
University of Cagliari

FACULTY OF ENGINEERING
Department of Electronic Engineering

Master Thesis

ALGORITHMS FOR THE STABILIZATION
OF A LEADER - FOLLOWER FORMATION
DESCRIBED VIA COMPLEX LAPLACIAN

Thesis advisors:

Prof. Alessandro Giua
Prof. Zhiyun Lin

Candidate:

Fabrizio Serpi

Thesis submitted in 2012





Contents

List of Figures iv

List of Tables viii

List of Algorithms xi

List of Matlab Files xii

List of Symbols xv

Abstract i

1 Introduction 1

2 Background Theory 5
2.1 Permutation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Weighted Directed Graphs . . . . . . . . . . . . . . . . . 26
2.2.4 Matrices and Graphs. The Laplacian Matrix of a Graph. 27
2.2.5 Graphs Isomorphism . . . . . . . . . . . . . . . . . . . . 38

2.3 Gauss Elimination and the LU Factorization . . . . . . . . . . . 41
2.3.1 Partial Pivoting . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Total Pivoting . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 LU Factorization . . . . . . . . . . . . . . . . . . . . . . 48

3 Formation Control via Complex Laplacian 53
3.1 Sensing Digraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Planar Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Fundamental Results . . . . . . . . . . . . . . . . . . . . . . . . 58

i



3.3.1 Single-Integrator Kinematics . . . . . . . . . . . . . . . . 60
3.3.2 Double-Integrator Dynamics . . . . . . . . . . . . . . . . 69

4 The Isomorphism Problem. Relabelling the Graph nodes 75
4.1 Backtracking Algorithm Design Technique . . . . . . . . . . . . 76

4.1.1 Backtracking Efficiency . . . . . . . . . . . . . . . . . . . 80
4.1.2 Examples of Backtracking Design . . . . . . . . . . . . . 81

4.2 The permutation matrix P . . . . . . . . . . . . . . . . . . . . . 87
4.2.1 Computing the Determinant.Algorithm 1 . . . . . . . . . 88
4.2.2 Gauss Elimination Method.Algorithm 2 . . . . . . . . . . 92

4.3 Comparing Algorithms . . . . . . . . . . . . . . . . . . . . . . . 100

5 The Multiplicative IEP and Ballantine’s Theorem 105
5.1 The Inverse Eigenvalue Problem of a Matrix . . . . . . . . . . . 105
5.2 Application: The Pole Assignment Problem . . . . . . . . . . . 110

5.2.1 State Feedback PAP . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Output Feedback PAP . . . . . . . . . . . . . . . . . . . 112

5.3 Multivariate IEP . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4 Single variate IEP . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.1 Parametrized IEP . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Structured IEP . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.3 Least Squares IEP . . . . . . . . . . . . . . . . . . . . . 117
5.4.4 Partially Described IEP . . . . . . . . . . . . . . . . . . 120

5.5 Ballantine’s Theorem and Stability . . . . . . . . . . . . . . . . 121
5.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Bounding the Eigenvalues of a Complex Matrix . . . . . . . . . 127

6 Application to a Planar Multi-Agent Formation 133
6.1 Single-Integrator Kinematics . . . . . . . . . . . . . . . . . . . . 135
6.2 Double-Integrator Dynamics . . . . . . . . . . . . . . . . . . . . 140

7 Conclusion 145

A Direct Matrices Operations 149

B Gauss Elementary Matrices 151

C Matrices and Vector Spaces 153

D Faulhaber’s Formula 157

ii



E Matlab: The Laplacian matrix of a Weighted Digraph 159

F Matlab: Code from Chapter 4 169
F.1 Determinant-based backtrack.Algorithm 1 . . . . . . . . . . . . 170
F.2 Gauss-based Backtrack.Algorithm 2 . . . . . . . . . . . . . . . . 174

G Matlab: Code from Chapter 5 187
G.1 Ballantine’s Theorem.Algorithm 1 . . . . . . . . . . . . . . . . . 187
G.2 Bounding the Eigenvalues. Algorithm 2 . . . . . . . . . . . . . . 194

H Matlab: Code from Chapter 6 197

I Matlab: Additional Functions 211

Bibliography 217

iii



iv



List of Figures

2.1 Undirected graphs example. . . . . . . . . . . . . . . . . . . . . 12
2.2 Subgraphs example. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Graph, complete form and its complement example. . . . . . . . 14
2.4 Digraphs example. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Directed multigraph and pseudograph example. . . . . . . . . . 18
2.6 Digraph and relative subdigraphs example. . . . . . . . . . . . . 21
2.7 Digraph and walks example. . . . . . . . . . . . . . . . . . . . . 23
2.8 Tournament example. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 A digraph and its strong component digraph. . . . . . . . . . . 26
2.10 Weighted directed pseudographs. . . . . . . . . . . . . . . . . . 27
2.11 Graph, digraph and weighted digraph example. . . . . . . . . . 36
2.12 Graphs isomorphism example. . . . . . . . . . . . . . . . . . . . 41

3.1 Sensing digraph example. . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Example of a formation basis. . . . . . . . . . . . . . . . . . . . 55
3.3 Agents Formation up to translation, rotation and scaling. . . . . 56
3.4 Example of an agents formation translation. . . . . . . . . . . . 57
3.5 Example of an agents formation rotation. . . . . . . . . . . . . . 58
3.6 Example of an agents formation scaling. . . . . . . . . . . . . . 59
3.7 Example of the overall behavior of an agents formation. . . . . . 59
3.8 Example of a complex weights control law for a formation basis. 61
3.9 Interaction rule for complex weights. . . . . . . . . . . . . . . . 62
3.10 Example of a formation control by its leaders. . . . . . . . . . . 64
3.11 Example of a non 2-reachable agents formation. . . . . . . . . . 66

4.1 Example of two different tree organizations for a solution space
in a backtracking algorithm. . . . . . . . . . . . . . . . . . . . . 78

4.2 Example of a tree organization for the solution space of a sorting
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Example of a solution for the 8-queens problem. . . . . . . . . . 85

v



4.4 Some steps for the 4-queens problem. . . . . . . . . . . . . . . . 86

4.5 Comparison between different state space organization trees in
the determinant-based backtracking algorithm. . . . . . . . . . . 91

4.6 Comparison among different state space organization trees in
the Gauss-based backtracking algorithm. . . . . . . . . . . . . . 98

4.7 Comparison among different backtracking implementations. Tests
have been made over complex random follower-follower Lapla-
cian matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Comparison among different backtracking implementations. Tests
have been made over complex random non-singular matrices. . . 103

4.9 Comparison among different backtracking implementations. Tests
have been made over complex random singular matrices. . . . . 104

5.1 Main classification of Inverse Eigenvalue Problems. . . . . . . . 107

5.2 Classification of Inverse Eigenvalue Problems. . . . . . . . . . . 109

5.3 SetW and search strategy for Ballantine’s-based algorithm. El-
ements di are chosen from segments parallel to the imaginary
axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 SetW and search strategy for Ballantine’s-based algorithm. El-
ements di are chosen from segments with variable direction. . . . 125

5.5 SetW and search strategy for Ballantine’s-based algorithm. El-
ements di are chosen from circles with variable radius. . . . . . . 125

5.6 Formation basis and sensing digraph. . . . . . . . . . . . . . . . 126

5.7 Rectangular bound for the eigenvalues of a complex square matrix.128

5.8 Set Wp for the Ballantine’s algorithm with bounded eigenvalues. 130

5.9 Set Wn for the Ballantine’s algorithm with bounded eigenvalues. 130

6.1 Planar formation and sensing digraph for a MAS. . . . . . . . . 134

6.2 Single integrator kinematics case. Agents reaching a planar for-
mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Single integrator kinematics case. Agents reaching a moving
formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Double integrator dynamics case. Agents reaching a planar for-
mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Double integrator dynamics case. Agents reaching a moving
formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1 Example of a group of agents with a slow convergence. . . . . . 147

vi



E.1 Example of a sensing digraph. . . . . . . . . . . . . . . . . . . . 160

vii



viii



List of Tables

1.1 Summary of the main formation control approaches in MAS. . . 3

5.1 Summary of the acronyms for IEPs. . . . . . . . . . . . . . . . . 110

ix



x



List of Algorithms

2.1 Gauss Elimination Algorithm . . . . . . . . . . . . . . . . . . . 46
2.2 Gauss Elimination Algorithm with Partial Pivoting . . . . . . . 47
2.3 Gauss Elimination Algorithm with Total Pivoting . . . . . . . . 49
3.1 Single-Integrator Kinematics . . . . . . . . . . . . . . . . . . . . 69
3.2 Double-Integrator Dynamics . . . . . . . . . . . . . . . . . . . . 73
4.1 Recursive Backtracking Algorithm . . . . . . . . . . . . . . . . . 80
4.2 Permutation Matrix Solver . . . . . . . . . . . . . . . . . . . . . 88
4.3 Permutation Matrix Solver with Gaussian Elimination . . . . . 96
5.1 Stabilization by a complex Diagonal matrix . . . . . . . . . . . 124

xi



xii



List of Matlab Files

E.1 lm.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
E.2 lmg.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
F.1 pmsd1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
F.2 nnpsd1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
F.3 nnpsd2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
F.4 pmsg1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
F.5 nnpsg1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
F.6 nnpsg2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
F.7 nnpsg3.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
F.8 nnpsg4.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
F.9 nnpsg5.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
G.1 smse1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
G.2 smse12.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
G.3 smse2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
G.4 smse3.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
G.5 smsb.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
H.1 sikplanarformation.m . . . . . . . . . . . . . . . . . . . . . . 197
H.2 sikmovingplanarformation.m . . . . . . . . . . . . . . . . . 200
H.3 didplanarformation.m . . . . . . . . . . . . . . . . . . . . . . 204
H.4 didmovingplanarformation.m . . . . . . . . . . . . . . . . . 207
I.1 dpm1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
I.2 excn.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
I.3 dtr.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
I.4 irp.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xiii



xiv



List of Symbols

εM machine precision

ι =
√
−1 imaginary unit

|S| The cardinality of the set S

Cn×n complex space of n× n-dimensional matrices

Fn×p generic field of dimension n× p

Rn real n-dimensional vector space

Bi Bounding function for the i-th step in a backtracking algorithm

D = (V(D),A(D), w) weighted directed pseudograph

D = (V ,A) directed graph

G = (V , E) undirected graph

G ∼= H isomorphic relation between graph G and H

µD(vi, vj) number of arcs from a vertex vi to a vertex vj in a directed pseudo-
graph

σ(A) entire spectrum of a given square matrix A

θ(f, g) isomorphism of one graph onto another

ξ ∈ Cn A planar formation basis for n agents

A∗ conjugate and transpose of the matrix A ∈ C(m×n)

Ai ⊕ Aj direct sum of matrix Ai and Aj

d+D(vi) out-degree of a vertex vi in a directed multigraph

d−D(vi) in-degree of a vertex vi in a directed multigraph

xv



E elementary matrix

Fξ A formation of n agents with four degree of freedom

In identity matrix of order n

Lff Follower-follower sub-matrix of the Laplacian matrix L

Llf Leader-follower sub-matrix of a Laplacian matrix L

N(vi),Ni neighborhood of vertex vi in a graph

N+
D (vi) out-neighbor set of vi in a directed pseudograph

N−D (vi) in-neighbor set of vi in a directed pseudograph

T (x1, x2, . . . , xi) Set of all possible values for the variable xi+1 such that, at
the (i+1)th step of the backtracking algorithm, (x1, x2, . . . , xi+1) is also
a path to a problem state

xvi



Abstract

A multi-agent system (MAS) or coupled cell system is a collection of indi-
vidual, but interacting, dynamical systems (called cells or agents). With
coupling, the state of certain individual systems affects the time-evolution of
other agents [28]. Multi-agent systems can be used to solve problems which are
difficult or impossible for an individual agent or monolithic system to solve.
One way to study the interaction among coupled systems is by mean of robots
playing the role of agents. In this scenario, one problem which arises is the
formation control of the agents. The state of the art literature describes three
different approaches to formation control. Recently, in [29] a fourth approach
has been presented and fully discussed both for the single-integrator kinematics
and the double-integrator dynamics case. This new approach involves complex
weighted directed graphs and its Laplacian matrix on which the control laws
are based. In this work the formation control via complex Laplacian is pre-
sented. In chapter 3 the full extent of this theory is presented, while in chapters
4 and 5 algorithms to implement the control laws work are discussed. Finally,
in chapter 6 experiments are presented in order to show the formation control
working in practice. The simulations have been written in MATLAB® code
and they can be found in appendix.





Chapter 1

Introduction

"A multi-agent system (MAS) is a system composed of multiple
interacting intelligent agents. Multi-agent systems can be used to
solve problems which are difficult or impossible for an individual
agent or monolithic system to solve."[2]

"A coupled cell system is a collection of individual, but inter-
acting, dynamical systems. With coupling, the state of certain in-
dividual systems (called cells or agents) affects the time-evolution
of other agents."[28].

The definitions of a Multi-Agent System given above, span from the most
general, that is the former, to the most specific control engineering-oriented
definition, that is the latter. In both cases, what stands is that the entities
forming the system are related to each other in some ways; there is a sense of
"together". That sense of union could be seen in different ways, depending on
which discipline multi-agent modelling is applied on.

The interaction among agents play a key role to reach the common objective
the overall system has. From a control engineering point of view, it means that
the overall system has to evolve from a stable state to another stable state
in pursuing his objective. One way to study the interaction among coupled
systems is by mean of robots playing the role of agents. The common objectives
of the MAS become simply the movements in the plane or in a 3-D space. In
this scenario, and in general in multi-robot systems [28] there are different
research problems some of which are:

• Rendezvous, consensus;

• Formation control;
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• Coverage (static, dynamic);

• Cooperative target enclosing;

• Coordinated path following;

• Distributed target assignment.

In this work we are mainly interested in formation control problems, that is
the study of the stability of a MAS in pursuing is objective, and in particular
in a complex Laplacian-based approach recently introduced in [29].

Formation control (see [29]) is an important category of networked multi-
agent systems due to their civil and military applications. Three main ap-
proaches to formation control have been discussed in recent literature:

the first approach describes a formation in terms of inter-agent distance
measures and uses gradient control laws resulted from distance-based
artificial potentials;

the second approach describes a formation in terms of inter-agent bearing
measures and uses angle only control laws;

the third approach describes a formation in terms of inter-agent relative
positions and uses consensus-based control laws with input bias, which
are related real-valued Laplacians.

In table 1.1 a list of the main aspects of the mentioned approaches to formation
control, including the complex Laplacian one, are given.

For the first approach [29], the majority of the algorithms consider repre-
sentation of formations in terms of inter-agent distance measures. This results
to be more successful when agents formation is represented by an undirected
graph and together with the concept of graph rigidity, in which two neighbor-
ing agents work together to reach the specified distance between them. The
directed case needs a further concept called persistence to characterize a planar
formation. Still, it is challenging to synthesize a control law and analyse the
stability property for a group of agents modelled by a digraph and most works
are then limited to directed acyclic graphs. Angle-based control for formations
in terms of inter-agents bearing measuring, that is approach number two, is
relatively new and it has not been fully explored. Nonetheless, for a group of
three agents global asymptotic convergence results are established to reach a
triangular formation with angle-only constraints. In the third approach, forma-
tions are considered in terms of relative positions. Compared with formations

2



Formation Control Approaches
Approach Features

First

- non-linear;
- local stability;

Distance specified formation - simple in analysis for undirected formation but challenging for directed formation;
and gradient descent control - require more relative position measurement;

- do not need global information;
- 3 degree of freedom (translation and rotation).

Second

- non-linear;
- global stability but limited to special cases;

Angle specified formation - challenging in analysis for both undirected and directed formation;
and angle-based control - do not require relative position measurement but angles;

- do not need global information;
- 4 degrees of freedom (translation, rotation, and scaling).

Third

- affine;
- global stability;

Relative position specified formation - simple in analysis for both undirected and directed formation;
and consensus - based control - require less relative position measurement;

- need global information: a common sense of direction;
- 1 degrees of freedom (translation only).

Fourth

- linear;
- global stability;

Relative position specified formation - simple in analysis for both undirected and directed formation;
and complex Laplacian based control - require intermediate relative position measurement;

- do not need global information;
- 4 degrees of freedom (translation, rotation, and scaling).

Table 1.1: Summary of the main formation control approaches in MAS.

described in terms of inter-agent distance constraints and inter-agent angle
constraints, the third approach requires less links and it is easier to extend
from undirected to directed graphs. The consensus-based control laws with
input bias are affine and thus could lead to global stability results. Nonethe-
less, the approach has the drawback that all the agents should have a common
sense of direction since input bias is defined in a common reference frame.

A fourth approach to formation control has been introduced in [29]. It is
based on complex Laplacians and it exploits complex weighted 2-reachable
digraphs with inter-agent distance measure together with a leader-follower
organization to agents formation. The paper aimed to study the formation
control problem in the plane. For a network of n interacting agents modelled
as a weighted digraph, they represent a planar formation as an n-dimensional
complex vector called formation basis and introduce a complex Laplacian of
the directed graph to characterize the planar formation. The result is that
the formation basis is another linearly independent eigenvector of the com-
plex Laplacian associated with zero eigenvalues in addition to the eigenvector
of ones. In this way, a planar formation is subjected to translation, rotation
and scaling. In order to uniquely determine the location, orientation, and size
of the group formation, they consider a leader-follower formation with two
co-leaders. The result of describing the formation, that is the sensing graph
of the networked agents, with a complex Laplacian, leads to a simple dis-
tributed control law. One of the advantages is that the control law is locally
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implementable without requiring a common reference frame. For example,
for single integrator kinematics, the velocity control of each follower agent is
the complex combination of the relative positions of its neighbors using the
complex weights on the incoming edges. A complex weight multiplying the
relative position of a neighbor actually means that the agent moves along the
line of sight rotated by an offset angle with certain speed gain (magnitude of
the complex weight). This complex Laplacian based control law has also been
generalized to double integrator dynamics, which has been investigated in [29]
as well. The approach however, has the drawback that a few eigenvalues of
the complex Laplacian might be in the left half complex plane which would
lead to instability of the overall system, unlike the real Laplacian that do not
manifest such problem. To tackle this technical issue, they shown that there
is a way to stabilize the possibly unstable system by updating the complex
weights, which is related to a traditional problem called Multiplicative Inverse
Eigenvalue Problem (MIEP)(i.e., see [14]).They presented sufficient conditions
for the existence of a stabilizing matrix and also provided algorithms to find it.
The aim of the present work is to implement the algorithms given in [29] and to
simulate multi-agent system movements like translation, rotation and scaling
in the plane verifying its stability. Before presenting possible solutions to the
implementation of the algorithms, we present in chapter 3 the results obtained
in [29]. In chapter 2 is presented a summary of the main graph theory concepts
needed to understand results in chapter 3. Chapters 4 and 5 present algorithms
possible implementation and finally, in chapter 6 a complete simulation for a
group of agents is shown.
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Chapter 2

Background Theory

Multi-Agent Systems are studied through mathematical models like graphs
and mathematical tools from linear algebra and control theory. In this chapter
the necessary background to tackle the problem of MAS formation control
is presented. In section 2.1 a brief introduction to permutation matrices is
given. It is necessary in order to understand graphs isomorphism, especially
the particular case presented in chapter 3 and 4. A glance at graph theory
is fundamental and it is given in section 2.2. In 2.2.4 is presented one of the
matrix used to algebraically describe a graph, the Laplacian matrix and in 2.2.5
the graph isomorphism problem is defined. The last section 2.3 is devoted to
Gauss elimination process and LU factorization. This is not strictly related to
graphs but we will need it in chapter 4 in order to look at the isomorphism
problem on a different perspective.

2.1 Permutation Matrix

In order to define a permutation matrix, we will present identity matrices and
elementary matrices first.

Identity Matrix

An identity matrix In of order n ([26],[35]), is a square n × n matrix that
has exactly one non-zero entry in each row and column. In addition, these
non-zero entries are the diagonal elements and each of them is valued exactly

5



1:

I =



1 0 · · · · · · 0

0 1 0 · · · 0
... . . . ...
... . . . 0

0 · · · 1


. (2.1)

There are several properties an identity matrix has, but we are mainly inter-
ested in the following ones:

1. det(I) = 1,

2. given a square matrix A ∈ Cn×n the left and the right product of I by
A don’t change matrix A, that means:

IA = AI = A.

The vector ei defined as a column vector with only one non-zero element in
the i-th position,

ei =



0
...
0

1

0
...
0


is the i-th vector of the orthonormal basis for the real n-dimensional vector
space Rn. Noting that rows and columns of an identity matrix are the eis
vectors (transposed in the first case), we can write I in terms of them in the
following ways:

I =



eT1

eT2

eT3
...
eTn


, (2.2a)

I =
[
e1 e2 e3 · · · en

]
. (2.2b)
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Elementary Matrix

An elementary matrix E of order n, is a square n × n matrix obtained by
doing one elementary row operation to an identity matrix. Thus, there are
three types, one for each different row operation:

1. a multiple of one row of I has been added to a different row. For example,
the following matrix

E(v,s)(m) =



1
. . .

1 m
. . .

1
. . .

1


, (2.3)

is an elementary matrix where row s of I has been multiplied by m and
added to row v;

2. two different rows of I have been exchanged. For example, the following
matrix

E(v,s) =



1
. . .

1
. . .

1
. . .

1


, (2.4)

is an elementary matrix where row s of I has been exchanged with row
v;

3. one row of I has been multiplied by a non-zero scalar. For example, the
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following matrix

Ev(m) =



1
. . .

m
. . .

1
. . .

1


, (2.5)

is an elementary matrix where row v of I has been multiplied by the
scalar m.

Let E be an elementary matrix obtained by doing one elementary row opera-
tion to I. The following statements are true.

1. E is invertible and its inverse is another elementary matrix of the same
type.

2. If the same row operation we did on E is done to an n × p matrix
A ∈ Fn×p, the result equals EA.

We are mainly interested in the second type of elementary matrices, the one
where two rows have been exchanged. In fact, these kind of matrices are used
in Gauss elimination process. Let us have an elementary matrix E(v,s) of the
form 2.4, the following statements are always true.

1. The inverse of an elementary matrix is itself, E(v,s)−1 = E(v,s).

2. Since the determinant of an identity matrix is unity, then det(E(v,s)) =

−1.

3. Let us have a square matrix A ∈ Fn×n, the left and right product between
Ev,s and A have different results:

(a) the left multiplication of E(v,s) by A, EA, exchanges row v and s in
matrix A. It follows that det(EA) = −det(A),

(b) the right multiplication of E(v,s) by A, AE, exchanges column v and
s in matrix A. This operation does not change the determinant, so
det(EA) = det(A).

8



Properties (3a) and (3b) are of great importance in Gauss elimination algo-
rithm.

Example: let us have the elementary matrix E(1,2) and the real matrix A as
follows:

E(1,2) =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,

A =


1 2 3 4

4 3 2 1

5 6 7 8

8 7 6 5

 .
Thus, the left and right multiplication of E(1,2) by A, will result in the following
matrices:

left multiplication

C1 = E(1,2)A =


4 3 2 1

1 2 3 4

5 6 7 8

8 7 6 5

 ,

right multiplication

D1 = AE(1,2) =


2 1 3 4

3 4 2 1

6 8 7 8

7 5 6 5

 ,

where C1 is matrix A with the first two rows exchanged, while D1 is matrix A
with the first two columns exchanged. Elementary matrices are also important
because they help to define permutation matrices.

Permutation Matrix

A permutation matrix P can be defined as a product of elementary matrices
of the form (2.4):

P = E(vn,sn)E(vn−1,sn−1)· · ·E(v1,s1), (2.6)

9



where the generic elementary matrix E is a square matrix of order n. A
permutation matrix has only one non-null element in each row and column,
valued 1. The following statements are true:

1. P is an orthogonal matrix, consequently P−1 = P T and PP T = P TP =

I;

2. det(P ) = (−1)#(P ), where #(P ) is the number of exchanges between
rows of I to obtain P .

What a permutation matrix does, is to apply at the same time row or column
exchanges which would have been performed by the consecutive multiplication
of the elementary matrices it is made up of.

Example: Let us have the same matrices A and E(1,2) of the last example
and let us take a second elementary matrix, say E(3,4):

E(3,4) =


eT1

eT2

eT4

eT3

 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

For what we said earlier, the permutation matrix that corresponds to the
sequence of left applications of the elementary matrices E(1,2) and E(3,4) is

Pl = E(3,4)E(1,2) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

and the left multiplication of Pl by A is

PlA = E(3,4)E(1,2)A = E(3,4)C1 =


4 3 2 1

1 2 3 4

8 7 6 5

5 6 7 8

 .
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The right application of E(1,2) and E(3,4) to a matrix, gives the permutation
matrix

Pr = E(1,2)E(3,4) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,
and the right multiplication of Pr by A is

APr = AE(1,2)E(3,4) = D1E
(3,4) =


2 1 4 3

3 4 1 2

6 8 8 7

7 5 5 6

 .

Note that, if the sequence of elementary matrices is the same in left and right
multiplication, then we have:

Pl = P T
r orPr = P T

l . (2.7)

The definition of permutation matrix given earlier, is one of the most in-
tuitive. Moreover, it helps to understand how a permutation matrix works
when multiplied by another matrix. Nonetheless, a more formal definition can
be given. Denote by Σ := Sym(n) the set of permutations of 1, 2, . . . , n. For
σ ∈ Σ, the (n× n)-permutation matrix Pσ is the matrix whose entries are

pij =

1, if j = σ(i),

0 if j 6= σ(i).
(2.8)

We can notice that, given an n × n matrix A, PσA is obtained from A by
permuting its rows in such a way that the elements aσ(j),j are on its diagonal.

In summary, a permutation matrix P of order n can be obtained from
row exchanges over an identity matrix In. A single row exchange gives an
elementary matrix while more than one give a permutation matrix. Note that
the possible row combinations of an identity matrix of order n is n!. Hence,
we will have n! possible permutation matrices of the same order.
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{v1, v2} = {v2, v1}
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v1

v3

v4

v2 v5
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(b)

Figure 2.1: Example of undirected graphs. The edges have no orientation.

2.2 Graph Theory

Graph theory (see [9], [28], [6], [7]) is one of the fundamental tools in the
study of Multi-Agent Systems. In fact, graphs are models which provide a
suitable representation for the interaction between agents. For this reason, in
this section we will give a brief introduction to the subject, giving some of the
main definitions.

2.2.1 Undirected Graphs

A graph G = (V , E) (simple graph) consists of a finite non-empty set V =

{v1, v2, . . . , vn} of elements called vertices and a prescribed set E of unordered
pairs of distinct vertices of V called edges. An edge can be written as

α = {vi, vj} = {vj, vi},

where vi and vj are the endpoints of α. In fig.(2.1) two simple undirected
graphs are shown. Graph (2.1a) has sets V = {v1, v2, v3} and E = {{v1, v2}, {v1,
v3}, {v2, v3}}; graph (2.1b) has sets V = {v1, v2, v3, v4, v5, v6} and E = {{v1, v2}
, {v2, v3}, {v1, v4}, {v2, v4}, {v2, v6}, {v3, v5}, {v4, v5}, {v5, v6}}. The edges have
no orientation, so you can move back and forth between two connected nodes
in any direction. This is highlighted in fig. (2.1a). Two vertices on the same
edge or two distinct edges with a common vertex are said to be adjacent. Also,
an edge and a vertex are incident with one another if the vertex is contained
in the edge. A vertex is said to be isolated if it is incident with no edge, like v7
in graph (2.2a). Two adjacent vertices are also said to be neighbors. The set
of neighbors of a vertex vi is its neighborhood and is denoted by N(vi) or Ni.
The degree (valency) of a vertex in a graph G is the number of edges incident
with the vertex. Since each edge of G has two distinct endpoints, the sum of
the degrees of the vertices of G is twice the number of its edges. The graph G
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Figure 2.2: Example of subgraphs. In (2.2b), (2.2c) and (2.2d) are shown a subgraph,
an induced subgraph and a spanning subgraph of graph (2.2a).

is said to be regular if all vertices have the same degree. If there are precisely k
edges incident with each vertex of a graph, then the graph is said to be regular
of degree k. A regular graph of degree 3 is called cubic. For instance, graph
(2.1a) is regular of degree 2 since each vertex has degree 2. The maximum
degree in a graph is often denoted by ∆.

A complete graph is a graph in which all possible pairs of vertices are edges.
Let G be a graph and let K be the complete graph with the same vertex set V .
Then the complement Ḡ of G is the graph with vertex set V and with edge set
equal to the set of edges of K minus those of G. In fig. (2.3) a self-explanatory
example is shown.

A subgraph of a graph G consists of a subset V ′ of V and a subset E ′ of
E that themselves form a graph. This is the most general definition. In fact,
there are two main variations depending on which constraints sets V ′ and E ′

are subjected to.

• An induced subgraph of G, is a subgraph G ′ = G(V ′) where set E ′ contains
all edges of G both of whose endpoints belong to V ′.

• A spanning subgraph of G, is a subgraph G ′ which has the same vertices
of G, that is, V ′ = V .

In fig. (2.2) those different cases are shown. Graphs (2.2b), (2.2c) and
(2.2d) are a subgraph, an induced subgraph and a spanning subgraph of graph
(2.2a).

The definition of a simple graph given earlier can be modified adding con-
straints, relaxing existing ones or both. In this way, other graphs can be de-
fined. For example, the adjective simple in the earlier definition, means that
two vertices can be connected by at most one edge. Relaxing this constraint,
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v4v3

v1 v2

(a)

v4v3

v1 v2

(b)

v4v3

v1 v2

(c)

Figure 2.3: Example of a graph, its complete form and its complement. Graph (2.3b)
has its complete graph in (2.3a) and its complement graph in (2.3c).

that is, allowing two vertex to be connected by more than one edge gives us the
definition of a multigraph. We can give a brief list of further generalizations of
a simple graph.

A multigraph is a simple graph where a pair of vertices is allowed to form
more than one distinct edge. The edges are called multiedges (multi-
lines) and the number of distinct edges of the form {vi, vj} is called the
multiplicity m{vi, vj} of the edge {vi, vj}.

A general graph is a simple graph where multiedges and loops are allowed.
Loops are edges of the form {vi, vi} which make vertices adjacent to
themselves.

A weighted graph is a simple graph where at each edge is assigned a numer-
ical value (real or complex) called weight.

A directed graph (or digraph) is a simple graph where edges have orienta-
tion. That is, edges are an ordered pair of vertices. For example, the two
edges (vi, vj) and (vj, vi) are different even though they have the same
endpoints.

An infinite graph is a simple graph where the vertex set V is allowed to be
infinite.

Let G be a general graph. A walk of length m is a sequence ofm successively
adjacent edges, and can be denoted by three different notations:

1. {v1, v2},{v2, v3},. . . ,{vm−1, vm}, and m > 0;

2. v1 → v2 → v3 → . . . → vm−1 → vm;

3. v1,v2,v3,. . . ,vm−1,vm.

14



The vertices v1 and vm are the endpoints of the walk. For example, in the
graph of fig. (2.2a), v1, v2, v4, v5, v3, v1, v4 is a walk. This is the most general
definition. In fact there are several variations:

• an open walk is a walk with different endpoints, that is v1 6= vm;

• a closed walk is a walk with equal endpoints, that is v1 = vm;

• a trail is a walk with distinct edges;

• a chain is a walk with distinct edges and distinct vertices (except, pos-
sibly, for the endpoints). If the endpoints match, it is called a closed
chain;

• a cycle is a closed chain.

Notice that in a graph a cycle must contain at least 3 edges. But in a general
graph a loop or a pair of multiple edges form a cycle.

A general graph G is connected if every pair of vertices vi and vj is joined
by a walk with vi and vj as endpoints. Otherwise, the general graph is said to
be disconnected. Note that a vertex is regarded as trivially connected to itself.
Connectivity between vertices is reflexive, symmetric, and transitive. Hence,
connectivity defines an equivalence relation on the vertices of G and produces
a partition

V1 ∪ V2 ∪ · · · ∪ Vn,

of the vertices of G. The induced subgraphs G(V1),G(V2), . . . ,G(Vn) of G
formed by taking the vertices in Vi and the edges incident to them are called
the connected components of G.

Let G be a connected general graph. The distance d(vi, vj) between vi and
vj in G is the length of the shortest walk between the two vertices. A vertex is
regarded as distance 0 from itself. The diameter of G is the maximum value
of the distance function over all pairs of vertices. A connected general graph
of diameter d has at least d+1 distinct eigenvalues in its spectrum.

A tree is a connected graph that contains no cycle. Let T be a graph of
order n. Then the following statements are equivalent:

1. T is a tree;

2. T contains no cycles and has exactly n− 1 edges;

3. T is connected and has exactly n− 1 edges;
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4. each pair of distinct vertices of T is joined by exactly one chain.

Any graph without a cycle is a forest. Note that each component of a forest is
a tree.

We are mainly concerned in weighted digraphs which will be introduced
later in this section. In fact, as we will see in chapter 3, they have been used
in the representation of multi-agent formations and in the development of a
new control theory for them.

2.2.2 Directed Graphs

Digraphs are directed analogues of graphs. Thus, as we will see later, they have
many similarities. In fact, many definitions we have previously seen apply to
digraphs as well, with little or no change. Nonetheless, important differences
will be outlined.

A directed graph (or digraph) D consists of a non-empty finite set V of elements
called vertices and a finite set A of ordered pairs of distinct vertices called
arcs (directed edges, directed lines). A directed graph is often denoted by
D = (V ,A), which means that V and A are the vertex set and the arc set
of D. The order (size) of D is the number of vertices (arcs) in D and it is
often denoted by |D| = n (|D| = m respectively). We can see two examples of
digraphs in fig. (2.4). In fig. (2.4a) D is a digraph with vertex set V = {v1, v2}
and arc set A = {(v1, v2), (v2, v1)}. Digraph (2.4a) is quite simple but shows
the main difference between undirected and directed graphs. In fact, the two
arcs (v1, v2) and (v2, v1) are not the same arc as it would be if the graph were
undirected. For an arc (vi, vj) the first vertex vi is its tail and the second
vertex vj is its head. It can be also said that the arc (vi, vj) leaves vi and
enters vj. The head and the tail of an arc are said to be its end-vertices (or
endpoints as in the undirected case). The end-vertices of an arc are said to be
adjacent vertices, i.e. vi is adjacent to vj and vj is adjacent to vi. If (vi, vj) is
an arc, then vi dominates vj (or vj is dominated by vi) denoting it by vi ← vj.

We say that a vertex vi is incident to an arc α = (vi, vj) if vi is the head or
tail of α. An arc can be denote by (vi, vj) or simply by vivj. For a pair X, Y
of vertex sets of a digraph D, we define

(X, Y )D = {xy ∈ A : x ∈ X, y ∈ Y }, (2.9)

i.e. (X, Y )D is the set of arcs with tail inX and head in Y . For example, for the
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(a)
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Figure 2.4: Example of digraphs. Digraph (2.4a) shows the difference between arcs
with the same vertex but different orientation. Digraph (2.4b) shows a more complex
digraph than (2.4a), where paths and other characteristics can be found.

digraph D in fig. (2.5a), choosing (X, Y )D we have that ({v1, v2}, {v3, v4}) =

{v1v2, v2v3, v3v4}. A different choice for sets X and Y would have led to a
different result. In fact, if X = {v2, v4} and Y = {v1, v3}, then (X, Y )D =

{v2v3, v4v1}. For disjoint subsets X and Y of V , we can use the following
notation:

1. X → Y , and it means that every vertex of X dominates every vertex of
Y ;

2. X ⇒ Y , and it means that (Y,X) = ∅;

3. X 7→ Y , and it means that both X → Y and X ⇒ Y hold.

The above definition of digraph implies that a digraph is allowed to have arcs
with the same end-vertices like arcs vivj and vjvi, but it is not allowed to
contain parallel or multiple arcs, that is, pairs of arcs with the same tail and
the same head, or loops that are arcs for which the end-vertex coincide. We
can modify the definition of a digraph, as we have already done earlier for
a simple graph, obtaining further generalizations. Thus, a digraph for which
multiple arcs are allowed is a directed multigraph, while a digraph for which
multiple arcs and loops are allowed is a directed pseudograph. In fig. (2.5) we
can see an example of them. The directed multigraph (2.5b) has been obtained
from the digraph (2.5a) adding multiple arcs between vertices v1 and v2, while
the directed pseudograph (2.5c) has been obtained adding loops to multigraph
(2.5b). For directed pseudographs D, A and (X, Y )D are multisets because
multiple arcs provide repeated elements. In order to denote the number of
arcs from a vertex vi to a vertex vj in a directed pseudograph D, the symbol
µD(vi, vj) is used. In particular, µD(vi, vj) = 0 means that there is no arc from
vi to vj.
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Figure 2.5: Directed multigraph and pseudograph example. In (b) we can see a
directed multigraph obtained from digraph (a) adding multiple arcs. In (c), after
adding loops to multigraph (b), a pseudograph has been obtained.

