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Chapter 1

Introduction

The collision avoidance between robots is a classical issue to solve when there
are some agents which have to share some resources. In literature there are
many solutions to this problem, from a software approach to the construction
of an unique supervisor for the whole �eld, but we want to follow a di�er-
ent strategy and to �nd a systematic method to control this kind of system
without sharing all information in each robot.
Based on previous works made in Berlin at the Technische Universität by
professor Jörg Raisch, it has been used a hierarchical supervisory control
structure modelled as a framework to solve practical problems, such as exam-
ple, concerning robots moving on the same area. This approach should show
how a complex problem, as the example is, could be solved easily through
some abstractions of the system.

1.1 The Multi-agent rendezvous problem

The example to test in this approach is showed in �g.1.1, and consists of a
�eld into there are some agents (4 in the image) which want to arrive in their
goal positions as soon as possible avoiding collisions. The system is described
by the following features:

• the number of agents (n);

• the dimension of the �eld, in terms on x/y length;

• positions of goals, that are points to reach inside the �eld.

These variables are determined before the beginning of the agents movement.
The main goal of this thesis is to create an approach which is not completely
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Figure 1.1: Generic system

dependent on these constraints, it means that the structure is not depen-
dent on previous variables. Agent point of view does not know the exact
movements of agents as information; that is, each agent is not interested
in knowing and memorizing the exact movements of the other ones and its
movement must allow for this uncertainty of the system. In [20] is shown a
coordination strategy provided with a non-synchronous decentralised struc-
ture where a coordination strategy solution has been developed.
The practical example was implemented with a Matlab-Simulink model with
a GUI 1 and based on a hierarchical supervisory approach.
It is supposed:

• all agents have a common point of reference in the �eld called origin
(O);

• each car can determine its own position using sensors related to O;

• robots are able to exchange each others simple informations.

All these points may be better analysed in the realization step or better when
real robots are chosen for a real application.

1GUI = graphic unit interface

8



1.2 Elements of theory

The chosen approach is the result of studies started by P.J.G. Ramadge and
W. M. Wonham with discrete events [12] [11] to which has been extended
afterwards to hybrid systems and their supervisory theory [13] [15] [16] [17].
We want to control a multi-agent system modelled as a set of continue
equations for each agent through their individual admissible behaviours may
be done. Each agent is limited into possible actions in a abstract �eld where
agents have to work simultaneously, so a �rst abstraction of the plant creates
a �rst level of discrete behaviour description. This procedure may be repeated
in order to create a hierarchical control structure that builds a decentralized
supervisory control architecture for the problem [18]. All these aspects are
examined in Cap. 2. Following are brie�y shown some theoretical concepts.

1.2.1 Behavioural point of view

The events are described in a mathematical language by answering to which
set do the (unmodelled) events belong. The universum of events that are,
in principle, possible is denoted by U. After studying the situation, the
conclusion is reached that the events are constrained, that some laws are
in force. Expressing this restriction leads to a model. Modelling therefore
means that certain events are declared impossible, that they cannot occur.
The possibilities that remain constitute the behaviour of the model, and
is denoted by B. Every dynamical system (Σ) has a behaviour and it is
described as:

Σ = (T,W,B)

where:

• T ⊆ R is the time set,

• W is the signal space,

• B ⊆ W T is the behaviour, a set of permitted events called trajectories.

A generic trajectory (w) could be:

• allowed if T → W ∈ B;

• forbidden if T → W 6∈ B.

In section 2.2 are shown the main proprieties and how they can characterize
a system, all notes are based on previously works [3] and [11].
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1.2.2 Supervisory theory

The supervisory control theory focus on how to limit a system behaviour
through measurements from the physical system. Measurements are made
by sensors and actions are driven by actuators . Limiting actions means to
know how all possible evolutions of a system are and to create a subset of
allowed evolutions for each measurement done. Moreover, actions must be
imposed and the system must react to them. This theory is well studied in
[11] for DES's systems where a no-empty controlled DES is de�ned as:

G = (Q,Σ, δ, qo, Qm)

where:

• Q is the state set mostly countable,

• Σ = Σc

⋃
Σm is the union of controllable and uncontrollable events

called alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 is the initial state,

• Qm is the set of possible �nal states, Qm ⊆ Q.

A particular subset of events can be selected by specifying a subset of con-
trollable events to be enabled. It is convenient to adjoin with this all the
uncontrollable events as these are automatically enabled. Each subset of
events is a control pattern , the set of them is de�ned as:

Γ = γ ∈ Pwr(Σ) | γ ⊇ Σu

A supervisory control for G is any map V : L(G) → Γ. The pair (G, V )
will be written V \G, to suggest that G is under the supervision of V. The
closed behaviour of V \G is de�ned to be the language L(V \G) ⊆ L(G)
and it could be used as new language if some proprieties are veri�ed, i.e.
V \G must be non-blocking for G. In Section 2.2 are some interesting prop-
erties and how this theory is implementable trough an automata even if the
starting system is a hybrid system [19]. The central topic of this work is to
enforce di�erent speci�cations to a multi-agent system so that conjunction
of supervisors theory is approached.
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1.3 Hierarchical Control Theory

Complexity represents the main obstacle in many control problems, and it
is common engineering knowledge that suitable decomposition techniques
form a necessary ingredient for any systematic treatment of complex control
problems. Hierarchical approaches, where several control layers interact, are
a particularly attractive way of problem decomposition as they provide an
extremely intuitive control architecture. Complexity problems are especially
pronounced for hybrid control synthesis problems, and this has motivated
usefulness in multi agent system topic. This approach has been modelled at
university of Berlin as a hierarchical control synthesis framework which is
general enough to encompass both continuous and discrete levels. It works
without any heuristic approach. Each layer in this framework is thought
in order to encapsulate the lower layer but they must be designed with the
engineer intuition. Fig. 1.2 shows an application of this general approach

low level plant model 

aggregation & low level control

hight level supevisor

Figure 1.2: Example: two level modular architecture

where a middle interface is needed to link two levels. In chapter 3, it is
reported the general idea to this approach and how is applicable to solve
the problem through abstraction. There are many examples that show how
physical systems could be abstracted, i.e. [21]. Beyond the generic theory,
in sections 3.3 and 3.4 is explained how abstractions have been planned and
how di�erent supervisors work in the hierarchical structure.

1.4 The model

The developed model must respect speci�cations illustrated in chapter 3 so
the whole model is easily decomposable in blocks where each one implements
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a particular speci�cation. The structure is modelled agents-independently :

Real system

First abstraction

m-1 abstraction

m abstraction

Figure 1.3: Modular project

it means that it is not important the number of agents in the system, even
though there is a block for each agent with its own personal �rst layer abstrac-
tion. The implemented structure is logically planned as �gure 1.3. The Model
is realized in Matlab-Simulink environment, the logical part is realized with
State�ow (http://www.mathworks.de/help/toolbox/state�ow/index.html), this
toolbox permits to solve easily logical supervised problems. Moreover, the
model has a GUI, made with the GUIDE Matlab graphical interface, that
is a particular tool capable to launch a Matlab-Simulink model, memorizing
results and plotting them in tables, labels or graphics. Further informations
can be found in [5], [6], [7], [8], [7] and [9]. Chapter 4 contains all the details
about the way the model is built and what abstraction level the speci�cations
belong to. A special focus is given on automaton which enforce speci�cations
and on how agents movement is limited.

1.5 Test and results

The goal of this work is to test this new adopted approach in complex projects
where number of agents and type of �eld is not totally �xed. This is the
reason why tests that have been done are function of the 3-dimensions space
to test. Clearly, this space is still composed of:

• number of agents,
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• �eld dimension,

• goal positions.

Tests are reported in chapter 5 with a special focus on to the purpose they
have been made. Lastly some tests about tricky situation are reported and
they show the real behaviour of the model.
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Chapter 2

Elements of Theory

The chosen approach in this work embraces many topics in automatic and
computer science �eld, the purpose of this chapter is explaining basic con-
cepts which are basilar in this work. Section 2.1 introduces the multi-agent
system concept with emphasis on no-synchronous agents and on what the lit-
erature proposes. However, it is wanted to apply a supervisory policy based
on the behaviour point of view witch properties are showed in section 2.2.
At least, section 2.3 talks about how a supervisor works with the behaviour
theory, some proprieties must be respected in order to have a realizable su-
pervisor.

2.1 The rendezvous problem

Multi-agents systems (MAS) are a class of systems where di�erent entities,
called agents, work sharing resources and cooperating together to achieve a
common goal. These systems catch our attention because are based on a
general concept and are useful in many research �elds such as robotics and
sociology. An agent is basically an independent system with own describing
laws and dynamic which has to solve/achieve a private goal, it has to interact
with its working �eld through sensors and to take decisions. Moreover,
typical advantages of MAS are:

• faster solution for complex problem through its decomposition;

• toughness to noise or fault;

• each agent is projected for each speci�c sub-problem.

The multi-agent rendezvous problem is to devise "local" control strategies,
one for each agent, which without any active communication between agents,
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it means to avoid communication between them so not that to cope with
communication problem. A possible approach is given in [20], it consist
of creating a sensing region around agents and studying strategies when a
overlapping appends, �gure 2.1 shows the situation faced in the paper.

Figure 2.1: Overlapping example between three agents

Two types of strategies are possible for solving the problem. The �rst
consists of agent strategies which are mutually synchronized in the sense that
all depend on a common clock, the second consists of strategies which can
be implemented independent of each other, without reference to a common
clock. Obviously, sharing a clock signal let us consider a system as not
truly distributed because each agent decision must be synchronize. Thus, it
is interesting studying a completely distributed system with moving agents
with stop-and-go strategies. Let us de�ne:

• τMi
as manoeuvring period, it is the time of a complete movement from

a stable position to another one;

• τD as dwell time, the time in witch an agent is stationary grater than
τMi

;

• τS as sensitive time or rather a brief piece of time when agents stops
before to accomplished their work

In [20], it is supposed a stop-and-go policy for agent, it means each agent had
decided previously the plan of its movement and if a next movement is not
possible it has to stop and wait. According to this it is possible to have an
asynchronous movement if τDandτS are �xed parameter equal in every agent
and it is satis�ed

τS ≤
1

2
(τD − τMi

) (2.1)
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Although all agents use the same dwell time, they function asynchronously
in the sense that the time sequences t1,t1,· · · ,tn are uncorrelated. Thus, each
agent strategy could be implemented separately and independently.
Each agent has some registered neighbourthat those agents in its sensitive
area for at least τS seconds, sensors capture their positions and memorize
them for purpose of calculation, evidently if an agent j is a sensitive neighbour
for i even it will be true vice versa. Equation 2.1 imposes the maximum
overlapping time for each pair of considered agents, agents must be in this
critical situation for τS at least.
In [20] each agent studies the evolution of the �led through memorizing its
neighbour list in each kthi manoeuvring period as

xi(tki) = xi(tki−1
) + um(z1, z2, . . . , zm) (2.2)

where:

• xi(tki) is the current position at tki time period;

• xi(tki−1
) is the past position at tki−1

time period;

• um(z1, z2, . . . , zm) is the movement, just done, function of the set of
neighbours positions.

The main property of this is that um(z̄) could be expressed as 2.2 for each
neighbour and it is easy to elaborate information in order to achieve the
personal agent goal. However, it is still present co-ordination issue, it is
turned into a communication problem but it is possible to study the whole
system trough 2.2 by DESs system theory, i.e. the graph theory.

2.2 Behaviour de�nition and proprieties

The concept of behaviour is basilar for the supervisory control approach, we
can de�ne a mathematical model M as:

M⇐⇒ (U,B)

where:

• U is the universum of events, it is the set of all possible events;

• B is the behaviour, a subset of possible events such as B ⊆ U or rather
the outcomes which the original model allows.
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If U is a �nite set, or strings of elements from a �nite set, we speak about
discrete event systems (DESs), if U is a (subset of) a �nite-dimensional real
(or complex) vector space, we speak about continuous models and if U is a
set of functions of space and time, we speak about distributed parameter
systems [3].

De�nition 2.1 (Dynamical system de�nition). In dynamical systems (Σ)
events are maps from the time domain to the signal space co-domain and
a behaviour is a set of events, for this it is convenient to distinguish these
elements

Σ = (T,W,B)

where:

• T ⊆ R is the time set,

• W is the signal space,

• B ⊆ W T is the behaviour, a set of permitted events called trajectories.

