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Abstract

A multi-agent system (MAS) or coupled cell system is a collection of indi-
vidual, but interacting, dynamical systems (called cells or agents). With
coupling, the state of certain individual systems affects the time-evolution of
other agents [28]. Multi-agent systems can be used to solve problems which are
difficult or impossible for an individual agent or monolithic system to solve.
One way to study the interaction among coupled systems is by mean of robots
playing the role of agents. In this scenario, one problem which arises is the
formation control of the agents. The state of the art literature describes three
different approaches to formation control. Recently, in [29] a fourth approach
has been presented and fully discussed both for the single-integrator kinematics
and the double-integrator dynamics case. This new approach involves complex
weighted directed graphs and its Laplacian matrix on which the control laws
are based. In this work the formation control via complex Laplacian is pre-
sented. In chapter 3 the full extent of this theory is presented, while in chapters
4 and 5 algorithms to implement the control laws work are discussed. Finally,
in chapter 6 experiments are presented in order to show the formation control
working in practice. The simulations have been written in MATLAB® code

and they can be found in appendix.






Chapter 1
Introduction

"A multi-agent system (MAS) is a system composed of multiple
interacting intelligent agents. Multi-agent systems can be used to
solve problems which are difficult or impossible for an individual

agent or monolithic system to solve."[2]

"A coupled cell system is a collection of individual, but inter-
acting, dynamical systems. With coupling, the state of certain in-
dividual systems (called cells or agents) affects the time-evolution
of other agents."[28].

The definitions of a Multi-Agent System given above, span from the most
general, that is the former, to the most specific control engineering-oriented
definition, that is the latter. In both cases, what stands is that the entities
forming the system are related to each other in some ways; there is a sense of
"together". That sense of union could be seen in different ways, depending on
which discipline multi-agent modelling is applied on.

The interaction among agents play a key role to reach the common objective
the overall system has. From a control engineering point of view, it means that
the overall system has to evolve from a stable state to another stable state
in pursuing his objective. One way to study the interaction among coupled
systems is by mean of robots playing the role of agents. The common objectives
of the MAS become simply the movements in the plane or in a 3-D space. In
this scenario, and in general in multi-robot systems [28] there are different

research problems some of which are:
e Rendezvous, consensus;

e Formation control;



e Coverage (static, dynamic);
e Cooperative target enclosing;
e Coordinated path following;

e Distributed target assignment.

In this work we are mainly interested in formation control problems, that is
the study of the stability of a MAS in pursuing is objective, and in particular
in a complex Laplacian-based approach recently introduced in [29].
Formation control (see [29]) is an important category of networked multi-
agent systems due to their civil and military applications. Three main ap-

proaches to formation control have been discussed in recent literature:

the first approach describes a formation in terms of inter-agent distance
measures and uses gradient control laws resulted from distance-based

artificial potentials;

the second approach describes a formation in terms of inter-agent bearing

measures and uses angle only control laws;

the third approach describes a formation in terms of inter-agent relative
positions and uses consensus-based control laws with input bias, which

are related real-valued Laplacians.

In table 1.1 a list of the main aspects of the mentioned approaches to formation
control, including the complex Laplacian one, are given.

For the first approach [29], the majority of the algorithms consider repre-
sentation of formations in terms of inter-agent distance measures. This results
to be more successful when agents formation is represented by an undirected
graph and together with the concept of graph rigidity, in which two neighbor-
ing agents work together to reach the specified distance between them. The
directed case needs a further concept called persistence to characterize a planar
formation. Still, it is challenging to synthesize a control law and analyse the
stability property for a group of agents modelled by a digraph and most works
are then limited to directed acyclic graphs. Angle-based control for formations
in terms of inter-agents bearing measuring, that is approach number two, is
relatively new and it has not been fully explored. Nonetheless, for a group of
three agents global asymptotic convergence results are established to reach a
triangular formation with angle-only constraints. In the third approach, forma-

tions are considered in terms of relative positions. Compared with formations



Formation Control Approaches
Approach Features
- non-linear;
- local stability;
Distance specified formation - simple in analysis for undirected formation but challenging for directed formation;
and gradient descent control - require more relative position measurement;
- do not need global information;
- 3 degree of freedom (translation and rotation).
- non-linear;
- global stability but limited to special cases;
Angle specified formation - challenging in analysis for both undirected and directed formation;
and angle-based control - do not require relative position measurement but angles;
- do not need global information;
- 4 degrees of freedom (translation, rotation, and scaling).
- affine;
- global stability;
Relative position specified formation | - simple in analysis for both undirected and directed formation;
and consensus - based control - require less relative position measurement;
- need global information: a common sense of direction;
- 1 degrees of freedom (translation only).
- linear;
- global stability:
Relative position specified formation | - simple in analysis for both undirected and directed formation;
and complex Laplacian based control | - require intermediate relative position measurement;
- do not need global information;
- 4 degrees of freedom (translation, rotation, and scaling).

First

Second

Third

Fourth

Table 1.1: Summary of the main formation control approaches in MAS.

described in terms of inter-agent distance constraints and inter-agent angle
constraints, the third approach requires less links and it is easier to extend
from undirected to directed graphs. The consensus-based control laws with
input bias are affine and thus could lead to global stability results. Nonethe-
less, the approach has the drawback that all the agents should have a common

sense of direction since input bias is defined in a common reference frame.

A fourth approach to formation control has been introduced in [29]. It is
based on complex Laplacians and it exploits complex weighted 2-reachable
digraphs with inter-agent distance measure together with a leader-follower
organization to agents formation. The paper aimed to study the formation
control problem in the plane. For a network of n interacting agents modelled
as a weighted digraph, they represent a planar formation as an n-dimensional
complex vector called formation basis and introduce a complex Laplacian of
the directed graph to characterize the planar formation. The result is that
the formation basis is another linearly independent eigenvector of the com-
plex Laplacian associated with zero eigenvalues in addition to the eigenvector
of ones. In this way, a planar formation is subjected to translation, rotation
and scaling. In order to uniquely determine the location, orientation, and size
of the group formation, they consider a leader-follower formation with two
co-leaders. The result of describing the formation, that is the sensing graph
of the networked agents, with a complex Laplacian, leads to a simple dis-

tributed control law. One of the advantages is that the control law is locally



implementable without requiring a common reference frame. For example,
for single integrator kinematics, the velocity control of each follower agent is
the complex combination of the relative positions of its neighbors using the
complex weights on the incoming edges. A complex weight multiplying the
relative position of a neighbor actually means that the agent moves along the
line of sight rotated by an offset angle with certain speed gain (magnitude of
the complex weight). This complex Laplacian based control law has also been
generalized to double integrator dynamics, which has been investigated in [29]
as well. The approach however, has the drawback that a few eigenvalues of
the complex Laplacian might be in the left half complex plane which would
lead to instability of the overall system, unlike the real Laplacian that do not
manifest such problem. To tackle this technical issue, they shown that there
is a way to stabilize the possibly unstable system by updating the complex
weights, which is related to a traditional problem called Multiplicative Inverse
Eigenvalue Problem (MIEP)(i.e., see [14]).They presented sufficient conditions
for the existence of a stabilizing matrix and also provided algorithms to find it.
The aim of the present work is to implement the algorithms given in [29] and to
simulate multi-agent system movements like translation, rotation and scaling
in the plane verifying its stability. Before presenting possible solutions to the
implementation of the algorithms, we present in chapter 3 the results obtained
in [29]. In chapter 2 is presented a summary of the main graph theory concepts
needed to understand results in chapter 3. Chapters 4 and 5 present algorithms
possible implementation and finally, in chapter 6 a complete simulation for a

group of agents is shown.



Chapter 2
Background Theory

Multi-Agent Systems are studied through mathematical models like graphs
and mathematical tools from linear algebra and control theory. In this chapter
the necessary background to tackle the problem of MAS formation control
is presented. In section 2.1 a brief introduction to permutation matrices is
given. It is necessary in order to understand graphs isomorphism, especially
the particular case presented in chapter 3 and 4. A glance at graph theory
is fundamental and it is given in section 2.2. In 2.2.4 is presented one of the
matrix used to algebraically describe a graph, the Laplacian matrix and in 2.2.5
the graph isomorphism problem is defined. The last section 2.3 is devoted to
Gauss elimination process and LU factorization. This is not strictly related to
graphs but we will need it in chapter 4 in order to look at the isomorphism

problem on a different perspective.

2.1 Permutation Matrix

In order to define a permutation matrix, we will present identity matrices and

elementary matrices first.

Identity Matrix

An identity matriz I, of order n (]|26],[35]), is a square n x n matrix that
has exactly one non-zero entry in each row and column. In addition, these

non-zero entries are the diagonal elements and each of them is valued exactly



0 -« -+ 0
0 1 0 0
I= (2.1)
0
0 - |

There are several properties an identity matrix has, but we are mainly inter-

ested in the following ones:

1. det(I) = 1,

2. given a square matrix A € C™*™ the left and the right product of I by

A don’t change matrix A, that means:

TA= Al =A.

The vector e; defined as a column vector with only one non-zero element in

the i-th position,

€; =

0

is the i-th vector of the orthonormal basis for the real n-dimensional vector
space R™. Noting that rows and columns of an identity matrix are the e;s
vectors (transposed in the first case), we can write I in terms of them in the

following ways:

_6{_
€

I= e, (2.2a)
6T

I=le; e €3 - e,]. (2.2b)



Elementary Matrix

An elementary matriz E of order n, is a square n X n matrix obtained by
doing one elementary row operation to an identity matrix. Thus, there are

three types, one for each different row operation:

1. a multiple of one row of I has been added to a different row. For example,

the following matrix

1

is an elementary matrix where row s of I has been multiplied by m and

added to row v;

2. two different rows of I have been exchanged. For example, the following

matrix

1

E(v,s) _

1

is an elementary matrix where row s of I has been exchanged with row

v

3. one row of I has been multiplied by a non-zero scalar. For example, the

7



following matrix

E'(m) = , (2.5)

1

is an elementary matrix where row v of I has been multiplied by the

scalar m.

Let E be an elementary matrix obtained by doing one elementary row opera-

tion to I. The following statements are true.

1. FE is invertible and its inverse is another elementary matrix of the same

type.

2. If the same row operation we did on F is done to an n X p matrix
A € F™*P the result equals F'A.

We are mainly interested in the second type of elementary matrices, the one
where two rows have been exchanged. In fact, these kind of matrices are used
in Gauss elimination process. Let us have an elementary matrix £ of the

form 2.4, the following statements are always true.