Definitions will be henceforth given, are of general validity. Hence, if not
specified, D = (V ,A) will be considered a directed pseudograph. Restrictions
to digraphs will be named. For a vertex vi in D, we can divide its adjacent
vertices in different sets:

• the out-neighborhood (or out-neighbor set) N+
D (vi) of vi is the set of

vertices that are heads of arcs whose tail is vi,

N+
D (vi) = {vj ∈ V − vi : vivj ∈ A}. (2.10)

Vertices in N+
D (vi) are called the out-neighbors of vi;

• the in-neighborhood (or in-neighbor set) N−D (vi) of vi is the set of vertices
that are tails of arcs whose head is vi,

N−D (vi) = {vj ∈ V − vi : vjvi ∈ A}. (2.11)

Vertices in N−D (vi) are called the in-neighbors of vi;

• the neighborhood (or neighbor set) ND(vi) of vi is the set of in-neighbors
and out-neighbors of vi, that is,

ND(vi) = N+
D (vi) ∪N−D (vi). (2.12)

Vertices in N−D (vi) are called the neighbors of vi.

For example, let us take vertex v2 of the digraph D in fig. (2.5a). Then,
the in-neighborhood, the out-neighborhood and the neighborhood of v2 are
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N−D (v2) = {v1}, N+
D (v2) = {v3, v4} and ND(v2) = {v1, v3, v4}. For a set V ′ ⊆ V

we can define:

• the out-degree d+D(V ′) of V ′ as the number of arcs in D whose tails are in
V ′ and heads are in V − V ′,

d+D(V ′) = |(V ′,V − V ′)D|; (2.13)

• the in-degree d−D(V ′) of V ′ as the number of arcs in D whose heads are
in V ′ and tails are in V − V ′,

d−D(V ′) = |(V − V ′,V ′)D|; (2.14)

• the semi-degree of a set V ′ as its in-degree and out-degree;

• the degree dD(V ′) of V ′ as the sum of its in-degree and out-degree,

dD(V ′) = d+D(V ′) + d−D(V ′). (2.15)

For a vertex vi the in-degree is the number of arcs, except for loops, with head
vi, while the out-degree is the number of arcs, except for loops, with tail vi. If
D is a digraph (that is, it has no loops or multiple arcs), then the in-degree and
the out-degree of a vertex equal the number of in-neighbors and out-neighbors
of this vertex. If we want to count loops in the semi-degrees, the definitions
above need to be slightly modified:

• the in-pseudodegree of a vertex vi of a directed pseudograph D is the
number of all arcs with head vi;

• the out-pseudodegree of a vertex vi of a directed pseudograph D is the
number of all arcs with tail vi.

The minimum in-degree of D is defined as

δ−(D) = min{d−D(vi) : vi ∈ V(D)}, (2.16)

while the minimum out-degree of D is defined as

δ+(D) = min{d+D(vi) : vi ∈ V(D)}. (2.17)
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The minimum semi-degree of D is then

δ0(D) = min{δ+(D), δ−(D)}. (2.18)

Similarly, the maximum in-degree of D is defined as

∆−(D) = max{d−D(vi) : vi ∈ V(D)}, (2.19)

while the maximum out-degree D is defined as

∆+(D) = max{d+D(vi) : vi ∈ V(D)}. (2.20)

The maximum semi-degree of D is then

∆0(D) = max{∆+(D),∆−(D)}. (2.21)

We say that D is regular if δ0(D) = ∆0(D). In this case, D is also called
δ0(D)-regular. Since the number of arcs in a directed multigraph equals the
number of their tails (or their heads), the following basic result is obtained.

Proposition 2.1. For every directed multigraph D,∑
vi∈V

d−(vi) =
∑
vi∈V

d+(vi) = |A|.

This proposition is also valid for directed pseudographs if in-degrees and
out-degrees are replaced by in-pseudodegrees and out-pseudodegrees. Let us
have digraphs D and H. We can say that:

• H is a subdigraph of D if V(H) ⊆ V(D), A(H) ⊆ A(D) and every arc in
A(H) has both end-vertices in V(H);

• H is a spanning subdigraph (or a factor) of D if V(H) = V(D), A(H) ⊆
A(D) and every arc in A(H) has both end-vertices in V(H);

• H is an induced subdigraph of D if every arc of A(D) with both end-
vertices in V(H) is in A(H). It can be said that H is induced by
X = V(H) and we can write H = D〈X〉. If H is a non-induced sub-
digraph of D, then there is an arc vivj such that vi, vj ∈ V(H) and
vivj ∈ A(D)−A(H). Such an arc vivj is called a chord of H in D;

• D is a superdigraph of H if H is a subdigraph of D.
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Figure 2.6: Digraph and relative subdigraphs example. In (a) is shown a digraph D
with no multiple arcs neither loops. In (b) is shown a subdigraph of D and in (c)
one of its spanning subdigraph. In (d) is shown an induced subdigraph of D. Note
that subdigraph (b) is also a non-induced subdigraph of D and arc v5v1 is its chord.

In fig. (2.6) we can see an example of subdigraph (2.6b), spanning subdi-
graph (2.6c) and induced subdigraph (2.6d). It is trivial to extend the above
definitions of subdigraphs to directed pseudodigraphs. To avoid lengthy ter-
minology, the ’parts’ of directed pseudodigraph can be called just subdigraphs,
instead of, say, directed subpseudographs.

Walks, Trails, Paths, Cycles

Let us consider a directed pseudograph D. A walk (or directed walk) in D
is an alternating sequence W = v1a1v2a2v3a3 . . . vn−1an−1vn of vertices vi and
arcs aj from D such that the tail of ai is vi and the head of ai is vi+1 for every
i = 1, 2, . . . , k− 1. The set of vertices {v1, v2, . . . , vk} is denoted by V(W ) and
the set of arcs {a1, a2, . . . , an} is denoted by A(W). We say that W is a walk
from v1 to vk or an (v1, vk)-walk. The length of a walk is the number of its
arcs. Hence, the aforementioned walk W has length k − 1. A walk is even if
its length is even, while it is odd if its length is odd. In general, if the arcs of
W are defined from the context or simply unimportant, W will be denoted by
v1v2 . . . vk. A walk is the most general way ’to traverse a graph ’. In fact, as
in the case of undirected graphs, we can define variations of it:

• a closed walk W is a walk whose first and last vertex coincide, that is,
v1 = vn;
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• an open walk W is a walk whose first and last vertex are different, that
is, v1 6= vn. The first vertex of the walk, say v1, is said to be the initial
vertex ofW while the last vertex, say vn, is said to be the terminal vertex
of W . Vertices v1 and vn are also said to be the end-vertices of W ;

• a trail is a walk W in which all arcs are distinct. Sometimes, a trail
is identified with the directed pseudograph (V(W ),A(W )), which is a
subdigraph of D;

• a path (or directed chain) is a walk W in which all arcs and all vertices
are distinct. A path P is an [vi, vj]-path if P is a path between vi and
vj, e.g. P is either a (vi, vj)-path or a (vj, vi)-path. A longest path in D
is a path of maximal length in D;

• a cycle (or circuit) is a path W whose end-vertices are equal, that is,
v1 = vk. A longest cycle in D is a cycle of maximal length in D. When
W is a cycle and vi is a vertex of W , we say that W is a cycle through
vi. A loop is also considered a cycle of length one. A k-cycle is a cycle of
length k. The minimum integer k for which D has a k-cycle is the girth
of D, denoted by g(D). If D does not have a cycle, we define g(D) =∞.
If g(D) is finite then we call a cycle of length g(D) a shortest cycle in D.

For subsets X, Y of V(D), a (vx, vy)-path P is a (X, Y )-path if vx ∈ X, vy ∈ Y
and V(P )∩(X∪Y ) = {vx, vy}. Note that, ifX∩Y 6= ∅ then a vertex vx ∈ X∩Y
forms an (X, Y )-path by itself. Subsets X and Y would even be set-vertices
of subdigraphs of D, for example H and H′. Thus, an (X, Y )-path will be
denoted by (V(H),V(H′))-path or simply by (H,H′)-path. A (v1, vn)-path
P = v1v2 . . . vn is minimal if, for every (v1, vn)-path Q, either V(P ) = V(Q)

or Q has a vertex not in V(P ). Note that paths and cycles can be considered
as digraphs themselves. Let ~Pn (~Cn) denote a path (a cycle) with n vertices,
i.e. ~Pn = ({1, 2, . . . , n}, {(1, 2), (2, 3), . . . , (n − 1, n)}) and ~Cn = ~Pn + (n, 1).
A walk (path, cycle) W is a Hamilton or hamiltonian walk (path, cycle) if
V(W ) = V(D). A digraph D is hamiltonian if D contains a Hamilton cycle; D
is traceable if D possesses a Hamilton path. A trail W = v1v2 . . . vn is an Euler
or eulerian trail if A(W ) = A(D), V(W ) = V(D) and v1 = vk; a directed
multigraph D is eulerian if it has an Euler trail.

To illustrate some definitions given so far, consider the digraph D in fig.
(2.7). For example, a walk in D is Ww = v1v3v5v3v4v2v4v6v2v4; a trail in D is
Wt = v3v5v6v1v3v4, also called a (v3, v4)-trail; a path in D is P = v3v5v6v2v1,

22
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Figure 2.7: Digraph and walks example. In digraph D it is easy to find walks, trails,
paths and cycles.

also called a (v3, v1)-path; a cycle in D is Wc = v3v5v3, also called 2-cycle
because its length is 2. Note that the girth of D is g(D) = 2 too. A hamiltonian
walk for D is Wh = v1v3v5v6v2v4, but there are neither hamiltonian path nor
hamiltonian cycles. Hence, D is neither hamiltonian nor traceable. Moreover,
D is not an eulerian digraph as well, because no eulerian trails can be found.
Let W = v1v2 . . . vk and Q = q1q2 . . . qt be a pair of walks in a digraph D.
The walks W and Q are disjoint if V(W ) ∩ V(Q) = ∅ and arc-disjoint if
A(W ) ∩ A(Q) = ∅. If W and Q are open walks, they are called internally
disjoint if {v2, v3, . . . , vk−1} ∩ V(Q) = ∅ and V(W ) ∩ {q2, q3, . . . , qt−1} = ∅. A
path or a cycle can also be denoted by

W [vi, vj] = vivi+1vi+2 . . . vj.

It is easy to see that W [vi, vj] is a path for vi 6= vj. If 1 < i < k then
the predecessor of vi on W is the vertex vi−1 and is also denoted by v−i . If
1 < i < k, then the successor of vi on W is the vertex vi+1 and is also denoted
by v+i . Similarly, one can define v++

i = (v+i )+ and v−−i = (v−i )−, when these
exist (which they always do if W is a cycle). Let D be a digraph and let
v1, v2, . . . , vn be an ordering of its vertices. D is said to be acyclic if it has no
cycle. The ordering is called an acyclic ordering if, for every arc vivj in D, we
have i < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. In the other hand, every acyclic digraph
has an acyclic ordering of its vertices. An oriented graph is a digraph with
no cycle of length two. A tournament is an oriented graph where every pair
of distinct vertices are adjacent. In other words, a digraph T with vertex set
{v1, v2, . . . , vn} is a tournament if exactly one of the arcs vivj and vjvi is in T
for every i 6= j ∈ {1, 2, . . . , n}. In fig. (2.8) we can see an example of it.
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Figure 2.8: Tournament example.

Connectivity

In a digraph D a vertex vj is reachable from a vertex vi if D has an (vi, vj)-walk.
In particular, a vertex is reachable from itself. The following proposition gives
rise to a stronger condition.

Proposition 2.2. Let D be a digraph and let vi, vj be a pair of distinct vertices
in D. If D has a (vi, vj)-walk W , then D contains a (vi, vj)-path P such that
A(P ) ⊆ A(W ). If D has a closed (vi, vi)-walk W , then D contains a cycle C
through vi such that A(C) ⊆ A(W ).

By proposition 2.2 we can say that vj is reachable from vi if and only if D
contains a (vi, vj)-path. Moreover, if there is still a path from one vertex vi
to one vertex vj with the removal of any other single vertex, then vertex vj is
said to be 2-reachable from vertex vi. A digraph D is strongly connected (or
strong) if, for every pair vi, vj of distinct vertices in D, there exists a (vi, vj)-
walk and a (vj, vi)-walk. In other words, D is strong if every vertex of D is
reachable from every other vertex of D. A digraph with one vertex is defined
to be strongly connected. It is easy to see that D is strong if and only if it has
a closed Hamilton walk. In fact, as ~Cn is strong, every hamiltonian digraph is
strong. A digraph D is complete if, for every pair vi, vj of distinct vertices of D,
both vivj and vjvi are in D. For a strong digraph D = (V ,A), a set S ⊂ V is a
separator (or a separating set) if D − S is not strong. A digraph D is k-strongly
connected (or k-strong) if |V| ≥ k+ 1 and D has no separator with less than k
vertices. It follows from the definition of strong connectivity that a complete
digraph with n vertices is (n − 1)-strong, but is not n-strong. The largest
integer k such that D is k-strongly connected is the vertex-strong connectivity
of D, denoted by k(D). If a digraph D is not strong, then k(D) = 0. For
a pair vi, vj of distinct vertices of a digraph D, a set S ⊆ V(D) − {vi, vj}
is a (vi, vj)-separator if D − S has no (vi, vj)-paths. For a strong digraph
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D = (V ,A), a set of arcs W ⊆ A is a cut (or a cut set) if D −A is not strong.
A digraph D is k-arc-strong (or k-arc-strongly connected) if D has no cut with
less than k arcs. The largest integer k such that D is k-arc-strongly connected
is the arc-strong connectivity of D, denoted by λ(D). If D is not strong, then
λ(D = 0). Note that λ(D) ≥ k if and only if d+(X ), d−(X ) ≥ k for all proper
subsets X ⊂ V . A strong component of a digraph D is a maximal induced
subdigraph of D which is strong. If D1,D2, . . . ,Dt are the strong components
of D, then clearly V(D1)∪V(D2)∪· · ·∪V(Dt) = V(D). Moreover, we must have
V(Di)∩V(Dj) = ∅ for every i 6= j as otherwise all the vertices V(Di)∪V(Dj) are
reachable from each other, implying that the vertices of V(Di)∪V(Dj) belong
to the same strong component of D. We call V(D1) ∪ V(D2) ∪ · · · ∪ V(Dt)
the strong decomposition of D. The strong component digraph SC(D) of D
is obtained by contracting strong components of D and deleting any parallel
arc obtained in this process. In other words, if D1,D2, . . . ,Dt are the strong
components of D, then V(SC(D)) = {v1, v2, . . . , vt} and A(SC(D)) = {vivj :

(V(Di),V(Dj))D 6= ∅}. The subdigraph of D induced by the vertices of a cycle
in D is strong, i.e. is contained in a strong component of D. Thus, SC(D) is
acyclic. The following preposition characterizes acyclic digraphs.

Proposition 2.3. Every acyclic digraph has an acyclic ordering of its vertices.

By preposition 2.3 the vertices of SC(D) have an acyclic ordering. This
implies that the strong components of D can be labelled D1,D2, . . . ,Dt such
that there is no arc from Dj to Di unless j < i. An ordering such that is called
acyclic ordering of the strong components of D. The strong components of D
corresponding to the vertices of SC(D) of in-degree (out-degree) zero are the
initial (terminal) strong components of D. The remaining strong components
of D are called intermediate strong components of D. A digraph D is unilateral
if, for every pair vi, vj of vertices of D, either vi is reachable from vj or vj is
reachable from vi (or both). Every strong digraph, result to be unilateral. The
following proposition is a characterization of unilateral digraphs.

Proposition 2.4. A digraph D is unilateral if and only if there is a unique
acyclic ordering D1,D2, . . . ,Dt of the strong components of D and (V(Di),
V(Di+1)) 6= ∅ for every i = 1, 2, . . . , t− 1.

In fig. 2.9 is shown a digraph D (2.9a) that is neither a strongly connected
digraph nor a complete one. Nonetheless, D has strong components D1 with
V(D1) = {v4, v10}, D2 with V(D2) = {v1, v2, v3, v9} and D3 with V(D3) =
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Figure 2.9: A digraph and its strong component digraph.

{v5, v6, v7, v8}. The strong component digraph SC(D) of D is depicted in fig.
2.9b.

2.2.3 Weighted Directed Graphs

A weighted directed pseudograph is a directed pseudograph D along with one
of the following mappings:

w : A(D)→ R− {0}, (2.22a)

w : A(D)→ C− {0}. (2.22b)

where mapping (2.22a) associates to each arc ofD a real number while mapping
(2.22b) associates to each arc of D a complex number. in the general case, a
complex mapping will be considered. A weighted directed pseudograph can
then be represented by a triple D = (V(D),A(D), w), and a weight associated
to an arc (vi, vj) will be denoted by wij. Weights can be associated to vertices
as well. In this case D is called a vertex-weighted directed pseudograph, i.e.
a directed pseudograph D along with a mapping w : V(D) → C. If a is an
element (i.e. a vertex or an arc) of a weighted directed pseudograph D =

(V(D),A(D), w), then w(a) is called the weight or the cost of a. Note that an
unweighted directed pseudograph can be viewed as a vertex-weighted directed
pseudograph whose elements are all of weight one. For a set B of arcs of a
weighted directed pseudograph D = (V ,A, w), we define the weight of B as
follows:

w(B) =
∑
a∈B

w(a). (2.23)
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Figure 2.10: Weighted directed pseudographs. Digraph (a) is a arc-weighted directed
pseudograph while digraph (b) is a vertex-weighted directed pseudodigraph. Note
that the vertex weights are given in brackets.

Similarly, one can define the weight of a set of vertices in a vertex-weighted
directed pseudograph. The weight of a subdigraph H of a weighted (vertex
weighted) directed pseudograph D is the sum of the weights of the arcs (ver-
tices) in H.

In fig. (2.10) are shown both a arc-weighted and a vertex-weighted directed
pseudographs. In digraph (2.10a) the set of arcs {v1v2, v2v4, v4v3} has weight
2 + ι1. In digraph (2.10b) the subdigraph H = ({v1, v4, v3}, {v3v4, v4v1}) has
weight 4 + ι0.5.

2.2.4 Matrices and Graphs. The Laplacian Matrix of a

Graph.

Graphs can be represented by some different matrices. They are the Adjacency,
the Incidence and the Laplacian matrix. Moreover, these matrices describe
graphs in different ways, highlighting different properties and strictly relating
them to algebra. In this section matrices related to graphs are presented for
undirected, directed and weighted directed graphs. As it will be seen, matrices
definition are almost the same for each case. They will only be slightly modified
for each different graph.

Undirected Graphs

Let G = (V , E) denote a general graph of order n with vertex set

V = {v1, v2, . . . , vn}.
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Let m(vi, vj) be the multiplicity of the edges of the form (vi, vj), as defined in
subsec. 2.2.1 and let aij = m(vi, vj). This means, of course, that aij = 0 if
there are no edges of the form (vi, vj). Also, m(vi, vi) equals the number of
loops at vertex vi. The adjacency matrix of G is the resulting matrix of order
n such that

A = [aij = m(vi, vj)], (i, j = 1, 2, . . . , n). (2.24)

If G is a simple graph, that is, no loops and no multiple edges are allowed, then
the adjacency matrix is defined as follows:

aij =

1 if vivj ∈ E ,

0 if vivj /∈ E .
(2.25)

Adjacency matrix A has some interesting properties which are related to the
nature of the graph it describes:

• if G is a general graph , then

– A is a symmetric matrix with non-negative integral elements;

– the trace of A denotes the number of loops;

• if G is a multigraph, then

– the trace of A is zero;

– the sum of line i of A equals the degree of vertex vi;

• if G is a simple graph, then

– A is a symmetric (0, 1)-matrix;

– the trace of A is zero.

The power of an adjacency matrix has interesting properties as well. Let us
form

A2 =

[
n∑
t=1

aitatj

]
, (i, j = 1, 2, . . . , n). (2.26)

Then eq. (2.26) implies that the element in the (i, j) position of A2 equals
the number of walks of length 2 with vi and vj as endpoints. In general, the
element in the (i, j) position of Ak equals the number of walks of length k

with vi and vj as endpoints. The number for closed walks appear on the main
diagonal of Ak.
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Let G be a general graph and A its adjacency matrix. The polynomial

f(λ) = det(λI − A) (2.27)

is called the characteristic polynomial of G. The collection of the n eigenvalues
of A is called the spectrum of G. Since A is symmetric the spectrum of G
consists of n real numbers.

A general graph G is connected (see subsec. 2.2.1) provided that every
pair of vertices vi and vj is joined by a walk with vi and vj as endpoints.
Connectivity defines an equivalence relation on the vertices of G and yields a
partition

V1 ∪ V2 ∪ · · · ∪ Vn,

of the vertices of G. The induced subgraphs G(V1),G(V2), . . . ,G(Vn) of G
formed by taking the vertices in V〉 and the edges incident to them are called the
connected components of G. Connectivity has a direct interpretation in terms
of the adjacency matrix A of G. In fact, we may simultaneously permute the
lines of A so that A is transformed into a direct sum of the form

A1 ⊕ A2 ⊕ · · · ⊕ At,

where Ai is the adjacency matrix of the connected component G(Vi), (i =

1, 2, . . . , t).

Let G = (V , E) be a general graph of order n with vertex set V = {v1, v2, . . . , vn}
and edge set E = {α1, α2, . . . , αm}. The incidence matrix Bn×m = [bij] of G is
defined by

bij =

1 if vj ∈ αi,

0 if vj /∈ αi.
(2.28)

In other words, we set bij = 1 if vertex bj is on edge αi and we set bij = 0

otherwise. As it can be seen, B is a (0, 1)-matrix of size m × n. This is the
definition of the conventional incidence matrix in which the edges are regarded
as subsets of vertices. There are some properties to highlight:

• each row of B contains at least one 1 and not more than two 1’s;

• rows with a single 1 in B correspond to the edges in G that are loops;

• identical rows in B correspond to multiple edges in G.
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The incidence matrix and the adjacency matrix of a multigraph are related in
the following way:

Theorem 2.1. Let G be a multigraph of order n. Let B be the incidence matrix
of G and let A be the adjacency matrix of G. Then

BTB = D + A,

where D is a diagonal matrix of order n whose diagonal entry di is the degree
of the vertex vi of G, (i = 1, 2, . . . , n).

Let G = (V , E) be a general graph of order n with vertex set V = {v1, v2, . . .
, vn} and edge set E = {α1, α2, . . . , αm} as seen before..We can assign to each
of the edges of G one of the two possible orientations and thereby transform G
into a graph in which each of the edges of G is assigned a direction. Thus, we
can define the oriented incidence matrix B = [bij] of G as follows:

bij =


1 if vj is the initial vertex of αi,

−1 if vj is the terminal vertex of αi,

0 if vj /∈ αi.

(2.29)

The oriented incidence matrix of G is a (0, 1,−1)-matrix of size (m× n). The
relation between B and the adjacency matrix A is the same as in theorem 2.1.
Hence, the oriented incidence matrix satisfies at the following relation:

BTB = D − A. (2.30)

The oriented incidence matrix is used to determine the number of connected
components of G as stated from the following theorem:

Theorem 2.2. Let G be a graph of order n and let t denote the number of
connected components of G. Then the oriented incidence matrix B of G has
rank n − t. In fact, each matrix obtained from B by deleting t columns, one
corresponding to a vertex of each component, has rank n− t. A submatrix B′

of B of order n − 1 has rank n − t if and only if the spanning subgraph G′

of G whose edges are those corresponding to the rows of B′ has t connected
components.

A consequence of theorem 2.2 is that a connected graph has an oriented
incidence matrix of rank n− 1.
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Let G = (V , E) be a graph of order n with vertex set V = {v1, v2, . . . , vn} and
edge set E = {α1, α2, . . . , αm}. Let B be the (m×n) oriented incidence matrix
of G, and let A be the adjacency matrix of G. The (combinatorial) Laplacian
matrix L of G is the matrix of order n such that

L = BTB = D − A, (2.31)

where D is the diagonal matrix of order n whose diagonal entry di is the
degree of the vertex vi of G (i = 1, 2, . . . , n). The Laplacian matrix has some
important features:

• L is a singular matrix and has rank at most equal to n − 1. In fact, by
theorem 2.2 the matrix B has rank at most equal to n − 1, and hence
the Laplacian matrix L as well;

• L is a positive semidefinite symmetric matrix. In fact, taking a real
n-vector x = (x1, x2, . . . , xn)T , we have that

xTLx = xTBTBx =
∑

αt={vi,vj}

(xi − xj)2 > 0, (2.32)

where the summation is over all m edges αt = {vi, vj} of G;

• 0 is an eigenvalue of L with corresponding eigenvector x = (1, 1, . . . , 1)T .

Directed Graphs

Let D = (V ,A) be a directed pseudograph of order n with vertex set V =

{v1, v2, . . . , vn} and arc set A = {α1, α2, . . . , αn}. We let aij equal the multi-
plicity m(ai, aj) of the arcs of the form (ai, aj). Then, the adjacency matrix A
of D is the following matrix of order n

A = [aij], (i, j = 1, 2, . . . , n). (2.33)

The entries of A are non-negative integers. But A needs no longer be sym-
metric. In the event that A is symmetric, then D is said to be a symmetric
directed pseudograph. For a directed graph D, without loops and multiple arcs
then, since the multiplicity of an arc is 1 if the arc exist and 0 otherwise, the

31



adjacency matrix can be define as follows:

aij =

1 if (vi, vj) ∈ A,

0 if (vi, vj) /∈ A.
(2.34)

It follows that, without loops, diagonal elements aii of A are null. If loops are
allowed, then diagonal elements would be non null. Some interesting features
are:

• the sum of row i of the adjacency matrix A is the outdegree of vertex vi;

• the sum of column j of A is the indegree of vertex vj;

• the assertion that D is regular if degree k is equivalent to the assertion
that A has all of its line sums equal to k.

The adjacency matrix A can be related to many properties of a digraph. For
example it is related to the connectedness of D by its structure. In fact, we
can say that a digraph is disconnected if and only if its vertices can be ordered
such that its adjacency matrix A can be expressed as the direct sum of two
square submatrices A1 and A2 as follows:

A = A1 ⊕ A2, (2.35a)

A =

[
A1 0

0 A2

]
. (2.35b)

Such a partitioning is possible if and only if the vertices in the submatrix A1

have no arcs going to or coming from the vertex set in A2. Similarly, a digraph
is weakly connected if and only if its vertices can be ordered such that its
adjacency matrix A can be expressed in one of the following forms:

A =

[
A1 A12

0 A2

]
, (2.36a)

A =

[
A1 0

A21 A2

]
, (2.36b)

where A1 and A2 are square submatrices. Form (2.36a) represents the case
when there is no directed arc going from the digraph corresponding to A2 to
the subdigraph corresponding to A1, while form (2.36b) represents the case
when there is no directed arc going from the subdigraph corresponding to A1
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to the one corresponding to A2. If the adjacency matrix of D can not be
represented in one of the aforementioned forms, then the digraph is said to
be strongly connected. Let D be a digraph and let A be its adjacency matrix.
As we have already seen for the undirected case, the power of the adjacency
matrix At gives information about directed arc sequences between two vertices.
In fact, we have the following result:

Theorem 2.3. Let D be a directed graph and let A be its adjacency matrix.
The entry aij in At equals the number of different, directed arc sequences of t
arcs from vertex vi to vertex vj.

These arc sequences fall in three different categories:

1. directed walks from vi to vj;

2. trails from vi to vj;

3. paths from vi to vj.

Unfortunately, there is no easy way of separating these different sequences
from one another.

Let D = (V ,A) be a directed multigraph (without loops then) of order n with
vertex set V = {v1, v2, . . . , vn} and arc set A = {α1, α2, . . . , αn}. The incidence
matrix M of D is defined as in the case of the oriented incidence matrix of a
general graph. That is, M is the matrix whose generic element is:

mij =


1 if vj is the initial vertex of αi,

−1 if vj is the terminal vertex of αi,

0 if vj /∈ αi.

(2.37)

Then, the incidence matrix of D is a (0, 1,−1)-matrix of size (n × n). Note
that, if we disregard the orientations of the arcs and correspondingly change
-1 to 1 in M , then we obtain the incidence matrix of an undirected graph. As
in the case of undirected graphs, since the sum of each column in M is zero,
the rank of the incidence matrix of a digraph of n vertices is less than n. In
fact, for a directed graph the following theorem holds:

Theorem 2.4. Let D be a connected digraph and letM be its incidence matrix.
Then, the rank of M is n− 1.
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Let D = (V ,A) be a directed graph of order n with vertex set V =

{v1, v2, . . . , vn} and arc set A = {α1, α2, . . . , αn}. Let D be a diagonal ma-
trix of order n whose diagonal entry di is the in-degree of vertex vi. The
Laplacian matrix of digraph D is defined as follows:

L = D − A, (2.38)

where A is the adjacency matrix of D. Thus, matrix L has entries:

lij =

d−(vi) if i = j,

−aij if i 6= j.
(2.39)

Since the sum of the entries in each column of L is equal to zero, then the n
rows are linearly dependent and det(L) = 0. As done for the undirected case,
we can represent the Laplacian matrix of a digraph by its incidence matrix as
well. Thus, we can also define L as follows:

L = MTM. (2.40)

Weighted Directed Graphs

Definitions we have already seen for the directed graphs can be extended for
the weighted digraphs with some changes. In order to define the Laplacian
matrix for the weighted case, the adjacency matrix and the degree matrix will
be presented first.

Let D = (V ,A, w) be a weighted directed graph with vertex set V =

{v1, v2, . . . , vn}, arc set A = {α1, α2, . . . , αn} and a complex mapping w :

A(D) → C − {0}; the complex mapping associates a complex number wij to
each arc (j, i) of the graph. The adjacency matrix A of the weighted digraph
D is defined as follows:

aij =

wij if (j, i) ∈ A,

0 if (j, i) /∈ A.
(2.41)

The degree matrix D of a weighted digraph is defined as the diagonal matrix
whose diagonal elements dii are the sum of the weights belonging to the arcs
which have vertex vi as their head. We can simply write:

dii =
∑
j∈N−i

wij. (2.42)
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The Laplacian matrix of D can finally be defined as the difference between the
degree matrix and the adjacency matrix as defined above:

L = D − A. (2.43)

We can write the Laplacian matrix in a more suitable form, defining its ele-
ments as follows:

lij =


−wij if i 6= j and j ∈ N−i ,

0 if i 6= j and j /∈ N−i ,∑
j∈N−i

wij if i = j.

(2.44)

The Laplacian matrix of a weighted digraph will be of particular interest in
chapter 3 where a new formation control approach will be surveyed.

Example

Let us consider the graphs in fig. (2.11). We want to write the matrices
associated to each one.

In fig. (2.11a) is shown a simple (undirected) graph G with vertex set V =

{v1, v2, v3, v4} and edge set E = {{v1, v2}, {v2, v3}, {v2, v4}, {v3, v4}, {v4, v1}}.
Graph G has associated the following matrices:

1. adjacency matrix,

A =


0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

 ;

2. incidence matrix, using the edge sequence {{v1, v2}, {v2, v3}, {v2, v4}, {v3
, v4}, {v4, v1}} for columns from 1 to 5,

B =


1 0 0 0 1

1 1 1 0 0

0 1 0 1 0

0 0 1 1 1

 ;

3. oriented incidence matrix, using arcs {(v1, v2), (v2, v3), (v2, v4), (v3, v4),
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v1

v2

v3

v4

(a)

v1

v2

v3

v4

(b)

v1

v2

v3

v4

−i0.7

1

i

1− i0.5

−2 + i0.7

(c)

Figure 2.11: In figure are shown different versions of the same graph. In (a) vertices
and edges forms an undirected graph. In (b) the same vertices in (a) and an oriented
version of the edges give a digraph. In (c) it is shown a weighted digraph obtained
adding a complex mapping to the arc set of digraph (b).

(v4, v1)} for columns from 1 to 5,

Bo =


1 0 0 0 −1

−1 1 1 0 0

0 −1 0 1 0

0 0 −1 −1 1

 ;

4. degree matrix,

D =


2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 3

 ;

5. Laplacian matrix,

L = BT
o Bo = D − A =


2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3

 .

In fig. (2.11b) is shown a digraph D with vertex set V = {v1, v2, v3, v4} and
arc set A = {(v1, v2), (v2, v3), (v2, v4), (v3, v4), (v4, v1)}. Digraph D is nothing
more than the oriented version of graph G. The following matrices belongs to
digraph D:
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1. adjacency matrix,

A =


0 1 0 0

0 0 1 1

0 0 0 1

1 0 0 0


where it can be seen that A no longer needs to be symmetric;

2. incidence matrix, using arcs {(v1, v2), (v2, v3), (v2, v4), (v3, v4), (v4, v1)} for
columns from 1 to 5,

M =


1 0 0 0 −1

−1 1 1 0 0

0 −1 0 1 0

0 0 −1 −1 1

 .

Note that M equals the oriented incidence matrix of the undirected case
since the same arcs orientation have been used;

3. degree matrix, where in the directed case the diagonal elements are the
in-degree of the vertices

D =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

 ;

4. Laplacian matrix,

L = D − A =


1 −1 0 0

0 1 −1 −1

0 0 1 −1

−1 0 0 2

 .

Finally, in fig.(2.11c) is shown a weighted digraphH that is digraphD along
with a complex mapping over its arc set. Weighted digraph H has associated
the following matrices:
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1. adjacency matrix,

A =


0 0 0 −2 + i0.7

−i0.7 0 0 0

0 1 0 0

0 i 1− i0.5 0

 ;

2. degree matrix,

D =


−2 + i0.7 0 0 0

0 −i0.7 0 0

0 0 1 0

0 0 0 1 + i0.5

 ;

3. Laplacian matrix,

L = D − A =


−2 + i0.7 0 0 2− i0.7
i0.7 −i0.7 0 0

0 −1 1 0

0 −i −1 + i0.5 1 + i0.5

 .

2.2.5 Graphs Isomorphism

Let G and H be graphs. An isomorphism from G to H is a pair of bijections
f : V(G) → V(H) and g : E(G) → E(H) such that each edge {vi, vj} ∈ E(G)

is mapped to an edge {f(vi), f(vj)} ∈ E(H). If there is an isomorphic relation
from G to H it is said that G is isomorphic to H and it is denoted by

G ∼= H, (2.45)

and the pair of ordered mappings can be denoted by

θ(f, g). (2.46)

Clearly, if the two graphs G and H are isomorphic we have that

|V(G)| = |V(H)|and|E(G)| = |E(H)|. (2.47)

In the case of simple graphs, the definition of isomorphism can be stated more
concisely, because if θ(f, g) is an isomorphism between two simple graphs, say
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G and H, the mapping g is completely determined by f . Thus, we can say that
an isomorphism from G to H is a bijection f : V(G)→ V(H) which preserves
adjacency. In general, we can say that, an isomorphism preserves:

• adjacency between vertices, that is, vertices vi and vj are adjacent in G
if and only if f(vi) and f(vj) are adjacent in H;

• incidence between vertices and edges, that is, vertex v is incident with
edge α in G if and only if vertex f(v) is incident with edge g(α) in H.

Note that from what stated so far, if two graphs are isomorphic, then they are
either identical or differ just in the names of their vertices and edges. Thus
they have the same structure (diagram). Let G and H be (simple) graphs. The
isomorphism relation1 consisting of the set of ordered pairs (G,H) such that
G is isomorphic to H, has the reflexive, symmetrical and transitive property.

The definition of isomorphism its the same both for undirected and directed
case. Nonetheless, definition for the directed case will be given for the sake of
completeness. Let D and H be (unweighted) directed pseudographs. It can be
said that D and H are isomorphic if there exists a bijection f : V(D)→ V(H)

such that µD(vi, vj) = µH(f(vi), f(vj)) for every ordered pair vi, vj of vertices
in D. As we can see, preservation of adjacency is the key point of isomorphism,
even though in the directed case arcs orientation too has to be preserved. Note
that, in case we do want to distinguish between isomorphic graphs (digraphs),
we speak of labelled (digraphs) graphs. In this case, a pair of (digraphs) graphs
Q and H is indistinguishable if and only if they completely coincide, that is,
V(Q) = V(H) and E(Q) = E(Q) (A(Q) = A(Q)).

An automorphism between to graphs Q and H is an isomorphism of Q onto
itself, that is, Q and H are the same graph or identical. An automorphism
is then nothing less than a pair of identity relations Iv : V(Q) → V(Q) and
Ie : E(Q) → E(Q) such that for each vertex v and each edge α in Q we have
I(v) = v and Ie(α) = α. The same definition applies to directed graphs as
well.

