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Abstract

The aim of the present work is to build a Coloured Petri net (CPN) model of a critical
system and to perform two tasks: an analysis of the system's performance and a formal
veri�cation of the model. The case study system used for these purposes is composed
of two components functioning in a parallel con�guration, thus allowing to improve the
whole system's reliability. The physical model of system's behaviour (with failures and
reparations) and the logical model of its behaviour are implemented as two di�erent CP
nets in a software named CPN Tools. We will see that a single CPN model is not su�cient
to perform the two tasks. Thus, two model are developed. The �rst model is used to carry
out the performance analysis and the second CPN model will be used to carry out the formal
model veri�cation. While the system's performance analysis can be performed using CPN
Tools and MATLAB, the formal veri�cation is performed by three di�erent tools: the CPN
Tools integrated state space tool, ASAP tool, and the software ProM. We will see that the
formal model veri�cation is quite complicated and none of the three tools perform a reliable,
formal, easily implemented analysis. We can however perform a formal model veri�cation,
but the improvements of the available documentation (especially for ASAP) are necessary
to exploit all the capabilities of these tools.

Lo scopo di questo lavoro di tesi é quello di realizzare un modello di Rete di Petri
Colorata (CPN) per un sistema critico con due obiettivi : l'analisi delle prestazioni temporali
del sistema e la veri�ca formale del modello. Il caso di studio del sistema discusso in questo
lavoro di tesi é composto da due componenti disposti in con�gurazione parallela, questo
ci permette di migliorare l'a�dabilitá complessiva del sistema. Il modello del sistema é
descritto da due reti CPN, uno per il comportamento �sico (con i guasti e le riparazioni)
ed uno per la parte logica (esempio, la partenza e lo stop delle macchine) il tutto é stato
implementato con il software CPN Tools. Abbiamo visto che, un solo modello di sistema con
reti CPN non era su�ciente per veri�care i nostri due obiettivi. Perciò, sono stati sviluppati
due modelli. Il primo medello é usato per l'analisi delle prestazioni temporali e il secondo
modello invece per la veri�ca formale. L'analisi delle prestazioni del sistema sono state fatte
usando CPN Tools e MATLAB, mentre la veri�ca formale é stata e�ettuata con tre diversi
software: lo state space tool integrato in CPN tool, l'estensione ASAP ed il software ProM.
Abbiamo visto che la veri�ca formale é abbastanza complessa e nessuno di questi tre tools
ci permette di ottenere risultati a�dabili, formali e facili da ottenere. In ogni caso possiamo
fare delle prove di veri�ca formale , ma il miglioramento della documentazione disponibile
(sopratutto per il tool ASAP) é una condizione indispensabile per poter sfruttare al massimo
le capacitá di questi tools.
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Introduction

Why is dependability important?

For a manufacturer a good component is a component which breaks one day after the warranty
is �nished, for a user a good component is a component which never breaks. A break of a
component is a composition of many factors, thus neither the manufacturer nor the user can
know the exact moment of a component's break. The dependability assessment for a single
component performed by a manufacturer (and by the user if he were capable of), if the component
is a part of a system, is to try to answer one important question: when will the component
break? Di�erent approaches are developed to �gure that out. Thanks to computer power and
to improvement of the manufacturing process, the reliability, an aspect of the dependability, of
the manufactured products has a �xed degree. We can mention two ways of improving and
evaluating the component's dependability: a physical way and a simulation-based way.

The �rst method is generally implemented for a single component rather than for systems.
In the domain of electronics for example, transistors are tested in non-operational conditions
in order to de�ne their operational limits, the way they break, etc. By adding some stress (or
worsening the operational conditions) we can accelerate their life and estimate the moment of
their break-down. This way is not simple, it requires numerous components to test, a stress room
with an environmental control, some high-cost equipment, etc.

The second method is based on computer simulations. In general it is applied to systems
rather than to single components. Instead of a single component/device a system have a con-
strains in plus, the safety. With this addition is common to talk of a system dependability
as Reliability Availability Maintainability Safety acronym. The safety constraints is due to the
connection between the devices and they behavior to modify the system. Reliability, availability
and maintenability properties are generally analysed or proven using probabilistic techniques the
safety properties instead are proven using deterministic techniques such as event driven simula-
tion or formal veri�cation. The combination between these techniques are known as Integrated
Deterministic and Probabilistic Dependability Analysis. This kind of mixed deterministic and
probabilistic analysis is particularly relevant in the context of dynamic reliability where the
structure function evolves over the time due to the impact of the physical parameters and device
ageing on the dysfunctional behavior and control architecture recon�guration. Our work lies in
this speci�c domain: the IDPA assessment for a system's model.
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System model and method to assess the dependability

The de�nition of a system is provided by IEEE Guide for Information Technology [1] as "A
collection of interacting components organized to accomplish a speci�c function or set of functions
within a speci�c environment". One may be interested in the continuous response of the system
or in the system's characteristics at a speci�c moment when an event occurs. Since a system
is a collection of components, it is reasonable to consider a system as a sequence of di�erent
interactions among components. These interactions can be modeled as discrete events. Thus,
many systems (e.g. a manufacturing process or a co�ee maker machine) can be modeled as a
Discrete Event System (DES).

Case study: an overview

In the case study we consider a subsystem of the secondary circuit of a PWR nuclear power
plant. This subsystem is discussed in details in chapter 4. In simple words this system is
composed of two parts: a physical model and a logical model. The physical model is composed
of two components (named Turbo Pompe Alimentaire (TPA)) which function in parallel. Each of
these two components is composed of two subcomponents in series and has two di�erent failure
modes. Thus, the whole component is considered broken if a failure of one mode (or of one
subcomponent) occurs. The entire system is down if both of the two components are broken.
The logical model, can be viewed as an observer with sensors and actuators which monitor
the system's condition, notify of component failures and give orders to start the reparation
process or to stop the entire system. The particularity of our model is that the probability
distribution function of failure times of a TPA is exponential. For reparation times the Erlang
distribution is used. This distribution is similar to the exponential one, and is generally used to
characterize waiting times in queuing systems. Thus, the basic assumption in our case is that
failure occurrence is driven by a memoryless process and the reparation process is similar to a
queuing system, implying for example that a reparation may depend on a limited number of
specialized technician.

Discrete Event System: what and why

Numerous mathematical models describing a DES are used for dependability assessment.
We can mention, for example, Markov Chains, Finite State Automata (FSA), Timed Automata
(TA), Stochastic Petri Nets, Coloured Petri Nets. For our case study an exponential and an
Erlang distributions will be used. With only exponential distribution the Markov Chain could
be employed as a theoretical framework for modeling, allowing to calculate the dependability
assessment parameters by an exact method. Since not only exponential distribution is used in
our case, the exact calculations appear to be complex and simulations will be used to obtain
the results. Thus, we can choose among Finite State Automata (FSA), Timed Automata (TA),
Stochastic Petri Nets and Coloured Petri Nets.

Computer simulations in dependability assessment

An important di�erence between the methods discussed above is their modularity and their
ability of reduce the modelling time. For example with a Coloured Petri Net it is possible to use
programming languages which can execute functions and perform calculations. With a Timed
Automaton we can not do that. This allows us to model a complex system in di�erent ways.
Once the model is de�ned, built and implemented, we should be able to perform Monte Carlo
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simulations of its behaviour. The Monte Carlo simulations give us failure and reparation times
as well as other performance parameters. Besides these parameters, we are also interested in
the comparison of components, i.e. in de�ning if the components have the same characteristics.
Concerning a system, we can be interested in what happens if the user exercises one function
instead of another. For example, we would check if a system composed of two elements always
has at least one element running. If not, we would try to �gure out why, to known what are the
events responsible for this negative answer. The domain enabling the answers to such questions
is referred to as the Model Checking.

Formal model veri�cation: Model Checking

The Model Checking is a formal method of model veri�cation. When the model to verify is
built, the model-checker (the basic tool of Model Checking, we can say its "heart") is responsible
of performing all the calculations to answer the question asked, that is to say to check if a
particular de�ned property is veri�ed. If the answer is negative, the model-checker produces a
counter-example to illustrate in which case the property is not veri�ed. One of the best book in
this domain is given in the reference [2].

The used mathematical model should possess three characteristics:

1. The ability to build a complex model in an easy way.

2. The ability to perform Monte Carlo simulations for the performance analysis.

3. The ability to perform a Model Checking analysis.

Among di�erent models, we have chosen the Coloured Petri Net (CP-net or CPN) implemented
in the software called CPN Tools. This choice is motivated by the following reasons:

1. The possibility to built a complex model in an easy way. Thanks to the programming
language SML implemented in CPN Tools, we can build functions and perform di�erent
algorithms with the aim of reducing the size of our model.

2. The possibility to build a modular system and to perform Monte Carlo simulations.

3. The possibility to perform a state space analysis. The temporal CTL and LTL logics which
are the bases for the Model Checking analysis, are also implemented in CPN Tools.

The chosen case study takes the advantage of the Coloured Petri Net (CPN). Indeed, it is a
modular system with concurrency: a piece of cake for a CP-net.

The objective of the work and the contents of this master thesis

The objective of out work is to carry out the IDPA assessment in a new ways with a CPN Tools
and with its state space the safety proprieties using a Model Checking techniques. The system is
taken from a real industrial project and has stochastic and deterministic events, namely failures
and restorations. This model is used for the performance assessment but will not be appropriate
to perform a formal veri�cation. Thus a second model will be de�ned. This second model is
composed only of deterministic events. A series of concurrency and logical problems will be
discovered with this deterministic model. To resolve these problems a method taken from an
academic mutual exclusion problem will be used.
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In the �rst section of this master thesis (chapters 1, 2 and 3) the theoretical background for
the used methodology is given: the di�erent parameters of the system dependability (MTTFF,
MTTR, MTBF, and others) are presented, the Coloured Petri Net is de�ned, the CPN Tools is
introduced, and the basis of Model Checking is given using a little example.

In the second part of the thesis we illustrate the case study, present the corresponding CPN
models, give an example of the model veri�cation and present the results. In the last chapter
(chapter 8) future developments for the work are proposed.
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Theorical background
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Anything that can go wrong, will
go wrong.

Edward A. Murphy, Jr.

Chapter 1

System dependability

Introduction

In this chapter we explain the basis of dependability and its use. Nowadays a lot of time
and money are spent in industrial domains to improve the quality of a product or a system.
The dependability is associated with the concept of quality due to some of its aspects, in par-
ticular due to the concept of reliability. Reliability improvement is a crucial task when dealing
with complex systems. When speaking about a "complex system" we suppose, high structural
complexity, high cost, high development duration time, evolution in a dynamic environment,
ageeing of components, interaction between components state and environment. . . In this case
the dependability analysis is necessary to minimize the number of errors in every development
phase. This chapter is organized as follows. In Section 1.1 we brie�y outline the history of de-
pendability, in Section 1.2 the de�nition of dependability is given following the standard IEC 50
(191). The quantitative and qualitative dependability analysis is presented in Section 1.3. The
two probability distribution function used in this work are explain in Section 1.4. A presentation
of two methods for the reliability assesments are presented in section 1.5.

1.1 History of dependability

A brief history of dependability is presented below following [3]. The dependability or "the
science of failure" was developed in the early 20th century in industries dealing with critical
processes. Before the Second World War, the dependability was an empirical notion rather
than an exact science. With electronics appeared in 1950, a �rst indicator of dependability was
developed, theMTBF (Mean Time Between Failures); it marked the beginning of the analytical
studies of dependability. In 1960s, with the conquest of space, some analytical methods arrived
from the United States. These methods are sill employed and are the following:

• Fault tree analysis

• Root cause analysis

• Reliability Block Diagram analysis

The nuclear accident of the Three Mile Island that had no human casualties but impacted peo-
ple's opinions has required a standard of protocol and procedure, the task which the International
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1. System dependability

Electrotechnical Commission (IEC) ful�lled. This had formalized the de�nitions of Maintain-
ability, Availability and the associated concepts like: Diagnostic, Testability, Survivability. In
the last 20 years numerous tools were developed for the dependability problem, for example the
technical fault can be described with Markov chains or Petri Nets. Nowadays, in the microcon-
troller age, where critical tasks are assigned to it, new restrictive standards and procedures rise
up, like SIL (Safety Integrity Level). In all industrial sectors the dependability and its aspects
like Reliability, Availability, Maintainability and Safety (RAMS) are a common way to improve
the quality of a product or a system. The Achilles' heel of the dependability assessment is that
the data used to perform a correct modelization are inadequate or nonexistent. This causes little
con�dence in the produced and used results. New methods to approach dependability still arise
(see for example [4]).

1.2 De�nitions and aspects of system dependability

A general de�nition of a system's dependability is given in de�nition 1.1, a more speci�c
version in the �eld of computer system, is given in de�nition 1.2 following [5].

De�nition 1.1 (System dependability - IEC 50 (191)). A system's (devices) dependability is its
aptitude to perform one (or more) requested functions in an operational condition.

De�nition 1.2 (Dependability in computer system - IEEE Std 982.1-2005 ). Trustworthiness of
a computer system such that reliance can be justi�ably placed on the service it delivers. Reliability,
availability, and maintainability are aspects of dependability.

Other de�nitions can be given, depending on the �eld of study. In this work we refer to the
de�nition 1.1. A series of linked de�nitions that are commonly used in the sphere of dependability
arise.

De�nition 1.3 (Entity). An entity is any element, device, sub-system, equipment or system
that can be considered individually.

De�nition 1.4 (Failure). A failure is the alteration or interruption of an entity's aptitude to
perform the required function with the performance de�ned by speci�cation.

De�nition 1.5 (Fault). A fault is the interruption of entity's aptitude leading to a failure state.

Dependability is composed of di�erent elements joined in RAMS acronym. These elements
are de�ned below.

De�nition 1.6 (Reliability - IEC 50 (191)). Reliability is the entity's aptitude to perform the
requested function in �xed conditions during a �xed time.

R(t1, t2) = P [Entity is not in a fault state in the time interval[t1, t2]] (1.1)

Where P [E] it's the probability of the event E and R(t1, t2) is the reliability function of a time
interval.

De�nition 1.7 (Maintainability - IEC 50 (191)). Maintainability is the entity's aptitude to
be maintained in or restored to a state in which it can perform a requested function when the
maintenance is done in �xed conditions, using with the procedure and resources recommended by
standard.

M(t1, t2) = P [Entity's fault in t = t1and reparation in t = t2] (1.2)

M(t1, t2) is the maintenability function.
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1.3 Dependability: temporal parameters

De�nition 1.8 (Availability). Availability is the entity's aptitude to perform a requested function
in a �xed conditions at a given time moment.

A(t) = P [Entity is not in a fault state at time t] (1.3)

A(t) is the availability function.

The standard IEC 50 (191) doesn't consider the safety element, the safety is de�ned in the
standard EN 292.

De�nition 1.9 (Safety - EN 292). Safety is the machine's aptitude to perform a requested
function, to be moved, set, adjusted, maintained, dismantled and discarded in standard conditions
without causing injury or damage to health.

A global vision of dependability elements is shown in �gure 1.1. The elements from �gure
1.1 not de�ned in the present section aren't useful for this work, however they are related to the
de�nition of dependability.

• Reliability

• Avaibility

• Maintenability

• Safety

• Confidentiality

• Integrity

• Faults

• Failures

• Errors

• Prevention

• Tolerance

• Removal

Dependability

Aspects Threats Means

Figure 1.1: Dependability and its elements: schema

1.3 Dependability: temporal parameters

Additionally to probabilistic parameters, other parameters can be measured in dependability
analysis such that the time of �rst failure and other typical time instants. These time instants
are randoms variables, linked to the probability of an event. The aim of a typical dependability
study is to characterize these variables with mathematical expectations. A list of the mentioned
variables is given below and their intuitive representation is illustrated in �gure 1.2.

• MTTFF - Mean Time to First Failure : expectation of operational time before the
�rst failure.

• MTTF - Mean Time to Failure : expectation of operational time before a failure.

5



1. System dependability

• MTBF - Mean Time Between Failures : expected time between two consecutive
failures of a reparable entity.

• MUT - Mean Up Time : expectation of system's availability duration.

• MDT - Mean Down Time : expected duration of entity's failure, which include: de-
tection, intervention , reparation , restoration of function durations. In summary, MDT is
the system's expectation of unavailability.

• MTTR - Mean Time To Recovery or Restoration : expectation of system's repara-
tion duration.

Operational status Failure status

MTTF

MDT MDT MUT

MTBF MTBF

Failure

Reparation

MUT

t

Figure 1.2: Times associated to dependability

An important parameter of an entity in the context of dependability is the failure rate.

De�nition 1.10 (Failure rate). The instantaneous failure rate is the limit, if it exists, of quotient
of conditional probability that the instant T of entity's fault is between ]t, t + ∆t[, where ∆t
converges to zero. Knowing that the entity didn't have a failure in the interval [0, t] :

λ(t) = lim
∆t→0

1

∆t
P [t < T ≤ t+ ∆t/T > t]. (1.4)

In other words, λ(t) is approximatively the conditional probability of failure occurring in
]t, t + ∆t] knowing that the entity was in an operational state in [0, t]. Another mathematical
de�nition is:

λ(t) =
f(t)

R(t)
=
−dR(t)
dt

R(t)
(1.5)

Where f(t) is the probability density function of the random variable T which measures the dura-
tion of entity's operational status before failure (or lifetime for not reparable entities). Commonly
f(t) = −dR(t)

dt is the entity's failure probability density function. R(t) is the entity's reliability
function (see de�nition 1.6).

6



1.4 Probability distributions used in dependability analysis

1.4 Probability distributions used in dependability analysis

A knowledge of the function f(t) allows one to calculate the parameters useful for the relia-
bility assessment of entities or components, precisely the failure rate λ(t) and the MTTF. There
exists two ways to �nd this distribution function. The �rst one is to investigate the entity's
failure mode: for example mechanical or electronic. Indeed di�erent distribution functions �t a
particular entity's failure mode, and the knowledge of the failure mode can give us the way to
�nd our distribution function. The second way is to perform accelerated life time experiment
to extract an experimental distribution of f(t), this will be discussed later in this section, or
another method is made di�erent simulations. A combination of this two methodologies is the
widely used way to analyze the reliability of an entity.