-1

1. The inverse of an elementary matrix is itself, E©®) " = B®),

2. Since the determinant of an identity matrix is unity, then det(E®*)) =
—1.

3. Let us have a square matrix A € F"*", the left and right product between
EY* and A have different results:

(a) the left multiplication of E*) by A, EA, exchanges row v and s in
matrix A. It follows that det(EA) = —det(A),

(b) the right multiplication of E(*) by A, AE, exchanges column v and
s in matrix A. This operation does not change the determinant, so
det(EA) = det(A).



Properties (3a) and (3b) are of great importance in Gauss elimination algo-

rithm.

Example: let us have the elementary matrix £? and the real matrix A as

follows:

E(LQ) —

o O = O
o O O =
o = O O
_ o O O

Ut 00

3
2
7
6

co Ut = =
N O W N

Thus, the left and right multiplication of E1?) by A, will result in the following

matrices:

left multiplication

co Ot = =
N O N W
S N W N
Ut 00 =

right multiplication

D, = AEM? =

~N O W N
Ut 00 =
S N N W
(G2 BN ORI TN

where C is matrix A with the first two rows exchanged, while D; is matrix A
with the first two columns exchanged. Elementary matrices are also important

because they help to define permutation matrices.

Permutation Matrix

A permutation matriz P can be defined as a product of elementary matrices
of the form (2.4):
P = E('Un,sn)E(Unflysnfl)_ . E(Ul’sl), (26)

9



where the generic elementary matrix E is a square matrix of order n. A
permutation matrix has only one non-null element in each row and column,

valued 1. The following statements are true:

1. P is an orthogonal matrix, consequently P~! = PT and PPT = PTP =
I

2. det(P) = (=1)#) where #(P) is the number of exchanges between

rows of I to obtain P.

What a permutation matrix does, is to apply at the same time row or column
exchanges which would have been performed by the consecutive multiplication

of the elementary matrices it is made up of.

Example: Let us have the same matrices A and E(? of the last example

and let us take a second elementary matrix, say E3:
el T1 00 0
7 0100
EB4) _ €2 | _
erl oo o1
erl oot o

For what we said earlier, the permutation matrix that corresponds to the

sequence of left applications of the elementary matrices E(2?) and E®4 is

0100

00 01

0010

and the left multiplication of P, by A is

4 3 21
PA=EOYE024 - geag, — |1 2 31
8 7 6 5
5 6 7 8

10



The right application of E(? and E® to a matrix, gives the permutation

matrix
01 00
P = U2 EBY _ 100 0 |
00 01
0010
and the right multiplication of P, by A is
214 3
AP, = A2 g0 — p gy — |3 4 12
6 8 8 7
75 5 6

Note that, if the sequence of elementary matrices is the same in left and right

multiplication, then we have:

P, = ProrP, = P, (2.7)

The definition of permutation matrix given earlier, is one of the most in-
tuitive. Moreover, it helps to understand how a permutation matrix works
when multiplied by another matrix. Nonetheless, a more formal definition can
be given. Denote by ¥ := Sym(n) the set of permutations of 1,2,...,n. For

o € 3, the (n x n)-permutation matriz P, is the matrix whose entries are

= 1, if j =o(i), 28
0 if j # o(i).

We can notice that, given an n x n matrix A, P,A is obtained from A by

permuting its rows in such a way that the elements a,(;) ; are on its diagonal.

In summary, a permutation matrix P of order n can be obtained from
row exchanges over an identity matrix [,,. A single row exchange gives an
elementary matrix while more than one give a permutation matrix. Note that
the possible row combinations of an identity matrix of order n is n!. Hence,

we will have n! possible permutation matrices of the same order.

11



V2
V2 U3 Us

(%
3 Ve

{Ub U2} - {U2a Ul}

U1 V4
U1

(a) (b)

Figure 2.1: Example of undirected graphs. The edges have no orientation.

2.2 Graph Theory

Graph theory (see [9], [28], [6], [7]) is one of the fundamental tools in the
study of Multi-Agent Systems. In fact, graphs are models which provide a
suitable representation for the interaction between agents. For this reason, in
this section we will give a brief introduction to the subject, giving some of the

main definitions.

2.2.1 Undirected Graphs

A graph G = (V,E) (simple graph) consists of a finite non-empty set V =
{v1,v9,...,v,} of elements called vertices and a prescribed set £ of unordered

pairs of distinct vertices of V called edges. An edge can be written as

a = {v;,v;} = {v;, v},

where v; and v; are the endpoints of a. In fig.(2.1) two simple undirected
graphs are shown. Graph (2.1a) hassets V = {vy, vo,v3} and € = {{vy, v}, {v1,
vs}, {ve, v3}}; graph (2.1b) has sets V = {vy, v9, v3, V4, V5, 6} and € = {{v1, v2}
Ao, v3}, {vr, v4}, {va, 4}, {va, U6}, {vs, U5}, {va, v5}, {vs,v6}}. The edges have
no orientation, so you can move back and forth between two connected nodes
in any direction. This is highlighted in fig. (2.1a). Two vertices on the same
edge or two distinct edges with a common vertex are said to be adjacent. Also,
an edge and a vertex are incident with one another if the vertex is contained
in the edge. A vertex is said to be isolated if it is incident with no edge, like v;
in graph (2.2a). Two adjacent vertices are also said to be neighbors. The set
of neighbors of a vertex v; is its neighborhood and is denoted by N(v;) or N;.
The degree (valency) of a vertex in a graph G is the number of edges incident
with the vertex. Since each edge of G has two distinct endpoints, the sum of

the degrees of the vertices of G is twice the number of its edges. The graph G
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Figure 2.2: Example of subgraphs. In (2.2b), (2.2¢) and (2.2d) are shown a subgraph,
an induced subgraph and a spanning subgraph of graph (2.2a).

is said to be regular if all vertices have the same degree. If there are precisely &
edges incident with each vertex of a graph, then the graph is said to be reqular
of degree k. A regular graph of degree 3 is called cubic. For instance, graph
(2.1a) is regular of degree 2 since each vertex has degree 2. The maximum
degree in a graph is often denoted by A.

A complete graph is a graph in which all possible pairs of vertices are edges.
Let G be a graph and let IC be the complete graph with the same vertex set V.
Then the complement G of G is the graph with vertex set V and with edge set
equal to the set of edges of K minus those of G. In fig. (2.3) a self-explanatory
example is shown.

A subgraph of a graph G consists of a subset V' of V and a subset £ of
& that themselves form a graph. This is the most general definition. In fact,
there are two main variations depending on which constraints sets V' and &’

are subjected to.

e An induced subgraph of G, is a subgraph G’ = G(V') where set £ contains
all edges of G both of whose endpoints belong to V'

e A spanning subgraph of G, is a subgraph G’ which has the same vertices
of G, that is, V' = V.

In fig. (2.2) those different cases are shown. Graphs (2.2b), (2.2¢) and
(2.2d) are a subgraph, an induced subgraph and a spanning subgraph of graph
(2.2a).

The definition of a simple graph given earlier can be modified adding con-
straints, relaxing existing ones or both. In this way, other graphs can be de-
fined. For example, the adjective simple in the earlier definition, means that

two vertices can be connected by at most one edge. Relaxing this constraint,
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Figure 2.3: Example of a graph, its complete form and its complement. Graph (2.3b)
has its complete graph in (2.3a) and its complement graph in (2.3c).

that is, allowing two vertex to be connected by more than one edge gives us the
definition of a multigraph. We can give a brief list of further generalizations of

a simple graph.

A multigraph is a simple graph where a pair of vertices is allowed to form
more than one distinct edge. The edges are called multiedges (multi-
lines) and the number of distinct edges of the form {v;,v;} is called the

multiplicity m{v;,v;} of the edge {v;,v;}.

A general graph is a simple graph where multiedges and loops are allowed.
Loops are edges of the form {v;,v;} which make vertices adjacent to

themselves.

A weighted graph is a simple graph where at each edge is assigned a numer-

ical value (real or complex) called weight.

A directed graph (or digraph) is a simple graph where edges have orienta-
tion. That is, edges are an ordered pair of vertices. For example, the two
edges (v;,v;) and (vj,v;) are different even though they have the same

endpoints.

An infinite graph is a simple graph where the vertex set V is allowed to be

infinite.

Let G be a general graph. A walk of length m is a sequence of m successively

adjacent edges, and can be denoted by three different notations:
1. {vy,v9},{ve, v3},. .. {Vm_1,0m}, and m > 0;
2. U1 5 Vg = VU3 = ... = U1 —> Um;
3. V1,U9,U3,. . . ,Um—1,Um.-

14



The vertices v; and v, are the endpoints of the walk. For example, in the
graph of fig. (2.2a), vy, ve, vy, vs,v3,v1, vy is @ walk. This is the most general

definition. In fact there are several variations:
e an open walk is a walk with different endpoints, that is vy # v,,;
e a closed walk is a walk with equal endpoints, that is v; = v,,;
e a trail is a walk with distinct edges;

e a chain is a walk with distinct edges and distinct vertices (except, pos-
sibly, for the endpoints). If the endpoints match, it is called a closed

chain;
e a cycle is a closed chain.

Notice that in a graph a cycle must contain at least 3 edges. But in a general
graph a loop or a pair of multiple edges form a cycle.

A general graph G is connected if every pair of vertices v; and v; is joined
by a walk with v; and v; as endpoints. Otherwise, the general graph is said to
be disconnected. Note that a vertex is regarded as trivially connected to itself.
Connectivity between vertices is reflexive, symmetric, and transitive. Hence,
connectivity defines an equivalence relation on the vertices of G and produces
a partition

ViUV, U---UV,,

of the vertices of G. The induced subgraphs G(V;),G(Vs),...,G(V,) of G
formed by taking the vertices in V; and the edges incident to them are called
the connected components of G.

Let G be a connected general graph. The distance d(v;,v;) between v; and
v; in G is the length of the shortest walk between the two vertices. A vertex is
regarded as distance 0 from itself. The diameter of G is the maximum value
of the distance function over all pairs of vertices. A connected general graph
of diameter d has at least d-+1 distinct eigenvalues in its spectrum.

A tree is a connected graph that contains no cycle. Let 7 be a graph of

order n. Then the following statements are equivalent:
1. T is a tree;
2. T contains no cycles and has exactly n — 1 edges;
3. T is connected and has exactly n — 1 edges;

15



4. each pair of distinct vertices of 7T is joined by exactly one chain.

Any graph without a cycle is a forest. Note that each component of a forest is
a tree.

We are mainly concerned in weighted digraphs which will be introduced
later in this section. In fact, as we will see in chapter 3, they have been used
in the representation of multi-agent formations and in the development of a

new control theory for them.

2.2.2 Directed Graphs

Digraphs are directed analogues of graphs. Thus, as we will see later, they have
many similarities. In fact, many definitions we have previously seen apply to
digraphs as well, with little or no change. Nonetheless, important differences

will be outlined.