Let Q and H be simple graphs or digraphs of order n. Let Sigma be the
set of all permutations of the first n positive integers and let σ ∈ Σ. One
way to find if there is an isomorphism relation between Q and H, is to find
an order of the vertices of one of the graphs such that its adjacency matrix
equals the adjacency matrix of the other. In other words, it has to be found a

1Note that a relation on a set W is a collection of ordered pairs from W . An equivalence
relation is a relation that is reflexive, symmetric, and transitive.
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permutation σ such that Pσ verifies the following relation:

AH = PσAQP
T
σ . (2.48)

Equation (2.48) holds even if the adjacency matrix is substituted with the
Laplacian matrix:

LH = PσLQP
T
σ . (2.49)

Consequently, in order to find an automorphism of a graph or digraph, say
H, it has to be found a permutation σ of the vertices such that the adjacency
matrix (the Laplacian matrix) will be transformed onto itself. In other words,
it has to be found a permutation σ such that Pσ verifies the following relations:

AH = PσAHP
T
σ . (2.50)

LH = PσLHP
T
σ . (2.51)

Note that the transpose of a permutation matrix equals its inverse. Hence,
isomorphism (automorphism) relations holds if we substitute P T with P−1.
For example, given Q and H it can be written:

AH = PσAQP
T
σ . (2.52)

Equation (2.52) is the well known similarity relation between matrices which
tells us, in this case, that isomorphic graphs have similar adjacency (Laplacian)
matrix. Consequently, an isomorphism relation preserves the spectrum of a
graph.

Example

Let G and H be the digraphs in fig. (2.12a) and (2.12b) respectively. We want
to know if they are isomorphic. Then, we need to find a permutation σ of the
vertices such that, adjacency matrices

AG =


0 0 1 0 0

1 0 0 0 0

1 1 0 1 1

0 0 0 0 1

0 0 1 0 0

 ,
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v1 v2

v3

v4 v5

(a)

v4 v1

v3

v2 v5

(b)

Figure 2.12: Graphs isomorphism example. In figure are depicted two isomorphic
digraphs. They are drawn the same way in order to highlight the nodes relabelling
operation due to the search for isomorphism.

and

AH =


0 0 0 0 1

0 0 1 0 0

1 1 0 1 1

0 1 0 0 0

0 0 1 0 0

 ,

transform one into another. Note that digraphs are drawn in a similar way
to make clear how nodes relabelling works when searching for an isomorphism
relation. In fact, looking carefully at the picture we can see that, a permu-
tation of nodes σ = (4, 1, 3, 2, 5) in G will lead to digraph H. In fact, as we
have graphically verified, the permutation matrix Pσ verifies the isomorphism
relation AH = PσAGP

T
σ .

2.3 Gauss Elimination and the LU Factorization

Gauss Elimination (see [35],[26],[22] and [8]) is a technique widely used to solve
systems of linear equations of the form

Ax = b. (2.53)

In fact, the Gauss method consists in reducing matrix A in a row echelon
form, that is an upper triangular matrix, and solve the system with a back
substitution of the unknowns. This is possible because a matrix is equivalent
to its row echelon forms that can be used in the linear system instead of the
original one. In fact, a row echelon form of A can be obtained by a sequence
of elementary row operations that transform A in its REF and that ensure
the equivalence between the two matrices. To solve a linear system by Gauss
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elimination not only is far easier than solve it with classical methods, but also
supplies an algorithm that can be exploited in a software environment. Let us
see what is a row echelon form of a matrix first.

Let us have a matrix A ∈ F(m×n). The matrix A is said to be in row echelon
form (REF) when the following two conditions are met (see [26]):

1. Any zero rows are below all non-zero rows.

2. For each non-zero row i, i ≤ m−1, either row i+ 1 is zero or the leading
entry2 of row i+1 is in a column to the right of the column of the leading
entry in row i.

Consequently, the echelon form of a matrix has the following general structure,

A =



(∗) ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 (∗) ∗ ∗ ∗ ∗ ∗
0 0 0 (∗) ∗ ∗ ∗ ∗
0 0 0 0 0 0 (∗) ∗
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, (2.54)

where the non-null elements in brackets are called pivot elements. The matrix
A is in reduced row echelon form (RREF) if it is in row echelon form and the
following third condition is also met:

3. If aik is the leading entry in row i, then aik = 1, and every entry of
column k other than aik is zero.

If A is in row echelon form, then

• the pivot positions are the positions of the leading entries in its non-zero
rows;

• the pivots are the leading entries in its non-zero rows;

• the pivot column (pivot row) is a column (row) that contains a pivot
position.

As said before, in order to reduce a matrix in its row echelon form we need
to do some elementary row operations on it. Elementary row operations on a
matrix are operations of the following types:

2When a row of A is not zero, its first non-zero entry is the leading entry of the row.
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1. Add a multiple of one row to a different row.

2. Exchange two different rows.

3. Multiply one row by a non-zero scalar α.

Moreover, they are the basis for the Gaussian Elimination Algorithm.
Let A ∈ F(n×n) be a square matrix. The Gauss Elimination process, that

is, the reduction of A in one of its row echelon forms, consists of n− 1 steps in
each of them the under-diagonal elements of a column are transformed in zero
elements by the use of elementary operations. For example, let us consider the
first step of the algorithm. Matrix A at the first step is denoted by A(1) where
the superscript denotes the step number:

A = A(1) =


a
(1)
11 a

(1)
12 · · · a

(1)
1n

... . . . ...

... . . . ...
a
(1)
n1 a

(1)
n2 · · · a

(1)
nn

 .

We want to reduce matrix A(1) such that, matrix A(2) will be of the form:

A(2) =


a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 a

(2)
2n

... . . . ...
0 a

(2)
n2 · · · a

(2)
nn

 .

This can be done, if a11 6= 0, by multiplying the first row by scalars mi1 and
subtracting the result from the other rows. That is,

(rowi)(2) = (rowi)(1) −mi1(row1)(1) i = 2, . . . , n. (2.55)

In order to obtain the desired effect, constants mi1 are chosen to be mi1 =
a
(1)
i1

a
(1)
11

(that is the reason why a11 6= 0). More precisely, the first step of the Gaussian
Elimination can be written as follows:

for i = 2, . . . , n do
mi1 =

a
(1)
i1

a
(1)
11

for j = 2, . . . , n do
a
(2)
ij = a

(1)
ij −mi1a

(1)
1j

end for
b
(2)
i = b

(1)
i −mi1b

(1)
1 ,
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end for.

where vector b is the vector of the constant terms in the non homogeneous
linear system Ax = b. The same strategy is applied to each column of A so
that an upper triangular form (echelon form) can be reached. Hence, at the
k-th step, we have both the matrix A(k) and the vector b(k) as:

A(k) =



a
(1)
11 · · · · · · · · · · · · · · · a

(1)
1n

0
. . . ...

... . . . a
(k−1)
k−1,k−1 a

(k−1)
k−1,n

... 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

...
... a

(k)
k+1,k a

(k)
k+1,k+1 · · · a

(k)
k+1,n

...
...

...
...

...
...

...
...

...
...

0 · · · 0 a
(k)
nk a

(k)
n,k+1 · · · a

(k)
nn


, (2.56)

and

b(k) =



b11
...

b
(k−1)
k−1

b
(k)
k

b
(k)
k+1
...
...
b
(k)
n


. (2.57)

What we want now, is to make equal zero the elements of the k-th column
from row k + 1 to row n. To do that, we simply do what we have done in the
first step. At the end of the k-th step, matrix A(k+1) and vector b(k+1) are:

A(k+1) =



a
(1)
11 · · · · · · · · · · · · · · · a

(1)
1n

0
. . . ...

... . . . a
(k−1)
k−1,k−1 a

(k−1)
k−1,n

... 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

...
... 0 a

(k+1)
k+1,k+1 · · · a

(k+1)
k+1,n

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 a
(k+1)
n,k+1 · · · a

(k+1)
nn


, (2.58)
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and

b(k) =



b11
...

b
(k−1)
k−1

b
(k)
k

b
(k+1)
k+1
...
...

b
(k+1)
n


. (2.59)

Elements of A(k+1) and b(k+1) are defined as follows:

a
(k+1)
ij =


a
(k)
ij , i = 1, . . . , k, or j = 1, . . . , k − 1,

0 i = k, i = k + 1, . . . , n,

a
(k)
ij −mija

(k)
ij i, j = k + 1, . . . , n,

(2.60)

and

b
(k+1)
i =

b
(k)
i , i = 1, . . . , k,

bki −mikb
(k)
k , i = k + 1, . . . , n,

(2.61)

where constants mik are called multipliers

mik =
a
(k)
ik

a
(k)
kk

. (2.62)

The element a(k)kk is called the pivot element at step k and the algorithm can
go to the next step only if the pivot element at the current step is a non-zero
element. The number of required steps is n − 1 and at the end of the n − 1-
th step, the algorithm supplies an upper triangular matrix U = A(n). Gauss
elimination, shown in algorithm 2.1, requires O(1

3
n3) multiplications and the

same number of additions. The main problem of this implementation is that
the non-singularity of the matrix being transformed does not ensure that the
pivot elements are non-null. This problem can be fixed using techniques like
partial or total pivoting.

2.3.1 Partial Pivoting

The Gaussian Elimination Algorithm can be modified in order to avoid a break-
down due to zero pivot elements. In fact, it can be demonstrated that if A
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Algorithm 2.1 Gauss Elimination Algorithm
1: for k = 1, . . . , n− 1 do
2: for i = k + 1, . . . , n do

3: mik =
a
(k)
ik

a
(k)
kk

4: for j = k + 1, . . . , n do
5: a

(k)
ij −mija

(k)
ij

6: end for
7: a

(k+1)
ij = 0

8: bki −mikb
(k)
k

9: end for
10: end for

is non-singular, then at step k exists at least one index k ≤ l ≤ n such that
a
(k)
lk 6= 0. Hence, in order to apply Gauss Elimination, it suffices to apply a

permutation between rows k and l. Moreover, in order to have a higher nu-
merical stability, l can be chosen such that a(k)lk 6= 0 and |a(k)lk | is the highest
for k ≤ l ≤ n. In fact, if |a(k)lk | = maxi=k,...,n |a(k)ik |, then |mik| ≤ 1 that is the
lowest possible value for the multipliers. It results in a lower round-off error
and avoids even overflows. In equation 2.63 is shown matrix A(k) shows at step
k. The highlighted part of the k-th column is the part where the k-th pivot
element is searched.

A(k) =



a
(1)
11 · · · · · · · · · · · · · · · a

(1)
1n

0
. . . ...

... . . . a
(k−1)
k−1,k−1 a

(k−1)
k−1,n

... 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

... a
(k)
k+1,k a

(k)
k+1,k+1 · · · a

(k)
k+1,n

...
...

...
...

...
...

...
...

0 · · · a
(k)
nk a

(k)
n,k+1 · · · a

(k)
nn


(2.63)

The strategy described is called partial pivoting or column pivoting.

Algorithm 2.2 describes the entire procedure. Note that, instead of com-
paring the pivot candidates with zero, the machine precision εM has been used
for the match. Moreover, in row six an operation of row exchanges tracking
has been implemented by the use of a vector of integers.
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Algorithm 2.2 Gauss Elimination Algorithm with Partial Pivoting
1: for k = 1, . . . , n− 1 do
2: |a(k)lk | = maxi=k,...,n |a(k)ik |
3: if |a(k)lk | < εM then
4: STOP - Singular Matrix
5: end if
6: if l 6= k then
7: exchange rows l and k
8: p(k) = l
9: exchange constants bl and bk
10: end if
11: for i = k + 1, . . . , n do

12: mik =
a
(k)
ik

a
(k)
kk

13: for j = k + 1, . . . , n do
14: a

(k+1)
ij = a

(k)
ij −mika

(k)
kj

15: end for
16: b

(k+1)
i = b

(k)
i −mikb

(k)
k

17: end for
18: if |a(n)nn | < εM then
19: STOP - Numerically Singular Matrix
20: end if
21: end for

2.3.2 Total Pivoting

The Gaussian Elimination Algorithm with total pivoting has a different strat-
egy in looking for the pivot candidate. In fact, while the partial pivot strategy
determines the pivot element by scanning the current sub-column at the k-th
step, total pivoting search for the largest entry |a(k)rs | in the current (k × k)

sub-matrix which is highlighted in equation (2.64)

A(k) =



a
(1)
11 · · · · · · · · · · · · · · · a

(1)
1n

0
. . . ...

... . . . a
(k−1)
k−1,k−1 a

(k−1)
k−1,n

... 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

... a
(k)
k+1,k a

(k)
k+1,k+1 · · · a

(k)
k+1,n

...
...

...
...

...
...

...
...

0 · · · a
(k)
nk a

(k)
n,k+1 · · · a

(k)
nn


. (2.64)

47



When the best pivot element is found, it is permuted into the (k, k) position.
Total pivoting strategy can be summarized as follows

for each STEP k do
find r, s such that |a(k)rs | = maxi,j=k,...,n |a(k)ij |
exchange row k with row r

exchange column k with column s
exchange bk and br in b
remember that unknown xk and xs have been exchanged

end for

where it has been stressed that the exchange of the columns needs to be tracked
by remembering that unknown have been exchanged as well. Algorithm 2.3
shows how the total pivoting strategy can be implemented. As it can be seen
in rows 16 and 17, exchanges between rows and columns have been tracking
by the use of two vectors of integers.

Gauss elimination algorithm with total pivoting requires the same number
of flops of the algorithm with partial pivoting strategy. Then, the number of
operations required amounts to O(2

3
n3).

2.3.3 LU Factorization

Gauss elimination method, as we have seen, transforms a generic linear system
Ax = b in an upper triangular system that is easier to solve. In addition, what
Gauss elimination does, is to supply the LU factorization of the matrix A. In
fact, if we define a lower triangular matrix L and an upper triangular matrix
U as

lij =


mij, if i > j,

1, if i = j,

0, if i < j

(2.65)

and

uij =

a
(n)
ij , if i ≤ j

0, if i > j,
(2.66)

where mij are the Gauss multipliers and anij are the coefficients at the last step
of Gauss elimination, then the following equation hold

A = LU. (2.67)
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Algorithm 2.3 Gauss Elimination Algorithm with Total Pivoting
1: for k = 1, . . . , n− 1 do
2: Determine r and s with k ≤ r ≤ n and k ≤ s ≤ n such that
3: |a(k)rs | = max{|a(k)ij | : i = 1, . . . , n and j = k, . . . , n}
4: if |a(k)rs | < εM then
5: STOP - Singular Matrix
6: end if
7: if r 6= k then
8: exchange row k with row r
9: exchange constants br and bk
10: end if
11: if s 6= k then
12: exchange column k with column s
13: end if
14: p(k) = r
15: q(k) = s
16: for h = k + 1, . . . , n do

17: mhk =
a
(k)
hk

a
(k)
kk

18: for j = k + 1, . . . , n do
19: a

(k+1)
hj = a

(k)
hj −mhka

(k)
kj

20: end for
21: b

(k+1)
h = b

(k)
h −mhkb

(k)
k

22: end for
23: if |a(n)nn | < εM then
24: STOP - Numerically Singular Matrix
25: end if
26: end for

In order to prove that (2.67) is true we need the so called Gauss Elementary
Matrices which are defined in app. B. In fact, we can use the vector mk =

(0, . . . , 0,mk+1,k,mk+2,k, . . . ,mkn)T of the multipliers mik obtained at the k-
th step of the Gaussian Elimination in order to build the Gauss elementary
matrixMk. Then the k-th step itself can be represented as follows

A(k+1) =MkA
(k). (2.68)

The entire elimination process can then be represented by successive left mul-
tiplications of a Gauss matrix by the matrix A

U = A(n) =Mn−1A
(n−1) =Mn−1Mn−2A

(n−2) =Mn−1Mn−2· · ·M1A
(1),

(2.69)
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where L−1 = Mn−1Mn−2· · ·M1 is a lower triangular matrix because Gauss
matrices are lower triangular. From properties 1 and 2 listed in app. B, it is
easy to verify that

L =M−1
1 M−1

2 · · ·M−1
n−1 =


1

m21
. . .

... . . . . . .

mn1 · · · mn,n−1 1

 , (2.70)

and then from equation (2.69) the LU factorization of A = LU can be ob-
tained. What it can be seen is that the elements of matrix L are obtained
directly from the Gauss Elimination Algorithm without additional computa-
tion required.

Gauss elimination with partial pivoting can be represented in matrix form
as well. In fact, the generic k-th step of the algorithm consists of a row
exchange and a row reduction as we have seen earlier. This operations can
be represented in matrix form by elementary matrices (see sec. 2.1) and Gauss
transformations (Gauss elementary matrices). Consequently, the k-th step can
be written as follows

A(k+1) =MkE
(k,l)A(k). (2.71)

The entire algorithm can be expressed as a sequence of rows exchange and row
reductions as the generic step, giving as a result the upper triangular matrix
we want

U = A(n) =Mn−1E
(n−1,ln−1)· · ·M2E

(2,l2)M1E
(1,l1)A = NA, (2.72)

where Mi is the generic Gauss transformation and E(i,li) is the generic rows
exchange. It can be demonstrated that

N =Mn−1M̃n−2· · · M̃2M̃1E
(n−1,ln−1)· · ·E(2,l2)E(1,l1) = L−1P,

where
L−1 =Mn−1M̃n−2· · · M̃2M̃1

is a lower triangular matrix and

P = E(n−1,ln−1)· · ·E(2,l2)E(1,l1)

is a permutation matrix. Note that matrices M̃i are different from matrices
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Mi. Nonetheless, they have the same structure. Finally, we can write

U = A(n) = L−1PA,

and consequently
PA = LU, (2.73)

that is the LU factorization with partial pivoting of matrix A.
By the same reasoning, we can represent in matrix form Gaussian elimina-

tion with total pivoting as well. It results in being not so different from the
partial pivoting case. In fact, if we add the column pivoting to equation (2.71)
we obtain the generic step

A(k+1) =MkE
(k,r)A(k)E(k,s). (2.74)

Then, the entire algorithm can be written as follows

U = A(n)

=Mn−1E
(n−1,rn−1)· · ·M2E

(2,r2)M1E
(1,r1)AE(1,s1)E(2,s2)· · ·E(n−1,sn−1)

= NA,

(2.75)

where N = L−1P as before and

Q = E(1,r1)AE(1,s1)E(2,s2)· · ·E(n−1,sn−1 (2.76)

is a permutation matrix like P . As a result, we obtain the LU factorization
with total pivoting

PAQ = LU. (2.77)

One of the most important things to do is to determine whether the LU fac-
torization of a generic matrix A exists. The following theorem gives necessary
and sufficient conditions in order to ensure that a matrix is LU factorizable.

Theorem 2.5. Let A ∈ F(n×n) be a non-singular matrix, and let Ak be its
leading principal minors of order k. If Ak is non-singular for k = 1, . . . , n− 1

then the LU factorization of A exist and is unique.

Proof: The theorem will be demonstrate by induction over n for a matrix
A ∈ C(n×n). The same reasoning can be applied for the real case.

n = 1
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If n = 1, A1 = [a11]. Then L = [1] and U = [a11].

n = k > 1

If n = k > 1, Ak can be written as follows

Ak =

[
Ak−1 d

c∗ α

]
,

where Ak−1 = Lk−1Uk−1 with Lk−1 unit3 lower triangular matrix and
Uk−1 upper triangular matrix. We assume that det(Ak−1) 6= 0. Now
write Lk and Uk as follows

Lk =

[
Lk−1 0

u∗ 1

]
, Uk =

[
Uk−1 v

0∗ β

]
.

In order to have Ak = LkUk, u,v and β need to be determined. Matrix
Ak can also be written as follows

LkUk =

[
Lk−1Uk−1 Lk−1v

u∗Uk−1 u∗v + β

]
,

and relation Ak = LkUk is verified if and only if

1. Lk−1v = d,

2. U∗k−1u = c,

3. u∗v + β = α.

Relations 1) and 2) univocally define the vectors u and v because they are
solutions of non homogeneous linear systems whose matrices are non-singular.
In fact, det(Lk−1) = 1 and det(Uk−1) = det(Ak−1) 6= 0 by assumption. Hence,
the third relation univocally defines β which can be found from β = α− u∗v.
Consequently, since k is a generic index, it has been demonstrated by induction
over k what stated in the theorem.

3A unit lower triangular matrix is a lower triangular matrix which has ones along the
main diagonal.
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Chapter 3

Formation Control via Complex
Laplacian

Formation control via complex Laplacian has been proposed in [29]. It is
a new approach to agents formation and results in easier laws to control a
group of agents. In [29] the problem of formation control has been studied
in the plane and results both for single-integrator and double-integrator agent
internal dynamic model have been supplied. In this chapter such results will
be presented in section 3.3, while sections 3.1 and 3.2 present preliminary
materials in order to understand the last section.

3.1 Sensing Digraph

Multi Agent Systems can be well modelled by graphs. In fact, agents can
be represented by the vertices of a graph, while edges (arcs) can represent
existing interactions (links) among agents themselves. In different formation
control approaches simple graphs are used. Instead, in [29] weighted directed
graphs D = (V ,A, w) has been used to elaborate the control theory that will
be shown. They are more suitable since arcs orientation is used to represent
the direction information flow has in agents interaction. Moreover, arc weights
play a key role in agents formation control laws as it will be seen in later
sections. A complex weight wij ∈ C is associated to each arc (j, i) ∈ A, and
the complex Laplacian associated to D is

lij =


−wij if i 6= j and j ∈ N−i ,

0 if i 6= j and j /∈ N−i ,∑
j∈N−i

wij if i = j,

(3.1)
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agent1 agent2

agent3

agent4

agent5

(a)

z1 z2

z3

z4

z5

w31

w41 w42

w52

w34 w54

(b)

Figure 3.1: Sensing digraph example. In (b) is shown a sensing digraph for the group
of agents depicted in (a).

where N−i is the in-neighbor set of vertex i. In the graph model, vertices
j ∈ N−i , which are tails of arcs with i as head, are nothing less than agents
from which information is sensed by agent i.

In fig. (3.1) is shown a simple example of a group of agents modelled by
a weighted digraph D. As it can be seen in fig. (3.1b), agent1 and agent2

do not receive any information from the rest of the group since they have no
incoming arcs, while the other agents do. That is the way the digraph conveys
information about agents formation. The weighted digraph which is used to
represent an agents formation is called sensing digraph.

3.2 Planar Formation

In the plane, a tuple of n complex numbers

ξ = [ξ1, ξ2, . . . , ξn]T (3.2)

is called a formation basis for n agents, which defines a geometric pattern in
a specific coordinate system. In fig.(3.2) is shown a group of agents and its
planar formation. Agents are not randomly scattered in the plane, but are
disposed in specific positions so that a global configuration is reached. The
formation basis specifies the position for each agent and, indirectly, the relative
distance among agents, that characterize the shape of the formation. Usually
two agents are not expected to overlap each other, so it is assumed that

ξi 6= ξj for i 6= j. (3.3)

A formation with four degrees of freedom (translation in two main direc-
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ξ =
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ξ1
ξ2
ξ3
ξ4
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 =
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2
−2ι

2− 2ι
4− 4ι



Figure 3.2: Example of a formation basis.

tions, rotation, and scaling) is defined by

Fξ = c11n + c2ξ, (3.4)

where c1, c2 ∈ C. Those complex constants are deputed to make a planar
formation move or scale. In fact, it can be seen that

• parameter c1 controls formation translation;

• parameter c2 controls formation rotation and scaling. Let c2 be written
in polar form

c2 = |c2| eιβ .

Then, we can scale a formation by |c2| and rotate a formation by the angle
β. Note that rotation can be obtained by taking c2 so that |c2| = 1, while
scaling can be obtained by taking c2 real.

As an example, the planar formations F (1)
ξ ,F (2)

ξ ,and F (3)
ξ of four agents in figure

(3.3) are obtained from the same basis via translating, rotating, and scaling.
When |c1| = 1, then the formation is obtained from the basis via translation
and rotation only, a case which is more familiar to everyone.

Denote z = [z1,· · · , zn]T ∈ Cn the aggregate position vector of n agents. It
is said that the n agents form a planar formation Fξ with respect to basis ξ if
there exist complex constants c1 and c2 such that z = c11n+c2ξ. The n agents
are said to asymptotically reach a planar formation Fξ if there exist complex
constants c1 and c2 such that

lim
t→∞

z(t) = c11n + c2ξ. (3.5)

As it will be shown in sec. 3.3, a planar formation is strictly related to the
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Re

Im

F
(1)
ξ

F
(2)
ξ

F
(3)
ξ

Figure 3.3: Agents Formation up to translation, rotation and scaling. As it can be
seen, F (1)

ξ is the original formation, F (2)
ξ is the formation after being translated and

scaled and F
(3)
ξ is the formation after being translated and rotated.

complex Laplacian of the sensing digraph which represents the multi-agent
system. In fact, ξ is another linearly independent eigenvector of L associated
with zero eigenvalues in addition to the eigenvector of ones. Planar formation
Fξ is then a linear combination of two independent eigenvectors of the complex
Laplacian. For those reasons, in order to uniquely determine the location,
orientation and size of the formation in a leader-follower configuration, two
co-leaders have to be considered.

Example

To show how a planar formation can be translated, rotated and scaled, let us
have an example. Let ξ be the planar formation

ξ =


ξ1

ξ2

ξ3

ξ4

ξ5

 =


0

2

−2ι

2− 2ι

4− 4ι

 , (3.6)

which is represented in fig. (3.2). As we have already seen, complex constants
c1 and c2 are the parameters by which a planar formation can be controlled.

1. TRANSLATION

Let c1 and c2 be c1 = −2− 2ι

c2 = 1,
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4 ξ
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1 ξ
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3 ξ

(2)
4 ξ
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5

c1, T ranslation direction
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Figure 3.4: Example of an agents formation translation.

where c1 = 1 ensures no rotation, neither scaling. Asymptotically, the
agents reach the planar formation

Fξ = c11n + c2ξ =


−2 + 2ι

−2 + 2ι

−2 + 2ι

−2 + 2ι

−2 + 2ι

+


0

2

−2ι

2− 2ι

4− 4ι

 =


−2 + 2ι

2ι

−2

0

2− 2ι

 .

As it can be seen in fig. (3.4) the planar formation has been translated
in the direction of the vector representing the constant c1.

2. ROTATION

Let c1 and c2 be c1 = 0

c2 = −ι = e−ι
π
2 ,

where c1 = 0 ensures no translation and |c2| = 1 ensures no scaling.
Asymptotically, the agents reach the planar formation

Fξ = c11n + c2ξ = −ι


0

2

−2ι

2− 2ι

4− 4ι

 = e−ι
π
2


0

2

2 e−ι
π
2

2
√

2 e−ι
π
2

4
√

2 e−ι
π
2

 =


0

−2ι

−2

−2− 2ι

−4− 4ι

 .

As it can be seen in fig.(3.5) the planar formation has been rotated by
the angle arg(c2) = −π

2
.
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Figure 3.5: Example of an agents formation rotation.

3. SCALING

Let c1 and c2 be c1 = 0

c2 = 2,

where c1 value ensures no translation and c2 value ensures no rotation.
Asymptotically, the agents reach the planar formation

Fξ = c11n + c2ξ = 2


0

2

−2ι

2− 2ι

4− 4ι

 =


0

4

−4ι

4− 4ι

8− 8ι

 .

As it can be seen in fig. (3.6) the planar formation has been scaled by
|c2| = 2.

For the sake of completeness, in fig. (3.7) is shown the formation basis and
the planar formation reached by the use of both the parameters already seen
c1 = −2 + 2ι and c2 = −2ι, which affect the four degree of freedom at the
same time.

3.3 Fundamental Results

Let us consider a group of n agents in the plane labelled 1, . . . , n, consisting of
leaders and followers. As already said, suppose that there are two leaders in the
group (without loss of generality, say 1 and 2) and all the others are followers.
The positions of the n agents are denoted by complex numbers z1, . . . , zn ∈ C.

58



Re

Im

ξ
(1)
1 ξ

(1)
2

ξ
(1)
3 ξ

(1)
4 ξ

(1)
5

(a)

Re

Im

ξ
(2)
1 ξ

(2)
2

ξ
(2)
3

ξ
(2)
4

ξ
(2)
5

scaling, by a factor |c2|

(b)

Figure 3.6: Example of an agents formation scaling.
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Figure 3.7: Example of the overall behavior of an agents formation under translation,
rotation and scaling.
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In order to represent the sensing graph, a digraph D of n nodes has been used,
in which 1, 2 are leader agents, 3, . . . , n are followers agents, and an edge (j, i)

indicates that agent i can measure the relative position of agent j, namely,
(zj − zi). In addition, it has been considered a sensing digraph without self-
loops. Since in a leader-follower network, the leader agents do not interact
with the follower agents, and do not need to access the information from the
follower agents, the sensing graph D has the following property.

(P1): Leader nodes (1 and 2) do not have incoming edges.

Thus, the Laplacian of D takes the following form.

L =

[
02×2 02×(n−2)

Llf Lff

]
(3.7)

In the following subsections analysis has been done for two internal dynamic
models of the agents, that is for the case of single-integrator kinematics and
double-integrator dynamics.

3.3.1 Single-Integrator Kinematics

Suppose that each agent is governed by a single-integrator kinematics

żi = vi, (3.8)

where zi ∈ C represents the position of agent i in the plane and vi ∈ C represent
the velocity control input. Consider the sensing graph D and suppose that the
agents take the following control laws:

vi = 0, i = 1, 2;

vi =
∑
j∈N−i

wij(zj − zi), i = 3, . . . , n, (3.9)

where wij = kij eιαij is a complex weight with kij > 0 and αij ∈ [−π, π). For
a specific formation basis ξ ∈ C satisfying ξi 6= ξj, each agent i can arbitrarily
choose weights wij, j ∈ N−i , such that∑

j∈N−i

wij(ξj − ξi) = 0. (3.10)

The interaction rule in (3.9) can be implemented locally by only accessing the
relative position information from its neighbors.
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Figure 3.8: Example of a complex weights control law for a formation basis.

Suppose we have the formation basis ξ representing the agents formation
whose digraph is depicted in fig.(3.8a)

ξ =


−1.5 + 1.5ι

1.5 + 1.5ι

−2.5

−1.5ι

2.5

 . (3.11)

Follower agents will then choose complex weights such that equation 3.10 is
verified. For instance, let us consider agent4. Agent4 has two incoming arcs
from leaders agent1 and agent2, with complex weights w41 and w42. Thus, in
order to verify the aforementioned control law, weights have to be chosen such
that∑
j∈N−i

wij(ξj − ξi) = w41(ξ1 − ξ4) + w42(ξ2 − ξ4)

= w41[(−1.5 + 1.5ι)− (−1.5ι)] + w42[(1.5 + 1.5ι)− (−1.5ι)]

= w41(−1.5 + 3ι) + w42(1.5 + 3ι) = 0.

As it can be seen, agent4 can choose one of the weights arbitrarily, the other
one is then univocally determined. In this case, a practical choice is

w41 = −1.5− 3ι

w42 = −1.5 + 3ι,

which verify the relation above. In fig.(3.8b) are shown the resulting vectors
w41d14 and w42d24, which are opposite and sum to zero as necessary.

If the two co-leaders were to be translated, the chosen weights would yield
a velocity v 6= 0, given by interaction rule (3.9). In this case, agent4 will follow
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Figure 3.9: Interaction rule for complex weights. The picture exemplifies how com-
plex weights affect the velocity of an agent.

the co-leaders with a velocity

v4 = w41(z1 − z4) + w42(z2 − z4).

Let z = [z1, z2, . . . , zn]T ∈ Cn. Then the overall dynamics of the agents can
be written as

ż = −Lz, (3.12)

where L is the complex-valued Laplacian of D defined earlier. Denote

z̄1 = z1(0) and z̄2 = z2(0). (3.13)

Next, it is shown a necessary and sufficient condition such that any equilibrium
state of (3.12) forms a planar formation Fξ.

Theorem 3.1. Assume that z̄1 6= z̄2 and moreover assume that ξ ∈ Cn satisfies
ξi 6= ξj for i 6= j. Then every equilibrium state of (3.12) forms a planar
formation Fξ = c11n + c2ξ with[

c1

c2

]
=

[
1 ξ1

1 ξ2

]−1 [
z̄1

z̄2

]
(3.14)

if and only if
Lξ = 0 and det(Lff ) 6= 0. (3.15)

Proof: (Sufficiency) From the condition Lξ = 0, it is known that L has a zero
eigenvalue with an associated eigenvector ξ. On the other hand, the Laplacian
L always has a zero eigenvalue with an associated eigenvector 1n. The two
eigenvectors 1n and ξ are linearly independent because ξi 6= ξj. Moreover, it
follows from the condition det(Lff ) 6= 0 that rank(L) = n− 2 and L has only
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two zero eigenvalues. So the null space of L is

ker(L) = {c11n + c2ξ : c1, c2 ∈ C} (3.16)

and thus every equilibrium state forms a planar formation Fξ = c11n + c2ξ.
Notice that z1(t) = z̄1 and z2(t) = z̄2. Therefore (3.14) follows.

(Necessity) Suppose on the contrary that Lξ 6= 0. Then L(c11n + c2ξ) 6= 0

for any c1 and c2, which means a state corresponding to a planar formation Fξ
cannot be an equilibrium state of (3.12). On the other hand, suppose on the
contrary that det(Lff ) = 0. Thus it could be found a vector ηf ∈ C(n−2) such
that Lffηf = 0. As a result η = [0 0 ηTf ]T is the null space of L. It can be
checked that 1n, ξ and η are linearly independent since ξi 6= ξj in ξ. Thus, the
equilibrium state η does not correspond to any planar formation Fξ generated
from basis ξ.

Remark 3.1. From Theorem 3.1 it can be seen that the equilibrium formation
of the n agents is uniquely determined by the two leaders’ location. If the
two leader agents do not remain stationary but asymptotically converge to two
different locations, then the limit positions of two co-leaders specify the planar
formation Fξ. Hence, by controlling the motions of two co-leaders, the group
formation can be rotated, translated, and scaled.

Let us have the formation basis (3.11) already seen in the last example.
The inverse of a generic square (2× 2) matrix is

A =

[
a b

c d

]
→ A−1 =

1

det(A)

[
d −b
−c a

]
.

Then, equation (3.14) can be written as[
c1

c2

]
=

1

(ξ2 − ξ1)

[
ξ2 −ξ1
−1 1

][
z̄1

z̄2

]
. (3.17)

Suppose that the conditions Lξ = 0 and det(Lff ) 6= 0 are satisfied, then
theorem 3.1 holds. Substituting the values for ξ1 and ξ2 in the expression
above we obtain [

c1

c2

]
=

1

3

[
1.5 + 1.5ι 1.5− 1.5ι

−1 1

][
z̄1

z̄2

]
, (3.18)

that is the relation by which parameters c1 and c2 can be determined. Let us
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Figure 3.10: Example of a formation control by its leaders. In (a) is shown a digraph
for a formation basis. By translating its leaders (blue vertices) the entire formation
is being translated, as shown in (b).

consider leaders position z̄1 = −1.5+3ι and z̄2 = 1.5+3ι. Then, the formation
will be determined by the following parameters

c1 =
1

3
(ξ2z̄1 − ξ1z̄2) = 1.5ι,

c2 =
1

3
(−z̄1 + z̄2) = 1.

As it can be seen from z̄1 and z̄2, leaders were simply translated along the
direction of the half positive imaginary axis. Moreover, parameters c1 and
c2 obtained from theorem 3.1 affect the entire formation by only translating
it, without rotation nor scaling. Then, controlling the leaders movements the
whole formation can be controlled. In fig.(3.10) the formation basis before and
after translation is shown.

Theorem 3.1 requires to check whether det(Lff ) 6= 0. A graphical condition
could also be given for the same purpose.

Theorem 3.2. For a digraph D and a formation basis ξ ∈ Cn satisfying
ξi 6= ξj, if det(Lff ) 6= 0 for L satisfying Lξ = 0, then every follower node in
D is 2-reachable from a leader node.

Proof: Theorem can be proved in a contrapositive form.
Suppose that not every follower node inD is 2-reachable from a leader node.

That is, a node exists, say k, such that when it is removed from the graph,
some nodes are not reachable from a leader node any more. LetW denote the
set of nodes that are not reachable from a leader node after removing node k
and let W̄ denote the nodes not in W ∪ {k}. Then it is certain that nodes in
W are not reachable from any node in W̄ .
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W k

i j

W̄
1

2

In particular, for i ∈ W and j ∈ W̄ , the (i, j)-th entry of L must be
0. Relabelling the nodes in the order of 1, 2, . . . ,m, . . . , n such that W̄ =

{1, . . . ,m − 1}, m is the node k before relabelling, and W = {m + 1, . . . , n}.
Then the Laplacian L after relabelling must be of the following form

L =

[
∗ ∗ ∗
0 lm LW

]

where lm ∈ C(n−m) and LW ∈ C(n−m)×(n−m). Denote the formation basis ξ
after relabelling by

ξ =

[
ξa

ξb

]
,

where ξa ∈ C(m−1) and ξb ∈ C(n−m+1). From the definition of L and from the
conditions Lξ = 0 and L1n = 0, then it can be seen that

[lm LW ]1(n−m+1) = 0, (3.19a)

[lm LW ]ξb = 0. (3.19b)

Since 1(n−m+1) and ξb are linearly independent by assumption, it is then known
from (3.19) that rank[lm LW ] ≤ (n−m− 1) and therefore det(Lff ) = 0.

