ·~sc(k) ≥~0 (b2)
~sc(k) ≥~sc(i) (b3)
~1T ·~sc(k) >~1T ·~sc(i) (b4)

where y is the firing vector associated to the generic production π and qi = l (π).

(c) Constraints related to ω-stationary sequences: ∀i = 0,1, . . . ,r and ∀y ∈ Si ={y ∈ Nn |
∃π : ν(π) ⊆ Q̂i , s(π) = e(π),`(π) = σ}, where Si is the set of firing vectors corresponding
to cycles in component Q̂i , let

{
C · y +K ·~si ≥~0 (c1)
−C · y +K ·~si ≥~0 (c2)

(d) Blocking constraints: ∀ (qk , t j) ∈D let





M0 +C · yk −K ·~sk, j < Pr e ·~t j (d1)
~1T ·~sk, j ≤ m −1 (d2)
~sk, j ≥~sc(k) (d3)

(e) Equivalence constraints: Assume that the minimal production reaching qk , as in Def-

inition 11.20, is πk = q0 −→ ·· · −→ qr (k)
tr (k)−→ qk . Then we define I (qk) = {(q, t) | q

t−→
qk ∧ (q, t) 6= (qr (k), tr (k))}. In other words I (qk) is the set of couples (state q - transi-
tion t) that lead to qk except the couple (qr (k), tr (k)) that has already been considered in
constraints (a).

∀(qi , t) ∈I (qk) let

150 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

{
C · yk −C · y +K ·~sc(k) ≥~0 (e1)
−C · yk +C · y +K ·~sc(k) ≥~0 (e2)

where σ=σi t , and σi is the sequence associated to node qi , as in Definition 11.20.

(f) Discriminating constraints: for all bisimilar nodes qk , q j that belong to the same equiv-
alence class Q̂i , let 




C · yk −C · y j +K ·~l j ,k ≥~1 (f 1)
C · yk −C · y j −K ·~lk, j ≤−~1 (f 2)
~1T ·

(
~l j ,k +~lk, j

)
≤ 2m −1 (f 3)

~l j ,k , ~lk, j ≥~si (f 4)
~lk, j , ~l j ,k ∈ {0,1}m (f 5)

(g) Discriminating constraints: for all bisimilar nodes qk , q j that belong to equivalence
classes among which an ordering does not exist, let





~sc(k) −~sc(j) +K ·~v j ,k +K · z1 ·~1 ≥~1 (g 1)
~sc(k) −~sc(j) −K ·~vk, j +K · z1 ·~1 ≤−~1 (g 2)
C · yk −C · y j +K ·~l j ,k +K · z2 ·~1 ≥~1 (g 3)
C · yk −C · y j −K ·~lk, j −K · z2 ·~1 ≤−~1 (g 4)
~1T · (~v j ,k +~vk, j

)≤ 2m −1 (g 5)
~1T ·

(
~l j ,k +~lk, j

)
≤ 2m −1 (g 6)

~l j ,k , ~lk, j ≥~sc(k) (g 7)
~l j ,k , ~lk, j ≥~sc(j) (g 8)
~lk, j , ~l j ,k ,~vk, j , ~v j ,k ∈ {0,1}m (g 9)
z1 + z2 ≤ 1 (g 10)
z1, z2 ∈ {0,1} (g 11)

(h) Integrity constraints.




M0 ∈Nm (h1)
C = Post −Pr e (h2)
Pr e,Post ∈Nm×n (h3)
~si ∈ {0,1}m , ∀ Q̂i (h4)
~sk, j ∈ {0,1}m , ∀ (qk , t j) ∈D (h5)

In the following we denote as C (G ,P) the set of constraints (a) to (h) associated to the unla-
beled graph G and to the set of places P.

Proof.

The proof consists in a detailed explanation of all constraints.

• Constraints (a). To each equivalence class Q̂i we associate a vector~si ∈ {0,1}m such that
si (p) = 1 ⇔ ∀ q ∈ Q̂i , p ∈Ω(q).

If (qk , t j) ∈ E , then the marking Mk = M0 +C · yk is such that Mk (p) ≥ Pr e(p, t) for all p such
that sc(k)(p) = 0. On the contrary, if sc(k)(p) = 1 regardless of the value of Mk (p), t j is enabled.

11.2. SYNTHESIS OF A PN SYSTEM FROM ITS UNLABELED COVERABILITY GRAPH 151

• Constraints (b). Let qk be any node in O , π a production in Πk , and qi = l (π).

We first observe that if there exists a place p ∈Ω(qi), then by Proposition 11.4 p ∈Ω(q) for
any q ∈ Q̂c(k). Thus,~sc(i) ≥~sc(k).

Therefore, if sc(i)(p) = 1 then sc(k)(p) = 1, and constraints (b1) and (b2) are trivially verified.

If sc(i)(p) = 0 it may either be sc(k)(p) = 0 or sc(k)(p) = 1. In the first case the firing of the
sequence associated toπdoes not increase the token contents of p as imposed by constraints
(b1) and (b2). In the second case, it must hold C (p, ·) · y > 0 that is equivalent to impose
constraint (b1), while (b2) is trivially verified.

• Constraints (c). Let π be a production whose characteristic vector is in Si , namely a pro-
duction relative to an ω-stationary sequence for Q̂i .

By definition π should not change the content of all places p ∉ Ω(q) for any q ∈ Q̂i , while
no constraint should be imposed on the other places p ∈Ω(q). This is actually the meaning
of constraints (c). In fact, if si (p) = 0, then C (p, ·) · y = 0; if si (p) = 1, then constraints (c) are
trivially verified.

• Constraints (d). If transition t j is not enabled at Mk = M0+C · yk , then for at least one place
p it must hold Mk (p) < Pr e ·~t j .

We now define a vector~sk, j ∈ {0,1}m such that sk, j (p) = 0 ⇔ Mk (p) < Pr e ·~t j .

Assume that each component of Mk is less than or equal to K . Then the component of~sk, j

relative to the generic place p must satisfy the equation

Mk (p)−K · sk, j (p) < Pr e ·~t j , (11.4)

so that if sk, j (p) = 0 it must hold Mk (p) < Pr e ·~t j , while if sk, j (p) = 1, equation (11.4) is
trivially verified. In vector form (and taking into account that all variables are integers) this
equation rewrites as (d1).

Note that there exists at least one place that disables t j if~1T ·~sk, j ≤ m −1 so that at least one
sk, j (p) is null.

Finally, the constraint~sk, j ≥~sc(k) imposes that, if sc(k)(p) = 1 then sk, j (p) = 1. That is to say,
t j cannot be disabled by a place p ∈Ω(qk).

• Constraints (e). Assume that there exists a production π that, as πk , reaches node qk from

q0. Assume also that π = q0 −→ . . . −→ qi
t−→ qk with (qi , t) ∈ I (qk). Then for all places

p ∉Ω(qk) it should be C (p, ·) · yk = C (p, ·) · y , while for the other places no relationship can
be deduced from the CG. This is exactly the meaning of constraints (e1) and (e2). In fact,
if sc(k)(p) = 0, then C (p, ·) · yk = C (p, ·) · y ; otherwise we get two constraints that are trivially
verified.

• Constraints (f). Let qk and q j be two nodes that are bisimilar and that belong to the same
equivalence class Q̂i . To distinguish between these nodes we impose that there exists at least
one place p, to which it does not correspond ω in Q̂i , such that C (p, ·) · yk 6=C (p, ·) · y j .

We define two vectors~lk, j , ~l j ,k ∈ {0,1}m such that~lk, j , ~l j ,k ≥~si .

152 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

If l j ,k (p) = lk, j (p) = 1 constraints (f1) and (f2) are trivially verified, and this occurs for all

places p ∈Ω(qk) =Ω(q j) being~l j ,k , ~lk, j ≥~si . If l j ,k (p) = 1 and lk, j (p) = 0 then C (p, ·) · yk ≤
C (p, ·) · y j −1. If lk, j (p) = 1 and l j ,k (p) = 0 then C (p, ·) · yk ≥C (p, ·) · y j +1.

Note that one of the above two cases always occur being by (f3),~1T ·
(
~l j ,k +~lk, j

)
≤ 2m −1.

• Constraints (g). Let qk and q j be two nodes that are bisimilar and that belong to equiva-
lence classes among which an ordering does not exist. To distinguish between these nodes
we impose that at least one of the following conditions hold: (I) qk and q j differ in a place
not containing ω, (II) Ω(qk) 6=Ω(q j), i.e.,~sc(k) 6=~sc(j).

Now, being z1 + z2 ≤ 1, with z1, z2 ∈ {0,1}, three different cases may occur: z1 = 1 and z2 = 0,
z1 = 0 and z2 = 1, z1 = z2 = 0.

— Assume that z1 = 1 and z2 = 0. In such a case constraints (g1) and (g2) are trivially ver-
ified, and the only significant constraints are (g3), (g4), (g6) to (g8) that are analogous to
constraints (f): they impose that qk and q j differ in a place not containingω (case (I) above).

— Assume that z1 = 0 and z2 = 1. In such a case constraints (g3) and (g4) are trivially verified,
and the only significant constraints are (g1), (g2) and (g5). Using the same reasoning as
above, it is easy to verify that these constraints impose that sc(k)(p) 6= sc(j)(p) for at least one
place p ∈ P (case (II) above).

— Assume that z1 = z2 = 0. In such a case no constraint in (g) is trivial, thus qk and q j have
ω in different places, and they also differ in some place not containingω. ¤

In general the solution of C (G ,P) is not unique, thus there exists more than one Petri net
system whose CG is isomorphic to G . To select one among these Petri net systems we choose
a given performance index and solving an appropriate IPP we determine a Petri net system
that minimizes the considered performance index4. In particular, if f (M0,Pr e,Post) is the
considered performance index, an identification problem can be formally stated as follows.

Problem 11.24. Let us consider the identification problem 11.19 and let f (M0,Pr e,Post) be
a given performance index. The solution to the identification problem 11.19 that minimizes
f (M0,Pr e, Post) can be computed by solving the following IPP

{
min f (M0,Pr e,Post)
s.t. C (G ,P).

(11.5)

¥

Of particular interest are those objective functions that are linear in the unknowns, so that
the problem to solve is a linear integer programming problem. As an example of a linear
objective function, assume we want to determine a Petri net system that minimizes the
weighted sum of the tokens in the initial marking and of the arc weights. The general case is:

f (M0,Pr e,Post) =
m∑

i=1

(
ai ·M0(pi)+

(
n∑

j=1
bi , j ·Pr e(pi , t j)+ci , j ·Post (pi , t j)

))
, (11.6)

4Clearly, also in this case the solution may be not unique.

11.2. SYNTHESIS OF A PN SYSTEM FROM ITS UNLABELED COVERABILITY GRAPH 153

where ai ,bi , j and ci , j are given coefficients.

A typical choice, that we follow in the rest of the paper, is that of choosing all coefficients
equal to 1. In this case (11.6) can be rewritten:

f (M0,Pr e,Post) =~1T ·M0 +~1T · (Pr e +Post) ·~1.

Example 11.25. Let us consider the unlabeled graph G in Figure 11.1.(d). We want to deter-
mine a net system 〈N , M0〉 with N = (P,T,Pr e,Post) and m = 3 satisfying assumption A1 and
whose reachability graph is isomorphic to G . In particular, we want to minimize the tokens
in the initial marking and the arc weights.

The set of ω-increasing nodes is O = {q2, q3, q4, q5, q6}. The set of ω-increasing productions
that ends in q2 is Π2 = {π2}, with `(π2) = t1t2. Then Π4 = {π′

4,π′′
4}, with `(π′

4) = t3 and `(π′′
4) =

t4; Π5 = {π′
5,π′′

5}, with `(π′
5) = t3 and `(π′′

5) = t4; Π6 = {π6} with `(π6) = t2.

We only haveω-stationary productions associated to the equivalence class Q3 = {q6} and the
set of firing vectors is S6 = {y ′

6, y ′′
6 , y ′′′

6 } where σ′
6 = t1,σ′′

6 = t3,σ′′′
6 = t4. Then,

E = { (q0, t1), (q1, t2), (q2, t1), (q2, t3), (q2, t4), (q3, t2), (q3, t3), (q3, t4), (q4, t1), (q4, t2),
(q4, t3), (q4, t4), (q5, t2), (q5, t3), (q5, t4), (q6, t1), (q6, t2), (q6, t3), (q6, t4) }

D = { (q0, t2), (q0, t3), (q0, t4), (q1, t1), (q1, t3), (q1, t4), (q2, t2), (q3, t1), (q5, t1) }.

Moreover, the set of firing vectors associated to minimal sequences that enable to reach the
different nodes of the graph are:

Σ1 = {~t1}, Σ2 = {~t1 +~t2}, Σ3 = {2~t1 +~t2},
Σ4 = {~t1 +~t2 +~t3, ~t1 +~t2 +~t4},
Σ5 = {2~t1 +~t2 +~t3, 2~t1 +~t2 +~t4},
Σ6 = {~t1 +2~t2 +~t3, ~t1 +2~t2 +~t4}.

Finally we observe that there are no bisimilar nodes, thus we have no constraints of the form
(f) and (g).

Let us show now the set of constraints C (G ,P).

Let us preliminary observe that being

Q̂0 = {q0, q1},Q̂1 = {q2, q3},Q̂2 = {q4, q5},Q̂3 = {q6},

it holds~sc(0) =~sc(1) =~0, and

~sc(2) =~sc(3) =~s1, ~sc(4) =~sc(5) =~s2, ~sc(6) =~s3.