A generic trajectory (w) could be:

• allowed if T → W ∈ B;

• forbidden if T → W 6∈ B.

Based on T we can distingued sistems in

• continuous time systems with T = R o T = R+;

• discrete time systems with T = N o T = Z;

2.2.1 Property of dynamical systems

Dynamical systems Σ = (T,W,B), such as all mathematic approch, has some
propreties which de�ned some categories, in a row the most important are
shown, a dynamical system is

De�nition 2.2 (Linear).

w1, w2 ∈ B and α ∈ F]⇒ [w1 + αw2 ∈ B]

if two trajectories in a �eld F are in the set of the behaviours than a linear
combination of them is in also.

[w ∈ B and t ∈ T ]⇒ [σtw ∈ B]

where σt is a time-shift de�ned as:
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De�nition 2.3 (Time-invariant).

σtw : T → W,σtw(t′) := w(t′+ t)

so the trajectory doesn't depend on the time of strarting.

De�nition 2.4 (Autonomus system).

[w1, w2 ∈ B and w1(t) = w2(t) for t < 0]⇒ [w1 = w2]

so the past evolution implies the future evolution.

De�nition 2.5 (Stability ). The dynamical system Σ = (T,W,B), with
T = R, [0,∞), Z, or N, and W a normed vector space (for simplicity) is
stable if

[w ∈ B]⇒ [w(t)→ 0 for t→∞]

W is a normed vector, than all trajectories go to 0, it is called asymptotic
stability.

De�nition 2.6 (Controllability ). Given T = R or Z, Σ is controllable if for
all w1, w2 ∈ B there exist T ∈ T, T ≥ 0, and w ∈ B, such that

w(t) =

{
w1(t) for t < T

w1(t− T ) for t ≥ T

This property implies an important property: contorllability ⇐⇒ concatenability
of trajectories after a delay. A practical situation is shown in �g.2.2, a pe-
riod of time is needed to switch from a behaviour to another one and it is a
sensible point to analyse in a project.

transition

0 T time

Figure 2.2: Pratical example of concatenability
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De�nition 2.7 (Stabilizability ). The dynamical system Σ with T = R or Z
is stabilizable when for all w ∈ B there exist w′ ∈ B, such that:

w′(t) =

{
w1(t) for t < 0
→ 0 for t→∞

De�nition 2.8 (Observability). Let us consider the system

Σ = (T,W1 ×W2,B)

where W1 is the set of observed behaviours and w2 is the set of deduced
behaviours. w2 is said observable from w1 in Σ if

[(w1, w2), (w
′
1, w

′
2) ∈ B and w1 = w′1]⇒ [w2 = w′2]

Equivalently, it means that there exist a map F : WT
1 → WT

2 such that
[(w1, w2) ∈ B]⇒ [w2 = F (w1)].

De�nition 2.9 (Detectability). Consider Σ = (T,W1 ×W2,B) with
T = N,R,R+ or Z. A behaviour w2 is said detectable from w1 in Σ if

[(w1, w2), (w
′
1, w

′
2) ∈ B and w1 = w′1]⇒ [w2(t)− w′2(t)→ 0 for t→∞]

Thus, w2 can be asymptotically deduced from w1.

2.2.2 Input-Output representation

Behaviours and systems can be described easily through properties shown in
Par. 2.2.1. However, models are often create to replace unknown/complex
set of equations and they must have a behavioural representation, di�erent
to the original equations plainly, called behavioural equations. This point of
view supposes the real system as a black box and follows paradigms shown
in [4] where equation representation is discussed.

De�nition 2.10 (Behavioural equation representation). Let U be the uni-
versum, E an abstract set called the equating spaces, and f1, f2 : U→ E. The
mathematical model M =| (U,B) with B = {u ∈ U | f1(u) = f2(u)} is saied
to be described by behavioural equations and (U,E, f1, f2) is the behavioural
equation representation of (U,B).
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Moreover, let f1(u) = f2(u) be de�ned equilibrium conditions as particu-
lar conditions which many models are concerned to. There exist a huge class
of systems described by behavioural inequalities where describing equations
are f1(u) ≤ f2(u) and equilibrium conditions are their central topic. Even
DESs are described through behavioural inequalities, a map f is set in or-
der to have B = {y ∈ U | f(u) = 0} until a precise value is not reached.
Clearly, a model described by a behaviour is more general than a real system,
even though a behaviour is derivable from a set of equations, the opposite
procedure is not possible. Thus, this approach has the main idea: it is the
behaviour, the solution set of the behavioural equations, not the behavioural
equations themselves, which is the essential result of a modelling procedure.

Given a system Σ described as 2.2 , the element T de�nes the instants
in which events append and represents the time space in which the system
produces values. The behaviourB is a family ofW−valuedtimetrajectories
that de�nes the setting paired with T that describe the mathematization of
the problem. Dynamical systems have some general properties to be reported
in this framework, i.e. linearity.

De�nition 2.11 (linearity). A dynamical system Σ = (T,W,B) is linear if
W is a vector space, i.e. F = R, and B is a linear subspace of WT even valid
with addiction and multiplication by scalar. Thus, linear systems obey the
superposition principle in his simple form:

{w1(·), w2(·) ∈ B; α, β ∈ F} ⇒ {αw1(·) + βw2(·) ∈ β}

Since time invariance will play an important role in the sequel, a de�nition
is given:

De�nition 2.12 (Time invariant dynamical system). A dynamical system
Σ = (T,W,B) with T = Z or Z is said to be time invariant if σtB =
B for all t ∈ T(σt denotes the backward t-shift: (σtf)(t′) := f(t′ + t)). If
T = Z then this condition is equivalent to σB = B.

The analog of this de�nition when the time axis is Z+ or R+ require
σB ⊆ B. A behaviour has an evolution, often independent of the time.
Each occurred event has to be signal in the own behaviour-space, if it is
veri�ed the behaviour has the completeness property.

De�nition 2.13 (completeness property). A behaviourB ⊆ WN0 is complete
if for all w ∈ WN0 : w ∈ B⇐⇒ ∀k ∈ N0 : w |[0.k]∈ B |[0,k]

However, a new characteristics must be add for modelling real systems,
it is compulsory to add an input - output behaviours de�nition (basilar in [2],
[4]).
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De�nition 2.14 (I/- behaviours). A behavioural B ⊆ WN0 over the signal
space W = Win ×Wout is an I/- behaviour if:

(i) the input is free, i.e. PinB = WN0
in ; and

(ii) the output does not anticipate the input, i.e. for alla k ∈ N0, w̃, ŵ ∈ B
with Pinw̃ |[0,k]= ŵ |[0,k] there exists a w ∈ B such that Poutw |[0,k]=
Poutŵ |[0,k] and Pinw = Pinŵ.

where P are natural projections from WN0 to the input and output compo-
nent respectively.

In control theory the non-anticipating condition is compulsory to be re-
quired unlike other subject as signal processing. A practical de�nition is
given with focus on relationships between signals and time.

De�nition 2.15 (Non-anticipating system). Consider the time-invariant dy-
namical system Σ = (T,W1×W2,B) with T = Z or R. We will say w2 does
not anticipate w1 if {(w′1, w′2), (w′′1 , w′′2) ∈ B, and w′1(t) = w′′1(t) for t ≤ 0} ⇒
{∃w2 such that (w′′1 , w2) ∈ B and w2(t) = w′2(t) for t ≤ 0}.

Moreover, the input must be free, it means an input signal could be any
value and the system can follows any input trajectory; the system can be
de�ned as follow.

De�nition 2.16 (free systems). A time-invariant dynamical system Σ =
(T,W,B) with T = Z or R is said to be locally free if it is trim (i.e. ∀w ∈W,
∃w ∈ B such that w(0) = w) and memoryless. It is said to be free if addition
Σ is complete.

Hence, free implies no local constrains (trim), no memory (memoryless)
and no constrains at t = ±∞ (complete)

2.3 Supervisory control theory

A behavioural approach makes easy a supervisory control for every systems
which are described by a behaviour. Now the problem is turned into a be-
haviour limitation issue. Generally, plants are continues and [13] [22] but if
we assume that this external interface is given, the problem of supervisory
controller synthesis can be discussed in analogy to [12] and [11] as DESs. It
possible to follow a well-thinking approach [2] for the supervisors design to
adapt DES techniques to the typical input/output structure of continuous
systems.
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actuator sensor

continuous process

discrete supervisor

continuous dynimic with discrete external signals

(finite automaton DES)

(ODE)

Figure 2.3: Hybrid closed-loop system

De�nition 2.17. A Behaviour B over a signal space W is now de�nite as a
set of maps w : N0 → W ; i.e. B ⊆ WN0

An example of a hybrid closed-loop con�guration is depicted in Fig. 2.3,
mathematical details are developed in [23] including con�gurations based on
clock time (events occur at a �xed sampling rate) and logic time (events may
occur at any time). It is assumed for this approach that the plant inherits
the input/output structure from the underlying continuous system (i.e. cross
critical thresholds). A dynamical system is a model of a phenomenon and
a behaviour is the set of all trajectories on which the phenomenon can, ac-
cording to the model, possibly evolve.

2.3.1 Supervisory control of I/- behaviours

Supervisory control theory starts from the I/- behaviour de�nition, def. 2.2.2,
for witch Ramadge-Wonham theory [24] provides a mathematical framework
for design and computations of the supervisory controller of discrete event
systems DES). Two di�erent of behaviours are involved from the real system,
the plant behaviour Bp ⊆ WN0 that are of trajectories the system can evolve
without restrictions, and the set of acceptable signals, speci�cation, denoted
Bspec ⊆ WN0 . In analogy to the plant, the supervisor is represented by a
behaviour Bsup ⊆ WN0 , denoting the set of external signals it can evolve
on. The closed-loop behaviour is the intersection Bcl = Bp ∩Bsup and the
supervisor Bsup is said to enforce the speci�cation Bspec if Bcl ⊆ Bspec.

However, in [13] are shown two admissibility criteria in terms of behaviour
must be respected for the interconnection of Bp and Bsup. The �rst condi-
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tion on on behavioural interconnection ensures that the synchronisation of
external signals is performed locally on the time axis : in every time instant,
given a trajectory, plant and supervisor must agree in their future evolution.
This requirement correspond to the non-con�icting languages in DES theory.

De�nition 2.18 (Non-con�icting languages). Two behavioursBp,Bsup ⊆WN0

are said to be non-con�icting if Bp |[0,k] ∩Bsup |[0,k]= (Bp∩Bsup) |[0,k] for all
k ∈ N0.

The second criteria is valid speci�cally for I/- behaviours, despite of the
possibility to limit input can not impose restriction on the plant output.

De�nition 2.19 (Generically implementability). A behaviour Bsup ⊆ WN0 ,
W = Win ×Wout, is generically implementable if k ∈ N0, w |[0,k]∈ Bsup |[0,k],
w̃ |[0,k]∈ W k+1, and w̃ |[0,k]≈y w |[0,k] implies w̃ |[0,k]∈ Bsup |[0,k].

It is possible to give a formal de�nition to the problem ([2],[13]) that
include previous de�nitions.

De�nition 2.20 (Supervisory control problem). Given a plant behaviour
Bp ⊆ WN0 , W = Win ×Wout, and a speci�cation Bspec ⊆ WN0 , we call the
pair (Bp,Bspec) a supervisory control problem. Is is possible to say:

i a supervisorBsup ⊆ WN0 is admissible with the respect to the plantBp

if Bp and Bsup are non-con�icting (def. 2.3.1) and Bsup is generically
implementable;

ii a supervisor Bsup ⊆ WN0 enforces the speci�cation Bspec if Bcl :=
Bp ∩Bsup ⊆ Bspec;

iii a supervisor Bsup is a solution of (Bp,Bspec) if Bsup is admissible to
Bp and enforces Bspec;

iv a solution Bsup in non-trivial if it imposes a non-trivial closed-loop
behaviour Bcl 6= ∅ 1.

It is possible to give a proof concerning the presence of a solution if
Bsup 6= ∅ than Bp ∩Bsup 6= ∅.

Proof. Pick w ∈ Bsup and the input of Bp is free, there exists w̃ ∈ Bp with
Pinw̃ = Pinw, and, hence, w̃ |[0,k]≈y w |[0.0]. From generic implementability
it is obtained w̃ |[0,0]∈ Bsup |[0,0] ∩Bp |[0,0]. The non-con�icting property
ensures that w̃ |[0,0]∈ (Bsup ∩Bp) |[0,0] 6= ∅. Hence, Bsup ∩Bp 6= ∅.