Combining Theorem 3.1 and Theorem 3.2, it is known that in order to
uniquely define a planar formation, the digraph D should have the property
that every follower node is 2-reachable from a leader node. If the property
does not hold, then for whatever choice of weights, the planar formation can
be deformed and the digraph could not define a unique planar formation. For
example, consider a digraphD of 5 nodes shown in fig.(3.11a). For this digraph,
the follower nodes 4 and 5 are not 2-reachable from a leader node as they are
not reachable from any leader node when node 3 is removed. Consequently,
the digraph could not define a unique planar formation. As it can be seen
in fig.(3.11b), in addition to rotation, translation and scaling, the formation
can also be bent. Adding at least one of the two arcs (1, 4) and (2, 5), the
formation becomes 2-reachable and cannot be bent any more (fig.(3.11c)).

Theorem 3.2 can be verified from an algebraically point of view as well. A
formation basis for the group of agents represented by the digraph in fig.(3.11a)
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Figure 3.11: Example of a non 2-reachable agents formation. If the sensing digraph
is not 2-reachable then the agents formation (a) can be bent (b). Adding at least
one of the two blue arcs (c) the formation becomes 2-reachable and cannot be bent
any more.

could be

ξ =


0

2

1− ι
−2ι

2− 2ι

 ,

and the corresponding Laplacian matrix is

L =


0 0 0 0 0

0 0 0 0 0

−1− ι −1 + ι 2 0 0

0 0 −2 1− ι 1 + ι

0 0 2ι −1− ι 1− ι

 .

Note that the condition Lξ = 0 holds. Nonetheless, since the digraph is not
2-reachable, the determinant of Lff is zero as stated in theorem 3.2,

det(Lff ) = 2(1− ι)(1− ι)− 2(1 + ι)(−1− ι) = 0.

Adding at the digraph the arc (1, 4), weighted by w41, every follower node
becomes 2-reachable from a leader node. The Laplacian which verifies the
relation Lξ = 0 becomes

L =


0 0 0 0 0

0 0 0 0 0

−1− ι −1 + ι 2 0 0

−1 + ι 0 −2 1− 3ι 2 + 2ι

0 0 2ι −1− ι 1− ι

 ,
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where blue numbers changed from the last configuration because of the new
arc. The determinant of the follower-follower sub-matrix is not null any more
because of the 2-reachability. Then,

det(Lff ) = 2(1− 3ι)(1− ι)− 2(2 + 2ι)(−1− ι) = −4 6= 0.

as we expected.
The next step is to determine whether the n agents can asymptotically

reach a planar formation, i.e., the stability of system ż = −Lz. Before pre-
senting the results on stability, it is provided a result on the invariance property
for the operation of pre-multiplying an invertible diagonal matrix D. It is an
important property ensuring that the equilibrium formations are preserved.

Theorem 3.3. Every equilibrium state of system (3.12) forms a planar for-
mation Fξ if and only if every equilibrium state of the following system

ż = −DLz (3.20)

forms a planar formation Fξ for all invertible diagonal matrix
D = diag(d1, d2,· · · , dn) ∈ Cn×n.

Proof: Since D is diagonal and invertible, it follows that the null space of DL
is the same as L. So the two systems have the same equilibrium states and
form the same planar formation.

When L is pre-multiplied by D, the complex weights on edges having head
at agent i are multiplied by a non-zero complex number di. Therefore, the in-
teraction rule is still locally implementable using relative position information
only. Generally, for a complex-valued Laplacian L satisfying the conditions
of Theorem 3.1, L may have eigenvalues with both negative and positive real
parts and thus system (3.12) may not be asymptotically stable with respect to
the equilibrium subspace ker(L). In other words, the n agents may not be able
to asymptotically reach a planar formation Fξ. However, it has been shown in
the next result that if certain conditions are satisfied, there exists an invertible
diagonal matrix D such that DL has all other eigenvalues with positive real
parts in addition to two 0 eigenvalues and thus ż = −DLz is asymptotically
stable with respect to the equilibrium subspace ker(L). Such a matrix D is
called a stabilizing matrix. Since pre-multiplying such a matrix D does not
change the planar formation at equilibrium states from Theorem 3.3, a local
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interaction rule is thus obtained such that the n agents asymptotically reach
a desired planar formation Fξ.

Theorem 3.4. Consider a formation basis ξ ∈ Cn satisfying ξi 6= ξj and
suppose a complex Laplacian L of the sensing graph D satisfies Lξ = 0 and
det(Lff ) 6= 0. If there exists a permutation matrix P such that all the leading
principal minors of PLffP T are non-zero, then a stabilizing matrix D for
system (3.12) exists.

Theorem 3.4 requires the following result related to the multiplicative in-
verse eigenvalue problem.

Theorem 3.5 (Ballantine(1970)). Let A be an n × n complex matrix all of
whose leading principal minors are non-zero. Then there is an n× n complex
diagonal matrixM such that all the eigenvalues ofMA are positive and simple.

Proof of Theorem 3.4: By the condition that there is a permutation matrix
P such that all the leading principal minors of PLffP T are non-zero, then it
follows from Theorem 3.5 that there exists a diagonal matrix M such that
MPLffP

T has all eigenvalues with positive real parts. Note that P TMPLff

has the same eigenvalues as MPLffP
T since the permutation transformation

does not change the eigenvalues. Also, note that P TMP is a diagonal matrix
as well, and it can be denoted as M ′

= P TMP . Let

D =

[
I2×2 0

0 M
′

]
. (3.21)

Then the system ż = −DLz has two zero eigenvalues and all the others have
negative real parts. As a result D is a stabilizing matrix.

By numerous simulations it is known that for most complex Laplacians L
with weights generated randomly satisfying Lξ = 0 and det(Lff ) 6= 0, all the
leading principal minors of Lff are non-zero. Thus, P = I. For rare cases,
a relabel of the nodes was needed. Consequently, central to find a stabilizing
matrix D such that

D =

[
I2×2 0

0 M

]
(3.22)

is to find the diagonal matrix M as stated in Ballantine’s theorem. Denote
M = diag(m1, . . . ,mn−2) and denote A(1∼i) the sub-matrix formed by the first i
rows and columns of a matrix A. Algorithm 3.1 gives the complete description
in order to find D.
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Algorithm 3.1 Single-Integrator Kinematics
Find a permutation matrix P such that A = PLffP

T has all non-zero leading
principal minors.
for i = 1, . . . , n− 2 do
Find mi to assign the eigenvalues of diag(m1, . . . ,mi)A(1∼i) in the open
right half complex plane.

end for
Construct D according to (3.22).

The algorithm suggests to find the diagonal entries of M one by one in an
iterative way. The success is ensured by the constructive proof to show the
existence of such a diagonal matrix in Ballantine(1970) [5].

Remark 3.2. It has been discussed how a planar formation is achieved by
a complex Laplacian based control law. The results can be simply extended to
reach and maintain a formation shape while moving. Suppose that the velocities
,for single integrator kinematics model, of the two co-leaders are synchronized,
and say v0(t). When this synchronized velocity information is available to all
the followers, then the following control law is the adjusted one to reach a
formation while moving.vi = v0(t), i = 1, 2;

vi =
∑

j∈N−i
wij(zj − zi) + v0(t), i = 3,· · · , n.

(3.23)

When the leaders’ velocity is not accessible by all followers, estimation schemes
can be adopted to estimate it and then the leaders’ velocity in (3.23) can be
replaced with the estimated one.

3.3.2 Double-Integrator Dynamics

Suppose that each agent is governed by a double-integrator dynamicsżi = vi

v̇i = ai
(3.24)

where the position zi ∈ C and the velocity vi ∈ C are the state and the
acceleration ai ∈ C is the control input. Consider the sensing graph D and
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suppose that each agent takes the control law

ai = −γvi, i = 1, 2;

ai =
∑
j∈Ni

wij(zj − zi)− γvi, i = 3,· · · , n, (3.25)

where wij = kije
ιαij is a complex weight with kij > 0 and αij ∈ [−π, π), and

γ > 0 is a real number representing the damping gain. Write z = [z1, . . . , zn]T

and v = [v1, . . . , vn]T . Then the overall system of the n agents under the
interaction rule (3.25) can be written as[

ż

v̇

]
=

[
0n×n In

−L −γIn

][
z

v

]
(3.26)

where L is the Laplacian of D defined in (3.1). The interaction rule (3.25)
similar to (3.9) can also be locally implemented, which requires only the relative
positions of the neighbors and its own velocity. Denote

z̄1 = lim
t→∞

z1(t) and z̄2 = lim
t→∞

z2(t). (3.27)

Next it is shown that the condition in Theorem 3.1 is also a necessary and
sufficient condition such that the equilibrium states (z̄, v̄) of system (3.26)
form a planar formation Fξ, i.e.,

z̄ = c11n + c2ξ and v̄ = 0, (3.28)

where c1 and c2 can be obtained from (3.14). Moreover, it is shown that the
equilibrium formations are invariant to the operation of pre-multiplying by an
invertible diagonal complex matrix D.

Theorem 3.6. Assume that z̄1 6= z̄2 and moreover assume that ξ ∈ Cn satisfies
ξi 6= ξj for i 6= j. Then the following are equivalent.

1. Lξ = 0 and det(Lff ) 6= 0.

2. equilibrium state of system (3.26) forms a planar formation Fξ.

3. Every equilibrium state of the following system[
ż

v̇

]
=

[
0n×n In

−DL −γIn

][
z

v

]
, (3.29)
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for all invertible diagonal matrix D = diag(d1, d2, . . . , dn) ∈ Cn×n, forms
a planar formation Fξ.

Proof: By simply checking system (3.29), it can be obtained that the equilib-
rium states satisfy Lz̄ = 0 and v̄ = 0, Thus, the conclusion follows from the
same argument in Theorem 3.1 and Theorem 3.3.

According to Theorem 3.6 the equilibrium formation for the double integra-
tor model is characterized (as was the case with the single integrator model)
by Lξ = 0 and det(Lff ) 6= 0. Then it is clear from Theorem 3.2 that a neces-
sary graphical condition is that every follower node in D is 2-reachable from
a leader node. Also, similar to the single-integrator model, the eigenvalues of
system (3.26) may be distributed in the left half complex plane and the right
half complex plane such that trajectories of system (3.26) may not converge to
the equilibrium formation. Hence, an invertible diagonal matrix D is utilized
to assign the eigenvalues of [

0n×n In

−DL −γIn

]
(3.30)

in the open left half complex plane in addition to two 0 eigenvalues, i.e., to make
the n agents asymptotically reach a planar formation Fξ with the interaction
law (3.29). If such a matrix D exists, it is called a stabilizing matrix. The
following theorem shows the existence of such a matrix.

Theorem 3.7. Consider a formation basis ξ ∈ Cn satisfying ξi 6= ξj and
suppose a complex Laplacian L of the sensing graph D satisfies Lξ = 0 and
det(Lff ) 6= 0. If there is a permutation matrix P such that all leading principal
minors of PLffP T are non-zero, then a stabilizing matrix D for system (3.26)
exists.

Proof: Denote

A =

[
0n×n In

−DL −γIn

]
(3.31)

Let λi be an eigenvalue of A and let ζ = [xT yT ]T be the corresponding
eigenvector where x, y ∈ Cn. Then from the equality Aζ = λiζ, it is obtained
that

y = λix, (3.32a)

−DLx− γy = λi. (3.32b)
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Substituting (3.32a) into (3.32b) results in

−DLx = (λ2i + γλi)x,

which means
λ2i + γλi + σi = 0 (3.33)

where σi is an eigenvalue of the matrix DL. Since L satisfies Lξ = 0 and
det(Lff ) 6= 0, it is known that DL has two zero eigenvalues for all invertible
diagonal matrix D. Without loss of generality, denote σ1 = σ2 = 0. For
σ1 = σ2 = 0, the roots of the characteristic equation (3.33) are

λi,1 = 0, λi,2 = −γ < 0, i = 1, 2.

Thus, to show the existence of a stabilizing matrix D, it remains to show that
σi (i = 3, . . . , n) can be assigned such that the roots of the complex-coefficient
characteristic equation (3.33) have negative real part. It has been shown that
the roots are in the open half complex plane if and only if

Re(σi)

(Im(σi))2
>

1

γ2
.

By the assumption that there is a permutation matrix P such that all the
leading principal minors of PLP T are non-zero, then it follows from the same
argument as in the Theorem 3.4 that there exists a diagonal matrix M such
that the eigenvalues of MPLffP

T all have positive real parts. Denote the
eigenvalues of MPLffP

T by σ′3, . . . , σ′n. Then choose D as

D =

[
I2 0

0 εP TMP

]
(3.34)

where ε > 0 is a scalar. Thus, the eigenvalues of DL are

σ1 = σ2 = 0, σi = εσ′i, i = 3, . . . , n. (3.35)

Then it can be checked that for sufficiently small ε > 0

Re(σi)

(Im(σi))2
=

Re(σ′i)

ε(Im(σ′i))
2
>

1

γ2
, i = 3, . . . , n. (3.36)

Therefore, a stabilizing matrix D is derived, which makes a group of n agents
asymptotically reaches the planar formation Fξ.
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From the proof of theorem 3.7, it is known that a stabilizing matrix can
also be obtained for the double-integrator case with a minor modification of
Algorithm (3.1). In fact, only the construction of D must be modified.

Algorithm 3.2 Double-Integrator Dynamics
Find a permutation matrix P such that A = PLffP

T has all non-zero leading
principal minors.
for i = 1, . . . , n− 2 do
Find mi to assign the eigenvalues of diag(m1,· · · ,mi)A(1∼i) in the open
right half complex plane.

end for
Select an ε satisfying conditions in the proof of (3.35)
Construct D according to (3.34).

Remark 3.3. It has been discussed how a planar formation is achieved by a
complex Laplacian based control law. The results can be simply extended to
reach and maintain a formation shape while moving. Suppose that the ac-
celerations ,for double integrator dynamics model, of the two co-leaders are
synchronized, and say a0(t). When this synchronized acceleration information
is available to all the followers, then the following control law is the adjusted
one to reach a formation while moving.ai = −γvi + a0(t), i = 1, 2;

ai =
∑

j∈N−i
wij(zj − zi)− γvi + a0(t), i = 3,· · · , n.

(3.37)

When the leaders’ acceleration is not accessible by all followers, estimation
schemes can be adopted to estimate it and then the leaders’ acceleration in
(3.37) can be replaced with the estimated one.

73



74



Chapter 4

The Isomorphism Problem.
Relabelling the Graph nodes

As we have seen in chapter (3), the stability of a multi-agent formation whose
single agent is modelled either by a single-integrator kinematics or by a double-
integrator dynamics, depends on the eigenvalues of the complex Laplacian
matrix that represents the sensing graph modelling the formation. In case of
instability, that is, the Laplacian matrix of the systems

ż = −Lz, (4.1)[
ż

v̇

]
=

[
0n×n In

−L −γIn

][
z

v

]
, (4.2)

happens to have eigenvalues in the half negative complex plane, by theorem
3.4, theorem 3.5 and theorem 3.7 it is possible to find a complex diagonal
matrix D such that the matrix DL has all eigenvalues in the half positive
complex plane and systems (4.1) and (4.2) are stable. Thus, the stability of a
leader-follower formation can be entirely ensured by finding:

• Single-Integrator Kinematics:

1. a permutation matrix P (if needed) such that the Laplacian sub-
matrix L̂ = PLffP

T has all non-zero principal minors,

2. a complex diagonal matrixM (if needed) such that the matrix −DL
is stable, where D is

D =

[
I2×2 0

0 P TMP

]
. (4.3)
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• Double-Integrator Dynamics:

1. a permutation matrix P (if needed) such that the Laplacian sub-
matrix L̂ = PLffP

T has all non-zero principal minors,

2. a complex diagonal matrix M and a scalar ε > 0 (if needed) such
that the matrix −DL is stable, where D is

D =

[
I2 0

0 εP TMP

]
. (4.4)

It means that central to the stabilization of a formation is to find the per-
mutation matrix P and the diagonal matrix M fitting the given constraints.
In the following sections we present some algorithms aimed to solve these
problems. In particular, in section 4.1 a general algorithm design technique
called backtracking is presented. In section 4.2 two algorithms based on the
backtracking design are proposed to solve the permutation matrix problem.
Finally, in section 4.3 a comparison between the two proposed algorithms is
given. Implementation and testing are realized in MATLAB® modelling
language.

4.1 Backtracking Algorithm Design Technique

Backtracking (see [27]) represents one of the most general techniques in algo-
rithm design. Many problems which deal with searching for a set of solutions or
which ask for an optimal solution satisfying some constraints can be solved us-
ing the backtracking formulation. In order to apply the backtracking method,
the desired solution must be expressible as an n-tuple (x1, . . . , xn) where xi are
chosen from some finite set Si. Often the problem to be solved calls for find-
ing one vector which satisfies a criterion function P(x1, . . . , xn). Sometimes it
seeks all such vectors which satisfy P . For example, a simple problem to be
solved like sorting integers can be modelled by a backtracking technique. Let
us have a vector of n integers, say a ∈ Nn, the problem is to find a permutation
of the ais elements such that they are sorted in a descending order. To design
a backtracking algorithm just take the set Si as a finite set which includes
the integers 1 through n and a criterion function P of the form ai > ai+1,
for i = 1, . . . , n. Suppose mi is the size of set Si (|Si| = mi). Then there
are m = m1m2· · ·mn n-tuples which are possible candidates for satisfying the
function P . For example, in the sorting problem we have that mi = i, for
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i = 1, . . . , n and consequently m = n!. To test all of the possible m solutions
of a problem in a brute force approach, would be very time consuming. The
backtracking technique algorithm instead, is able to search for the optimal
solutions testing for fewer than m n-tuples. The basic idea is to build up the
same vector one component at a time and to use modified criterion functions
Pi(x1, . . . , xi) (also called bounding functions and indicated by Bi ) to test
whether the vector being formed has any chance of success. In this way, the
algorithm realizes if a partial vector either can or cannot lead to an optimal
solution. If the partial vector does not satisfy the bounding function Bi, then
it cannot lead to an optimal solution and mi+1 . . .mn possible test vectors can
be ignored entirely. In the design of a backtracking algorithm is often required
that the solutions satisfy a complex set of constraints. This set can be usually
divided into two categories:

• explicit constraints are rules which restrict each xi to take on values
only from a given set. For instance, in the sorting problem we have
seen earlier, an explicit constraint is to take values from the set Si =

{1, . . . , n} − {x1, . . . , xi−1}. The explicit constraints may or may not
depend on the particular instance I of the problem being solved,

• implicit constraints describe the way in which the xi must relate to
each other.

Explicit and implicit constraints are related to each other. In fact, explicit con-
straints define a possible solution space I of tuples, while implicit constraints
determine which of the tuples in I actually satisfy the criterion function. From
that point of view, a backtracking algorithm determines problem solutions by
systematically searching the solution space for the given problem instance.
This search is facilitated by using a tree organization for the solution space.
Many tree organizations may be possible for I. For example, we can see two
trees for a sorting problem of n = 3 integers in figure (4.1). Broadly speaking,
each node in the tree defines a problem state. All paths from the root to other
nodes define the state space of the problem. Solution states are those problem
states S for which the path from the root to S defines a tuple in the solution
space. In the tree of figure (4.1a) only the leaf nodes are solution states. An-
swers states are those solution states S for which the path from the root to
S defines a tuple which is a member of the set of solutions (i.e., it satisfies
the implicit constraints) of the problem. The tree organization of the solution
space will be referred to as the state space tree. The example in figure (4.1a) is
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Figure 4.1: Example of two different tree organizations for a solution space in a
backtracking algorithm. The problem being represented is the sorting of 3 positive
integers.

called a static tree because the tree organization is independent of the problem
instance being solved. When the tree organization is determined dynamically
as the solution space is being searched, then it is called dynamic tree. In this
case, it depends on the problem instance. For example, if the one instance of
the sorting problem is solved with the tree organization of figure (4.1a) and a
second instance with the tree organization of figure (4.1b) then the backtrack
algorithm has been using a dynamic tree.

Once a state space tree has been conceived of for any problem, this problem
may be solved by systematically generating the problem states, determining
which of these are solution states and finally determining which solution states
are answer states. The generation process begins with the root node and goes
further with his children and so on, until the state space has been completely
represented. In particular, there are three kind of nodes:

• a live node is a node that has been generated and all of whose children
has not yet been generated,

• a E-node (node being expanded) is a live node whose children are cur-
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rently being generated,

• a dead node is a generated node that is neither not to be expanded further
nor one for which all of its children have been generated.

For backtracking algorithms, nodes of the state space tree are generated in a
depth first way. In fact, as soon as a new child H of the current E-node G
is generated, this child will become the E-node. G will become the E-node
again when the sub-tree H has been fully explored.

F

G

H

...
...
...

...

S

...
...
...

...

· · ·

· · ·

For example, let us consider one of the state space tree of figure (4.1), where
it can be easily seen that nodes are labelled as in depth first search. Consider
node 2. This node is a live node as soon as it is generated. When node 3
is generated, it becomes a live node itself while node 2 becomes an E-node.
Because the three is visited in a depth first way, node 3 is the next node to
consider. Then it becomes an E-node while its first child is being generated
and so on. After the sub-tree 3 has been visited, node 2 becomes an E-node
again and so on until all its children have been generated. When the next
children of node 1 is considered, that is node 7, node 2 becomes a dead node.

In this process bounding functions will be used to kill live nodes without
generating their children. A depth first-like problem generally uses a stack to
keep track of the visited or the generated nodes. Hence, a recursive definition
of the backtracking algorithm is more natural. Let (x1, x2, . . . , xi) be a path
from the root to a node in a state space tree. Let T (x1, x2, . . . , xi) be the set of
all possible values for xi+1 such that (x1, x2, . . . , xi+1) is also a path to a prob-
lem state. We assume the existence of bounding functions Bi+1 (expressed as
predicates) such that Bi+1(x1, x2, . . . , xi+1) is false for a path (x1, x2, . . . , xi+1)

from the root node to a problem state only if the path cannot be extended
to reach an answer node. Thus, the candidates for position i + 1 of the solu-
tion vectors x = [x1, . . . , xn] are generated by T and satisfied by Bi+1. The
pseudo-code version of the backtracking can be seen in algorithm 4.1. In the
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Algorithm 4.1 Recursive Backtracking Algorithm
recursiveBACKTRACK(k)

Require: global n, x
for each xk such that xk ∈ T (x1, . . . , xk−1) and Bk(x1, . . . , xk) = true do
if (x1, . . . , xk) is a path to an answer node then
A← x
call recursiveBACKTRACK(k + 1)

end if
end for

backtrack implementation, A is the set of all n-tuples answer to the problem.
Note that the solution vector x is treated as a global array. Each recursive
call adjoins to the current vector an element and verifies the current bounding
function over that. For example, let us consider the k-th call. The k-th ele-
ment xk is adjoined to the current tuple (x1, x2, . . . , xk−1) and the bounding
function Bk is verified. The kth possible elements are generated one by one at
the k-th recursive call. If Bk is true the next recursive call is made, otherwise
the current call keeps on adjoining xks possible elements and checking Bk. If
no suitable xk is found, the for loop is exited without invoking the algorithm
again, and the last unresolved call is resumed. If a suitable xk is found, a new
call over the tuple (x1, x2, . . . , xk) is made and the k+ 1th element is searched
for. When k exceeds n, T (x1, x2, . . . , xk−1) returns an empty set and hence the
for loop is never entered. Thus, no more recursive calls are possible, only the
resume of unresolved ones.

Remark 4.1. The algorithm search for all the actual solutions of the problem.
In order to have only a single solution, a flag can be added as a parameter to
indicate the first occurrence of success. Thus, the unresolved calls can be exited
and the program terminated.

4.1.1 Backtracking Efficiency

The importance of backtracking lies in its ability to solve some instances with
large n in a very small amount of time. The only difficulty is in predicting
the behavior of the algorithm for the problem instance we wish to solve. The
efficiency of a backtracking algorithm depends on 4 main factors:

1. the time to generate the next xk,

2. the number of xk satisfying the explicit constraints,

3. the time for the bounding functions Bi,
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4. the number of xk satisfying the Bi for all i.

In order to decrease the time needed to compute the solutions, we can try to re-
duce the number of generated nodes by efficient bounding functions. Nonethe-
less, the most times, a more efficient bounding function means a function that
needs a higher computing time to evaluate. However, what is desired is a re-
duction in the overall execution time and not just a reduction in the number
of nodes generated. Hence, a balance between 3 and 4 should be searched for.

Once a state space organization tree is selected, the first three of the men-
tioned factors are relatively independent of the problem instance being solved.
Only the number of nodes generated (fourth condition) varies from one problem
instance to another. Hence, the worst case time for a backtracking algorithm
will generally depend on condition number 4). In fact,

1. if the number of nodes generated is 2n, then

O(p(n)2n); (4.5)

2. if the number of nodes generated is n!, then

O(q(n)n!). (4.6)

Note that p(n) and q(n) are polynomials in n.
Generally speaking, the main issue with predicting the algorithm behavior

is due to the nature of the problem we want ot solve. In fact, the position
and the number of the actual solutions in the state space tree is unpredictable.
When we are searching for all the solutions, only the number of them affects
the algorithm performance. On the other hand, if we are searching for the first
occurrence, solutions’ position could be of great significance, since the choice of
a state space organization tree could degrade or improve algorithm efficiency.

4.1.2 Examples of Backtracking Design

We can see how a backtrack algorithm works by mean of examples. The
technique will be applied to solve the problem of sorting the elements of a vector
and the 8-Queens problem. The different nature of these problems shows the
flexibility of the backtracking design, despite the fact that backtracking itself
is not the algorithm of choice for those problems. Before proceeding with the
examples, let us have a summary of the main parts of a backtracking design.
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• S is the set of the explicit constraints while Sk ⊆ S is the subset of the
explicit constraints at the k-th step.

• B is the criterion function while Bk is the bounding function at the k-th
step.

• T (x1, . . . , xk−1) is the function which supplies candidates at step k given
the explicit constraints satisfied in the previous k − 1 steps.

Sorting a vector of positive integers

Let a = [a1 a2 a3 a4]
T be a vector of n = 4 positive integers, that is a ∈ N4.

We want to sort the elements of a in an ascending order (from the smallest to
the biggest). The backtracking procedure will be modelled as follows:

• the set of the explicit constraints will be the set of the elements’ position
in vector a. Then,

S = {1, 2, 3, 4}.

At each step k of the algorithm, the explicit constraints will then be
Sk ⊆ {1, 2, 3, 4};

• T (x1, . . . , xk−1) supplies at each step k a node to be examine. In this
case, the generic xi is the position of a vector element;

• the criterion function to satisfy is B = {ai ≤ ai+1} for i = 1, . . . , 4, while
the bounding function at the generic k-th step is Bk = {ak > ak−1},
where ak(xk) | xk ∈ T (x1, . . . , xk−1).

Let us have a =

[
7
1
4
3

]
. The way in which function T supplies candidates deter-

mines the state space organization tree of the backtracking instance. Suppose
that T supplies the positions of the elements such that the state space tree
will be the one represented in fig.(4.2). The search for the solution will then
explore that tree in a depth first way, supplying a step-by-step algorithm as
follows:

K = 1
→ x1 = 1

a1(1) = 7

K = 2
→ x2 = 2

a2(2) = 1 > a1(1)→ FALSE→ sub-tree 3 discharged
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Figure 4.2: Example of a tree organization for the solution space of a sorting problem.
The green branches are the visited ones, while the red path is a path to a solution
state.

→ x2 = 3

a2(3) = 4 > a1(1)→ FALSE→ sub-tree 8 discharged
→ x2 = 4

a2(4) = 3 > a1(1) → FALSE → sub-tree 13 dis-
charged

T = empty, BACK-STEP
K = 1

→ x1 = 2

a1(2) = 1

K = 2
→ x2 = 1

a2(1) = 7 > a1(2)→ TRUE → NEXT CALL
K = 3

→ x3 = 3

a3(3) = 4 > a2(1) → FALSE → sub-tree 20 dis-
charged

...

Without analysing each step of the algorithm, we can easily see that the actual

solution is x = (2, 4, 3, 1), such that â =

[
1
3
4
7

]
. As it can be seen from the first

steps, the algorithm has been able to discharge sub-trees 3, 8 and 13 without
visiting the whole sub-trees and finally find the solution in sub-tree 18 (red
path).

The problem of sorting a vector of elements is a problem which has only one
solution. Hence, not only is the algorithm performance affected by the number
of nodes generated during the calls but also by the position of the solution
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itself. In the example we have seen, a different state space tree organization
could have led to the solution faster. The main issue is that the position of
the solution is unpredictable and heuristics are then required in order to learn
the characteristic behavior of a specific problem.

The 8-Queens problem

The 8-queens (see [27]) is a classical combinatorial problem where 8 queens
must be placed on an 8× 8 chessboard so that no two attack, that is no two of
them are on the same row, column or diagonal. In figure (4.3) a solution for
the problem is shown. The chessboard is modelled like a matrix where row and
column are numbered from 1 to 8. The queens themselves can be numbered
from 1 to 8. Since each queen must be on a different row, we can assume
that queen i is to be placed on row i. All solutions to the 8-queens problem
can therefore be represented as 8-tuples (x1, . . . , x8) where xi is the column on
which queen i is placed. Using this formulation, the explicit constraints are

Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤ i ≤ n.

Hence, the solution space consists of 88 8-tuples.

The implicit constraints for this problem are:

1. no two xi’s can be the same (that is, all queens must be in a different
column);

2. no two queens can be on the same diagonal.

The first constraint implies that all solutions are permutations of the 8-tuple
(1, 2, 3, 4, 5, 6, 7, 8). Hence, the size of the solution space reduces from 88 tuples
to 8! tuples. The second constraint can be expressed in mathematical terms
modelling the chessboard as a two dimensional array, where each row and
column can be enumerated like in figure (4.3). In that way, we can see that
for every element on the same diagonal which runs from the bottom left to the
top right, each element has the same row− column value. Also, every element
on the same diagonal which goes from the lower right to the upper left has
the same row+ column. Suppose two queens are placed at positions (i, j) and
(k, l). Then by the above they are on the same diagonal only if

i− j = k − l or i+ j = k + l.
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1 Z0ZqZ0Z0

1 2 3 4 5 6 7 8

Figure 4.3: Example of a solution for the 8-queens problem.

The first equation implies
j − l = i− k,

while the second implies
j − l = k − i.

Therefore two queens lie on the same diagonal if and only if

|j − l| = |i− k|. (4.7)

Implicit constraints are the bounding functions that are used to verify at each
step that the non attack configuration holds.

As an example, let us see some steps for an easier instance of the problem,
the 4-queens, represented in figure (4.4). The first step (fig. 4.4a) places the
first queen in position (1, 1) and a second call is made. The second call (fig.
4.4b) tries to place the second queen in positions (2, 1) and (2, 2) but they
are forbidden by the bounding functions. The second call ends to place the
queen in position (2, 3). The third call (fig. 4.4c) tries all the positions in
row 3 without any success and the backtrack process ends the current call and
resumes the last one. The position of queen 2 is then changed (fig. 4.4d), and
she is moved in (2, 4) while the next call is finally able to place the third queen
in (3, 2). Then the fourth call is made, but no queen can be placed in row
4. Since the other queens cannot be moved further, the backtrack ends the
last 3 calls and move back resuming the first one. The algorithm continues
as described until a solution is reached. For example, a feasible solution is
x = (2, 4, 1, 3).
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Figure 4.4: Some steps for the 4-queens problem.
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4.2 The permutation matrix P

The problem of finding a permutation matrix P such that the matrix L̂ff given
from the equation

L̂ff = PLffP
T (4.8)

has all non-zero leading principal minors, can be solved by an algorithm de-
signed with a backtracking technique (see sec. 4.1). To understand how this
can be made, we can rewrite equation (4.8) as follows:

L̂ff =



eTi

eTj

eTh
...
eTs


Lff

[
ei ej eh · · · es

]
(4.9)

where the generic vector ei ∈ Rn is the ith column vector of the identity
matrix I, that is the ith orthonormal vector of the canonical base of Rn vector
space. As it can be seen from equation (4.9), the first row of P is equal to the
first column of P T , the second row is equal to the second column and so on.
Hence, we can enumerate the rows of P and consequently the columns of P T

which will have the same sequence of numbers. If the ordered set of rows of
P is (i, j, h, . . . , s) so the ordered set of column of P T will be (i, j, h, . . . , s),
that is the same. The problem of finding P could be seen as the problem
of finding the right sequence of numbers representing the vectors ei-th such
that, the permutation matrix P obtained, allows constraints over L̂ff to hold.
That is the starting point for the backtracking algorithm. In fact, sets Si
of explicit constraints for backtracking the solution, are sets of real numbers
chosen through 1 to n, where n is the order of the permutation matrix P .
Then,

Si = {1, . . . , n}, 1 ≤ i ≤ max-steps. (4.10)

For the current problem, the overall objective, that is, the criterion function
P(x1, x2, . . . , xn) where xi ∈ {1, 2, . . . , n}, is to obtain a matrix L̂ff with all
non-zero leading principal minors. In the following subsections we will see two
methods for verifying the determinant of L̂ff sub-matrices and some different
T function used to learn the behavior of the backtracking with the problem
being solved.
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4.2.1 Computing the Determinant.Algorithm 1

The bounding functions Bi check for the determinant of the leading principal
minor of order i at each i-th step. They can be written in predicate form as
follows:

Bi = {det(L̂ff [1∼i]) 6= 0 == TRUE?}. (4.11)

For example, consider a generic step, say the k-th step. The algorithm searches
for a feasible xk to add at the already obtained partial solution (x1, x2, . . . ,

xk−1). When a feasible xk is added at the k − 1-tuple, the upper part of L̂ff
can be built using rows and columns of Lff addressed by the values of the
xis in the tuple. The bounding function Bk checks for the determinant of the
leading principal minor L̂ff [1∼k] then. If det L̂ff [1∼k] 6= 0 then we can proceed
to the next step. On the other hand, if det L̂ff [1∼k] = 0 for all feasible xk, the
backtrack ends the current step and resumes the k−1-th step. In resuming the
previous call, a new xk−1 is chosen from T (x1, x2, . . . , xk−2), that is a not yet
used row of Lff , and the algorithm verifies again the bounding function. If the
bounding function is true, then the k-th step can be reached again, otherwise a
new xk−1 should be still searched for the k− 1-th step. The process, described
in algorithm 4.2 is the same for each step. The algorithm has been designed

Algorithm 4.2 Permutation Matrix Solver
recursiveBACKTRACK(k)

Require: global n, b, p
for each xk such that xk ∈ T (x1, . . . , xk−1) and Bk = {det(L̂ff [1∼k]) 6= 0} →
true do
if (x1, . . . , xk) is a path to an answer node then
b← x
if k == n then
p = 1
END CALL

end if
call recursiveBACKTRACK(k + 1)

end if
if p == 1 then
END CALL

end if
end for

in order to search for the first occurrence of a solution. In fact, when the first
node answer is reached in the solution tree space, the algorithm ends. A flag
is raised and each of the previous non-terminated calls are ended. As it can

88



be seen from algorithm 4.2 the flag used is the boolean variable p that is set
to 1 only when the answer is found.

The solution is the n-tuple of the first n real numbers, ordered as we need
to order the rows of an identity matrix I to obtain the permutation matrix
P we are searching for. For instance, let us have n = 5 and a solution like
{2, 3, 4, 1, 5}. That means that the permutation matrix we need has the second
row of I as first, the third row of I as second, and so on. The algorithm tracks
the solution by mean of the vector b whose elements are the integers from 1 to
n which are ordered call after call.

Efficiency

The algorithm performance depends largely on the bounding functions, which
compute the determinant of each L̂ff sub-matrix.

Provided that a solution is a n-tuple of integers from 1 to n ordered in a
specific manner, the solution space will have n! possible solutions to explore.
In fact, the way in which n different numbers can be combined is exactly the
factorial of n. Hence,the algorithm ,as a worst case, must check all the n!

nodes of the state space tree and its overall complexity is

O (p(n)n!) , (4.12)

where p(n) is a polynomial in n that takes account of nodes generation, xks
generation and bounding functions evaluation (see sec. 4.1). In this case we
assume that only Bis evaluation accounts for the expression of p(n). It seems
a reasonable simplification given that for each bounding function we have to
compute the determinant of a matrix. In fact, the complexity to evaluate the
determinant of a matrix of order n is at least O(2

3
n3), significantly more than

the necessary time to make the algorithm pick numbers from a given set. In
order to find a solution, we have to evaluate the determinant of all leading
principal minors, and it means that p(n) is the sum of the operations needed
to accomplish that. We can write in formulas:

p(n) =
2

3
(13 + 23 + 33 +· · ·+ n3) =

2

3

n∑
i=1

i3 (4.13)

Equation 4.13 can be written in a closed form by Faulhaber’s formula, that for
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the case of the sum of cubes takes the form (see appendix D and [41]):

n∑
i=1

i3 =
1

4
(n4 + 2n3 + n2). (4.14)

The polynomial p(n) can then be written as

p(n) =
1

6
(n4 + 2n3 + n2), (4.15)

and, can be expressed asymptotically as

O (p(n)) = O

(
1

6
n4

)
. (4.16)

Thus, the overall complexity of the backtrack algorithm for the calculus of the
permutation matrix P is

O (p(n)n!) = O

(
1

6
n4n!