(a) Enabling constraints

154 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS





(q0, t1), q0 ∉O : M0 ≥ Pr e ·~t1

(q1, t2), q1 ∉O : M0 +C ·~t1 ≥ Pr e ·~t2

(q2, t1), q2 ∈O : M0 +C · (~t1 +~t2)+K ·~s1 ≥ Pr e ·~t1

(q2, t4) : M0 +C · (~t1 +~t2)+K ·~s1 ≥ Pr e ·~t4

(q2, t3) : M0 +C · (~t1 +~t2)+K ·~s1 ≥ Pr e ·~t3

(q3, t2), q3 ∈O : M0 +C · (2~t1 +~t2)+K ·~s1 ≥ Pr e ·~t2

(q3, t3) : M0 +C · (2~t1 +~t2)+K ·~s1 ≥ Pr e ·~t3

(q3, t4) : M0 +C · (2~t1 +~t2)+K ·~s1 ≥ Pr e ·~t4

(q4, t1), q4 ∈O : M0 +C · (~t1 +~t2 +~t3)+K ·~s2 ≥ Pr e ·~t1

(q4, t2) : M0 +C · (~t1 +~t2 +~t3)+K ·~s2 ≥ Pr e ·~t2

(q5, t2), q5 ∈O : M0 +C · (2~t1 +~t2 +~t3)+K ·~s2 ≥ Pr e ·~t2

(q6, t1), q6 ∈O : M0 +C · (~t1 +2~t2 +~t3)+K ·~s3 ≥ Pr e ·~t1

(q6, t3) : M0 +C · (~t1 +2~t2 +~t3)+K ·~s3 ≥ Pr e ·~t3

(q6, t4) : M0 +C · (~t1 +2~t2 +~t3)+K ·~s3 ≥ Pr e ·~t4

(b) Constraints related toω-increasing sequences





q2 ∈O , π= t1t2 : C · (~t1 +~t2)−~s1 ≥~0
−C · (~t1 +~t2)+K ·~s1 ≥~0
~1 ·~s1 > 0

q4 ∈O , π1 = t3, π2 = t4 : C ·~t3 −~s2 +K ·~s1 ≥~0
−C ·~t3 +K ·~s2 ≥~0
C ·~t4 −~s2 +K ·~s1 ≥~0
−C ·~t4 +K ·~s2 ≥~0
~s2 ≥~s1
~1 ·~s2 >~1 ·~s1

q5 ∈O , π1 = t3, π2 = t4 : C ·~t3 −~s2 +K ·~s1 ≥~0
−C ·~t3 +K ·~s2 ≥~0
C ·~t4 −~s2 +K ·~s1 ≥~0
−C ·~t4 +K ·~s2 ≥~0
~s2 ≥~s1
~1 ·~s2 >~1 ·~s1

q6 ∈O , π= t2 : C ·~t2 −~s3 +K ·~s2 ≥~0
C ·~t2 −~s3 +K ·~s2 ≥~0
−C ·~t2 +K ·~s3 ≥~0
~s3 ≥~s2

~s3 ≥~s2
~1T ·~s3 >~1T ·~s2
~1T ·~s3 >~1T ·~s2

(c) Constraints related toω-stationary sequences

11.2. SYNTHESIS OF A PN SYSTEM FROM ITS UNLABELED COVERABILITY GRAPH 155





i = 3, σ′ = t1 : C ·~t1 +K~s3 ≥~0
−C ·~t1 +K~s3 ≥~0

σ′′ = t3 : C ·~t3 +K~s3 ≥~0
−C ·~t3 +K~s3 ≥~0

σ′′′ = t4 : C ·~t4 +K~s3 ≥~0
−C ·~t4 +K~s3 ≥~0

(d) Blocking constraints





(q0, t2) : M0 −K ·~s0,2 < Pr e ·~t2
~1T ·~s0,2 ≤ 2

(q0, t3) : M0 −K ·~s0,3 < Pr e ·~t3
~1T ·~s0,3 ≤ 2

(q0, t4) : M0 −K ·~s0,4 < Pr e ·~t4
~1T ·~s0,4 ≤ 2

(q1, t1) : M0 +C ·~t1 −K ·~s1,1 < Pr e ·~t1
~1T ·~s1,1 ≤ 2

(q1, t3) : M0 +C ·~t1 −K ·~s1,3 < Pr e ·~t3
~1T ·~s1,3 ≤ 2

(q1, t4) : M0 +C ·~t1 −K ·~s1,4 < Pr e ·~t4
~1T ·~s1,4 ≤ 2

(q2, t2) : M0 +C · (~t1 +~t2)−K ·~s2,2 < Pr e ·~t2
~1T ·~s2,2 ≤ 2
~s2,2 ≥~s1

(q3, t1) : M0 +C · (2~t1 +~t2)−K ·~s3,1 < Pr e ·~t3
~1T ·~s3,1 ≤ 2
~s3,1 ≥~s1

(q5, t1) : M0 +C · (2~t1 +~t2 +~t3)−K ·~s5,1 < Pr e ·~t1
~1T ·~s5,1 ≤ 2
~s5,1 ≥~s2

(e) Equivalence constraints





~σ4 =~t1 +~t2 +~t3, ~σ=~t1 +~t2 +~t4 : C ·~σ4 −C ·~σ+K ·~s2 ≥~0
−C ·~σ4 +C ·~σ+K ·~s2 ≥~0

~σ5 = 2~t1 +~t2 +~t3, ~σ= 2~t1 +~t2 +~t4 : C ·~σ5 −C ·~σ+K ·~s2 ≥~0
−C ·~σ5 +C ·~σ+K ·~s2 ≥~0

~σ6 =~t1 +2~t2 +~t3, ~σ=~t1 +2~t2 +~t4 : C ·~σ6 −C ·~σ+K ·~s3 ≥~0
−C ·~σ6 +C ·~σ+K ·~s3 ≥~0

~σ= 2~t1 +2~t2 +~t3 : C ·~σ6 −C ·~σ+K ·~s3 ≥~0
−C ·~σ6 +C ·~σ+K ·~s3 ≥~0

~σ= 2~t1 +2~t2 +~t4 : C ·~σ6 −C ·~σ+K ·~s3 ≥~0
−C ·~σ6 +C ·~σ+K ·~s3 ≥~0

(f-g) Discriminating constraints

156 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

There are no bisimilar nodes.

(h) Integrity constraints





M0 ∈N3

C = Post −Pr e
Pr e, Post ∈Nm×n

~s1, ~s2, ~s3 ∈ {0,1}m

~s0,2, ~s0,3, ~s0,4, ~s1,1, ~s1,3, ~s1,4, ~s2,2, ~s3,1, ~s5,1 ∈ {0,1}m×n

The file LINDO representing the set of constraints here reported and that we used to solve
the resulting IPP can be found at [50].

We identify the net system in Figure 11.1.(a) characterized by:

M0 = [1 0 0]T , Pr e =



1 0 0 0
0 1 0 0
0 0 1 1


 , Post =




0 1 0 0
1 0 1 1
0 1 0 0


 .

¥

The necessity of introducing constraints (f) and (g) will be shown in the following example.

Example 11.26. Let us consider the net systems in Figures 11.5.(a) and (d). The CG are shown
in Figures 11.5.(b) and (e), respectively, while the unlabeled graphs are reported in (c) and
(f). As already discussed in Example 11.22, nodes q1 and q2 in Figure 11.5.(f) are bisimilar.

Now, assume that our goal is that of synthesizing a net system satisfying assumption A1,
whose unlabeled graph is isomorphic to that in Figure 11.5.(f) and that minimizes the sum
of the tokens in the initial marking and the arc weights.

If the discriminating constraints are not taken into account we obtain the net system in Fig-
ure 11.5.(a) whose unlabeled graph is not isomorphic to the initial one, because nodes q1

and q2 collapse in a unique node. ¥

A final remark should be done. Here we assumed that the number of places m is given.
Clearly, if such is not the case, we should solve an IPP of the form (11.5) for increasing values
of m, until a feasible solution is obtained. An alternative approach consists in rewriting the
IPP (11.5) as suggested in Chapter 10, thus guaranteeing the optimality of the solution both
in terms of minimum number of places and in terms of the chosen performance index. Note
however that this results in a larger computational complexity.

11.3 Computational complexity of the proposed pro-
cedure

In this section we discuss the complexity of the IPP we must solve to identify a net. This com-
plexity is given in terms of number of constraints and number of unknowns. Note however
that it is well known that an IPP is an NP-hard problem itself.

11.3. COMPUTATIONAL COMPLEXITY OF THE PROPOSED PROCEDURE 157

Let us consider:

• m, n the number of places P and of transitions T of the net, respectively;

• ng the number of nodes of the unlabeled graph;

• nqi the number of transitions enabled at state qi ;

• |Q̂| the number of estimated equivalence classes obtained using Algorithm 11.12;

• |Π| the number of ω-increasing sequences;

• |S | the number of ω-stationary sequences;

• |I (qk)| the cardinality of the set of couples (state q - transition t) that lead to qk ex-
cept the couple (qr (k), tr (k)) that has already been considered in constraints (a) (see
constraints (e) in Theorem 11.23);

• |Bi | the cardinality of the set of couples composed by all nodes that are bisimilar and
that belong to the same equivalence class Q̂i ;

• |Bn | the cardinality of the set of couples composed by all nodes that are bisimilar and
that belong to equivalence classes among which an ordering does not exist.

Then the total number of linear algebraic constraints in Theorem 11.23 is shown in the fol-
lowing formula, where for each term it is specified to which type of constraints it corre-
sponds:

c =

constr. (a)︷ ︸︸ ︷

m ·
ng−1∑
i=0

(nqi)+
constr. (b)︷ ︸︸ ︷

(3 ·m +1) · |Π|+
constr. (c)︷ ︸︸ ︷

2 ·m · |S |+

constr. (d)︷ ︸︸ ︷

(2 ·m +1) ·
ng−1∑
i=0

(n −nqi)

+2 ·m ·
ng−1∑
i=0

|I (qi)|
︸ ︷︷ ︸

constr. (e)

+ (3 ·m +1) ·
∑

i∈Q̂i

|Bi |
︸ ︷︷ ︸

constr. (f)

+ (6 ·m +3) · |Bn |︸ ︷︷ ︸
constr. (g)

.

The total number of unknowns is:

u = m +2 · (m ·n)+ (m · |Q̂|)+m ·
ng−1∑
i=0

(n −nqi)+2 ·m ·
∑

i∈Q̂i

|Bi |+ (2+4 ·m) · |Bn |,

where the right-side terms are due respectively to: the initial marking, the elements of the
two matrices Pre and Post, the number of equivalence classes, the binary variables ~sk, j in

constraints (d), the binary variables~l j ,k and~lk, j in constraints (f) and (g), the binary variables
z1, z2,~v j ,k and ~vk, j in constraints (g).

The worst case in terms of number of unknowns occurs when

158 CHAPTER 11. IDENTIFICATION OF UNBOUNDED PNS

• |Q̂| = ng ;

• nqi = 0 for all the nodes qi of the unlabeled graph.

Moreover, for sure |Bi | ≤ n2 for any equivalence class Q̂i , and |Bn | ≤ n2, thus

u ≤ m +2 · (m ·n)+ (m ·ng)+m ·ng ·n +2 ·m ·ng ·n2 + (2+4 ·m)n2

= O (m ·n2 ·ng),

i.e., it is linear with respect to m and ng and is quadratic with respect to n.

Chapter 12

Linear Programming Techniques for
the Identification of
Place/Transition Nets

Summary

In Chapter 10 we presented a procedure based on integer programming to identify a Petri
net, given a finite prefix of its language. In this chapter we show how to tackle the same
problem using linear programming techniques, thus significantly reducing the complexity
of finding a solution. The procedure we propose identifies a net whose number of places is
equal to the cardinality of the set of disabling constraints. We provide a criterion to check
if the computed solution has a minimal number of places, and, if such is not the case, we
discuss two approaches to reduce this number. At the end of the chapter there is a com-
parison between our identification procedure and theory of regions approach (presented in
Chapter 5).

159

160 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

In this chapter is presented an identification procedure that solves the problem of identify a
Petri net given a finite prefix of its language (the same problem solved in Chapter 10) using
linear programming techniques, thus reducing the computational complexity of finding a
solution. Let us start the chapter introducing some special constraint sets and some results
on these that will be useful in the rest of the chapter.

12.1 Special constraint sets

We define a special class of linear constraint sets (CS).

Definition 12.1. Given A ∈Rm×n and b ∈Rm , consider the linear constraint set:

C (A,b) = {x ∈Rn | Ax ≥ b}.

The set C (A,b) is called:

• ideal: if x ∈C (A,b) implies αx ∈C (A,b) for all α≥ 1;

• rational: if A ∈ Qm×n and b ∈ Qm , i.e., if the entries of matrix A and of vector b are
rational. ¥

The following result provides a simple characterization of ideal CS’s.

Proposition 12.2. A linear constraint set C (A,b) is ideal if b ≥ 0.

Proof. Since Ax ≥ b ≥ 0 then for all α≥ 1 it holds A(αx) ≥ Ax ≥ b, hence it is ideal. ¤

Proposition 12.3. If a CS is ideal and rational, then it has a feasible solution if and only if it
has a feasible integer solution.

Proof. The if part is trivial.

To prove the only if part, we reason as follows. If there exists a solution there exists a basis
solution xB , i.e., such that

xB = A−1
B b,

where AB is obtained by A selecting a set of basis columns.

If the CS is rational the entries of AB and b are rational, hence the entries of A−1
B and of xB

are rational as well.

If the CS is ideal, we just need to multiply the rational vector xB by a suitable positive integer
to obtain an integer solution. ¤

12.2. P/T NET IDENTIFICATION 161

12.2 P/T net identification

The problem we consider in this chapter can be formally stated as follows.

Problem 12.4. Let L ⊂ T ∗ be a finite prefix-closed language (see Appendix A), and

k ≥ max
σ∈L

|σ|

be an integer greater than or equal to the length of the longest string in L . We want to identify
the structure of a net N = (P,T,Pr e,Post) and an initial marking M0 such that

Lk (N , M0) =L .

The unknowns we want to determine are the elements of the two matrices Pr e, Post ∈Nm×n

and the elements of the vector M0 ∈Nm . ¥

Associated to an identification problem are the two sets defined in the following.

Definition 12.5. Let L ⊂ T ∗ be a finite prefix-closed language and let k ∈N be defined as in
Problem 12.4.

We define the set of enabling conditions

E = {(y, t) | (∃σ ∈L) : |σ| < k,σ ∈L (y),σt ∈L } ⊂Nn ×T (12.1)

and the set of disabling conditions

D = {(y, t) | (∃σ ∈L) : |σ| < k,σ ∈L (y),σt 6∈L } ⊂Nn ×T. (12.2)

¥

Clearly, a solution to Problem 12.4 is a net 〈N , M0〉 such that:

• for all (y, t) ∈ E transition t is enabled after the firing of all σ ∈L (y), i.e., M0[σ〉My [t〉,
where My = M0 +C · y represents the marking reached after the firing of sequence σ.

• for all (y, t) ∈D transition t is disabled after the firing of σ ∈L (y), i.e., M0[σ〉My¬[t〉.

We can characterize the number of places required to solve our identification problem.