1obviously it is the only possible trivial solution
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Certainly the trivial solution is unacceptable in almost any application
context, it facilitates a set-theoretic lattice argument that establishes the
unique existence of a least restrictive solution. Given all possible solution
of the problem (Bp,Bspec) there exists a last restrictive solution B↑sup and
it is an upper semi-lattice with operators ∪ and ⊆. Proof is given in [2], it
explains that the least restrictive supervisor B↑sup contains all other solutions
by ∪ operation 2.

If both Bp and Bspec are realised by �nite automaton it is possible to
compute a least restrictive solution B↑sup by modifying the standard theory
[11]. Real applications have never a �nite representation, so models approxi-
mate real systems and behaviours are obtained through abstractions in order
to have a �nite automaton with behaviour Bca. Thus, Bca is an abstraction
if Bp ⊆ Bca and the solution Bca carry over Bp. All behaviours realised by
�nite automata are complete (Def. 2.2.2), unfortunately completeness can
not be always determined by a �nite computational procedure so approxima-
tions are nearly compulsory even for a discrete complex behaviour. However,
if both Bp and Bsup are complete (Def. 2.2.2) and generically implementable
(Def. 2.3.1), then they are non-con�icting (Def. 2.3.1). A proof is give in [2].

Proof. Pick any k ∈ N0, w |[ 0, k] ∈ Bp |[0,k] ∩Bsup |[0,k]. Without loss of
generality, we may assume w ∈ bsup. Pick some w̃ ∈ Bp with w̃ |[0,k]=
w |[0,k]. Using the I/- property of Bp and the generic implementability of
Bsup, we can construct w̃ ∈ WN0 with ŵ |[0,k+1]∈ Bp |[0,k+1] ∩Bsup |[0,k+1]

and ŵ |[0,k]= w |[0,k]. As we have started with an arbitrary w |[ 0, k] ∈
Bp |[0,k] ∩Bsup |[0,k] , we can iterate our construction to obtain a sequence
of trajectories (wk)k∈N0 , w

k ∈ WN0 , with wk+1 |[0,k+k]= wk |[0,k+k] for all
k ∈ N0. Hence, the sequence converges point-wise as the limit w∞ ∈ WN0

and then w∞ |[0,k]∈ Bp |[0,k] ∩Bsup |[0,k] for all K ∈ N0. Completeness of
Bp and Bsup implies w

∞ ∈ Bp ∩Bsup and any trajectory could be seen as
w |[0,k]= w∞ |[0,k]∈ (Bp ∩Bsup) |[0,k].

Generic implementability does not depend on the particular plant, and
it is a good point to start when an abstraction Bca ⊇ Bp is made. In [2] is
shown the following theorem.

Theorem 1. Let Bca ⊆ WN0 be an abstraction of a plant Bp ⊆ Bca and let
Bsup be a complete and non-trivial solution of (Bca,Bspec), Bspec ⊆ WN0 .
If Bp is a complete I/- behaviour, then Bsup is a non-trivial solution of
(Bp,Bspec).

2In particular, B↑
sup is a non-trivial solution if and only if a non-trivial solution exists
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Clearly, the theorem has a logical easy proof because Bsup is projected
in order to enforce the speci�cation Bca. Thus, Bsup solves the problem
(Bp,Bspec) because it was already solved by Bca.

2.3.2 Modular supervisory control

Setting up an overall supervisor by combining a number of individual super-
visors is referred to as modular supervisory control. There are two potential
bene�ts from modular supervisors. First, it may turn out that the synthesis
of individual supervisors and their combination is computationally cheaper
than the direct synthesis of an overall supervisor. Second, given a plant, one
may set up a library of supervisors and it is guarantee a sort of personaliza-
tion to the problem. The modular control architecture we consider in this

actuator sensor

continuous precess

continuous dynamics with discrete external signals

supervisor 1

supervisor 2

Figure 2.4: Modular control architecture

section is illustrated in Fig. 2.4 and corresponds to the concept modularity
that has been proposed for DESs [11]. Is is expected that principle of be-
haviour theory are still valid for the modularity issue.
Given a plant Bp now the control problem is required to be solved by
two di�erent speci�cations Bspec1 and Bspec2, both admissible for the plant.
The natural idea is to run di�erent supervisors in parallel and to have
Bspec := Bspec1 ∩ Bspec2 but unfortunately the property of admissibility is
not preserved because it is not guaranteed the non-con�icting propriety for
the couple of supervisors (Bspec1,Bspec2) [15].

De�nition 2.21 ( Non-con�icting supervisor behaviours ). Two behaviours
Bspec1 ∈ N0 and Bspec2 ∈ N0 are non-con�icting relative to Bp ∈ N0 if for all
k ∈ N0 :Bp |[0,k] ∩Bsup1 |[0,k] ∩Bsup2 |[0,k]= Bp |[0,k] ∩(Bsup1 ∩Bsup2) |[0,k]
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It is expected that a least restrictive supervisor will take no action out-
side the plant behaviour, it means every w ∈ Bsup − Bp implies w ∈
Bsup. This characteristic because in [2] is proved that, given the behaviours
Bp,Bsup1,Bsup2 the last restrictive solution of the supervisory problemB↑sup,B

↑
sup

are non-con�icting if and only if they are non-con�icting relative to Bp. If
either supervisor are Bsup1Bsup2 ⊆ WN0 be generically implementable and
non-con�icting then Bsup = Bsup2 ∩Bsup2 is generically implementable.

It has been shown that di�erent supervisors can cooperate in order to
enforce a whole speci�cation, a following problem to solve is adapting this
concept to speci�cation that are in di�erent abstraction layer. Rendezvous
problems are a perfect example of how di�erent supervisor, one for each
agent, must enforce a whole speci�cation, i.e. avoiding collisions.

2.3.3 Decentralised supervisory control

Another step in supervisor theory must be done, the previous section has
shown what are lines guide for building supervisors hierarchy, in contrast it
is explained now how agents individual enforce speci�cations simultaneously.
Individual supervisors may not share the same measurement information nor
may they have the same set of controls at their disposal. The principle
aim is to address applications in which communication constraints enforce a
decentralised control architecture, although computational bene�ts for con-
troller synthesis also play a role in the DES literature on this topic [25].
The whole discussion is based on Fig.2.5 and is an evolution of the mono-
lithic case. Let two agents have separate interfaces where the input space
is Win = Win1 ×Win2, the output space is Wout = Wout1 ×Wout2, external
supervisors signal spaces are W1 = Win1 × Wout1 and W = Win2 × Wout2

respectively.
Given two speci�cations Bspec1 ⊆ WN0

1 , Bspec2 ⊆ WN0
2 the aim is to design

supervisors Bsup1 ⊆ WN0
1 and Bsup2 ⊆ WN0

2 which create the closed-loop
behaviour

Bcl := Bp ∩ (Bsup1 ×π Bsup2)

where ×π is the product operator that usual product composition plus the
obvious re-arrangement of components to �t the scheme imposed by W =
Win1 ×Win2 ×Wout1 ×Wout2. If the inclusion Bcl ⊆ Bp ∩ (Bsup1 ×π Bsup2)
is ful�lled the created supervisors enforces speci�cations. In this subsection
the problem to solve is slightly di�erent from before an it told decentralized
control problem
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continuous process

Supervisor 1

Supervisor 2

actuator 1

actuator 2

sensor 1

sensor 2

Figure 2.5: Decentralised control architecture

De�nition 2.22 (Decentralized control problem). The triple (Bp,Bsup1,Bsup2)
is said to be decentralized control problem where the I/- behaviourBp ⊆ WN0

is the plant and Bspec1 ⊆ WN0
1 , Bspec2 ⊆ WN0

2 , are speci�cations for the
respective signals. The pair of supervisors (Bsup1,Bsup2) is a solution of
(Bp,Bspec1,Bspec2) if Bsup1 ×π Bsup2 solves the supervisory control problem
(Bp,Bspec1 ×π Bspec2).

The �rst bene�t of previous de�nition is that 2.3.1 is still valid. Moreover.
Bsup = Bsup1×πBsup2 is generically implementable if and only ifBsup1,Bsup2

are, the proof is logical since elementary properties of product composition
and restriction operator do not change the property.
It is not simple understanding if a plant provided by each individual interface
is I/- behaviour. Starting from the point of view of a supervisor, Bsup1 the
seen environment is Bp1[Bsup2] ⊂ WN0

1 includes all trajectories w1 ∈ WN0
1

which can possibly occur under the restriction imposed by Bsup2. Formally:

Bp1[Bsup2] := {w1 ∈ W B0
1 | ∃w2 ∈ Bsup2 : (w1, w2)π ∈ Bp}

In general, these operations are readily seen not to preserve the input/output
structure of Bp; e.g., if the behaviour Bsup2 consists of one trajectory only,
this imposes a rather restrictive condition on the measurement readings from
sensor 2, which in turn restricts the input signals toBp, such that the input of
Bp1[Bsup2] cannot be expected to be free. However, there are two conditions
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with which Bp1[Bsup2] is an I/- behaviour.
Let a simpli�ed problem be considered in which the behavioural restriction
arises only from a �xed input signal rather than an entire behaviour Bsup2.
Let Bp ⊆ W B0 be an I/- behaviour (w.r.t W = Win ×Wout). Each possible
input c2 for the second supervisor de�ne a new plant vision for the �rst
supervisor

B′p1[c2] := {(c1, a1, a2) ∈ (WIN1 ×Wout1 ×Wout2)
N0 | (c1, c2, a1, a2) ∈ Bp}

ThenB′p1[c2] is an I/- behaviour and inherits the completeness property from
Bp. This procedure is valid even the point of view of the �rst supervisor
B′p2[c1]. If inputs are taken free now the behaviour B′p1[c2] is still an I/-
behaviour, proof is given in [2]. Starting from results already shown, it is
possible to de�ne a procedure that provides a solution to the decentralised
control problem as a theorem.

Theorem 2. Given a decentralised control problem (Bp,Bspec1,Bspec2), where
the plant Bp is a complete I/- behaviour, let:

i B′spec2 := Pin1Bspec2 ×WN0
out2;

ii Bsup1 solve (Bp1[B
′
spec2],Bspec1);

iii Bsup2 solve (Bp2[B
′
sup1],Bspec2).

If both Bsup1 and Bsup2 are non-trivial and complete, and if Bp1[Bsup2]
and Bp2[Bsup1] are complete, then Bsup1×πBsup2 solves (Bp,Bspec1,Bspec2).

Proof. Clearly, Bspec2 ⊆ B′spec2. Hence, Bsup2 solves (Bp2[Bsup1],B
′
spec2).

ClearlyBsup2 ⊆ B′spec2 and properties allow the writingBp1[Bsup2] ⊆ Bp1[B
′
sup2]

where Bsup1 solves (Bp1[Bsup2],Bspec1). Now pick any overall closed-loop
trajectories w = (w1, w2)π) ∈ Bp ∩ (Bsup1 ×π Bsup2) and observe w1 ∈
Bp1[Bsup2] ∩Bsup1 ⊆ Bspec1 and w2 ∈ Bp2[Bsup1] ∩Bsup2 ⊆ Bspec2. Thus,
w ∈ Bspec1 ×π Bspec2. Since completeness is retained under the cross prod-
uct, we obtain from Proposition 2.3.1 admissibility of Bsup with respect to
Bp
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Chapter 3

The hierarchical approach

Many hybrid control problems of practical interest can be decomposed in a
hierarchy of control structure in order to easily design the whole control ar-
chitecture. We refer to a structure decomposable in layers with their own
time scale, input and output signals. Planned solutions are often "ad hoc"
and made to avoid computational limitations of known methods for sys-
tematic hybrid systems design. The aim of this chapter is to explain some
theory details about the hierarchical approach and to apply supervisory a
control structure to solve the rendezvous problem. Below there are shown
the main principles that form the hierarchical theory showing that hierarchi-
cal decompositions is provided by engineering intuition (Sec. 3.1) and that
decomposition still permits an overall solution to the supervisory problem
(Sec. 3.2). Results are applied to the rendezvous problem through abstrac-
tions : the �rst one of the continuous plant (Sec. 3.3) and a further second
one of agents system (Sec. 3.4).
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3.1 Basic theory

Real plants are mostly continuous systems where their continuous dynamics
might be easily controlled by discrete event supervisors. A system created
in this way is called hybrid automata. However, behavioural point of view is
di�erent and we talk over hybrid plant. There are many advantages of this
approach, for example there are not any real-valued vector that typically
evolves into a huge state space.
A real plant needs an abstraction to create its external behaviour, de�ned
as the set Bp of all sequences of pairs of input and output events that are
compatible with the hybrid plant dynamics. Despite the abstraction opera-
tion creates approximations of the system it is possible to solve the original
control problem through the plant abstraction Bca ⊇ Bp. This is not a limit:
having a larger set of possible trajectories does not mean that the real system
evolves as them actually.
Behaviours are de�ned as Def. 2.3 through Willems' behaviour theory for
the class of problem solvable by discrete events automaton [26]. The subclass
of involved systems is described by I/- behaviours in Def. 2.2.2. The closed-
loop behaviour is de�ned by Bcl := Bp ∩Bsup and Bsup is said to enforce
the speci�cation if Bcl ⊆ Bspec. Interconnections between continuous plant
and discrete supervisor still follow the admissibility criterion in Def. 2.3.1
and 2.3.1; this leads to the supervisory control problem (Bp,Bspec)cp in Def.
2.20.