A directed graph (or digraph) D consists of a non-empty finite set V' of elements
called wvertices and a finite set A of ordered pairs of distinct vertices called
arcs (directed edges, directed lines). A directed graph is often denoted by
D = (V, A), which means that V and A are the verter set and the arc set
of D. The order (size) of D is the number of vertices (arcs) in D and it is
often denoted by |D| = n (|D| = m respectively). We can see two examples of
digraphs in fig. (2.4). In fig. (2.4a) D is a digraph with vertex set V = {vy, v9}
and arc set A = {(vy,v2), (ve,v1)}. Digraph (2.4a) is quite simple but shows
the main difference between undirected and directed graphs. In fact, the two
arcs (vy,v2) and (ve,v1) are not the same arc as it would be if the graph were
undirected. For an arc (v;,v;) the first vertex v; is its tail and the second
vertex v; is its head. It can be also said that the arc (v;,v;) leaves v; and
enters vj. The head and the tail of an arc are said to be its end-vertices (or
endpoints as in the undirected case). The end-vertices of an arc are said to be
adjacent vertices, i.e. v; is adjacent to v; and v; is adjacent to v;. If (v;,v;) is
an arc, then v; dominates v; (or v; is dominated by v;) denoting it by v; < v;.

We say that a vertex v; is incident to an arc a = (v;, v;) if v; is the head or
tail of . An arc can be denote by (v;,v;) or simply by v;v;. For a pair X,Y

of vertex sets of a digraph D, we define
(X,)Y)p={oye A:ze X,ye Y}, (2.9)
i.e. (X,Y)p is the set of arcs with tail in X and head in Y. For example, for the
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Figure 2.4: Example of digraphs. Digraph (2.4a) shows the difference between arcs

with the same vertex but different orientation. Digraph (2.4b) shows a more complex
digraph than (2.4a), where paths and other characteristics can be found.

digraph D in fig. (2.5a), choosing (X,Y)p we have that ({vy,va}, {vs, v4}) =
{v1v9, Vo3, v304}. A different choice for sets X and Y would have led to a
different result. In fact, if X = {vy,v4} and Y = {wvy,v3}, then (X,Y)p =
{vqvs,v4v1}. For disjoint subsets X and Y of V, we can use the following

notation:

1. X =Y, and it means that every vertex of X dominates every vertex of
Y,

2. X =Y, and it means that (Y, X) = 0;
3. X — Y, and it means that both X — Y and X = Y hold.

The above definition of digraph implies that a digraph is allowed to have arcs
with the same end-vertices like arcs v;v; and vjv;, but it is not allowed to
contain parallel or multiple arcs, that is, pairs of arcs with the same tail and
the same head, or loops that are arcs for which the end-vertex coincide. We
can modify the definition of a digraph, as we have already done earlier for
a simple graph, obtaining further generalizations. Thus, a digraph for which
multiple arcs are allowed is a directed multigraph, while a digraph for which
multiple arcs and loops are allowed is a directed pseudograph. In fig. (2.5) we
can see an example of them. The directed multigraph (2.5b) has been obtained
from the digraph (2.5a) adding multiple arcs between vertices v; and vq, while
the directed pseudograph (2.5¢) has been obtained adding loops to multigraph
(2.5b). For directed pseudographs D, A and (X,Y)p are multisets because
multiple arcs provide repeated elements. In order to denote the number of
arcs from a vertex v; to a vertex v; in a directed pseudograph D, the symbol
pp (v, v;) is used. In particular, p1p(v;, vj) = 0 means that there is no arc from

Vi to Vj.
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Figure 2.5: Directed multigraph and pseudograph example. In (b) we can see a
directed multigraph obtained from digraph (a) adding multiple arcs. In (c), after
adding loops to multigraph (b), a pseudograph has been obtained.

Definitions will be henceforth given, are of general validity. Hence, if not
specified, D = (V,.A) will be considered a directed pseudograph. Restrictions
to digraphs will be named. For a vertex v; in D, we can divide its adjacent

vertices in different sets:

e the out-neighborhood (or out-neighbor set) N (v;) of v; is the set of

vertices that are heads of arcs whose tail is v;,
Np(v) ={v; €V —v; :viv; € A} (2.10)
Vertices in N} (v;) are called the out-neighbors of v;;

e the in-neighborhood (or in-neighbor set) N (v;) of v; is the set of vertices

that are tails of arcs whose head is v;,
Np(v) ={v; €V —wv; s vju; € A} (2.11)
Vertices in N, (v;) are called the in-neighbors of v;;

e the neighborhood (or neighbor set) Np(v;) of v; is the set of in-neighbors

and out-neighbors of v;, that is,
Np(v;) = Nj(v;) U Np (v;). (2.12)
Vertices in N, (v;) are called the neighbors of v;.

For example, let us take vertex vy of the digraph D in fig. (2.5a). Then,
the in-neighborhood, the out-neighborhood and the neighborhood of vy are
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Np(v2) = {v1}, Nj(va) = {vs,vs} and Np(va) = {v1,v3,v4}. For aset V' CV

we can define:

e the out-degree d}(V') of V' as the number of arcs in D whose tails are in
V" and heads are in V — ),

dp(V') = |(V',V = V)pl; (2.13)

e the in-degree d,(V') of V' as the number of arcs in D whose heads are

in V' and tails are in V — )/,

dp(V') =1V =V, V)pl; (2.14)

e the semi-degree of a set V' as its in-degree and out-degree;
e the degree dp(V') of V' as the sum of its in-degree and out-degree,

dp(V') =df(V") +d,(V'). (2.15)

For a vertex v; the in-degree is the number of arcs, except for loops, with head
v;, while the out-degree is the number of arcs, except for loops, with tail v;. If
D is a digraph (that is, it has no loops or multiple arcs), then the in-degree and
the out-degree of a vertex equal the number of in-neighbors and out-neighbors
of this vertex. If we want to count loops in the semi-degrees, the definitions

above need to be slightly modified:

e the in-pseudodegree of a vertex v; of a directed pseudograph D is the

number of all arcs with head v;;

e the out-pseudodegree of a vertex v; of a directed pseudograph D is the

number of all arcs with tail v;.
The minimum in-degree of D is defined as
0 (D) = min{d,(v;) : v; € V(D)}, (2.16)
while the minimum out-degree of D is defined as
67(D) = min{d}(v;) : v; € V(D)}. (2.17)
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The minimum semi-degree of D is then
§°(D) = min{6" (D), (D)}. (2.18)
Similarly, the maximum in-degree of D is defined as
A~ (D) = max{dp(v;) : v; € V(D)}, (2.19)
while the maximum out-degree D is defined as
AT(D) = max{d}(v;) : v; € V(D)}. (2.20)
The mazimum semi-degree of D is then
A(D) = max{AT (D), A~ (D)}. (2.21)

We say that D is regular if 6°(D) = A%(D). In this case, D is also called
8°(D)-regular. Since the number of arcs in a directed multigraph equals the

number of their tails (or their heads), the following basic result is obtained.

Proposition 2.1. For every directed multigraph D,

D d(v) =) df(vi) = | A
v; €V v; €V
This proposition is also valid for directed pseudographs if in-degrees and

out-degrees are replaced by in-pseudodegrees and out-pseudodegrees. Let us
have digraphs D and H. We can say that:

e H is a subdigraph of D it V(H) C V(D), A(H) C A(D) and every arc in
A(#H) has both end-vertices in V(H);

e H is a spanning subdigraph (or a factor) of D if V(H) = V(D), A(H) C
A(D) and every arc in A(#H) has both end-vertices in V(H);

e H is an induced subdigraph of D if every arc of A(D) with both end-
vertices in V(H) is in A(H). It can be said that #H is induced by
X = V(H) and we can write H = D(X). If H is a non-induced sub-
digraph of D, then there is an arc v;v; such that v;,v; € V(#H) and
viv; € A(D) — A(H). Such an arc v;v; is called a chord of H in D;

e D is a superdigraph of H if H is a subdigraph of D.
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Figure 2.6: Digraph and relative subdigraphs example. In (a) is shown a digraph D
with no multiple arcs neither loops. In (b) is shown a subdigraph of D and in (c)
one of its spanning subdigraph. In (d) is shown an induced subdigraph of D. Note
that subdigraph (b) is also a non-induced subdigraph of D and arc vsv; is its chord.

In fig. (2.6) we can see an example of subdigraph (2.6b), spanning subdi-
graph (2.6¢) and induced subdigraph (2.6d). It is trivial to extend the above
definitions of subdigraphs to directed pseudodigraphs. To avoid lengthy ter-
minology, the 'parts’ of directed pseudodigraph can be called just subdigraphs,
instead of, say, directed subpseudographs.

Walks, Trails, Paths, Cycles

Let us consider a directed pseudograph D. A walk (or directed walk) in D
is an alternating sequence W = viajvsa9v303 . .. v, 10,10, of vertices v; and
arcs a; from D such that the tail of a; is v; and the head of a; is v;4, for every
i=1,2,...,k—1. The set of vertices {vy,vs,...,vx} is denoted by V(W) and
the set of arcs {ay,as,...,a,} is denoted by A(W). We say that W is a walk
from vy to vy or an (v, vg)-walk. The length of a walk is the number of its
arcs. Hence, the aforementioned walk W has length £ — 1. A walk is even if
its length is even, while it is odd if its length is odd. In general, if the arcs of
W are defined from the context or simply unimportant, W will be denoted by
v1Vs . .. Vg A walk is the most general way ’to traverse a graph ’. In fact, as

in the case of undirected graphs, we can define variations of it:

e a closed walk W is a walk whose first and last vertex coincide, that is,

V1 = Un;
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e an open walk W is a walk whose first and last vertex are different, that
is, v1 # v,. The first vertex of the walk, say vy, is said to be the initial
vertex of W while the last vertex, say v,, is said to be the terminal vertex

of W. Vertices v; and v,, are also said to be the end-vertices of W;

e a trail is a walk W in which all arcs are distinct. Sometimes, a trail
is identified with the directed pseudograph (V(W), A(W)), which is a
subdigraph of D;

e a path (or directed chain) is a walk W in which all arcs and all vertices
are distinct. A path P is an [v;,v;]-path if P is a path between v; and
vj, e.g. P is either a (v;, v)-path or a (v;, v;)-path. A longest path in D

is a path of maximal length in D;

e a cycle (or circuit) is a path W whose end-vertices are equal, that is,
vy = vg. A longest cycle in D is a cycle of maximal length in D. When
W is a cycle and v; is a vertex of W, we say that W is a cycle through
v;. A loop is also considered a cycle of length one. A k-cycle is a cycle of
length k. The minimum integer k for which D has a k-cycle is the girth
of D, denoted by g(D). If D does not have a cycle, we define g(D) = co.
If g(D) is finite then we call a cycle of length ¢g(D) a shortest cycle in D.