Definition 12.6. Let L be a finite prefix-closed language on alphabet T , whose words have
length less than or equal to k. Given the set of disabling conditions (12.2) let mD = |D|.
We say that a Petri net system 〈N , M0〉 with set of places P and Lk (N , M0) =L , is D-canonical
if

1. |P| = mD ;

162 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

2. there exists a bijective mapping h : D → P such that, for all (y, t) ∈ D, place p = h(y, t)
satisfies

My (p) , M0(p)+C (p, ·) · y < Pr e(p, t),

i.e., place p disables t after any σ ∈L (y). ¥

In simple words, a net system 〈N , M0〉 is D-canonical if a different place is associated to each
element in the set of disabling constraints D.

Proposition 12.7. Let L be a finite prefix-closed language on alphabet T , whose words have
length less than or equal to k.

If there exists a net system 〈Ñ , M̃0〉 such that Lk (Ñ , M̃0) = L , then there exists a net system
〈N , M0〉 that is D-canonical.

Proof. Let
P(y,t) = {p ∈ P̃ | M̃0(p)+ C̃ (p, ·) · y < ˜Pr e(p, t)}

be the set of all places of Ñ that disable transition t after sequence σ ∈ L (y) has occurred
(here C̃ is the incidence matrix of Ñ). For each pair (y, t) ∈D let h(y, t) be one place arbitrary
selected from P(y,t); let P be the set of selected places and m = |P|.
Two different cases may occur.

Case 1: m = mD , i.e., a different place has been selected from any set P(y,t). In such a case
we define N as the net obtained from Ñ removing all places not in P (if any), and assume
M0 as the restriction of M̃0 to places in P . We claim that Lk (N , M0) = L . In fact, since we
have removed some places from 〈Ñ , M̃0〉 then L(Ñ , M̃0) ⊆ L(N , M0). On the other hand, by
construction we know that for all words w t of length less than or equal to k it holds

w t 6∈ L(Ñ , M̃0) =⇒ w t 6∈ L(N , M0),

hence Lk (N , M0) = Lk (Ñ , M̃0) =L .

By construction, a different place in P is associated to any couple (y, t) ∈D, thus proving that
〈N , M0〉 is D-canonical.

Case 2: m < mD , i.e., some place p ∈ P has been selected from P(y,t),P(y ′,t ′),P(y ′′,t ′′), . . ., for
two or more different pairs (y, t), (y ′, t ′), (y ′′, t ′′), . . . in D. In such a case we add to the net —
without changing its language — additional places p ′, p ′′ . . . such that Pr e(p, ·) = Pr e(p ′, ·) =
Pr e(p ′′, ·) = ·· · , Post (p, ·) = Post (p ′, ·) = Post (p ′′, ·) = ·· · , and M0(p) = M0(p ′) = M0(p ′′) = ·· · ,
thus obtaining a net with mD places.

We redefine h(y ′, t ′) = p ′, h(y ′′, t ′′) = p ′′, Function h is now bijective and the resulting net
system is D-canonical. ¤

Theorem 12.8. Let us consider a finite prefix-closed language on alphabet T , whose words
have length less than or equal to k and let E and D be the corresponding sets of enabling and
disabling conditions.

12.2. P/T NET IDENTIFICATION 163

Let

N (E ,D) ,





M0 +Post · y
−Pr e · (y +~t) ≥ 0 ∀(y, t) ∈ E

M0(p(y,t))+Post (p(y,t), ·) · y
−Pr e(p(y,t), ·) · (y +~t) ≤−1 ∀(y, t) ∈D

M0 ∈RmD

≥0
Pr e,Post ∈RmD×n

≥0

(12.3)

Consider a net system 〈N , M0〉 with N = (P,T,Pr e, Post). The system 〈N , M0〉 is a D-canonical
solution of the identification problem 12.4 iff Pr e, Post , M0 are integer solutions of CS (12.3).

Proof. We first show that any integer solution 〈N , M0〉 of CS (12.3) is a solution of Prob-
lem 12.4.

• Any constraint M0 +Post · y −Pr e · (y +~t) ≥ 0 can be rewritten as My = M0 + (Post −
Pr e) · y ≥ Pr e(·, t) or equivalently My ≥ Pr e(·, t) where M0[σ〉My for all σ ∈L (y). This
shows that transition t is enabled on 〈N , M0〉 from marking My and by induction on
the length of σ (since language L is prefix-closed) we conclude that σt ∈L .

• Assume that sequence σ ∈ L (y) is firable on the net and M0[σ〉My . If for at least a
place p in the net it holds M0(p)+Post (p, ·) · y −Pr e(p, ·) · (y +~t) ≤ −1, then My =
M0+(Post−Pr e)·y 6≥ Pr e(·, t) or equivalently My 6≥ Pr e(·, t). This shows that transition
t is not enabled on 〈N , M0〉 from marking My and we conclude that σt 6∈L .

Since net 〈N , M0〉 satisfies all enabling and disabling constraints, Lk (N , M0) =L .

We now show that any solution of CS (12.3) is D-canonical. In fact, the mapping h(y, t) =
p(y,t) for each couple (y, t) ∈D is bijective.

We now show that any D-canonical net system 〈N , M0〉 with Lk (N , M0) = L is a solution
of CS (12.3). In fact, let h : D → P be the bijective function of the net system. If we define
p(y,t) = h(y, t) for all (y, t) ∈D, then all equations in CS (12.3) are satisfied. ¤
Proposition 12.9. The linear CS (12.3) is ideal and rational.

Proof. We first observe that the linear CS (12.3) can be rewritten as a set of linear inequalities
of the form Ax ≥ b as follows. Let us denote as pr ei and posti the i -th row of matrices Pr e
and Post , respectively, for i = 1, . . . ,mD .

For any (y, t) ∈ E the first matrix inequality in (12.3) can be rewritten as the following set of
mD scalar inequalities:

[
1 yT −(y +~t)T] ·




M0,i

post T
i

pr eT
i


≥ 0

where i = 1, . . . ,mD . Analogously, for any (y, t) ∈D the second scalar inequality in (12.3) can
be rewritten as:

[−1 −yT (y +~t)T
] ·




M0,i

post T
i

pr eT
i


≥ 1.

164 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

This defines matrix A and vector b. Since A and b have integer entries, CS (12.3) is rational.
Since b ≥ 0, by Proposition 12.2 CS (12.3) is ideal. ¤

The following theorem provides a practical and efficient procedure to solve our identification
problem.

Theorem 12.10. The identification problem 12.4 admits a solution if and only if the (linear)
CS (12.3) is feasible.

Proof. (if) By Proposition 12.9 CS (12.3) is ideal and rational thus by Proposition 12.3 if it
has solutions, then it also has feasible integer solutions. However, by Theorem 12.8 this also
implies that such integer solutions are also solutions of the identification problem 12.4.

(only if) If there exists a solution of Problem 12.4, by Proposition 12.7 there also exists a
net system that is D-canonical. But all D-canonical systems are solutions of CS (12.3) by
Theorem 12.8, thus CS (12.3) is feasible. ¤

Note, finally, that once a solution of CS (12.3) is found, if this solution is rational we can
always find an integer solution by simply multiplying Pr e, Post and M0 by a suitable α≥ 1.

12.3 Place reduction

One drawback of the identification procedure outlined in the previous section consists in
the requirement that the net contains a number of places equal to mD = |D| although an
equivalent net with a smaller number of places may exist. Note that in the worst case the
cardinality of the set D can be |T |k [20].

We propose two (types of) approaches to overcome this problem. In the first approach, that
we call place pre-reduction, CS (12.3) is written in a modified form, using a reduced num-
ber of places. In the second approach, that we call place post-reduction, we first determine
a solution of the standard CS (12.3) obtaining a net with mD places and then we identify
redundant places that can be removed without affecting the correctness of the result.

12.3.1 Place pre-reduction

We start with a general result that allows one to check if the net obtained by solving CS (12.3)
has a minimal number of places. The test we propose requires solving a series of modified
CS’s and this is why we present this result in the subsection devoted to the pre-reduction.

Definition 12.11. Consider a partition

Π(D) = {D1,D2, . . . ,Dq }

of the set D. The sets Di are called blocks of partition Π(D).

12.3. PLACE REDUCTION 165

We define the following CS

N (E ,Π(D)) ,





M0 +Post · y
−Pr e · (y +~t) ≥ 0 ∀(y, t) ∈ E

M0(pi)+Post (pi , ·) · y
−Pr e(pi , ·) · (y +~t) < 0 ∀(y, t) ∈ Di ,

i = 1, . . . , q
M0 ∈Rq

≥0
Pr e,Post ∈Rq×n

≥0

(12.4)

where E and n = |T | have the usual meaning as in Theorem 12.10. ¥

The only difference between CS (12.4) and CS (12.3) consists in the fact that in the former
only q places (as many as the blocks of partition Π(D)) are used: place pi (i = 1, . . . , q) will
ensure that all disabling conditions in Di are enforced. It is immediate to prove, with the
same reasoning of Proposition 12.9, that CS (12.4) is rational and ideal, and that any of its
integer solutions is a solution to the identification problem 12.4.

Definition 12.12. Given the identification problem 12.4, a partition Π(D) = {D1,D2, . . . ,Dq }
with q blocks is said to be

• feasible if CS N (E ,Π(D)) admits a solution;

• minimal if it is feasible and there exists no other partition Π′(D) with q ′ < q that is
feasible.

¥

Thus the number of blocks of a minimal partition represents the minimal number of places
that a net solving the given identification problem may have.

The following corollary trivially follows from the previous definitions and from Theorem 12.10.

Corollary 12.13. A net with q places solution of the identification problem 12.4 exists iff there
exists a feasible partition Π(D) = {D1,D2, . . . ,Dq } with q blocks solution of CS (12.4).

We now state an intuitive result that allows one to determine if a partition is minimal.

Proposition 12.14. A feasible partition with q blocks is minimal iff there exists no feasible
partition with q −1 blocks.

Proof. The only if part follows from the definition of minimal partition.

To prove the if part we need to show that if no feasible partition with q−1 blocks exists, then
no partition with a smaller number of blocks is feasible. This can be proved by contradiction,
by means of the same argument used in the proof of Proposition 12.7, Case 2. In fact, assume
there exists a feasible partition with q ′ < q − 1 blocks; then there exists a net solving the
identification problem with q ′ places. However, we can add an arbitrary number of duplicate

166 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

place to this net and this implies that there exists a net solving the identification problem
with q ′+1, q ′+2, . . . , q−1 places. Thus, according to Proposition 12.13, there exists a feasible
partition with q −1 blocks which is a contradiction. ¤

According to the previous proposition to prove that a feasible partitionΠ(D) with q blocks is
minimal it is necessary to check the feasibility of all partitions D with q −1 blocks. However,
the number of partitions of a set of cardinality n into k blocks is given by the Sterling number
of the second kind1 S(n,k) [36] which may be too large for an exhaustive analysis.

With the terminology introduced in this section, CS (12.3) can be seen as a special case of
CS (12.4) when the considered partition Π(D) contains all singleton sets, i.e., it is the unique
partition with mD blocks. Thus it is possible to check if this partition is minimal by checking
that all partitions of mD − 1 blocks (obtained by merging any two singleton sets) are not
feasible. There exists

S(mD ,mD −1) = mD(mD −1)

2
of these partitions.

Although the previous results provide a procedure for reducing the number of places of a
Petri net, a brute force search to determine a minimal feasible partition is not viable given the
large number of such partitions. We conclude this subsection with an informal discussion
on how it may possible to exploit some additional information on the net to determine a
feasible partition of cardinality smaller than mD .

As an example, assume it is known that a transition t has only one input place — such is the
case if the net to identify or a subnet of it containing t is a state machine. In such a case, it is
possible to consider a partition of D in which a single block

D = {(y1, t), . . . , (yr , t)} ⊂D

contains all disabling conditions for transition t and a single place p will be used to disable
t after a sequence σi ∈∪r

i=1L (yi) has been executed.

As a second example, assume it is known that transitions t and t ′ are in a free choice relation,
i.e., there exists a place p = •t = •t ′ that is the unique input place for both transitions. In such
a case, it is possible to consider a partition of D in which a single block

D = {(y1, t), . . . , (yr , t), (y ′
1, t ′), . . . , (yr ′ , t ′)} ⊂D

contains all disabling conditions for transitions t and t ′ which will be enforced by place p.

Example 12.15. Let us consider a language

L = {ε, t1, t1t2, t1t3, t1t2t3, t1t3t2, t1t3t3}

1An explicit formula for the Sterling number of the second kind is

S(n,k) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
j n .

12.3. PLACE REDUCTION 167

p1

t1

t2

t3

2

p2

3

Figure 12.1: The Petri net systems in Example 12.15.

and let k = 3. We have additional information: the transition t1 has only one input place
and transitions t2 and t3 are in a free choice relation. The set of enabling and disabling con-
straints are respectively:

E = {(ε, t1), (t1, t2), (t1, t3), (y12, t3), (y13, t2), (y13, t3)}

and
D = {(ε, t2), (ε, t3), (t1, t1), (y12, t1), (y12, t2), (y13, t1)},

where y12, y13 are the firing vectors of t1t2 and t1t3 respectively. The additional information
allows us to consider two different blocks of D :

D1 = {(t1, t1), (y12, t1), (y13, t1)} ⊂D

and
D2 = {(ε, t2), (ε, t3), (y12, t2)} ⊂D.

Let us observe that D = D1∪D2, then the Petri net solution has |P | = 2. A net system solution
of N (E ,D) computed with a commercial LP solver (LINDO) is reported in Figure 12.1.

Note that such a solution has been determined associating a linear objective function f (M0,Pr e,Post)
to N (E ,D), and solving the resulting linear programming problem. In particular, we as-
sumed

f (M0,Pr e,Post) = 1T ·M0 +1T ·Pr e ·1+1T ·Post ·1.

Note finally that the solution we found out was integer. ¥

12.3.2 Place post-reduction

Once a net has been identified solving CS (12.3) (or even CS (12.4)) it is always possible to
check if some of the places are redundant and can be removed without affecting the correct-
ness of the result. This check is based on the notion of minimal hitting set defined in the
following.

Proposition 12.16. Consider a net system 〈N , M0〉 solution of the identification problem 12.4
and define for all disabling conditions (y, t) ∈D the set

P(y,t) = {p ∈ P | M0(p)+C (p, ·) · y < Pr e(p, t)} (12.5)

consisting of all places of the net that disable transition t after a sequence σ ∈ L (y) has been
executed.