Theoretical study

There exists various probability distributions potentially useful for dependability analysis.
Exponential and Erlang distribution will be used in this work. A Weibull distribution will be
presented for completeness, due to its adaptability to di�erent entity's lifetimes.

De�nition 1.11 (Exponential distribution). The exponential distribution describes the time
between events in a Poisson process in which events occur continuously and independently at a
constant average rate λ (λ is a constant). It is principally used for electronic components and
for memorylessness systems where the entity's failures are independent from each other. In this
case the parameters of the entity are:

λ(t) =
−dR(t)

dt
(1.6)

R(t) = e−λt (1.7)

f(t) =
−dR(t)

dt
= λe−λt (1.8)

MTTF =

∫ ∞

0

R(t)dt =
1

λ
(1.9)

De�nition 1.12 (Weibull distribution). The �rst application of this distribution was carried out
in 1933 to describe the size of particles. It is widely used in reliability engineering and elsewhere
due to its versatility and relative simplicity. The Weibull distribution is characterized by the
following relations.

λ(t) =
β(t− γ)β−1

αβ
(1.10)

R(t) = e−( t−γα )β (1.11)

f(t) =
β(t− γ)β−1

αβ
e−( t−γα )β (1.12)

, where α is a scale parameter, β is the shape parameter and γ is the location parameter.

An important property of Weibull distribution is that it can �t the failure rate function to
the bathub curve (see �gure 1.3).

Analyzing the bathtub curve is beyond the purpose of this work, but it describes how the
failure rate is in�uenced by the age of the entity. In this work we assume that all the components
are in the central part of the lifetime, i.e. the failures are independent and the failure rate is
constant. We take the Erlang distribution for the reparations.

7



1. System dependability

t

λ(t)

Infant mortality Failure rate

Wear out Failure rate

Random Failure rate

Figure 1.3: Bathtub curve

De�nition 1.13 (Erlang distribution). The Erlang distribution is developed by A.K. Erlang to
examine the number of telephone calls which can be made at the same time to the operator of
the switching stations. This distribution is used, in general, to characterize waiting times in
queueing systems. The following parameters characterize this distribution:

λ(t) =
f(t)

R(t)
(1.13)

R(t) =

k−1∑

n=0

1

n!
e−λt(λt)n (1.14)

f(t) =
λktk−1e−λt

(k − 1)!
(1.15)

MTTF =
k

λ
(1.16)

where k is the shape parameter, if k = 1 the Erlang distribution is simply the exponential distri-
bution of parameter λ.

Empirical study

Empirically the distribution function is obtained by measuring the time moments of an entity's
fault. Plotted in a semi-logharitmic chart, with time in a logaritmic form in abscissa and the
cumulative distribution function F (t) = 1−R(t) in the ordinate axe, a Weibull distribution can
be extracted (see �gure 1.4 for presentation). An accelerated lifetime test can also be perfomed
to analyze the failure times. For a high cost component/system where the failure data are hardly
obtained empirically, modelisation is used to produce data.

1.5 Reliability assessment methods: Fault Tree Analysis and

Reliability Block Diagram

Fault tree analysis (FTA) is a top down method developed in military and aeronautic �elds
in 60s, the objectives of this method are :

• Creating a list of entity's faults that lead to the critical event.

8



1.5 Reliability assessment methods: Fault Tree Analysis and Reliability Block Diagram

Figure 1.4: Weibull semi-logharitmic chart

• Performing reliability, availability and safety analysis.

The general algorithm of the FTA is the following:

• Identify the undesirable events.

• Find all the possible event combinations that allow to avoid the undesirable event.

• Represent graphically a tree with the system's faults in the top of the FTA) and elementary
event in the "root" of the FTA.

A representation of event symbol for a FTA is given in �gure 1.5, typically used events are
as follows:

• Elementary event - failure or error of a system's component or element.

• External event - an event indipendent from the system's state (e.g. function of an environ-
ment).

• Undeveloped event - an event described insu�ciently, or event with no consequence.

• Intermediate event - combination of result of other events linked by a logic operator.

De�nition 1.14 (Critical event). The critical (dangerous) event in reliability analysis is a sys-
tem's fault, for safety analysis it is the dangerous event, for availability analysis it is the fact
that the system is not available.

Another method to show how components contributes to the success or failure of a complex
system is the Reliability Block Diagram (RBD). An RBD is drawn as a series of blocks connected
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1. System dependability

Basic event External event

Undeveloped eventIntermediate event

Critical event

Figure 1.5: Graphical symbols of FTA

in parallel or series con�guration. Each block represents a component of the system with a failure
rate or its reliability function. Parallel paths are redundant, meaning that all of the parallel parts
must fail for the parallel network to fail. In contrast, any failure along a series path causes the
entire series path to fail. A RBD can be translated in a success tree by replacing series paths
with and gates and parallel paths with or gates.

Example 1.1. Figure 1.6 illustrates an electrical schema of a system composed of two lamps, a
switch and the power line.

Power Line

Lamp 1 Lamp 2

Switch

Figure 1.6: Electrical schema of two lights in a room

In this example 1.1 the failure of the light system implies the failure of the power source or
the failure of the two lamps. A fault tree of the schema 1.6 is given in �gure 1.7.

The next step is to rise the FTA until we will arrive to the critical event. In this case the
events are:

• Lights Broken (LB) = Old.L1 . Old.L2

• Lights without power (LNP) = PW.o� + SW.ko

• No Light (Fault) = LB + LNP = PW.o� + SW.ko + Old.L1 . Old.L2

where, PW is the acronyms of Power Line, SW of Switch, L1 is the Lamp1 and ko, o�, old are
failure modes. A de�nition of the cut set is necessary to complete the analysis.

De�nition 1.15 (Cut set). A cut set is a set of events which allow the critical event.

10



1.5 Reliability assessment methods: Fault Tree Analysis and Reliability Block Diagram

No light in the 

room

Lights without 

power
Lights broken

Switch

broken

PW line

off Light 1 Light 2

Oldness Oldness

Figure 1.7: Fault tree of Figure 1.6

RPWline Rswitch

RLamp1

RLamp2

RLNP = RPWlineRswitch

RLB = RLamp1 +RLamp2 −RLamp1RLamp2

Rsystem = RLNPRLB

Figure 1.8: Reliability Block Diagram of Figure 1.6

De�nition 1.16 (Minimal cut set). A minimal cut set is a cut set which doesn't include other
subset's which are also cut set.

De�nition 1.17 (Order of cut set). The order of a cut set is the number of event in a cut set.
If the order is low the cut set is critical, because if the cut set is veri�ed the system fails.

With these de�nitions, in our example the cut sets are:

• Order 1 : PW.o�, SW.ko

11



1. System dependability

• Order 2 : Old.L1 . Old.L2

If the powerline goes o�ine the light system fails, whereas if a single lamp is broken there
is still a light in the room due to lamp 2. Then the Cut set of �rst order is the critical for this
system, if on of this occurs, the system fail.

Thanks to the cut set it is possible to calculate the probability of the critical event, using eq.
1.17. Equation 1.17 allow to calculate the recurrence of the critical event when a minimal cut
set appears. Using the Poincaré theorem is possible to calculate the probability of the critical
event is calculated as

P (Fault) =

m∑

j=1

P (Cj)−
m∑

j=2

j−1∑

i=1

P (Ci ∩ Cj) + . . .+ (−1)mP (C1 ∩ C2 ∩ . . . ∩ Cm) (1.17)

where Ci is a minimal cut set and m is the number of minimal cut sets. The calculus is very
long, an approximation can be performed if the probabilities are reliable.

m∑

j=1

P (Cj)−
m∑

j=2

j−1∑

i=1

P (Ci ∩ Cj) ≤ P (Fault) ≤
m∑

j=1

P (Cj). (1.18)

The probability of a cut set P (Cj) is the product of the probabilities of its basic events.

P (Cj) = P (E1 ∩ E2 ∩ . . . ∩ ECj ) =

Cj∏

i=1

P (Ei). (1.19)

Thus the probability of a cut set is:
m∑

j=1

Cj∏

i=1

P (Ei). (1.20)

Considering the example 1.1 with the following probabilities:

P (Old.L1) = P (Old.L2) = 1× 10−2, (1.21)

P (W.o�) = 1× 10−3, (1.22)

P (SW.ko) = 1× 10−5, (1.23)

we calculate of the critical event probability as follows:

P (Lights broken) = P (Old.L1)× P (Old.L2)
= 1× 10−4 (1.24)

P (system fault) = P (Lights broken) + P (NoPower)− P (Lights broken)× P (NoPower)
= 1× 10−4 + 1× 10−3 − 1× 10−4 × 1× 10−3

≈ 1× 10−3

(1.25)

P (NoPower) = P (W.o�) + P (SW.ko)− P (W.o�)× P (SW.ko)
= 1× 10−3 + 1× 10−5 − 1× 10−8 ≈ 1× 10−3 (1.26)

Fault Tree Analysis and Reliability Block Diagram, limits

The limits of the Fault Tree Analysis and the Reliability Block Diagram are the incapacity
to model a reparable system. In fact neither FTA or RBD allow loops of failure or reparations.
For this is necessary to use another method which allows it. Automata and Petri Net are best
suited for doing this task. This will be discussed in the next chapter.

12



. . . automaton is the latinization
of the Greek αυ̇τ óµατoν,
automaton, (neuter) "acting of
one's own will".

Wikipedia

Chapter 2

Petri Nets

Introduction

The discrete events systems are modeled with di�erent model languages for example au-
tomata, timed automata, Markov chains and Petri Nets. Unlike the others approaches, which
are used to describe global changes in the states of a system, Petri Nets focus on local events
(corresponding to transitions), local conditions (corresponding to places), and local links be-
tween events and conditions. Therefore, one can give a more adequate simulation of distributed
asynchronous systems using Petri nets rather than using automata. Petri Nets are widely used
in industry's cases, due to its easy translation to UML (Uni�ed Model Language), for e.g. a
method is explain in [6]. Traditionally Petri Nets are divided into low-level Petri Nets and high-
level Petri Nets. Low level Petri Nets (such as Place/Transition Nets explained in section 2.1) are
primarily used as a theoretical model for concurrency, although certain classes of low-level Petri
Nets are often applied to modelling and veri�cation of hardware systems. A high-level Petri nets
are suitable for practical use, in particular because they allow the construction of compact and
parameterised models. In this work the Coloured Petri Nets (CP-nets) are chosen. CP-net is a
high-level Petri net characterised by the combination of a Petri Nets and programming language
(Stantard ML, in our case). A hierarchical and a non-hierarchical CP-net are described in section
2.2 in a formal way, following [7].

2.1 Petri Nets: de�nitions and proprieties

As de�ned in [8] the Petri Nets are divided into three di�erent levels:

1. the �rst level concerns of net systems whose places are marked by at most one unstructured
token; i.e. of net systems whose places represent "conditions";

2. the second level concerns net systems whose places are marked by several unstructured
token; i.e. net systems whose places represent "counters";

3. the third level concerns net systems whose places are marked by structured tokens; i.e. net
systems, often denoted, generally, as "high-level nets", where the information is attached
to tokens.

A general de�nition of basic Petri Net is given below:

De�nition 2.1 (Basic Petri Nets). A basic Petri nets is a triple N = (S, T, F ):
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2. Petri Nets

1. S ∩ T = ∅,

2. S ∪ T 6= ∅,

3. F ⊆ (S × T ) ∪ (T × S),

4. domF ∪ codF = S ∪ T ,

The elements of S are called S-elements, the elements of T are called T-elements, F is the �ow
relation and its elements are called arcs The set X = S ∪ T is the set of elements of the net,
domF and codF are respectively the domain and the codomain of F.

Given a net N=(S, T, F) and x ∈ X, we de�ne

De�nition 2.2 (Pre-set). •x = y ∈ X|(y, x) ∈ F
•x is called a pre-set of x and its elements are called pre-elements of x.

De�nition 2.3 (Post-set). x• = y ∈ X|(x, y) ∈ F
x• is called a post-set of x and its elements are called post-elements of x.

The most widely used Petri nets model is the Place/Transition(P/T) Petri Net, it is a second
level Petri Net. The places can be marked by one or more unstructured tokens and represent
counters. Places are characterized by a capacity, which expresses the maximum of tokens each
place can contain; arcs are characterized by a weight, which expresses how many tokens �ow
through them at each occurrence of the involved transition.

A de�nition of a general P/T system taken from [9] is given below:

De�nition 2.4 (P/T system). A sixtuple Σ = (S, T, F,K,W,M0) is called a Place/Transition
system i�

(a) (S, T, F ) is a net where the S-elements are called places and the T-elements are called tran-
sitions.

(b) K : S → N+ ∪∞ is a capacity function.

(c) W : F → N+ is a weight function.

(d) M0 : S → N is an initial marking function which satis�es: ∀s ∈ S : M0(s) ≤ K(s).

A P/T system such that: ∀s→ S : K(s) =∞ and ∀f ∈ F : W (f) = 1 can be simply denoted
by Σ = (S, T, F,M0) and is often called an ordinary Petri Net or simply a Petri Net.

De�nition 2.5 (P/T Petri Nets). A Place Transition net (or simply a Petri Net) is a tuple
(P, T, F,W ), where:

- (P, T, F ) is a basic Petri Net,

- W ∈ F → N\{0} is an arc's weight function.

An example of a Petri Net is given in Figure 2.1.

Example 2.1. The Petri Net illustrated in Figure 2.1 is characterized by :

• Places : P = {p1, p2}

• Transitions : T = {t1, t2}
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2.1 Petri Nets: de�nitions and proprieties

p1

t1
2

p2

2

t2

Figure 2.1: Example of a Petri Net

• Arcs : F = {(p1, t1), (t1, p2), (p2, t2), (t2, p1)}

• Weights :
W (p1, t1) = 2
W (t1, p2) = 2
W (p2, t2) = 1
W (t2, p1) = 1.

We will further need the de�nitions given below.

De�nition 2.6 (Multi-set). Let A be a set of tokens. B(A) = A → N is de�ned as the set of
multi-sets (bags) over A, i.e., X ∈ B(A) is a multi-set where for each a ∈ A : X(a) denotes the
numbers of times a is included in the multi-set.

In other words the multi-set is a generalisation of the notion of set in which elements are
allowed to appear more than once. This de�nition is used periodically in Petri Net, in this case
the element are the token which has the ability to be in di�erent places.

De�nition 2.7 (Marking). Let N = (P, T, F,W ) be a Petri net. A marking M of N is a multi-set
over P, i.e. M ∈ B(P )

From the example 2.1, where M is a marking of the places:

• M(p1) = 2

• M(p2) = 3

De�nition 2.8 (Firing rule). Let N = (P, T, F,W ) be a Petri net and M ∈ B(P ) be its marking.

- An enabled transition t ∈ T is noted as (N,M)[t >; if and only if, M ≥• t.

- An enabled transition t can �re while changing the state M to M', it is noted as [(N,M)[t >
(N,M ′)], if and only if, M ′ = (M −• t) + t•.

An important tool for Petri Net analysis is its reachability graph. The reachability graph is an
oriented graph that describes the state space of the system, in other words, the possible system's
states. Following Murata [10] the reachability is de�ned as: Reachability is a fundamental basis
for studying the dynamic properties of any system. The �ring of an enabled transition will change
the token distribution (marking) in a net according to the transition rule. A sequence of �rings
will result in a sequence of markings. A marking M , is said to be reachable from a marking M0

if there exists a sequence of �rings that transforms M0 →M .
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2. Petri Nets

De�nition 2.9 (Reachability graph). Let N = (P, T, F,W ) be a Petri net and M ∈ B(P ) be a
marking. The reachability graph of (N,M) is the graph (V,E) with as vertices V = R(N,M) the
set of all reachable markings and as edges E = {(M ′, t,M ′′) ∈ V ×T×V |((N,M ′)[t > (N,M ′′))}
the set of all possible state changes. Note that (M ′, t,M ′′) ∈ E denotes that M ′′ is reachable
from M ′ by �ring t.

In general, the reachability graph may be in�nite, if there is no bound on the number of tokens
on some at its places. This situation is called the state space explosion problem, a problem still
existing in the Petri Nets methodologies which limits the power of the state space analysis.
Another graph can also be de�ned in the Petri Nets analysis : the coverability graph. The
coverability graph is used when the number tokens in a place in�nitely grows. The coverability
graph is a �nite graph but it computes an overapproximation of the reachable markings. In
contrast a reachability graph gives an exact information about the reachable markings. For this
work a �nite reachability graph is used, the coverability graph (and tree) will not be used, thus
is not de�ned. A reachability graph, coverability graph and tree are illustrated in Figure 2.3, for
the de�nition or the construction algorithm of coverability and reachability graphs the reader
can refer to [10]. It is further necessary to de�ne the ω-markings, used in the coverability graph
and in automata with in�nite words.

De�nition 2.10 (ω-marking). Let N = (P, T, F,W ) be a Petri net with initial marking M ′.
A ω-marking M of N is an extended multi-set over P, i.e. M ∈ A→ (N ∪ {ω}).
If M(p) = ω, then place p ∈ P is said to be unbounded in M.
If M(p) 6= ω for all p ∈ P , then M is said to be ω-free.
M is a reachable ω-marking of (N,M ′) if and only if it appears in the coverability graph of
(N,M ′).

p1

t1

p2

t2

Figure 2.2: Petri Nets

A series of properties of Petri Nets are given below:

De�nition 2.11 (Basic Properties). Let N = (P, T, F,W ) be a Petri net and M ∈ B(P ) be its
marking. Then

- (N,M) is terminating (or dead) i� there exists a k ∈ N such that |σ| ≤ k for any �ring
sequence σ (i.e. (N,M)[σ >).

- (N,M) is deadlock-free i� for any M ′ ∈ R(N,M) there exists a transition t such that
(N,M ′)[t >.

- (N,M) is live if and only if for any t ∈ T and any M ′ ∈ R(N,M) there exists a marking
M ′′ ∈ R(N,M ′) such that (N,M ′′)[t >. N is live it all of its transitions are live.

- (N,M) is bounded i� there is a k ∈ N such that for any M ′ ∈ R(N,M) and any p ∈ P :
M ′(p) ≤ k. N is bounded if and only if all of its places are bounded.