)
, (4.17)

that is higher than a simply factorial time complexity. In order to have better
performance, what can be changed is the function T . In fact, T supplies, at
each call, the xi to be added to the path already done. Since we are searching
for the first occurrence of the solution, different ways of adding xi to the
tuple (x1, . . . , xi−1) could result in a better performance for the backtracking
algorithm, that is a solution could be found earlier.

Experimental Results

Experimental results in [29] have shown that, for randomly generated Lapla-
cian matrices, the most times the solution is an identity matrix. It means
that, the randomly generated Laplacian matrix has already all non-null prin-
cipal minors. Then, a function T which takes account of this fact would be
preferable. In order to study the efficiency of the algorithm another function
T has been chosen. The two different T used are:

• Td1, which supplies values xi in order to search for the nearest solution
to the identity matrix. That is, if xk−1 = 5 the first value supplied at the
k-th call will be xk = 6. Then, if the bounding function is not verified,
the next value will be xk = 7 and so on. As it will be seen this function
T is the one which has better results, according to [29];
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Figure 4.5: Comparison between different state space organization trees in the
determinant-based backtracking algorithm. Black line represents algorithm with Td1
while blue line represents algorithm with Td2. Function Td1 makes the algorithm a
little faster.

• Td2, which supplies values xi randomly picking them from the set of the
explicit constraints Si until all values are tried. That is, at the k-th call
xk ∈ Sk = S − (x1, . . . , xk−1).

Note that Td1 implements a static state space tree organization while Td2,
because of the randomness of the search, implements a dynamic state space
tree organization. In fact, Td2 changes the state space tree organization for
each instance of the problem.

In figure (4.5) a comparison between the two backtracking implementations
with different T s is shown. Algorithm which implements Td1 (black line) results
to be the fastest of the two. We can explain that by mean of a simple example.
Let us have the following real non-singular matrix:

A =

1 2 1

0 1 2

3 2 1

 .
Its leading principal minors are

A1 = 1,

A2 =

[
1 2

0 1

]
,
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which are non-singular as well since det(A1) = 1 6= 0 and det(A2) = 1 6= 0.
In this case the two implementations of the algorithm will lead to different
solutions, because of the different search methods.

For Td1, the algorithm will lead to the solution

P =

1 0 0

0 1 0

0 0 1

 ,
that is, as expected, the identity matrix since all leading principal minors are
already non-null.

For Td2 the algorithm will lead to the solution

P =

0 0 1

0 1 0

1 0 0

 ,
that is a solution as well, since Â = PAP T has all non-null leading principal
minors.

The point is that the first algorithm has to compute a smaller number of
determinants in searching for the solution because it searches for the nearest
solution to the identity matrix. Since the experiments showed that randomly
generated complex Laplacian matrices for the most times do not need any
permutation of rows and columns, then algorithm which implements Td2 results
to be slower because of the higher number of bounding functions evaluations.

4.2.2 Gauss Elimination Method.Algorithm 2

The permutation matrix problem solved with a determinant-based backtrack-
ing algorithm has a worst case complexity of O (p(n)n!) = O

(
1
6
n4n!

)
, as we

have already seen. Even though this is an upper bound and is reached only if
all combinations are tried (i.e. for a singular matrix); a more fast algorithm
would be preferable. We can have a better worst case complexity by modifying
the bounding functions Bk used at each call k. To do so, we need to analyse
the automorphism equation

L̂ff = PLffP
T . (4.18)
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In subsections 2.3.2 and 2.3.3 we have seen the Gauss elimination method with
total pivoting and the correspondent LU factorization, which have the general
expression

LU = PAQ, (4.19)

where

• L ∈ Cn×n is a complex unit lower triangular matrix,

• U ∈ Cn×n is a complex upper triangular matrix,

• A ∈ Cn×n is a complex square matrix,

• P,Q ∈ Rn×n are two permutation matrices.

If we compare equations (4.18) and (4.19) together, we can say that the first
one could be seen as a special case of an LU factorization with total pivoting

L̂ff = L̂gÛg = PLffP
T , (4.20)

where Q = P T . The question is how we can benefit from the LU factorization
of the relabelled Laplacian sub-matrix. Rewrite factors L̂g and Ûg as block
matrices

L̂g =

[
L̂
(k)
g 0

wT l̂nn

]
,

Ûg =

[
Û

(k)
g p

0T ûnn

], (4.21)

where 0,w,p are vectors and L̂
(k)
g , Û

(k)
g ∈ C(k×k) are the leading principal

minors of order k of L̂g and Ûg. The block product between the two factors
results in

L̂ff = L̂gÛg =

[
L̂
(k)
g Û

(k)
g L̂

(k)
g p

wT Û
(k)
g wTp + l̂nnûnn

]
, (4.22)

where it can be easily seen that L̂(k)
ff = L̂

(k)
g Û

(k)
g is the leading principal minor

of order k of the relabelled Laplacian sub-matrix. Since L̂g is a unit lower
triangular matrix, so are its leading principal minors. Then, the determinant
of L̂(k)

ff is

det
(
L̂
(k)
ff

)
= det

(
L̂(k)
g

)
det
(
Û (k)
g

)
= det

(
Û (k)
g

)
, (4.23)
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where det
(
L̂
(k)
g

)
= 1. Moreover, Ûg is an upper triangular matrix and so are

its leading principal minors. Then, we can write

det
(
L̂
(k)
ff

)
=

k∏
i=1

uii, (4.24)

which is valid for k = 1, . . . , n. Equation (4.24) shows that the determinant
of each principal minor (and of the entire matrix) can be computed as the
product of the diagonal elements of the factor matrix Ûg. Therefore, a leading
principal minor of L̂ff has non-zero determinant if and only if all diagonal
elements of the corresponding leading principal minor of Ûg are non-null. It
means that, the problem of finding a permutation matrix P such that L̂ff
has all non-zero leading principal minors can be formulated as the problem of
finding a permutation matrix P such that LU factorization (4.20) exists. The
equivalence of the two problems is ensured by theorem (2.5) whose proof can
be found in section 2.3.

Theorem 4.1. Let A ∈ F(n×n) be a non-singular matrix, and let Ak be its
leading principal minors of order k. If Ak is non-singular for k = 1, . . . , n− 1

then the LU factorization of A exist and is unique.

The next question that needs an answer is what happens to the elements
of Lff after the operation of permutation. This is important in order to define
the bounding functions for the backtracking procedure.

In section 2.3 we have seen two main types of LU factorizations:

• LU factorization with partial pivoting, where pivot elements are chosen
among the elements in the sub-columns under the main diagonal,

• LU factorization with total pivoting, where pivot elements are chosen in
the sub-matrix that has not been triangulated yet.

In the case of equation (4.20) we are wondering where the pivot elements are
chosen from. To have an answer, we need to do some mathematics. Permuta-
tion matrix P can be written in terms of its row vectors and P T in terms of
its column vectors. Moreover, the Laplacian sub-matrix too can be written in
terms of its column vectors as

Lff = [l1 l2 l3· · · ln], (4.25)
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where li ∈ Cn for i = 1, . . . , n. Thus, equation (4.18) can be written as follows

L̂ff =



eTi

eTj

eTh
...
eTs


[
l1 l2 l3 · · · ln

] [
ei ej eh · · · es

]
. (4.26)

By multiplying the first two matrices, the following partial result is obtained

L̂ff =



eTi l1 eTi l2 eTi l3 · · · eTi ln

eTj l1 eTj l2 eTj l3 · · · eTj ln

eThl1 eThl2 eThl3 · · · eThln
...

...
eTs l1 eTs l2 eTs l3 · · · eTs ln


[
ei ej eh · · · es

]

=



l̄i1

l̄j2

l̄h3
...
l̄sn


[
ei ej eh · · · es

]
.

(4.27)

Then, matrix L̂ff results to be

L̂ff =



l̄i1ei l̄i1ej l̄i1eh · · · l̄i1es

l̄j2ei l̄j2ej l̄l2eh · · · l̄j2es

l̄h3ei l̄h3ej l̄h3eh · · · l̄h3es
...

...
l̄snei l̄snej l̄sneh · · · l̄snes


. (4.28)

Recalling the properties of vectors ei ∈ Rn, we have that

l̂ii = l̄kiek = eTk lkiek = lkk

l̂ij = l̄kjew = eTk lkjew = lkw

}
elements of L̂ff , (4.29)
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and matrix L̂ff results to be

L̂ff =



lii lij lih · · · lis

lji ljj ljh · · · ljs

lhi lhj lhh · · · lhs
... . . . ...
lsi lsj lsh · · · lss


(4.30)

The diagonal elements remain along the diagonal even after the pivoting oper-
ation. The expression L̂ff = PLffP

T can then be seen as a Gauss elimination
with diagonal pivoting. Now we are ready to define the backtracking algorithm
for the Gaussian elimination case.

Algorithm 4.3 explains how the backtrack process with Gaussian elimi-
nation works. The new bounding functions appear to be simply predicates
without any additional computational effort. This is not quite true since the
k-th step of Gaussian elimination modifies the elements of the sub-matrix
Lff [k∼n], that is, the pivot candidates for the k+ 1 call as well. Hence, bound-
ing functions can be seen as functions which operate in two steps throughout
two consecutive calls. During a generic call k − 1, the algorithm modifies the
pivot candidates and at call k one of them is chosen.

Algorithm 4.3 Permutation Matrix Solver with Gaussian Elimination
recursiveBACKTRACK(k)

Require: global n, b, p
for each xk such that xk ∈ T (x1, . . . , xk−1) and Bk = {ûkk 6= 0} → true
do
if (x1, . . . , xk) is a path to an answer node then
b← x
EXECUTE the k-th step of Gaussian Elimination
if k == n then
p = 1
END CALL

end if
call recursiveBACKTRACK(k + 1)

end if
if p == 1 then
END CALL

end if
end for
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Efficiency

As we have said for algorithm 4.2, the number of nodes generated is unpre-
dictable, so the worst case is considered in order to study the performance of
algorithm 4.3. The worst case complexity can be easily obtained from the gen-
eral formula already seen for the backtrack process when the highest number
of tuples that can be generated is n!,

O (p(n)n!) . (4.31)

In this case, for each possible tuple, an LU factorization is needed. Thus, for
each tuple we have the polynomial complexity

O (p(n)) = O

(
2

3
n3

)
, (4.32)

Therefore, the overall worst case complexity for algorithm 4.3 results to be

O (p(n)n!) = O

(
2

3
n3n!

)
, (4.33)

which is an order of magnitude smaller than the worst case complexity for
algorithm 4.2.

Experimental Results

As in the case of the determinant-based backtracking procedure, algorithm 4.3
has been implemented with different T functions. From a Gauss elimination
point of view, we chose four different T s :

• at call k, Tg1 searches for the next non-null pivot element along the
diagonal from position k to n;

• at call k, Tg2 searches randomly for a non-null pivot element along the
sub-diagonal from position k to n. Moreover, the pivot positions are
remembered so that when a call is resumed no pivot is chosen two times;

• at call k, Tg3 searches for the pivot element with maximum modulus
along the diagonal, from position k to n. In practice, diagonal elements
are ordered in a descending order considering their modulus. Then, at
each step of a call, they could be sequentially tried from the biggest to
the smallest;
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Figure 4.6: Comparison among different state space organization trees in the Gauss-
based backtracking algorithm. Black line represents algorithm with Tg1 while blue
line represents algorithm with Tg2. Function Tg1 makes the algorithm the fastest
while function Tg2 the slowest.

• at call k, Tg4 searches for the next non-null element along the diagonal
from position n to k. It can be seen that function Tg4 works in the
opposite way with respect to function k, Tg1.

A fifth function has been defined based on the ones defined above:

• at call k, function Tg5 behaves like one of the functions among Tg1, Tg2
and Tg3. The choice is made randomly.

Note that Tg1 and Tg2 are nothing less than the same functions already tried
for the determinant-based algorithm.

In figure (4.6) a comparison in terms of time execution among the different
Tgs implementations is shown. Functions Tg1, Tg3 and Tg4 have fundamentally
the same performance while, as already seen for the determinant-based case,
function Tg2 has the worst performance. Note that function Tg5 has a behavior
that averages out the performances of the other four functions.

As in the previous case, different node generations can yield different solu-
tions. Let us have the following Laplacian sub-matrix:

Lff =


5− ι −2 −2 + ι ι

−ι −1 + 2ι 2 1− ι
−2ι −1 + 2ι 2 + ι −1

1 ι −2 −1− 2ι

 ,
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that is non-singular and whose leading principal minors are non-null. Solution
yielded from the algorithm that implements Tg1 is

Pg1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

as we expected since Lff do not need a relabelling and Tg1 searches for the
nearest solution to an identity matrix. The other T functions has yielded the
following solutions:

• Tg2 leads to

Pg2 =


0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

 ;

• Tg3 leads to

Pg3 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ;

• Tg4 leads to

Pg4 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ;

• Tg5 leads to

Pg5 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

where only Pg3 and Pg5 are equal. Then the solution is not unique since five
algorithms have yielded four different solutions. This results were expected
because already shown by the determinant-based algorithm.
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4.3 Comparing Algorithms

The two different implementations of the algorithm in terms of bounding func-
tions, have shown to have different performances for what concern the worst
case complexity. In fact, we found that:

• determinant-based backtracking algorithm has the worst case complexity

O (p(n)n!) = O

(
1

6
n4n!

)
;

• Gauss-based backtracking algorithm has the worst case complexity

O (p(n)n!) = O

(
2

3
n3n!

)
.

Practical results have simply confirmed what stated above.
Experiments have been made using the following test matrices:

Test 1) complex random follower-follower Laplacian matrices;

Test 2) complex random non-singular matrices;

Test 3) complex random singular matrices.

where matrix values were drawn from the standard uniform distribution on the
open interval(0;1). In figure (4.7) a comparison among the proposed algorithm
over a Laplacian sub-matrices is shown. Algorithms worked over a Laplacian
sub-matrix of variable order, from a minimum of 3 to a maximum of 70. Figure
(4.7b) shows a comparison between the best of the two implementations, that
are algorithms with Td1 and Tg1. The difference in terms of time execution
between the determinant-based implementation and the Gauss-based imple-
mentation is unquestionable. That difference is even more evident in figure
(4.9) where algorithms have been tested with random complex singular ma-
trices. In that case, the maximum order of the test matrices has been chosen
to be 9. Figure (4.9b) shows the comparison between the best T function of
the two implementations. Again, Gauss-based algorithm has an overcoming
performance. In figure (4.8) the results of experiment 2 are shown. Algo-
rithm implementations have been tested with random complex non-singular
matrices, with a maximum order of 70. As it can be seen, the performance
algorithms reached are the same as in experiment 1.
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Remark 4.2. Recall that the complex Laplacian matrix has been defined as
the matrix whose elements are:

lij =


−wij if i 6= j and j ∈ N−i ,

0 if i 6= j and j /∈ N−i ,∑
j∈N−i

wij if i = j.

What we notice is that the diagonal elements are the sum of the elements in the
same row. Since the Laplacian matrix in the experiments has been built using
random values from the range (0; 1), the complex weights wij result to have
both positive real and positive imaginary parts. Then the following condition
holds for the diagonal elements:

|lkk| > |lkj| for k = 1, . . . , n.

It simply means that the diagonal elements are already the elements with the
maximum modulus, and then the Gauss elimination with diagonal pivoting has
a stability performance in between that of the Gauss with partial pivoting and
that of the Gauss with total pivoting.
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Figure 4.7: Comparison among different backtracking implementations. Tests have
been made over complex random follower-follower Laplacian matrices.
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Figure 4.8: Comparison among different backtracking implementations. Tests have
been made over complex random non-singular matrices.
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Figure 4.9: Comparison among different backtracking implementations. Tests have
been made over complex random singular matrices.

104



Chapter 5

The Multiplicative IEP and
Ballantine’s Theorem

An Inverse Eigenvalue Problem (see [14]) concerns the reconstruction of a
matrix from prescribed spectral data, which may consist of the complete or
only partial information of eigenvalues or eigenvectors. Such a problem has
been encountered in chapter 3 where in order to stabilize the Laplacian matrix
L ∈ C(n×n) of a sensing digraph, a complex diagonal matrix D ∈ C(n×n)

was needed such that the matrix obtained from the product DL had all its
eigenvalues in the right half complex plane. The problem mentioned is called
the Multiplicative Inverse Eigenvalue Problem and, in the specific case, only
partial information of the desired eigenvalues is given. They must have positive
real parts. In this chapter we will analyse the multiplicative problem and give
algorithms to find the desired complex diagonal matrix.

5.1 The Inverse Eigenvalue Problem of a Matrix

In a mathematical model (see [13] and [14]), it is generally assumed that there
is a correspondence between the endogenous variables, that is, the internal
parameters, and the exogenous variables, that is, the external behavior. As a
consequence, when dealing with physical systems, problems can be classified
in two main types.

Direct Problems A direct problem is the process of analysing and deriving
the spectral information and, hence, inducing the dynamical behavior of
a system from a priori known physical parameter such as mass, length,
elasticity, inductance, capacitance, and so on.
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Inverse Problems An inverse problem is to validate, determine, or estimate
the parameters of the system according to its observed or expected be-
havior.

The concern in the direct problem is to express the behavior in terms of param-
eters whereas in the inverse problem the concern is to express the parameters
in terms of behavior. In the former the behavior usually is a deterministic
consequence of the parameters. In the latter the inverse problem often turns
out to be ill-posed in that it has multiple solutions.

Among the inverse problems of various nature, there is the particular class
of eigenvalue problems associated with matrices. In this context, an Inverse
Eigenvalue Problem concerns the reconstruction of a matrix from prescribed
spectral data, which may consist of the complete or only partial information of
eigenvalues or eigenvectors. The objective of an inverse eigenvalue problem is
to construct a matrix that maintains a certain specific structure as well as that
given spectral property. To confine the construction to certain special classes
of matrices is often necessary for the inverse problem to be more meaningful,
either physically or mathematically. The solution to an inverse eigenvalue
problem therefore should satisfy two constraints:

1. the spectral constraint, referring to the prescribed spectral data;

2. the structural constraint, referring to the desirable structure.

In practice, it may occur that one of the two constraints in an IEP 1 should
be enforced more critically than the other, for example, due to physical real-
izability. Without this, the physical system simply cannot be built. There are
also situations when one constraint could be more relaxed than the other, for
example, due to the physical uncertainty. When the two constraints cannot be
satisfied simultaneously, the inverse eigenvalue problem could be formulated
in a least squares setting, in which one of the two constraints is compromised.
Note that the meaning of "being structured" can be taken in different ways.
Some of the structures, such as Jacobi or Toeplitz, result in matrices forming
linear subspaces; structures such as non-negative or stochastic, limit entries of
matrices in a certain range and so on.

These constraints define a variety of inverse eigenvalue problems, that
can be classified according to characteristics such as additive, multiplicative,
parametrized, structured, partially described or least squares. Nonetheless, an

1Inverse Eigenvalue Problem.
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AIEP

MIEP

SIEP

PDIEP

Figure 5.1: Main classification of Inverse Eigenvalue Problems.

IEP often carries overlapping characteristics and it is sometimes difficult to de-
termine which characteristic is the most prominent. In general, the following
types can be defined:

MVIEP = Multi-Variate Inverse Eigenvalue Problem
LSIEP = Least Square Inverse Eigenvalue Problem
PIEP = Parametrized Inverse Eigenvalue Problem
SIEP = Structured Inverse Eigenvalue Problem

PDIEP = Partially Described Inverse Eigenvalue Problem
AIEP = Additive Inverse Eigenvalue Problem
MIEP = Multiplicative Inverse Eigenvalue Problem

In figure (5.1) a possible inclusion relationship among the different IEPs is
shown. The inclusion diagram implies several points.

• The MVIEP is the most general class of IEP. Nonetheless, the single
variate has been the most studied.

• All single variate problems have a natural generalization to the Least
Squares formulation.

• The AIEP and the MIEP are two extensively studied special cases of the
PIEP.

• The PDIEP is the most difficult to classify. It arises when there are no
reasonable tools available to evaluate the entire spectral information due
to, for instance, the complexity or the size of the physical system the
IEP belongs to.
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Note that the given classification is neither definite nor complete. It is sim-
ply a representation of the main IEPs. In fact, other characterizations and
overlapping are possible. In figure (5.2) a finer classification is depicted and
acronyms are explained in table 5.1.

Associated with any IEP four fundamental questions of different nature
arise:

1. the theory of solvability,

2. the practice of computability,

3. the analysis of sensitivity,

4. the reality of feasibility.

The problem of solvability consists in finding necessary or sufficient condi-
tions under which an inverse eigenvalue problem has a solution. Related to
the solvability is the issue of uniqueness of a solution. On the other hand, the
main concern in computability has been to the develop a procedure by which,
knowing a priori that the given spectral data are feasible, a matrix can be
constructed numerically. The discussion on sensitivity concerns perturbation
analysis when an IEP is modified by changes in the spectral data. The feasi-
bility is a matter of differentiation between whether the given data are exact
or approximate, complete or incomplete, and whether an exact value or only
an estimate of the parameters of the physical system is needed. Each of these
questions is essential but challenging to the understanding of a given IEP. Un-
fortunately, not many IEPs are comprehensively understood in all these four
aspects.
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Figure 5.2: Classification of Inverse Eigenvalue Problems.

109



Acronym Meaning
AIEP Additive IEP
ECIEP Equality Constrained IEP
ISEP Inverse Singular/Eigenvalue Problem
ISVP Inverse Singular Value Problem
JIEP Jacoby IEP
LSIEP Least Square IEP
MIEP Multiplicative IEP
MVIEP Multi-Variate IEP
NIEP Non-negative IEP
PAP Pole Assignment Problem
PEIEP IEP with Prescribed Entries
PIEP Parametrized IEP
PDIEP Partially Described IEP
RNIEP Real-valued Non-negative IEP
SHIEP Schur-Horn IEP
SIEP Structured IEP
SNIEP Symmetric Non-negative IEP
StIEP Stochastic IEP
STISVP Sing-Thompson ISVP
ToIEP Toeplitz IEP
UHIEP Unitary Hessenberg IEP

Table 5.1: Summary of the acronyms for IEPs.

5.2 Application: The Pole Assignment Problem

Inverse Eigenvalue Problems arise from a remarkable variety of applications.
The list includes applications like:

• control design,

• system identification,

• seismic tomography,

• principal component analysis,

• exploration and remote sensing,

• antenna array processing,

• geophysics,

• molecular spectroscopy,
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• particle physics,

• structural analysis,

• circuit theory,

• mechanical simulation.

A common phenomenon that stands out in most of these applications is that
the physical parameters of the underlying system are to be reconstructed from
knowledge of its dynamical behavior. The meaning of "dynamical behavior" can
be qualified in a different ways. For example, vibrations depend on natural
frequencies and normal modes, stability controls depend on the location of
eigenvalues, and so on. In that context, the spectral information used to affect
the dynamical behavior varies in various ways. If the physical parameters can
be, as they are, described mathematically in the form of a matrix, then the
problem is an IEP. The structure of the matrix is usually inherited from the
physical properties of the underlying system.

A valuable example is the Pole Assignment Problem, extensively studied
and documented in the literature because of its importance in practice. Con-
sider first the following dynamic state equation:

ẋ(t) = Ax(t) +Bu(t), (5.1)

where x(t) ∈ Rm. The two given matrices A ∈ R(n×n) and B ∈ R(n×m) are
invariant in time. One classical problem in control theory is to select the input
u(t) so that the dynamics of the resulting x(t) is driven into a certain desired
state. Depending on how the input u(t) is calculated, there are generally two
types of controls:

• the State Feedback Control,

• the Output Feedback Control.

As it can be seen in figure (5.2), the PAP is a special case of the PIEP.

5.2.1 State Feedback PAP

In state feedback control, the input u(t) is selected as a linear function of the
current state x(t), that is,

u(t) = Fx(t). (5.2)
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In this way, the system is changed to a closed-loop dynamical system:

ẋ(t) = (A+BF )x(t). (5.3)

A general goal in such a control scheme is to choose the gain matrix F ∈ R(m×n)

so as to achieve stability or speed up response. There are many ways to do that.
One way is to minimize a certain cost function in the so-called linear quadratic
regulator. Another way is to directly translate the task to the selection of F
so that the spectrum σ(A+BF ) is bounded in a certain region of the complex
plan. Obviously, in the latter the choice of the region affects the degree of
difficulty of control. The location of the spectrum can be further restrict by
reassigning eigenvalues of the matrix A + BF to a prescribed set. This leads
to a special type of inverse eigenvalue problem usually referred to as the State
Feedback Pole Assignment Problem.

(State Feedback PAP) Given A ∈ R(n×n) and B ∈ R(n×m) and a set of
complex numbers {λk}nk=1, closed under complex conjugation, find F ∈
R(m×n) such that

σ(A+BF ) = {λk}nk=1.

5.2.2 Output Feedback PAP

It is often the case in practice that the state x(t) is not directly observable.
Instead, only the output y(t) is available. State and output are related by the
following equation

y(t) = Cx(t), (5.4)

where C ∈ R(p×n) is a known matrix. The input u(t) must now be chosen as
a linear function of the current output y(t), that is,

u(t) = Ky(t). (5.5)

The closed-loop dynamical system thus becomes

ẋ(t) = (A+BKC)x(t). (5.6)

The goal is to select the output matrix K ∈ R(m×p) so as to reassign the
eigenvalues of A + BKC. This output feedback PAP once again gives rise to
a special type of IEP.
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(Output Feedback PAP) A ∈ R(n×n), B ∈ Rn×m, and C ∈ R(p×n), and a
set of complex numbers {λk}nk=1, closed under complex conjugation, find
K ∈ R(m×p) such that

σ(A+BKC) = {λk}nk=1.

5.3 Multivariate IEP

What can be noted first both from figures (5.1) and (5.2) is that the main
distinction in IEPs is between single variate and multivariate inverse problems.
Nonetheless, the single variate one has been the most studied because of its
importance in practice.

A Multivariate Eigenvalue Problem is to find real scalars {λ1, . . . , λm} and
a real vector x ∈ Rn such that equations

Ax = Λx (5.7)

‖ xi ‖= 1, i = 1, . . . ,m. (5.8)

are satisfied, in which A ∈ S(n) 2 is a given positive definite matrix partitioned
into blocks:

A =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

...
Am1 Am2 . . . Amm

 ,
Λ is the diagonal matrix

Λ = diag{λ1Ini , . . . , λmInm}

with Ini the identity matrix of size ni, and x ∈ Rn is partitioned into blocks

x = [xT1 , . . . , x
T

m]T

with xi ∈ Rni . Note that, the single variate case when m = 1 is simply a
classical symmetric eigenvalue problem.

2S(n) := { all symmetric matrices in R(n)}.
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5.4 Single variate IEP

In this section the main IEPs showed in figure (5.1) are listed together with
some of their variations and definitions. In order to define the IEPs, symbols
M,N will be used to denote the following subsets of square matrices:

R(n) := R(n×n),

S(n) := { all symmetric matrices in R(n)},
O(n) := { all orthogonal matrices in R(n)},
DR(n) := { all diagonal matrices in R(n)},
C(n) := C(n×n),

H(n) := { all Hermitian matrices in C(n)},
DC(n) := { all diagonal matrices in C(n)}.

5.4.1 Parametrized IEP

The class of Parametrized Inverse Eigenvalue Problem can include many other
IEPs since many of them can be regarded as a parameter estimation prob-
lem. Nonetheless, the way these parameters regulate the problem allows us to
narrow down the list of included IEPs.

A generic PIEP can be described as follows:

(PIEP) Given a family of matrices A(c) ∈ M with c = [c1, . . . , cm] ∈ Fm

and scalars {λ1, . . . , λn} ⊂ F, find a parameter c such that σ(A(c)) =

{λ1, . . . , λn}.

Note that the numberm of parameters in cmay be different from n. Depending
on how the family of matrices A(c) is specifically defined in terms of c, the PIEP
can appear and be solved very differently. Nonetheless, a common feature in
all variations is that the parameter c is used as a control that modulates to
the underlying problem in a certain specific way. Some variations are:

(PIEP1) A(c) = A0 +
n∑
i=1

ciAi where Ai ∈ R(n) and F = R.

(PIEP2) A(c) = A0 +
n∑
i=1

ciAi where Ai ∈ S(n) and F = R.

A different and more complicated formulation of the PIEP is the following one:

(PIEP3) Given matrices A ∈ C(n), Bi ∈ C(n×mi), Ci ∈ C(li×n), i = 1, . . . , q,
and scalars {λi, . . . , λn} ⊂ C, find matrices Ki ∈ C(mi×li) such that

σ(A+
q∑
i=1

BiKiCi) = {λi, . . . , λn}.
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Note that, for q = 1, the PIEP3 includes as special cases the state feedback as
well as the output feedback pole assignment problems.

A few interesting special cases of the PIEP are:

(AIEP) Given a matrix A ∈ M, scalars {λ1, . . . , λn} ⊂ F, and a class of
matrices N , find a matrix X ∈ N such that σ(X + A) = {λ1, . . . , λn}.

(MIEP) Given a matrix A ∈ M, scalars {λ1, . . . , λn} ⊂ F, and a class of
matrices N , find a matrix X ∈ N such that σ(XA) = {λ1, . . . , λn}.

The Additive IEP is a special case of the PIEP with A(X) = A + X and X
playing the role of c, and the Multiplicative IEP corresponds to the case where
A(X) = XA. By being more specific on the class N of matrices, the problems
themselves can be divided into further subclasses.

Additive IEP

The key feature of the Additive IEP is that a given matrix A is perturbed by
the addition of a specially structured matrix X in order to match the desired
eigenvalues. The eigenvalue information can provide at most n equations,
so sometimes it may be desirable to limit the number of free parameters in
X. Nonetheless, the set N can be taken quite liberally. Set N can then
be used to impose a certain structural constraint on the solution matrix X.
For example, structure on N sometimes arises naturally because of engineers’
design constraints. In that sense, the Additive IEP presents itself various
special cases:

(AIEP1) M = R(n), F = R, N = DR(n),

(AIEP2) M = S(n), F = R, N = DR(n),

(AIEP3) M = C(n), F = C, N = DC(n),

(AIEP4) M = H(n), F = R, N = DR(n).

Another interesting variant of the AIEP arises in, for example, control
theory or algorithm design, where the stability is at issue. In such a problem
it is more practically critical to have eigenvalues located in a certain region
than at a certain points. One such problem can be stated as follows:

(AIEP5) Given A ∈ R(n), find X ∈ N with σ(A+X) lies in a certain fixed
region, say the right half, of the complex plane.
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From a solvability point of view, Friedland proved the following theorem
for the AIEP3:

Theorem 5.1. For any specified {λ1, . . . , λn}, the AIEP3 is solvable. The
number of solutions is finite and does not exceed n!. Moreover, for almost all
{λ1, . . . , λn}, there are exactly n! solutions.

Multiplicative IEP

The Multiplicative IEP arises when the task is to pre-multiply a given matrix
A by a specially structured matrix X to reposition or to precondition the
distribution of its eigenvalues. This is very similar to but more general than
the idea of preconditioning the matrix A where it is desired to find an efficient
preconditioner M for A so that the product M−1A approximates the identity.
Although the sense in which M−1A should approximate the identity differs
according to the underlying method to be used, the general setting in the
MIEP can be applied to the optimal preconditioning of a given matrix A.
Perhaps, the simplest possible preconditioners are the diagonal scaling:

(MIEP1) M = R(n), F = R, N = DR(n),

(MIEP2) M = S(n), F = R, N = DR(n),

(MIEP3) M = C(n), F = C, N = DC(n).

Some other types of multiplicative inverse eigenvalue problems are worth
to mention:

(MIEP4) Given a matrix A ∈ Hn and scalars {λ1, . . . , λn} ⊂ R, find a matrix
X ∈ DR(n) such that σ(X−1AX−1) = {λ1, . . . , λn}.

(MIEP5) Given a matrix A ∈ R(n), find X ∈ DR(n) with positive entries
such that σ(XA) lies in the right-half complex plane.

From a solvability point of view, Friedland proved the following theorem
for the MIEP3:

Theorem 5.2. If all principal minors of A are distinct from zero, then the
MIEP3 is solvable for arbitrary {λ1, . . . , λn} and there exist at most n! distinct
solutions.
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5.4.2 Structured IEP

A generic Structured Inverse Eigenvalue Problem may be stated as follows:

(SIEP) Given scalars {λ1, . . . , λn} ∈ F, find X ∈ N which consists of spe-
cially structured matrices such that σ(X) = {λ1, . . . , λn}.

By demanding X to belong to N , where a structure is defined, the SIEP is
required to meet both the spectral constraints and the structural constraints.
The structural constraint usually is imposed due to the realizability of the
underlying physical system.

Many types of structures have been considered for the SIEP. The following
are of the most interesting:

(SIEP1) F = R and N = {all Toeplitz matrices in S(n)},

(SIEP2) F = R and N = {all pre-symmetric Jacobi matrices in S(n)},

(SIEP3) F = R and N = {all non-negative matrices in S(n)},

(SIEP4) F = R and N = {all non-negative matrices in R(n)},

(SIEP5) F = C and N = {all row-stochastic matrices in R(n)}.

The spectra of structured matrices may also be structured. So sometimes
additional spectral information is given. The following problems are of exam-
ple:

(SIEP6a) Given scalars {λ1, . . . , λn} and {µ1, . . . , µn−1} ⊂ R that satisfy the
interlacing property λi ≤ µi ≤ λi+1 for i = 1, . . . , n − 1, find a Jacobi
matrix J so that σ(J) = {λ1, . . . , λn} and σ(J̃) = {µ1, . . . , µn−1} where
J̃ is the leading (n− 1)× (n− 1) principal sub-matrix of J .

(SIEP6b) Given scalars {λ1, . . . , λ2n} and {µ1, . . . , µ2n−2} ⊂ C, find tridiag-
onal symmetric matrices C and K such that the determinant det(Q(λ))

of the λ-matrix Q(λ) = λ2I + λC + K has zeros precisely {λ1, . . . , λ2n}
and det(Q̃(λ)) has zeros precisely {µ1, . . . , µ2n−2 where Q̃(λ) is obtained
by deleting the last row and the last column of Q(λ).

5.4.3 Least Squares IEP

An Inverse Eigenvalue Problem, especially for the real-valued case, may not
necessarily have an exact solution. Moreover, the spectral information, in prac-
tice, often is obtained by estimation and hence it does not need to be rigorously
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obtained. That is, there are situations where an approximate solution in the
sense of least squares would be satisfactory. Problems we have hereinbefore
seen can be generalized to the least squares formulation. However, any inverse
eigenvalue problem has two constraints. Thus depending on which constraint
is to be enforced explicitly, two ways of defining a least squares approximation
are possible.

One natural way is to measure and to minimize the discrepancy among the
eigenvalues:

(LSIEPa) Given a set of scalars {λ∗1, . . . , λ∗m} ⊂ F(m ≤ n), find a matrix
X ∈ N and a set σ = {σ1, . . . , σm} of indices with 1 ≤ σ1 < · · · < σm ≤ n

such that the function

F (X, σ) :=
1

2

m∑
i=1

(λσi(X)− λ∗i )2, (5.9)

where λi(X), i = 1, . . . , n are eigenvalues of the matrix X, is minimized.

Note that the set of prescribed eigenvalues has cardinality m which might be
less than n. Consequently, associated with the LSIEP for each fixed X is
always a combinatorics problem

min
1≤σ1<···<σm≤n

m∑
i=1

(λσi(X)− λ∗i )2, (5.10)

that looks for the closest match between a subset of spectrum of X and the
prescribed eigenvalues.

Another way to formulate the least squares approximation is to measure
and to minimize the discrepancy between the matrices:

(LSIEPb) Given the set M whose elements satisfy a certain spectral con-
straint and a set N that defines a structural constraint, find X ∈ M
that minimizes the function

F (X) :=
1

2
‖ X − P (X) ‖2, (5.11)

where P (X) is the projection of X onto N .

The spectral constraint could be,for example, the isospectral surface

W(Λ) = {X ∈ R(n) | X = QTΛQ,Q ∈ O(n)} ⊂ S(n)
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where the complete spectral Λ := diag{λ1, . . . , λn} is given, or the set

W(Γ, V ) := {X ∈ R(n) or S(n) | XV = V Γ},

where only a portion of eigenvalues Γ := diag{λ1, . . . , λk} and eigenvalues V :=

[v1, . . . , vk] are given. Note that if F (X) = 0 at a least square solution, then we
have also solved the inverse eigenvalue problem of finding X ∈ N that satisfies
M. So a general SIEP can be solved through the setup of an LSIEPb.

For engineering applications, it is mostly the case that the realizability of
the physical system is more critical than the accuracy of the eigenvalues. That
is, the structural constraintN has to be enforced in order that the construction
of a physical system be realizable whereas a discrepancy in the eigenvalues is
sometimes tolerable because often these eigenvalues are an estimate anyway.

There are several variations to the LSIEP. In the LSIEPa it can be noted
that the number of variable parameters for adjusting the matrix X, for exam-
ple, the degree of freedom in N , could be different from the dimension n. One
special case of the LSIEPa where the number l of free parameters might also
differ from the number m of the partially prescribed eigenvalues:

(LSIEPa1) N = {A(d) = A0+
l∑

i=1

diAi | A0, A1, . . . , Al ∈ S(n) given}, F = R.