168 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

Assume P̂ ⊂ P is a hitting set for all P(y,t)’s, i.e., P̂ ∩P(y,t) 6= ; for all (y, t) ∈ D. Then the net
system 〈N̂ , M̂0〉 obtained from 〈N , M0〉 removing all places in P \ P̂ is a solution of the identifi-
cation problem 12.4.

Proof. As already discussed in the proof of Proposition 12.7 the removal of a place does not
affect any enabling condition. Furthermore, if P̂ is a hitting set for all P(y,t)’s then it is capable
of enforcing all disabling conditions in D. Hence Lk (N̂ , M̂0) = Lk (N , M0). ¤

The places in P \ P̂ that can be removed from the net system 〈N , M0〉 without changing its
language Lk (N , M0) are called redundant places.

Since the net Ñ has set of places P̂ , to obtain a net with a minimal set of places we need
to determine the minimal hitting set. This problem is known to be NP-hard and there ex-
ists several ways to compute minimal hitting sets (see [61] for a review). Here we present a
straightforward algorithm based on integer programming.

Proposition 12.17. Consider a net system 〈N , M0〉 with m = |P| places solution of the identi-
fication problem 12.4. For all disabling conditions (y, t) ∈ D, let z(y,t) ∈ {0,1}m be the charac-
teristic vector of set P(y,t) defined in (12.5), i.e., z(y,t)(p) = 1 if p ∈ P(y,t), else z(y,t)(p) = 0.

Consider the following integer programming problem (IPP):

min 1T ·x
s.t . xT · z(y,t) ≥ 1 ∀(y, t) ∈D

x ∈ {0,1}m
(12.6)

and let x∗ be an optimal solution.

Then a minimal hitting set for all P(y,t)’s is the set P̂ = {p ∈ P | x∗(p) = 1}.

Proof. It is immediate to see that any feasible solution x of IPP (12.6) is the characteristic
vector of a hitting set for all P(y,t)’s because it contains at least one element from each of
these sets (xT · z(y,t) ≥ 1). The optimal solution x∗ has the minimal number of non-zero
components, hence it corresponds to a minimal hitting set. ¤

Example 12.18. Let
L = {ε, t1, t2}

and k = 2. We observe that this is a particular case of a language containing no word of length
k, i.e., all words of length k have to be disabled.

The set of enabling and disabling constraints are respectively:

E = {(ε, t1), (ε, t2)}

and
D = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)}.

A net system solution of N (E ,D) is reported in Figure 13.5.(a): here it is obviously |P | = mD =
4.

12.3. PLACE REDUCTION 169

(b)

p21

t1

t2

p11
t1

t2

(a)

p12

p21

p22

Figure 12.2: The Petri net systems in Example 12.18.

Note that such a solution has been determined associating the same linear objective func-
tion f (M0,Pr e,Post) used in Example 12.15 to N (E ,D), and solving the resulting linear pro-
gramming problem.

We now try to reduce the number of places using the place post-reduction approach. To
this aim for any (y, t) we compute the set P(y,t) defined as in equation (12.5). Being P(t1,t1) =
{p11, p12, p21}, P(t1,t2) = {p12, p21}, P(t2,t1) = {p12, p21}, P(t2,t2) = {p12, p21, p22}, it is immediate to
see that a possible hitting set for all P(y,t)’s is P̂ = {p21}, that is also minimal. The resulting
net system 〈N̂ , M̂0〉 obtained from the previous one removing all places in P \ P̂ is shown in
Figure 13.5.(b). All solutions, obtained with LINDO, are integer. ¥

It is important to observe that the place post-reduction procedure does not necessarily en-
sure that the resulting net is the solution of a given identification procedure with the minimal
number of places. In fact, it only determines, amongst the solutions of a given identification
procedure that can be obtained from a solution N by removing places, the one with a minimal
number of places. The following example will clarify this point.

Example 12.19. Let
L = {ε, t1, t2, t3}

and k = 2, thus as in Example 12.18, all words of length k have to be disabled. The set of
enabling and disabling constraints are respectively:

E = {(ε, t1), (ε, t2), (ε, t3)}

and
D = {(t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2), (t2, t3), (t3, t1), (t3, t2), (t3, t3)}.

A net system solution of CS (12.3) is shown in Figure 12.3.(a), where obviously |P | = mD = 9.
It has been determined solving a linear programming problem whose objective function is
the same of that used in Example 12.15.

Now, being P(t1,t1) = {p11, p12, p13, p21, p31}, P(t1,t2) = {p12, p21}, P(t1,t3) = {p13, p31}, P(t2,t1) =
{p12, p21}, P(t2,t2) = {p12, p21, p22, p23, p32}, P(t2,t3) = {p23, p32}, P(t3,t1) = {p13, p31}, P(t3,t2) = {p23,
p32}, P(t3,t3) = {p13, p23, p31, p32, p33}, it is easy to see that a possible hitting set for all P(y,t)’s is
P̂ = {p21, p31, p32}. The net system 〈N̂ , M̂0〉 obtained from 〈N , M0〉 removing all places in P \P̂
is shown in Figure 12.3.(b).

170 CHAPTER 12. LINEAR PROGRAMMING TECHNIQUES FOR THE IDENTIFICATION OF PNS

p11

t1

t2

(a)

p12

p21

p22

t3

p23

p32

p33

p13

p31

p21 t1

t2

t3

p32

p31

(b)

(c) (d)

p21 p21 p32

t1

t2

t3

t1

t2

t3

Figure 12.3: The Petri net systems in Example 12.19.

Note that the same hitting set can also be obtained solving the IPP (12.6).

Such a solution is not minimal in terms of places, as it can be verified using the place pre-
reduction procedure.

To this aim we first look at a solution with two places, namely using the notation of Defini-
tion 12.11, we check if there exists a solution with only two blocks D′

1 and D′
2, obtained by

merging two of the three blocks

D1 = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)},

D2 = {(t2, t3), (t3, t2), (t3, t3)}

and
D3 = {(t1, t3), (t3, t1)}

relative respectively to the places p21, p32 and p31 of the net in Figure 12.3.(b).

In particular, we find that CS (12.4) admits a solution when

D′
1 = {t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2), (t3, t1)}

and
D′

2 = {(t2, t3), (t3, t2), (t3, t3)},

12.4. A COMPARISON BETWEEN THEORY OF REGIONS AND OUR ID APPROACH 171

where
D′

1 =D1 ∪D3.

The resulting net 〈N̄ , M̄0〉 is shown in Figure 12.3.(c), where P̄ = {p21, p32}.

We can further on reduce the net finding a minimal hitting set. Being, P(t1,t1) = {p21}, P(t1,t2) =
{p21}, P(t1,t3) = {p21}, P(t2,t1) = {p21}, P(t2,t2) = {p21, p32}, P(t2,t3) = {p21, p32}, P(t3,t1) = {p21},
P(t3,t2) = {p21, p32}, P(t3,t3) = {p21, p32}, the unique minimal hitting set is P̂ ′ = {p21}. The net
system 〈N̂ ′, M̂ ′

0〉 obtained from 〈N̄ , M̄0〉 removing all places in P̄ \ P̂ ′ is minimal and is shown
in Figure 12.3.(d).

Note that in all cases, the net solutions, obtained with LINDO, are integer. ¥

As a final remark we observe that the notion of redundant place that we give here is differ-
ent from the one of implicit place used by other authors [43]. In fact, an implicit place is
a place that can be removed from a net system 〈N , M0〉 without changing its overall behav-
ior L(N , M0). On the contrary, a redundant place according to our definition is a place that
can be removed from the net without changing the finite prefix behavior Lk (N , M0). Thus
our notion is weaker and the techniques used in [43] to determine implicit places cannot be
used in our framework.

12.4 A comparison between theory of regions and
our identification approach

The identification approach based on theory of regions and our identification approach de-
scribed in Chapters 10, 11, 12 have a lot of points of contact.

• They both set out to synthesize a PN starting either from a labeled graph or from a
given language.

• The method presented in Section 5.1 uses a set of constraints very similar to those
presented in this chapter. Moreover, in both cases is used a linear technique to solve
the problem.

• Both identification procedures have a computational complexity that is exponential.
In our procedure the complexity is exponential in the length of the longest string in
the input language. In theory of regions, as discussed in Section 5.3, the complexity is
exponential in the number of states and events of the input graph.

Note that our approach based on integer programming problems and presented in Chap-
ter 10 presents an high computational complexity. However, it can minimize the number of
places and in general determine an “optimal” net according to a given objective function, be-
cause it does not require to introduce as many places as the number of disabling constraints.

Chapter 13

Fault Model Identification with Petri
Nets

Summary

Most of the fault identification problems in the Discrete Event Systems literature assume
knowledge of the structure of the net system, including the nature (and behavior) of the pos-
sible faults. In this chapter we deal with this problem within the framework of Petri nets by
removing the requirement that the nature (and behavior) of the fault is known. In partic-
ular, we devise a way to identify the structure of the faulty transitions of the system given
its language. Then, we generalize this procedure to unobservable faults, in which case the
structure of the faulty system needs to be recognized from the knowledge of the structure
of the fault-free system, and the projection of the faulty system language on the set of non-
faulty events, that are assumed to be observable.

173

174 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

p1

f

t1

p2

t2

p1

t1

p2

t2

(a) (b)

Figure 13.1: A motivational example.

13.1 Motivational example

Let us suppose we know the fault-free system and our goal is to identify the structure of
the faulty system, namely the additional transitions that contribute to the faulty behavior.
We consider two different cases. First, we assume that the language of the faulty system is
completely known. In such a case the problem reduces to an identification problem that can
be solved using the approach presented in Chapter 10. The only difference is the addition of
appropriate constraints that enforce the (known) structure of the fault-free system. Second,
we consider faults that are unobservable, which implies that identification should only be
based on the projection of the faulty system language on the set of non-faulty (observable)
events.

As an example, consider the fault-free net system in Figure 13.1.(a), whose language is L =
{ε}∪{(t1t2)n | n ≥ 0}∪{(t1t2)n t1 | n ≥ 0}. Assume that a fault f may occur, and that the observ-
able language of the system with faults is L F = {ε}∪ {((t1 +ε) t2)n | n ≥ 0}∪ {(t1t2)n t1 | n ≥ 0}.
We have to identify a net system that coincides with the net system in Figure 13.1.(a) if the
fault transition and its connected arcs are removed, and whose language projected on {t1, t2}
is equal to L F . Clearly, a solution to this is given by the net system in Figure 13.1.(b); how-
ever, this is not the only possible solution. Thus, we have to associate an appropriate perfor-
mance index to select one solution within the set of admissible ones.

13.2 Problem Statements

Assume that a net system 〈N , M0〉 generating a nominal (i.e., fault-free) language L is given
and let N = (P,T,Pr e,Post) be its net structure. We consider a faulty net system 〈N F , M0〉,
where N F = (P,T F ,Pr eF ,Post F), with the same number of places and the same initial mark-
ing as the nominal one. However, its set of transitions is T F = T ∪T f , where T f = { f1, · · · , fq }
is the set of faulty transitions. Furthermore we make the following assumption.

Assumption (A1): The pre and post incidence matrices of the faulty net are

Pr eF = [
Pr e Pr e f1 · · · Pr e fq

]
,

Post F = [
Post Post f1 · · · Post fq

]
,

where Pr e fi (resp., Post fi) is the m ×1 Pre (resp., Post) incidence matrix of transition fi . ¥

13.2. PROBLEM STATEMENTS 175

According to this assumption, the faulty net retains the structure of the nominal one but
includes a number of additional faulty transitions.

We consider two different problem statements: in the first one the occurrence of fault tran-
sitions is observable, whereas in the second one faults are unobservable.

13.2.1 Case I: Faults are Known

Problem 13.1. Let us consider a fault-free net system 〈N , M0〉. Let L F be a finite prefix-closed
language over alphabet T F = T ∪T f (see Appendix A), where T f = { f1, . . . , fq }, and such that
all strings in L F have length less than or equal to k.

We want to identify a faulty net system 〈N F , M0〉, satisfying (A1) and such that Lk (N F , M0) =
L F . ¥

In simple terms, here we are assuming that the number of faults and their effect on the net
behavior (i.e., the language of the resulting system) are known. Our goal is that of identify-
ing the structure of the system with faults, namely the weights of the arcs incident on fault
transitions f1, . . ., fq , under the constraint that the structure of the fault-free system is kept
intact.

The next result characterizes the existence of a solution for this problem.

Proposition 13.2. Given a fault-free system 〈N , M0〉, let L = Lk (N , M0) ⊂ T ∗.

A necessary condition for the existence of a solution to Problem 13.1 is that L F ⊂ (T F)∗ satis-
fies L = L F ∩T ∗, i.e., all words that are firable in the faulty system and consist of fault-free
transitions can also be fired in the fault-free system.

Proof. Consider a word w ∈ T ∗. According to assumption (A1), this word is firable in 〈N , M0〉
if and only if it is also firable in 〈N F , M0〉. ¤

13.2.2 Case II: Faults are Unobservable

Let us define the projection operator P : (T F)∗ → T ∗ recursively as follows:

(i) P (t j) = t j ∀t j ∈ T ;

(ii) P (fi) = ε ∀ fi ∈ T f ;

(iii) P (σt j) = P (σ)P (t j) ∀σ ∈ (T F)∗, t j ∈ T F .

Problem 13.3. Let us consider a fault-free net system 〈N , M0〉. Let L F be a finite prefix-closed
language over T whose strings have length less than or equal to k.

Let Λ(L F) be the set of languages over T F whose projection over T is equal to L F , i.e.,

Λ(L F) = {L ⊂ (T F)∗ : P (L) =L F }.

176 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

p1

f

t1

p2

Figure 13.2: A Petri net where L =L F = {ε, t1}.

We want to identify a faulty net system 〈N F , M0〉 satisfying (A1) and such that Lk (N F , M0) ∈
Λ(L F). ¥

In simple terms, here we are assuming that faults are unobservable events. Our goal is to
identify the structure of the faulty system, based on the knowledge of its observable lan-
guage, namely the projection of its firing sequences over the set of observable transitions
T .

Our next result characterizes the existence of a solution for this problem.

Proposition 13.4. Given a fault-free system 〈N , M0〉, let L = Lk (N , M0) ⊂ T ∗.

A necessary condition for the existence of a solution to Problem 13.3 is that L ⊆L F .