16
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(1, 0)

(1, 1)

(1, 2)

t1

t1

t1

(0, 0)
t2

(0, 1)
t2

...
Reachability graph

(1, 0)

(1, ω)

(1, ω)

t1

t1

(0, ω)
t2

Coverability tree

(1, 0)

(1, ω)

t1

(0, ω)
t2

Coverability graph

t1

Figure 2.3: Reachability graph and coverability tree/graph of Figure 2.2

- (N,M) is safe i� for any M ′ ∈ R(N,M) and p ∈ P : M ′(p) ≤ 1. N is safe if and only if all
of its place are safe

- M ′ is a home marking if it is reachable from any reachable marking, i.e. for any M ′′ ∈
R(N,M) : M ′ ∈ R(N,M ′′).

- (N,M) is reversible i� for any M ′ ∈ R(N,M) : M ∈ R(N,M ′). In other words (N,M) is
reversible i� M is a home marking.

Supervision in a Petri Nets

The supervision techniques are essential in the transition between probabilistic and deter-
ministic automata, in the chapter 5 is provide the application of this principles. In this section
is given an approach learned during my studies at the University of Cagliari with Prof.Giua, the
GMEC approach in [11]. This approach is taken as begin of an idea to resolve a mutual exclusion
problem between two CPN Tools.
The idea of a Generalized Mutual Exclusion Constraints is to assure a condition that limits the
weighted sum of tokens in a set of places. To achieve that is used a place called monitor.
In our case, the expected control places (monitor) should enforce a set of linear constraints of
place markings that maintain the reachable markings in the only behavior that is enabled by the
stochastic net. The set of these linear constraints may be expressed by the following equation:

Lm ≤ k

where m is the marking vector of stochastic Petri net, L is a matrix of coe�cients and k is a
vector of constants.

In the net of the Fig. 2.4, the making constraints are:

(a) m(P1) +m(P2) +m(P4) +m(P5) ≤ 2

(b) m(P1) +m(P2) +m(P3) +m(P6) ≤ 2
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P1

t1

P2

t2

P5

C1

C2

P3

t3

P4

t4

P6

Figure 2.4: Example for the determinisation problem

(a) means that in the marking (0, 1, 1, 0, 1, 0), t3 must be �red before t2 while (b) means that in
the marking (1, 0, 0, 1, 0, 1), t4 must be �red before t1. These inequalities can be represented by:

L =

(
1 1 0 1 1 0
1 1 1 0 0 1

)
k =

(
2
2

)

Applying [11], the incidence matrix Wc of the supervisor that enforces the previous constraints
and its initial marking are given by:

Wc = −LW

mc0 = k − Lm0

where W is the incidence matrix and m0 is the initial marking of the original SPN. The deter-
ministic untimed net has the following incidence matrix and initial marking:

WdetPN = [WT ,WT
c ]T

mdetPN0 = [mT
0 ,W

T
c0]T

For Fig. 2.4 net, this algorithm leads to add two places C1 and C2 with an initial making
m(C1) = 1 and m(C2) = 0.
This operation provides a marking graph that could be analysed using model checking techniques
such as explain in the next chapters.

2.2 Coloured Petri Nets

An informal de�nition of Coloured Petri Nets following [7] is given below.
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2.2 Coloured Petri Nets

The Coloured Petri Nets (CP-nets or CPNs) is a graphical language for constructing models
of concurrent systems and analysing theirs properties. CP-nets is a discrete-event modelling
language combining the capabilities of Petri nets with the capabilities of a high-level programming
language. Petri nets provide the foundation of the graphical notation and the basic primitives
for modelling concurrency, communication, and synchronisation. The CPN ML programming
language, which is based on the functional programming language Standard ML, provides the
primitives for the de�nition of data types, for describing data manipulation, and for creating
compact and parameterisable models.

The main di�erence between a P/T Petri Net and a CPN is that in CPN the token can have
di�erent "colors", the "colors" represent di�erent data types in a CP-nets (e.g. integer, string,
etc). Veri�cation of CPN models and system properties is supported by the state space method.
The basic idea underlying the state spaces method is to compute all reachable states and state
changes of the CPN model and to represent them as a directed graph, where nodes represent
states and arcs represent occurring events. From a constructed state space, it is possible to answer
a large set of veri�cation questions concerning the behaviour of the system, such as absence of
deadlocks, the possibility of always being able to reach a given state, and the guaranteed delivery
of a given service. These proprieties are explain in de�nition 2.11 for a P/T Petri Nets but are
the same for a CP-nets. An important version of CP-nets are the Hierarchical CP-nets. In this
case the non-hierarchical CP-nets are used as a module of a large Hierarchical CP-nets, allowing
the construction of a complex system. A formal de�nition of CP-nets is follows.

De�nition 2.12 (Non-hierarchical Coloured Petri Net). A non-hierarchical Coloured Petri Net
is a nine-tuple CPN = (P, T,A,Σ, V, C,G,E, I), where:

1. P is a �nite set of places.

2. T is a �nite set of transitions such that P ∩ T = ∅.

3. A ⊆ P × T ∪ T × P is a set of directed arcs.

4. Σ is a �nite set of non-empty colour sets.

5. V is a �nite set of typed variables such that Type[ν] ∈ Σ for all variables ν ∈ V .

6. C : P → Σ is a colour set function that assigns a colour set to each place.

7. G : T → EXPRV is a guard function that assigns a guard condition to each transition t
such that Type[G(t)] = Bool, bool standing for boolean datatype.

8. E : A → EXPRV is an arc expression function that assigns an arc expression to each
arc a such that Type[E(a)] = C(p)MS, where p is the place connected to the arc a.

9. I : P → EXPR∅ is an initialisation function that assigns an initialisation expression to
each place p such that Type[I(p)] = C(p)MS.

An hierarchical version of the CP-net should be de�ned, since it is necessary to model complex
systems. We will �rst de�ne the module hierarchy.

De�nition 2.13 (Module hierarchy). The module hierarchy for a hierarchical Coloured Petri
Net CPNH = (S, SM,PS, FS) is a directed graph MH = (NMH , AMH), where

1. NMH = S is the set of nodes.

2. AMH = {(s1, t, s2) ∈ NMH × Tsub ×NMH |t ∈ T s1sub ∧ s2 = SM(t)} is the set of arcs.
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De�nition 2.14 (Hierarchical Coloured Petri Net). An hierarchical Coloured Petri Net is a
four-tuple CPNH = (S, SM,PS, FS) where:

1. S is a �nite set of modules. Each module is a Coloured Petri Net Module

s = ((PS , TS , AS ,ΣS , V S , CS , GS , ES , IS), TSsub, P
S
sub, PT

S). It is required that (PS1 ∪TS1)∩
(PS2 ∪ TS2) = ∅ for all s1, s2 ∈ S such that s1 6= s2.

2. SM : Tsub → S is a submodule function that assigns a submodule to each substitution
transition. It is required that the module hierarchy is acyclic.

3. PS is a port-socket relation function that assigns a port-socket relation

PS(t) ⊆ Psock(t) × P
SM(t)
port to each substitution transition t. It is required that ST (p) =

PT (p′), C(p) = C(p′), and I(p)〈〉 for all (p, p′) ∈ PS(t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty fusion sets such that C(p) = C(p′) and I(p)〈〉 = I(p′)〈〉 for
all p, p′ ∈ fs and all fs ∈ FS.

The hierarchical CP-net are used in this work, their implementation is shown in chapter 5.
For an easier understanding of a CP-nets, an academic example of concurrency is presented below
(see �gure 2.5 for illustration).

Example 2.2 (The Dining Philosophers). Five silent philosophers sit at a table around a bowl
of spaghetti. A fork is placed between each pair of adjacent philosophers. Each philosopher must
alternately think and eat. Eating is not limited by the amount of spaghetti left: an in�nite supply
is assumed. However, a philosopher can only eat while holding both the fork from the left and
the fork from the right (an alternative problem formulation uses rice and chopsticks instead of
spaghetti and forks). Each philosopher can pick up an adjacent fork, when available, and put it
down, when holding it. These are separate actions: forks must be picked up and put down one
by one.

To model this problem we use a CP-Net, well-suited for concurrency problems. The modeli-
sation and analysis of this CP-net is performed by CPN-Tool, developed by Aarhus University
and now maintained by AIS Group in Eindhoven University of Technology (CPN Tools website).

CPN Tools

CPN Tools is the software used for modeling the CP-nets. It is composed of a functional
language (Standard ML) and a graphical representation thanks to arcs, places and transitions.
We de�ne a marking in CPN following the further de�nition.

De�nition 2.15 (Untimed marking in CPN Tools). A marking in CPN Tools is represented as:

n ` tokenA ++ k ` tokenB ;

where n and k are numbers, n is of tokenA or of tokenB present in the place and ++ means that
after the �rst token de�nition the other one is de�ned.

The marking can be a timed.

De�nition 2.16 (Timed marking in CPN Tools). A timed marking in CPN Tools is represented
as:

n ` tokenA@int ++ k ` tokenB@int2 ;
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Figure 2.5: The Dining Philosophers problem illustration

where n, k, tokenA, tokenB and ++ are the same of the de�nition 2.15 and the value after @ is
an integer which means that the token can be �red only after the moment when the simulation
clock come to @int value. In this manner, the token is not always in the place but appears only
at time @int.

An implementation of the Dining Philosophers problem in CPN Tools is illustrated below.
In Figure 2.6 a CP-nets, where there are �ve philosophers and �ve chopsticks is illustrated.

In Figure 2.7 we can see the initial marking for the CP-net. The place Think have �ve tokens
of type PH (that means philosophers), the place Unused Chopsticks have �ve tokens of type
CH (that means Chopsticks). We can see the variable p in the arc from Think by transition
Take Chopsticks and the function Chopstick(p) from the place Unused Chopsticks. The function
Chopsticks(p) is written in Standard ML, with the following code:

fun Chopst icks (ph( i ) ) =
1 ` cs ( i ) ++ 1 ` cs ( i f i=n then 1 else i +1);

The code means that when a philosopher i wants to eat, he takes his chopstick (if we assume
a clockwise numeration, the right chopstick is taken) and the other chopstick near him (on his
left side).

The selection of which philosopher starts to eat is random. This �rst transition is represented
in �gure 2.8.
A reachability graph can be drawn in CPN Tools (see �gure 2.9) or exported and drawn with
another software, for example Graphviz (see �gure 2.10).

Monitors

A useful tool to inspect a CP-Nets developed in CPN Tools is the monitor system, its de�nition
is given below. For detail refer to [12].
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2. Petri Nets
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Figure 2.6: The Dining Philosophers problem with a CP-Nets: the model.
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Figure 2.7: The Dining Philosphers problem with a CPN: the initial markings and the �rst �reable
transition.

De�nition 2.17 (CPN Tools: Monitors). A monitor is a mechanism in CPN Tools that is used
to observe, inspect, control, or modify a simulation of a CP-net. Many di�erent monitors can
be de�ned for a given net. Monitors can inspect both the markings of places and the occurring
binding elements during a simulation, they can take appropriate actions based on the observations.
Monitors can be used for each of the activities mentioned above.

The monitors are used to carry out a performance analysis of a CP-nets. There exists di�erent
kinds of monitors, in this work we have used the following ones:

• Breakpoint monitors are used to stop a simulation.
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2.2 Coloured Petri Nets
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Figure 2.8: The CP-nets after the �rst transition
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Figure 2.9: Reachability graph of Dining philosophers problem using CPN Tools.

• Data collector monitors are used to extract numerical data from a net. The numerical data
are then used to perform a statistical analysis of results and the data can be saved in log
�les. The log �les can then be post-processed, e.g. by importing them into spreadsheet
programs or plotting.

The application of this monitors in our CP-nets is presented in chapter 6.
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Figure 2.10: Reachability graph of Dining philosophers problem using Graphviz.

SML, Standard ML

A characteristic to the CP-nets are the integration with the functional programming language
named Standard ML. Like all functional programming languages, the Standard ML key feature
is the function and his modular system. There are Three main syntactic constructs comprise the
SML module system: structures, signatures, and functors. We will de�ne.

De�nition 2.18 (Structure in SML). A structure is a module; it consists of a collection of types,
exceptions, values and other structures packaged together into a logical unit

De�nition 2.19 (Signature in SML). A signature is an interface, usually thought of as a type
for a structure: it speci�es the names of all the entities provided by the structure as well as the
arities of type components, the types of value components, and signatures for substructures.

De�nition 2.20 (Functors in SML). A functor is a function from structures to structures; that
is, a functor accepts one or more arguments, which are usually structures of a given signature,
and produces a structure as its result. Functors are used to implement generic data structures and
algorithms. It is very important that the input structure of a functors respect the input signature
of its.

For all our needed we have used the book [13] free available online.
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Houston, we've had a problem
here.

Jack Swigert - Apollo 13 crew
member

Chapter 3

Model checking in automata theory

Introduction

The principal idea of verifying the proprieties of a DES is to use a formal method to analyze
its state space; for this purpose a temporal logic is used. Temporal logics are a formal methods
used to describe a temporal proposition with various symbolisms and writing rules. Temporal
propositions are traditionally de�ned in terms of Kripke structures. We �rst need to de�ne the
atomic proposition.

De�nition 3.1 (Atomic proposition). An atomic proposition (AP) is a type of sentence which is
either true or false and which cannot be broken down into other simpler sentences. For example
"The dog ran" is an atomic sentence in natural language. In case of automata theory under the
AP we understand a particular system's state from the reachability graph which can be used to
veri�ed with true or false question. For example if a particular state condition is always true or
not.

De�nition 3.2 (Kripke structure). Let p be a non-empty set of atomic propositions. A Kripke
structure is a four-tuple M = (S, s0, R, L), where

• S is a �nite set of states,

• s0 ∈ S is an initial state,

• R ⊆ S × S is a transition relation, for which it holds that ∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R,

• L : S → 2AP is labeling of a function which labels each state with the atomic propositions
which hold in that state.

A Kripke structure is basically a graph having the reachable states of the system as nodes
and state transitions of the system as edges. It also contains labeling of system's states of
with properties that hold in each state. The method of translation from Kripke structure to an
automaton is given in section 3.2. The model checking problem can now be de�ned.

De�nition 3.3 (Model Checking problem). Let a Kripke structure K and an LTL formula ϕ.
The model checking problem consists in to verifying that for all path π of the atomic proposition
p ∈ AP the following relation is satis�ed

K |= ϕ (3.1)
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3. Model checking in automata theory

If equation 3.1 is satis�ed, the result of model checking is a true value else the result is a counter-
example indicating that ϕ is not satis�ed.

An illustration of this problem is given in �gure 3.1, presenting an overview of LTL model
checking algorithm. The �eld of Model Checking is in a continuous development, thus numerous

System

Model (Kripke structure)

Property to check

LTL negated formula ¬ϕ

Generalized Büchi automata

ϕ

Büchi automata BLTLBüchi automata Bmodel

Intersection of Büchi automatons

Bmodel
⊗

BLTL

Bmodel
⊗
BLTL = ∅Yes

Property verified

No

Counterexample

Figure 3.1: An overview of the LTL Model Checking

techniques have been proposed to address this problem. Only one of those will be approached in
this work. Researchers particularity focus on improvement of the translation of LTL formula to
an automaton. Others approaches to optimize the solution of the model checking problem are
explained in [14], [15] and [16]. In section 3.5 a presentation of the On-The-Fly model checking
procedure is given. This procedure is aimed at an e�cient state space analysis. On-the-�y
method is used for model checking in the software that we use for case study.

3.1 Temporal logic

Temporal logic is used to describe various types of systems with rules and symbolism for their
representation and reasoning about them. The propositions in temporal logic are formulated in
terms of time. For example we can express statements like "In a typical week in Lorraine there
is always sun", "In a typical week in Lorraine there is eventually sun" or "In a typical week
in Lorraine there is sun until it starts raining". An important application of temporal logic is
formal veri�cation, where it is used to state requirements of hardware or software systems. There
exist di�erent types of temporal logics: CTL*, CTL, LTL. CTL* (Computational tree logic *)
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3.2 From Kripke structure to Labeled Büchi Automata

is a superset of Computation tree logic (CTL) and Linear temporal logic (LTL). The CTL and
LTL have di�erent power of expression. Indeed, CTL is a modal branching temporal logic and
includes two path quanti�ers. LTL is a modal linear temporal logic referring to time, and it has
only one path, a linear temporal path. CTL and LTL are not equivalent but have a common
subset, which is a proper subset of both CTL and LTL. Thus, some formulae exist in CTL but
not in LTL and viceversa. For example :

• LTL formula G(Fp) can't be de�ned in CTL (G stand for the GLOBALLY operator and
F for FUTURE operator, the meaning are explain in the section 3.3).

• CTL formula AG(p→ (EXq ∧ EX¬q)) can't be de�ned in LTL. In this case we have the
operator X that stand for NEXT, ∧ for the intersection of the two subformula and → that
means implies, like above, this operators are explain in 3.3. The operators E and A which
stands for EVENTUALLY and ALWAYS are not explained. Their are de�ned in CTL as
path operators. A AP expressed with ALWAYS should be veri�ed for every path, instead
with EVENTUALLY is su�cient only one path.

The LTL logic used further for our study will be peresented in detailes in section 3.3. There
exists di�erent dialects of CTL and LTL, like ACTL, QLTL, LTL-X, the only di�erence between
these dialects is lies in extensions of the general rules, the symbolism remaining the same. An
important property of the LTL logic is that an LTL formula can be translated into an automaton.
Thanks to this property the model checking problem is solved by the analysis of the product
between the LTL automaton (in general it is a Labeled Büchi Automaton (LBA) de�ned in
section 3.2) and the system automaton (another LBA). Next section deals with translation of
an system's model represented as a Kripke structure to a LBA, used in model checking.