For subsets X,Y of V(D), a (v, v,)-path Pisa (X,Y)-pathifv, € X, v, €Y
and V(P)N(XUY) = {v,, v, }. Note that, if XNY # @ then a vertex v, € XNY
forms an (X,Y')-path by itself. Subsets X and Y would even be set-vertices
of subdigraphs of D, for example H and H'. Thus, an (X,Y)-path will be
denoted by (V(H),V(H'))-path or simply by (H,H')-path. A (vy,v,)-path
P = vyvy...v, is minimal if, for every (vi,v,)-path @, either V(P) = V(Q)
or ) has a vertex not in V(P). Note that paths and cycles can be considered
as digraphs themselves. Let P, (6n) denote a path (a cycle) with n vertices,
ie. P, =({1,2,...,n},{(1,2),(2,3),...,(n — 1,n)}) and C,, = B, + (n,1).
A walk (path, cycle) W is a Hamilton or hamiltonian walk (path, cycle) if
V(W) =V(D). A digraph D is hamiltonian if D contains a Hamilton cycle; D
is traceable if D possesses a Hamilton path. A trail W = vyv, ... v, is an Euler
or eulerian trail if A(W) = A(D), V(W) = V(D) and v; = vy; a directed
multigraph D is eulerian if it has an Euler trail.

To illustrate some definitions given so far, consider the digraph D in fig.
(2.7). For example, a walk in D is Wy, = v1030503040204060204; & trail in D is

W, = v3v50601030y, also called a (vs, vy)-trail; a path in D is P = vzvsvgvavy,
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Figure 2.7: Digraph and walks example. In digraph D it is easy to find walks, trails,
paths and cycles.

also called a (v3,v1)-path; a cycle in D is W, = wzvsvs, also called 2-cycle
because its length is 2. Note that the girth of D is g(D) = 2 too. A hamiltonian
walk for D is W), = v1v3v5v60204, but there are neither hamiltonian path nor
hamiltonian cycles. Hence, D is neither hamiltonian nor traceable. Moreover,
D is not an eulerian digraph as well, because no eulerian trails can be found.
Let W = vjvy... v and ) = q1q2...q: be a pair of walks in a digraph D.
The walks W and @ are disjoint if V(W) N V(Q) = 0 and arc-disjoint if
AW)N AQ) = . If W and @ are open walks, they are called internally
disjoint if {ve,v3, ..., 01} NV(Q) =0 and VW) N {q2,q3, ..., ¢—1} = 0. A
path or a cycle can also be denoted by

W[Ui, Uj] = ViVi+1Vi42 . . . Vj.

It is easy to see that Wlv;,v;] is a path for v; # v;. If 1 < ¢ < k then

the predecessor of v; on W is the vertex v;_; and is also denoted by v; . If

1 < i < k, then the successor of v; on W is the vertex v;;; and is also denoted

= )
(2

by v;f. Similarly, one can define v; *and v; ~ = (v; )”, when these
exist (which they always do if W is a cycle). Let D be a digraph and let
v1, Vs, ..., U, be an ordering of its vertices. D is said to be acyclic if it has no
cycle. The ordering is called an acyclic ordering if, for every arc v;v; in D, we
have @ < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. In the other hand, every acyclic digraph
has an acyclic ordering of its vertices. An oriented graph is a digraph with
no cycle of length two. A tournament is an oriented graph where every pair
of distinct vertices are adjacent. In other words, a digraph 7 with vertex set
{v1,v2,...,v,} is a tournament if exactly one of the arcs v;v; and v;v; is in T

for every i # 7 € {1,2,...,n}. In fig. (2.8) we can see an example of it.
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Figure 2.8: Tournament example.

Connectivity

In a digraph D a vertex v; is reachable from a vertex v; if D has an (v;, v;)-walk.
In particular, a vertex is reachable from itself. The following proposition gives

rise to a stronger condition.

Proposition 2.2. Let D be a digraph and let v;, v; be a pair of distinct vertices
in D. If D has a (v;,v;)-walk W, then D contains a (v;,v;)-path P such that
A(P) C A(W). If D has a closed (v;,v;)-walk W, then D contains a cycle C
through v; such that A(C) C A(W).

By proposition 2.2 we can say that v; is reachable from v; if and only if D
contains a (v;,v;)-path. Moreover, if there is still a path from one vertex v;
to one vertex v; with the removal of any other single vertex, then vertex v; is
said to be 2-reachable from vertex v;. A digraph D is strongly connected (or
strong) if, for every pair v;, v, of distinct vertices in D, there exists a (v;, v;)-
walk and a (v;,v;)-walk. In other words, D is strong if every vertex of D is
reachable from every other vertex of D. A digraph with one vertex is defined
to be strongly connected. It is easy to see that D is strong if and only if it has
a closed Hamilton walk. In fact, as C, is strong, every hamiltonian digraph is
strong. A digraph D is complete if, for every pair v;, v; of distinct vertices of D,
both v;v; and v;v; are in D. For a strong digraph D = (V, A), aset S C Visa
separator (or a separating set) if D — S is not strong. A digraph D is k-strongly
connected (or k-strong) if |V| > k+1 and D has no separator with less than k
vertices. It follows from the definition of strong connectivity that a complete
digraph with n vertices is (n — 1)-strong, but is not n-strong. The largest
integer k such that D is k-strongly connected is the vertex-strong connectivity
of D, denoted by k(D). If a digraph D is not strong, then k(D) = 0. For
a pair v;,v; of distinct vertices of a digraph D, a set S C V(D) — {v;,v;}
is a (v;,v;)-separator if D —S has no (v;,v;)-paths. For a strong digraph

24



D= (V, A), aset of arcs W C Ais a cut (or a cut set) if D — A is not strong.
A digraph D is k-arc-strong (or k-arc-strongly connected) if D has no cut with
less than k£ arcs. The largest integer k£ such that D is k-arc-strongly connected
is the arc-strong connectivity of D, denoted by A\(D). If D is not strong, then
A(D = 0). Note that A(D) > k if and only if d*(X),d™ (X) > k for all proper
subsets X C V. A strong component of a digraph D is a maximal induced
subdigraph of D which is strong. If Dy, D,, ..., D, are the strong components
of D, then clearly V(D;)UV(Dy)U- - -UV(D;) = V(D). Moreover, we must have
V(D;)NV(D;) = () for every i # j as otherwise all the vertices V(D;)UV(D;) are
reachable from each other, implying that the vertices of V(D;) UV(D;) belong
to the same strong component of D. We call V(D;) U V(Dy) U --- U V(Dy)
the strong decomposition of D. The strong component digraph SC(D) of D
is obtained by contracting strong components of D and deleting any parallel
arc obtained in this process. In other words, if Dy, D,, ..., D, are the strong
components of D, then V(SC(D)) = {v1,va,..., v} and A(SC(D)) = {v;v; :
(V(D;),V(D;))p # 0}. The subdigraph of D induced by the vertices of a cycle
in D is strong, i.e. is contained in a strong component of D. Thus, SC(D) is

acyclic. The following preposition characterizes acyclic digraphs.
Proposition 2.3. Fvery acyclic digraph has an acyclic ordering of its vertices.

By preposition 2.3 the vertices of SC(D) have an acyclic ordering. This
implies that the strong components of D can be labelled Dy, Ds, ..., D, such
that there is no arc from D; to D; unless j < 7. An ordering such that is called
acyclic ordering of the strong components of D. The strong components of D
corresponding to the vertices of SC(D) of in-degree (out-degree) zero are the
initial (terminal) strong components of D. The remaining strong components
of D are called intermediate strong components of D. A digraph D is unilateral
if, for every pair v;,v; of vertices of D, either v; is reachable from v; or v; is
reachable from v; (or both). Every strong digraph, result to be unilateral. The

following proposition is a characterization of unilateral digraphs.

Proposition 2.4. A digraph D is unilateral if and only if there is a unique
acyclic ordering Dy, Dy, ..., Dy of the strong components of D and (V(D;),
V(Diy1)) # 0 for everyi=1,2,... t— 1.

In fig. 2.9 is shown a digraph D (2.9a) that is neither a strongly connected
digraph nor a complete one. Nonetheless, D has strong components D; with

V(Dl) = {U4,’U10}, Dg with V(Dg) = {Ul,UQ,Ug,Ug} and D3 with V(Dg) =
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Figure 2.9: A digraph and its strong component digraph.

{vs, vs, v7,v8}. The strong component digraph SC(D) of D is depicted in fig.
2.9b.

2.2.3 Weighted Directed Graphs

A weighted directed pseudograph is a directed pseudograph D along with one
of the following mappings:

w: A(D) — R — {0}, (2.22a)
w: A(D) — C—{0}. (2.22b)

where mapping (2.22a) associates to each arc of D a real number while mapping
(2.22b) associates to each arc of D a complex number. in the general case, a
complex mapping will be considered. A weighted directed pseudograph can
then be represented by a triple D = (V(D), A(D), w), and a weight associated
to an arc (v;,v;) will be denoted by w;;. Weights can be associated to vertices
as well. In this case D is called a vertex-weighted directed pseudograph, i.e.
a directed pseudograph D along with a mapping w : V(D) — C. If a is an
element (i.e. a vertex or an arc) of a weighted directed pseudograph D =
(V(D), A(D),w), then w(a) is called the weight or the cost of a. Note that an
unweighted directed pseudograph can be viewed as a vertex-weighted directed
pseudograph whose elements are all of weight one. For a set B of arcs of a
weighted directed pseudograph D = (V, A, w), we define the weight of B as

follows:

w(B) =) _w(a). (2.23)
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Figure 2.10: Weighted directed pseudographs. Digraph (a) is a arc-weighted directed

pseudograph while digraph (b) is a vertex-weighted directed pseudodigraph. Note
that the vertex weights are given in brackets.

Similarly, one can define the weight of a set of vertices in a vertex-weighted
directed pseudograph. The weight of a subdigraph H of a weighted (vertex
weighted) directed pseudograph D is the sum of the weights of the arcs (ver-
tices) in H.

In fig. (2.10) are shown both a arc-weighted and a vertex-weighted directed
pseudographs. In digraph (2.10a) the set of arcs {vyvy, vovy, v4v3} has weight
2 4 (1. In digraph (2.10b) the subdigraph H = ({v1, vy, v3}, {v3vy4, v4v1}) has
weight 4 + ¢0.5.

2.2.4 Matrices and Graphs. The Laplacian Matrix of a
Graph.

Graphs can be represented by some different matrices. They are the Adjacency,
the Incidence and the Laplacian matrix. Moreover, these matrices describe
graphs in different ways, highlighting different properties and strictly relating
them to algebra. In this section matrices related to graphs are presented for
undirected, directed and weighted directed graphs. As it will be seen, matrices
definition are almost the same for each case. They will only be slightly modified

for each different graph.