Problem LSIEPa1 may be seen in terms of LSIEPb. For a given Λ∗m :=

diag{λ∗1, . . . , λ∗m}, consider the subset

Γ := {Q diag(Λ∗m,Λc)Q
T ∈ O(n),Λ ∈ DR(n−m)} (5.12)

and the affine subspace
A := {A(d) | d ∈ Rl} (5.13)

with A(d) defined in LSIEPa1. Since Γ contains all symmetric matrices in
R(n×n) with λ∗1, . . . , λ∗m ass part of the spectrum, finding the shortest distance
between A and Γ would be another meaningful least squares approximation.
The problem can be formulate as follows:

(LSIEPb1) Find d ∈ Rl, Q ∈ O(n), and Λc ∈ DR(n − m) such that the
function

G(d,Q,Λ) :=
1

2
‖ A(d)−Q diag(Λ∗m,Λc)Q

T ‖2F , (5.14)

is minimized.
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Other variations of LSIEPb include:

(LSIEPb2) M =W(Λ), N = {A}.

(LSIEPb3) M =W(Λ), N = {all Toeplitz matrices in S(n)}.

(LSIEPb4) M =W(Γ, V ), N = {A} and N = R(n) or S(n).

5.4.4 Partially Described IEP

In the reconstruction of a system, instead of knowing the complete spectrum,
there are also situations where only a portion of eigenvalues and eigenvectors
are available. This is especially the case when due to the complexity or the size
of the physical system, no reasonable analytical tools are available to evaluate
the entire spectral information. This is the case where a Partially described
IEP arises. A generic PDIEP is as follows:

(PDIEP) Given vectors {v(1), . . . , v(k)} ⊂ Fn and scalars {λ1, . . . , λk} ⊂ F
where 1 ≤ k < n, find a matrix X ∈ N such that Xv(i) = λiv

(i) for
i = 1, . . . , k.

We could also consider the following variations:

(PDIEP1) F = R, N = {all Toeplitz matrices in S(n)}.

(PDIEP2) F = R, N = {all Jacobi matrices in S(n)}.

(PDIEP3) F = R, N = {all pre-symmetric Jacobi matrices in S(n)}.

Other variations of the PDIEP include:

(PDIEP4) Given two distinct scalars λ, µ,∈ R and two non-zero vectors
x, y ∈ Rn, find two Jacobi matrices J and J̄ so that Jx = λx and
J̄y = µy, where J and J̄ differ only in the (n, n) position.

(PDIEP5) Given distinct scalars {λ1, . . . , λn} ⊂ R and a non-zero vector
x ∈ Rn, find a Jacobi matrix J such that λ(J) = {λ1, . . . , λn} and that
either Jx = λ1x or Jx = λnx.

(PDIEP6) Construct an n× n symmetric band matrix of bandwidth p from
the knowledge of all the eigenvalues and the first p components of all the
normalized eigenvectors.
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5.5 Ballantine’s Theorem and Stability

In chapter 3 we have seen that a multi-agent system can be controlled by
relatively simply laws when its formation is modelled by a 2-reachable complex
weighted digraph. More specifically, the control of a multi-agent formation can
be done via the complex Laplacian associated to the sensing digraph modelling
the formation itself. In both single-integrator kinematics and double-integrator
dynamics what it turned out is that the stability of the whole system, that is,
the capability of the agents to reach the desired planar formation depends on
the stability of the Laplacian matrix. In other words, the multi-agent system
is able to reach a planar formation if and only if the matrix

−DL (5.15)

has all stable eigenvalues. Moreover, since the formation of n agents has two
co-leaders and none of them have incoming edges, the Laplacian matrix can
then be written as

L =

[
02×2 02×(n−2)

Llf Lff

]
(5.16)

from which it is clear that two of the n eigenvalues are zero. Then the stability
issue involves only a Laplacian sub-matrix, the follower-follower matrix Lff .
What is needed to find, is a complex diagonal matrix M such that matrix D
is:

Single-Integrator Kinematics

D =

[
I2×2 0

0 M

]
, (5.17)

Double-Integrator Dynamics

D =

[
I2×2 0

0 εM

]
, (5.18)

and matrix (5.15) is stable.
The problem we must solve is a Multiplicative Inverse Eigenvalue Problem,

a special case of the Parametrized Inverse Eigenvalue Problem we have already
encountered in section 5.4.1. More precisely, having that

Lff ∈ C(m×m) and M ∈ Dc(m), m = n− 2, (5.19)
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the problem is what has been denoted as MIEP3, a variant of the MIEP.
Fortunately, a theorem for the existence of the solution of such a problem has
been yielded by Friedland (theorem 5.2) which states that the solution exist
if and only if all principal minors of Lff are non-null. Unfortunately, there is
no efficient algorithm to find such a solution (see [14]). In order to solve the
stabilization problem then, a different way should be found. As stated in [29],
Ballantine’s theorem ensure that the diagonal matrix can be computed one
element at a time and it can suggest a valuable algorithm for our purpose.

The existence of a stabilizing matrix has been stated by Ballantine too [5]
both for the real and the complex case. More precisely, Ballantine stated that
a complex diagonal matrix which makes eigenvalues positive or with positive
real parts could exist. This is what we need since, with such a matrix, matrix
(5.15) would have all stable eigenvalues.

Theorem 5.3 states the existence for the real case.

Theorem 5.3 (Real case). Let A be an m×m real matrix all of whose leading
principal minors are positive. Then there is an m×m positive diagonal matrix
M such that all the roots of MA are positive and simple.

Proof: In order to prove the statement induction on m is used. For m = 1 the
result is trivial, so suppose that m ≥ 2 and that the result holds for matrices
of order m− 1. Let A be an m×m real matrix all of whose leading principal
minors are positive and let A1 be its leading principal sub-matrix of order
m − 1. Then all the lpm’s of A1 are positive, so by our induction assertion
there is a positive diagonal matrix M1 of order m − 1 such that all roots of
M1A1 are positive and simple. Let d be a real number to be determined later
(but treated as a variable for the present). Let A be partitioned as follows:

A =

[
A1 A2

A3 A4

]
,

where A4 is 1× 1. Define an m×m diagonal matrix M (depending on d) by
conformable partition:

M =

[
M1 0

0 d

]
.

Let MA = C(d), where now we emphasize the dependence on d. Then

C(0) =

[
M1A1 M1A2

0 0

]
,
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so the non-zero roots of C(0) are just those of M1A1, hence are positive and
simple (and there are exactly m− 1 of them). C(0) also has a simple root at
zero. Thus for all sufficiently small d > 0 the real parts of the roots of C(d)

are (still) m distinct real numbers at least n − 1 of which are positive. (This
follows from the fact that the roots of C(d) are continuous functions of d.)
Choose some such d. Then the roots of C(d) are still real and simple (since
non-real roots must occur in conjugate pairs) and at least m − 1 of them are
positive. But the determinant of C(d) is positive since those of A and M are,
so in fact all m roots of C(d) are positive. This conclude the proof of the
induction step and hence of the theorem.

Note that this same kind of argument can be used to prove that, when A
is an m × m complex matrix all of whose leading principal minors are non-
zero and also an open sector containing the positive real axis is prescribed,
this same kind of argument yields a complex m×m diagonal matrix M such
that all the roots of MA lie in the prescribed sector. Theorem 5.4 states the
existence for the complex case.

Theorem 5.4 (Ballantine(1970)). Let A be an m ×m complex matrix all of
whose leading principal minors are non-zero. Then there is an m×m complex
diagonal matrixM such that all the eigenvalues ofMA are positive and simple.

As described in the proof of theorem 5.3, the diagonal matrix M can be
found step by step computing the diagonal elements one at a time, both in the
real and the complex case. This leads to algorithm 5.1 which fundamentally
works searching for the diagonal elements of M and verifying whether the real
part of the eigenvalues is positive. The algorithm has been implemented in
two different manners. What distinguishes the two realizations is the way in
which eigenvalues are considered. In the first implementation the eigenvalues
are computed for each di tried, while in the second implementation (sec. 5.6)
no eigenvalue is computed but a bounding for them is considered. Moreover,
in order to improve the algorithm convergence, different ways to pick elements
di from W are tried.

5.5.1 Simulations

The first implementation of the Ballantine’s algorithm has been made by com-
puting the eigenvalues of the matrixM[1∼i]Lff [1∼i] at each step i. The elements
di to be tried has been picked from the set W in different ways.
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Algorithm 5.1 Stabilization by a complex Diagonal matrix
Require: Lff , dim(Lff ) = m
for i = 1, . . . ,m do
for di ∈ W ⊂ C do
M[1∼i] = diag(d1, . . . , di)
A[1∼i] = M[1∼i]Lff [1∼i]
σ(A[1∼i]) = {λ1, . . . , λi}
if <{λk} > 0, for k = 1, . . . i then
step to the next i

else
try a new di ∈ W

end if
end for

end for
return M = diag(d1, . . . , dm)

In figure (5.3) an example of search into W can be seen. Elements di are
chosen so that they belongs to straight lines parallel to the imaginary axis. In
fact, as soon as the real part dr,i of the element is chosen, all the imaginary
parts that belong to the segment which points have real part dr,i are picked,
and elements di are tried.

Figures (5.4) and (5.5) show instead a circular setW . In the first, elements
di are searched along the straight lines which cross the axis in their origin.
The direction can be modified so that the entire set W is spanned. In figure
(5.5) instead, elements di are chosen along circles centred in the origin of the
complex plane. Set W is completely spanned by varying the radius of the
circle.

Re

Im

W
di = dr,i + ιdm,i

Figure 5.3: Set W and search strategy for Ballantine’s-based algorithm. Elements
di are chosen from segments parallel to the imaginary axis.

Let us have the sensing digraph and the formation basis depicted in figure
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Re

Im

arg(di)

W
di = dr,i + ιdm,i = |di| eι arg(di)

Figure 5.4: Set W and search strategy for Ballantine’s-based algorithm. Elements
di are chosen from segments with variable direction.

Re

Im

W
di = dr,i + ιdm,i = |di| eι arg(di)

Figure 5.5: Set W and search strategy for Ballantine’s-based algorithm. Elements
di are chosen from circles with variable radius.

(5.6). The corresponding Laplacian matrix is

L =


0 0 0 0 0

0 0 0 0 0

−1− ι −1 + ι 2 0 0

−1 + ι 0 −2 1− 3ι 2 + 2ι

0 0 2ι −1− ι 1− ι

 , (5.20)

and conditions Lξ = 0 and L1n = 0 hold. The eigenvalues of L are

σ(L) = {0, 0, 2, 2.2496− 3.6ι,−0.2496− 3.6ι}, (5.21)

where two of them are zero as expected. However, one of the eigenvalues of
the follower-follower Laplacian has negative real part so a diagonal matrix
must be found in order to condition that eigenvalue and have all eigenvalues
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1 2

3

4 5

ξ =


0
2

1− ι
−2ι

2− 2ι



Figure 5.6: Formation basis and sensing digraph.

with positive real part. Matrix Lff has non-zero leading principal minors
so the Ballantine’s theorem holds without a relabelling being necessary. The
algorithm yields the following solution

M1 =

0.5 0 0

0 0.1ι 0

0 0 0.2ι


and the new eigenvalues of the conditioned follower-follower Laplacian matrix
M1Lff are

σ(Lff ) = {1, 0.0564− 0.0436ι, 0.4436 + 0.3436ι},

with all positive real parts as desired. This solution has been obtained by the
algorithm with the search model depicted in figure (5.3), that is the one which
search elements di along straight lines parallel to the imaginary axis. If the
search method depicted in figure (5.4) is used, the following solution is found

M2 =

0.5 0 0

0 0.2 + 0.0405ι 0

0 0 −0.2 + 0.4370ι


and the eigenvalues of M2Lff are

σ(Lff ) = {1, 0.0096− 0.2954ι, 0.5490 + 0.3729ι}.

The third search method, depicted in figure (5.5), yields the following so-
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lution instead

M3 =

0.5 0 0

0 0.0980 + 0.0199ι 0

0 0 0.0732 + 0.0682ι

 ,
and the new eigenvalues of M3Lff are

σ(Lff ) = {1, 0.2974− 0.2256ι, 0.0015− 0.0536ι}.

What we have obtained, is the proof that not only does Ballantine’s algorithm
ensure that a stabilizing matrix can be found computing its diagonal elements
one at a time, but also verifying the existence of different solutions to the
problem.

The main drawback on this approach is that Ballantine-based algorithm
does not converge as the matrix order increase. This is a problem that could
depend on factors such as the difficulties in computing exactly the eigenval-
ues of high order complex matrices and the finiteness of the set W in which
elements di are searched for. Moreover, it has been noted that many times a
change in the first diagonal element d1 changes the entire solution or at least
some other diagonal elements di, especially when d1 is chosen out of the setW .
It could suggest that for matrices of higher order not only would be important
where the solution is searched but also from which point the search starts.
This fact could affect the convergence of the algorithm as well as the other
two aforementioned reasons. Unfortunately the positions of the solutions are
unpredictable and then there is not a rigorous way to choose where to search
for a solution and where to start from.

5.6 Bounding the Eigenvalues of a Complex Ma-

trix

Eigenvalues of a complex matrix can be bounded in several ways. Examples
of bounds can be seen in [36], [37], and [43] where circular and rectangular
regions containing the eigenvalues are defined for a complex square matrix.

In particular, in [36] the following bound is presented.

Rectangular Region Let A be a complex matrix of order n, with eigenvalues
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Figure 5.7: Rectangular bound for the eigenvalues of a complex square matrix.

λ1, . . . , λn. Then all of the eigenvalues lie in the rectangle[
<(tr(A))

n
−αj,

<(tr(A))

n
+αj

]
×
[
=(tr(A))

n
−βj,

=(tr(A))

n
+βj

]
, (5.22)

Parameters αj and βj are

αj =

(
n− 1

n

) 1
2
((

kj(A) + <(tr(A2))

)
− (<(tr(A)))2

n

) 1
2

, (5.23)

and

βj =

(
n− 1

n

) 1
2
((

kj(A) + <(tr(A2))

)
− (=(tr(A)))2

n

) 1
2

, (5.24)

for j = 1, 2, 3. The rectangular region then varies with j and is tighter
for k3(A) that has the following expression:

k3(A) =

((
|A|2 − | tr(A)|2

n

)2

− |AA
∗ − A∗A|2

2

) 1
2

+
| tr(A)|2

n
. (5.25)

This bound describes, in the complex plane, a rectangular region which con-
tains all the eigenvalues of a complex square matrix. As it can be seen from
the equations above, αj and βj are positive quantities, and the rectangle is the
one in figure (5.7).

The main idea is to use algorithm 5.1 with the described bound instead
of computing the eigenvalues at each step. That is, at each step, element di
must be found so that the rectangular region for matrix M[1∼i]Lff [1∼i] is in the
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right half of the complex plane. To ensure that, it suffices to find elements di
for the left side of the rectangle so that <(tr(A))

n
− αj is positive. That is, the

conditions to be verified are:

<(tr(A))

n
> 0, (5.26)

<(tr(A))

n
> αj. (5.27)

From condition (5.26) we obtain a bound for the set W . Suppose we are
at the step k of the algorithm and A[1∼k−1] has been already stabilized. Since
n > 0, we are interested in the sign of the trace of A[1∼k]. Then, we can write

<(tr(A))

n
> 0⇒ ηkR+dkRlkkR−dkI lkkI > 0⇒ dkRlkkR > dkI lkkI−ηkR, (5.28)

where ηkR =
k−1∑
h=1

dhlhh is the real part of the trace of matrixM[1∼k−1]Lff [1∼k−1].

Depending on the sign of lkkR, we have:

if lkkR > 0

dkR > dkI
lkkI
lkkR
− ηkR
lkkR

, (5.29)

if lkkR < 0

dkR < dkI
lkkI
lkkR
− ηkR
lkkR

. (5.30)

Consequently, we can write

sign(lkkR)dkR > dkI
lkkI
|lkkR|

− ηkR
|lkkR|

. (5.31)

Equation (5.31) is describing nothing more than a sub-plane bounded from a
straight line of the form

yk = dkImk − qk, (5.32)

where yk = sign(lkkR)dkR, mk = lkkI
|lkkR|

and qk = ηkR
|lkkR|

. That sub-plane is our
set W . In figures (5.8) and (5.9) the two possible sub-planes are depicted.

In summary, elements di can be found in the following way:

1. chose a range for dkI ,

2. for each dkI compute
ŷk = dkImk − qk,
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Figure 5.8: Set W = {dk ∈ C : sign(lkkR)dkR > dkI
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ηkR
|lkkR|} and

lkkI
|lkkR| > 0.
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Figure 5.9: Set W = {dk ∈ C : sign(lkkR)dkR > dkI
lkkI
|lkkR| −

ηkR
|lkkR|} and

lkkI
|lkkR| < 0.

130



that is the minimum value for ŷk such that ˆdkR sign(lkkR)ŷk,

3. chose yk = ŷk + e, where e > 0 and let e varies in a positive range,

4. compute dkR = sign(lkkR)yk.

The algorithm has been tested in Matlab and the code is shown in appendix
G. Unfortunately the bound results to be too loose and the algorithm is not
able to converge.
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Chapter 6

Application to a Planar
Multi-Agent Formation

In chapter 3 we have seen how a multi-agent planar formation can be con-
trolled by simply laws that exploits the complex Laplacian of the sensing di-
graph which represents the formation itself. In addition, in chapters 4 and 5
algorithms to make the formation control work in practice have been discussed.

In this chapter simulations are presented both for the single-integrator
kinematics and the double-integrator dynamics case, in sections 6.1 and 6.2
respectively. We will apply what we have hereinbefore seen to the agents’
planar formation of figure (6.1), where both formation basis and sensing di-
graph are shown. As it can be verified from figure (6.1a) the sensing digraph
is 2-reachable. In fact, for the Laplacian matrix (6.1) of the sensing digraph,
algebraic conditions Lξ = 0 and det(Lff ) 6= 0 are verified and then theorem
3.2 holds.

Laplacian Matrix

L =


0 0 0 0 0
0 0 0 0 0

−2− 2ι 2− 2ι −12 12 + 4ι 0
0 −1 + 2ι 1 4− 2ι −4

−2− 2ι 0 0 −4 + 4ι 6− 2ι

 (6.1)

Follower-Follower Laplacian Matrix

Lff =

−12 12 + 4ι 0

1 4− 2ι −4

0 −4 + 4ι 6− 2ι

 (6.2)

The 2-reachability condition is very important because assures that the
formation can asymptotically reach the desired planar formation. The only
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Figure 6.1: Planar formation and sensing digraph for a MAS. The blue dots represent
the leaders of the formation while the black ones are the followers.

problem is in the eigenvalues of the matrix Lff which are

σ(Lff ) = {−12.7411− 0.2966ι, 1.0328− 0.0201ι, 9.7083− 3.6833ι}.

In order to reach the desired planar formation these eigenvalues must have
positive real parts. In this case however, the follower-follower Laplacian matrix
has one eigenvalue with negative real part, and then L needs to be stabilized
by a complex diagonal matrix. This is possible since matrix Lff has non-null
leading principal minors and then Ballantine’s theorem holds.

A possible solution that leads to stability is the following complex diagonal
matrix

M =

−3.233 0 0

0 1.14 + 0.58ι 0

0 0 1.326− 0.02ι

 , (6.3)

which gives new eigenvalues

σ(DL) = {0, 0, 37.6328− 1.243ι, 1.4205 + 0.3924ι, 13.3787− 1.8814ι},

with positive real parts as desired.

Thus, the Laplacian matrix will be stabilized by the diagonal matrix

D =


1 0 0 0 0

0 1 0 0 0

0 0 −3.233 0 0

0 0 0 1.14 + 0.58ι 0

0 0 0 0 1.326− 0.02ι

 . (6.4)

The agents formation will asymptotically converge to the planar formation Fξ
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given by equation (6.9) with the complex Laplacian matrix −DL.
In order to test the Laplacian-based control, both examples of a planar

formation with and without a input are shown. For this reason, it is useful
to remember which is the internal state evolution for a system modelled by a
state space representation. The general form of a time invariant system state
space is

ẋ = Ax+Bu, (6.5)

where vector x = [x1, . . . , xk]
T is the system state vector and u = [u1, . . . , um]

is the input vector. In case that no inputs are given, the state space equation
is

ẋ = Ax, (6.6)

that is a homogeneous differential equation. The solution of equation (6.6) is

x(t) = eA(t−τ) x(τ), (6.7)

where τ is a generic instant of time for which the value of the internal state
x is known. In case of non-null inputs, equation (6.5) is a non-homogeneous
differential equation which has forced solution

x(t) = eA(t−τ) x(τ) +

t∫
τ

eA(t−α)Bu(α) dα . (6.8)

The convolution integral shown in equation (6.8) is the forced response of the
system, which takes account of the system response due to the non-null input
u.

Those equations will be of importance in the following sections when the
convergence of a planar formation will be shown both for the null and non-null
input cases.

6.1 Single-Integrator Kinematics

The single-integrator kinematics case has been fully described in subsection
3.3.1 where conditions to make possible the control of a planar formation were
given. The 2-reachability is one of them and it has an algebraic form that is
described in theorem 3.1 which also gives a practical formula to find the planar
formation Fξ. In fact, the aforementioned theorem states that if and only if
conditions Lξ = 0 and det(Lff ) 6= 0 are satisfied, then the planar formation
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Fξ = c11n + c2ξ can be reached and constants c1 and c2 can be found from the
following expression: [

c1

c2

]
=

[
1 ξ1

1 ξ2

]−1 [
z̄1

z̄2

]
. (6.9)

where z̄1 and z̄2 are the leaders positions. Since det(Lff ) =6= 0, then a planar
formation can be reached. Nonetheless, the eigenvalues of L are

σ(L) = {0, 0,−12.7411− 0.2966ι, 1.0328− 0.0201ι, 9.7083− 3.6833ι} (6.10)

and then matrix L needs to be stabilized by a diagonal matrix D of the form

D =

[
I2×2 0

0 M

]
, (6.11)

as previously shown. Since M has been found, every planar formation Fξ with
the complex Laplacian matrix DL can be asymptotically reached.

The single-integrator kinematics case yields the following interaction laws
for the agents in order to make them reach a planar formation while movingvi = v0(t), i = 1, 2;

vi =
∑

j∈Ni wij(zj − zi) + v0(t), i = 3,· · · , n.
(6.12)

Note that v0(t) is the synchronized velocity of the leaders and it has to be
known by the followers as well. Since the control law is żi = vi, equation
(6.12) takes the following compact form

ż = −DLz + bv0(t), (6.13)

where b = [1, 1, . . . , 1]T is an n-dimensional vector of ones so that the velocity is
available to all the agents, as a control input for the leaders and as a parameter
for the followers. In case of v0(t) = 0, that is no control input is given, the
state space representation will be of the form

ż = −DLz. (6.14)

Equations (6.13) and (6.14) represent the forced and unforced case for which
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the solutions are the ones given in equations (6.8) and (6.7) respectively:

z(t) = e−DL(t−τ) z(τ) +

t∫
τ

e−DL(t−α) bv0(α) dα, (6.15)

and
z(t) = e−DL(t−τ) z(τ). (6.16)

From equations (6.14) and (6.15) it can be easily seen why the matrix system
must have all stable eigenvalues. In fact the agents converge to a planar
formation with the eigenvalues of matrix −DL and if they are unstable no
convergence is possible at all.

In figure (6.2) a group of 5 agents randomly disposed is shown to converge
to the planar formation of figure (6.1). The asterisks represent the agents be-
fore reaching the planar formation while the triangles and the circles represent
respectively the leaders and the followers after reached the formation. Both
in experiment (6.2a) and (6.2b) leader agents have not been moved so aster-
isks and triangles have superposed one another. As it can be seen, when the
followers sense the leader agents they suddenly move to reach the designated
position next to them.

In figure (6.3) the forced evolution of a group of 5 agents is shown. The
leader agents are controlled by the following velocity input

v0(t) = 2t cos(0.1t) + ι0.5t sin(0.1t). (6.17)

In figure (6.3a) the evolution of the system in a time interval t ∈ [0, 12] is
shown. In figure (6.3b) the agents randomly disposed are shown to start mov-
ing while in figure (6.3c) the reached planar formation is shown. As it can be
seen, controlling the leader agents only, the followers react following them and
reaching the desired planar formation with the eigenvalues of −DL.
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Figure 6.2: Single integrator kinematics case. Agents reaching a planar formation.
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Figure 6.3: Single integrator kinematics case. Agents reaching a moving formation.
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6.2 Double-Integrator Dynamics

The double-integrator dynamics case has been fully described in subsection
3.3.2 where similar conditions to the single-integrator case have been given for
the formation to reach a stable planar formation. For example, theorem 3.6
gives conditions for a planar formation to be reached which are substantially
the same as the single-integrator case. In fact a planar formation Fξ = c11n +

c2ξ can be reached if and only if Lξ = 0 and det(Lff ) 6= 0, where constants c1
and c2 are again the solutions of system (6.9).

The Laplacian matrix of the sensing digraph is the same as before and it
needs to be stabilized by a diagonal matrix, although this time D have the
form

D =

[
I2×2 0

0 εM

]
, (6.18)

where ε > 0 is a scalar which can be chosen equal 1 in this case. Matrix M
has been previously found so that the non-null eigenvalues of DL are in the
open right half complex plane.

The double-integrator dynamics case yields the following interaction laws
for the agents in order to make them reach a planar formation while movingai = −γvi + a0(t), i = 1, 2;

ai =
∑

j∈Ni wij(zj − zi)− γvi + a0(t), i = 3,· · · , n.
(6.19)

Since the control laws are żi = vi and v̇i = ai then equation (6.19) can be
written in the following form[

ż

v̇

]
=

[
0n×n In

−DL −γIn

][
z

v

]
+ ba0(t), (6.20)

where b = [1, . . . , 1]T is a vector of ones. In case of a0(t) = 0, that is no control
input is given, the state space represents an unforced system as previously
seen. The forced case have solution[

z(t)

v(t)

]
= eH(t−τ)

[
z(τ)

v(τ)

]
+

t∫
τ

eH(t−α) ba0(α) dα, (6.21)
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while the unforced one has solution[
z(t)

v(t)

]
= eH(t−τ)

[
z(τ)

v(τ)

]
. (6.22)

In both cases the matrix H is the matrix of the system (6.20). Thus matrix
H is

H =

[
0n×n In

−DL −γIn

]
. (6.23)

Note that, given the non-null eigenvalues λi of matrix DL, the constant γ must
verify the condition given in theorem (3.7), that is

Re(λi)

(Im(λi))2
>

1

γ2
, i = 3, . . . , n. (6.24)

where n = 5 in our experiments. Since for the eigenvalues of the Laplacian
matrix (6.1) we have that

Re(λ3)

(Im(λ3))2
= 24.357,

Re(λ4)

(Im(λ4))2
= 9.2254,

Re(λ5)

(Im(λ5))2
= 3.7797,

then we are quite free in the choice of γ.
In figure (6.4) two groups of random agents are shown to reach a planar

formation. Both experiments have γ = 5. In figure (6.5) a group of random
agents is shown to reach a moving formation. The leaders were controlled by
an acceleration which have the following expression

a0(t) = 2t cos(0.1t) + ι1.5t sin(0.1t). (6.25)

The experiment have been done with γ = 5 and the evolution of the system
has been observed in a time interval t ∈ [0, 60]. In figure (6.5a) the trajectory
followed by the agents can be seen while in figure (6.5b) and (6.5c) the agents
can be observed in a random formation before the control input were applied
and in the moving desired formation afterwards.
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Figure 6.4: Double integrator dynamics case. Agents reaching a planar formation.
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Figure 6.5: Double integrator dynamics case. Agents reaching a moving formation.
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Chapter 7

Conclusion

In this work we have seen a new formation control approach that is based on
complex weighted sensing digraphs and their Laplacian matrices. The control
laws that this approach yields are locally and easily implementable with few in-
formation required from the other agents such as relative distance and leaders’
speed or acceleration. In chapter 3 the theory developed in [29] has been fully
presented both for the single-integrator kinematics and the double-integrator
dynamics case. What resulted is that in both cases the control of the agents
formation depends fundamentally on Ballantine’s theorem, to which is related
the permutation matrix problem. So, if an agents formation were to be con-
trolled and its Laplacian matrix were to have unstable eigenvalues, they would
be stabilized. In chapters 4 and 5 algorithms aimed to the stabilization of a
Laplacian matrix have been discussed.

In chapter 4 the permutation matrix problem has been discussed. The
problem is to find a permutation matrix P such that the matrix L̂ff = PLffP

T

has non-null leading principal minors. Two implementations have been yielded
both based on the backtracking design technique. Even though the number of
the solutions can be higher than one as experiments have shown, the worst case
complexity of both implementations is very high as shown from the following
expressions

Determinant-based algorithm

O (p(n)n!) = O

(
1

6
n4n!

)
, (7.1)
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Gauss-based algorithm

O (p(n)n!) = O

(
2

3
n3n!

)
. (7.2)

Nonetheless, experimental results have shown that for random generated La-
palcian matrices the most of the times a relabelling of the nodes were not
necessary.

In chapter 5 the stabilization problem has been discussed. System stabi-
lization, turned out to be a well known inverse eigenvalue problem, the MIEP.
The encountered multiplicative inverse eigenvalue problem consists in finding
a complex diagonal matrix that multiplied for the unstable matrix Lff yields
a new stable matrix. Unfortunately this problem, brilliantly mathematically
described by Friedland, has not an efficient algorithm in practice. To solve the
problem, an algorithm has been presented which is derived from Ballantine’s
theorem. Nonetheless, the practical issues in complex numbers computation
limit the order of the matrix to be stabilized. A second problem is that, even
if a solution is found, the resulting stable eigenvalues cannot be chosen as de-
sired. This results to be an issue for a practical use of the control technique.
In fact, if the stable eigenvalues cannot be chosen, the agents could converge
to a stable formation in unpredictable ways. In order to have a smooth and
rapid convergence, eigenvalues should have a small imaginary part, in order to
suffer from oscillations the less as possible and a high real part. For example,
let us have the formation basis and the sensing digraph already seen in chapter
6. A possible Laplacian matrix is

L =


0 0 0 0 0

0 0 0 0 0

4 + 1ι −5− 3ι 5 + 6ι −4− 4ι 0

0 −5− 2ι 5− 4ι −4 + 22ι 4− 16ι

−5− 2ι 0 0 −4 + 10ι 9− 8ι


which has eigenvalues

σ(L) = {0, 0,−1.5268 + 18.3388ι, 9.4885− 0.7229ι, 2.0383 + 2.3842ι}.
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Figure 7.1: Example of a group of 5 double-integrator agents with a slow convergence
to a planar formation.

A possible solution matrix for the stabilization of Lff is

M =

0.0820− 0.0984ι 0 0

0 −10ι 0

0 0 0.2ι


yielded from Ballantine-based algorithm. The new eigenvalues of −DL are

σ(−DL) = {0, 0,−218.74− 39.45ι,−0.56 + 0.16ι,−0.11 + 1.09ι}.

In figure (7.1) a group of 5 random agents modelled by the double-integrator
dynamics is shown to converge to a planar formation with eigenvalues σ(−DL).
The system has been observed for a time interval [0, 320] and γ = 5 has been
used. As it can be seen, the agents converge to the right planar formation
but the eigenvalues with the small real part make the convergence longer and
many cycles forms before the follower agents converging to the final positions.

In summary, agents formation control via complex Laplacian is a powerful
formation control approach in order to make a group of agents move in the
plane in a coordinated and predetermined way. The algorithms discussed have
their limits which can make difficult to apply the technique in practice. Still
they can be used for further research, for example in practical applications such
as collision avoidance and limited sensing capability. Other interesting prob-
lems to be address includes for example how to avoid collisions and maintain
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the links by simply adjusting the complex weights in the control law [29].
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Appendix A

Direct Matrices Operations

Let A1 ∈ F(n1×n1), A2 ∈ F(n2×n2), . . . , Ak ∈ F(nk×nk) be k square matrices of
different dimensions such that n =

∑k
i=1 ni. The matrix direct sum of those

matrices (see [26]),
A = A1 ⊕ A2 ⊕ · · · ⊕ Ak, (A.1)

is the block diagonal matrix with the matrices Ai down the diagonal. That is,

A =


A1 0

. . .

0 Ak

 , (A.2)

where A ∈ F(n×n). As it can be seen, matrix A is nothing else than a matrix
written in the Jordan canonical form. Hence, properties of that form holds for
the result of a direct sum of matrices.

Let A ∈ F(mtimesn) and B ∈ F(p×q) be two matrices. The direct product of A
and B (see [26]), is defined to be the matrix C ∈ F(mp×qn) such that

C = A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2B · · · amnB

 . (A.3)

This matrix operation is also known as the Kronecker product or the tensor
product. Let λi and βj be the eigenvalues of A and B respectively. Then, the
following properties hold:

• eigenvalues of A⊗B are {λiβj}, for i = 1, . . . ,m and j = 1, . . . , n;
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• eigenvalues of (A ⊗ In) + (Im ⊗ B) are {λi + βj}, for i = 1, . . . ,m and
j = 1, . . . , n.
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Appendix B

Gauss Elementary Matrices

A Gauss Elementary Matrix (Gauss transformation)(see [35]) is defined as
follows

Mk = I −mke
T
k , (B.1)

where I is the identity matrix, ek = (0, . . . , 1, . . . , 0)T is the k-th vector of the
canonical basis and

mk = (0, . . . , 0,mk+1,k,mk+2,k, . . . ,mkn)T . (B.2)

If we pre-multiply a square matrix A for a Gauss elementary matrix, we will
have the following result:

MkA =



1
. . .

1

−mk+1,k 1

−mk+2,k 1
... . . .

−mn,k 1





a1

...
ak

ak+1

ak+2

...
an


=



a1

...
ak

ak+1 −mk+1,ka
k

ak+2 −mk+2,ka
k

...
an −mn,ka

k


,

where matrix A has been represented by its vector rows ai. as it can be seen,
Mk affects only the rows of A from k (index of the Gauss elementary matrix)
to n.

MatrixMk has the following properties:

1. the inverse ofMk is still a Gauss Elementary matrix

M−1
k = I + mke

T
k ; (B.3)
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2. the product of the inverse of two Gauss Elementary matrices with in-
creasing index, can be obtained in the following way

M−1
k M

−1
k+r = I + mke

T
k + mk+re

T
k+r. (B.4)

Gauss Elementary matrices are usually used in order to represent the LU
factorization of a matrix.
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Appendix C

Matrices and Vector Spaces

Let us have a matrix A ∈ F(m×n). Rows and columns of A can be seen as
vectors which describe vector spaces (see [26]). The following definitions are
related to that point of view.

• The range of A, denoted by range(A), is the set of all linear combination
of the columns of A. That is,

range(A) = {Ax|x ∈ Fn} ⊆ Fm. (C.1)

If A = [a1 a2 . . . an], then range(A) = Span(a1, a2, . . . , an). The range
of A is also called column space or image space.

• The row space of A, denoted by RS(A), is the set of all linear combina-
tions of the rows of A. That is,

RS(A) = {yTA|yT ∈ Fm} ⊆ Fn. (C.2)

If A = [b1 b2 . . . bm], then RS(A) = Span(b1, b2, . . . , bm). Note that the
row space of A equals the column space of the transpose of A, that is,
RS(A) = range(AT ).

• The null space or kernel of A, denoted by ker(A), is the set of all solutions
to the homogeneous equation Ax = 0. That is,

ker(A) = {xn×1|Ax = 0} ⊆ Fn. (C.3)

The dimension of the null space is called the nullity of A and is denoted
by null(A).
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• The left-hand null space of A is the set of all solutions to the left-hand
homogeneous system yTA = 0T . That is,

ker(AT ) = {ym×1|ATy = 0} ⊆ Fm. (C.4)

• The rank of A, denoted by rank(A), is the number of leading entries in
the reduced row echelon form of A (or any row echelon form of A).

Let us have a matrix A ∈ F(m×n). The following properties hold (see [26]).

1. The range of A is a subspace of Fm.

2. The columns of A corresponding to the pivot columns in the reduced
row echelon form of A (or any row echelon form of A) give a basis for
range(A). Let v1, v2, . . . , vk ∈ Fm. If matrix A = [v1 v2 . . . vk], then a
basis for range(A) will be a linearly independent subset of v1, v2, . . . , vk
having the same span.

3. dim(range(A)) = rank(A).

4. The kernel of A is a subspace of Fn.

5. If the reduced row echelon form of A (or any row echelon form of A) has
k pivot columns1, then null(A) = n− k.

6. If two matrices A and B are row equivalent, then RS(A) = RS(B).

7. The row space A is a subspace of Fn.

8. The pivot rows2 in the reduced row echelon form of A (or any row echelon
form of A) give a basis for RS(A).

9. RS(A) = rank(A).

10. rank(A) = rank(AT ).

11. Dimension Theorem For any A ∈ F(m×n),

n = rank(A) + null(A).