3.2 From Kripke structure to Labeled Büchi Automata

Various phases of a typical model checking analysis with LTL are illustrated in �gure 3.1.
The model system should be a Kripke structure. A �nite automata over �nite or in�nite words
(also called ω-automaton) is a Kripke structure. Most concurrent systems are designed not to
halt during normal execution, that is why the common choice is to use an automaton over in�nite
sequences of states, which is a ω-automata. The simplest automata over in�nite words are the
Labeled Büchi Automaton. A formal de�nition of Labeled Büchi Automaton is given below:

De�nition 3.4. An LBA is a six-tuple:

LBA = 〈S,A,∆, s0, F, L〉, (3.2)

where

• S is a �nite number of states

• A = 2AP

• ∆ ⊆ S × S is a transition relation

• s0 ∈ S is an initial state

• F ⊆ S is the acceptance condition.

• L : S → 2AP the labelling function
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3. Model checking in automata theory

LBA accept a runs in which at least one of the in�nitely often occurring states is in F .

A Labeled Büchi Automaton has the same components as an automaton over �nite words.
However, F is called the set of accepting states, rather than �nal states. The transformation
from a k to LBA is very easy. A Kripke structure corresponds to an LBA, where all the states
are accepted. An example of a Kripke structure transformed to LBA is given in �gure 3.2.
Sometimes it is convenient to work with a variation of Labeled Büchi Automaton named Labeled

s0p,q s1

p

s2 q

l

s0p,q s1 p

s2 q

Figure 3.2: Trasforming a Kripke structure (left) into a Labeled Büchi Automaton (right). p, q are
atomic propositions.

Generalized Büchi Automaton with several accepting sets, although this does not extend the
set of languages that can be expressed. The Labeled Generalized Büchi Automaton (LGBA) is
de�ned as follows:

De�nition 3.5 (Labeled Generalized Büchi Automaton). A LGBA is a six-tuple:

LGBA = 〈S,A,∆, s0, F, L〉, (3.3)

where

• S is a �nite number of states

• A = 2AP is the set of all the atomic propositions

• ∆ ⊆ S × S is a transition relation

• s0 ∈ S is an initial state

• F1, F2, . . . , Fn is a set of acceptance condition

• L : S → 2AP the labelling function
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3.2 From Kripke structure to Labeled Büchi Automata

LGBA accepts only runs in which the set of in�nitely often occurring states contains at least a
state from each F1, F2, . . . , Fn.

Multiple sets of states in acceptance condition can be translated into one set of states by an
automaton construction. The translation from a LGBA to a LBA is explained below.

De�nition 3.6. Let LGBA = 〈S,A,∆, s0, F0, . . . , Fn, L〉 where F0, . . . , Fn are sets of accepting
states, the equivalent Labeled Büchi Automaton is LBA = 〈S′, A′,∆′, q′0, F ′, L′〉 where:
• S′ = S × i|0 < i ≤ k
• A′ = A

• s′0 = s0 × i for any 0 < i ≤ k
• (s, i)→ (s′, i) ⇐⇒ s→ s′ and s /∈ Fi

(s, i)→ (s′, (i mod k) + 1) ⇐⇒ s→ s′ and s ∈ Fi
• F ′ = Fi × i for any 0 < i ≤ k
• L′(s, i) = L(s).

Example 3.1. Consider the following Labeled Generalized Büchi Automaton:

s0

a

s1

b

s2

c

Figure 3.3: An example of Labeled Generalized Büchi Automaton

It has two acceptance sets F1 = s1 and F2 = s2. The states of the corresponding simple LGBA
are {s0, s1, s2} × {1, 2}.
The following transitions are possible (only some examples are given) :

• (s0, 1)→ (s1, 1) since s0 → s1 and s0 /∈ F1

• (s0, 1)→ (s2, 1) since s0 → s2 and s0 /∈ F1

• (s1, 1)→ (s0, 2) since s1 → s0 and s1 ∈ F1

• (s1, 2)→ (s1, 2) since s1 → s1 and s1 /∈ F2

• (s2, 2)→ (s2, 1) since s2 → s2 and s2 ∈ F2

A possible LBA will have the set of initial states (s0, 1) and the set of accepting states (s2, 2).
Any accepting run of the LBA must visit (s2, 2) in�nitely often (s2 ∈ F2). In order to do so
it also has to visit a state labelled with s1 ∈ F1 in�nitely often. Thus, an accepting run of the
resulting LBA visits some state of F1 and some state of F2 in�nitely often.

Once the system represented as a Labeled Büchi Automaton, the property to be veri�ed
is also to be translated to Labeled Büchi Automaton in order to perform the model checking
analysis. Translation of a property formulated in LTL to Labeled Büchi Automaton is detailed
in the next section.
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3. Model checking in automata theory

3.3 From LTL formula to Labeled Büchi Automaton

After the de�nition of the Labeled Büchi Automaton we can be more speci�c about the model
checking problem. In automata theory the de�nition 3.3 can be translated in terms of automata
language:

L(M) ⊆ L(S), (3.4)

where M is the system's automaton model and S the speci�cation automaton. Using LTL, the
speci�cation automaton can be translated to a LBA, introduced in this section. It is indeed that
the model presented as are LBA. The expression 3.4 can be rewritten in the following way.
Let ¯L(S) be the language Aω − L(S) then:

L(M) ∩ ¯L(S) = ∅ (3.5)

where the ¯L(S) is the complement of the language of S automaton. The expression 3.5 is
explained in section 3.4.

LTL - Linear Temporal Logic

The LTL logic is chosen for the purposes of this work. Indeed its translation into a Labeled
Büchi Automaton is simple compared to other temporal logics.

De�nition 3.7 (Linear temporal logic). Let p ∈ AP an atomic proposition and ϕaproperty, the
LTL formulae is de�ned as follows:

ϕ = p|ϕ ∨ ϕ|ϕ ∧ ϕ|¬ϕ|�ϕ|♦ϕ| © ϕ|ϕUϕ|ϕRϕ (3.6)

where ∨,∧,¬,©,♦,�, U,R are operators de�ned further in tables 3.1, 3.2, 3.3 and in table 3.4
some useful expansion rules.

An extended lists of operators are reported in the next tables.

Symbol Explanation
ϕ ∨ ϕ ϕ union ϕ
ϕ ∧ ϕ ϕ intersection ϕ
¬ϕ NOT ϕ
→ ϕ implies ϕ
true true value
false false value

Table 3.1: LTL logical operators

Textual Symbol Explanation
Xϕ ©ϕ neXt : ϕ as to hold at the next state
ψUϕ ψUϕ Until : ψ has to hold at least until ϕ

Table 3.2: LTL temporal operators

Others derived operators can be de�ned from these basic operators but for this work the
derived operators are not used. A little example of an LTL formula with a natural human
language is given below.
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3.3 From LTL formula to Labeled Büchi Automaton

Textual Symbol Relation Explanation
Fϕ ♦ϕ trueUϕ Future :ϕ as to hold at almost one path
Gϕ �ϕ FRϕ Globally : ϕ as to hold at all path
ψRϕ ψRϕ ¬(¬ψU¬ϕ) Release : ϕ has to true until ψ is veri�ed

Table 3.3: LTL operators

Gϕ ≈ ϕ ∧XGϕ
Fϕ ≈ ϕ ∨XFϕ

ϕUψ ≈ ψ ∨ (ϕ ∧X(ϕUψ))

Table 3.4: LTL expansion rules

Example 3.2. For this example we set AP = Sun, and use some LTL formula where the model
M is a week. Figure 3.4 illustrates the situation where AP holds in at least 1 day in a week

?start Sun ? ? ? ? ?

Figure 3.4: M, s |= FAP , AP is holds at least one day in a week

Figure 3.5 illustrates the situation where all days in a week are sunny.

Sunstart Sun Sun Sun Sun Sun Sun

Figure 3.5: M, s |= GAP , AP is hold in all days in the week

Translation algorithm

To translate an LTL formula there exists various techniques, such as tableau construction
[17], very weak alternating automata [18], reduction rules [19]. The research in this �led is still
very active. In this subsection the tableau algorithm [17] will be presented. In order to apply
the translation procedure using the algorithm, the LTL formula ϕ should be put into negation
normal form, in which negation is only applied to the atomic proposition. The rules for the
negation form are given below:

• ¬¬ϕ = ϕ

• ¬�ϕ = ♦¬ϕ

• ¬♦ϕ = �¬ϕ

• ¬(ϕUψ) = (¬ψ)R(¬ϕ)

• ¬(ϕRψ) = (¬ψ)U(¬ϕ)
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3. Model checking in automata theory

The negated formula should have only the operators given in tables 3.1, 3.2 plus the R opera-
tor. R operators is dual of U and is used to avoid an exponential blow up in the size of translated
formula [16].
To understand the translation process the [20] tableau method is chosen among various tech-
niques. This is a tableau based method where two tables are de�ned to classify a formula and
the result of its translation which is a LGBA. Expansion rules are shown in table 3.4, they are
necessary for the formula closure.

De�nition 3.8 (Labeled Generalized Büchi Automaton). A Labeled Generalized Büchi Automa-
ton is a six-tuple:

LGBA = 〈S,A,L,∆, s0, F 〉, (3.7)

where

• S is a �nite number of states

• A is a �nite set of labels

• L :→ 2A is a state labelling function

• ∆ ⊆ S × S is a transition relation

• s0 ∈ S is an initial state

• F ⊆ 2S is a set of accepting states.

The tableau construction is composed of a few steps (an overview are illustrated in �gure
3.6) :

a. Form the closure Φϕ of the LTL formula ϕ .

b. Form atoms of given LTL formula ϕ, using the de�nition 3.11. Atoms will play the role of
states in the resulting generalized Labeled Büchi Automaton.

c. Add transition from atoms A to B.

d. Make atom A initial if A contains ϕ and a generalised Labeled Büchi Automaton accep-
tance.

Tableau method

a. We de�ne the tableau method with an example. We take the following formula for explain
the method, ϕ : Fp.

De�nition 3.9 (Formula closure). Let Φϕ (formula closure of ϕ) be the smallest set of formulae
satisfying:

• ϕ ∈ Φϕ

• ∀p ∈ Φϕ and subformula q of {p, q} ∈ Φϕ

• ∀p ∈ Φϕ, ¬p ∈ Φϕ(¬¬p ≡ p)

• ∀ψ ∈ Gp, Fp, pUq, if ψ ∈ Φϕ, then Xψ ∈ Φϕ
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3.3 From LTL formula to Labeled Büchi Automaton

Closure of the formula

Form the atoms

Add transitions

Mark the atoms

a.

b.

c.

d.

Figure 3.6: Overview of the tableau methods

b. A ϕ-atom is a set of all the subformula ∈ ϕ. A subformula is a combination of LTL operators.
For our formula the subformula are Fp (subformula of ϕ). The tableau method is composed by
the de�nition of two tables for two di�erent type of subformula α and β formula, this it will
explain further. The tables are reported in 3.5. At this moment we can give a formal de�nition

α k(α)
p ∧ q p, q
Gp p,XGp

β k1(β) k2(β)
p ∨ q p XFp
Fp p p,XFp
pUq q p,X(pUq)

Table 3.5: α and β tables

of atoms.

De�nition 3.10 (Atom de�nition). A ϕ-atom is a subset A ⊆ Φϕ satisfying:

• Rsat : the conjunction of all local formulae in A is satis�able

• R¬ : for every p ∈ Φϕ, p ∈ A i� ¬p /∈ A (example, for every p ∈ Φϕ, a ϕ-atom must
contain either p or ¬p)

• Rα : for every α-formula α ∈ Φϕ, α ∈ A if and only if k(α) ⊆ A (example, Gp ∈ A i�
both p ∈ A and XGp ∈ A)

• Rβ : for every β-formula β ∈ Φϕ, β ∈ A i� either k1(β) ∈ A or k2(β) ⊆ A (or both)

With this de�nition we can made atoms. For the formula ϕ : Fp we have de�ned its subfor-
mula Fp. From the tables 3.5 we can see that the Fp is a β-subformula. For the de�nition 3.10
a β formula to have a true value should respect the k1 or both of the k2 formulae. An example
is reported below.
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3. Model checking in automata theory

Example 3.3. Let ϕ : Fp
A1 = {ϕ, p,XFp}
A2 = {ϕ,¬p,XFp}

A1 is an atom, A2 is not (Rβ is violated), because with ¬p the Fp should be false. Thus the ϕ
should be ¬ϕ.

In other words the property which an atoms should satis�ed should be explain as the property
showed below.

De�nition 3.11 (Property of a formulae). A α-formula holds at position j if and only if all of
k(α)-formula hold at j.
A β-formula that hold at position j if and only if either the k1(β)-formula holds at j or all

k2(β)-formulae hold at j (or both).

A de�nition of a basic formulae is necessary to check if an atom have all the closure subformula.

De�nition 3.12 (Basic formulae). Basic formulae are propositions or formulae of the form Xp.
The presence or absence of basic formulae in an atom A determine the presence or absence of
all other closure formulae in A.

c. An example of this technique is given below.

Example 3.4. Let ϕ : Fp we can form the closure with the subformula Fp and the 3.5. We
obtain Fp→ p,XFp then :

Φ+
ϕ : {ϕ, p,XFp} (3.8)

Φ−ϕ : {¬ϕ,¬p,¬XFp} (3.9)

Φϕ : {¬ϕ,¬p,¬XFp, ϕ, p,XFp} (3.10)

For the �rst atom we supposed that the formula is true and both, p and XFp are true. For the
second atom, the formula is true but p isn't true, for the third atom XFp isn't true, in the last
all subformula aren't true then the ϕ /∈ A4 but ¬ϕ ∈ A4.

A0 = {ϕ, p,XFp}
A1 = {¬ϕ,¬p,XFp}
A2 = {ϕ, p,¬XFp}

A3 = {¬ϕ,¬p,¬XFp}

(3.11)

After the de�nition of the atoms we can drawn a graph Tϕ of the formula. The nodes of Tϕ are
the atoms of ϕ and there exist an edge from an atom A to an atom B if for every Xp ∈ Φϕ,
Xp ∈ A if and only if p ∈ B. Tϕ is the tableau of ϕ. The atoms Ai correspond to the states si
in the LGBA illustrated in �gure 3.7. For draw correctly the LGBA we should �nd the initial
states and the accepted state.

d. The initial states are the atoms with the TRUE value of ϕ, in our example A0 and A2. The
acceptance condition is given by the subformula which is composed our LTL formula. In our case
we have a Fp formula then we should look for two acceptance condition.

1. Fp: atoms with p or ¬Fp

2. ¬Gp ∼= F¬p: atoms with ¬p of ¬Gp
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3.4 Intersection automata and checking emptiness

3. ¬G¬p ∼= Fp: atoms with p or G¬p

4. pUq: atoms with q or ¬(pUq)

In this way the accepting states are: A0, A1, A2, A3. This example was very simple, indeed the
expansion of the Fp was really unnecessary, without other subformula the four atoms represented
can be reduced to only two. This because the atoms A0 and A2 can be reduced to A0,2 = {ϕ, Fp}
and the other atoms A1, A3 to A1,3 = {¬ϕ,¬Fp}. The presence of two acceptance condition, is
given by the Fp. Thus F0 = {A0, A2} when p is true, F1 = {A1, A3} where ¬Fp is true.

s0

p

s1¬p

s2

p

s3

¬p
Figure 3.7: The Labeled Generalized Büchi Automaton of ϕ : Fp

Labeled Generalized Büchi Automata to Labeled Büchi Automata

The equivalence between LGBA and LBA is explained in the de�nition ??. In this case we
have two acceptance condition F0 and F1. We are interest in the evaluation of ϕ. ϕ→ p because
if p is TRUE the formula is satis�ed. Thus we choose F0 as acceptance condition. Afterwards
we can build a LBA which accepts an in�nite word of p. To remind, a LBA is a ω-language
automata, the formula is accepted only if we have a ω-word (an in�nitive word). The Labeled
Büchi Automaton is illustrated below: It means that if the preposition is true a ω-word should
be produced. For example, considering the automata illustrated in �gure 3.8 if we start from s2

only a word is produced: p(¬p)ω, the only p can't be accepted from a LBA.

3.4 Intersection automata and checking emptiness

Intersection automata

According to the introduction of chapter 3, the �nal step in model checking is checking if the
product between the LBA of the model and the LBA of the LTL formula is empty. Before doing
this a little remark is necessary. There are two ways to realize an LBA, one way is its labeled
version with the AP in state, the other way is with the AP in arcs. Later in this section we
will present a method to make the product between two LBA with AP in arcs, therefore it is
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s0

p

s1¬p

s2

p

s3

¬p
Figure 3.8: The Labeled Büchi Automaton of ϕ : Fp

necessary to put the AP from state to arcs. It is an easy operation, the input arcs of a place s1

should carry on the AP of s1, this procedure is repeated for all the other states. The de�nition
of an intersection is as follows (we refer to [2]).

De�nition 3.13 (Intersection of Labeled Büchi Automaton). Let B1 = 〈S1, A,∆1, s
0
1, F1〉 and

B2 = 〈S2, A,∆2, s
0
2, F2〉 the two LBA. We can build an automaton that accepts L(B1) ∩ L(B2)

(where L is the language of automata, consisting of all the accepted words) as follows: B1∩B2 =
〈A,S1 × S2 × 0, 1, 2,∆, s0

1 × s0
2 × 0, S1 × S2 × 2. We have (〈ri, qj , x〉, a, 〈rm, qn, y〉) ∈ ∆ if and

only if the following conditions hold:

1. (ri, a, rm) ∈ ∆1 and (qj , a, qn) ∈ ∆2, that is, the local components agree with the transitions
of B1 and B2.

2. The third component is a�ected by the accepting conditions of B1 and B2

• if x = 0 and rm ∈ F1, then y = 1.

• if x = 1 and qn ∈ F2, then y = 2.

• if x = 2 then y = 0.

• otherwise, y = x.

The third component guarantees that acceptable states from both B1 and B2 appear in�nitely
often in the product result. An example of the product of two LBA is given in �gure 3.9 and
3.10.