Undirected Graphs

Let G = (V, ) denote a general graph of order n with vertex set

V ={v1,v2,...,0,}
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Let m(v;,v;) be the multiplicity of the edges of the form (v;, v;), as defined in
subsec. 2.2.1 and let a;; = m(v;,v;). This means, of course, that a;; = 0 if
there are no edges of the form (v;,v;). Also, m(v;,v;) equals the number of
loops at vertex v;. The adjacency matriz of G is the resulting matrix of order
n such that

A =la;; =m(vi,v;)], (i,7=1,2,...,n). (2.24)

If G is a simple graph, that is, no loops and no multiple edges are allowed, then

the adjacency matriz is defined as follows:

1 ifyw; €€,
0 if VU5 ¢ 5

Adjacency matrix A has some interesting properties which are related to the

nature of the graph it describes:
e if G is a general graph , then

— A is a symmetric matrix with non-negative integral elements;

— the trace of A denotes the number of loops;
e if G is a multigraph, then

— the trace of A is zero;

— the sum of line i of A equals the degree of vertex v;;
e if G is a simple graph, then

— A is a symmetric (0, 1)-matrix;

— the trace of A is zero.

The power of an adjacency matrix has interesting properties as well. Let us

form

A=

z] =12 m), (226)
t=1

Then eq. (2.26) implies that the element in the (i,7) position of A? equals
the number of walks of length 2 with v; and v; as endpoints. In general, the
element in the (i,7) position of A* equals the number of walks of length &
with v; and v; as endpoints. The number for closed walks appear on the main

diagonal of A*.
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Let G be a general graph and A its adjacency matrix. The polynomial
f(A) =det(AI — A) (2.27)

is called the characteristic polynomial of G. The collection of the n eigenvalues
of A is called the spectrum of G. Since A is symmetric the spectrum of G
consists of n real numbers.

A general graph G is connected (see subsec. 2.2.1) provided that every
pair of vertices v; and v; is joined by a walk with v; and v; as endpoints.
Connectivity defines an equivalence relation on the vertices of G and yields a
partition

ViUV, U---UV,,

of the vertices of G. The induced subgraphs G(V;),G(Vs),...,G(V,) of G
formed by taking the vertices in ), and the edges incident to them are called the
connected components of G. Connectivity has a direct interpretation in terms
of the adjacency matrix A of G. In fact, we may simultaneously permute the

lines of A so that A is transformed into a direct sum of the form
A1 A DD Ay,

where A; is the adjacency matrix of the connected component G(V;), (i =
1,2,....1).

Let G = (V, £) be a general graph of order n with vertex set V = {vy, va, ..., v,}

and edge set £ = {a1, a9, ..., }. The incidence matrizc B™™ = [b;;] of G is
defined by
1 ifv; € oy,
bij = - (2.28)
0 ifv; ¢«

In other words, we set b;; = 1 if vertex b; is on edge «; and we set b;; = 0
otherwise. As it can be seen, B is a (0, 1)-matrix of size m x n. This is the
definition of the conventional incidence matrix in which the edges are regarded

as subsets of vertices. There are some properties to highlight:
e cach row of B contains at least one 1 and not more than two 1’s;
e rows with a single 1 in B correspond to the edges in G that are loops;

e identical rows in B correspond to multiple edges in G.
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The incidence matrix and the adjacency matrix of a multigraph are related in

the following way:

Theorem 2.1. Let G be a multigraph of order n. Let B be the incidence matrix
of G and let A be the adjacency matrix of G. Then

BTB=D+ A,

where D is a diagonal matrixz of order n whose diagonal entry d; is the degree
of the vertex v; of G, (i =1,2,...,n).

Let G = (V, E) be a general graph of order n with vertex set V = {vy, v, . ..
,Unt and edge set € = {1, as, ..., q,} as seen before..We can assign to each
of the edges of G one of the two possible orientations and thereby transform G
into a graph in which each of the edges of G is assigned a direction. Thus, we

can define the oriented incidence matriz B = [b;;] of G as follows:

1 if v; is the wnitial vertex of oy,
bij = ¢ —1 if v; is the terminal vertex of «;, (2.29)

0 if (% ¢ a;.

The oriented incidence matrix of G is a (0,1, —1)-matrix of size (m x n). The
relation between B and the adjacency matrix A is the same as in theorem 2.1.

Hence, the oriented incidence matrix satisfies at the following relation:
B'B=D - A. (2.30)

The oriented incidence matrix is used to determine the number of connected

components of G as stated from the following theorem:

Theorem 2.2. Let G be a graph of order n and let t denote the number of
connected components of G. Then the oriented incidence matrix B of G has
rank n —t. In fact, each matrixz obtained from B by deleting t columns, one
corresponding to a vertex of each component, has rank n —t. A submatrixz B’
of B of order n — 1 has rank n — t if and only if the spanning subgraph G’
of G whose edges are those corresponding to the rows of B’ has t connected

components.

A consequence of theorem 2.2 is that a connected graph has an oriented

incidence matrix of rank n — 1.
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Let G = (V,€) be a graph of order n with vertex set V = {vy,vs,...,v,} and
edge set £ = {a1,as,...,a,}. Let B be the (m x n) oriented incidence matrix
of G, and let A be the adjacency matrix of G. The (combinatorial) Laplacian

matriz L of G is the matrix of order n such that
L=B"B=D- A, (2.31)

where D is the diagonal matrix of order n whose diagonal entry d; is the
degree of the vertex v; of G (1 = 1,2,...,n). The Laplacian matrix has some

important features:

e [ is a singular matrix and has rank at most equal to n — 1. In fact, by
theorem 2.2 the matrix B has rank at most equal to n — 1, and hence

the Laplacian matrix L as well;

e [ is a positive semidefinite symmetric matrix. In fact, taking a real

n-vector x = (1, Zo,...,7,)T, we have that

v Ly = 2" B"Bx = Z (z; — x;)? >0, (2.32)

a={vi,v;}

where the summation is over all m edges oy = {v;,v;} of G;

e (is an eigenvalue of L with corresponding eigenvector z = (1,1,...,1)T.

Directed Graphs

Let D = (V,A) be a directed pseudograph of order n with vertex set V =
{v1,v9,...,v,} and arc set A = {aq,az,...,a,}. We let a;; equal the multi-
plicity m(a;, a;) of the arcs of the form (a;, a;). Then, the adjacency matriz A

of D is the following matrix of order n
A=lay], (i,j=1,2,...,n). (2.33)

The entries of A are non-negative integers. But A needs no longer be sym-
metric. In the event that A is symmetric, then D is said to be a symmetric
directed pseudograph. For a directed graph D, without loops and multiple arcs

then, since the multiplicity of an arc is 1 if the arc exist and 0 otherwise, the
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adjacency matrix can be define as follows:

1 if (v, v;) € A,
Q5 = : (U Uj) (234)
0 if (’Ui, Uj) ¢ A.

It follows that, without loops, diagonal elements a;; of A are null. If loops are
allowed, then diagonal elements would be non null. Some interesting features

are:
e the sum of row ¢ of the adjacency matrix A is the outdegree of vertex v;;
e the sum of column j of A is the indegree of vertex v;;

e the assertion that D is regular if degree k is equivalent to the assertion

that A has all of its line sums equal to k.

The adjacency matrix A can be related to many properties of a digraph. For
example it is related to the connectedness of D by its structure. In fact, we
can say that a digraph is disconnected if and only if its vertices can be ordered
such that its adjacency matrix A can be expressed as the direct sum of two

square submatrices A; and A, as follows:

A= Al ) AQ, (235&)
A0

= | . (2.35b)
0 A,

Such a partitioning is possible if and only if the vertices in the submatrix A;
have no arcs going to or coming from the vertex set in A,. Similarly, a digraph
is weakly connected if and only if its vertices can be ordered such that its

adjacency matrix A can be expressed in one of the following forms:

Ay A

A= |0 7R (2.36a)
L O A2 |
3 :

A— |0 (2.36b)
_A21 A2_

where A; and Ay are square submatrices. Form (2.36a) represents the case
when there is no directed arc going from the digraph corresponding to A, to
the subdigraph corresponding to A;, while form (2.36b) represents the case

when there is no directed arc going from the subdigraph corresponding to A;
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to the one corresponding to A,. If the adjacency matrix of D can not be
represented in one of the aforementioned forms, then the digraph is said to
be strongly connected. Let D be a digraph and let A be its adjacency matrix.
As we have already seen for the undirected case, the power of the adjacency
matrix A’ gives information about directed arc sequences between two vertices.

In fact, we have the following result:

Theorem 2.3. Let D be a directed graph and let A be its adjacency matrix.
The entry a;; in A* equals the number of different, directed arc sequences of t

arcs from vertex v; to vertex v;.
These arc sequences fall in three different categories:
1. directed walks from v; to v;;
2. trails from v; to vy;
3. paths from v; to v;.

Unfortunately, there is no easy way of separating these different sequences

from one another.

Let D = (V,.A) be a directed multigraph (without loops then) of order n with
vertex set V = {vy, v, ...,v,} and arc set A = {ay, g, ..., a,}. The incidence
matriz M of D is defined as in the case of the oriented incidence matrix of a

general graph. That is, M is the matrix whose generic element is:

1 if v; is the initial vertex of o,
m;j = 4 —1 if v; is the terminal vertex of «, (2.37)

0 if (] ¢ (67

Then, the incidence matrix of D is a (0,1, —1)-matrix of size (n x n). Note
that, if we disregard the orientations of the arcs and correspondingly change
-1 to 1 in M, then we obtain the incidence matrix of an undirected graph. As
in the case of undirected graphs, since the sum of each column in M is zero,
the rank of the incidence matrix of a digraph of n vertices is less than n. In

fact, for a directed graph the following theorem holds:

Theorem 2.4. Let D be a connected digraph and let M be its incidence matrix.
Then, the rank of M isn — 1.
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Let D = (V,A) be a directed graph of order n with vertex set V =
{v1,v9,...,v,} and arc set A = {1, @s,...,a,}. Let D be a diagonal ma-
trix of order n whose diagonal entry d; is the in-degree of vertex v;. The

Laplacian matriz of digraph D is defined as follows:
L=D—A, (2.38)
where A is the adjacency matrix of D. Thus, matrix L has entries:

d—(v;) ifi=j,
Since the sum of the entries in each column of L is equal to zero, then the n
rows are linearly dependent and det(L) = 0. As done for the undirected case,
we can represent the Laplacian matrix of a digraph by its incidence matrix as

well. Thus, we can also define L as follows:
L=M"M. (2.40)

Weighted Directed Graphs

Definitions we have already seen for the directed graphs can be extended for
the weighted digraphs with some changes. In order to define the Laplacian
matrix for the weighted case, the adjacency matrix and the degree matrix will
be presented first.