In [17] it is shown by the following proposition that an admissibility su-
pervisor is independent of the particular plant dynamics and provides that all
involved behaviours are complete (Def. 2.2.2) by the following proposition.

Proposition 3.1. Let Bp ⊆ WN0 be a complete I/- behaviour and Bsup ⊆
WN0 be complete and generically implementable. Then Bp and Bsup are
non-con�icting.

If only complete behaviours are considered it will be obtain the main
result of [17] for abstraction-based supervisory control. The ensuring theorem
represents the resulting deduction.

Theorem 3. Let Bca ⊆ WN0 , W = U × Y , be an abstraction of an I/-
behaviour Bp ⊆ WN0 , et Bspec ⊆ WN0 be a solution to the supervisory
control problem (Bca,Bspec)cp. If Bp and Bsup are complete then Bsup is a
solution of (Bca,Bspec)cp.

Let a real plant BL
p be considered over the signal space WL = UL × YL.

It represents the low level of the future whole system and UL, YL are input
and output of that level.
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The control objective can be represented by the set BL
spec ⊆ WM0

L of all
signals that correspond to the well-accepted system behaviour. However, a
reasonably accurate plant model may be based only on the real mechanic of
the low level. Only some engineering intuitions could select right measure-
ment to include in the model. Once considering a particular class of problems
it is possible to de�ne a low level interface in order to plan an upper layer. In
this second design step it is possible to realize the chosen supervisory policy.
The relationship between low-level and high-level is graphically shown in

: high-level supervisor

: aggregation & low level control

: low-level plant model

Figure 3.1: Plant (supervisor) perspective, dashed (dotted)

Fig 3.1. The high-level supervisor operates on a high level signal space
WH = UH × YH , where each signal can interact with the plant through
the interface. This middle-layer is formally represented by a behaviour Blm

over WH ×WL = UH × YH × UL × YL.
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3.2 Supervisory approach

From the perspective of the low-level plant BL
p , the interconnection of the

middle-level Blm with the supervisor BH
sup is seen as an huge unique super-

visor BL
im[BH

sup] over WL where

BL
im[BH

sup] := {wL | (∃wH ∈ BH
sup)[(w

H , wL) ∈ Blm]}.

The problem must be now solvable by BL
im[BH

sup] and in particular enforces
the speci�cation:

BL
p ∩BL

im[BH
sup] ⊆ BL

spec

Even the supervisor has a di�erent perspective because of the interconnecting
Blm with BL

p :

Bh
im[BL

sup] := {wL | (∃wL ∈ BL
sup)[(w

H , wL) ∈ Blm]}.

Although high-level speci�cation are now not imposed, it is needed an ad-
missibility criteria for systems interconnection: BH

sup must be generically
implementable and both BH

lm[BL
p ] and BH

sup must be non-con�icting. Is is
possible to de�ne formally from [17]:

De�nition 3.1. The pair (Blm,B
H
sup)tl is a two-level hierarchical solution to

the supervisory control problem (BL
p ,B

L
spec)cp if:

(i) BL
p ∩BL

lm[BH
sup], and

(iia) BL
lm[BH

sup] is admissible to BL
p , and

(iib) BH
sup is admissible to BH

lm[BL
p ].

The next step is to apply engineer intuition and to plan the intended
relationship between high-level signals and low-level signals, the result is
BHL
spec ⊆ (WH ×WL)N0 . The middle-layer task is to transform BHL

spec into a
understandable signal for the plant so Blm must enforce BHL

spec by the follow-
ing inclusion:

{(wH , wL) ∈ Blm | wL ∈ BL
p } ⊆ BHL

spec (3.1)

Let Blm be suppose in according to Eq. 3.1, the second step is to design
the high level behaviour BH that represents the supervisor. Obviously the
new abstraction B̃H

p is modelled from the high-level plant BH
lm[BL

p ] and the

high-level speci�cations B̃H
spec expresses low-level speci�cations B

L
spec in term

of high-level signals. Both B̃H
p and B̃H

spec are obtained from Eq. 3.1:

B̃H
p := {wH | (∃wL)[(wH , wL) ∈ BHL

spec]}; (3.2)
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B̃H
spec := {wH | (∀wL)[(wH , wL) ∈ BHL

spec ⇒ wL ∈ BL
spec]} (3.3)

Observe that the control problem (B̃H
p , B̃

H
spec)cp does not depend on the ac-

tual low-level plant under low-level controlBH
lm[BL

p ], but only on the intended
outcome BHL

spec of the preceding low-level design.
Examples to how easily solve the control problem e�ciently are [22] and [19]
through automaton but "ad hoc" solution must be still guided by engineering
intuitions. However, it is still needed to proof the Def. 3.1. Concerning Def.
3.1.i it is possible to say:

Proposition 3.2. Any solutionBH
sup of (B̃H

sup, B̃
H
spec)cp satis�esB

L
p∩BL

lm[BH
sup].

Supervisory approach shows an innate problem to discuss before to start
designing: although the supervisory system is planned by continuous meth-
ods, it is technically realised by digital hardware. Even though it has been
used a reasonably high sampling rate, it is necessary to coordinate supervisor
and plant allowing each other for the inserted discretization.
A �rst possible setting consists of using an uniform time scale on all signals,

: middle-level

Figure 3.2: Middle Level I/O)

so a synchronous system is implemented. Thus, the middle layer Blm has an
I/- behaviour, where informations get through vertically at the same time
from supervisor to plant and vice versa. Natural candidates to be inputs are
uH and yL in Fig. 3.2; yH and uL are outputs conversely. The supervisory
system has to be composed only on I/- behaviours and the completeness
property must be inherited by behaviours with the middle-level. Besides, a
real problem is a �nite set of signals and this peculiarity of the real solutions
must not represent a problem. Completeness property is inherited as the
following lemma says.

Lemma 3.1. If Blm is a complete strict I/- behaviour with respect to (WH×
YL, YH ×UL), and if BL

p is a complete I/- behaviour with respect to (UL, YL),
then BH

lm[BL
p ] is a complete I/-behaviour with respect to (UH , YH)

The same criteria preserves the generic implementability of bothBL
p ,B

H
lm[BL

p ]
and it is reported in the lemma 3.2.
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Lemma 3.2. If Blm is complete strict I/- behaviour with respect to (WH ×
YL, YH × UL), and BH

sup is complete and generically implementable, then
BL
lm[BH

sup] is complete and generically implementable.

It is possible now to admit that under the hypothesis of lemmas 3.1 and
3.2 and considering together with Prop. 3.1 that the admissibility criteria
(iia) and (iib) in Def. 3.1, are satis�ed. Thus, by 3.2 the pair (Blm,B

H
sup)tl

is the two level hierarchical solution of (BL
p ,B

L
spec)cp.

The multi-agent scenario is hardly ever set up by agents which are driven by a
common clock so it is necessary now to develop an internal structure for Blm

that implements the non-synchronism. Mapping-functions are still causal in
referring to di�erent time scales for cause and e�ect, as [27] explains, if the
operator is described as following.

De�nition 3.2. Let F : UN0 → Y N0 and T : UN0 → NN0
0 . The operator is

said casual if

ũ |[0,k]= Û |[0,k]⇒ F (ũ) |[0,k]= F (û) |[0,k] (3.4)

for all k ∈ N0, ũ, û ∈ N0. The operator T is said to be a dynamic time scale
if T is strictly casual and if the time transformation T (u) : N0 → N0 is
surjective 1 and monotone increasing for all u ∈ UN0 . The operator F is said
to be casual w.r.t. T if T is a dynamic time scale and if

ũ |[0,j]= û |[0,j]⇒ F (ũ) |[0,k]= F (û) |[0,k] (3.5)

for all k = T (ũ)(j) and all j ∈ N0, ũ, û ∈ UN0 .

De�nitions above ensure that at any instant of time the transformation
T (u) only depends on the strict past of u. In the hierarchical structure,
the middle-level has the input yL and drives it with the time transformation
T (yL). What is more the high-level measurement is generated by yH = F (yL)
where F is causal w.r.r. T . The easily way to take advantages of equations 3.4
and 3.5 is through an automaton that generates high-level events whenever
the low-level measurement equals a given value or completes a given cycle.

In summary, the middle-layer has a behaviour constructed from the time
scale T and the operator F :

Blm := {(uH , yH , uL, yL) | yH = F (yL) and uL = uH o T (yL)}. (3.6)

Moreover, the behaviour Blm turns out to be complete:

1when the function f(x) has only a solution y in the codomain
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Proposition 3.3. Given a dynamic time scale T : Y N0
L → NN0

0 and an
operator F : Y N0

L → Y N0
L that is casual w.r.t. T , de�ne Blm by Eq. 3.6.

Then Blm is complete.

Analogous to the results to the uniform time scale solution, the 3.3 pre-
serves the input/output structure of the plant and generic implementability
of a supervisor. Thus, lemmas 3.1 and 3.2 have an equivalent enunciation in
the non-uniform time scale as following.

Lemma 3.3. Under the hypothesis of Proposition 3.3, and if BL
p is a com-

plete I/- behaviour w.r.t. (UL, YL), it follows that BH
lm[BL

p ] is a complete I/-
behaviour w.r.t. (UH , YH).

Lemma 3.4. Under the hypothesis of Proposition 3.3, and provided that
BH
sup is complete and generically implementable, it follows that BL

lm[BH
sup] is

complete and generically implementable.

Totally in agreement with the synchronous case, lemmas 3.3 and 3.4 show
that if the intermediate speci�cation BHL

spec is implemented through a be-
haviourBlm according to 3.6, the pair (Blm,B

H
sup)tl is a two-level hierarchical

solution of (BL
p ,B

L
spec)cp.

3.3 Abstraction based synthesis

The practical problem to solve in this work has its theoretical basics in Sec.
2.1. Although it consists of a set of cooperating agents, the hierarchical ap-
proach allows to plan a solution structured onto levels where the �rst one
depends on the single agent. Next step is to include interactions between
agents through a decentralized approach.
Let the generic i-th level have the signal space Wi = Ui × Yi that is inter-
connected with a intermediate layer Bi,i−1

lm over Wi ×Wi−1 with 1 ≤ i ≤ m
and a high-level supervisor Bm

sup. If the plant B
0
p is a complete I/- behaviour

the middle-level has characteristics discussed in Sec. 3.2 and it is possible to
de�ne the behaviour from the plant perspective

Bi
sup := {wi | ∃wi+1 ∈ Bi+1

sup : (wi+1, wi) ∈ Bi+1,i
lm },

and from the generic i-th supervisor

Bi
p := {wi | ∃wi−1 ∈ Bi−1

sup : (wi, wi−1) ∈ Bi,i−1
lm }.

Climbing the hierarchical structure the information gets more abstracted
step-by-step and high levels have totally abstracted state space that could
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correspond to logical abstracted situations. However, level by level must be
veri�ed implementability and completeness, so it is possible to de�ne the
hierarchical solution [17] as following.