Similarly,
m = dim(RS(A)) + null(AT ).

1A pivot column in a matrix is a column which contains a pivot element.
2A pivot row in a matrix is a row which contains a pivot element.
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12. A vector b ∈ Fm is in range(A) if and only if the equation Ax = b has
a solution. So range(A) = Fm if and only if the equation Ax = b has a
solution for every b ∈ Fm.

13. A vector a ∈ Fn is in RS(A) if and only if the equation ATy = a has
a solution. So RS(A) = Fn if and only if the equation ATy = a has a
solution for every a ∈ Fn.

14. If a is a solution to the equation Ax = b, then a+ v is also a solution for
any v ∈ ker(A).

15. If A ∈ Fm×n is rank 1, then there are vectors v ∈ Fm and u ∈ Fn so that
A = vuT .

16. If A ∈ F(m×n) is rank k, then A is a sum of k rank 1 matrices. That is,
there exist A1, . . . , Ak with A = A1 + A2 + · · · + Ak and rank(Ai) = 1,
for i = 1, . . . , k.

17. The following are all equivalent statements about a matrix A ∈ F(m×n).

(a) The rank of A is k.

(b) dim(range(A)) = k.

(c) The reduced row echelon form of A has k pivot columns.

(d) A row echelon form of A has k pivot columns.

(e) The largest number of linearly independent columns of A is k.

(f) The largest number of linearly independent rows of A is k.

18. Rank Inequalities (Unless specified otherwise, assume thatA,B ∈ F(m×n).)

(a) rank(A) ≤ min(m,n).

(b) If a new matrix B is created by deleting rows and/or columns of a
matrix A, then rank(B) ≤ rank(A).

(c) rank(A+B) ≤ rank(A) + rank(B).

(d) If A has a p× q submatrix of 0s, then rank(A) ≤ (m− p) + (n− q).

(e) If A ∈ F(k×n), then

rank(A) + rank(B)− k ≤ rank(AB) ≤ min{rank(A), rank(B)}.

19. Rank Equalities
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(a) If A ∈ C(m×n), then rank(A∗) = rank(AT ) = rank(Ā) = rank(A).

(b) If A ∈ C(m×n), then rank(A∗A) = rank(A). If A ∈ R(m×n), then
rank(ATA) = rank(A).

(c) Rank is unchanged by left or right multiplication by a nonsingular
matrix. That is, if A ∈ F(n×n) and B ∈ F(m×m) are nonsingular,
and M ∈ F(m×n), then

rank(AM) = rank(M) = rank(MB) = rank(AMB).

(d) If A,B ∈ F(m×n), then rank(A) = rank(B) if and only if there
exist nonsingular matrices X ∈ F(m×m) and Y ∈ F(n×n) such that
A = XBY (i.e., if and only if A is equivalent to B).

(e) If A ∈ F(m×n) has rank k, then A = XBY , for some X ∈ F(m×k),
Y ∈ F(k×n), and nonsingular B ∈ F(k×k).

(f) If A1 ∈ F(n1×n1), . . . , Ak ∈ F(nk×nk), then rank(A1 ⊕· · · ⊕ Ak) =

rank(A1) +· · ·+ rank(Ak).

20. Let A,B ∈ F(n×n) with A similar to B.

(a) A is equivalent to B.

(b) rank(A) = rank(B).

(c) tr(A) = tr(B).

21. Equivalence of matrices is an equivalence relation on F(m×n).

22. Similarity of matrices is an equivalence relation on F(n×n).

23. If A ∈ F(m×n) and rank(A) = k, then A is equivalent to
[
Ik 0
0 0

]
, and so

any two matrices of the same size and rank are equivalent.

24. If A ∈ R(n×n), then for any x ∈ RS(A) and any y ∈ ker(A), xTy = 0. So
the row space and kernel of a real matrix are orthogonal to one another.
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Appendix D

Faulhaber’s Formula

The general formula for the power sum of the first n positive integers was
named after Johann Faulhaber (see [41]). He published in a 1631 edition of
Academiae Algebrae the derivation of the first seventeen polynomials of the
form

n∑
k=1

kp = 1p + 2p + 3p + · · ·+ np,

but the general formula was written in a closed form when Bernoulli numbers
where discovered. The formula is

n∑
k=1

kp = Hn,−p =
1

p+ 1

p+1∑
i=1

(−1)δip
(
p+ 1

i

)
Bp+1−in

i, (D.1)

where Hn,r is a generalized harmonic number, δip is the Kronecker delta,
(
n
i

)
is a binomial coefficient and Bi is the i-th Bernoulli number.

The sums for p = 1, . . . , 7 result in:

p = 1
n∑
k=1

k =
1

2
(n2 + n)

p = 2
n∑
k=1

k2 =
1

6
(2n3 + 3n2 + n)

p = 3
n∑
k=1

k3 =
1

4
(n4 + 2n3 + n2)

p = 4
n∑
k=1

k4 =
1

30
(6n5 + 15n4 + 10n3 − n)
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p = 5
n∑
k=1

k5 =
1

12
(2n6 + 6n5 + 5n4 − n2)

p = 6
n∑
k=1

k6 =
1

42
(6n7 + 21n6 + 21n5 − 7n3 + n)

p = 7
n∑
k=1

k7 =
1

24
(3n8 + 12n7 + 14n6 − 7n4 + 2n2).
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Appendix E

Matlab: The Laplacian matrix of a
Weighted Digraph

The Laplacian matrix of a graph can be defined in different ways, but we are
interested in the definition already seen in sec. (2.2.4) concerning weighted
digraphs. A complex digraph is a directed graph G = (V , E) we associate a
complex number wij ∈ C to each edge (j, i). His Laplacian matrix can be
defined as follows:

L(i, j) =


−wij if i 6= j and j ∈ Ni

0 if i 6= j and j /∈ Ni∑
j∈Ni wij if i = j,

(E.1)

where Ni = {j : (j, i) ∈ E} is the in-neighbor set of node i. For our purpose,
we need to generate Laplacian matrices that represent sensing digraphs of
formations with the following characteristics:

1. the leaders are in number of 2,

2. every follower node has to be 2-reachable from at least one leader node,

3. the followers can sense a different number of other followers. The follow-
ing cases are considered:

(a) 1 in-neighbor follower,

(b) 2 in-neighbor followers,

(c) 3 in-neighbor followers,

(d) each follower is an in-neighbor for every follower.
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Figure E.1: Sensing digraph represented by the Laplacian matrix (E.3).

Without loss of generality, we can label the 2 co-leader nodes as 1 and 2.
Reminding that, leaders do not have incoming edges, the Laplacian matrix of
an agents formation with 2 co-leaders can be generally represented, as we have
already seen in sec.(3), in the following form:

L =

[
02×2 02×(n−2)

Llf Lff

]
, (E.2)

where:

• Llf is the leader-follower sub-matrix,

• Lff is the follower-follower sub-matrix.

For instance, the Laplacian matrix of a formation of 5 agents, 2 of which
are co-leaders, could be:

L =


0 0 0 0 0

0 0 0 0 0

−w31 0 α33 −w34 0

0 −w42 −w43 α44 −w45

−w51 0 0 −w54 α55

 , (E.3)

where αkk =
∑

j∈Nk wkj. The sensing digraph represented by the Laplacian
(E.3) is depicted in figure (E.1). As we can see, each follower has at least
two in-neighbor nodes. The most important thing is that the digraph is 2-
reachable.
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The sub-digraph formed by the followers is represented by the sub-matrix
Lff that is, in this case, a tridiagonal form:

Lff =

 α33 −w34 0

−w43 α44 −w45

0 −w54 α55

 . (E.4)

We can generate Laplacian matrices representing sensing digraphs with
different connections. For our purpose, we will generate Laplacians with the
aforementioned characteristics and give them a standard structure. Hence, we
will choose which are the possible connections among agents over the afore-
mentioned constrains. Remember that constraints 1) and 2) are common to
every digraph we want. The real difference among the Laplacians is given from
number 3). The leader-follower sub-matrix is a (n−2)×2 matrix representing
the incoming edges from leaders to followers. When the ijth element of Llf
is non-zero, it means that the ith follower is sensing the jth leader. We can
choose to connect all followers to each leader or simply to just one of them (in
order to have 2-reachable followers). Hence, Llf will have no zero elements at
all or one zero element per row respectively, as shown below:

Llf =



−w31 −w32

−w41 −w42

...
...

...
...

−wn1 −wn2


(E.5a)

Llf =



−w31 0

0 −w42

...
...

−wn−1,1 0

0 −wn2


. (E.5b)

The follower-follower sub-matrix, is an (n−2)×(n−2) matrix, representing
the connections among followers. That is, when the ijth element is non-zero,
then it means that the ith follower is sensing the jth follower. We want to
generate Laplacians where Lff has the characteristics in 3) and for each of
them we must make assumptions about the possible connections:

3a) when each follower can sense only another follower, the Lff matrix has
only 2 non-zero elements per row. We can assume that each follower
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senses its predecessor in the Lmatrix. Follower number 3 can be assumed
to sense follower n as it has not a predecessor (node number 2 is a leader).
Thus, Lff will be of the form:

Lff =



α33 0 . . . 0 −w3n

−w43 α44 0 . . . 0

0
. . . . . . ...

...
...

... . . . . . . ...
0 . . . 0 −wn,n−1 αnn


(E.6)

3b) when each follower can sense only two followers, the Lff matrix has 3
non-zero elements per row. We can assume that each follower senses its
predecessor and its successor in the L matrix. We can also assume that
follower 3 senses follower n as its predecessor, and that follower n senses
follower 3 as its successor. Thus, Lff will be of the form:

Lff =



α33 −w34 0 . . . 0 −w3n

−w43 α44 −w45 0 . . . 0

0 −w54 α55 −w56
. . . ...

... . . . . . . . . . 0

...
...

−wn3 0 . . . 0 −wn,n−1 αnn


(E.7)

3c) when each follower can sense only 3 followers, the Lff matrix has 4 non-
zero elements per row. We can assume that each follower senses its
predecessor and its 2 successors in the L matrix. We can also assume
that follower 3 senses follower n as its predecessor and follower n follower
3 and 4 as its successors. Thus, Lff will be of the form:

Lff =



α33 −w34 −w35 0 . . . 0 −w3n

−w43 α44 −w45 −w46 0 . . . 0

0 −w54 α55 −w56 −w57
. . . ...

... . . . . . . . . . . . . ...

−wn3 −wn4 0 . . . 0 −wn,n−1 αnn


(E.8)
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3d) when each follower can sense every other follower it means that the
follower-follower sub-matrix Lff has no zero off-diagonal elements. Con-
sequently, Lff will be as follows:

Lff =



α33 −w34 . . . . . . −w3n

−w43 α44 −w45 . . . −w4n

... . . . . . . . . . ...

...
... . . . . . . ...

−wn3 . . . . . . −wn,n−1 αnn


(E.9)

We can generate Laplacian matrices like the ones described below by the
MATLAB® implementation shown in file E.1.

File E.1: lm.m.

1 %LM − Laplacian Matrix.

2 % m = matrix order,

3 % in = # of in−neighbor followers of each follower.

4 % in = 1 −> each follower senses its predecessor,

5 % in = 2 −> each follower senses its predecessor

6 % and its successor,

7 % in = 3 −> each follower senses its predecessor

8 % and its two successors.

9 % in = 0 −> each follower senses every other follower.

10 %NOTE: for each value of the variable in Lff and,

11 % consequently, L must

12 %have a minimum dimension. Hence, for the cases described

13 %above, we have:

14 % for in = 1, m ≥ 4,

15 % for in = 2, m ≥ 5,

16 % for in = 3, m ≥ 6,

17 % for in = 0, m ≥ 3.

18

19 function L = lm(m,in)

20

21 L = zeros(m);

22

23 switch in

24 case 1

25 if(m < 4)

26 disp('Wrong matrix dimension, m must be ≥ 4');

27 return;
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28 end

29 L(3,m) = −(rand + rand*1i);

30 x = −ones(m,1);
31 for h = 3 : m−1
32 L(h,randi([1 2],1,1)) = −(rand + rand*1i);

33

34 L(h+1,h)= −(rand + rand*1i);

35

36 L(h,h) = L(h,:)*x;

37 end

38 L(m,randi([1 2],1,1)) = −(rand + rand*1i);

39 L(m,m) = L(m,:)*x;

40 case 2

41 if(m < 5)

42 disp('Wrong matrix dimension, m must be ≥ 5');

43 return;

44 end

45 L(3,m) = −(rand + rand*1i);

46 L(3,4) = −(rand + rand*1i);

47 L(3,randi([1 2],1,1)) = −(rand + rand*1i);

48

49 L(m,3) = −(rand + rand*1i);

50 L(m,m−1) = −(rand + rand*1i);

51 L(m,randi([1 2],1,1)) = −(rand + rand*1i);

52

53 x = −ones(m,1);
54 for h = 4 : m−1
55 L(h,randi([1 2],1,1)) = −(rand + rand*1i);

56

57 L(h,h−1)= −(rand + rand*1i);

58 L(h,h+1)= −(rand + rand*1i);

59

60 L(h,h) = L(h,:)*x;

61 end

62 L(3,3) = L(3,:)*x;

63 L(m,m) = L(m,:)*x;

64 case 3

65 if(m < 6)

66 disp('Wrong matrix dimension, m must be ≥ 6');

67 return;

68 end

69 L(3,4) = −(rand + rand*1i);

70 L(3,5) = −(rand + rand*1i);

71 L(3,m) = −(rand + rand*1i);

72 L(m,3) = −(rand + rand*1i);
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73 L(m,4) = −(rand + rand*1i);

74 L(m,m−1) = −(rand + rand*1i);

75 x = −ones(m,1);
76 for h = 4 : m−1
77 L(h,randi([1 2],1,1)) = −(rand + rand*1i);

78

79 L(h,h−1) = −(rand + rand*1i);

80 L(h,h+1) = −(rand + rand*1i);

81 L(h,h+2) = −(rand + rand*1i);

82

83 L(h,h) = L(h,:)*x;

84 end

85 L(3,randi([1 2],1,1)) = −(rand + rand*1i);

86 L(m,randi([1 2],1,1)) = −(rand + rand*1i);

87 L(3,3) = L(3,:)*x;

88 L(m,m) = L(m,:)*x;

89 case 0

90 if(m < 3)

91 disp('Wrong matrix dimension, m must be ≥ 3');

92 return;

93 end

94 L(3:m,:) = complex(rand(m−2,m),rand(m−2,m));
95 for h = 3 : m

96 x = ones(m,1);

97 x(h) = 0;

98 lhh = L(h,:)*x;

99 L(h,:) = −L(h,:);
100 L(h,h) = lhh;

101 end

102 otherwise

103 disp('Wrong number of in−neighbor followers');

104 end

105 end

A different way to obtain a complex Laplacian matrix involves the adja-
cency matrix of the digraph itself. When a multi-agent formation is given with
the corresponding formation basis ξ desired, we need a Laplacian matrix L for
which conditions Lξ = 0 and L1n = 0 hold. This is necessary in order that
L be suitable for the formation control laws given in chapter 3, so that the
desired planar formation is reachable. To do so, we can exploit the fact that,
for a formation basis, the condition that ξ must be an eigenvector for L can
be written as ∑

j∈N−i

wij(ξj − ξi) = 0. (E.10)
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For each row, all weights are randomly generated but the last one, that is
computed via equation (E.10) so that Lξ = 0 is verified. File E.2 shows
a possible Matlab implementation of the Laplacian matrix generator. The
function lmg has inputs A and z, that are the adjacency matrix of the graph’s
formation and the desired formation basis. The adjacency used is defined as
follows

aij =

1 if (vj, vi) ∈ A,

0 if (vj, vi) /∈ A.
(E.11)

What function lmg does is to search for the ones in A and assign to L random
weights wij in the same position of them. Once this process is done diagonal
elements are built so that L1n = 0 holds.

File E.2: lmg.m.

1 %LMG − Laplacian Matrix Generator.

2

3 %Function lmg takes an adjacency matrix and a formation

4 %basis z so that the complex Laplacian matrix L which

5 %satisfies conditions L1=0 and Lz=0 is randoml built.

6

7 function L = lmg(A,z)

8

9 [m,n] = size(A);

10

11 mini = −10;
12 maxi = 10;

13

14 %Verifying if the adjacency matrix is square.

15 if(m 6= n)

16 disp('Adjacency matrix is not square.');

17 L = 0;

18 return;

19 end

20

21 %Verifying if leaders have incoming edges.

22 for i = 1 : 2

23 for j = 1 : n

24 if(A(i,j) 6= 0)

25 disp('Wrong sensing digraph. Leaders have incoming edges.');

26 L = 0;

27 return;

28 end
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29 end

30 end

31

32 L = zeros(m);

33

34 %Counting how many weights there will be in each row

35 %of the Laplacian matrix.

36 count = zeros(n−2,1);
37 for h = 1 : n−2
38 count(h) = nnz(A(h+2,:));

39 end

40

41 %Assigning complex random weights such as matrix

42 %L has z as eigenvector.

43 for i = 3 : n

44 par_sum = 0;

45 s = count(i−2);
46 for j = 1 : n

47 if(s == 0)

48 break;

49 end

50 if(A(i,j) 6= 0)

51 if(s == 1)

52 y = solve('y*(z(i) − z(j)) + par_sum');

53 L(i,j) = eval(y);

54 else

55 %L(i,j) = −(rand + rand*1i);

56 L(i,j) = −(randi([mini maxi],1,1) + randi([mini maxi],1,1)*1i);

57 par_sum = par_sum + L(i,j)*(z(i) − z(j));

58 end

59 s = s − 1;

60 end

61 end

62 end

63

64 %Assigning diagonal elements such as a vector of ones

65 %is an eigenvalue for L.

66 x = −ones(n,1);
67 for i = 3 : n

68 L(i,i) = L(i,:)*x;

69 end

70

71 end
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Appendix F

Matlab: Code from Chapter 4

In chapter 4 we have seen the problem of finding a permutation matrix P such
that the matrix

L̂ff = PLffP
T (F.1)

has non-null principal minors, and backtracking has been used in order to solve
the problem. Backtracking algorithm for the permutation matrix problem has
been implemented considering two different ways to compute the bounding
functions:

1. Bis have been implemented computing the determinant of a sub-matrix
of order i;

2. Bis have been implemented as the i-th step of Gaussian elimination with
diagonal pivoting.

Nonetheless, for each of them, the same T function have been tried in order to
study the behavior of the algorithm with respect to the problem being solved.

The actual implementations and simulations have been made in the Matlab
environment. In both cases, the algorithm has been split in two files:

• the main function, named pmsgx.m or pmsdx.m. The task of the main
file is to generate the needed set up in order to make the algorithm work
and to return the solution found;

• the recursive function called from the main one that implements the
recursive backtrack process. Files are called nnpsgx.m and nnpsdx.m.

> In file names d, g and x are:

– d identifies the determinant-based implementation, that is the one
which uses bounding functions number 1);
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– g identifies the gauss-based implementation, that is that is the one
which uses bounding functions number 2);

– x is a number that indicates different T functions used.

In the following subsections implementations both for the determinant-based
algorithm (subsection F.1) and the Gauss-based algorithm (subsection F.2)
are shown.

F.1 Determinant-based backtrack.Algorithm 1

The algorithm aimed to find a permutation matrix P in order to verify equation
(F.1) has been implemented with two different bounding functions.

Files nnpsd1.m (F.2) and nnpsd2.m (F.3) implements the backtracking pro-
cedure using bounding functions that compute the determinant of the principal
minors of the matrix. As it can be seen from the code, the functions call them-
selves in a recursive way, that is the natural implementation for the backtrack
procedure. Function F.2 search for the nearest solution to an identity matrix,
while function F.3 search randomly in the solutions space. In fact, as it can
be seen in row 23 of file F.3 the sequence of node generation is given from
the function irp.m that simply creates a randomly ordered vector of integers
whose maximum is the input integer. Hence, Td1 defines a static state space
organization tree while Td2, because of the randomness of the search, defines
a dynamic state space organization tree. Note that functions nnpsdx compute
the determinant of the leading principal minors via function dtr other than
exploit the native Matlab function det. This is for experimental purpose. In
fact, Matlab function det is not implemented in Matlab code and then its
speed execution cannot be fairly compared to other Matlab code-based func-
tion. Hence for the tests shown in chapter 4 we needed to reimplement that
function in Matlab code.

File F.1 is the main function which call the recursive function desired. In
the code it calls function nnpsd1.m but it could have called function nnpsd1.m
as well. In fact, psmd1.m and pmsd2.m are the same function.

File F.1: pmsd1.m

1 %PMSD1 − Permutation Matrix Solver with Determinant function.

2 %The following function solves the problem of finding the

3 %permutation matrix P, such that matrix A has all non−zero
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4 %leading principal minors:

5 % A = P*Lf*P'.

6

7 %The algorithm has been implemented using the function dtr

8 %in the core function nnpsd1.

9 %NOTE: dtr has been implemented with the Gauss elimination

10 %algorithm with column pivoting.

11

12

13 function P = pmsd1(Lf)

14

15 [m,n] = size(Lf);

16

17 %Permutations vector.

18 b = zeros(m,1);

19 for i = 1 : m

20 b(i) = i;

21 end

22

23 p = 0;

24 s = 1;

25

26 [b,p] = nnpsd1(Lf,m,b,p,s);

27

28 if(p == 0)

29 disp('The permutation Matrix P does not exist');

30 P = zeros(m);

31 return;

32 else

33 I = eye(m);

34 P = zeros(m);

35 for j = 1 : m

36 P(j,:) = I(b(j),:);

37 end

38 end

39 end

File F.2: nnpsd1.m

1 %NNPSD1 − Non−null leading Principal Minors Solver, with

2 % dtr function.

3 %Function nnpsd1 is the core function of the backtracking

4 %algorithm used to find a permutation matrix P such that

5 %matrix A has all non−zero leading principal minors:
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6 % A = P*Lf*P'.

7 %The function nnpsd1 has been designed using recursion

8 %principle. In order to compute the value of each

9 %determinant, dtr function has been implemented using

10 %Gauss with partial pivoting. The solution space is

11 %searched using for each call an ascending ordered

12 %sequence from the set {1,2,...,n}, where n is the order

13 %of input matrix Lf.

14

15 function [per,p] = nnpsd1(Lf,m,b,p,s)

16

17 D = Lf;

18 per = b;

19

20 %Pivot selection over the matrix diagonal.

21 for i = s : m+1

22

23 d = dtr(D(1:s,1:s));

24

25 if(abs(d) > eps)

26

27 if(s == m)

28 p = 1;

29 return;

30 end

31

32 [per,p] = nnpsd1(D,m,per,p,s+1);

33

34 if(p == 1)

35 return;

36 else

37 if(p == 0)

38 if(i == m+1)

39 per = b;

40 return;

41 else

42 per = b;

43 end

44 end

45 end

46 else

47 if(i < m+1)

48 r = per(s);

49 per(s) = per(i);

50 per(i) = r;
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51 D = excn(D,s,i);

52 p = 0;

53 else

54 p = 0;

55 return;

56 end

57 end

58 end

59 end

File F.3: nnpsd2.m

1 %NNPSD2 − Non−null leading Principal Minors Solver, with

2 % dtr function.

3 %Function nnpsd1 is the core function of the backtracking

4 %algorithm used to find a permutation matrix P such that

5 %matrix A has all non−zero leading principal minors:

6 % A = P*Lf*P'.

7 %The function nnpsd1 has been designed using recursion

8 %principle. In order to compute the value of each

9 %determinant, dtr function has been implemented using

10 %Gauss with partial pivoting. The solution space is

11 %searched using for each call a randomly orderes

12 %sequence from the set {1,2,...,n}, where n is the order

13 %of input matrix Lf.

14

15 function [per,p] = nnpsd2(Lf,m,b,p,s)

16

17 D = Lf;

18 per = b;

19

20

21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
22 %Choose randomly the sequence of the

23 %pivots among the diagonal elements.

24 sequence = irp(m−s+1);
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
26

27 %−Pivot selection over the matrix diagonal−%
28 for i = s : m

29

30 index = sequence(i−s+1) + (s−1);
31 r = per(s);

32 per(s) = per(index);
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33 per(index) = r;

34 D = excn(D,s,index);

35

36 d = dtr(D(1:s,1:s));

37

38 if(abs(d) > eps)

39

40 if(s == m)

41 p = 1;

42 return;

43 end

44

45 [per,p] = nnpsd2(D,m,per,p,s+1);

46

47 if(p == 1)

48 return;

49 else

50 if(p == 0)

51 if(i == m)

52 per = b;

53 return;

54 else

55 per = b;

56 end

57 end

58 end

59 else

60 if(i == m)

61 p = 0;

62 return;

63 end

64 end

65 end

66 end

F.2 Gauss-based Backtrack.Algorithm 2

The algorithm aimed to find a permutation matrix P in order to verify equation
(F.1) has been also implemented with bounding functions based on Gaussian
elimination (see chapter 4). Matlab implementations can be seen in the files
below. As in the case of the determinant-based algorithm, the implementation
has been split in two files. The main function, pmsgx.m, sets up some global
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variables and calls function nnpsgx.m that is the function which implements
the backtracking procedure. The x is a number that refers to the T function
implemented within the file. As it can be seen in subsection (4.2.2), there are
five Tgx functions used:

• file nnpsg1.m (F.5) implements Tg1;

• file nnpsg2.m (F.6) implements Tg2;

• file nnpsg3.m (F.7) implements Tg3;

• file nnpsg4.m (F.8) implements Tg4;

• file nnpsg5.m (F.9) implements Tg5.

The main function is the same for each function nnpsgx, then only one has
been listed. It can be seen in (F.4).

File F.4: pmsg1.m

1 %PMSG1 − Permutation Matrix Solver.

2 %The following function solves the problem of

3 %finding the permutatio matrix P, such that the

4 %relation below is satisfied.

5 % A = P*Lf*P'.

6

7 %PMSG1 exploits the recursive function nnpsg1.

8

9

10 function [P,A,U] = pmsg1(Lf)

11

12 [m,n] = size(Lf);

13

14 %Permutations vector.

15 b = zeros(m,1);

16 for i = 1 : m

17 b(i) = i;

18 end

19

20 p = 0;

21 L = eye(m);

22 U = zeros(m);

23 s = 1;

24

25 [b,p,L,U] = nnpsg1(Lf,m,b,L,p,s);
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26

27 if(p == 0)

28 disp('The permutation Matrix P does not exist');

29 P = zeros(m);

30 A = zeros(m);

31 return;

32 else

33 A = L*U;

34 I = eye(m);

35 P = zeros(m);

36 for j = 1 : m

37 P(j,:) = I(b(j),:);

38 end

39 end

40 end

File F.5: nnpsg1.m

1 %NNPSG1 − Non−nnull pivot selector,

2 %The following function is aimed to implement a step of the

3 %Gaussian elimination with diagonal pivoting. The pivot

4 %element is searched only along the diagonal. Consecutive steps

5 %are executed via recursive calls.

6

7 %Function nnpsg1 implements Tg1 as searching method for the

8 %pivot.

9

10 function [per,p,T,U] = nnpsg1(Lf,m,b,L,p,s)

11

12 U = Lf;

13 T = L;

14 per = b;

15

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 if(((m−s) == 0) && (abs(Lf(s,s)) > eps))

18 p = 1;

19 return;

20 end

21

22 if(((m−s) == 0) && (abs(Lf(s,s)) < eps))

23 p = 0;

24 return;

25 end

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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27

28 %−−−−Pivot selection over the matrix diagonal.−−−−−−−−%
29 for i = s : m

30 if(abs(Lf(i,i)) > eps)

31 if(i 6= s)

32 %−−−−−−−−−−−−−−−−−−−−−−−−%
33 U = excn(U,s,i);

34 %−−−−−−−−−−−−−−−−−−−−−−−−%
35 r = per(s);

36 per(s) = per(i);

37 per(i) = r;

38 %−−−−−−−−−−−−−−−−−−−−−−−−%
39 t = T(s,1:s−1);
40 T(s,1:s−1) = T(i,1:s−1);
41 T(i,1:s−1) = t;

42 %−−−−−−−−−−−−−−−−−−−−−−−−%
43 end

44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
45 %NOTE: (s,s) is the position of the current pivot

46 %to be used in the elimination process

47 %(triangularization).

48

49 %Gauss elimination over the column s.

50 l = ones(m−s+1,1);
51 for h = s+1 : m

52 l(h−s+1) = U(h,s) / U(s,s);

53 U(h,s:m) = U(h,s:m) − l(h−s+1)*U(s,s:m);
54 end

55 T(s:m,s) = l;

56

57 %−−−−Recursive Call−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
58 [per,p,T,U] = nnpsg1(U,m,per,T,p,s+1);

59 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
60

61 if(p == 1)

62 return;

63 else

64 if(p == 0)

65 if(i == m)

66 return;

67 else

68 U = Lf;

69 T = L;

70 per = b;

71 end
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72 end

73 end

74 else

75 if((i == m) && (abs(Lf(i,i) < eps)))

76 p = 0;

77 return;

78 end

79 end

80 end

81 end

File F.6: nnpsg2.m

1 %NNPSG1 − Non−nnull pivot selector,

2 %The following function is aimed to implement a step of the

3 %Gaussian elimination with diagonal pivoting. The pivot

4 %element is searched only along the diagonal. Consecutive steps

5 %are executed via recursive calls.

6

7 %Function nnpsg2 implements Tg2 as searching method for the

8 %pivot.

9

10 function [per,p,T,U] = nnpsg2(Lf,m,b,L,p,s)

11

12 U = Lf;

13 T = L;

14 per = b;

15

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 if(((m−s) == 0) && (abs(Lf(s,s)) > eps))

18 p = 1;

19 return;

20 end

21

22 if(((m−s) == 0) && (abs(Lf(s,s)) < eps))

23 p = 0;

24 return;

25 end

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
27

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
29 %Choose randomly the sequence of the pivots among

30 %the diagonal elements.

31 sequence = irp(m−s+1);
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32

33 %−−−−Pivot selection over the matrix diagonal.−−%
34 for i = s : m

35

36 index = sequence(i−s+1) + (s−1);
37

38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
39 if(abs(Lf(index,index)) > eps)

40 if(index 6= s)

41 %−−−−−−−−−−−−−−−−−−−−−−−−%
42 U = excn(U,s,index);

43 %−−−−−−−−−−−−−−−−−−−−−−−−%
44 r = per(s);

45 per(s) = per(index);

46 per(index) = r;

47 %−−−−−−−−−−−−−−−−−−−−−−−−%
48 t = T(s,1:s−1);
49 T(s,1:s−1) = T(index,1:s−1);
50 T(index,1:s−1) = t;

51 %−−−−−−−−−−−−−−−−−−−−−−−−%
52 end

53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
54 %NOTE: (s,s) is the position of the current

55 %pivot to be used in the elimination process

56 %(triangularization).

57

58 %Gauss elimination over the column s.

59 l = ones(m−s+1,1);
60 for h = s+1 : m

61 l(h−s+1) = U(h,s) / U(s,s);

62 U(h,s:m) = U(h,s:m) − l(h−s+1)*U(s,s:m);
63 end

64 T(s:m,s) = l;

65

66 %−−−−Recursive Call−−−−−−−−−−−−−−−−−−−−−−−−%
67 [per,p,T,U] = nnpsg2(U,m,per,T,p,s+1);

68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
69

70 if(p == 1)

71 return;

72 else

73 if(p == 0)

74 if(i == m)

75 return;

76 else
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77 U = Lf;

78 T = L;

79 per = b;

80 end

81 end

82 end

83 else

84 if((i == m) && (abs(Lf(i,i) < eps)))

85 p = 0;

86 return;

87 end

88 end

89 end

90 end

File F.7: nnpsg3.m

1 %NNPSG1 − Non−nnull pivot selector,

2 %The following function is aimed to implement a step of the

3 %Gaussian elimination with diagonal pivoting. The pivot

4 %element is searched only along the diagonal. Consecutive steps

5 %are executed via recursive calls.

6

7 %Function nnpsg3 implements Tg3 as searching method for the

8 %pivot.

9

10 function [per,p,T,U] = nnpsg3(Lf,m,b,L,p,s)

11

12 U = Lf;

13 T = L;

14 per = b;

15

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 if(((m−s) == 0) && (abs(Lf(s,s)) > eps))

18 p = 1;

19 return;

20 end

21

22 if(((m−s) == 0) && (abs(Lf(s,s)) < eps))

23 p = 0;

24 return;

25 end

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
27
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28 diag = zeros(m−s+1,1);
29 for j = s : m

30 diag(j−s+1) = abs(Lf(j,j));

31 end

32 [piv,index] = sort(diag,'descend');

33

34 %−−−−Pivot selection over the matrix diagonal.−−%
35 for i = s : m

36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
37 %Choose the pivot element with maximum modulus

38 %among the diagonal elements.

39 maxe = piv(i−s+1);
40 maxi = index(i−s+1) + (s−1);
41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
42 if(abs(Lf(maxi,maxi)) > eps)

43 if(maxi 6= s)

44 %−−−−−−−−−−−−−−−−−−−−−−−−%
45 U = excn(U,s,maxi);

46 %−−−−−−−−−−−−−−−−−−−−−−−−%
47 r = per(s);

48 per(s) = per(maxi);

49 per(maxi) = r;

50 %−−−−−−−−−−−−−−−−−−−−−−−−%
51 t = T(s,1:s−1);
52 T(s,1:s−1) = T(maxi,1:s−1);
53 T(maxi,1:s−1) = t;

54 %−−−−−−−−−−−−−−−−−−−−−−−−%
55 end

56 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
57 %NOTE: (s,s) is the position of the current

58 %pivot to be used in the elimination process

59 %(triangularization).

60

61 %Gauss elimination over the column s.

62 l = ones(m−s+1,1);
63 for h = s+1 : m

64 l(h−s+1) = U(h,s) / U(s,s);

65 U(h,s:m) = U(h,s:m) − l(h−s+1)*U(s,s:m);
66 end

67 T(s:m,s) = l;

68

69 %−−−−Recursive Call−−−−−−−−−−−−−−−−−−−−−−%
70 [per,p,T,U] = nnpsg3(U,m,per,T,p,s+1);

71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
72
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73 if(p == 1)

74 return;

75 else

76 if(p == 0)

77 if(i == m)

78 return;

79 else

80 U = Lf;

81 T = L;

82 per = b;

83 end

84 end

85 end

86 else

87 if((i == m) && (abs(Lf(maxi,maxi) < eps)))

88 p = 0;

89 return;

90 end

91 end

92 end

93 end

File F.8: nnpsg4.m

1 %NNPSG1 − Non−nnull pivot selector,

2 %The following function is aimed to implement a step of the

3 %Gaussian elimination with diagonal pivoting. The pivot

4 %element is searched only along the diagonal. Consecutive steps

5 %are executed via recursive calls.

6

7 %Function nnpsg4 implements Tg4 as searching method for the

8 %pivot.

9

10 function [per,p,T,U] = nnpsg4(Lf,m,b,L,p,s)

11

12 U = Lf;

13 T = L;

14 per = b;

15

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 if(((m−s) == 0) && (abs(Lf(s,s)) > eps))

18 p = 1;

19 return;

20 end
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21

22 if(((m−s) == 0) && (abs(Lf(s,s)) < eps))

23 p = 0;

24 return;

25 end

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
27

28 %−−−−Pivot selection over the matrix diagonal.−−−%
29 for i = m : −1 : s

30 if(abs(Lf(i,i)) > eps)

31 if(i 6= s)

32 %−−−−−−−−−−−−−−−−−−−−−−−−%
33 U = excn(U,s,i);

34 %−−−−−−−−−−−−−−−−−−−−−−−−%
35 r = per(s);

36 per(s) = per(i);

37 per(i) = r;

38 %−−−−−−−−−−−−−−−−−−−−−−−−%
39 t = T(s,1:s−1);
40 T(s,1:s−1) = T(i,1:s−1);
41 T(i,1:s−1) = t;

42 %−−−−−−−−−−−−−−−−−−−−−−−−%
43 end

44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
45 %NOTE: (s,s) is the position of the current

46 %pivot to be used in the elimination process

47 %(triangularization).

48

49 %Gauss elimination over the column s.

50 l = ones(m−s+1,1);
51 for h = s+1 : m

52 l(h−s+1) = U(h,s) / U(s,s);

53 U(h,s:m) = U(h,s:m) − l(h−s+1)*U(s,s:m);
54 end

55 T(s:m,s) = l;

56

57 %−−−−Recursive Call−−−−−−−−−−−−−−−−−−−−−−−−%
58 [per,p,T,U] = nnpsg4(U,m,per,T,p,s+1);

59 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
60

61 if(p == 1)

62 return;

63 else

64 if(p == 0)

65 if(i == s)
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66 return;

67 else

68 U = Lf;

69 T = L;

70 per = b;

71 end

72 end

73 end

74 else

75 if((i == s) && (abs(Lf(i,i) < eps)))

76 p = 0;

77 return;

78 end

79 end

80 end

81 end

File F.9: nnpsg5.m

1 %NNPSG1 − Non−nnull pivot selector,

2 %The following function is aimed to implement a step of the

3 %Gaussian elimination with diagonal pivoting. The pivot

4 %element is searched only along the diagonal. Consecutive steps

5 %are executed via recursive calls.