Let D = (V,A,w) be a weighted directed graph with vertex set V =
{v1,v9,...,v,}, arc set A = {aq,a9,...,0,} and a complex mapping w :
A(D) — C — {0}; the complex mapping associates a complex number w;; to
each arc (j,1) of the graph. The adjacency matriz A of the weighted digraph
D is defined as follows:

wy; if (5,4) € A,

ai; = (2.41)
0 if(j,i) ¢ A

The degree matriz D of a weighted digraph is defined as the diagonal matrix
whose diagonal elements d;; are the sum of the weights belonging to the arcs

which have vertex v; as their head. We can simply write:

JEN;
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The Laplacian matriz of D can finally be defined as the difference between the

degree matrix and the adjacency matrix as defined above:
L=D-A. (2.43)

We can write the Laplacian matrix in a more suitable form, defining its ele-

ments as follows:
—Wjj ifi#jand 5 €N,
lij =140 if i #jandj¢ N, (2.44)
ZjENi_ wz’j le:j

The Laplacian matrix of a weighted digraph will be of particular interest in

chapter 3 where a new formation control approach will be surveyed.

Example

Let us consider the graphs in fig. (2.11). We want to write the matrices

associated to each one.
In fig. (2.11a) is shown a simple (undirected) graph G with vertex set V =

{Ula V2, V3, U4} a‘nd edge set 8 - {{Ulv /U2}7 {U27 U3}7 {U27 U4}7 {U37 04}7 {U47 Ul}}'
Graph G has associated the following matrices:

1. adjacency matrix,

I

I
_ O = O
_ = O
—_ O = O
SO = =

2. incidence matriz, using the edge sequence {{vy, va}, {va, v3}, {va, v4}, {v3

, U4}, {vg,v1}} for columns from 1 to 5,

O R = O
_ O = O
— = O O
_ o O =

S OO = o=

3. oriented incidence matriz, using arcs {(vy,vq), (ve,v3), (ve, v4), (vs,vy),
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U3 U3

V2 V4 V2 Uy

U1 U1

(a) (b)

Figure 2.11: In figure are shown different versions of the same graph. In (a) vertices
and edges forms an undirected graph. In (b) the same vertices in (a) and an oriented
version of the edges give a digraph. In (c) it is shown a weighted digraph obtained
adding a complex mapping to the arc set of digraph (b).

(v4,v7)} for columns from 1 to 5,

10 0 -1
-1 1
Bo = 3
-1 0
0 -1 -1
4. degree matriz,

2000
03 00

D= ;
0020
000 3

5. Laplacian matrix,

2 -1 0 -1
-1 3 -1 -1
0 -1 2 -1
-1 -1 -1 3

L=B'B,=D—- A=

In fig. (2.11Db) is shown a digraph D with vertex set V = {vy, vq, v3,v4} and
arc set A = {(v1,v9), (v2,v3), (v2,v4), (v3,v4), (v4,v1)}. Digraph D is nothing
more than the oriented version of graph G. The following matrices belongs to
digraph D:
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1. adjacency matriz,

—_ o o o
[

10
01
0 0
0 0

where it can be seen that A no longer needs to be symmetric;

2. incidence matriz, using arcs {(vy, ve), (v2, v3), (v2, v4), (v, v4), (v4, v1)} for

columns from 1 to 5,

0o o0 -1 -1 1

Note that M equals the oriented incidence matrix of the undirected case

since the same arcs orientation have been used;

3. degree matriz, where in the directed case the diagonal elements are the

in-degree of the vertices

1000
01 00
D = ;
0010
00 0 2
4. Laplacian matriz,
1 -1 0 O
o 1 -1 -1
L=D—-A=

Finally, in fig.(2.11c) is shown a weighted digraph H that is digraph D along
with a complex mapping over its arc set. Weighted digraph H has associated

the following matrices:
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1. adjacency matriz,

0 0 0 —2+410.7
= —10.7 0 0 0 ,
0 1 0 0
0 1 1—10.5 0
2. degree matriz,
—241:0.7 0 0 0
D— 0 —i0.7 0 0 7
0 0 1 0
0 0 0 1+4+1:0.5
3. Laplacian matriz,
—241:0.7 0 0 2 —10.7
LD A— 10.7 —10.7 0 0
0 -1 1 0
0 —1  —141:0.5 141:0.5

2.2.5 Graphs Isomorphism

Let G and H be graphs. An isomorphism from G to H is a pair of bijections
f:V(G) = V(H) and g : £(G) — E(H) such that each edge {v;,v;} € £(G)
is mapped to an edge {f(v;), f(v;)} € E(H). If there is an isomorphic relation
from G to H it is said that G is isomorphic to H and it is denoted by

G=H, (2.45)
and the pair of ordered mappings can be denoted by
0(f,9)- (2.46)
Clearly, if the two graphs G and H are isomorphic we have that
V(G| = [V(H)|and[E(G)| = [E(H)]. (2.47)

In the case of simple graphs, the definition of isomorphism can be stated more

concisely, because if 0(f, g) is an isomorphism between two simple graphs, say
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G and H, the mapping ¢ is completely determined by f. Thus, we can say that
an isomorphism from G to H is a bijection f : V(G) — V(H) which preserves

adjacency. In general, we can say that, an isomorphism preserves:

o adjacency between vertices, that is, vertices v; and v; are adjacent in G

if and only if f(v;) and f(v;) are adjacent in H;

e incidence between vertices and edges, that is, vertex v is incident with

edge a in G if and only if vertex f(v) is incident with edge g(«) in H.

Note that from what stated so far, if two graphs are isomorphic, then they are
either identical or differ just in the names of their vertices and edges. Thus
they have the same structure (diagram). Let G and H be (simple) graphs. The

! consisting of the set of ordered pairs (G, H) such that

1somorphism relation
G is isomorphic to H, has the reflexive, symmetrical and transitive property.

The definition of isomorphism its the same both for undirected and directed
case. Nonetheless, definition for the directed case will be given for the sake of
completeness. Let D and H be (unweighted) directed pseudographs. It can be
said that D and H are isomorphic if there exists a bijection f : V(D) — V(H)
such that pp(vi,v;) = pu(f(v;), f(v)) for every ordered pair v;,v; of vertices
in D. As we can see, preservation of adjacency is the key point of isomorphism,
even though in the directed case arcs orientation too has to be preserved. Note
that, in case we do want to distinguish between isomorphic graphs (digraphs),
we speak of labelled (digraphs) graphs. In this case, a pair of (digraphs) graphs
Q and H is indistinguishable if and only if they completely coincide, that is,
V(Q) =V(H) and £(Q) = £(Q) (A(Q) = A(Q)).

An automorphism between to graphs Q and H is an isomorphism of Q onto
itself, that is, @ and H are the same graph or identical. An automorphism
is then nothing less than a pair of identity relations I, : V(Q) — V(Q) and
I. : £(Q) — £(Q) such that for each vertex v and each edge a in Q we have
I(v) = v and I.(or) = a. The same definition applies to directed graphs as
well.

Let Q and H be simple graphs or digraphs of order n. Let Sigma be the
set of all permutations of the first n positive integers and let ¢ € . One
way to find if there is an isomorphism relation between Q and H, is to find
an order of the vertices of one of the graphs such that its adjacency matrix

equals the adjacency matrix of the other. In other words, it has to be found a

!Note that a relation on a set W is a collection of ordered pairs from W. An equivalence
relation is a relation that is reflexive, symmetric, and transitive.
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permutation o such that P, verifies the following relation:
Ay = P,AgPL. (2.48)

Equation (2.48) holds even if the adjacency matrix is substituted with the
Laplacian matrix:

Ly = P,LoPT. (2.49)

Consequently, in order to find an automorphism of a graph or digraph, say
‘H, it has to be found a permutation o of the vertices such that the adjacency
matrix (the Laplacian matrix) will be transformed onto itself. In other words,

it has to be found a permutation ¢ such that P, verifies the following relations:
Ay = P,AyPT. (2.50)

Ly = P,LyPr. (2.51)

Note that the transpose of a permutation matrix equals its inverse. Hence,
isomorphism (automorphism) relations holds if we substitute P? with P~!.

For example, given () and H it can be written:
Ay = P,AgPL. (2.52)

Equation (2.52) is the well known similarity relation between matrices which
tells us, in this case, that isomorphic graphs have similar adjacency (Laplacian)
matrix. Consequently, an isomorphism relation preserves the spectrum of a

graph.

Example

Let G and H be the digraphs in fig. (2.12a) and (2.12b) respectively. We want
to know if they are isomorphic. Then, we need to find a permutation ¢ of the

vertices such that, adjacency matrices

00100
10000
Ag=1|1 10 1 1],
00001
00 1 0 0




V4 Us (% Us

(%} Us

U1 U2 Uy U1
(a) (b)
Figure 2.12: Graphs isomorphism example. In figure are depicted two isomorphic

digraphs. They are drawn the same way in order to highlight the nodes relabelling
operation due to the search for isomorphism.

and _ .
00 0O01

00100
Ay=111 0 1 1|,

01000

0 01 0 0

transform one into another. Note that digraphs are drawn in a similar way
to make clear how nodes relabelling works when searching for an isomorphism
relation. In fact, looking carefully at the picture we can see that, a permu-
tation of nodes 0 = (4,1,3,2,5) in G will lead to digraph H. In fact, as we
have graphically verified, the permutation matrix P, verifies the isomorphism
relation Ay = P, AgPY.

2.3 Gauss Elimination and the LU Factorization

Gauss Elimination (see [35],[26],]22] and [8]) is a technique widely used to solve

systems of linear equations of the form
Az =b. (2.53)

In fact, the Gauss method consists in reducing matrix A in a row echelon
form, that is an upper triangular matrix, and solve the system with a back
substitution of the unknowns. This is possible because a matrix is equivalent
to its row echelon forms that can be used in the linear system instead of the
original one. In fact, a row echelon form of A can be obtained by a sequence
of elementary row operations that transform A in its REF and that ensure

the equivalence between the two matrices. To solve a linear system by Gauss
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elimination not only is far easier than solve it with classical methods, but also
supplies an algorithm that can be exploited in a software environment. Let us
see what is a row echelon form of a matrix first.

Let us have a matrix A € F™*™ The matrix A is said to be in row echelon

form (REF) when the following two conditions are met (see [26]):
1. Any zero rows are below all non-zero rows.