Proposition 3.4. The tuple (B1,0
lm ,B

2,1
lm), · · · ,Bm,m−1

lm ,Bm
sup is said to be an

(m+1)-level hierarchical solution to the complete problem (B0
p,B

0
spec)cp if

(i) B0
p ∩B0

sup ⊆ B0
spec, and

(ii) for all i, 0 ≤ i ≤ m, Bi
sup is admissible to Bi

p.

An iterative bottom-up design is proposed in [17], afterwards being de-
cided each layer signal space for n levels, such that for all i, 0 ≤ i ≤ n:

(a) Bi
p ⊆ B̃i

p,

(b) {(wi, wi−1) ∈ Bi,i−1
lm | wi−1 ∈ B̃i

p} ⊆ Bi,i−1
spec ,

(c) wi ∈ Bi
spec and (wi, wi−1) ∈ Bi,i−1

spec ⇒ wi−1 ∈ Bi−1
spec

In Fig. 3.3 it is shown the general architecture of [18] proposed as decentral-
ized solution. The coordinating layer has a particular architecture composed
by two parts: a conjunctive and disjunctive one. The "And" and "Or" boxes
implement logic of enable and disable events respectively. The point of view

Sup1 Sup2 Supn

A1 A2 An

G

And Or
combined
  fusion

Local 
decisions

Figure 3.3: Classic Conjunctive-Disjunctive Architecture

of this work is slightly di�erent from this architecture aim, although that kind
of structure could preserve I/- behaviour properties and being a supervisory
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approach such Def. 2.20. In contrast with [18] the decentralized architecture
of a multi-agent system does not allow a unique solution in high level in order
to coordinate agents. The whole system is not completely determinate, the
number of agents is a requested degree of freedom and the solution must be
adaptive to this. A possible solution of this problem is to establish a com-

Sup1 Sup2 Supn

A1 A2 An

Decision
  layer

Local 
decisions

G1 G2 Gn

Figure 3.4: Considered Architecture

munication protocol between high level supervisors in order to implement a
private second layer for each agent.

Let us consider a generic second level supervisor B2
sup ⊆ B2

spec that has
signal space W 2 = W 2

in × W 2
out. If it is expected a short communication,

inputs are not only from the underneath level but even from other sources.
Hence, the input is W 2

in = W 2
in1 ×W 2

in2 × · · ·W 2
inn and is necessary to �nd

some condition for an uniform communication.
If each high supervisory level B2

sup ⊆ B2
spec has di�erent Win, a particular

case of Def. 2.22 will be set where supervisors could take di�erent deci-
sions even with the same behavioural policy. If each supervisor implements
a disjunction policy, a local set of rules could be set to disable unwanted
behavioural evolutions. A right-thinking policy could be set as following.

Proposition 3.5. Given two second level supervisors which haveB2
sup1,B

2
sup2 ⊆

B2
spec and W1 = Win1 ×Wout1 and W2 = Win1 ×Win2 ×Wout2 where Win1 ∩

Win2 6= ∅ then B2
sup2 ⊆ B2

sup1 ⊆ B2
spec

Prop 3.5 could be easily implemented with as Fig. 3.5, it is also possible:

• to include a new agent run-time if it is projected such Prop. 3.5;
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• to satisfy Prop. 3.4 because are still valid B1
sup ∩B2

sup and B2
sup are

admissible to B1
sup for each agent

• to permit a conservative behaviour if B2
sup1 ∩B2

sup2 ∩ · · ·B2
supn = B2

spec

for an agent.

Supn Supn-1 Sup1

An An-1 A1

Decision
  layer

Local 
decisions

Gn
Gn-1 G1

Figure 3.5: Planned Architecture

In Fig. 3.4 it is supposed a communication between high supervisors
machine without any limitation of links and directions and links between
last layers mean that. If communication is formed only by forwarded signals,
even a subset of them is permitted, the Fig. 3.5 is a particular solution where
the vertical logical communication is preserved.

3.4 Modular supervisory control of a multi-agent

system

Decentralized approach in a hierarchical structure depends on the engineer
intuition ad the framework explained before provides guide lines to follow.
Examples of the engineer work are [15], [22] and [28] where supervisory ap-
proach is planned with and without framework. However, the main step
up of this work is creating a second supervisory layer of the framework and
examples had not been done yet.

Let us consider a real and likely example of agent with the following
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general dynamic: 
ẋ1 = v cos(θ)
ẋ2 = v sin(θ)
v̇ = u1
θ̇ = u2

(3.7)

Obviously real values could be estimated only using real robots but there are
some certain limitations due to the physical implementation:

• θ ∈ [0, 2π];

• v ∈ [0, vmax];

• u1 ∈ [v̇min, v̇max];

• u2 ∈ [θ̇min, θ̇max].

Therefore, angle and acceleration variations are not instantaneous, angles are
periodic and velocity has a maximum value.

In analogy with [17] and [29] agents/robots must be driven in a working
�eld from a starting position to a goal position avoiding collisions between
them.

Figure 3.6: Small boxes panorama

A �rst abstraction of the problem is shown in Fig. 3.6: the �eld is divided
into small boxes, each one with a couple of values (xsm, ysm), and agents
cross some of them. Hence, a �rst supervisory layer has to guide the agent
trough the �eld and it is described by a behaviour BL1

sup ⊆ BL1
spec where the
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speci�cations are a set of possible trajectories that solve the problem. Signal
space is composed here asW1 = U×Y where U = U1×U2 and Y = Y1×Y2
are inputs/outputs from/to overhanging and underlying layers. In detail,
signals from the upper layer represent which trajectories are permitted any
longer and from the layer below arrives the small box where the agent is. In
summary, the global panorama of this supervisory layer is composed by:

• a couple of coordinates U1 = {(x0SB, y0SB), · · · , (xj−1SB , y
j−1
SB )} where j is

the number of agents;

• the map of con�icting big areas of the �eld U2 = {Cbox0 , · · · , Cboxp−1}
with p the �xed number of them;

• the outputs toward the plant Y1 = {d0, · · · , dm−1} through magents
can be driven;

• the outputs toward the second level supervisor Y2 = /Cbox0 , · · · , Cboxp−1/
which indicate big boxes still full.

However, Y2 and U2 have the same signal space but it is only a formal way to
express what type of shared information is. In a real implementation, signals
between the two supervisory levels are translated by a middle layer. From
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Figure 3.7: First Level Supervisory Automata
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the point of view of the single agent the discrete supervisory behaviour is
described by [30]

G = (X,E, δ, x0, Xm)

where:

• X is the state space {Stop, Left, Right, Up,Down};

• E is the alphabet {stop, goLeft, goRight, goUp, goDown};

• δ : X ×E → X is the transition function that describes which state is
reached through the event e;

δ Stop Left Right Up Down

Stop stop goLeft goRight goUp goDown
Left stop goLeft goRight goUp goDown
Right stop goLeft goRight goUp goDown
Up stop goLeft goRight goUp goDown
Down stop goLeft goRight goUp goDown

• x0 ∈ X is the initial state, x0 = {Stop};

• Xm ⊆ X are the �nal states, Xm = {Stop}.

Events e ∈ E are input from the upper layer where the coordination policy
is implemented and represent what is the next small box to reach.

Stop

Straight

RightLeft
stop

stop
straight

turnLeft

turnRight

turnLeft

straight

turnRight

straight

stop

Figure 3.8: Supervisory Translation Policy to the Plant

The Fig. 3.7 describes how a �rst level supervisor limits the agent movement
by a DES automata with a discrete interface where the state represent the
output for the agent. However, it is necessary to translate the output to be
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understandable to the agent, so the �rst supervisor commands are thought
over a Bcl that gives abilities to limit the agent movement.

The Fig. 3.8 shows how the agent dynamic is logically limited: each state
has the outputs u1 and u2 towards the agent and switching values can guide
it. In example, given Eq. 3.7, the event turnLeft means to create a new
angle θ′ = θ + π

2
through the output u2 and the event stop means to bring

the velocity to 0 through the input u1. The joining between the dynamical
equations and DES movement abstraction makes up the hybrid closed-loop
system that is supervised by Bsup1.
The main improvement of this framework is introducing a new layer of

Figure 3.9: Agents on the �eld

abstraction that represents a collaborative aim. This layer is projected such
it was a big areas map of the �eld that agent could reach. It is important
to highlight that in this layer the inputs are the small boxes position of each
agent without any information about goals positions. Fig. 3.9 represents
the abstract idea of this layer: two agent that share a next possible big box
must know a-priori who can get into between them. A simple solution is
given with a priories hierarchy: each agents can control only more important
agents signal in order to disable unwanted events. This solution has two in-
teresting characteristics: the communication is not full connected and a new
agent could be inserted runtime giving it the lowest priority.
The last point to clarify about the model concerns condition with witch

a �rst level supervisory can decide its possible next small boxes. Fig. 3.10
shows the scenario: the forbidden big boxes map arrives from the upper layer
and through the agent and goal positions is possible to planning a movement
strategy of this level. In detail, each agent has a free area around it and if it
cross a di�erent big box the supervisor will decide the next manoeuvre. The
overall behaviour Bspec := Bspec1×π Bspec2 is ultimately implemented as the
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Figure 3.10: Agents on the �eld

set of possible next manoeuvres limited by second layer supervisory policy.
The Fig. 3.11 is given such summary to underlying that the hierarchical

elementary
manouvers

exact
position

big
boxes

small
boxes

Goals and interface signals

continuous
inputs

big
boxes

First Abstraction  Level

Second Abstraction  Level

Discrete Behaviour Level

Continuous System

GUI

Figure 3.11: Agents on the �eld

approach permits the solution of the multi-agent system only through ab-
stractions of single agents. The GUI 1 layer is only a way to include possible

1Graphic Unit Interface
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higher layers, i.e. for planning a series of goals to reach.
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Chapter 4

Model

This chapter has the aim to explain the Matlab model that implements the
project seen in previous chapter.Following, the four agents solution is de-
scribed, even though the number of them is totally unimportant. However,
the most complicated situation is set with 4 robots and more robots do not
increase the complexity.

The top view is given in Fig. 4.1, four agents are represented verti-
cally with their own hierarchical structure horizontally. Some functions are
repeated in di�erent blocks, the whole structure follows the theoretical ap-
proach and each block represents a small part of the reasoning. On the left
side is given the continuous dynamical systems presented in Sez. 3.7 with
their middle-layer, details will be given in 4.1 for each sub-block. On the
right side there are high level abstractions and the supervisory policy that
are discussed in Sez. 4.2 and 4.3.

Some display components are inserted, they do not implement any partic-
ular function but are useful for a numerical viewing and they are not enough
convenient to analyse the whole project. A GUI was implemented in order
to create a plain interface and to observe agents movement during the sim-
ulation, a brief description of it will be given at the end of this chapter in
Sez. 4.4.

A clari�cation must be done before to start explaining every single block:
every simulation is parametrized with some permanent features and they can
not be changed runtime. In particular it is necessary �xed small boxes step
quantization and big boxes step quantization. At the opposite extreme are
goal positions, to change them means to change a direction that is a com-
mon procedure in this work. Moreover, each agent is described by starting
conditions: starting x and y exact positions and the starting angle of the
movement.
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Figure 4.1: Global View
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4.1 The physical model and the �eld

In this section are given some details about the agent dynamic and its limited
movement in the model. Let us start from the top-viewing of Fig. 4.2, the
box is interfaced with the �rst supervisory level through input and output
ports. The port Command is the input from the supervisor that indicates
where the next small box is, that is a numerical value that means one of
{up, down, left, right}. The ports PosX and PosY are outputs, still to the
�rst level supervisor, that indicate in which small box is the agent in terms
of coordinate. Therefore, outputs has already changed from the exact point
on the plain to the small box indication.
A more detailed viewing is given in Fig. 4.3. The continuous dynamic is

Figure 4.2: Agent Viewing

contained in the box called "Agent". Outputs of this box are x and y exact
positions, the velocity and the exact angle θ; all are values correlated to a
common point called origin. Inputs of the agent are the commands u1 and
u2 from the middle-layer already presented in the last two equations of the
system 3.7 that modify the velocity and the angle. The complete dynamic is
fully built in Fig. 4.4, one can here notice that the initial angle θ in input of
Sine and Cos blocks.
The middle layers is implemented in the block direction changer of Fig.