Proof. Assumption (A1) guarantees that all sequences firable in 〈N , M0〉 can also be fired in
〈N F , M0〉. Thus Problem 13.3 is well-posed only if L F contains all the sequences in L . ¤

As a final remark, note that in Case II we can only identify faults generating strings whose
observable projection is not contained in the language of the nominal system. The following
example clarifies this.

Example 13.5. Let us consider the net system in Figure 13.2, where T = {t1} and T f = { f }.
Here L =L F = {ε, t1}, i.e., the nominal language coincides with the observable language of
the faulty system. This means that after the firing of fault transition f no anomalous string
will be observed, thus this fault cannot be identified. ¥

13.3 Fault Identification in Case I

In this section we show how Problem 13.1 can be easily solved using our results presented
in Chapter 10. The idea is that of providing an algebraic characterization of the set of ad-
missible faulty systems. Then, the identification problem is formulated in terms of a linear
IPP.

First let us introduce some sets that we will use in the following.

Definition 13.6. Let L ⊂ T ∗ be defined as in Proposition 13.2, and L F ⊂ T F and k ∈ N be
defined as in Problem 13.1.

We define the following sets

13.3. FAULT IDENTIFICATION IN CASE I 177

Ē F
A = {(σ, t j) |σ ∈L F , |σ| < k,σt j ∈L F \L },

Ē F = Ē F
A |≡, (13.1)

D̄F
A = {(σ, t j) |σ ∈L F \L , |σ| < k, t j ∈ T,σt j 6∈L F }

∪
{(σ, t j) |σ ∈L F , |σ| < k, t j ∈ T f ,σt j 6∈L F },

D̄F = D̄F
A |≡, (13.2)

where Ē F and D̄F are the sets containing only one element of each equivalent class for the ≡
relation in Definition 10.2. ¥

Proposition 13.7. Let us consider Problem 13.1, and let

g (Pr e f1 , . . . ,Pr e fq ,Post f1 , . . . ,Post fq) =
m∑

i=1

q∑
j=1

[
bi , j Pr e f j (pi)+ci , j Post f j (pi)

]

be a given linear performance index, where bi , j , ci , j ∈R+
0 .

A solution of Problem 13.1 that is optimal with respect to g (Pr e f1 , . . . ,Pr e fq ,Post f1 , . . . , Post fq)
can be computed by solving the following IPP





min g (Pr e f1 , . . . ,Pr e fq ,Post f1 , . . . ,Post fq)
s.t. Gm(Ē F ,D̄F)

M0 i s g i ven
(13.3)

where Ē F and D̄F are defined in Eq. (13.1), (13.2), respectively.

Proof. Follows from Theorem 10.4 and the fact that we have to impose the enabling and
disabling constraints only for those sequences that contain fault transitions. In fact, by as-
sumption (A1) all sequences that are enabled in the fault-free net are also enabled in the
faulty system. ¤

Example 13.8. Let us consider the token passing communication system represented in Fig-
ure 13.3(a), where p1, p2, p3 represent three different agents.

The nominal language of this system is L = {ε, t1, t3, t1t2, t3t4, t1t2t1, t1t2t3, t3t4t3, t3t4t1,
t1t2t1t2, t1t2t3t4, t3t4t3t4, t3t4t1t2}.

Assume we can detect four different types of events denoting faults: f1, f2, f3 and f4. Mon-
itoring several identical instances of this communication system the following set of strings
have been observed: L F = { ε, f1, t1, t3, t1t2, t1 f2, t1 f4, t3t4, t3 f3, t1t2t1, t1t2t3, t1t2 f1, t1 f4 f3,
t1 f4t4, t3t4t3, t3t4t1, t3t4 f1, t1t2t1t2, t1t2t1 f2, t1t2t1 f4, t1t2t3t4, t1t2t3 f3, t1 f4t4 f1, t1 f4t4t1,
t1 f4t4t3, t3t4t3t4, t3t4t3 f3, t3t4t1 f4, t3t4t1t2, t3t4t1 f2} thus k = 4. Assume that we want to

178 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

p3

(a) (b)

f1
p1

t1

p2

t2

t1 t4

t3

p3

p1

p2

t2

t4

t3

f2 f3 f4

Figure 13.3: (a) The faulty-free net system and (b) the faulty net system identified in Exam-
ple 13.8.

determine the Petri net system that minimizes the arc weights incident on the fault transi-
tions such that Lk (N F , M0) =L F . This requires the solution of a linear IPP of the form (13.3)
where

Ē F = Ē F
A = {(ε, f1), (t1, f2), (t1, f4), (t3, f3), (t1t2, f1), (t1 f4, f3), (t1 f4, t4), (t3t4, f1), (t1t2t1, f2),

(t1t2t1, f4), (t1t2t3, f3), (t1 f4t4, f1), (t1 f4t4, t1), (t1 f4t4, t3), (t3t4t3, f3), (t3t4t1, f4),
(t3t4t1, f2)},

and

D̄F = D̄F
A = {(ε, f2), (ε, f3), (ε, f4), (f1, t1), (f1, t2), (f1, t3), (f1, t4), (f1, f1), (f1, f2), (f1, f3), (f1, f4),

(t1, f1), (t1, f3), (t3, f1), (t3, f2), (t3, f4), (t1t2, f2), (t1t2, f3), (t1t2, f4), (t1 f4, f1),
(t1 f4, f2), (t1 f4, f4), (t1 f4, t1), (t1 f4, t2), (t1 f4, t3), (t3t4, f2), (t3t4, f3), (t3t4, f4),
(t1t2t1, f1), (t1t2t1, f3), (t1t2t3, f1), (t1t2t3, f2), (t1t2t3, f4), (t1 f4t4, t2), (t1 f4t4, t4),
(t1 f4t4, f2), (t1 f4t4, f3), t1 f4t4, f4), (t3t4t3, f1), (t3t4t3, f2), (t3t4t3, f4), (t3t4t1, f1),
(t3t4t1, f3)}.

We find the faulty net system in Figure 13.3(b). By inspection of the faulty net, one can as-
sociate the following meaning to the faults: f1 (resp., f2, f3) corresponds to a token loss for
agent 1 (resp., 2, 3); f4 corresponds to a token passage from 2 to 3. ¥

13.4 Fault Identification in Case II

In this section we consider Problem 13.3, and make the following additional assumptions.

Assumption (A2): The net contains a single fault, i.e., q = 1 thus T f = { f }. ¥

Assumption (A3): Transition t f is loop-free, i.e., •t f ∩ t•f =;. ¥

The idea is to use these assumptions to provide an algebraic characterization of the set of
admissible faulty systems. In particular, we show that if an upper bound is given on the
number of times the fault transition may fire, then the characterization is linear and the
identification problem can be written as a linear IPP.

Note that Assumption (A1) restricts the structure of the faulty Petri net to only include one
additional faulty transition; it does not restrict the number of times this faulty transition can
fire.

13.4. FAULT IDENTIFICATION IN CASE II 179

13.4.1 Preliminary Results

Definition 13.9. Let L be the prefix-closed language of a fault-free net system, and L F be the
prefix-closed language of the faulty net system we want to identify.

We define the following sets:

E = {(σ, t j) |σ ∈L , |σ| < k,σt j ∈L }, (13.4)

E F = {(σ, t j) |σ ∈L F , |σ| < k, t j ∈ T,σt j ∈L F }, (13.5)

Ẽ F = (E F \E)|≡ (13.6)

D̃F
B = {(σ, t j) |σ ∈L F , |σ| < k, t j ∈ T,σt j 6∈L F }. (13.7)

D̃F = D̃F
B |≡ (13.8)

where Ẽ F and D̃F are the sets containing only one element of each equivalent class for the ≡
relation in Definition 10.2. ¥

Proposition 13.10. Consider a pair (σ, t j) ∈ Ẽ F . Under assumptions (A2) and (A3), the net
〈N F , M0〉 generates a word (σt j)F ∈ P−1(σt j) such that |(σt j)F |t f =ασ, j , iff the following con-
ditions are both verified:

(a) The net 〈N F , M0〉 generates a word σF ∈ P−1(σ) with |σF |t f =ασ.

(b) There exists an integer ασ, j such that

{
M0 +ασ, j (Post f −Pr e f)+C · y ≥ Pr e(·, t j)
ασ, j ≥ασ (13.9)

where y =π(σ).

Proof. (If part) If the net 〈N F , M0〉 generates a word whose projection isσt j , then there exists
a firing sequence

M0[σF 〉M [t l
f 〉M ′[t j 〉,

where σF ∈ P−1(σ) and l ≥ 0 additional occurrences of the unobservable transition t f may
be necessary to enable transition t j after σF has fired. Let |σF |t f =ασ; then according to the
state equation it holds

M ′ = M0 +C · y +ασ · (Post f −Pr e f)+ l · (Post f −Pr e f) = M0 +C · y +ασ, j · (Post f −Pr e f)

with ασ, j =ασ+ l and, since M ′ enables t j , we obtain (13.9).

(Only if part) Assume condition (a) is verified so that there exists a marking M such that
M0[σF 〉M . This allows us to rewrite (13.9) as

{
M + l · (Post f −Pr e f) ≥ Pr e(·, t j)
l ≥ 0

180 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

where l = ασ, j −ασ. Consider now the subnet obtained from N by removing all transitions
except t f with initial marking M . By assumption (A3) the net is acyclic, hence the fact that
equation

M + l · (Post f −Pr e f) ≥ Pr e(·, t j) ≥~0
is satisfied implies that there exists a marking M ′ such that M [t l

f 〉M ′ (see Theorem 3.2). This

means that a sequence (σt j)F ∈ P−1(σt j) is firable in the faulty net with |(σt j)F |t f = ασ, j =
ασ+ l . ¤

Proposition 13.11. Consider a pair (σ, t j) ∈ D̃F and let γ̄σ be the minimum number of fault
transition firings necessary to enable σ, i.e.,

γ̄σ = min
σF∈P−1(σ)

|σF |t f . (13.10)

Under assumptions (A2) and (A3) the net 〈N F , M0〉 disables a transition t j after all sequences
σF ∈ P−1(σ) that are enabled at M0, iff ∀ γ ∈N, with γ≥ γ̄σ, it holds

M0 +C · y +γ · (Post f −Pr e f) 6≥ Pr e(·, t j). (13.11)

Proof. Let us show the if part. As well known, a transition t is not enabled at a marking
M ′ ∈ R(N , M0) iff M ′� Pr e(·, t).

Now, if t j is not enabled after the firing of all sequencesσF ∈ P−1(σ) at M0, then ∀ γF = |σF |t f

it should be
M0 +C · y +γF · (Post f −Pr e f)� Pr e(·, t j),

or, equivalently, equation (13.11) should be verified for all γ ≥ γ̄σ, where γ̄σ is defined as in
equation (13.10).

Let us prove the only if part. Since the net is acyclic, the state equation gives conditions that
are necessary and sufficient for the reachability (and for non-reachability as well). Thus, if
equation (13.11) is satisfied for all γ ≥ γ̄σ, then it means that for any marking M such that
M0[σF 〉M it is M � Pr e(·, t j). ¤

13.4.2 IPP Formulation

Proposition 13.12. Let us consider Problem 13.3 under assumptions (A1) to (A3), and let

g (Pr e f ,Post f) =
m∑

i=1

[
bi Pr e f (pi)+ ci Post f (pi)

]

be a given linear performance index, where bi , ci ∈R+
0 .

A solution that is optimal with respect to g (Pr e f ,Post f) can be computed by solving the fol-
lowing nonlinear IPP





min g (Pr e f ,Post f)

s.t. G
f

m(Ẽ F ,D̃F)
M0 i s g i ven

(13.12)

13.4. FAULT IDENTIFICATION IN CASE II 181

where

G
f

m(Ẽ F ,D̃F) ,





M0 +ασ, j · (Post f −Pr e f)
+C · y ≥ Pr e(·, t j)

ασ, j ∈N
∀ (σ, t j) ∈ Ẽ F





(a)

−K S f
σ, j +M0 +C · y

+γ · (Post f −Pr e f)−Pr e(·, t j) ≤−~1m

~1 T S f
σ, j ≤ m −1

S f
σ, j ∈ {0,1}m

∀(σ, t j) ∈ D̃F

∀γ ∈N





(b)

Pr e f (pi)− z1,i ·K ≤ 0
Post f (pi)− z2,i ·K ≤ 0
z1,i + z2,i = 1, i = 1, . . . ,m



 (c)

(13.13)

with K (as usual) being a very large constant.

Proof. We first prove that, under assumptions (A1) to (A3), a net system 〈N F , M0〉 is such that
P (Lk (N F , M0)) =L F if and only if it satisfies the set of algebraic constraints (13.13).

Constraints (a) are enabling constraints relative to those sequences that can only be observed
when the fault occurs. They trivially follow from Proposition 13.10.

Constraints (b) are disabling constraints relative to those sequences that are not enabled
even if the fault occurs. They follow from Proposition 13.11 and their equivalence to con-
straints 




M0 +C · y +γ · (Post f −Pr e f)� Pr e(·, t j)
∀(σ, t j) ∈ D̃F

∀γ ∈N

To prove the equivalence between the two sets of constraints we first observe that, if t j is not
enabled at M0 +C · y +γ · (Post f −Pr e f), then there exists at least one place p ∈ P such that

M0(p)+C (p, ·) · y +γ · (Post f (p)−Pr e f (p)) ≤ Pr e(p, t j)−1. (13.14)

This holds for all p such that S f
σ, j (p) = 0. But, being~1T S f

σ, j ≤ m −1, this occurs for at least
one place p ∈ P .

Finally, we observe that assuming γ ∈ N in (b) rather than γ ≥ γ̄σ (see equation (13.11)),
introduces no spurious markings. In fact, by definition of γ̄σ, constraints (b) are redundant
for all γ ∈ [0, γ̄σ).

Constraints (c) force transition t f to be loop-free. In fact, they imply that if Pr e f (pi) > 0,
then Post f (pi) = 0, and viz. ¤

182 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

Remark 13.13. In Problem 13.3 we assumed that all sequences that are not in L F are not
observable, namely there exists no sequence of fault transitions that can enable them. In sev-
eral practical applications it could be of interest to slightly modify the problem statement by
assuming that no information can be deduced if a given sequence is not observed (it may be
possible that no fault sequence is able to make it firable, but it can also be possible that such
faults have not yet occurred even if their firing would have enabled it). In such a case a solu-
tion to the identification problem can still be computed by solving the IPP (13.12), provided
that the disabling constraints (b) are removed from the set (13.13).