2. For each non-zero row 7, © < m — 1, either row ¢+ 1 is zero or the leading
entry? of row i+ 1 is in a column to the right of the column of the leading

entry in row .

Consequently, the echelon form of a matrix has the following general structure,

(k) * * k% ok k%
0 0 (x¥) * % % % =
4 0 0 0 (%) * % % = | (2.54)
0 0 0 0 00 (%
0 0 O 00 0 O
0 0 O 0 0 0

where the non-null elements in brackets are called pivot elements. The matrix
A is in reduced row echelon form (RREF) if it is in row echelon form and the

following third condition is also met:

3. If a;; is the leading entry in row ¢, then a;; = 1, and every entry of

column £ other than a;, is zero.
If A is in row echelon form, then

e the pivot positions are the positions of the leading entries in its non-zero

rows;
e the pivots are the leading entries in its non-zero rows;

e the pivot column (pivot row) is a column (row) that contains a pivot

position.

As said before, in order to reduce a matrix in its row echelon form we need
to do some elementary row operations on it. Elementary row operations on a

matrix are operations of the following types:

2When a row of A is not zero, its first non-zero entry is the leading entry of the row.
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1. Add a multiple of one row to a different row.
2. Exchange two different rows.
3. Multiply one row by a non-zero scalar «.

Moreover, they are the basis for the Gaussian Elimination Algorithm.

Let A € F(®*™ be a square matrix. The Gauss Elimination process, that
is, the reduction of A in one of its row echelon forms, consists of n — 1 steps in
each of them the under-diagonal elements of a column are transformed in zero
elements by the use of elementary operations. For example, let us consider the
first step of the algorithm. Matrix A at the first step is denoted by A" where

the superscript denotes the step number:

[ (1 1 1)]

afy afy - af)
A=A0 =

A o) e ol

We want to reduce matrix A" such that, matrix A® will be of the form:

W @ 1)

ay; G A1

2 2

A(Q) o 0 agQ) aén)
0 ag e aﬁ?n)

This can be done, if a;; # 0, by multiplying the first row by scalars m;; and

subtracting the result from the other rows. That is,

(rowi)® = (rowi)M — my (row)M i =2,... n. (2.55)

(1)
In order to obtain the desired effect, constants m;; are chosen to be m;; = %
a

(that is the reason why a;; # 0). More precisely, the first step of the Gaussian

Elimination can be written as follows:

fori=2,...,ndo
all
M1 = —y
o 91
for j=2,...,ndo
2 _ (1) 1)
ij = Qo T MGy
end for

b =M — mab?,

a
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end for.

where vector b is the vector of the constant terms in the non homogeneous
linear system Az = b. The same strategy is applied to each column of A so
that an upper triangular form (echelon form) can be reached. Hence, at the
k-th step, we have both the matrix A® and the vector b*) as:

- e
agl) agn)
0 :
k—1 k—1
a’l(cfl,lifl algflﬂ)z
: (k) (k) (k)
Ak — | 0 T N (2.56)
: (k) (k) owm | '
A1k Qg1 k1 Apt1n
k k k
R I ey
and _ .
bi
k—1
b
by
bM) = NCHE (2.57)
k+1
by

What we want now, is to make equal zero the elements of the k-th column
from row k£ + 1 to row n. To do that, we simply do what we have done in the
first step. At the end of the k-th step, matrix A®*tYD and vector b*+1 are:

'aﬁ) a&)-
0 :
k—1 k-1
al(cfl,l)cfl al(ﬂfl,r)L
(k) (k) (k)
A+ — 0 L (2.58)
0 (k+1) (k+1) |’ )
A1 k+1 " Qkt1m
0 - 0 0 aglk]:i)l . agifl)_
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and

by

k—1
by
by
bk = (1) | - (2.59)

k+1

b(k.—i-l)

Elements of A®tYD and b* 1D are defined as follows:

az(?)’ i=1,...,k orjg=1,...,k—1,
aly ™ =40 i=ki=k+1,. .. .0, (2.60)
agf)—mijaff) ,7=k+1,...,n,
and
b i=1,...k

B —mab™ i=k+1,...n,

i J—

where constants m;;. are called multipliers

gy

(k)"
Ay,

M = (2.62)

The element a,(clz) is called the pivot element at step k and the algorithm can

go to the next step only if the pivot element at the current step is a non-zero
element. The number of required steps is n — 1 and at the end of the n — 1-
th step, the algorithm supplies an upper triangular matrix U = A™ . Gauss
elimination, shown in algorithm 2.1, requires O(%nS) multiplications and the
same number of additions. The main problem of this implementation is that
the non-singularity of the matrix being transformed does not ensure that the
pivot elements are non-null. This problem can be fixed using techniques like

partial or total pivoting.

2.3.1 Partial Pivoting

The Gaussian Elimination Algorithm can be modified in order to avoid a break-

down due to zero pivot elements. In fact, it can be demonstrated that if A
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Algorithm 2.1 Gauss Elimination Algorithm

1: fork=1,...,n—1do

..,ndo

2 fori=Fk+1,.
o
3 i Eﬁ)
kk
4: for j =k+1,
th
5: a;;" — Mi;a
6 end for
7 z(;‘m) —0
& b —mbl)
9: end for
10: end for

is non-singular, then at step k exists at least one index k£ < [ < n such that

(k

alk) # 0. Hence, in order to apply Gauss Elimination, it suffices to apply a

permutation between rows k and [. Moreover, in order to have a higher nu-

merical stability, [ can be chosen such that al(,]:) # 0 and |al(,]§)| is the highest
for k <1 < n. In fact, if |al(,lj)| = maX;—k, n |a§,lz)\, then |m;| < 1 that is the

lowest possible value for the multipliers. It results in a lower round-off error

and avoids even overflows. In equation 2.63 is shown matrix A*) shows at step
k. The highlighted part of the k-th column is the part where the k-th pivot

element is searched.

e 1
afy af),
0 :

k—1 k—1
al(c—l,;—l a](i‘—l,’r)L
(k) (k) (k)
A — 0 Qg Upg+1 0 gy
(k) (k) (k)
Apii ke ki1 k1 Apt1m
k k k
| 0 a’fzk) agL,])C-FI e am

The strategy described is called partial pivoting or column pivoting.

(2.63)

Algorithm 2.2 describes the entire procedure. Note that, instead of com-

paring the pivot candidates with zero, the machine precision €;; has been used

for the match. Moreover, in row six an operation of row exchanges tracking

has been implemented by the use of a vector of integers.
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Algorithm 2.2 Gauss Elimination Algorithm with Partial Pivoting
1: fork=1,...,n—1do

2: |al(],:)| = maX;—;, _n a§£)|
3. if [alY)| < ey then
4: STOP - Singular Matrix
5. end if
6: if [ # k then
7: exchange rows [ and k
8: p(k) =1
9: exchange constants b; and b
10: end if
11: fori:ktl...,ndo
12: Mik = %

ll
13: for (i+_1)k + 1k) N da)
14: ;= Mgy
15: end for
16: b = pF) bt
17:  end for
18:  if |al}| < ey then
19: STOP - Numerically Singular Matrix
20:  end if
21: end for

2.3.2 Total Pivoting

The Gaussian Elimination Algorithm with total pivoting has a different strat-
egy in looking for the pivot candidate. In fact, while the partial pivot strategy
determines the pivot element by scanning the current sub-column at the k-th
step, total pivoting search for the largest entry |ars)| in the current (k x k)

sub-matrix which is highlighted in equation (2.64)

[ o) . e g

a]_]_ P . P .. aln

0 :
(k—1) (k—1)
A1 k-1 Ap_1n

AP = (2.64)
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When the best pivot element is found, it is permuted into the (k, k) position.

Total pivoting strategy can be summarized as follows

for each STEP k do
find r, s such that |a'¥| = MaX; j—k. .n |a,g-€)|
exchange row k with row r
exchange column k£ with column s
exchange b, and b, in b
remember that unknown z; and x, have been exchanged

end for

where it has been stressed that the exchange of the columns needs to be tracked
by remembering that unknown have been exchanged as well. Algorithm 2.3
shows how the total pivoting strategy can be implemented. As it can be seen
in rows 16 and 17, exchanges between rows and columns have been tracking

by the use of two vectors of integers.

Gauss elimination algorithm with total pivoting requires the same number
of flops of the algorithm with partial pivoting strategy. Then, the number of

operations required amounts to O(2n?).

2.3.3 LU Factorization

Gauss elimination method, as we have seen, transforms a generic linear system
Ax = b in an upper triangular system that is easier to solve. In addition, what
Gauss elimination does, is to supply the LU factorization of the matrix A. In
fact, if we define a lower triangular matrix L and an upper triangular matrix
U as

myj, 1fZ>],

lij=141, ifi=j, (2.65)
0, ifi<jy
and
by g TS 2:66)
0, ifi>j,

where m;; are the Gauss multipliers and aj; are the coefficients at the last step

of Gauss elimination, then the following equation hold

A=LU. (2.67)
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Algorithm 2.3 Gauss Elimination Algorithm with Total Pivoting
1: fork=1,...,n—1do

2:  Determine r and s with &£ <r <n and k < s < n such that
3: |a/§|—max{|ak| i=1,...,nand j=k,...,n}
40 if [al¥] < €y then

5: STOP - Singular Matrix

6: end if

7. if r # k then

8: exchange row k with row r

9: exchange constants b, and by

10:  end if

11:  if s # k then

12: exchange column k£ with column s
13:  end if

14: pk)=r

15 qk)=s

16: forh:l{:tl,...,ndo

17: Mpr = %

18: for gﬁ—l) k + lk) N d(()k)

19: Ay, = ahj MpkQy,;

20: end for

o1 oY = b — iy p

22:  end for

23:  if |al}| < ey then

24: STOP - Numerically Singular Matrix
25:  end if

26: end for

In order to prove that (2.67) is true we need the so called Gauss Elementary
Matrices which are defined in app. B. In fact, we can use the vector m; =
(0, .., 0, Mgt ko, M2 s - - - ,mkn)T of the multipliers m;, obtained at the k-
th step of the Gaussian Elimination in order to build the Gauss elementary

matrix M. Then the k-th step itself can be represented as follows
AFFD = M AW, (2.68)

The entire elimination process can then be represented by successive left mul-

tiplications of a Gauss matrix by the matrix A

U=A"™ = M, A" D = M, M, 3A"Y = M, \M,,_5-- M AV,
(2.69)
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where L™! = M,,_ 1M, _o--- M is a lower triangular matrix because Gauss
matrices are lower triangular. From properties 1 and 2 listed in app. B, it is

easy to verify that

ma1

L=MI"My Mt = | , (2.70)

Mp1 -+ Mpnp—1 1

and then from equation (2.69) the LU factorization of A = LU can be ob-
tained. What it can be seen is that the elements of matrix L are obtained
directly from the Gauss Elimination Algorithm without additional computa-

tion required.