4.3 through the Matlab tool State Flow [7] [8], it receives velocity and the
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Figure 4.3: Agent Box Viewing

Figure 4.4: Agent Continuous Dynamical Model

angle from the agent and the command to translate from the �rst supervisor.
Outputs are u1 and u2. Middle-layers functionalities are not simple and need
to be discussed carefully. The general schema is given in Fig. 4.5, the model
is planned with starting idle agents and this layer drives an agent to satisfy
requested manoeuvres.
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Figure 4.5: Middle-Layer General Schema

Some small complications are included in this layer:

• events are not clocking;

• the starting angle θ may be every value;

• the reversing movement must be implemented.

The �rst problem will entail not complete dynamical evolutions if commands
switching are fast, so each state must recognize when the evolution is ended
and when in being done. The second problem is avoided partially giving
only a small set of possible starting angle, they will be modi�ed only with
±π

2
. However, this limitation has highlighted come computational problems

of Matlab with numerical operations, especially with angles. The third one
is cleverly solved through a series of movements in this middle layer that are
two turning to the same direction. Despite the complications, this level is
logically described with states stop, right, left and straight.

53



Figure 4.6: Turn Left Schema

Figure 4.7: Turn Right Schema

Figure 4.8: Go Straight Schema
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Figure 4.9: Stop Schema

Figures 4.6, 4.7, 4.8 and 4.9 represent all sub-procedure for each state.
In details turn left and turn right are built with the same logic but with
opposite values. The stating procedure is called Dummy because has no
output and switch immediately trough the input velocity. The two di�erent
velocity mean if the system had already reached the maximum speed on not.
Angle are calculated by the schema in Fig. 4.10 because of the better State
Flow synchronism. The go straight procedure start with the same logic of

Figure 4.10: Angle Calculator

blocks before and control if an angle movement have been interrupted. If
the angle movement is interrupted it will complete it. The last two blocks
to explain in Fig 4.2 are ConverterX and ConverterY. They do simply the
small boxes quantization of the �eld through the �oor of a division.
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4.2 First layer supervisor

The aim of this section is to give the �rst level supervisor panorama already
explained in Cap. 4 as theory. The Fig. 4.11 contains both �rst and second
supervisory functions, although the biggest part forms only the �rst super-
visory policy.
The purposes of this level are:

• to generate the best next small boxes;

• to understand when the work is over;

• to translate all the reasoning into command for the underlying level;

• to forward position informations to the higher level.

Obviously all purposes can be planned in di�erent ways. Let us consider the
best next small boxes studying, there are not any restraints, so any policy
could be implemented. The policy could be implemented di�erently for each
agent. In this system, choosing the next small box means to compute away of
thinking by two steps: decide a set of possible actions ordered by bene�ts and
after decide one of them, according to commands from the second supervisory
level. These two blocks are shown in Fig. 4.12, "Priority" orders possible
actions and "Best action" chooses the small boxes. The implemented policy
of best choose is simply based on theManhattan distance in this example and
it do not represent a very important topic in this model. The real movement
is chosen in the block Best action through the method described in Fig. 3.9,
close big boxes are valued before to avoid to enter in to. For each direction
there are parameters to calculate as the Fig. 4.13 shows, all parameters are
compared with the the other and a �nal decision is taken.

Fortunately both operations, understanding when the the goal is reached
and forwarding position informations to the higher level, are easy operations.
The �rst one is done through comparing the actual position with the goal
one. The second one is implemented only such a translation by a �oor of a
division.

The last purpose is to analyse the translating the decision into command
for the underlying level. This operation is done by the State Flow block
"Interpreter". Its goal is to permit movements on the plain using the only
understandable commands for the plant interface. The logic is shown in Fig.
4.14, the idea is analogue to Fig. 4.5 but now we have four directions and
reverse movements must be planned.
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Figure 4.11: Supervisory System Top Viewing
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Figure 4.12: Direction Decision System

Figure 4.13: Inside the Best Action Block

In this layer an important point of uncertainty is the starting point: angles
and exact positions can be every value and the �rst manoeuvre is always
constrained to starting conditions. The adopted solution is still shown in
Fig. 4.14 through the state Init. Moreover, changing small box means to
give a set of commands to the plant, generated on each transition, so the all
states called Wait implement this mechanism. A special focus on transitions
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Figure 4.14: Translator of the �rst supervisor

is now given as last observation: the logical state Stop is divided into 4 parts
because it necessary to remember what the previous command was when a
movement is interrupted but not completed. The typical example of this
necessity is an agent that stops its movement because another one, with
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higher priority should use its next big box.

4.3 Decentralized supervisor

The last part of the model is the second supervisory level where the multi-
agents policy is implemented. In contrast to previously sections each agent
has a private implementation di�erent to the others. The bock called super-
visor second level, zoomed Fig. 4.15, implements the policy. The planned

Figure 4.15: Second Supervisory Level

logic is limiting behavioural evolutions of underlying levels, so outputs rep-
resent disabled directions. Movements are studied through the �eld division
on big boxes, it is known the big box position for each agent and outputs are
based only on this.

Let us consider the particular implementation for this model: each agent
has a priority and processes the informations di�erently if are from a higher
o lower priority structure. The system is thought in order to allow a later
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introduction of an agent, so the priority level is unique for each agent. Each
second level supervisor disable a possible trajectory if they have a big box
in common at least. The Fig. 4.16 shown easily what big boxes must be

Figure 4.16: Di�erent Big Boxes

analysed. The red ones represent some boxes conditions where agent are
placed side by side, in this case it is not important if the movement is still
in that direction and the agent with lower priority must move immediately
according to this. If two agents has a possible red box in common, it means
not placed side by side yet, the manoeuvre is still analysed function of the
actual movement. On the other hand, blue boxes are the �rst not important
boxes around an agent.

4.4 Graphic Unit Interface

The complete model is set with discrete and continuous dynamics insomuch
as it is tricky studying the complete evolution only through display and scope
components. A graphic interface has been planned by Matlab functions [9],
it is shown in Fig. 4.17 the version about four agents.

The interface allows to interact with the system, two di�erent logical part
are included: the �rst one allows to insert initial informations and the second
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Figure 4.17: Graphics Interface

one allows to analyse the movement.
Earlier than simulating, it is necessary to insert the starting values for each
agent, some information of the �eld and the goal positions. Obviously agents
informations are x/y starting point and initial θ whereas �eld parameters are
�eld dimensions (Border X/Y ), small boxes step quantization (x/y step) and
the big boxes quantization.
The visualization part is divided into two parts: the �rst one is the box on
the lower left side and shows agents movements on the discrete �eld, the
second one shows decisions of supervisory approach. A brief panorama of
the movement is given with this second part, it contains which the main and
real movements are in order to understand when the supervisory policy is
applied for an agent. Besides, labels left, right, up and down represent how
the instant picture is around each agent. The central label here marks when
the actual big box might be used by other agents and if it is possible it will
move out.
This system is only an easier instrument to study the system. However,
no runtime actions are possible through it. When the simulation starts it
will not be possible to modify it and the graphic interface will show results
reading results on the workspace.
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Chapter 5

Tests and results

The purpose of this chapter is to give practical examples about the model
behaviour. Many test could be done because the number of possible situa-
tions is huge but following the most representative ones are shown. In each
section of this chapter is provided picture of a particular situation in order
to show some details of the architecture behaviour. The sections order is
thought because of a simple viewing. The �rst section shows the most sim-
ple movement whereas the last one shows the most complicate situation with
four agents that want to cross the same big box.
Conditions of experiments are:

• a big box can contain only an agent;

• a big box can contain only a goal small box;

• the agents movements must start with position and angle that do not
permit to cross the �eld perimeter.

The �eld is contained in a perimeter modelled as forbidden big boxes out
of the viewing. Each example is repeatable and might be complicated as it
is desired but, obviously, a precise idea is given only seeing complete move-
ments with the GUI.
Each simulation is described by numbers and labels and they will be high-
lighted example to example. As brief summary is given the following table,
it contains the �rst supervisor possible signal values. The command "con-
tinue" indicates that the previous command is still valid

stop up down left right continue
0 1 -1 -2 2 3
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5.1 Start and stop manoeuvres of an agent

The �rst given example represents the easiest case of an agent that must
reach its goal position only going straight.
If the GUI interface is �lled with precise parameters that permit the starting
alignment between starting and goal positions it will be possible to observe
the goStraight movement with the acceleration and deceleration manoeuvres.
Let us consider some possible values of the interface in Fig. 4.17:

• the �eld has dimension (BorderX,BorderY ) = (50, 50);

• small boxes have step (xstep, ystep) = (2, 2);

• big boxes have step bigbox = 10, so are compost by 5× 5 small boxes;

• the simulation time is enough, i.e. "Sim Time" = 30sec

• an agent, the red one for example, has starting point (X, Y, θ) =
(21, 0, 1.51);

• the goal is the small box (goalX, goalY ) = (10, 22);

• all the other agents are out of the �eld, it means for example setting
all starting and goal parameters out of the �eld.

The obtained movement is shown in Fig. 5.1 an it is divided into 3 steps:

1 : acceleration until the maximum velocity is reached;

2 : movement with maximum velocity;

3 : deceleration when the goal is reached.

When the movement starts the only forbidden manoeuvre is going down, so
the label down in the red car box is set to 1 whereas the others are 0. Any
obstacle are in the �eld so label main and real, refereed to the movement,
are always equal.

66



Figure 5.1: Example 1
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5.2 Agent turn manoeuvre

The second example wants to show how a free curved path is made through
the Manhattan policy of the �rst supervisor. The real path depends on
starting and angle values. Thus, two big boxes paths are possible, they are
shown in Fig. 5.2 by di�erent coloured arrows.
The di�erences from the previous test are starting and goal positions. To
give an example the parameters could be set as (X, Y, θ) = (2, 2, 0) and
(goalX, goalY ) = (21, 21). The evolution of the example is shown in the

Figure 5.2: Example 2

Fig. 5.3 by the numerical screen. The sub�gure 5.3(a) represents the initial
movement, the agent is on the left down corner and can not follow both left
and down directions. Initial value is not captured because it is valid only for a
moment and it is represent only the holding command. Fig.s 5.3(b) and 5.3(c)
represent movements while the goal is not reached, in this practical example
switching direction are always up and right. The last image displayed, Fig.
5.3(d), represents the agent in the goal small box, it is possible observing
that the last command is stop and the label in the high right side corner is
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set to 1.

(a) Step 1, (b) Step 2,

(c) Step 3, (d) Step 4,

Figure 5.3: Displayed Screen

5.3 Two agents in the most simple con�icting

path

The third example wants to show how a con�icting situation is solved. Let us
consider the Fig.5.4, two agents must switch their position and their best path
have a common big box to cross contemporaneously. A priority hierarchy is
given: the red agent is more important than the blue one.
The movement development is partially shown in Fig.5.5. The simulation
starts such the previous example following the their best path. When both
are near to the central big box, Fig.5.5(a), the blue car notices about the red
one but do not change its behaviour because of the small boxes studying.
The behavioural changing is shown in Fig. 5.5(b), the blue agent can not
follow in its best direction and the �rst supervisor chooses to stop it. The
situation is numerical described by the grey panels, labels that indicate real
and best direction have di�erent values.
The red one is only globally limited by the central big box already taken but
it is still moving. During the red robot moving, a path is unlocked for the
blue one and it starts again as Fig.5.5(c). The movements follow on their
new best path without any other obstacles.
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Figure 5.4: Example 3
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(a) Before,

(b) Stop,

(c) Getting free,

(d) Normal path,

Figure 5.5: Movement Development
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5.4 Three agents with crossed trajectories

The fourth test wants to show how the system works if another agent is
added. The situation shown in Fig. 5.6 is compost by three agent with the
priority order: reg agent, green agent and blue agent. Let us consider as
starting condition:

• red agent: (X;Y, θ) = (1, 1, 0) and (goalX, goalY ) = (20, 20);

• green agent: (X;Y, θ) = (4, 40, 0) and (goalX, goalY ) = (20, 1);

• blue agent: (X;Y, θ) = (40, 40, 0) and (goalX, goalY ) = (1, 1).

with the same �eld parameters of previous tests.
The analogies with the previous example are the movements of red and blue
robots. However, the green agent is �lling a big boxes that was used by the
red one in the previous example. Thus, red and blue agents behaviours must
change.