6

7 %Function nnpsg5 implements Tg5 as searching method for the

8 %pivot.

9

10 function [per,p,T,U] = nnpsg5(Lf,m,b,L,p,s)

11

12 U = Lf;

13 T = L;

14 per = b;

15

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 if(((m−s) == 0) && (abs(Lf(s,s)) > eps))

18 p = 1;

19 return;

20 end

21

22 if(((m−s) == 0) && (abs(Lf(s,s)) < eps))

23 p = 0;

24 return;

25 end
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26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
27

28 choice = randi([1 3],1,1);

29 switch choice

30 case 1

31 diag = zeros(m−s+1,1);
32 for j = s : m

33 diag(j−s+1) = abs(Lf(j,j));

34 end

35 [piv,sequence] = sort(diag,'descend');

36 case 2

37 sequence = irp(m−s+1);
38 case 3

39 sequence = zeros(m−s+1,1);
40 for h = 1 : m−s+1
41 sequence(h) = h;

42 end

43 end

44

45 %−−−−Pivot selection over the matrix diagonal.−−−−−%
46 for i = s : m

47

48 index = sequence(i−s+1) + (s−1);
49

50 if(abs(Lf(index,index)) > eps)

51 if(index 6= s)

52 %−−−−−−−−−−−−−−−−−−−−−−−−%
53 U = excn(U,s,index);

54 %−−−−−−−−−−−−−−−−−−−−−−−−%
55 r = per(s);

56 per(s) = per(index);

57 per(index) = r;

58 %−−−−−−−−−−−−−−−−−−−−−−−−%
59 t = T(s,1:s−1);
60 T(s,1:s−1) = T(index,1:s−1);
61 T(index,1:s−1) = t;

62 %−−−−−−−−−−−−−−−−−−−−−−−−%
63 end

64 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
65 %NOTE: (s,s) is the position of the current pivot

66 %to be used in the elimination process

67 %(triangularization).

68

69 %Gauss elimination over the column s.

70 l = ones(m−s+1,1);
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71 for h = s+1 : m

72 l(h−s+1) = U(h,s) / U(s,s);

73 U(h,s:m) = U(h,s:m) − l(h−s+1)*U(s,s:m);
74 end

75 T(s:m,s) = l;

76

77 %−−−−Recursive Call−−−−−−−−−−−−−−−−−−−−−−−−%
78 [per,p,T,U] = nnpsg5(U,m,per,T,p,s+1);

79 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
80

81 if(p == 1)

82 return;

83 else

84 if(p == 0)

85 if(i == m)

86 return;

87 else

88 U = Lf;

89 T = L;

90 per = b;

91 end

92 end

93 end

94 else

95 if((i == m) && (abs(Lf(i,i) < eps)))

96 p = 0;

97 return;

98 end

99 end

100 end

101 end
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Appendix G

Matlab: Code from Chapter 5

In chapter 5 the problem of finding a stabilizing matrix for the stabilization of
the follower-follower Laplacian matrix Lff has been addressed. More precisely,
the problem was to find a diagonal matrix M such that, the matrix −DL has
all stable eigenvalues. D is a slightly different diagonal matrix, depending on
the agent’s dynamic we are considering. The two expressions are

Single-Integrator Kinematics

D =

[
I2×2 0

0 M

]
, (G.1)

Double-Integrator Dynamics

D =

[
I2×2 0

0 εM

]
, (G.2)

where ε > 0 is a constant to be found.
In the following sections implementations of the proposed algorithms for

the MIEP are shown.

G.1 Ballantine’s Theorem.Algorithm 1

In this section are proposed some Matlab implementations of the algorithm
5.1 proposed in chapter 5. All listed files use a Matlab function in order to
compute, at each step i, the eigenvalues of the matrix M[1∼i]Lff [1∼i]. The
difference is in the search methods for the diagonal elements in the set W . In
fact, function

187



smse1 (and smse12) implement search method of figure (5.3), that is, elements
di are chosen from segments parallel to the imaginary axis.

smse2 implement search method of figure (5.4), that is, elements di are chosen
from segments with variable direction;

smse3 implement search method of figure (5.5), that is, elements di are chosen
from circles with variable radius.

File G.1: smse1.m

1 %SMSE1 − Stabilizing Matrix Solver.

2 %−−−−Ballantine & Eigenvalue Computation−−−−%
3 %Elements di are chosen from straight lines

4 %parallel to the imaginary axis and eigenvalues

5 %are computed with the Matlab function.

6

7 function D = smse1(A)

8

9 [m,n] = size(A);

10

11 eigen = eig(A);

12

13 for i = 1 : m

14 if(real(eigen(i)) < 0)

15 break;

16 end

17 if(i == m)

18 disp('No need of stabilisation');

19 D = eye(m);

20 return;

21 end

22 end

23

24 diagonal = zeros(m,1);

25 %diagonal(1) = m*conj(A(1,1));

26 diagonal(1) = 1/A(1,1);

27

28 for k = 2 : m

29 %for a = 0 : 0.1 : m*18

30 %for a = −10 : 0.1 : 10

31 for a = 0 : 0.1 : 10

32 [a k]

33 %for b = −18*k : 0.1 : 18*k
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34 for b = −10 : 0.1 : 10

35 diagonal(k) = complex(a,b);

36 M = diag(diagonal(1:k))*A(1:k,1:k);

37 eigen = eig(M);

38 [mine,mini] = min(real(eigen));

39 if(mine < 0)

40 diagonal(k) = 0;

41 else

42 if((a 6=0 || b 6=0) && (diagonal(k) 6= diagonal(k−1)))
43 break;

44 end

45 end

46 end

47 if(mine < 0)

48 diagonal(k) = 0;

49 else

50 break;

51 end

52 end

53 if(diagonal(k) == 0)

54 disp('No D matrix found');

55 break;

56 end

57 end

58

59 D = diag(diagonal);

60

61 end

File G.2: smse12.m

1 %SMSE12 − Stabilizing Matrix Solver.

2 %−−−−Ballantine & Eigenvalue Computation−−−−%
3 %Elements di are chosen from straight lines

4 %parallel to the imaginary axis and eigenvalues

5 %are computed with the Matlab function.

6

7 function D = smse12(A)

8

9 [m,n] = size(A);

10

11 eigen = eig(A);

12

13 for i = 1 : m
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14 if(real(eigen(i)) < 0)

15 break;

16 end

17 if(i == m)

18 disp('No need of stabilisation');

19 D = eye(m);

20 return;

21 end

22 end

23

24 diagonal = zeros(m,1);

25 diagonal(1) = 15*m / A(1,1);

26

27 for k = 2 : m

28 for a = 0 : 0.1 : m*18

29 [a k]

30 for b = −18*k : 0.1 : 18*k

31 diagonal(k) = complex(a,b);

32 M = diag(diagonal(1:k)) * A(1:k,1:k);

33 eigen = eig(M);

34 [mine,mini] = min(real(eigen));

35 if(mine > 0)

36 if(a 6=0 || b 6=0)

37 break;

38 end

39 end

40 end

41 if(mine > 0)

42 break;

43 end

44 end

45 end

46

47 D = diag(diagonal);

48

49 end

File G.3: smse2.m

1 %SMSE2 − Stabilizing Matrix Solver.

2 %−−−−Ballantine & Eigenvalue Computation−−−−%
3 %Elements di are chosen from straight lines

4 %with different directions and eigenvalues

5 %are computed with the Matlab function.
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6

7 function D = smse2(A)

8

9 [m,n] = size(A);

10

11 eigen = eig(A);

12

13 for i = 1 : m

14 if(real(eigen(i)) < 0)

15 break;

16 end

17 if(i == m)

18 disp('No need of stabilisation');

19 D = eye(m);

20 return;

21 end

22 end

23

24 diagonal = zeros(m,1);

25 % diagonal(1) = m*15*conj(A(1,1));

26 %diagonal(1) = m*15 / A(1,1);

27 diagonal(1) = 1/A(1,1);

28

29 for k = 2 : m

30

31 %var = pi;

32 var = 2*pi;

33

34 for angle = 0.1*k : 0.05 : var + 0.1*k

35 %for angle = 0.5 : 0.1 : var + 0.5

36 %for a = −k*20 : 0.2 : k*20

37 %for a = −10 : 0.1 : 10

38 for a = 0 : 0.1 : 10

39 [angle a k]

40 b = a*tan(angle);

41 diagonal(k) = complex(a,b);

42 M = diag(diagonal(1:k)) * A(1:k,1:k);

43 eigen = eig(M);

44 [mine,mini] = min(real(eigen));

45 if(mine < 0)

46 diagonal(k) = 0;

47 else

48 if((a 6=0 || b 6=0) && (diagonal(k) 6= diagonal(k−1)))
49 break;

50 end
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51 end

52 end

53 if(mine < 0)

54 diagonal(k) = 0;

55 else

56 break;

57 end

58 end

59 if(diagonal(k) == 0)

60 disp('No D matrix found');

61 break;

62 end

63 end

64

65 D = diag(diagonal);

66

67 end

File G.4: smse3.m

1 %SMSE3 − Stabilizing Matrix Solver.

2 %−−−−Ballantine & Eigenvalue Computation−−−−%
3 %Elements di are chosen from circles

4 %with different radius and eigenvalues

5 %are computed with the Matlab function.

6

7 function D = smse3(A,par)

8

9 [m,n] = size(A);

10

11 eigen = eig(A);

12

13 for i = 1 : m

14 if(real(eigen(i)) < 0)

15 break;

16 end

17 if(i == m)

18 disp('No need of stabilisation');

19 D = eye(m);

20 return;

21 end

22 end

23

24 diagonal = zeros(m,1);
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25 % diagonal(1) = m*15*conj(A(1,1));

26 %diagonal(1) = m*15 / A(1,1);

27 diagonal(1) = 1/A(1,1);

28

29 for k = 2 : m

30

31 var = 2*pi;

32

33 %for r = 0.1 : 0.2 : k*30

34 %for r = 5 : 0.2 : k*30

35 %for r = 2 : 0.2 : k*30

36 for r = 0.2+par : 0.2 : 10+par

37 for angle = 0.1*k : −0.05 : var + 0.1*k

38 %for angle = −0.1*k : −0.05 : −var − 0.1*k

39 [angle r k]

40 a = (r^2 / (1 + tan(angle)^2))^0.5;

41 b = a*tan(angle);

42 diagonal(k) = complex(a,b);

43 M = diag(diagonal(1:k)) * A(1:k,1:k);

44 eigen = eig(M);

45 [mine,mini] = min(real(eigen));

46 if(mine < 0)

47 diagonal(k) = 0;

48 else

49 if((a 6=0 || b 6=0) && (diagonal(k) 6= diagonal(k−1)))
50 break;

51 end

52 end

53 end

54 if(mine < 0)

55 diagonal(k) = 0;

56 else

57 break;

58 end

59 end

60 if(diagonal(k) == 0)

61 disp('No D matrix found');

62 break;

63 end

64 end

65

66 D = diag(diagonal);

67

68 end
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G.2 Bounding the Eigenvalues. Algorithm 2

File G.5: smsb.m

1 %SMSB − Stabilizing Matrix Solver.

2 %−−−−Ballantine & Eigenvalue Localisation−−−−%
3 %Rojo − Rectangular localisation.

4

5 function D = smsb(L)

6

7 [m n] = size(L);

8 eigen = eig(L);

9

10 if(min(real(eigen)) > 0)

11 disp('No need of stabilisation');

12 D = eye(m);

13 return;

14 else

15 disp('Computing the stabilising matrix D');

16 end

17

18 diagonal = zeros(m,1);

19 % diagonal(1) = m*15*conj(L(1,1));

20 diagonal(1) = 1 / L(1,1);

21

22 for k = 2 : m

23 min_dki = −80 + (k^2*20);

24 max_dki = 80 + (k^2*20);

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
26 A1 = [diag(diagonal(1:k−1))*L(1:k−1,1:k) ; zeros(1,k)];

27 trA1 = trace(A1);

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
29 for dki = min_dki : 0.5 : max_dki

30 lkkre = real(L(k,k));

31 yk_min = dki*imag(L(k,k)/abs(lkkre) − ...

real(trA1)/lkkre);

32 min_yk = yk_min + (k^2*20);

33 max_yk = min_yk + (k*20);

34 for yk = min_yk : 0.5 : max_yk

35 dk = sign(lkkre)*yk + dki*1i;

36 trA = trA1 + dk*L(k,k);

37 modtrA = abs(trA)^2;

38 trAre = real(trA);

39 A = [A1(1:k−1,1:k) ; dk*L(k,1:k)];
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40 K3A = ((norm(A)^2 − modtrA/k)^2 − ...

norm(A*A'−A'*A)^2/2)^0.5;
41 f3 = (((k−1)/k)^0.5)*((K3A + real(trace(A*A)))/2 − ...

trAre^2/k)^0.5;

42 ckkres = (trAre/k);

43 [ckkres f3 dki yk_min k]

44 response = ckkres − f3 > 0;

45 if(response && (dki 6= 0 || real(dk) 6= 0))

46 diagonal(k) = dk;

47 break;

48 end

49 end

50 if(response)

51 diagonal(k) = dk;

52 break;

53 end

54 end

55 end

56

57 D = diag(diagonal);

58

59 end
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Appendix H

Matlab: Code from Chapter 6

In chapter 6 experimental results were shown for the complex Laplacian for-
mation control of a group of agents. The experiments were implemented in
Matlab code and in this chapter the files are shown.

Note that in files H.2 and H.4 the convolution integrals

SIK case
t∫

τ

e−DL(t−α) bv0(α) dα,

DID case
t∫

τ

eH(t−α) ba0(α) dα,

have been made discrete and implemented as a sum in the following way

SIK case
t∑

α=τ

e−DL(t−α) bv0(α),

DID case
t∑

α=τ

eH(t−α) ba0(α).

In both experiments τ has been chosen to be zero.

File H.1: sikplanarformation.m

1 %Symulation of a group of agents

2 %reaching a planar formation.

3
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4 %Time interval

5 step = 0.2;

6 time = 50;

7 max = (time / step) + 2;

8

9 %Random group of 5 agents

10 %scale = 1;

11 %z = scale*(rand(5,1) + rand(5,1)*1i);

12 z = randi([−5 5],5,1) + randi([−5 5],5,1)*1i;

13

14 %Stabilizing diagonal matrix D

15 M_s = G;

16 D = [1 0 0 0 0; 0 1 0 0 0; 0 0 M_s(1,:); 0 0 M_s(2,:); 0 0 ...

M_s(3,:)];

17

18

19 %Defining agents' positions vector

20 agent1 = zeros(max,1);

21 agent2 = zeros(max,1);

22 agent3 = zeros(max,1);

23 agent4 = zeros(max,1);

24 agent5 = zeros(max,1);

25

26 agent1(1) = z(1);

27 agent2(1) = z(2);

28 agent3(1) = z(3);

29 agent4(1) = z(4);

30 agent5(1) = z(5);

31

32 %Transition matrix H

33 Lap = L;

34 H = −D*Lap;
35

36 index = 0;

37 for t = 0 : step : time

38

39 %Unforced response

40 w = expm(H*t)*z;

41

42 agent1(index+2) = w(1);

43 agent2(index+2) = w(2);

44 agent3(index+2) = w(3);

45 agent4(index+2) = w(4);

46 agent5(index+2) = w(5);

47
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48 index = index + 1;

49 end

50

51 %Plotting agents' initial position

52 plot(z(1),'b*');

53 hold on

54 plot(z(2),'r*');

55 hold on

56 plot(z(3),'g*');

57 hold on

58 plot(z(4),'k*');

59 hold on

60 plot(z(5),'m*');

61 hold on

62 %Plotting agents' positions evolution

63 plot(real(agent1),imag(agent1),'b−');
64 hold on

65 plot(real(agent2),imag(agent2),'r−');
66 hold on

67 plot(real(agent3),imag(agent3),'g−');
68 hold on

69 plot(real(agent4),imag(agent4),'k−');
70 hold on

71 plot(real(agent5),imag(agent5),'m−');
72 hold on

73 %Plotting agents' symbols in the last position

74 plot(real(agent1(max)),imag(agent1(max)),'b^');

75 hold on

76 plot(real(agent2(max)),imag(agent2(max)),'r^');

77 hold on

78 plot(real(agent3(max)),imag(agent3(max)),'go');

79 hold on

80 plot(real(agent4(max)),imag(agent4(max)),'ko');

81 hold on

82 plot(real(agent5(max)),imag(agent5(max)),'mo');

83 hold on

84

85 xlabel('Real axis');

86 ylabel('Imaginary axis');

87 legend('v1 (l)','v2 (l)','v3 (f)','v4 (f)','v5 (f)',4);

88

89 %Plotting agents formation shape

90 arc1 = zeros(2,1);

91 arc2 = zeros(2,1);

92 arc3 = zeros(2,1);
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93 arc4 = zeros(2,1);

94 arc5 = zeros(2,1);

95

96 arc1(1) = agent1(max);

97 arc1(2) = agent5(max);

98

99 arc2(1) = agent1(max);

100 arc2(2) = agent2(max);

101

102 arc3(1) = agent2(max);

103 arc3(2) = agent3(max);

104

105 arc4(1) = agent3(max);

106 arc4(2) = agent4(max);

107

108 arc5(1) = agent4(max);

109 arc5(2) = agent5(max);

110

111 %Plotting the shape formation

112 hold on

113 plot(real(arc1),imag(arc1),'k−−');
114 hold on

115 plot(real(arc2),imag(arc2),'k−−');
116 hold on

117 plot(real(arc3),imag(arc3),'k−−');
118 hold on

119 plot(real(arc4),imag(arc4),'k−−');
120 hold on

121 plot(real(arc5),imag(arc5),'k−−');
122 hold on

123

124 %Disabling stretch to fill option

125 % h_axes = gca;

126 % set(h_axes,'PlotBoxAspectRatio',[1 1 1]);

127

128 axis equal;

129

130 %Changing scale axis

131 axis([−15 15 −15 10]);

File H.2: sikmovingplanarformation.m

1 %Symulation of a group of agents

2 %reaching a planar formation while moving.
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3 %SIK case.

4

5 %Time interval

6 step = 0.4;

7 step_conv = 0.2;

8 time = 12;

9 max = (time / step) + 2;

10 % time = 25;

11 % max = time + 2;

12

13 %Random group of 5 agents

14 %scale = 1;

15 %z = scale*(rand(5,1) + rand(5,1)*1i);

16 z = randi([−5 5],5,1) + randi([−5 5],5,1)*1i;

17

18 %Stabilizing diagonal matrix D

19 M_s = G;

20 D = [1 0 0 0 0; 0 1 0 0 0; 0 0 M_s(1,:); 0 0 M_s(2,:); 0 0 ...

M_s(3,:)];

21

22 %Defining agents' positions vector

23 agent1 = zeros(max,1);

24 agent2 = zeros(max,1);

25 agent3 = zeros(max,1);

26 agent4 = zeros(max,1);

27 agent5 = zeros(max,1);

28

29 agent1(1) = z(1);

30 agent2(1) = z(2);

31 agent3(1) = z(3);

32 agent4(1) = z(4);

33 agent5(1) = z(5);

34

35 %Transition matrix H

36 Lap = L;

37 H = −D*Lap;
38

39 b = ones(5,1);

40 index = 0;

41 for t = 0 : step : time

42

43 %Forced responce (convolution integral)

44 sum = 0;

45 for tao = 0 : step_conv : t

46 input = b*(2*tao*cos(0.1*tao) + ...
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0.5*tao*sin(0.1*tao)*1i);

47 sum = sum + expm(H*(t − tao))*input;

48 end

49

50 %Total response of the forced system

51 w = expm(H*t)*z + sum;

52

53 agent1(index+2) = w(1);

54 agent2(index+2) = w(2);

55 agent3(index+2) = w(3);

56 agent4(index+2) = w(4);

57 agent5(index+2) = w(5);

58

59 index = index + 1;

60 end

61

62 %Plotting agents' initial position

63 plot(z(1),'b^');

64 hold on

65 plot(z(2),'r^');

66 hold on

67 plot(z(3),'g*');

68 hold on

69 plot(z(4),'k*');

70 hold on

71 plot(z(5),'m*');

72 hold on

73 %Plotting agents' positions evolution

74 plot(real(agent1),imag(agent1),'b−');
75 hold on

76 plot(real(agent2),imag(agent2),'r−');
77 hold on

78 plot(real(agent3),imag(agent3),'g−');
79 hold on

80 plot(real(agent4),imag(agent4),'k−');
81 hold on

82 plot(real(agent5),imag(agent5),'m−');
83 hold on

84 %Plotting agents' symbols in the last position

85 plot(real(agent1(max)),imag(agent1(max)),'b^');

86 hold on

87 plot(real(agent2(max)),imag(agent2(max)),'r^');

88 hold on

89 plot(real(agent3(max)),imag(agent3(max)),'go');

90 hold on
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91 plot(real(agent4(max)),imag(agent4(max)),'ko');

92 hold on

93 plot(real(agent5(max)),imag(agent5(max)),'mo');

94 hold on

95

96 xlabel('Real axis');

97 ylabel('Imaginary axis');

98 legend('v1 (l)','v2 (l)','v3 (f)','v4 (f)','v5 (f)',4);

99

100 %Plotting agents formation shape

101 arc1 = zeros(2,1);

102 arc2 = zeros(2,1);

103 arc3 = zeros(2,1);

104 arc4 = zeros(2,1);

105 arc5 = zeros(2,1);

106

107 arc1(1) = agent1(max);

108 arc1(2) = agent5(max);

109

110 arc2(1) = agent1(max);

111 arc2(2) = agent2(max);

112

113 arc3(1) = agent2(max);

114 arc3(2) = agent3(max);

115

116 arc4(1) = agent3(max);

117 arc4(2) = agent4(max);

118

119 arc5(1) = agent4(max);

120 arc5(2) = agent5(max);

121

122 %Plotting the shape formation

123 hold on

124 plot(real(arc1),imag(arc1),'k−−');
125 hold on

126 plot(real(arc2),imag(arc2),'k−−');
127 hold on

128 plot(real(arc3),imag(arc3),'k−−');
129 hold on

130 plot(real(arc4),imag(arc4),'k−−');
131 hold on

132 plot(real(arc5),imag(arc5),'k−−');
133 hold on

134

135 axis equal;
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136

137 %Changing scale axis

138 axis([−20 500 −100 260]);

139

140 %NOTE: Be careful defining step and step_conv.

File H.3: didplanarformation.m

1 %Symulation of a group of agents

2 %reaching a planar formation.

3 %DID case.

4

5 %Time interval

6 step = 0.5;

7 time = 320;

8 max = (time / step) + 2;

9 % time = 360;

10 % max = time + 2;

11

12 %Random group of 5 agents

13 %scale = 1;

14 %z = scale*(rand(5,1) + rand(5,1)*1i);

15 z = randi([−5 5],5,1) + randi([−5 5],5,1)*1i;

16

17 %Stabilizing diagonal matrix D

18 M_s = M1;

19 D = [1 0 0 0 0; 0 1 0 0 0; 0 0 M_s(1,:); 0 0 M_s(2,:); 0 0 ...

M_s(3,:)];

20

21 %Transition matrix H

22 gamma = 5;

23 E = eye(5);

24 N = zeros(5);

25 Lap = L;

26 H = [N E ; −D*Lap −gamma*E];
27

28 %Defining agents' positions vector

29 agent1 = zeros(max,1);

30 agent2 = zeros(max,1);

31 agent3 = zeros(max,1);

32 agent4 = zeros(max,1);

33 agent5 = zeros(max,1);

34

35 agent1(1) = z(1);
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36 agent2(1) = z(2);

37 agent3(1) = z(3);

38 agent4(1) = z(4);

39 agent5(1) = z(5);

40

41 %v = ones(5,1);

42 v = zeros(5,1);

43 st = [z ; v];

44

45 index = 0;

46 for t = 0 : step : time

47

48 %Unforced response

49 w = expm(H*t)*st;

50

51 agent1(index+2) = w(1);

52 agent2(index+2) = w(2);

53 agent3(index+2) = w(3);

54 agent4(index+2) = w(4);

55 agent5(index+2) = w(5);

56

57 index = index + 1;

58 end

59

60 %Plotting agents' initial position

61 plot(z(1),'b*');

62 hold on

63 plot(z(2),'r*');

64 hold on

65 plot(z(3),'g*');

66 hold on

67 plot(z(4),'k*');

68 hold on

69 plot(z(5),'m*');

70 hold on

71 %Plotting agents' positions evolution

72 plot(real(agent1),imag(agent1),'b−');
73 hold on

74 plot(real(agent2),imag(agent2),'r−');
75 hold on

76 plot(real(agent3),imag(agent3),'g−');
77 hold on

78 plot(real(agent4),imag(agent4),'k−');
79 hold on

80 plot(real(agent5),imag(agent5),'m−');
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81 hold on

82 %Plotting agents' symbols in the last position

83 plot(real(agent1(max)),imag(agent1(max)),'bo');

84 hold on

85 plot(real(agent2(max)),imag(agent2(max)),'ro');

86 hold on

87 plot(real(agent3(max)),imag(agent3(max)),'go');

88 hold on

89 plot(real(agent4(max)),imag(agent4(max)),'ko');

90 hold on

91 plot(real(agent5(max)),imag(agent5(max)),'mo');

92 hold on

93

94 xlabel('Real axis');

95 ylabel('Imaginary axis');

96 legend('v1 (l)','v2 (l)','v3 (f)','v4 (f)','v5 (f)',4);

97

98 %Plotting agents formation shape

99 arc1 = zeros(2,1);

100 arc2 = zeros(2,1);

101 arc3 = zeros(2,1);

102 arc4 = zeros(2,1);

103 arc5 = zeros(2,1);

104

105 arc1(1) = agent1(max);

106 arc1(2) = agent5(max);

107

108 arc2(1) = agent1(max);

109 arc2(2) = agent2(max);

110

111 arc3(1) = agent2(max);

112 arc3(2) = agent3(max);

113

114 arc4(1) = agent3(max);

115 arc4(2) = agent4(max);

116

117 arc5(1) = agent4(max);

118 arc5(2) = agent5(max);

119

120 %Plotting the shape formation

121 hold on

122 plot(real(arc1),imag(arc1),'k−−');
123 hold on

124 plot(real(arc2),imag(arc2),'k−−');
125 hold on
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126 plot(real(arc3),imag(arc3),'k−−');
127 hold on

128 plot(real(arc4),imag(arc4),'k−−');
129 hold on

130 plot(real(arc5),imag(arc5),'k−−');
131 hold on

132

133 axis equal;

134

135 %Changing scale axis

136 axis([−18 8 −8 18]);

File H.4: didmovingplanarformation.m

1 %Symulation of a group of agents

2 %reaching a planar formation while moving.

3 %DID case.

4

5 %Time interval

6 step = 0.4;

7 step_conv = 0.2;

8 time = 60;

9 max = (time / step) + 2;

10 % time = 400;

11 % max = time + 2;

12

13 %Random group of 5 agents

14 %scale = 1;

15 %z = scale*(rand(5,1) + rand(5,1)*1i);

16 z = randi([−5 5],5,1) + randi([−5 5],5,1)*1i;

17

18 %Stabilizing diagonal matrix D

19 M_s = G;

20 D = [1 0 0 0 0; 0 1 0 0 0; 0 0 M_s(1,:); 0 0 M_s(2,:); 0 0 ...

M_s(3,:)];

21

22 %Transition matrix H

23 gamma = 20;

24 E = eye(5);

25 N = zeros(5);

26 Lap = L;

27 H = [N E ; −D*Lap −gamma*E];
28

29 %Defining agents' positions vector
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30 agent1 = zeros(max,1);

31 agent2 = zeros(max,1);

32 agent3 = zeros(max,1);

33 agent4 = zeros(max,1);

34 agent5 = zeros(max,1);

35

36 agent1(1) = z(1);

37 agent2(1) = z(2);

38 agent3(1) = z(3);

39 agent4(1) = z(4);

40 agent5(1) = z(5);

41

42 v = ones(5,1);

43 %v = zeros(5,1);

44 st = [z ; v];

45 b = ones(10,1);

46

47 index = 0;

48 for t = 0 : step : time

49 t

50 %Forced responce (convolution integral)

51 sum = 0;

52 for tao = 0 : step_conv : t

53 input = b*(2*tao*cos(0.1*t) + 1.5*t*sin(0.1*t)*1i);

54 sum = sum + expm(H*(t − tao))*input;

55 end

56

57 %Total response of the forced system

58 w = expm(H*t)*st + sum;

59

60 agent1(index+2) = w(1);

61 agent2(index+2) = w(2);

62 agent3(index+2) = w(3);

63 agent4(index+2) = w(4);

64 agent5(index+2) = w(5);

65

66 index = index + 1;

67 end

68

69 %Plotting agents' initial position

70 plot(z(1),'b^');

71 hold on

72 plot(z(2),'r^');

73 hold on

74 plot(z(3),'g*');
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75 hold on

76 plot(z(4),'k*');

77 hold on

78 plot(z(5),'m*');

79 hold on

80 %Plotting agents' positions evolution

81 plot(real(agent1),imag(agent1),'b−');
82 hold on

83 plot(real(agent2),imag(agent2),'r−');
84 hold on

85 plot(real(agent3),imag(agent3),'g−');
86 hold on

87 plot(real(agent4),imag(agent4),'k−');
88 hold on

89 plot(real(agent5),imag(agent5),'m−');
90 hold on

91 %Plotting agents' symbols in the last position

92 plot(real(agent1(max)),imag(agent1(max)),'b^');

93 hold on

94 plot(real(agent2(max)),imag(agent2(max)),'r^');

95 hold on

96 plot(real(agent3(max)),imag(agent3(max)),'go');

97 hold on

98 plot(real(agent4(max)),imag(agent4(max)),'ko');

99 hold on

100 plot(real(agent5(max)),imag(agent5(max)),'mo');

101 hold on

102

103 xlabel('Real axis');

104 ylabel('Imaginary axis');

105 legend('v1 (l)','v2 (l)','v3 (f)','v4 (f)','v5 (f)',4);

106

107 %Plotting agents formation shape

108 arc1 = zeros(2,1);

109 arc2 = zeros(2,1);

110 arc3 = zeros(2,1);

111 arc4 = zeros(2,1);

112 arc5 = zeros(2,1);

113

114 arc1(1) = agent1(max);

115 arc1(2) = agent5(max);

116

117 arc2(1) = agent1(max);

118 arc2(2) = agent2(max);

119
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120 arc3(1) = agent2(max);

121 arc3(2) = agent3(max);

122

123 arc4(1) = agent3(max);

124 arc4(2) = agent4(max);

125

126 arc5(1) = agent4(max);

127 arc5(2) = agent5(max);

128

129 %Plotting the shape formation

130 hold on

131 plot(real(arc1),imag(arc1),'k−−');
132 hold on

133 plot(real(arc2),imag(arc2),'k−−');
134 hold on

135 plot(real(arc3),imag(arc3),'k−−');
136 hold on

137 plot(real(arc4),imag(arc4),'k−−');
138 hold on

139 plot(real(arc5),imag(arc5),'k−−');
140 hold on

141

142 axis equal;

143

144 %Changing scale axis

145 %axis([−900 1000 −100 1800]);

146

147 %NOTE: Be careful defining step and step_conv.

210



Appendix I

Matlab: Additional Functions

In chapter 4 we have seen how to solve the problem of finding a permuta-
tion matrix P such that the matrix L̂ff resulting from the expression L̂ff =

PLffP
T has non-null leading principal minors. Moreover, in appendix F Mat-

lab implementations of the algorithms have been given. In this chapter some
Matlab functions used in appendix F are given.

dpm1.m Function dpm1(A) returns a boolean variable which is one if matrix
A has non-null leading principal minors and zero otherwise. It returns
a vector too that contains the value of all leading principal minors, in-
cluding the determinant of the entire matrix in the last position. File I.1
shows the Matlab implementation.

File I.1: dpm1.m

1 %DPM1 − Determinant of the leading

2 %principal minors of a matrix.

3

4 %Function dpm1 computes the determinants

5 %of all leading principal minors of

6 %a square matrix passed as an argument.

7 %The output function is a vector whose

8 %elements are the aforementioned determinants.

9 %The first element is the determinant of the

10 %smallest minor (that is the matrix element A(1,1)),

11 %the second the determinant of the minor of order 2

12 %and so on. The last one is the determinant of the

13 %matrix itself. The algorithm has been designed

14 %as an iterative one and the det() Matlab function

15 %has been used.
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16

17 function [nn,dmp1,d1] = dpm1(A)

18

19 [m,n] = size(A);

20

21 %d1 = 0 if the matrix is not a square one.

22 if(m 6= n)

23 d1 = 0;

24 else

25 d1 = 1;

26 end

27

28 dmp1 = zeros(m,1);

29

30 nn = 1;

31 for i = 1 : m

32 dmp1(i) = det(A(1:i,1:i));

33 if(abs(dmp1(i)) < eps)

34 nn = 0;

35 end

36 end

37

38 end

excn.m Function excn(A,h,k) simply exchanges row and column h with row
and column k in the matrix A passed as an argument. File I.2 shows the
Matlab implementation.

File I.2: excn.m

1 %EXCN − EXCHANGE

2 %The function excn exchanges row and column h

3 %with row and column k in the

4 %matrix A passed as an argument.

5 %NOTE: h < k.

6

7 function [A,w] = excn(A,h,k)

8

9 if(h > k)

10 w = 0;

11 return;

12 else

13 [m,n] = size(A);
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14 if((h > m) || (k > n))

15 w = 0;

16 return;

17 end

18 rh = A(h,:);

19 A(h,:) = A(k,:);

20 A(k,:) = rh;

21 ch = A(:,h);

22 A(:,h) = A(:,k);

23 A(:,k) = ch;

24 w = 1;

25 end

26

27 end

dtr.m Function dtr(A) simply computes the determinant of the matrix A
passed as an argument. File I.3 shows the Matlab implementation based
on Gauss elimination with partial pivoting.

File I.3: dtr.m

1 %DTR −Determinant.
2 %The function dtr computes the determinant of a square

3 %matrix using the Gauss elimination with partial

4 %pivoting.Both real or complex matrices can be passed

5 %to the function. The output variables are:

6 % d = value of the determinant,

7 % L,U = triangular factors of input matrix A,

8 % P = permutation matrix for partial pivoting,

9 % w = boolean variable for success / insuccess.

10

11 function [d,L,A,P,w] = dtr(A)

12

13 [m,n] = size(A);

14

15 if(m 6= n)

16 disp('The matrix is not a square one');

17 d = 0;

18 w = 0;

19 return;

20 end

21

22 L = eye(m);
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23 perm = 0;

24 b = zeros(m,1);

25 for i = 1 : m

26 b(i) = i;

27 end

28

29 for k = 1 : m−1
30 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
31 %Choose the pivot element with maximum modulus.

32

33 [maxe,index] = max(abs(A(k:m,k)));

34 maxi = index + k −1;
35

36 if(maxe < eps)

37 break;

38 end

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
40

41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
42 %Column pivoting.

43 if(k 6= maxi)

44 %For the vector used to build P.

45 p = b(k);

46 b(k) = b(maxi);

47 b(maxi) = p;

48 %For the sub−matrix A[k¬m].
49 r = A(k,:);

50 A(k,:) = A(maxi,:);

51 A(maxi,:) = r;

52 %Pivoting for matrix L.

53 t = L(k,1:k−1);
54 L(k,1:k−1) = L(maxi,1:k−1);
55 L(maxi,1:k−1) = t;

56 %Counting the number of permutations.

57 perm = perm +1;

58 end

59 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
60

61 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
62 %Gauss elimination step.

63 l = ones(m−k+1,1);
64 for j = k+1 : m

65 l(j−k+1) = A(j,k) / A(k,k);

66 A(j,k:m) = A(j,k:m) − l(j−k+1)*A(k,k:m);
67 end
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68 L(k:m,k) = l;

69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
70 end

71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
72 %Determinant.

73 d = (−1)^perm;
74 w = 1;

75 for j = 1 : m

76 d = d*A(j,j);

77 end

78 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
79

80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
81 %Permutation Matrix.

82 I = eye(m);

83 P = zeros(m);

84 for h = 1 : m

85 P(h,:) = I(b(h),:);

86 end

87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
88 end

irp.m Function irp(m) generates a vector of m integers from 1 to m. The
sequence of the vector elements is chosen randomly. File I.4 shows the
Matlab implementation.

File I.4: irp.m

1 %IRP − Integer Random Permutation.

2 %The function irp generates a vector of m

3 %integers from 1 to m.The sequence

4 %of the elements of the vector is chosen randomly.

5

6 function index = irp(m,n)

7

8 if(nargin < 2)

9 n = 1;

10 end

11

12 index = zeros(m,1);

13 index(1) = randi([n m],1,1);

14

15 for i = 2 : m
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16 ok = 0;

17 while(ok == 0)

18 y = randi([n m],1,1);

19 if(¬search(index(1:i−1),y))
20 index(i) = y;

21 ok = 1;

22 else

23 ok = 0;

24 end

25 end

26 end

27

28 end
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