¥

13.4.3 Constraints Linearization

Proposition 13.12 provides a systematic approach to solve Problem 13.3 under assumptions
(A1) to (A3). However, some of the constraints that are necessary to characterize the set of
admissible solutions are nonlinear.

The nonlinearity can be removed by assigning an upper bound Γ on the number of times the
fault transition t f may fire1.

In particular, constraint (a) for the generic couple (σ, t j) ∈ Ẽ F can be translated into an OR
constraint that can be written as a set of Γ+1 linear constraints





M0 +Post f −Pr e f +C · y −Pr e(·, t j) ≥ z1
σ, j · ~K

M0 +2 · (Post f −Pr e f)+C · y −Pr e(·, t j) ≥ z2
σ, j · ~K

...

M0 +Γ · (Post f −Pr e f)+C · y −Pr e(·, t j) ≥ zΓ
σ, j · ~K

z1
σ, j + z2

σ, j + . . . zΓ
σ, j = Γ−1

z1
σ, j , z2

σ, j , . . . , zΓ
σ, j ∈ {0,1}

where, as usual, K is a very large constant (see Chapter 10), and ~K = K ·~1m .

Similarly, if γ≤ Γ, the nonlinear inequality in (b) translates into an AND constraint that can
be written as a set of Γ linear constraints





−K S f
σ, j +M0 +C · y +Post f −Pr e f −Pr e(·, t j) ≤−~1m

−K S f
σ, j +M0 +C · y +2 · (Post f −Pr e f)−Pr e(·, t j) ≤−~1m

...

−K S f
σ, j +M0 +C · y +Γ · (Post f −Pr e f)−Pr e(·, t j) ≤−~1m

1Note that a tradeoff should be made while choosing Γ. In fact, a large value of Γ makes the linearization
less restrictive but results in a higher computational complexity. We assume here that a tentative value of Γ is
initially taken, and it is then increased if the resulting set of linear constraints is infeasible.

13.4. FAULT IDENTIFICATION IN CASE II 183

13.4.4 Complexity of the Identification Procedure

We now discuss the complexity of the IPP we must solve to identify the faulty system. This
complexity is given in terms of the number of constraints and the number of unknowns.
Note however that it is well known that an IPP is an NP-hard problem itself.

Let n be the cardinality of T , k the length of the longest string in L , and νr (ν′r), for r =
0, . . . ,k, the number of pairs (σ, t j) ∈ Ẽ F ((σ, t j) ∈ E F |≡) of length r .

Then the nonlinear constraint set (13.13) contains

• m
k∑

r=1
νr constraints of type (a),

• (m +1)
k−1∑
r=0

(n ·ν′r −ν′r+1) constraints of type (b),

• 3 ·m constraints of type (c).

When linearized, the number of constraints (a) and (b) becomes equal to

m · (Γ+1)
k∑

r=1
νr

and

(m ·Γ+1)
k−1∑
r=0

(n ·ν′r −ν′r+1)

respectively.

The total number of unknowns in the nonlinear IPP is

unl = 2m +
k∑

r=1
νr ·+m

k−1∑
r=0

(n ·ν′r −ν′r+1)+2m,

where the right-side terms are due respectively to the number of pre and post-incidence

arcs, the integer variables ασ, j in (a), the binary vectors S f
σ, j in (b), and the binary variables

zi ,1 and zi ,2 in (c).

The total number of unknowns in the linear IPP is

ul = 2m +Γ ·
k∑

r=1
νr +m

k−1∑
r=0

(n ·ν′r −ν′r+1)+2m.

Note that given values of k and n, it is possible to find a worst case bound for ρ = ∑k−1
r=0 (n ·

ν′r −ν′r+1). In fact, it holds:

ρ =
k−1∑
r=0

(n ·ν′r −ν′r+1) = n ·ν′0 + (n −1) ·
(

k−1∑
r=1

ν′r

)
−ν′k = n + (n −1) ·

(
k−1∑
r=1

ν′r

)
−ν′k .

184 CHAPTER 13. FAULT MODEL IDENTIFICATION WITH PNS

This expression is maximized if we assume ν′k = 0 while all other ν′r take the largest possible
value, i.e., ν′r = nr . Hence, we have

ρ ≤ n + (n −1) · (n +·· ·+nk−1) = nk ,

so that the total number of unknowns in the nonlinear IPP in the worst case is

unlMAX ≤ 4m +∑k
r=1 nr +m ·nk =O (m nk),

and the total number of unknowns in the linear IPP in the worst case is

ulMAX ≤ 4m +Γ ·∑k
r=1 nr +m ·nk =O (m Γ nk),

i.e., this problem has exponential complexity with respect to k.

13.4.5 Numerical Examples

In this section we present two examples. First, we provide an example of the procedure
previously presented and then we show the problem of acyclicity and then the necessity of
the assumption (A3).

Example 13.14. Let us consider the net in Figure 13.4(a) and the two languages L = {ε, t1, t1t1,
t1t1t2} and L F = {ε, t1, t2, t1t1, t2t1, t2t2, t1t1t2, t2t1t1, t2t2t1, t2t2t2} thus k = 3. Assume that we
want to determine the Petri net system that minimizes the arc weights associated with the
fault transition such that P (Lk (N F , M0)) ∈Λ(L F). This requires the solution of a linearized
IPP of the form (13.13) where

E = {(ε, t1), (t1, t1), (t1t1, t2)},

E F = {(ε, t1), (ε, t2), (t1, t1), (t2, t1), (t2, t2), (t1t1, t2), (t2t1, t1), (t2t2, t1), (t2t2, t2)},

Ẽ F = {(ε, t2), (t2, t1), (t2, t2), (t2t1, t1), (t2t2, t1), (t2t2, t2)},

and
D̃F = {(t1, t2), (t1t1, t1), (t2t1, t2)}.

For Γ= 1 and Γ= 2 we get no feasible solution, while for Γ= 3 we find the faulty net system
in Figure 13.4(b), where Pr e f = [2 0]T and Post f = [0 2]T . ¥

Example 13.15. Let us consider the net in Figure 13.5(a) and the two languages L = {ε, t1, t1t1,
t1t1t2} and L F = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1}, thus k = 3. We note that a solution for these
two languages exists and it is represented by the faulty net system in Figure 13.5(b), but if
we apply the identification procedure proposed we obtain that no integer solution is found,
even if the constraints relative to the acyclicity of the fault transition, i.e., the constraints
(c) in (13.13), are removed. Since our constraints are based on the incidence matrix, the
two nets shown in Figure 13.5(b) and Figure 13.5(c) are equivalent as far as our procedure is
concerned. The problem is that for the net in Figure 13.5(c) the disabling constraint on the
couple (ε, t2) is not verified, since transition t2 can be enabled at M0 after t f has fired twice.
Thus, to the best of our knowledge, there is no remedy to this problem.

¥

13.4. FAULT IDENTIFICATION IN CASE II 185

2

p1

t1

p2 t2

(a) (b)

tf

p1

t1

p2 t2

2

2 2 2 2

Figure 13.4: (a) The faulty-free net system and (b) the faulty net system identified in Exam-
ple 13.14.

2

p1

t1

p2 t2

(a) (b)

tf

p1

t1

p2 t2 p1

t1

p2 t2

(c)

tf

2 2 2 2 2 2

Figure 13.5: (a) The faulty-free net system of Example 13.15, (b) the faulty net system where
t f is not loop-free, (c) the equivalent net of the one represented in (b).

Part IV

Conclusion

187

Chapter 14

Concluding remarks

In the last part of the thesis conclusion for diagnosis and identification of Petri nets are
drawn.

14.1 Concluding remarks for diagnosis

The second part of the thesis has been dedicated to the diagnosis of Petri nets (PNs). One of
the goal of this part is to provide some results on diagnosis and diagnosability of labeled PNs.
In particular, in Chapter 6 we presented a fault detection approach for discrete event systems
using PNs. We assume that some of the transitions of the net are unobservable, including all
those transitions that model faulty behaviors. Our diagnosis approach is based on the notion
of basis marking and justification, that allow us to characterize the set of markings that are
consistent with the actual observation, and the set of unobservable transitions whose firing
enable it. Four diagnosis states are defined, each one corresponding to a different degree of
alarm. This approach applies to all net systems whose unobservable subnet is acyclic. If the
net system is also bounded the proposed approach may be significantly simplified moving
the most burdensome part of the procedure off-line, thanks to the construction of a graph,
called the basis reachability graph.

In Chapter 7 we extended the diagnosis approach presented in Chapter 6 to labeled PNs, i.e.,
nets where two or more transitions may share the same label. We extended the notions of
basis marking and justifications. As for the unlabeled PNs, we defined four diagnosis states,
we gave procedure to compute the actual diagnosis state given the current observation, and
we showed that for bounded PNs the most burdensome part of the procedure can be moved
off-line defining a particular graph, that we call basis reachability graph.

In Chapter 8 we first gave necessary and sufficient conditions for diagnosability and then
we presented a method to test diagnosability. This method, that is inspired by the method
proposed by the University of Michigan Group [76, 77], for finite state automata, is based
on the analysis of two graphs that depend on the structure of the net, including the faults

189

190 CHAPTER 14. CONCLUDING REMARKS

model, and the initial marking. The first graph is called basis reachability diagnoser, the
second one is called modified basis reachability graph. At the end of the chapter we also
made a comparison between our diagnosis procedure and Diagnoser approach.

Finally, Chapter 9 is dedicated to the computational complexity comparison of two diagnos-
tic procedures. The first procedure has been developed by the University of Michigan Group
and has been presented in Chapter 4 while the second procedure is the one presented in
Chapter 7.

14.2 Concluding remarks for identification

The third part of this thesis is dedicated to the identification of PNs. The goal of this part is
to show new results and provide original techniques for the identification of bounded and
unbounded PNs. In particular, in Chapter 10 we presented an identification procedure that
synthesizing a PN starting from a finite language. First we considered the problem of identi-
fying a free labeled PN system, i.e., all transition labels are distinct. The set of transitions and
the number of places is assumed to be known, while the net structure and the initial marking
are computed solving an integer programming problem. Then we extended this approach
in several ways introducing additional information about the model (structural constraints,
conservative components, stationary sequences) or about its initial marking. We also treated
the problem of synthesizing a bounded net system starting from an automaton that gener-
ates its language. Moreover, we showed how the approach can also be generalized to the
case of labeled PNs, where two or more transitions may share the same label. In particular,
in this case we imposed that the resulting net system is deterministic. In both cases the iden-
tification problem can still be solved via an integer programming problem. In the last part
of the chapter, we analyze the computational complexity of our identification approach. In
particular, we investigated how the computational time depends on the cardinality of the
set of finite length strings that describe the language, and on the chosen performance index.
To this aim we considered the language generated by a particular PN system that models a
sender-receiver process. Different cases are examined with different number of places and
transitions, and thus different languages generated. The numerical simulations we carried
out enabled us to conclude that the computational time become prohibitive for languages
that are described by a large number of finite length strings, if we want to determine a so-
lution that is optimal with respect to a given performance index. On the contrary, compu-
tational times are negligible if we limit to consider any admissible net system, e.g., the first
admissible solution computed by CPLEX when solving the optimization problem.

In Chapter 11 we presented an identification procedure for unbounded PNs. In particular
we solved the following problem: given an automaton that represents the coverability graph
of a PN, determine a PN system whose coverability graph is isomorphic to the automaton.
The proposed approach requires solving an integer programming problem whose set of un-
knowns contains the elements of the pre and post incidence matrices and the initial marking
of the net.

The main drawback of our identification procedure is the computational complexity that
grows exponentially with the length of the longest string in the input language. We tried to

14.2. CONCLUDING REMARKS FOR IDENTIFICATION 191

solve this problem in Chapter 12 showing an identification technique that solves the same
problem presented in Chapter 10 using linear programming techniques. The procedure we
proposed identifies a net whose number of places is equal to the cardinality of the set of dis-
abling constraints. We provided a criterion to check if the computed solution has a minimal
number of places, and, if such is not the case, we discussed two approaches to reduce this
number. Note however that the procedure does not ensure to determine a net with minimal
number of places. At the end of the chapter we also compared our identification procedure
with the theory of regions approach.

Finally, a fault model identification with PNs is presented Chapter 13. It is well known that
most of the fault identification problems in the DES literature assume knowledge of the
structure of the net system, including the nature (and behavior) of the possible faults. Here
we dealt with this problem within the framework of PNs by removing the requirement that
the nature (and behavior) of the fault is known. In particular, we devised a way to identify
the structure of the faulty transitions of the system given its language. Then, we generalized
this procedure to unobservable faults, in which case the structure of the faulty system needs
to be recognized from the knowledge of the structure of the fault-free system, and the pro-
jection of the faulty system language on the set of non-faulty events, that are assumed to be
observable.