A simpler intersection is obtained when all of the states of one of the automata are accepting.
Such an intersection is used, for instance, L(M) ⊆ L(S) (where M is the system model and S
the speci�cation model), because all the states of the automaton for the modeled system are
accepting. Let's assume that all the states of B1 are accepting and that the acceptance set of
B2 is F2. Their intersection will be de�ned as it follows:
B1 ∩B2 = 〈A,S1 × S2,∆

′, s0
1 × s0

2, S1 × F2〉
The accepting states are pairs from S1×F2 in which the second component is an accepting state.
Moreover, (〈ri, qj〉, a, 〈rm, qn〉) ∈ ∆′ if and only if (ri, a, rm) ∈ ∆1 and (qj , a, qn) ∈ ∆2. Once the
intersection automaton is build, it can be checked to emptiness.
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r1 r2

ba

a

b

q1 q2

ab

b

a

Figure 3.9: An automaton for in�nite numer of a's (left) and an automaton for an in�nite numer of
b's (right).

〈r1, q1, 0〉

〈r1, q2, 1〉 〈r2, q1, 0〉

〈r2, q1, 2〉 〈r1, q2, 0〉

a b

b

a

a

b

a

b
a

b

Figure 3.10: Result of product of the two LBA of �gure 3.9.

Checking emptiness

The existence of the intersection is not su�cient to prove the emptiness, indeed it's necessary
to check if there exists a strongly connected component that is reachable from an initial state
and contains an accepting state of intersection automaton. A run that contains a strongly
connected component is the counterexample of the checked property. The Depth �st search
algorithm (DFS) developed by Tarjan [21] for �nding strongly connected components can be
used but another technique is implemented in CPN Tools a double DFS explained in [2].
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3. Model checking in automata theory

3.5 On-the-Fly Model Checking

In this little section we explain the other main algorithm to check if the system satis�es the
property ϕ. In contrast to the other algorithms in this case only the LTL formula is translated
to LBA. The LBA states of the model are generated only when needed, while checking the
emptiness of its intersection with the LBA of the LTL formula. This tactic is explained in [22].
There are a series of advantages in On-the-Fly procedure, such as:

1. The translation procedure of the system model into a Labeled Büchi Automaton can meet
a state explosion problem, which is not possible with On-the-�y procedure. Indeed, the
number of states in the LBA resulting from translation of a system's model to Büchi
Automata is exponential with respect to the initial number of system's states.

2. If a counterexample is found before completing the construction of the intersection the
algorithm ends.

A disadvantage can be that when a counterexample is found it is not possible to �nd the other
error traces because the algorithm ends.
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Deterministic and probabilistic

dependability assessments
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Employ every economy consistent
with thoroughness, accuracy and
reliability.

Arthur C. Nielsen - Market
analyst

Chapter 4

Case study : nuclear power plant

sub-system

4.1 Introduction

This work is based on a case study developed by Électricité De France (EDF) for the project
"APProches de la �abilité DYNamique pour modéliser des systèmes critiques (APPRODYN)"
(described in [23] "The APPRODYN Project: Dynamic Reliability Approaches to Modeling
Critical Systems"). In particular the case study touches upon a secondary circuit's sub-system
of a nuclear power plant with a pressurized water reactor (PWR). The scheme representing a
nuclear power plant is given in Figure 4.1.

(TPA)

Figure 4.1: Scheme of a nuclear power plant

We can divide the system illustrated in Figure 4.1 in two di�erent parts.
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4. Case study : nuclear power plant sub-system

1. The primary water circuit is involved in the nuclear reaction and has irradiated components.
It is composed of the reactor vessel, control rods and uranium fuel.

2. The secondary circuit is the circuit not involved in the nuclear reaction, it is the circuit
which can communicate with outside environment by means of a cooling tower. It is
important that the components of the secondary circuit are not be irradiated because they
can bring irradiated vapor or water into the environment. The rest of the elements from the
scheme (besides reactor vessel, control rods, etc) can be considered the secondary circuit.

In the case study we focus on the feedwater pump (TPA, Turbopompe alimentaire in French),
illustrated in �gure 4.2 giving the global installation scheme and in particular in �gure 4.3. The
purpose of a TPA is to inject the water from the condensator to the steam generators. Other
components of the EDF system are illustrated in �gure 4.2.

Figure 4.2: Reliability block diagram of EDF case study

For completeness an explanation of the di�erent block are given below:

• Barillet VVP is the cylinder containing water for safety purposes,

• CEX are the extraction pumps, extracting water from condenser in Figure 4.1 are illus-
trated as "Pump".

• TPA are two feedwater pumps functioning in redundance.

• ARE are three valves used to set the input water �ow rate to the steam generators.

Precisely two TPAs are used in parallel (see Figure 4.3). The TPA is controlled by a logical
model that has as input the events from TPA and for output the orders given to TPA, this is
illustrated in �gure 4.4.

Detailed explanations of TPA and the logic model are given in next sections.

The TPA physical model for the case study

The composition of the TPAs system is illustrated in Figure 4.5. In this work the two TPA
are equivalent from a point of view of physical and logical model. Therefore is it possible to give
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4.1 Introduction

TPA

TPA

Figure 4.3: Reliability diagram block for the TPA

System Logical

→ Deterministic

→ Specification

→ Stochastic

→ Physical model Events

Orders

Figure 4.4: Implemented system block diagram

an explanation for one TPA. The parameters used to simulate the system's behaviour can vary,
but this aspect will be addressed later.
A TPA is composed of two sub-systems, in-turbine and out-of-turbine part (in Figure 4.5 respec-
tively "Turbine" and "Hors-Turbine"). These components are in a series con�guration.

Turbine Hors-T

Turbine Hors-T

TPA1

TPA2

Figure 4.5: Reliability block diagram of TPAs system

The failure rate and the reparation rate of these pumps are shown in table 4.1.

TPA λT [h] λHT [h] µT [h] µHT [h]
1 1.475× 10−4 1.459× 10−4 1/0.5 1/24
2 4.425× 10−4 1.46× 10−7 1/24 1/144

Table 4.1: TPAs parameters, λx are the failure rate and µx the reparation rate for component x.

The considered problem the exponential law is used as the probability distribution for the fail-
ure times and Erlang for the reparation times. The scale parameter to the exponential law are λ =
frac1λfailure. Instead for the Erlang distribution, the scale parameter are λ = frac1µreparation
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4. Case study : nuclear power plant sub-system

and the shape parameter k = 2. The mean times to failure and to repair for this system are
illustrated in table 4.2.

TPA MTTFT [h] MTTFHT [h] MTTRT [h] MTTRHT [h]
1 ≈ 6780 ≈ 6854 4 ≈ 48
2 ≈ 2260 ≈ 6849315 ≈ 48 ≈ 288

Table 4.2: MTTF and MTTR of the TPAs expressed in hours, calculated from the used Exponential
and Erlang laws.

An automaton for the physical model of TPA that includes the two di�erent failure modes
(in-turbine and out-of-turbine) and global parameters (the global parameters rx, fx are required
for communication with the logical model) are given in �gure 4.6.

HT1a_T1a_TPA1a

HT1a_T1a_TPA1r.2HT1a_T1a_TPA1r.1

HT1r_T1a_TPA1r

HT1m_T1m_TPA1m

HT1a_T1r_TPA1r

HT1a_T1f_TPA1f HT1f_T1a_TPA1f

mu_t1 mu_ht1

lambda_t1 lambda_ht1

r_t1

f_TPA1

r_ht1

r_tpa1

f_TPA1

Figure 4.6: TPA's automata

An more detailed explanation of �gure 4.6 is given below. The lambda andmu are respectively
the failure rate λ and the reparation rate µ. In the small letters instead "a" means stop, "m"
means working, "f " means failure and "r" means reparation. The model is illustrated only for
one TPA, but it is identical for the other TPA.
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Logical model

The logical model of the system is given in �gure 4.7.

• TPA1m
• TPA2m
• P = 100%

• TPA1f
• TPA2m
• P = 100%

• TPA1f
• TPA2m
• P = 60%

• TPA1r
• TPA2m
• P = 60%

• TPA1m
• TPA2f
• P = 100%

• TPA1m
• TPA2f
• P = 60%

• TPA1m
• TPA2r
• P = 60%

• TPA1f
• TPA2f
• P = 0%

f TPA1

f TPA2

f TPA2

f TPA1

r TPA1

r TPA2

ց P

ց P

ր P

ր P

• TPA1f
• TPA2r
• P = 0%

• TPA1r
• TPA2f
• P = 0%

ր P

r TPA2

r TPA1

ր P

Figure 4.7: Speci�cation automata

The small letters have the same meanings as in �gure 4.6. The black arc in �gure 4.7 are
timed arcs associated to failure and repair times. The blue arcs are instantaneous arcs, they are
necessary to model the communication between the control-machine automaton and the TPA's
physical model. In the given example the model accounts for such phenomena as power (P )
change. Indeed when one TPA instead of two is operating, only a part of power can be delivered
by the system (60%). The system's powers should thus be adjusted to the state of the global
system. We can suppose that the sensor of a broken TPA is instantaneous, so when a TPA is
broken, the control-machine automaton are immediately informed about it (blue arcs). In this
work implementation system's power is not modeled. The power arcs (the black arcs) are drawn
in �gure only for a better comprension of power changing and for a future development.
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Simplicity is prerequisite for
reliability.

Edsger W. Dijkstra - Computer
scientist

Chapter 5

CPN models for the case study

Introduction

In this chapter we describe two di�erent models for our analysis. A stochastic model, used
for a system's performance analysis, and a deterministic model used for the model veri�cation
process. Two models are required because as we will see later the tokens used to model the
TPA failures do not have a �nite set of values. This problem leads to the state explosion, with
an in�nite state graph, making the veri�cation impossible. To assure the formal de�nition of
our CPN Tools the automata illustrated in �gures 4.7 and 4.7 are used to built two CPN Tools
models. In the �rst section we talk about the stochastic version of our system, and its functioning
failures and reparations of TPA. In the second section we talk about the deterministic version,
which has the same behaviour as the �rst one but using a "referee".

CPN models: common structures

In this section we de�ne the data and variables in common with the two models. Three used
colors are illustrated in table 5.1 (to remind, a color is a type of token/place. Generally the color
sets are in�nite but are restricted by "with . . . and" clause. For example a color INT includes
all the integer numbers but with the with . . . and we can limit it to the chosen values). Sixteen
di�erent variables were de�ned for the system. Some of these variables are used for the monitor
and performance analysis and some are used for the model behaviour veri�cation. In particular
the local variables are used in a transition (exactly in the starting transition for the failure time,
and in the failure transition for the reparation time), their values are calculated in di�erent ways
and afterward are assigned to the output token. Figure 5.1 illustrates the resulting CPN Tools
declaration spot.

5.1 Stochastic approach

This section is composed of three parts, each describing a part of CPN Tools system's model.
In the �rst section the physical model of a generic TPA is de�ned. In the second section the
logical model of the behaviour of the system is de�ned, in particular this model doesn't include
timed transitions. In the last, the third section the linker between the two modules is presented:
2 modules and a top module giving the initial conditions for the system's functioning. The used
colours are given in Table 5.1.
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5. CPN models for the case study

Name Type of data associated Explanation Timed
UNIT () Default CPN Tools color set
INT 0, 1, 2, . . . n Default CPN Tools color set, integer

value
BOOL true, false Default CPN Tools color set

STRING abcsd. . . Default CPN Tools color set
TPA pump1, pump2 The two di�erent TPA are modelize

as token
•

TPAfault TPA, INT, INT This token carry on the value of
TPA (pump1 or pump2) and the dif-
ferent time of failure in-turbine and
out-of-turbine.

•

StatusTPAs TPA, BOOL This token is used to notify about
the status of TPA the control ma-
chine

•

TPA_tPanne TPA, INT This token is used in to control-
machine model to record what TPA
is broken (or repaired) and at what
time (INT value).

Table 5.1: Color set used in the CPN Tools model

TPA model

We start to implement our system taking in consideration �gure 4.4 where the System or
TPA model is stochastic and represents the physical behaviour of our TPAs system. To build
a CPN model of the physical behaviour of a TPA we based our studies on automaton given in
�gure 4.6. This automaton should be translated in a CP-net. The corresponding CP-net is given
in �gure 5.2. As we see �gure 5.2 and �gure 4.6 are more or less the same, but the analogies are
only graphical. Indeed in the transition of the CPN model di�erent operation are executed for a
logical consistency.

Let us describe the starting process.

Start up of a TPA

The process of starting a TPA is illustrated n �gure 5.3. We can see that in the place TPAs
waiting two token are presented, pump1 and pump2 at initial time (to remind the de�nition of
marking in CPN Tools, de�nition 2.16). The variable p is involved to take on the random token
(pump1 or pump2), from the place TPAs waiting to the transition Starting TPAs. The output
of the transition is a complex timed token, with three di�erent values. The actions performed
in the transition Starting TPAs are randomly. These failure times are taken randomly from the
exponential distribution (a correction of 0.5 is necessary due to the �oor function that maps a
real number in the smallest following integer). A series of if functions indicate which pumps
we have and what is the nearest time to failure between in-turbine(T) and out-of-turbine(HT).
In the end of this if a value of time @wait is associated to the token. The logic behind is the
following : the pump works and after the time @wait a failure transition is enabled. The output
token corresponds to the number of pump, the in-turbine failure time and the out-of-turbine
failure time. These times are used to enable next transitions.
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5.1 Stochastic approach

Name Type of variables Explanation Local variables
p TPA Used to refer to token TPA

t_faultHT INT Time of out-of-turbine failure
t_faultT INT Time of in-turbine failure

wait INT The minimal time between
the two time de�ned above

t_faultT1 INT Time of in-turbine failure,
TPA1

•

t_faultT2 INT Time of in-turbine failure,
TPA2

•

t_faultHT1 INT Time of out-of-turbine fail-
ure, TPA1

•

t_faultHT2 INT Time of out-of-turbine fail-
ure, TPA2

•

wait1 INT The minimal time be-
tween the t_faultT1 and
t_faultHT1

•

wait2 INT The minimal time be-
tween the t_faultT2 and
t_faultHT2

•

mu_T STRING In-turbine reparation rate,
is a STRING because CPN
Tools doesn't support the
REAL value, but with the
function Real.fromString is
possible to use it

mu_HT STRING Out-of-turbine reparation
rate

t_faultT INT Time of in-turbine failure
status StatusTPAs Used for communication be-

tween the TPA model and
the control-machine (speci�-
cation) model

p_tPanne TPA_tPanne Used in the control-machine
model to know which pump
is broken and at what time.

p_tPanne_bis TPA_tPanne Like the variable p_tPanne
panne_system INT Used to know at what time

the system fails

Table 5.2: Set of variables used in the CPN Tools model
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5. CPN models for the case study

Figure 5.1: Declarations in CPN Tools for the case study

This procedure is the same for the �rst TPA and for the second TPA. The system can continue
to function only after both TPA have started.

Failure of a TPA

Figure 5.5 illustrates the part that models the failure of a TPA. The two arcs from the place
TPAs in work are linked to the two di�erent failure modes. The simulation clock is at 171 (the
time of the token pump2). It means that the token pump2 can be used to enable a transition.
The choice of which transition is enabled is de�ned by the two guard conditions functions. The
transition Fault Turbine is enabled if the random time of in-turbine failure time is smaller than
the out-of-turbine failure time. Otherwise the transition Fault HT will be enabled.
The operations executed in the transitions have the same meaning as in the transition Starting
TPAs (it means a token is assigned a "hold" value in the next place) but in this case only the
reparation rate µ is assigned. An important place is the place TPAs status. This place is the link
between the TPA model and the control-machine (speci�cation) model. Its work is very simple,
it has 2 tokens of type StatusTPAs = TPA, BOOL. When the pump is ok the value of the token
is true, when a pump is broken the boolean value is false. The fault transitions can be enabled
only if all the incoming arcs are linked to places that contain a token which can satisfy the arc
inscription. For example, the transition Fault Turbine will be enabled only if:

• The place TPAs in work has a token (p, t_faultT, t_faultHT),

• The place TPAs status has a token (p, true).
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p

p

p

p

(p,true)

(p,false)

p

(p,true)

(p,false)p

(p,true)

(p,true)

(p,false)

(p,false)

(p)@+floor(erlang(2,Option.valOf (Real.fromString mu_HT))+0.5)
(p)@+floor(erlang(2,Option.valOf (Real.fromString mu_T))+0.5)

(p,t_faultT,t_faultHT)
(p,t_faultT,t_faultHT)

(p,t_faultT,t_faultHT)@+wait

p

p

p

HT reparedTurbine repared

Fault HT

[t_faultHT<t_faultT]

input (p);
output (mu_HT);
action
(let
val mu_HT= if (p=pump1) then "0.0416667" else "0.0069445"
in
(mu_HT)
end
);

Fault Turbine

[t_faultT<t_faultHT]
input (p);
output (mu_T);
action
(let
val mu_T= if (p=pump1) then "0.5" else "0.0416667"
in
(mu_T)
end
);

Stop TPA after reparation of HTStop TPA after reparation of turbine

Starting TPAs

input (p);
output (t_faultT,t_faultHT,wait);
action
(
let
val t_faultT1=floor(exponential(0.0001475)+0.5)
val t_faultT2=floor(exponential(0.0004425)+0.5)
val t_faultHT1=floor(exponential(0.0001459)+0.5)
val t_faultHT2=floor(exponential(0.000000146)+0.5)
val wait1= if t_faultT1>t_faultHT1 then t_faultHT1
else t_faultT1
val wait2=if t_faultT2>t_faultHT2 then t_faultHT2
else t_faultT2
val t_faultT = if (p=pump1) then t_faultT1 else t_faultT2
val t_faultHT = if (p=pump1) then t_faultHT1 else t_faultHT2
val wait = if (p=pump1) then wait1 else wait2
in
(t_faultT,t_faultHT,wait)
end
);

TPA HT repared

TPA

TPA turbine repared

TPA

TPAs status

I/O

StatusTPAs

HT reparation

TPA

Turbine reparation

TPA

TPAs in work

TPAfault

TPAs waiting

In
TPA

In

I/O

2 1`(pump1,true)@0+++
1`(pump2,true)@0

2

1`pump1@0+++
1`pump2@0

Figure 5.2: TPA, CPN model associated to the automaton from �gure 4.6

(p,t_faultT,t_faultHT)@+wait

p

Starting TPAs

input (p);
output (t_faultT,t_faultHT,wait);
action
(
let
val t_faultT1=floor(exponential(0.0001475)+0.5)
val t_faultT2=floor(exponential(0.0004425)+0.5)
val t_faultHT1=floor(exponential(0.0001459)+0.5)
val t_faultHT2=floor(exponential(0.000000146)+0.5)
val wait1= if t_faultT1>t_faultHT1 then t_faultHT1
else t_faultT1
val wait2=if t_faultT2>t_faultHT2 then t_faultHT2
else t_faultT2
val t_faultT = if (p=pump1) then t_faultT1 else t_faultT2
val t_faultHT = if (p=pump1) then t_faultHT1 else t_faultHT2
val wait = if (p=pump1) then wait1 else wait2
in
(t_faultT,t_faultHT,wait)
end
);

TPAs in work

TPAfault

TPAs waiting

In
TPA

2

1`pump1@0+++
1`pump2@0

Figure 5.3: Starting of TPA: CPN model

where p has same value (in our system, pump1 or pump2). The logic behind is that a transition
Fault Turbine will be enabled only if a pump is working. When a fault transition is �red a
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input (p ) ;
output ( t_faultT , t_faultHT , wait ) ;
a c t i on

(
let
val t_faultT1=f l o o r ( exponent i a l (0 .0001475)+0.5)
val t_faultT2=f l o o r ( exponent i a l (0 .0004425)+0.5)
val t_faultHT1=f l o o r ( exponent i a l (0 .0001459)+0.5)
val t_faultHT2=f l o o r ( exponent i a l (0 .000000146)+0.5)

val wait1=
i f t_faultT1>t_faultHT1 then t_faultHT1
else t_faultT1

val wait2=
i f t_faultT2>t_faultHT2 then t_faultHT2
else t_faultT2

val t_faultT =
i f (p=pump1) then t_faultT1
else t_faultT2

val t_faultHT =
i f (p=pump1) then t_faultHT1
else t_faultHT2

val wait =
i f (p=pump1) then wait1
else wait2

in
( t_faultT , t_faultHT , wait )

end
) ;

Figure 5.4: SML code of Starting TPAs transition

correspondent token (p, false) is placed in place of (p, true) token in TPAs status. This is used
to notify the control-machine automaton that a pump is broken.