Figure 5.6: Example 4
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(a) Before,

(b) First notice,

Figure 5.7: Movement Development with three agents
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(a) Blue changing,

(b) Red Trajectory,

Figure 5.8: Movement Development with three agents
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The movement development is shown in Fig. 5.8, the �rst part, Fig.
5.7(a), shows the movement before the con�icting knowledge. The second
part, Fig. 5.7(b), shows that green agent notices that another agent could
use its actual big box and changes its behaviour. Blue agent has the lower
priority and can not enter in the central big box, so its behaviour changes
as Fig. 5.8(a). The red robot has the highest priority and can choose all
boxes not still empty, its evolution brings it to cross the central big boxes as
Fig.5.8(b) shows. Moreover, the red agent movement allows the blue down
to going down. Every agents can move now and the goals are reached by
standard movements.

5.5 Four agents moving along the perimeter

This section wants to describe a new cases class compost by movements along
the �eld perimeter. Let us consider following values for four agents on the
�eld:

• red agent: (X;Y, θ) = (1, 1, 0) and (goalX, goalY ) = (2, 20);

• green agent: (X;Y, θ) = (4, 40, 0) and (goalX, goalY ) = (3, 2);

• blue agent: (X;Y, θ) = (40, 40, 0) and (goalX, goalY ) = (20, 1);

• cyan agent: (X;Y, θ) = (40, 1, 0) and (goalX, goalY ) = (20, 20);

The simulation is longer than the others and SimTime = 50sec whereas �eld
parameter are still (xstep, ystep) = (2, 2), bigbox = 10 and (BorderX,BorderY ) =
(50, 50). The modelled movements is compost by pairs of agent moving along
the perimeter with opposite direction as Fig. 5.12. The purpose of this set is
showing how agent move when a direction is always forbidden by an obstacle.
The priority hierarchy of agents is: red - green - blue - cyan.

The simulation starts as Fig. 5.10(a), robots move one toward another
one but the only behavioural limitation is given by the perimeter presence.
When agents are enough close, some agents will notice a new forbidden big
box. This new situation is shown in Fig. 5.10(b) where green and cyan agents
can not going straight now and must change direction. Obviously, green and
cyan agent can move to the internal part of the �eld, Fig. 5.11(a) shows this
movement and their display panels. This trajectories changing is done while
red and blue agents keep following their best path.
The presented situation is di�erent from previous examples: agents with
lower priority must free their boxes because they are parts of the higher
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priority agents path. The critical manoeuvres continues as Fig 5.11(b), agents
are in assisted boxes and movements up and down are permitted. It means
agents keep moving by those commands and when con�ict is solved they will
follow their best trajectories.

Figure 5.9: Example 5
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(a) Normal trajectories,

(b) Common big boxes notice,

Figure 5.10: Movement Development along the perimeter
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(a) Agents large movements,

(b) Standard trajectories,

Figure 5.11: Movement Development along the perimeter
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5.6 Four agents that cross their trajectories

This last section want to test the most complex possible situation. Even
adding other agents entails to solve a set of situations already tested. Thus,
this represents the high complexity of the rendezvous problem.
Let us consider the situation of Fig. 5.12. Four agents move on the �eld
crossing their trajectories. The central big box is the common box of all
paths because of their starting and goal positions. Following parameters has
been used:

• red agent: (X;Y, θ) = (1, 1, 0) and (goalX, goalY ) = (20, 20);

• green agent: (X;Y, θ) = (4, 20, 0) and (goalX, goalY ) = (20, 10);

• blue agent: (X;Y, θ) = (40, 40, 0) and (goalX, goalY ) = (20, 10);

• cyan agent: (X;Y, θ) = (44, 20, 0) and (goalX, goalY ) = (2, 10).

The execution needs SimTime = 50sec and �eld parameters are always the
same as previous section. The priority order is: red - green - blue - cyan
agents.

The starting situation in Fig. 5.13(a) represents a beginning with con-
�icts because agents are still too close. However, ideal movement are not in
according with con�icts and they start to follow their ideal path. The �rst
con�ict happens when the cyan agent wants to use a forbidden big boxes an
in Fig. 5.13(b). Its new choose is going down in order not to �ll the com-
mon big box. However the dynamic of the movement bring it to enter and
to leave it immediately, so this example is a�ected with the most dangerous
case. The structure of the �eld in boxes is important as minimums distance
between agents without changing behaviour. The situation is still becoming
complicated because of the green agents. Fig 5.14(a) shows what happens
now: green agents keep going straight to its goal box and the blue agent
must wait because its best paths are busy. The evolution of the movements
is shown in Fig. 5.14(b), the cyan agent leaves the con�icting box and now
the red one is allowed to enter into. Red agent has the highest priority and
its behaviour is limited only when the close boxes are full.
The con�ict is mainly solved but blue agent still changes its behaviour be-
cause of the red presence, Fig 5.15(a). When the red agent is faraway the
blue robot still moves, it is now a bit larger than its best global trajectory but
it plans a new best path and follows it. Fig. 5.15(b) shows a new generated
con�ict, similar to previous examples. In this case cyan agent waits the blue
movement, after that restart the work and reach its goal. All agents are in
their goal boxes now.

79



Figure 5.12: Example 6
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(a) Starting boxes,

(b) First immediate con�ict,

Figure 5.13: Second con�ict
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(a) Cyan agent critical movement,

(b) Solved con�ict,

Figure 5.14: Movement Development along the perimeter
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(a) Toward goals,

(b) Last con�ict,

Figure 5.15: Movement Development along the perimeter
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Chapter 6

Conclusions

This chapter represents a brief summary of the work and results achieved. It
has been addressed the rendezvous problem of a multi agent-system through
a methodical approach based on a behavioural description. If each system
is described by independent equations it is possible to study step by step
each agent and therefore to plan a global strategy. The applied approach
is based on the solution of supervisory controller synthesis for continuous
plan with a discrete control interface. System descriptions are given as the
Willem's behavioural theory. Previous works use this approach for practical
situations, i.e. using a distillation column, but any multi-agents problems
have never been solved.

Starting from works made at Technische Universität it is possible to show
that exist a class of problems easily treated by abstractions. Each step make
the system more general; information and signal change step by step. How-
ever, this approach allows us to use all known results from DES theory and
it is easy to plan a supervisory approach.
The distinguishing feature of this setting is an input/output structure based
on a product composition of the respective components. This is the normal
case for continuous control systems and it is motivated by the considered
class of plant models.

Previous works with this behavioural approach show simple continuous
systems without any interactions with systems not controlled by the same
supervisor. If we want to solve a complex multi agent issue it will be nec-
essary to create a hierarchical structure and to decentralize decisions in this
structure. A normal problem could be solved by a single supervisor, or a
set of them that operate, on the same signal state space but not in multi
agents systems. The main purpose is to derive a second level abstraction,
to proof its theoretical implementability and admissibility. A condition has
been proposed under which the second level supervisors, each enforcing its
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own speci�cation, will have an admissible the hierarchical composition for
this class of problems. The second level supervisory rules allow combination
between "fusion by intersection" and "fusion by union" behaviours. It is
show that a proper combination of this rules with corresponding local deci-
sion rules results helpful in �nding a global strategy for the whole system

The given framework is totally not dependent on the real implementa-
tion of each level. A set of rules and a behavioural description are given in
order to have a well-thinking behavioural approach. It means that it is not
important how each level is compost by, but the main thing is to respect
some behavioural rules. It bring us to use this framework as easy planning
instrument.

The second part of this master thesis work concerns to proof the frame-
work correctness through an example. The chosen problem to solve concerns
a set of agents that move in the same limited area. Thus, a coordination
problem has been modelled by the framework. Framework is modelled to
avoid the problem of not practicable when a huge number of agents are in-
sert in the �eld. The hierarchical structure thought in this work allows us
to solve the problem as numerical independent. Each agent is coordinate
function of a given priority and it easy to add one runtime.
The planned model has proved the correctness of the hierarchical approach
and a easy planning has been though through its rule.

Many development ideas are possible: other abstractions could be theo-
rized in order to solve more complex. Examples are permitting set of goal
decided runtime of studying particular coordination for agents in order to
use cooperating agents. Even this model is easily got complicated by us-
ing particular representation of the supervisors or using particular powerful
behavioural representations, i.e. Petri's nets.
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Appendix A

Priority decision Matlab code

function [fourth, third, second, �rst] = fcn(dx,dy)
if (abs(dx)==0 && abs(dy)==0)
�rst=0;
second=0;
third=0;
fourth=0;

elseif (abs(dx) > abs(dy))
if (dx < 0)
�rst=2; if (dy < 0)
second=1;

else
second=-1;

end
third= - second;
fourth=0;
else
�rst=-2; if (dy < 0)
second=1;

else
second=-1;

end
third= - second;
fourth=0;

end
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elseif (abs(dx) < abs(dy))
if (dy < 0)
�rst=1;

if (dx < 0)
second=2;

else
second=-2;

end
third= - second;
fourth=0;
else
�rst=-1;
if (dx < 0)
second=2;

else
second=-2;

end
third= - second;
fourth=0;

end
else
�rst=3;
second=3;
third=3;
fourth=3;

end
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Appendix B

Border controller Matlab code

function [noUp, noDown, noLeft, noRight] = fcn(xCar, yCar, borderX, borderY, BBstep)
noUp=0;
noDown=0;
noLeft=0;
noRight=0;
maxBBx= �oor(borderX/BBstep);
maxBBy=�oor(borderY/BBstep);
if (xCar==0)
noLeft=1;

end
if (yCar==0)
noDown=1;

end
if (xCar==maxBBx-1)
noRight=1;

end
if (yCar==maxBBy-1)
noUp=1;

end
end
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Appendix C

Big boxes controller Matlab code

function [noUp, noDown, noLeft, noRight, noHere] =
fcn(x1, y1, x0, y0, x2, y2, x3, y3, x4, y4)

noUp=0;
noDown=0;
noLeft=0;
noRight=0;
noHere=0;
if (x0==x1 && y0+1==y1)
noUp=1;

end
if (x0==x1 && y0-1==y1)
noDown=1;

end
if (x0-1==x1 && y0==y1)
noLeft=1;

end
if (x0+1==x1 && y0==y1)
noRight=1;

end
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if (x0==x2 && y0+1==y2)
noUp=1;

end
if (x0==x2 && y0-1==y2)
noDown=1;

end
if (x0-1==x2 && y0==y2)
noLeft=1;

end
if (x0+1==x2 && y0==y2)
noRight=1;

end
if (x0==x3 && y0+1==y3)
noUp=1;

end
if (x0==x3 && y0-1==y3)
noDown=1;

end
if (x0-1==x3 && y0==y3)
noLeft=1;

end
if (x0+1==x3 && y0==y3)
noRight=1;

end
if (x0==x4 && y0+1==y4)
noUp=1;

end
if (x0==x4 && y0-1==y4)
noDown=1;

end
if (x0-1==x4 && y0==y4)
noLeft=1;

end
if (x0+1==x4 && y0==y4)
noRight=1;

end
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Appendix D

Single direction valuation

function ok = fcn(dir, x, y, BBstep, smallStep, noUp, noDown, noLeft, noRight)
actual_x = �oor(x*smallStep/BBstep);
actual_y = �oor(y*smallStep/BBstep);
switch (dir)
case 0
ok = 1;

case 1
y_max = y+2;
max_y = �oor(y_max*smallStep/BBstep);
if (max_y == actual_y)
ok=1;

else
if (noUp==1)
ok=0;

else ok=1;
end

end
case -1
y_min = y-2;
min_y = �oor(y_min*smallStep/BBstep);
if (min_y == actual_y)
ok=1;

else
if (noDown==1)
ok=0;

else ok=1;
end

end
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case 2
x_max = x+2;
max_x = �oor(x_max*smallStep/BBstep);
if (max_x == actual_x)
ok=1;

else
if (noRight==1)
ok=0;

else ok=1;
end

end
case -2
x_min = x-2;
min_x = �oor(x_min*smallStep/BBstep);
if (min_x == actual_x)
ok=1;

else
if (noLeft==1)
ok=0;

else ok=1;
end

end
otherwise
ok=0;