Bibliography

[1] D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765, 1982.
[cited at p. 5, 17]

[2] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for the synthesis of
bounded nets. Proceedings of CAAP’95, Lecture Notes in Computer Science, 915:647–679, 1995.
[cited at p. 5, 18, 19, 40]

[3] E. Badouel and P. Darondeau. On the synthesis of general Petri nets. Technical Report 3025,
1996. [cited at p. 5, 18, 19, 45]

[4] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in Computer Science: Lectures on
Petri Nets I: Basic Models, 1491:529–586, 1998. [cited at p. 5, 18, 19, 40]

[5] F. Balduzzi, A. Giua, and G. Menga. First–order hybrid Petri nets: a model for optimization and
control. IEEE Trans. on Automation, 16:382–399, 2000. [cited at p. 15]

[6] F. Basile, P. Chiacchio, and G. De Tommasi. An efficient approach for on-line diagnosis of discrete
event systems. In Proc. 15th IEEE Mediterranean Conference on Control and Automation, Athens,
Greece, June 2007. [cited at p. 5, 16]

[7] F. Basile, P. Chiacchio, and G. De Tommasi. An efficient approach for online diagnosis of discrete
event systems. IEEE Trans. on Automatic Control, 2008, in press. [cited at p. 5, 16]

[8] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics and constraints.
Automatica, 35(3):407–429, 1999. [cited at p. 209]

[9] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis of asynchronous discrete event systems:
A net unfolding approach. IEEE Trans. on Automatic Control, 48(5):714–727, 2003. [cited at p. 5, 16]

[10] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri nets from infinite partial
languages. In ACSD08: Proceedings of the 8th International Conference on Application of Con-
currency to System Design, pages 170–179, Xian, China, 2008. [cited at p. 5, 18, 19]

[11] R.K. Boel and G. Jiroveanu. Distributed contextual diagnosis for very large systems. In Proc. IFAC
WODES’04: 7th Work. on Discrete Event Systems, pages 343–348, September 2004. [cited at p. 52]

[12] R.K. Boel and J.H. van Schuppen. Decentralized failure diagnosis for discrete-event systems with
costly communication between diagnosers. In Proc. WODES’02: 6th Work. on Discrete Event
Systems, pages 175–181, October 2002. [cited at p. 5, 14]

193

194 BIBLIOGRAPHY

[13] T. Bourdeaud’huy and P. Yim. Synthèse de réseaux de Petri à partir d’exigences. In Actes de la
5me conf. francophone de Modélisation et Simulation, pages 413–420, Nantes, France, Septem-
ber 2004. [cited at p. 5, 18]

[14] R.E. Burkard and F. Rendl. Lexicographic bottleneck problems. Operations Research Letters,
10:303–308, 1991. [cited at p. 126]

[15] M.P. Cabasino. Diagnosis of discrete event systems using automata and Petri nets. Master’s
thesis, Dep. Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy, 2005. (In
Italian). [cited at p. 110]

[16] M.P. Cabasino, A. Giua, C. N. Hadjicostis, and C. Seatzu. Fault model identification with Petri
nets. In Proc. IFAC WODES’08: 9th Work. on Discrete Event Systems, pages 455–461, May 2008.
[cited at p. 6, 9]

[17] M.P. Cabasino, A. Giua, and C. Seatzu. Computational complexity analysis of a Petri net identifi-
cation procedure. In 2006 Int. Symposium on Nonlinear Theory and its Applications, September
2006. [cited at p. 9]

[18] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of deterministic Petri nets. In Proc. IFAC
WODES’06: 8th Work. on Discrete Event Systems, Ann-Arbor, MI, USA, July 2006. [cited at p. 9]

[19] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of unbounded Petri nets from their con-
verability graph. In Proc. 45th IEEE Conf. on Decision and Control, San Diego, California USA,
December 2006. [cited at p. 9]

[20] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri nets from samples of their lan-
guages. Discrete Events Dynamical Systems, 17(4):447–474, 2007. [cited at p. 9, 164]

[21] M.P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event systems using Petri nets
with unobservable transitions. Automatica, 2008. Preliminary accepted. [cited at p. 8]

[22] M.P. Cabasino, A. Giua, and C. Seatzu. Linear programming techniques for the identification
of Place/Transition nets. In Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico,
December 2008. [cited at p. 9]

[23] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of bounded Petri nets. In Proc. 48th IEEE
Conf. on Decision and Control, December 2009. Submitted. [cited at p. 9]

[24] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosis of discrete event systems using labeled Petri
nets. In Proc. 2nd IFAC Workshop on Dependable Control of Discrete Systems (Bari, Italy), June
2009. Submitted. [cited at p. 8]

[25] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of unbounded Petri nets from their cover-
ability graph. 2009. Preliminary accepted. [cited at p. 9]

[26] B. Caillaud. Synet : A synthesizer of distributable bounded Petri-nets from finite automata.
http://www.irisa.fr/s4/tools/synet/. 2002. [cited at p. 19]

[27] J. Carmona, J. Cortadella, and A. Kishinevsky. A region-based algorithm for discovering Petri
nets from event logs. In BPM08: Proceedings of the 6th International Conference on Business
Process Management, pages 358–373, Berlin, Heidelberg, 2008. [cited at p. 20]

BIBLIOGRAPHY 195

[28] J. Carmona, J. Cortadella, A. Kishinevsky, L. Lavagno, A. Kondratyev, and A. Yakovlev. A symbolic
algorithm for the synthesis of bounded Petri nets. In ICATPN08: Proceedings International Con-
ferences on Application and Theory of Petri Nets and Other Models of Concurrency, pages 92–111,
Berlin, Heidelberg, 2008. [cited at p. 5, 18, 19]

[29] S. Lafortune C.G. Cassandras. Introduction to discrete event systems, Second Edition. Springer,
2007. [cited at p. 30, 31, 32, 33, 35, 37, 86, 205]

[30] S.L. Chung. Diagnosing pn-based models with partial observable transitions. International Jour-
nal of Computer Integrated Manufacturing, 12 (2):158–169, 2005. [cited at p. 5, 17]

[31] D. Corona, A. Giua, and C. Seatzu. Marking estimation of Petri nets with silent transitions. IEEE
Trans. on Automatic Control, 52(9):1695–1699, September 2007. [cited at p. 25, 52, 57]

[32] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets from finite transi-
tion systems. IEEE Transactions on Computers, 47(8):859–882, 1998. [cited at p. 5, 18, 19]

[33] P. Dague, P. Deves, P. Luciani, and P. Taillibert. Analog systems diagnosis. Readings in Model
Based Diagnosis, 1992. [cited at p. 5, 13]

[34] R. Davis and W. Hamscher. Model based reasoning: Troubleshooting. Readings in Model Based
Diagnosis, 1992. [cited at p. 5, 13]

[35] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for failure diag-
nosis of discrete-event systems. Discrete Events Dynamical Systems, 10(1):33–86, January 2000.
[cited at p. 5, 14]

[36] W.F. (IV) Doran and D.B. Wales. The partition algebra revisited. Journal of Algebra, 231(1):265–
330, September 2000. [cited at p. 166]

[37] M. Dotoli, M.P. Fanti, and A.M. Mangini. Fault detection of discrete event systems using Petri
nets and integer linear programming. In Proc. of 17th IFAC World Congress, Seoul, Korea, July
2008. [cited at p. 5, 16]

[38] M. Dotoli, M.P. Fanti, and A.M. Mangini. Real time identification of discrete event systems using
Petri nets. Automatica, 44(5):1209–1219, 2008. [cited at p. 5, 18]

[39] M. Dotoli, M.P. Fanti, and A.M. Mangini. Fault monitoring of discrete event systems by first order
hybrid Petri nets. In Workshop on Petri Nets and Agile Manufacturing, a satellite event of the 29th
Int. Conf. on Application and Theory of Petri Nets and Other Models of Concurrency, Xi’an, China,
June 2008 (to appear). [cited at p. 5, 15]

[40] D. Dvorak and B. Kuipers. Model based monitoring of dynamic systems. Readings in Model
Based Diagnosis, 1992. [cited at p. 5, 13]

[41] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part i,ii. Acta Informaticag,
27(4):315–368, 1989. [cited at p. 18]

[42] P. Frank. Fault diagnosis in dynamic systems using analytical and knowledge based redundancy
- a survey and some new results. Automatica, 26, 1990. [cited at p. 5, 12]

[43] F. Garcia-Valles and J.M Colom. Implicit places in net systems. In Proc. of the 8th Int. Work. on
Petri Nets and Performance Models, pages 104 – 113, Zaragoza, Spain, 1999. [cited at p. 171]

196 BIBLIOGRAPHY

[44] S. Genc and S. Lafortune. Distributed diagnosis of place-bordered Petri nets. IEEE Trans. on
Automation Science and Engineering, 4(2):206–219, 2007. [cited at p. 5, 16]

[45] A. Ghaffari, N. Rezg, and X. Xie. Design of a live and maximally permissive Petri net controller
using the theory of regions. IEEE Transactions on Robotics and Automation, 19(1):137–142, 2003.
[cited at p. 6, 39, 40, 41]

[46] M. Ghazel, A. Togueni, and M. Bigang. A monitoring approach for discrete events systems based
on a time Petri net model. In Proc. of 16th IFAC World Congress, Prague, Czech Republic, July
2005. [cited at p. 5, 15]

[47] E. Mark Gold. Complexity of automaton identification from given data. Information and Con-
trol, 37(3):302–320, 1978. [cited at p. 5, 17]

[48] C.N. Hadjicostis and G.C. Veghese. Monitoring discrete event systems using Petri net embed-
dings. Lecture Notes in Computer Science, 1639:188–207, 1999. [cited at p. 5, 15]

[49] K. Hiraishi. Construction of a class of safe Petri nets by presenting firing sequences. Lecture
Notes in Computer Science. [cited at p. 5, 18]

[50] http://bode.diee.unica.it/dehs/CDC06. [cited at p. 156]

[51] S. Jiang and R. Kumar. Failure diagnosis of discrete-event systems with linear-time temporal
logic specifications. IEEE Trans. on Automatic Control, 49(6):934–945, June 2004. [cited at p. 5, 14]

[52] G. Jiroveanu and R.K. Boel. Contextual analysis of Petri nets for distributed applications. In
16th Int. Symp. on Mathematical Theory of Networks and Systems (Leuven, Belgium), July 2004.
[cited at p. 52]

[53] S. Lafortune. Executables of the umdes-lib software library for solaris, linux, mac and windows
are publicly available. http://www.eecs.umich.edu/umdes/toolboxes.html. [cited at p. 107, 109]

[54] S. Lai, D. Nessi, M.P. Cabasino, A. Giua, and C. Seatzu. A comparison between two diagnostic
tools based on automata and Petri nets. In Proc. IFAC WODES’08: 9th Work. on Discrete Event
Systems, pages 144–149, May 2008. [cited at p. 9, 103, 104]

[55] S. Lapp and G. Powers. Computer aided synthesis of fault trees. IEEE Trans. Reliability, 26(1):2–
13, 1977. [cited at p. 5, 12]

[56] W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie. Fault tree analysis, methods, and applications -
A review. IEEE Trans. Reliability, 34:194–203, 1985. [cited at p. 5, 12]

[57] D. Lefebvre and C. Delherm. Diagnosis of DES with Petri net models. IEEE Trans. on Automation
Science and Engineering, 4(1):114–118, 2007. [cited at p. 5, 15]

[58] L.X. Li, Y. Ru, and C.N. Hadjicostis. Least-cost firing sequence estimation in labeled Petri nets.
In Proc. 45th IEEE Conf. on Decision and Control, San Diego, California USA, December 2006.
[cited at p. 21]

[59] F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event Dynamic
Systems, 4(2):197–212, 1994. [cited at p. 5, 13]

[60] F. Lin, J. Markee, , and B. Rado. Design and test of mixed signal circuits: a discrete event ap-
proach. In Proc. 32rd IEEE Conf. on Decision and Control, pages 246–251, 1993. [cited at p. 5, 13]

BIBLIOGRAPHY 197

[61] L. Lin and Y. Jiang. The computation of hitting sets: review and new algorithms. Information
Processing Letters, 86:177–184, 2003. [cited at p. 168]

[62] R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri nets from finite partial
languages. In ACSD07: Proceedings of the 7th International Conference on Application of Con-
currency to System Design, pages 157–166, Washington, DC, USA, 2007. [cited at p. 5, 18, 19]

[63] R. Lorenz and G. Juhás. Towards synthesis of Petri nets from scenarios. In Proc. of 27th Inter-
national Conference on Applications and Theory of Petri Nets and Other Models of Concurrency,
pages 302–321, 2006. [cited at p. 5, 18, 19]

[64] R. Lorenz, G. Juhás, and S. Mauser. How to synthesize nets from languages – a survey. In Proc.
2007 Winter Simulation Conference, Washington DC, USA, December 2007. [cited at p. 5, 6, 18, 19,

39, 42]

[65] J. Lunze and J. Schroder. Sensor and actuator fault diagnosis of systems with discrete inputs and
outputs. 34(3):1096–1107, April 2004. [cited at p. 5, 14]

[66] J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a generalized
Petri net. In Informatik-Fachberichte 52: Application and Theory of Petri Nets., pages 301–310.
Springer-Verlag, 1982. [cited at p. 53]

[67] M.E. Meda-Campaña and E. López-Mellado. Incremental synthesis of Petri net models for iden-
tification of discrete event systems. In Proc. 41th IEEE Conf. on Decision and Control, pages
805–810, Las Vegas, Nevada USA, December 2002. [cited at p. 5, 18]

[68] M.E. Meda-Campaña and E. López-Mellado. Required event sequences for identification of dis-
crete event systems. In Proc. 42th IEEE Conf. on Decision and Control, pages 3778–3783, Maui,
Hawaii, USA, December 2003. [cited at p. 5, 18]

[69] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–
580, April 1989. [cited at p. 140]

[70] C.A. Petri. Kommunication mit Automaten. PhD thesis, Institut fur Instrumentelle Mathematik,
Schriften des IIM, No. 3, Bonn, Germany, 1962. [cited at p. 4, 24]

[71] J. Prock. A new tecnique for fault detection using Petri nets. Automatica, 27(2):239–245, 1991.
[cited at p. 5, 15]

[72] A. Rey. Diagnosis of Petri nets using the Basis Reachability Graph. Master’s thesis, Dep. Electric
and Electronic Engineering, University of Cagliari, Cagliari, Italy, 2007. (In Italian). [cited at p. 107,

109]

[73] Y. Ru and C. N. Hadjicostis. State estimation in discrete event systems modeled by labeled Petri
nets. In Proc. 45th IEEE Conf. on Decision and Control, San Diego, California USA, December
2006. [cited at p. 21]

[74] A. Ramirez-Treviño E. Ruiz-Beltràn, I. Rivera-Rangel, and E. Lopez-Mellado. Online fault diag-
nosis of discrete event systems. A Petri net-based approach. IEEE Trans. on Automation Science
and Engineering, 4(1):31–39, 2007. [cited at p. 5, 15]

[75] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems. IEEE
Trans. on Automatic Control, 43(7):908–929, July 1998. [cited at p. 5, 13]

198 BIBLIOGRAPHY

[76] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of
discrete-event systems. IEEE Trans. on Automatic Control, 40 (9):1555–1575, 1995. [cited at p. 5, 6,

13, 14, 17, 29, 30, 35, 36, 189]

[77] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diagno-
sis using discrete-event models. IEEE Trans. Control Systems Technology, 4(2):105–124, 1996.
[cited at p. 5, 6, 13, 17, 29, 30, 189]

[78] W. T. Scherer and C. C. White. A survey of expert systems for equipment maintenance and diag-
nostics. Fault Detection and Reliability: Knowledge Based & Other Approaches, 1987. [cited at p. 5,

12]

[79] R.S. Sreenivas. On minimal representations of Petri net languages. In Proc. WODES’02: 6th Work.
on Discrete Event Systems, pages 237–242, Zaragoza, Spain, October 2002. [cited at p. 131, 132]