Reparation of a TPA

The model of the TPAs reparations is illustrated in �gure 5.7.
Unlike in the Starting TPAs transition, in the reparation section we have de�ned the @wait

time in the arc inscription. In this case the Erlang distribution function de�ned in CPN Tools
requires two parameters: an integer (the shape parameter) and a real (the scale parameter).
CPN Tools doesn't support real numbers, to overcome this problem we assign the di�erent µ by
the p value and the resulting mu_T is de�ned as a string. The @wait time is assigned to the
arc inscription using the function Real.fromString.

(p )@+f l o o r ( e r l ang (2 , Option . valOf ( Real . f romStr ing mu_T))+0.5)
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(p,true)

(p,true)

(p,false)

(p,false)

(p,t_faultT,t_faultHT)
(p,t_faultT,t_faultHT)

Fault HT

[t_faultHT<t_faultT]

Fault Turbine

[t_faultT<t_faultHT]

input (p);
output (mu_T);
action
(let
val mu_T= if (p=pump1) then "0.5" else "0.0416667"
in
(mu_T)
end
);

TPAs status

I/O

StatusTPAs

TPAs in work

TPAfault

input (p);
output (mu_HT);
action
(let
val mu_HT= if (p=pump1) then "0.0416667" else "0.0069445"
in
(mu_HT)
end
);

2 1`(pump1,true)@0+++
1`(pump2,true)@0

2
1`(pump1,2487,11465)@2487+++
1`(pump2,171,108879)@171

Figure 5.5: Failure of TPA: CPN model

input (p ) ;
output (mu_T) ;
ac t i on

(
let

val mu_T =
i f (p=pump1) then " 0 .5 "
else " 0.0416667 "

in
(mu_T)
end
) ;

Figure 5.6: SML code of Fault Turbine transition

The transitions Turbine/HT repared are enabled only if the selected pump is broken (p, false)
and after the reparation time, calculated in the arc inscription. Afterwards the token (p, false)
TPAs status is removed and a new token (p, true) is placed in the place.

Restart of a TPA

The restart of a TPA is illustrated in �gure 5.8. In this case all the transitions are instan-
taneous. We suppose that after the reparation a TPA is hold and restarted immediately. The
presence of the transitions Stop TPA after reparation of turbine/HT and the places TPA tur-
bine/HT repared are not essential in a timed model but we will see in the deterministic version
of this model the importance of these transitions/places (in section 5.2).
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(p,true)

(p,false)

p

(p,true)

(p,false)p

(p,true)

(p,true)

(p,false)

(p,false)

HT reparedTurbine repared

Fault HTFault Turbine

[t_faultT<t_faultHT]

TPAs status

I/O

StatusTPAs

HT reparation

TPA

Turbine reparation

TPA

(p)@+floor(erlang(2,Option.valOf (Real.fromString mu_T))+0.5) (p)@+floor(erlang(2,Option.valOf (Real.fromString mu_HT))+0.5)

2 1`(pump1,true)@0+++
1`(pump2,false)@171

1 1`pump2@177

Figure 5.7: Reparation of TPA: CPN model

pp

HT reparedTurbine repared

pp

p

p

Stop TPA after reparation of HTStop TPA after reparation of turbine

TPA HT repared

TPA

TPA turbine repared

TPA

TPAs waiting

In
TPA

1 1`pump2@177

Figure 5.8: Restart of a TPA: CPN model

Control-machine model

The control-machine (logical) model is illustrated in �gure 5.9. As illustrated in �gure 4.4,
the logical model should respect the following :

• The logical model is deterministic.

• The logical model should follow the provided speci�cation.

• The logical model should allow to store all the information in order to carry out the
performance analysis.

Figure 5.9 gives a CPN model interpretation of an the automaton in illustrated in �gure 4.7. In
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1`(pump1,false)++1`(pump2,false)

1`(p,true)

panne_system

panne_system

panne_system

p_tPanne

p_tPanne

p_tPanne

p_tPanne

(pump2,true)

(pump1,true)

p_tPanne

p_tPanne

p_tPanne_bis

p_tPanne

(pump2, IntInf.toInt(time()))

(pump1, IntInf.toInt(time()))

(pump2,false)

(pump1,false)

System_repair

System FAILURE

RTPA1

RTPA2

FTPA2

[#1 p_tPanne = pump2]

FTPA1

[#1 p_tPanne = pump1]

System_OKglobal

1`0

INT

Anti-Place

1`(pump1,0)++
1`(pump2,0)

TPA_tPanne

System KO

INT

TPA2 down

TPA_tPanne

TPA1 down

TPA_tPanne

System OK

I/O

StatusTPAs

I/O

CPN'Replications.nreplications 10000

IntInf.toInt(time())

1

1`0

2

1`(pump1,0)++
1`(pump2,0)

2

1`(pump1,true)@0+++
1`(pump2,true)@0

Figure 5.9: Control-machine CPN model

this logical model the place System OK is in "read only" mode, only the TPA model can change
its contents. Let us describe di�erent parts of this logical model.

Failure and reparation of a TPA - Logical model

The logical part involved in the control of the behaviour of the TPA system, in particular
for the TPA1 is illustrated in �gure 5.10, it is the same for the TPA2. It allows recording of
all the parameters required to carry out the performance analysis. When the TPA1 (pump1)
is broken the place System OK has the token (pump1, false) this allows the transition FTPA1
that doesn't change the token in place System OK. An initial problem presented in this case is
that when the instantaneous transition FTPA1 is enabled, the marking of size TPA1 down is
in�nitely augmented. To resolve this an Anti-Place is implemented. CPN Tools doesn't support
the inhibitor arcs, in the [12] online documentation of CPN Tools an easy trick is presented for
the Anti-Place system.
The idea of the Anti-Place system is that the place looped in a two di�erent transitions (in our
case the FTPA1 and RTPA1 ) cannot have more token that the token in the Anti-Place, because
the Anti-Place enables or disables the input and the output transitions of the involved place. In
this case thanks to the Anti-Place, the FTPA1 is allowed only once, because the token p_tPanne
(where the �rst argument should be pump1, the second is the failure time of pump1) is removed
from the Anti-Place. A next execution of the FTPA1 transitions is allowed only if the token
with pump1 is placed by the reparation transition RTPA1. Thus the place TPA1 down has at
maximum one token.
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p_tPanne

p_tPanne

(pump1,true)

p_tPanne

(pump1, IntInf.toInt(time()))
(pump1,false)

RTPA1

FTPA1

[#1 p_tPanne = pump1]

Anti-Place

1`(pump1,0)++
1`(pump2,0)

TPA_tPanne

TPA1 down

TPA_tPanne

System OK

I/O

StatusTPAs

2

1`(pump1,0)++
1`(pump2,0)

2

1`(pump1,true)@0+++
1`(pump2,true)@0

Figure 5.10: Failure and reparation of the TPA1: CPN model

The arcs inscriptions are used for the monitoring system in the performance analysis.

System failure - Logical model

From the automaton illustrated in �gure 4.7 and the reliability block from diagram of �gure
4.5 we know that a system is broken if the two TPA are broken. This means that the transition
System FAILURE is enabled when the places TPA1 down and TPA2 down have the tokens that
indicate the failure of the two TPA and the place System OK has the tokens (pump1, false) and
(pump2, false). Afterward a token of type INT with the time of system's failure is placed in the
place System KO.

Restart from a system failure - Logical model

The system is down when 2 TPA are down and restarts when one of the TPA is repared. In
this case the transition System_repair is enabled only if there is a token in the place System KO
and a pump is repaired. It is an instantaneous transition. In this case we can have a concurrency
between the transitions System_repair and RTPA1/2 but it does not entail implementation
problem behaviour of the system. Indeed CPN Tools executes the instantaneous transitions
before the timed transitions and the instantaneous transitions in the logic model cannot change
the place System OK. Thanks to the arc with inscription (see �gure 5.11) :
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1`(pump1,false)++1`(pump2,false)

p_tPanne

IntInf.toInt(time())

p_tPanne_bis

p_tPanne

(pump1, IntInf.toInt(time()))
(pump1,false)

System FAILURE

FTPA1

[#1 p_tPanne = pump1]

System KO

INT

TPA1 down

TPA_tPanne

(pump2,false)

FTPA2 TPA2 down

TPA_tPanne

Anti-Place

1`(pump1,0)++
1`(pump2,0)

TPA_tPanne

System OK

I/O

StatusTPAs

2

1`(pump1,0)++
1`(pump2,0)

2

1`(pump1,true)@0+++
1`(pump2,true)@0

Figure 5.11: System failure in the logical model

1`(p,true)

panne_system

panne_system

panne_system

IntInf.toInt(time())

System_repair

System FAILURE

System_OKglobal

1`0

INT

System KO

INT

System OK

I/O

StatusTPAs

1

1`0

2

1`(pump1,true)@0+++
1`(pump2,true)@0

Figure 5.12: Restarting from a system failure state

1 ` (pump1 , f a l s e )++1`(pump2 , f a l s e )

the transition System FAILURE cannot be enabled if a pump is repared, neither if we have some
token in the places TPA(1,2) down. This is another certainty of the correct behaviour of the

57



5. CPN models for the case study

system. The involved part of the reparation after a system failure is illustrated in �gure 5.12.
Without the places and the transitions of the right side of �gure the system cannot be repaired
after a system failure.

System's hierarchisation - Top module

After building the two modules of our system it is necessary to develop a Top module with
the initial conditions and the shared place (a shared place by the 2 modules. It is named Fusion
places in CPN Tools).

statusp status
System

TPA

Specification

Specification

Initial conditions

1`pump1++
1`pump2

TPA

Status of system

1`(pump1,true)++
1`(pump2,true)

StatusTPAs SpecificationTPA

2

1`pump1@0+++
1`pump2@0

2

1`(pump1,true)@0+++
1`(pump2,true)@0

Figure 5.13: Top module of the case study system

The place Initial conditions has the initial marking of the TPA module, in this place we can
set how TPA are functioning in our system. For example we can easily make simulation with two
TPAs of type pump1 and four TPAs of type pump2. The place Status of system has an initial
marking of pump1 and pump2 in a true value, similarly if we increase the number of pumps in the
place Initial conditions we should augment also the tokens in this place. The transitions showen
in the �gure 5.13 are simply the TPA model for System and Logical model for Speci�cation. In
this case the transitions are actually the substitution transitions.

5.2 Deterministic models

A determinization of a timed model is simple. Substitution all the timed transitions with
instantaneous transitions is the �rst step (see �gure 5.14 for the deterministic vrsion of the TPA
CPN model).

However time in our case is not simply a variable. Time gives an order to a series of events.
Without time, all the two module, TPA and Speci�cation are deterministic and in this case
some transition are not forbidden by the time. Thus making if possible that the system reaches
irrelevant states (see for example �gure 5.15).

In Figure 5.15 we can see that pump2 can be broken and repaired while the pump1 is still
in waiting state. This is not possible in our stochastic system. In theory, with this problem the
pump2 can be started and broken in�nitely and the pump1 can be always in a waiting status.
The solution is in limiting the state space, but how? CPN Tools supports the option for priority
the transitions. However for a analysis tool which we use for perform the veri�cation analysis
(its name is ASAP [24]) the priority transitions are not supported. Thus, our idea is to use a
place which enables a module or the other with a special token. Like a classical mutual exclusion
problem, it is like two trains in a bridge with only one railway ; somehow it should be allowed
that one train at time passes the bridge, in the meanwhile the other waits in a station near the
bridge. We have applied the same method to our deterministic model, but in our case the order
is not simply "go on the bridge" or not. An additional complexity is present in ordering the 2
TPAs. This complexity is approached using the "referee" place.
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I/O
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2

1`pump1++
1`pump2

Figure 5.14: The TPA model without timed transitions

The "referee" place

We can divide the principal problem of a "referee" in four little problems. Firstly we can
consider the TPA failure problem, secondly the TPA reparation, thirdly the TPA restart problem,
at last the system restart problem. To resolve these problems a series of �ags is de�ned, di�erent
�ag for each problem. These �ags are tokens with a STRING color set, which allows a compact
representation of those. The initial value of the place TOKEN is as follows (see �gure 5.16 for
its representation) :

2 ` "OKTPA"++
1 ` "SYSOK"++
1 ` "TPA"

The hearts of the "referee" place is a special token we named as golden token. This token can
have three values: TPA, SPEC or REP_TPA. The particularity of the golden token is that is
used to switch between the TPA model or the Speci�cation model. The place TOKEN can have
only once at time.

Failure problem

In case of failure of a TPA this failure can be allowed only when the 2 TPA are in a working
status. For that a token 1`"TPAS" is placed in TOKEN when the transition Starting TPAs
occurs. To enable the failure transitions it is required that two tokens TPAS are placed in the
place TOKEN (see �gure 5.17). If a failure transition is �red the golden token of type TPA is
substituted with the value SPEC and the TPA model remains in this status. Only when the
Speci�cation model gives the golden token to the TPA, the TPA can perform others transitions.
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2
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Figure 5.15: An error in the �rst version of the deterministic system
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status status
System

TPA

Specification

Specification

TOKEN
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2`"OKTPA"++
1`"SYSOK"
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StatusTPAs SpecificationTPA

4

2`"OKTPA"++
1`"SYSOK"++
1`"TPA"

2

1`(pump1,true)++
1`(pump2,true)

Figure 5.16: The "referee" place named TOKEN in CPN Tools
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1`"SPEC"

p
p

p

Fault HTFault Turbine

Starting TPAs

TOKEN

I/O
STRING

TPAs in work

TPA

Figure 5.17: The failure problem, TPA model

The speci�cation model executes the only transition that can be �red, for example if the pump1
is going to be broken, the speci�cation �res the transition FTPA1, gives back the golden token
to the TPA model and takes the token OKTPA (see �gure 5.18). This indicates a broken TPA.
After that another failure or reparation transition can be �red.

Reparation problem

Suppose that after a �rst failure we have a reparation, in this case only the reparation
transition should be enabled. Thus a combination of tokens is removed.
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1`"TPA"
FTPA1

STRING

1`"SPEC"++1`"OKTPA"

TOKEN

I/O

Figure 5.18: The failure problem, speci�cation model

1`"OKTPA"++1`"TPA"++1`"TPAS"1`"OKTPA"++1`"TPA"++1`"TPAS"

1`"SPEC"
HT reparedTurbine repared

TOKEN

I/O
STRING

1`"SPEC"

Figure 5.19: The reparation problem, TPA model

In �gure 5.19 we can see that the tokens removed when a reparation transition is �red are
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the following :

1 ` "OKTPA"++1`"TPA"++1`"TPAS"

These token are removed for the following reasons :

• TPA token stops the TPA model

• TPAS token interrupts the failure transitions (the failure transitions requires 2 tokens
TPAS )

• OKTPA token is removed because this makes it possible that only a reparation transitions
in the speci�cation model can be enabled.

1`"REP_TPA"++1`"OKTPA"

RTPA1
TOKEN

I/O
STRING

1`"SPEC"

Figure 5.20: The reparation problem, speci�cation model

In the speci�cation model given in �gure 5.20 we can see the token REP_TPA, which forces
the restart of the pump, and the token OKTPA, which indicates the reparation of the pump.

Restart problem

For the restart problem (see �gure 5.21) it is checked if the system is not in a failure state
using the SYSOK token. The token REP_TPA is removed and tokens OKTPA and TPA are
placed in the TOKEN place. Thanks to this the next transitions is Starting TPAs, which brings
back the system at the time when both pumps are in working state.