end
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Appendix E

GUI main function

function varargout = simulation(varargin)
function start_pushbutton_Callback(hObject, eventdata, handles)
axes(handles.axes1)
x0=str2num(get(handles.x0_edit,'String'));
y0=str2num(get(handles.y0_edit,'String'));
teta0=str2num(get(handles.teta0_edit,'String'));
x1=str2num(get(handles.x1_edit,'String'));
y1=str2num(get(handles.y1_edit,'String'));
teta1=str2num(get(handles.teta1_edit,'String'));
x2=str2num(get(handles.x2_edit,'String'));
y2=str2num(get(handles.y2_edit,'String'));
teta2=str2num(get(handles.teta2_edit,'String'));
x3=str2num(get(handles.x3_edit,'String'));
y3=str2num(get(handles.y3_edit,'String'));
teta3=str2num(get(handles.teta3_edit,'String'));
x4=str2num(get(handles.x4_edit,'String'));
y4=str2num(get(handles.y4_edit,'String'));
teta4=str2num(get(handles.teta4_edit,'String'));
Xstep=str2num(get(handles.xStep_edit,'String'));
Ystep=str2num(get(handles.yStep_edit,'String'));
BBstep=str2num(get(handles.bigbox_edit,'String'));
borderX =str2num(get(handles.BorderX_edit,'String'));
borderY =str2num(get(handles.BorderY_edit,'String'));
simTime =str2num(get(handles.SimTime_edit,'String'));
goalX_car0=str2num(get(handles.car0goalX_edit,'String'));
goalY_car0=str2num(get(handles.car0goalY_edit,'String'));
goalX_car1=str2num(get(handles.car1goalX_edit,'String'));
goalY_car1=str2num(get(handles.car1goalY_edit,'String'));
goalX_car2=str2num(get(handles.car2goalX_edit,'String'));
goalY_car2=str2num(get(handles.car2goalY_edit,'String'));
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goalX_car3=str2num(get(handles.car3goalX_edit,'String'));
goalY_car3=str2num(get(handles.car3goalY_edit,'String'));
goalX_car4=str2num(get(handles.car4goalX_edit,'String'));
goalY_car4=str2num(get(handles.car4goalY_edit,'String'));
cla(handles.axes1,'reset');
options = simset('SrcWorkspace','current');
sim('CarsInThePlane',[0 simTime],options);
c0x=x_car0(1,1);
c0y=y_car0(1,1);
c1x=x_car1(1,1);
c1y=y_car1(1,1);
c2x=x_car2(1,1);
c2y=y_car2(1,1);
c3x=x_car3(1,1);
c3y=y_car3(1,1);
c4x=x_car4(1,1);
c4y=y_car4(1,1);
axis([-1 borderX+1 -1 borderY+1]);
title('Cars');
set(gca,'XTick',0:Xstep:borderX);
set(gca,'YTick',0:Ystep:borderY);
set(gca,'XTickMode','manual')
grid on;
hold on;
up1=c1_up;
down1=c1_down;
left1=c1_left;
right1=c1_right;
here1=c1_here;
up0=c0_up;
down0=c0_down;
left0=c0_left;
right0=c0_right;
here0=c0_here;
up2=c2_up;
down2=c2_down;
left2=c2_left;
right2=c2_right;
here2=c2_here;
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up3=c3_up;
down3=c3_down;
left3=c3_left;
right3=c3_right;
here3=c3_here;
up4=c4_up;
down4=c4_down;
left4=c4_left;
right4=c4_right;
here4=c4_here;
c1InGoal=c1_BBgoal;
c0InGoal=c0_BBgoal;
c2InGoal=c2_BBgoal;
c3InGoal=c3_BBgoal;
c4InGoal=c4_BBgoal;
c0_BBx=BBx0;
c1_BBx=BBx1;
c2_BBx=BBx2;
c3_BBx=BBx3;
c4_BBx=BBx4;
c0_BBy=BBy0;
c1_BBy=BBy1;
c2_BBy=BBy2;
c3_BBy=BBy3;
c4_BBy=BBy4;
md0=main_dir0;
md1=main_dir1;
md2=main_dir2;
md3=main_dir3;
md4=main_dir4;
rd0=real_dir0;
rd1=real_dir1;
rd2=real_dir2;
rd3=real_dir3;
rd4=real_dir4;
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plot(goalX_car0*Xstep:.1:goalX_car0*Xstep + Xstep,
goalY_car0*Ystep,'r-', 'LineWidth', 1 );
plot(goalX_car0*Xstep:.1:goalX_car0*Xstep +
Xstep,goalY_car0*Ystep + Ystep,'r-', 'LineWidth', 1 );

plot(goalX_car0*Xstep,goalY_car0*Ystep:.1:goalY_car0*Ystep +
Ystep,'r-', 'LineWidth', 1 );

plot(goalX_car0*Xstep + Xstep,goalY_car0*Ystep:.1:goalY_car0*Ystep +
Ystep,'r-', 'LineWidth', 1 );

plot(goalX_car1*Xstep:.1:goalX_car1*Xstep + Xstep,
goalY_car1*Ystep,'g-', 'LineWidth', 1 );

plot(goalX_car1*Xstep:.1:goalX_car1*Xstep +
Xstep,goalY_car1*Ystep + Ystep,'g-', 'LineWidth', 1 );

plot(goalX_car1*Xstep,goalY_car1*Ystep:.1:goalY_car1*Ystep +
Ystep,'g-', 'LineWidth', 1 );

plot(goalX_car1*Xstep + Xstep,goalY_car1*Ystep:.1:goalY_car1*Ystep +
Ystep,'g-', 'LineWidth', 1 );

plot(goalX_car2*Xstep:.1:goalX_car2*Xstep + Xstep,
goalY_car2*Ystep,'b-', 'LineWidth', 1 );

plot(goalX_car2*Xstep:.1:goalX_car2*Xstep + Xstep,goalY_car2*Ystep +
Ystep,'b-', 'LineWidth', 1 );

plot(goalX_car2*Xstep,goalY_car2*Ystep:.1:goalY_car2*Ystep +
Ystep,'b-', 'LineWidth', 1 );

plot(goalX_car2*Xstep + Xstep,goalY_car2*Ystep:.1:goalY_car2*Ystep +
Ystep,'b-', 'LineWidth', 1 );

plot(goalX_car3*Xstep:.1:goalX_car3*Xstep + Xstep,
goalY_car3*Ystep,'m-', 'LineWidth', 1 );

plot(goalX_car3*Xstep:.1:goalX_car3*Xstep + Xstep,goalY_car3*Ystep +
Ystep,'m-', 'LineWidth', 1 );

plot(goalX_car3*Xstep,goalY_car3*Ystep:.1:goalY_car3*Ystep +
Ystep,'m-', 'LineWidth', 1 );

plot(goalX_car3*Xstep + Xstep,goalY_car3*Ystep:.1:goalY_car3*Ystep +
Ystep,'m-', 'LineWidth', 1 );

plot(goalX_car4*Xstep:.1:goalX_car4*Xstep + Xstep,
goalY_car4*Ystep,'c-', 'LineWidth', 1 );

plot(goalX_car4*Xstep:.1:goalX_car4*Xstep + Xstep,goalY_car4*Ystep +
Ystep,'c-', 'LineWidth', 1 );

plot(goalX_car4*Xstep,goalY_car4*Ystep:.1:goalY_car4*Ystep +
Ystep,'c-', 'LineWidth', 1 );

plot(goalX_car4*Xstep + Xstep,goalY_car4*Ystep:.1:goalY_car4*Ystep +
Ystep,'c-', 'LineWidth', 1 );
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for indexX = 0:BBstep:borderX
plot(indexX, 0:.4:borderY,'yo', 'LineWidth', 1 );
end
for indexY = 0:BBstep:borderY
plot(0:.4:borderX, indexY,'yo', 'LineWidth', 1 );
end
h0 = plot(c0x,c0y, 'ro', 'LineWidth', 5, 'XDataSource','c0x', 'YDataSource', 'c0y');
h1 = plot(c1x,c1y, 'gv', 'LineWidth', 5, 'XDataSource','c1x', 'YDataSource', 'c1y');
h2 = plot(c2x,c2y, 'bv', 'LineWidth', 5, 'XDataSource','c2x', 'YDataSource', 'c2y');
h3 = plot(c3x,c3y, 'mo', 'LineWidth', 5, 'XDataSource','c3x', 'YDataSource', 'c3y');
h4 = plot(c4x,c4y, 'cv', 'LineWidth', 5, 'XDataSource','c4x', 'YDataSource', 'c4y');
kend = size (x_car0);
for k = 1:500:kend(1,1)
c0x=x_car0(k,1);
c0y=y_car0(k,1);
c1x=x_car1(k,1);
c1y=y_car1(k,1);
c2x=x_car2(k,1);
c2y=y_car2(k,1);
c3x=x_car3(k,1);
c3y=y_car3(k,1);
c4x=x_car4(k,1);
c4y=y_car4(k,1);
refreshdata(h0, 'caller')
refreshdata(h1, 'caller')
refreshdata(h2, 'caller')
refreshdata(h3, 'caller')
refreshdata(h4, 'caller')v drawnow;
set(handles.c1_up_text,'String',num2str(up1(k,1)));
set(handles.c1_down_text,'String',num2str(down1(k,1)));
set(handles.c1_left_text,'String',num2str(left1(k,1)));
set(handles.c1_right_text,'String',num2str(right1(k,1)));
set(handles.c1_here_text,'String',num2str(here1(k,1)));
set(handles.c0_up_text,'String',num2str(up0(k,1)));
set(handles.c0_down_text,'String',num2str(down0(k,1)));
set(handles.c0_left_text,'String',num2str(left0(k,1)));
set(handles.c0_right_text,'String',num2str(right0(k,1)));
set(handles.c0_here_text,'String',num2str(here0(k,1)));
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set(handles.c2_up_text,'String',num2str(up2(k,1)));
set(handles.c2_down_text,'String',num2str(down2(k,1)));
set(handles.c2_left_text,'String',num2str(left2(k,1)));
set(handles.c2_right_text,'String',num2str(right2(k,1)));
set(handles.c2_here_text,'String',num2str(here2(k,1)));
set(handles.c3_up_text,'String',num2str(up3(k,1)));
set(handles.c3_down_text,'String',num2str(down3(k,1)));
set(handles.c3_left_text,'String',num2str(left3(k,1)));
set(handles.c3_right_text,'String',num2str(right3(k,1)));
set(handles.c3_here_text,'String',num2str(here3(k,1)));
set(handles.c4_up_text,'String',num2str(up4(k,1)));
set(handles.c4_down_text,'String',num2str(down4(k,1)));
set(handles.c4_left_text,'String',num2str(left4(k,1)));
set(handles.c4_right_text,'String',num2str(right4(k,1)));
set(handles.c4_here_text,'String',num2str(here4(k,1)));
set(handles.c0_inGoal_text,'String',num2str(c0InGoal(k,1)));
set(handles.c1_inGoal_text,'String',num2str(c1InGoal(k,1)));
set(handles.c2_inGoal_text,'String',num2str(c2InGoal(k,1)));
set(handles.c4_inGoal_text,'String',num2str(c3InGoal(k,1)));
set(handles.c4_inGoal_text,'String',num2str(c4InGoal(k,1)));
set(handles.BBx0_text,'String',num2str(c0_BBx(k,1)));
set(handles.BBy0_text,'String',num2str(c0_BBy(k,1)));
set(handles.BBx1_text,'String',num2str(c1_BBx(k,1)));
set(handles.BBy1_text,'String',num2str(c1_BBy(k,1)));
set(handles.BBx2_text,'String',num2str(c2_BBx(k,1)));
set(handles.BBy2_text,'String',num2str(c2_BBy(k,1)));
set(handles.BBx3_text,'String',num2str(c3_BBx(k,1)));
set(handles.BBy3_text,'String',num2str(c3_BBy(k,1)));
set(handles.BBx4_text,'String',num2str(c4_BBx(k,1)));
set(handles.BBy4_text,'String',num2str(c4_BBy(k,1)));
set(handles.mainDir1_text,'String',num2str(md1(k,1)));
set(handles.mainDir0_text,'String',num2str(md0(k,1)));
set(handles.mainDir2_text,'String',num2str(md2(k,1)));
set(handles.mainDir3_text,'String',num2str(md3(k,1)));
set(handles.mainDir4_text,'String',num2str(md4(k,1)));
set(handles.realC0_text,'String',num2str(rd0(k,1)));
set(handles.realC1_text,'String',num2str(rd1(k,1)));
set(handles.realC2_text,'String',num2str(rd2(k,1)));
set(handles.realC3_text,'String',num2str(rd3(k,1)));
set(handles.realC4_text,'String',num2str(rd4(k,1)));
guidata(hObject, handles);

end
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