[80] R.S. Sreenivas. On minimal representations of Petri net languages. IEEE Trans. on Automatic
Control, 51(5):799–804, 2006. [cited at p. 5, 21]

[81] V.S. Sreenivas and M.A. Jafari. Fault detection and monitoring using time Petri nets. IEEE Trans.
Systems, Man and Cybernetics, 23(4):1155–1162, 1993. [cited at p. 5, 15]

[82] T. Ushio, L. Onishi, and K. Okuda. Fault detection based on Petri net models with faulty behav-
iors. In Proc. SMC’98: IEEE Int. Conf. on Systems, Man, and Cybernetics (San Diego, CA, USA),
pages 113–118, October 1998. [cited at p. 5, 16]

[83] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M. Weijters.
Workflow mining: A survey of issues and approaches. IEEE Trans. on Data & Knowledge Engi-
neering, 47(2):237–267, 2003. [cited at p. 20]

[84] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs. IEEE Trans. on Data & Knowledge Engineering, 16(9):1128–1142, 2004.
[cited at p. 20]

[85] J.M.E.M. van der Werf, B.F. van Dongen, B. F., C. A. Hurkens, and A. Serebrenik. Process discovery
using integer linear programming. In PETRI NETS ’08: Proceedings of the 29th international
conference on Applications and Theory of Petri Nets, pages 368–387, 2008. [cited at p. 20]

[86] J.H. van Schuppen. System theory for system identification. Journal of Econometrics, 118(1-
2):313–339, January-February 2004. [cited at p. 5, 17]

[87] N. Viswanadham. Control systems : Reliability. Systems and Control Encyclopedia: Theory, Tech-
nology, Applications, 1987. [cited at p. 5, 12]

[88] N. Viswanadham and T. L. Johnson. Fault detection and diagnosis of automated manufactur-
ing systems. In Proc. 27th IEEE Conf. on Decision and Control, pages 2301–2306, Austin, Texas,
December 1988. [cited at p. 5, 12]

[89] R. D. Vries. An automated methodology for generating a fault tree. IEEE Trans. Reliability,
39(1):76–86, 1990. [cited at p. 5, 12]

[90] Y. Wen and M. Jeng. Diagnosability analysis based on T-invariants of Petri nets. In Networking,
Sensing and Control, 2005. Proceedings, 2005 IEEE., pages 371– 376, March 2005. [cited at p. 17]

BIBLIOGRAPHY 199

[91] Y. Wen, C. Li, and M. Jeng. A polynomial algorithm for checking diagnosability of Petri nets. In
Proc. SMC’05: IEEE Int. Conf. on Systems, Man, and Cybernetics, pages 2542– 2547, October 2005.
[cited at p. 17]

[92] A. S. Willsky. A survey of design methods for failure detection in dynamic systems. Automatica,
12, 1976. [cited at p. 5, 12]

[93] Y. Wu and C.N. Hadjicostis. Algebraic approaches for fault identification in discrete-event sys-
tems. IEEE Trans. Robotics and Automation, 50(12):2048–2053, 2005. [cited at p. 5, 15]

[94] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in discrete-event systems:
framework and model reduction. IEEE Trans. on Automatic Control, 48(7):1199–1212, July 2003.
[cited at p. 5, 14, 111]

List of Publications Related to the
Thesis

Published papers

Journal papers

• M.P. Cabasino, A. Giua, C. Seatzu, Identification of Petri nets from knowledge of their language.
Discrete Event Dynamic Systems, Vol. 17, No. 4, pp. 447-474, Dec 2007. (Relation to Chap-
ter 10)

• M.P. Cabasino, A. Giua, C. Seatzu, Fault detection for discrete event systems using Petri nets with
unobservable transitions. Automatica, Preliminary accepted. (Relation to Chapter 6)

• M.P. Cabasino, A. Giua, C. Seatzu, Identification of unbounded Petri nets from their coverability
graph. IEEE Transactions on Automatic Control, Conditionally accepted. (Relation to Chap-
ter 11)

Conference papers

• M.P. Cabasino, A. Giua and C. Seatzu, Diagnosability of bounded Petri nets, 48th IEEE Conf. on
Decision and Control,(Submitted). (Relation to Chapter 8)

• M.P. Cabasino, A. Giua and C. Seatzu, Diagnosis of discrete event systems using labeled Petri nets,
Dependable Control of Discrete Systems,(Submitted). (Relation to Chapter 7)

• M.P. Cabasino, A. Giua and C. Seatzu, Linear Programming Techniques for the Identification of
Place/Transition Nets, in 47th IEEE Conf. on Decision and Control, (Cancun, Mexico), Decem-
ber 2008. (Relation to Chapter 12)

• M.P. Cabasino, A. Giua, C. N. Hadjicostis and C. Seatzu, Fault Model Identification with Petri
Nets, in WODES’08: 9th Int. Workshop on Discrete Event Systems, (Göteborg, Sweden), May
2008. (Relation to Chapter 13)

• S. Lai, D. Nessi, M.P. Cabasino, A. Giua and C. Seatzu, A Comparison Between Two Diagnostic
Tools Based on Automata and Petri Nets, in WODES’08: 9th Int. Workshop on Discrete Event
Systems, (Göteborg, Sweden), May 2008. (Relation to Chapter 9)

201

202 BIBLIOGRAPHY

• M.P. Cabasino, A. Giua and C. Seatzu, Identification of unbounded Petri nets from their cover-
ability graph, in 45th IEEE Conf. on Decision and Control, (San Diego, CA, USA), Dec 2006.
(Relation to Chapter 11)

• M.P. Cabasino, A. Giua and C. Seatzu, Computational complexity analysis of a Petri net identifi-
cation procedure, in 2006 Int. Symposium on Nonlinear Theory and its Applications, (Bologna,
Italy), Sep 2006. (Relation to Chapter 10)

• M.P. Cabasino, A. Giua and C. Seatzu, Identification of deterministic Petri nets, in WODES’06:
8th Int. Workshop on Discrete Event Systems, Ann Arbor, MI, USA), Jul 2006. (Relation to Chap-
ter 10)

Appendices

203

Appendix A

Language notation and definitions

In the following we give a brief description of languages. For more details we refer to [29].

A language is a set of words.

Definition A.1. A language L defined over an alphabet E is a set of words defined over this alphabet.
The cardinality of the language is the number of words that it contains and is denoted as |L|. ¥

A language can be represented in several ways.

Example A.2. Given an alphabet E = {a,b,c}, let us consider the following languages:

L1 = {a,b, ac ,ba}, L2 = {ε, a}, L3 = {w ∈ E∗ | |w | ≥ 3}, L4 =;, L5 = E∗.

Language L1 contains three words, thus |L1| = 3. Language L2 contains two words, one of them is the
empty word. Language L3 is composed by all words whose length is greater than or equal to 3. Language
L4 contains no word. Language L5 contains all words defined over E. ¥

Note that the cardinality of a language L can be either null (as for L4 in the above example), or finite (as
for L1,L2 in the above example), or infinite (as for L3,L5 in the above example). Moreover a language
can be described either listing all its words (as for L1,L2 in the above example) or using a set theory
notation (as for L3,L4,L5 in the above example).

Operations on languages

The usual set operations, such as union, intersection, difference, and complement with respect to E∗,
are applicable to languages since languages are sets. Here we recall some operations on languages:

• Concatenation: Let L1,L2 ⊆ E∗. We define concatenation of L1 and L2 the language

L1L2 = {w = w1w2 ∈ E∗ : w1 ∈ L1 and w2 ∈ L2}.

205

206 APPENDIX A. LANGUAGE NOTATION AND DEFINITIONS

i.e., L1L2 is composed by all words composed by the concatenation of a word in L1 with a word
in L2.

• Prefix-closure: Let L ⊆ E∗. The prefix-closure of L is the language

L̄ = {u ∈ E∗ : ∃w ∈ L : (u ¹ w)},

i.e., the prefix-closure of L is the language denoted by L̄ and consisting in all the prefixes of all
words in L. In general L̄ ⊆ L. A language L is said to be prefix-closed if L = L̄. Thus language is
prefix-closure if any prefix of any word in L is also an element of L.

• Kleene-closure: Let L ⊆ E∗. The Kleene-closure of L is the language

L∗ = {ε}∪L∪LL∪LLL∪·· ·

i.e., is the set of all words obtained by the concatenation of a finite (but possibly arbitrarily
large) number of elements of L.

Example A.3. Let E = {a,b,c} and consider the three languages L1 = {ε, a}, L2 = {a,b, ab} and L3 =
{ε, a, aca}. It holds:

L1L2 = {a,b, aa, ab, aab}
L1L3 = {ε, a, aa, aca, aaca}

L̄1 = L1

L̄2 = {ε, a,b, ab}
L̄3 = {ε, a, ac , aca}
L∗

1 = {ε, a, aa, aaa, . . .}
L∗

2 = {ε, a,b, aa, ab, aab, . . .}
L∗

3 = {ε, a, aca, aa, aaca, acaa, acaaca, . . .}.

¥

Appendix B

Equivalence relations and classes

Let us introduce the defintions of equivalence relation and equivalence class. Let A be a set. A relation
R tells for any two members, say a and b, of S whether a is in that relation to b. For example, if S is a
set of numbers one relation is =. For any two numbers a and b one can determine if a = b or not.

Abstractly considered, any relation on the set S is a function from the set of ordered pairs from S,
called the Cartesian product S ×S, to the set {true, false}. The relation is usually identified with the
pairs such that the function value equals true.

An equivalence relation R is a special type of relation.

Definition B.1. Let A be a set and ∼ be a binary relation on A. ∼ is called an equivalence relation if
and only if for all elements a,b,c ∈ A hold the following properties:

• Reflexivity: a ∼ a

• Symmetry: if a ∼ b then b ∼ a

• Transitivity: if a ∼ b and b ∼ c then a ∼ c.

The equivalence class of a under ∼, denoted [a], is defined as [a] = {b ∈ A | a ∼ b}. ¥

In simple words, relation ∼ on A is an equivalence relation if it is reflexive, symmetric and transitive.
An example of such is equality on a set. One might think of equivalence as a way to glob together
elements that can be considered the same relative to a property. That is elements become indistin-
guishable relative to the relation. For example in arithmetic we do not think twice about 1/2 and
2/4 as having the same value but they are different objects. In geometry, similarity of triangles is an
equivalence relation. A right angled triangle with legs of length 3 and 4 and hypotenuse of length 5 is
not the same as one with lengths 6, 8 and 10. Yet, we think of them as equivalent because the ratios of
the corresponding sides are the same.

For each a ∈ A, we define the equivalency class containing a to be the set of those elements which are
equivalent to a. We denote this set by [a]. The equivalence classes have some interesting properties.

• No equivalence class is empty since a ∈ [a].

207

208 APPENDIX B. EQUIVALENCE RELATIONS AND CLASSES

• Two equivalence classes are either equal or disjoint. In fact, a and b are equivalent if and only
if [a] = [b].

• Each element of A belongs to some equivalence class (in fact a ∈ [a]).

• The union of all the equivalence classes is A. We say that the equivalence classes partition
A. A partition of A is a collection of non empty disjoint subsets of A and whose union is A.
Thus the equivalence classes of a relation are a partition. Each equivalence relation on a set
partitions the set into its equivalence classes but also for each partition of the set there is an
equivalence relation whose equivalence classes are the sets in the partition. As an example,
if A = {1,2,3} one partition is {1,2}, {3}. Consequently, there is an equivalence relation on A
whose equivalence classes are these two subsets.

One problem is how should we refer to the equivalence classes? As we noted above [a] = [b] whenever
a and b are equivalent. What we do is choose one and only one element of each equivalence class to
represent the class. That element is called a class representative. The set of representatives is called
the set of equivalence class representatives. There are usually many such ways to construct this set of
representatives.

Appendix C

Logical constraints transformation

In the following we provide an efficient technique to convert logical or constraints into linear alge-
braic constraints, that is inspired by the work of Bemporad and Morari [8]. In particular, we consider
two different cases: inequality constraints and equality constraints.

Inequality constraints

Let us consider the following constraint:
r∨

i=1
~ai ≤~0n (C.1)

where ~ai ∈Rn , i = 1, . . . ,r , and
∨

denotes the logical or operator.

Equation (C.1) can be rewritten in terms of linear algebraic constraints as:





~a1 ≤ z1 · ~K
...
~ar ≤ zr · ~K
z1 + . . .+ zr = r −1
z1, . . . , zr ∈ {0,1}

(C.2)

where ~K is any constant vector in Rn that satisfies the following relation

K j > max
i∈{1,...,r }

ai (j), j = 1, . . . ,n.

In fact, if zi = 0 then the i -th constraint is active, while if zi = 1 it is trivially verified, thus resulting
in a redundant constraint. Moreover, the condition z1 + . . . + zr = r − 1 implies that one and only
one zi is equal to zero, i.e., only one constraint is active. This means that ~ai ≤~0n for one i , while
no condition is imposed for the other i ’s (in such cases the corresponding constraints may either be
violated or satisfied). Obviously, analogous considerations can be repeated if the ≤ constraints in
(C.1) are replaced by ≥ constraints.

209

210 APPENDIX C. LOGICAL CONSTRAINTS TRANSFORMATION

Equality constraints

Let us now consider the constraint
r∨

i=1
~ai =~bi (C.3)

where ~ai ,~bi ∈Rn , i = 1, . . . ,r .

Equation (C.3) can be rewritten in terms of linear algebraic constraints as:





~a1 −~b1 ≤ z1 · ~K
~a1 −~b1 ≥−z1 · ~K
...
~ar −~br ≤ zr · ~K
~ar −~br ≥−zr · ~K
z1 + . . .+ zr = r −1
z1, . . . , zr ∈ {0,1}

(C.4)

where ~K is any constant vector in Rn such that

K j > max
i∈{1,...,r }

|ai (j)−bi (j)|, j = 1, . . . ,n.

Repeating a similar reasoning as in the previous case, we can immediately observe that, if zi = 0 then

{
~ai −~bi ≤~0n

~ai −~bi ≥~0n
⇒ ~ai =~bi .

On the contrary, if zi = 1 then {
~ai −~bi ≤ ~K
~ai −~bi ≥−~K

that are trivially verified, i.e., they are redundant constraints. Finally, the condition on the sum of zi ’s
imposes that one constraint is active, i.e., ~ai =~bi for at least one i ∈ {1, . . . ,r }.