System failure problem

In this case the two pumps are broken. When �ring the transition System FAILURE the
speci�cation model should remove the token SYSOK from the "referee" and to remove a token
TPAS to forbid the execution of all failure transitions, because at this moment only a reparation
should be enabled thanks to the token OKTPA (see �gure 5.22 for the CPN implementation). If
a pump is repaired the transition System_repair in the speci�cation model is �red. As a result
the pump restarted.
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Figure 5.21: The restart problem, TPA model
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Figure 5.22: The system failure problem, speci�cation model

Thanks to this we can have a working pump going to a failure status while the other pump is in
reparation. This is also possible for our stochastic system, although the probability of such an
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event is not very high because in average the repair durations are signi�cantly smaller than the
failure durations. The complete deterministic versions of the TPA system and the speci�cation
system are given in �gures 5.23 and 5.24 respectively.
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Figure 5.23: The deterministic version of the TPA model

CPN'Replications.nreplications 10000

1`"TPAS"++1`"SYSOK"

1`"TPAS"

1`"OKTPA"1`"SYSOK"

p

1`"OKTPA"1`"SPEC"++1`"OKTPA"

1`"SPEC"

1`"SPEC"

1`"SPEC"++1`"OKTPA"

1`"TPA"

1`"REP_TPA"++1`"OKTPA"

1`"REP_TPA"++1`"OKTPA"

1`"TPA"

(p,true)

1`(pump1,false)++1`(pump2,false)

()

()

()

pump1

pump2

pump2

pump1

(pump2,true)

(pump1,true)

pump1

pump2

()

pump2

pump1

pump2

pump1

(pump2,false)

(pump1,false)

System_repair

System FAILURE

RTPA1

RTPA2

FTPA2

FTPA1

TOKEN

I/O
STRING

System_OKglobal

1`()

UNIT

Anti-Place

1`(pump1)++
1`(pump2)

TPA

System KO

UNIT

TPA2 down

TPA

TPA

System OK

I/O

StatusTPAs

I/O

I/O

TPA1 down

Figure 5.24: The deterministic version of the speci�cation model
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A careful analysis of the process
of observation in atomic physics
has shown that the subatomic
particles have no meaning as
isolated entities, but can only be
understood as interconnections
between the preparation of an
experiment and the subsequent
measurement.

Erwin Schrödinger - PhysicistChapter 6

Model usage

Introduction

In this chapter the two types of model usage and their implementation will be discussed.
We will start with the system performance analysis and present the the veri�cation analysis
afterwards. The outline of this chapter is illustrated schematically in �gure 6.1.

performance analysis

Model verification

Timed model
(5.1)

Untimed model
(5.2)

Sub-system APPRODYN

Monte Carlo

State space

Results

Analysis Chapter 6

Chapter 5

System

Case study :

simulations

Figure 6.1: Chapter outline

6.1 System performance analysis

CPN Tools is adapted for a performance analysis. In the online documentation [12] there
is an explanation of how to carry out a performance analysis using the monitors. For the
performance analysis a Monte Carlo simulations have been done. The monitors record the
data for one simulation, after that the CPN Tool engine makes a series of basic evaluations
of these data (means, con�dence intervals, etc). We should record the time when a particular
transition occurs, afterwards CPN Tools gives us the mean over all the simulations. A synthesis
of parameters provided by the performance analysis is given in �gure 6.2.

Monitors in performance analysis

An explanation of CP-nets monitor is given in de�nition 2.17. In our case four monitors
are applied to record three di�erent mean times: the MTTFF, the MTTR, the MTBF and
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Performance analysis

MTTFF MTTR
MTBFUnavailability

Simulation time : 18 months
Number of simulations: 10000

TPA1 TPA2 System

Figure 6.2: A synthesis of the performance analysis parameters.

the last to record the Unavailability (the unavailability is the complementary probability of the
availability). These monitors are replicated for the two TPAs and for the system. We will explain
these monitors for the TPA1, same code with only slightly di�erent variables is used for TPA2
and the system.

Composition of a monitor in CPN Tools

According to the online documentation [12], Each monitor has a number of di�erent functions
that are used for di�erent purposes. Some examples of functions for monitors are:

• predicate function for checking if the relevant condition is ful�lled,

• observation function for extracting information from the net,

• action function for doing something relevant with the extracted data,

• initialization function for initializing a monitor before a simulation starts,

• stop function for concluding a monitor when a simulation ends.

Some monitors will have one of each of these functions, and some monitors will only have a
subset of these functions. For example for our aim we use a Generic data collection monitor
which allow to execute a particular observation function written by us if the predicate function
is veri�ed. With the Generic data collection monitor we cannot modi�ed the action function
which is hidden. These functions are explained with the explanation of the di�erent monitors.
A detailed explanation of the monitors is given below.

MTTFF monitor

The MTTFF monitors should record only the time of the �rst entity failure. They are applied
to the failure transitions corresponding to the entity (for the TPAx it is FTPAx, for the system
it is System FAILURE ). It is composed of the following functions:

• Predicate function:
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fun pred ( bindelem ) =
let
fun predBindElem
( Sp e c i f i c a t i o n 'FTPA1 (1 ,{ p_tPanne }) ) = i f #2 p_tPanne = 0

then t rue else f a l s e
| predBindElem _ = f a l s e

in
predBindElem bindelem

end

In this case the second element of p_tPanne is the time to failure, this time is recorded
only after the failure transition. For the initial failure it is always 0.

• Observer function: if the predicate functions is true then the observer function is executed.

fun obs ( bindelem ) =
let
fun obsBindElem
( Sp e c i f i c a t i o n 'FTPA1 (1 , {p_tPanne }) ) =

In t I n f . t o In t ( time ( ) )
| obsBindElem _ = ~1

in
obsBindElem bindelem

end

In this case we extract the value of the global clock using the function IntInf.toInt(time()).

• Initialization function: we should not initialize the monitors by construction.

fun i n i t ( ) = NONE

• Stop function:

fun stop ( ) = NONE

In this case the monitor stops automatically when the simulations ends, so no stop function
is de�ned.

MTTR monitor

The MTTR monitors should record every reparation time. When a reparation transition
is enabled a di�erence between the failure time and the transition time should be calculated.
We use the failure time to calculate the di�erence because we suppose that the reparation is
immediately performed after failure. It is applied at RTPAx, for the TPAx at System_repair for
the system. It is composed of the following functions:

• Predicate function :

69



6. Model usage

fun pred ( bindelem ) =
let
fun predBindElem ( Sp e c i f i c a t i o n 'RTPA1 (1 , {p_tPanne }) )

= true
| predBindElem _ = f a l s e

in
predBindElem bindelem

end

When the transition RTPA1 is enabled the monitor is activated.

• Observer function : if the predicate functions is true then the observer function is executed.

fun obs ( bindelem ) =
let
fun obsBindElem
( Sp e c i f i c a t i o n 'RTPA1 (1 , {p_tPanne }) ) =

In t I n f . t o In t ( time ( ) ) − #2 p_tPanne
| obsBindElem _ = ~1

in
obsBindElem bindelem

end

In this case we extract the value of the global clock using the function IntInf.toInt(time()).

• Initialization : like for MTTFF monitors, we should not initialize the monitors.

• Stop function : like for the MTTFF monitors, no stop function is de�ned.

MTBF monitor

The MTBF monitors should record every failure time. They are similar to MTTR monitors
with the only di�erence in the observer function. When a failure transition is enabled the
di�erence between the time of the last failure and the new failure should be calculated. It is
applied at FTPAx for the TPAx, at System FAILURE for the system. It is composed of the
following functions:

• Predicate function: the same as for the MTTR, modi�ed to work with the FTPA transi-
tions.

• Observer function: if the predicate functions is true then the observer function is executed.

fun obs ( bindelem ) =
let
fun obsBindElem
( Sp e c i f i c a t i o n 'FTPA1 (1 , {p_tPanne }) ) =

In t I n f . t o In t ( time ( ) ) − #2 p_tPanne
| obsBindElem _ = ~1

in
obsBindElem bindelem

end
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It is the same as MTTR monitors and is adapted to the failure transition, FTPA1.

• Initialization : equal to MTTR monitors.

• Stop function : equal to MTTR monitors.

Unavailability monitor

The Unavailability monitors should record the duration of state when the entity is broken.
In our case we can count how much time the token spends in the broken place (for the TPAx,
it is the place TPAx down). In our system we can have at maximum one token at time in the
broken places, then the probability is very simple to extract. The monitor is a Marking size
type monitor which has all the functions hidden, we can only count the number of tokens for
simulation and of course perform a Monte Carlo simulations.

The stop simulation monitor

The system is built to perform simulations in�nitely. There are no dead markings which stop
the simulations. A breakpoint monitor is de�ned to halt simulations. In breakpoint monitor we
can only de�ne the predicate function. In our case we stop the simulations at 18 months, the
system time is expressed in hours thus 18 months correspond more or less to 13152 hours. The
simulation clock is advanced only when a transition is enabled thus it is not possible to stop the
simulation at an exact time. The stop error is in general only in a few days after 18 months
which is an acceptable error.

• Predicate function :

fun pred ( ) =
In t I n f . t o In t ( time ( ) ) > 13152

Note that it is easy to make our system not repairable using the monitors. For that if we
place a monitor of type Place content breakpoint in to the place System KO and the simulations
stop when a token is in the System KO place.

6.2 Formal model veri�cation

CPN Tools possesses two tools to perform a state space analysis, the �rst is the classical state
space generator included in CPN Tools, with a manual and explained in the online documenta-
tion. The other is named ASAP ASCoVeCo State Space Analysis Platform) presented in [24]. A
version of ASAP with a GUI (graphical user interface) was developed but is no longer supported.
Since version 3.0 of CPN Tools, the state space tool of ASAP has implicitly been part of CPN
Tools. ASAP is not exposed in the GUI, however, and lacks support for some features of CPN
Tools. Some advantages and disadvantages of the two state space tools are explained in �gure
6.3. Let us start by detailing the �rst state space tool.

Old state space tool

In fact the pre�x old is improper, since this tool is not old. It is the state space tool o�cially
implemented in CPN Tools. It is stable, and it allows to verify some basic proprieties like
the home/dead makings. In this case a text report with di�erent informations is saved. These
informations are:
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Formal model verification

Old state space tool New state space tool (ASAP)

CPN Tools

• Implemented in CPN Tools
GUI

• State space graph

• Text report

• CTL implemented

• Manual and support exist

Pros

• No LTL implementation

• Limited CTL

• Difficult exploration of the
state space

Cons

• LTL Model Checking

• Faster generation of state space

• State reduction techniques

• No GUI, no state space graph

• No documentation, limited sup-
port

• Uncommented source code

• SML code difficult to under-
stand

Cons

Pros

ProM - Process Mining workbench
Pros

• Import CPN models

• LTL model checking with
timed model

Cons

• Model checking made by a simu-
lation trace, thus cannot ensure if
the entire state space is checked

Figure 6.3: Summary of the two state space generators

• Statistics of the state space and the strongly connected components graph (number of arcs,
nodes and if the state space is fully calculated or not).

• Boundedness Properties with various bound, like the maximum or the minimum marking
of a place.

• Home Properties if there are some home marking.

• Liveness Properties including Dead Markings, Dead Transition Instances, Live Transition
Instances.
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6.2 Formal model veri�cation

• Fairness Properties to check if all the paths are "fair" in the sense that if the automaton
enters in a state in�nitely often, it must take every (or not, depends of the properties)
possible transition from that state.

The state space is easy to draw with the CPN tools GUI or with another software Graphviz as
is illustrated in �gures 2.10 and 2.9. Our problem being large and complex, we cannot draw the
entire state space here. Indeed our state space contains 100 arcs and 72 nodes, and thus is too
big for an A4 layout, but is calculated and drawn with Graphviz.

State space exploration and CTL model checking

The state space exploration can be performed following the online documentation of CPN
Tools. In this case however we should specify the state of the state space we are interested. To
perform this analysis we respond to four question:

1. How many states and what are the state where the TPA1 is broken?

2. What is the minimum path from a broken TPA1 to a state where the entire system is in
failure?

3. Is it always true that the TPA1 is restarted immediately after its reparation ?

4. For all the existing paths, is it possible to arrive to a system failure state?

The �rst two question are answered with the informations contained in the state space tools
manual, presented in the online documentation of CPN Tools. The last two are brie�y presented
with a version of CTL implemented but no longer supported in CPN Tools. The next section
explain the new state space tool, ASAP.

ASAP state space tool

The largest part of this work was to understand and use ASAP to perform an LTL model
checking analysis in our CPN model. Unfortunately ASAP has no documentation and an only
limited support obtained from exchanges with a developer of this tool, watching his Youtube
videos or trying to understand the SML code. A version of ASAP with a GUI was developed
but the developer suggests us to ignore the GUI version and use the version implemented in
CPN Tools. With this version we have tried to use a toy model to understand how ASAP works
and afterwards we have used the same methodology for our case study system. The schema
representing the steps of model veri�cation using CPN Tools is given in �gure 6.4.

Toy model, an LTL analysis

This part is divided into di�erent paragraphs, every paragraphs starts with a letter repre-
senting the various steps from �gure 6.4. The toy model used for this test is illustrated in �gure
6.5.

As we have de�ned in chapter 2, the coverability graph of the toy model is given in �gure 6.6.

a. We have three di�erent markings, these markings have been considered as states of the
Kripke structure (�gure 6.7).

The toy model in CPN Tools is presented in Figure 6.8. We have used a UNIT color set for
this model.
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System

Model (Kripke structure)

Property to check

LTL negated formula ¬ϕ

Generalized Büchi automata

ϕ

Büchi automata BLTL

Büchi automata Bmodel

Intersection of Büchi automatons

Bmodel
⊗

BLTL

Bmodel
⊗
BLTL = ∅Yes

Property verified

No

Counterexample

CPN Tools untimed model

CPN Tools ASAP Model

LTL Formula

Mapping function

Büchi automata generation

Büchi product

NDFS Checker

Storage

empty Error trace

a.

b.

c.

d.

e.
f.

g.

h.
Figure 6.4: Model checking algorithm: schema

pinit
tstart pwork

tworking

tfailure

pbroken

tko

Figure 6.5: Petri net of our toy model

b. The CPNToolsModel element used by ASAP is not explicitely given, but is explored using
the DFS (deep �rst search) method. This model is however similar to that given in Figure 6.9,
with only a di�erent way to declare the states and events. The Büchi Automata of this model
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(1,0,0)

(0,ω,0)

tstart

(0,0,ω)
tfailure

tworking

tko

M0

M1

M2

Figure 6.6: The coverability graph of the toy model, we can see the ω value de�ned in chapter 2.

s0

s1
start

working

s2
failure

ko

Figure 6.7: Kripke structure of the toy model

()

()

()

()()()

koworking

failurestart broken

UNIT

work

UNIT

init

1`()

UNIT

Figure 6.8: The toy model in CPN Tools

is also hidden, we can suppose that it is similar to a general de�nition of Büchi Automata,
illustrated in �gure 6.10.

c. We want check if it is possible that the toy system cannot be broken. For doing this we
use an following LTL formulae like: FUTURE(GLOBALLY work-state). It means that from an
existing path we can remain in a selected state in�nitely. This formula can be strange, because
we cannot select the starting state, thus we should use the FUTURE to avoid this problem. The
de�nition of AP is given by the mapping function, in our case a state is a CPNToolsModel state.
Unfortunately this method is very complicated. We should explore the CPNToolsModel sates
with a series of commands like:

val c pn s t a t e i n i t =#1(hd(CPNToolsModel . g e t I n i t i a l S t a t e s ( ) ) )
val cpneven t in i t= hd(#2(hd(CPNToolsModel . g e t I n i t i a l S t a t e s ( ) ) ) )
val nextstatoCPN = CPNToolsModel . nextState s ( cpn s t a t e i n i t , cpneven t in i t )
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N1

N2

A1:toy_model’start 1: {}

A2:toy_model’working 1: {}

N3

A3:toy_model’failure 1: {}

A4:toy_model’ko 1: {}

Figure 6.9: The coverability graph drawn by Graphviz

sinit

s0
True

s1

start

working

s2
failure

ko

Figure 6.10: Büchi Automata of the toy model

For a complex system this is not practicable. This is the result of the LTL formula in CPN
Tools:

open ASAP
open PLTLSyntax

val s e l f l o o p = ATOMIC statoCPN
val ok = ATOMIC statook
val formula = FUTURE(GLOBALLY ok )

d. The mapping function is the heart of our procedure, it is also one of the only things de�ned
by us and without examples or manuals is really complicated to manage. We have sent di�erent
emails to the support list of CPN Tools to resolve this problem and we have made a mapping
function but it has some limitations.

structure MyFormula = struct
type s t a t e =
CPNToolsModel . s t a t e ∗ CPNToolsModel . event l i s t

val ( t r ans i t i onTab l e ' , i n i t i a l s ' , accept ing ' ) =
PLTLSyntax . t r a n s l a t e formula

fun map' (ATOMIC ap ) =
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( i f ( ap=statook ) then "ap" else "notap" )
| map ' (NOT(NOT f ) ) = St r ing . concat [map ' f , "\n " ]
| map ' (NOT f ) = St r ing . concat [ "NOT " , map ' f ]
| map ' TRUE = "TRUE"
| map ' FALSE = "FALSE"
| map ' _ = raise Error " Inva l i d  automaton"

val l a b e l s = Vector .map
( fn (_, l ) => L i s t .map map' l ) t r ans i t i onTab l e '

fun map ap = ( fn s : s t a t e => ( i f ((#1 s ) = statook )
then t rue else f a l s e ) )

val ( t rans i t i onTab l e , i n i t i a l s , accept ing ) =
PLTLSyntax .map ( t rans i t i onTab l e ' , i n i t i a l s ' , accept ing ' ) map
end

One limitations for example is thath we cannot check a formula with two inputs as states.

e. The generation of the Büchi Automata is automatic, it need only to put the correct input at
the functor BuchiSimulator (functor de�nition in 2.20). We can semplify the Büchi Automata
for obtain a small version.

(∗Optimizat ion o f the BuchiExpression ∗)

structure help = LTLCompressor (
structure Automaton = MyFormula )
structure help2 = RemoveNonAcceptingSCC(
structure Automaton = help )
structure help3 = FinalSCCOptimizer (
structure Automaton = help2 )
structure smallmodel = RemoveRedundantStates (
structure Automaton = help3 )

(∗BuchiModel ∗)
structure Buchimodello= BuchiSimulator (
structure Express ion = smallmodel
)

The resulting Büchi Automata obtained by a manual exploration of the states is illustrated in
�gure 6.11.

f. The product between the two automata is illustrated in �gure 6.12. As the other �gure,
this graph is extracted with a manual exploration of the net. We can see that the product is
non-deterministic and exists two principal path. The �rst path with the states with the label s2

(label of the state s2 of the LTL Büchi Automata) is our error trace. It is explain that we can
have a path that cannot remain at in�nitive in the work status. The other with the state s3 show
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s2 s3
AP[ ]

s0
[ ] s1

AP

Figure 6.11: The LTL formula translated in a simpli�ed Büchi Automata by CPN Tools

start
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working

working

failures2

ko

s2

s3

s2
init work

work

broken

working

Figure 6.12: The product of the two Büchi Automata

that is it possible to have one path wich the toy model is always in a working status. This is our
interpretation. The result should be checked with another functor that make a Nested Depth
First Search (NDFS) (two depth �rst search nestled) for �nd a strongly connected components
which is our counter example explained in the next paragraph.

g. The NDFS algorithm is performed by the functor named NDFSLTLChecker. Unfortunately
this functor return every time an error, maybe this error is given by the de�nition of the Storage
but it is di�cult to say it. The storage is de�ned in the next paragraph.

structure v e r i f i c a =NDFSLTLChecker(
structure Model = model lo
structure Storage = RStorage )

h. The storage have a signature de�ned as REMOVE_STORAGE :

structure BuchiHash = ProductHashFunction (
structure Hash = CPNToolsHashFunction2 )
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structure RStorage = HashCompactionStorage (
structure HashState = BuchiHash
structure HashWord = Hash31ToHash31 )

We can see the CPNToolsHashFunction2 which is an hash function used to map the data of the
di�erent states in our storage. In this case the functor ProductHashFunction is used to hashing
the intersection of the Büchi Automata. The others functors are used to compress the data in
the storage. Unfortunately as said before, this is not much clear, the NDFS functor works but
when we try to use the function check (de�ned in NDFS functor) with the SML code illustrated
below we have a generic SML error.

fun t r an sa r c ( s ta te , events ) = events
fun t r an s s t a t e ( s t a t e ) = s t a t e

val counterex= v e r i f i c a . check t ran sa r c
t r an s s t a t e

{
a_ i n i t i a l = ( ) ,
arc_hook = fn _ => ( ) ,
s_ i n i t i a l = ( ) ,
state_hook = fn _ => ()

}
( v e r i f i c a . emptyStorage{ i n i t_ s i z e = 1})
( model lo . g e t I n i t i a l S t a t e s ( ) )

To obtain some result we have explored the product with a single DFS with another storage,
without the data compression.

structure StorageDFS =HashStorage (
structure Model = model lo
structure Hash = BuchiHash )

structure MyDFSTraceExploration=DFSExploration (
structure Model=model lo ;
structure Storage=StorageDFS ) ;

The code illustrated below is used for make the exploration:

MyDFSTraceExploration . exp lo r e ( fn (_, n) => n) ( fn e=>e )
{ a_ i n i t i a l = ( ) ,

arc_hook = fn _ => ( ) ,
s_ i n i t i a l = ( ) ,
state_hook = fn _ => ( ) ,
t_ i n i t i a l = ( ) ,
pre_trace_hook = fn (_, _, _, _, storage ' ) => ( ( ) , s torage ' ) ,
post_trace_hook = fn (_, _, _, _, storage ' ) => ( ( ) , s torage ' )

}
( StorageDFS . emptyStorage { i n i t_ s i z e = 0 } ( ) )
( model lo . g e t I n i t i a l S t a t e s ( ) )
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Figure 6.13: The exploration result of our intersection automata in CPN Tools

The result of this exploration is illustrated in �gure 6.13. We can see the four state present in
our draw automata of �gure 6.12 thus the �gure drawn is correct but we can check the state
space strongly connected component only manually.

ProM - Process Mining workbench

Another software which takes a CPN model and perform an LTL analysis is ProM. ProM is
capable also to do a performance analysis but this is not the focus of our work. With ProM is
easy to make an LTL analysis but is not formal, is done with a simulation log of our system. Of
course if we have a simulation log we can use a timed model and if we perform an high number
of simulations we can say with a high trustworthiness level that a property is veri�ed or not but
we cannot say it in formal terms.
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Success represents the 1% of your
work which results from the 99%
that is called failure.

Soichiro Honda - Engineer

Chapter 7

Results

Introduction

This chapter is divided in two sections with the results of the system performance analysis
and of formal veri�cation analysis. We start to describe the results of the performance analysis
based on 10000 simulations calculated in a simulation period of 18 months.

7.1 Performance analysis

The data from di�erent monitors in CPN Tools are written in di�erent text �les and in a
single folder for one set of simulations. CPN Tools provides a report �le in HTML with di�erent
statistical analyses. A part of the report �le is illustrated in �gure 7.1. We note that these data

Figure 7.1: CPN Tools report

are not correct.
For example, in �gure 7.1 we can see that the minimum value of the MTBF of the System

is 0. It is not possible, because we suppose that at time 0 the system is operative. Another
thing illustrated if �gure 7.2 is that the third column avrg (meaning the arithmetical mean of
the selected value, in this case the MTTFF) for the System, has a value of 699 hours. This is
not possible, because theoretically the MTTFF of the TPA1 is about 3000 hours and the other
TPA is in a parallel con�guration, the system's MTTFF must be in average higher than the
MTTFF of one of the entities. This brought us to check the text �le of simulation results and we
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Figure 7.2: CPN Tools report error

have encountered some little errors. For example, for the System the row count, second column,
shows us in how many experiments a system had a failure (see �gure 7.2). If we read the �le,
there are 1100 failures, but if we load all the text �les there are 1102. It is a little mistake
but it is important because it is used as basis for the arithmetical mean calculation, instead the
arithmetical mean is calculated on the basis of the number given in the �rst column, 9988, the
meaning of which is unknown.

Another error is present in a �le containing the reference numbers of experiments, and if those
presented a failure. We have checked some of these references and in some cases the reference
has an error. Fortunately CPN Tools saves all the text �les of the simulations, making it possible
to perform the analysis of Monte Carlo simulations with MATLAB.

Monte Carlo simulations analysis in MATLAB

To perform the analysis we have imported all the text �les with a MATLAB script, analyzed
and plotted the results. We have made di�erent plots of the di�erent dependability times. For
all of the di�erent mean times we have plotted its probability density function. We will start by
talking about the MTTFF.
The Mean Time To First Failure is an explicit term, for non reparable systems it is known as
Mean Time To Failure. We can see in �gure 7.3 three di�erent histograms. The histograms of
the TPAs have forms of an exponential distribution whereas the System's MTTF is uniformly
distributed. This is linked to the exponential distributions of TPAs' MTTF. Intuitively, the
failure rate of a TPA is constant, thus there is no particular time region where the system has
the higher probability to fail.

The next mean time which we deal with is the MTTR. The Mean Time To Reparation
represent the mean time between two reparations. We can see that the distribution of the
MTTR of the TPA1 (and more evidently that of the TPA2) is close to an Erlang distribution.
The empirical data con�rm the theoretical distribution used in the CPN model. It is possible
that the reparation time of the system is very small. For example we suppose to have the TPA1

in reparation and 1 hour before the reparation is accomplished, the TPA2 fails. The system
comes to a failure status but after 1 hour the TPA1 is rebooted. The reparation time of the
system in this case is 1 hour.
The last graphs illustrate the di�erent times: MTBF (Mean Time Between Failures), the Mean
Down Time MDT, and the Mean Up Time MUT. As we have seen in �gure 1.2 in the �rst
chapter, the MTBF is the sum of MDT and MUT. The three MTBF with the MDT and MUT
are illustrated in �gures 7.5, 7.6 and 7.7.

The MTBF is the analogous of the MTTR for the failures instead of the reparations.

82



7.1 Performance analysis

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5
x 10

−4 MTTFF
System

 Probability Density Function
F

re
qu

en
cy

Time [h]

0 5000 10000 15000
0

1

2

3

4
x 10

−4
MTTFF

TPA
1

 PDF

F
re

qu
en

cy

Time [h]
0 5000 10000 15000

0

2

4

6
x 10

−4
MTTFF

TPA
2

 PDF

F
re

qu
en

cy

Time [h]

Figure 7.3: Mean Time To First Failure: results

Some relevant statistical results are illustrated in table 7.1.

Entity MTTFF MTBF MTTR MUT MDT
TPA1 3111.7 3144.2 26.4 3020.1 26.4
TPA2 2235.2 2259.2 48 2135.9 48
System 6340.5 6312.8 16.4 6290.9 16.4

Table 7.1: System performance results

We can see in table 7.1 that the value of MDT and MTTR are equal. Indeed, we have
supposed that the reparation starts immediately after the failure.
We can calculate other parameters like in how many experiments an entity has at least one
failure. In 10000 experiments for the di�erent entities the results are :

• TPA1 = 9762,

• TPA2 = 9965,

• System = 1102.

From these data we can a�rm for example that empirically, for the given set of simulations, the
TPA2 is less reliable than the TPA1.
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Figure 7.4: Mean Time To Reparation: results

7.2 Veri�cation analysis

In this section the results of the formal veri�cation analysis are given.

Old state space tool

We illustrate below a part of the data produced and reported by the state space tool of
CPN Tools. We have ignored the Boundedness Properties and Fairness Properties sections for
readability reasons.

- Statistics -
State Space, status: Full
Nodes: 72; Arcs: 100; Secs: 0
Scc Graph
Nodes: 1; Arcs, Secs: 0
- Home Properties -
Home Markings: All
- Liveness Properties -
Dead Markings, Dead Transition Instances: None
Live Transition Instances: All

We can see from the report that the entire state space is composed of 72 nodes (a node is a states
and it is composed of the marking of all CPN model places) and 100 arcs. All the transitions
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Figure 7.5: Mean Time Between Failures of TPA1: results
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Figure 7.6: Mean Time Between Failures of TPA2: results
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Figure 7.7: Mean Time Between Failures of the system: results

are Live, we have no Dead markings and all the nodes are Home markings, meaning that we can
always repair our system. From every node we can return in the initial node.

State space exploration and CTL model checking

The answers to the four question illustrated in section 6.2 are illustrated below. The �rst two
questions are answered with the information contained in the state space tools manual, available
in the online documentation of CPN Tools [12]. The last two are brie�y presented with a version
of CTL implemented in CPN Tools but no longer supported.

Question 1. How many states and what are the states where the TPA1 is broken?

Answer 1. After the computation of the state space we can use a query like this:

PredAllArcs (
fn a => case ArcToBE a of
Bind . Sp e c i f i c a t i o n 'FTPA1 (1 , {}) => true
| _ => f a l s e )

This query gives us the arcs where the transition FTPA is veri�ed, and with the function reported
below we can discover the nodes.

st_Arc arc_number

Then we can answer the question, there are six di�erent nodes: [9, 30, 26, 28, 25, 11] (at every
computation of the state space the identi�cation number of the nodes can change).
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Question 2. What is the minimum path from a broken TPA1 to a state where the entire
system is in failure?

Answer 2. We can use the same method as for the Question 1 to �nd in which nodes the
system is in failure, and afterwards use the function reported below to �nd the minimum path
that links the two nodes.

Reachable ' ( init_node , f ina l_node )

For example from the node 9 to the node 34 the minimum path is: [9, 14, 26, 34]

Question 3. Is it always true that the TPA1 is restarted immediately after its reparation?

Answer 3. To answer this question we use the module ASK-CTL implemented in CPN Tools.
There exists a little manual of this module and thanks to this we can make a few queries.

fun I s r e s t a r t e d a =
(Bind .TPA' Starting_TPAs (1 , {p=pump1})=ArcToBE a ) ;

val myASKCTLformula =
MODAL(EV(AF( " I s  i t  p o s s i b l e  to  r e s t a r t  the  TPA1?" ,

I s r e s t a r t e d ) ) )

eval_node myASKCTLformula 9

The manual is in the online documentation of CPN Tools [12]. In this case the command Bind
and ArcToBE are taken from the state space tool manual. The aim of the �rst function is
to verify if the arc has the transition TPA'Starting_TPAs(1, p=pump1) in its bindings. This
function is used in the formula declared above. The myASKCTLformula is our CTL formula
which can be translated as for all the path from a selected node, Isrestarted should be TRUE in a
�nite number of steps. For example we start from the node number 9 and the answer is TRUE.
This is clearly correct, we have seen in the Question 2 that there is a path which guarantees this,
in fact from the node 9 we can have a failure of the system, then is it logical that there exists a
path which can restart the TPA1.

Question 4. For all the existing paths, is it possible to arrive to a system failure state?

Answer 4. The answer is TRUE, unfortunately we should verify the formula for every node.
The SML code is illustrated below.

fun I s g o i n g t o f a i l u r e a =
(Bind . Sp e c i f i c a t i o n ' System_FAILURE (1 , {})= ArcToBE a ) ;

val myASKCTLformula =
MODAL(POS(AF( " I s  i t  p o s s i b l e  to  breakdown the  system?" ,

I s g o i n g t o f a i l u r e ) ) )

eval_node myASKCTLformula 9

The formula can be translated as Does there exist a path from the current node that can bring
us to encounter a System Failure transition?
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7. Results

ASAP state space tool

The part made in the section 6.2 is applied in the same way for the case study system model.
In this case the only thing that changes is the state space which is more complex, because it
includes a marking in all the places. We cannot draw or explore easily the state space, then it
is not possible to verify the LTL properties. Perhaps is it possible to save the DFS exploration
results but we don't know how. A part of the results obtained from the DFS exploration is
reported in �gure 7.8.

Figure 7.8: Output example of the DFS exploration
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7.2 Veri�cation analysis

ProM - Process Mining workbench

With ProM we execute 1000 simulations limited to 20 steps, there are no particular reasons
for the 20 steps but we should limit the simulations. We have tried to verify an LTL formula like,
Always when the TPA1 is in failure eventually we can restart it (in LTL syntax �FTPA1 →
♦StartingTPAs, the arrow means the imply operator). The result of this query is illustrated in

Figure 7.9: The results of the LTL formula in ProM

�gure 7.9 . The property is not fully satis�ed, it is veri�ed in only 45% of the cases. Actually
the 45% is the limit of the ProM LTL techniques. We can say that ProM performed an LTL
statistical model checking, with the simulation trace which cannot assure the formal veri�cation.
In our case indeed the limitation to 20 steps for simulations is the explication of the only 45%
of the veri�ed true value.
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A conclusion is the place where
you get tired of thinking.

Arthur Bloch - Author of the
Murphy's Law books

Chapter 8

Conclusions and future development

8.1 Conclusions

In this work we have developed a way to model stochastically arriving failures and reparations
in a system with a CP-nets, afterwards we have modi�ed the system model to be deterministic.
It was not an easy task, and involved the usage of some Golden token to control the two di�erent
nets, like two di�erent processes. The veri�cation of the correct behaviour of the model has
required time and patience. It is not possible to develop an algorithm to make the procedure for
transforming a stochastic model into a deterministic model automatic. Not only the temporal
transitions should be removed but it is necessary to check the correct logical behaviour of the
model. CPN Tools as the CP-net software is better suited for a performance analysis. The
di�erent probability distributions allow to model various systems. The implemented monitors
provide data from the simulations, thus the parameters of the performance analysis can be
calculated. After a little time and with the help of the on-line documentation this part of the
task is not di�cult to manage. Some problems evolved when dealing with the report data
automatically saved by CPN Tools, which can be not accurate. We have however succeeded to
calculate all desired performance parameters correctly with MATLAB, directly using the �les
saved for each simulation set.
More important di�culties arose while performing the veri�cation analysis. The CPN state
space tool produces and saves a report, allowing to draw the state space of a model. This
part implemented in ASAP seems however more convenient. Unfortunately, no documentation
is developed for that, and the ASAP tool is not o�cially supported. Some aims have been
nevertheless achieved thanks to the patience of a developer (M.Westergaard). ASAP has the
ability to perform an LTL model checking analysis and to make di�erent state explorations. This
seem quite complicated, but is still possible. From M.Wesergaard's blog we have learned that the
ASAP integration into CPN Tools GUI is not scheduled for the moment. The simulator written
in SML wil perhaps be changed to a Java simulator next year. This has some advantages, for
example a major part of users will be able to develop their own functions easily.
It is �nally interesting to implement the data exchange between the ProM software and the CPN
Tools. It would however be useful only for the performance analysis, and less suited for the
model veri�cation.
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8.2 Future developments

An important future development of our model consists in its extension, i.e in considering a
more complete and complex case study. In particular, we can add the extraction pumps CEX,
model the power of the system considering di�erent power pro�les (indeed, the power in�uences
the functioning of the TPAs). It would also be interesting to add a small amount of time to
simulate the start of the reparation or the time required to reboot the TPA after the reparation.
These times will in�uence the MDT and the MUT. Indeed in this case the MDT should not be
equal to the MTTR, because the reparation will not start immediately after the failure (due to
failure detection delay for example).
Concerning the model veri�cation, without a full manual of ASAP functors it is rather di�cult to
perform the LTL analysis and to use all the computational power o�ered by ASAP. Veri�cation
that we can perform is limited. In theoretical works and practical applications of the automata
veri�cation, a software named SPIN is often used. Another famous software is UPPAAL which
allows to account for the timed automata and to verify the properties using the Timed CTL.
However our purpose was to explore the capacities of the CPN Tools in terms of model checking,
we have thus not chosen other softwares to perform the analysis. In the next version of CPN Tools
(the fourth version), ASAP integration will probably be accomplished, enabling the performance
of the type of analyses that other softwares can not perform. In the meanwhile one is to study
the SML code and to test di�erent procedures.
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List of acronyms

AP Atomic Proposition

APPRODYN APProches de la �abilité DYNamique pour modéliser des systèmes critiques

ASAP ASCoVeCo State space Analysis Platform

CPN Tools CPN Tools

CTL Computation tree logic

DES Discrete Event System

DFS Depth �st search algorithm

EDF Électricité De France

GMEC Generalized Mutual Exclusion Constraints

IDPA Integrated Deterministic and Probabilistic Dependability Analysis

LTL Linear temporal logic

FTA Fault tree analysis

GUI Graphical Interface Unit

KP Kripke structure

LBA Labeled Büchi Automaton

LGBA Labeled Generalized Büchi Automaton

NDFS Nested Depth First Search

PWR Pressurized water reactor

RAMS Reliability Availability Maintainability Safety

RBD Reliability Block Diagram

TPA Turbo Pompe Alimentaire
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