Gauss elimination with partial pivoting can be represented in matrix form
as well. In fact, the generic k-th step of the algorithm consists of a row
exchange and a row reduction as we have seen earlier. This operations can
be represented in matrix form by elementary matrices (see sec. 2.1) and Gauss
transformations (Gauss elementary matrices). Consequently, the k-th step can

be written as follows
AFTD = A ERD AR, (2.71)

The entire algorithm can be expressed as a sequence of rows exchange and row
reductions as the generic step, giving as a result the upper triangular matrix

we want
U=AM = M, E" b1 MuECRI A B A = N A, (2.72)

where M, is the generic Gauss transformation and E®%) is the generic rows

exchange. It can be demonstrated that
N = Mn—an—Q' ) .M2M1E(n—1»ln—1). . p2le) p(Lh) L'p,

where

L= M, My g - MM,

is a lower triangular matrix and
P = pn=Lin-1), . pl) ph)

is a permutation matrix. Note that matrices M; are different from matrices
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M,;. Nonetheless, they have the same structure. Finally, we can write
U=A" = L7'PA,

and consequently
PA=1LU, (2.73)

that is the LU factorization with partial pivoting of matrix A.

By the same reasoning, we can represent in matrix form Gaussian elimina-
tion with total pivoting as well. It results in being not so different from the
partial pivoting case. In fact, if we add the column pivoting to equation (2.71)

we obtain the generic step
AR = M ERD AR pks) (2.74)

Then, the entire algorithm can be written as follows

U= A"
— Mn_lE(n—l,rnfl). . MQE(Q’TQ)M1E(1’r1)AE(1’Sl)E(2’S2)' . E(n—l,snfl)
— NA,
(2.75)
where N = L™'P as before and
Q — E(l,r1)AE(1,s1)E(2,32)_ . E(nfl,sn_l (276)

is a permutation matrix like P. As a result, we obtain the LU factorization
with total pivoting
PAQ = LU. (2.77)

One of the most important things to do is to determine whether the LU fac-
torization of a generic matrix A exists. The following theorem gives necessary

and sufficient conditions in order to ensure that a matrix is LU factorizable.

Theorem 2.5. Let A € F™™ be a non-singular matriz, and let Ay be its
leading principal minors of order k. If Ay is non-singular fork=1,...,.n—1

then the LU factorization of A exist and is unique.

Proof: The theorem will be demonstrate by induction over n for a matrix

A € C™™)  The same reasoning can be applied for the real case.

n—1
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If n=1, Ay = [a11]. Then L = [1] and U = [a11].

If n==Fk > 1, A, can be written as follows

A=

C (0%

Ay d]

where A,_; = Lj_1U,_, with L,_; unit® lower triangular matrix and
Uk—1 upper triangular matrix. We assume that det(Ai_1) # 0. Now

write L and Uy as follows

L;_
Lk:[kl O]a Uk:
u* 1

In order to have A, = LU, u,v and [ need to be determined. Matrix

0 B

Uk—l V]

A can also be written as follows

Ly 1Ux—1  Lggv

LU, =
R ulU,_, uv+p

)

and relation A = LUy is verified if and only if

1. Lk,1V = d,
2. Ui_ju=c,

3. u'v+ [ =a.

Relations 1) and 2) univocally define the vectors u and v because they are
solutions of non homogeneous linear systems whose matrices are non-singular.
In fact, det(Lg_1) = 1 and det(Uy_1) = det(Ax_1) # 0 by assumption. Hence,
the third relation univocally defines 8 which can be found from g = a — u*v.
Consequently, since k is a generic index, it has been demonstrated by induction

over k what stated in the theorem. O

3A unit lower triangular matriz is a lower triangular matrix which has ones along the
main diagonal.
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Chapter 3

Formation Control via Complex

Laplacian

Formation control via complex Laplacian has been proposed in [29]. It is
a new approach to agents formation and results in easier laws to control a
group of agents. In [29]| the problem of formation control has been studied
in the plane and results both for single-integrator and double-integrator agent
internal dynamic model have been supplied. In this chapter such results will
be presented in section 3.3, while sections 3.1 and 3.2 present preliminary

materials in order to understand the last section.

3.1 Sensing Digraph

Multi Agent Systems can be well modelled by graphs. In fact, agents can
be represented by the wvertices of a graph, while edges (arcs) can represent
existing interactions (links) among agents themselves. In different formation
control approaches simple graphs are used. Instead, in [29] weighted directed
graphs D = (V, A, w) has been used to elaborate the control theory that will
be shown. They are more suitable since arcs orientation is used to represent
the direction information flow has in agents interaction. Moreover, arc weights
play a key role in agents formation control laws as it will be seen in later
sections. A complex weight w;; € C is associated to each arc (j,7) € A, and

the complex Laplacian associated to D is
—W;; ifi#jand g€ N,
li; =40 ifi #jand j ¢ N, , (3.1)
ZjENi_ wij le:j,
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agenty agento

agents agents

O
agenty

(a) (b)

Figure 3.1: Sensing digraph example. In (b) is shown a sensing digraph for the group
of agents depicted in (a).

where N, is the in-neighbor set of vertex i. In the graph model, vertices
j € N, , which are tails of arcs with 7 as head, are nothing less than agents
from which information is sensed by agent 7.

In fig. (3.1) is shown a simple example of a group of agents modelled by
a weighted digraph D. As it can be seen in fig. (3.1b), agent; and agent,
do not receive any information from the rest of the group since they have no
incoming arcs, while the other agents do. That is the way the digraph conveys
information about agents formation. The weighted digraph which is used to

represent an agents formation is called sensing digraph.

3.2 Planar Formation

In the plane, a tuple of n complex numbers

E=16,6&,...,6]" (3.2)

is called a formation basis for n agents, which defines a geometric pattern in
a specific coordinate system. In fig.(3.2) is shown a group of agents and its
planar formation. Agents are not randomly scattered in the plane, but are
disposed in specific positions so that a global configuration is reached. The
formation basis specifies the position for each agent and, indirectly, the relative
distance among agents, that characterize the shape of the formation. Usually

two agents are not expected to overlap each other, so it is assumed that
§#& for i#]. (3.3)
A formation with four degrees of freedom (translation in two main direc-
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Figure 3.2: Example of a formation basis.

tions, rotation, and scaling) is defined by
Fg = Clln + 025, (34)

where ¢1,co € C. Those complex constants are deputed to make a planar

formation move or scale. In fact, it can be seen that
e parameter ¢; controls formation translation;

e parameter ¢y controls formation rotation and scaling. Let ¢y be written
in polar form

Cy = |02’ GLB .

Then, we can scale a formation by |c;| and rotate a formation by the angle
B. Note that rotation can be obtained by taking cs so that |cs| = 1, while

scaling can be obtained by taking ¢, real.

As an example, the planar formations F, él),F éQ),and F 5(3) of four agents in figure
(3.3) are obtained from the same basis via translating, rotating, and scaling.
When |¢;] = 1, then the formation is obtained from the basis via translation
and rotation only, a case which is more familiar to everyone.

Denote z = [21, -+, z,]T € C" the aggregate position vector of n agents. It
is said that the n agents form a planar formation F, with respect to basis & if
there exist complex constants c¢; and ¢y such that z = ¢;1,,+ €. The n agents
are said to asymptotically reach a planar formation F¢ if there exist complex

constants ¢; and ¢, such that

lim z(t) = 11, + €. (3.5)

t—o0

As it will be shown in sec. 3.3, a planar formation is strictly related to the
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Im

Figure 3.3: Agents Formation up to translation, rotation and scaling. As it can be
seen, Fg(l) is the original formation, Fg(z) is the formation after being translated and

scaled and FE(?’) is the formation after being translated and rotated.

complex Laplacian of the sensing digraph which represents the multi-agent
system. In fact, £ is another linearly independent eigenvector of L associated
with zero eigenvalues in addition to the eigenvector of ones. Planar formation
F¢ is then a linear combination of two independent eigenvectors of the complex
Laplacian. For those reasons, in order to uniquely determine the location,
orientation and size of the formation in a leader-follower configuration, two

co-leaders have to be considered.

Example

To show how a planar formation can be translated, rotated and scaled, let us

have an example. Let & be the planar formation

al [ o7
& 2
E= & =] =2 |, (3.6)
&y 2—2
&5 |4 — 4|

which is represented in fig. (3.2). As we have already seen, complex constants

c1 and ¢y are the parameters by which a planar formation can be controlled.

1. TRANSLATION

Let ¢; and ¢y be
co=-2—22



Im Im
&? &’

c1, Translation direction
il) 5(1) \

Re
2 2

1 1
é )| (D) 5(1)

(a) (b)

Figure 3.4: Example of an agents formation translation.

where ¢; = 1 ensures no rotation, neither scaling. Asymptotically, the

agents reach the planar formation

[—2 + 2] 0 [—2 + 2]

-2+ 2 2 2t
Fe=al,+f=|-24+2| +| =20 | = -2

—24+2 2—2 0

| —2 + 2] (4 — 44| | 2 -2 |

As it can be seen in fig. (3.4) the planar formation has been translated

in the direction of the vector representing the constant c;.

. ROTATION

Let ¢; and ¢y be

Cc1 = 0
us
02 = —| = e_LE’
where ¢; = 0 ensures no translation and |c2| = 1 ensures no scaling.

Asymptotically, the agents reach the planar formation

0 0 0
2 2 —2
Fe=cl, tef=—1| =20 | =e*2 | 2¢5 | = —2
2 — 2 2v/2e7'2 —2—2
4 — 4] 4v2e7 3] =4 — 4]

As it can be seen in fig.(3.5) the planar formation has been rotated by

the angle arg(cy) = —73.
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Figure 3.5: Example of an agents formation rotation.

3. SCALING

Let ¢; and ¢y be

6120

02:2,

where ¢; value ensures no translation and ¢, value ensures no rotation.

Asymptotically, the agents reach the planar formation

Fg = 011n+02§ =2

0
2
-2
2—2

|4 — 4u ]|

|8 — 8¢

0
4
—4y
4—4

As it can be seen in fig. (3.6) the planar formation has been scaled by

‘CQ’ = 2.

For the sake of completeness, in fig. (3.7) is shown the formation basis and

the planar formation reached by the use of both the parameters already seen

c1 = —2+ 2t and ¢co = —2i, which affect the four degree of freedom at the

same time.

3.3 Fundamental Results

Let us consider a group of n agents in the plane labelled 1, ..., n, consisting of

leaders and followers. As already said, suppose that there are two leaders in the

group (without loss of generality, say 1 and 2) and all the others are followers.

The positions of the n agents are denoted by complex numbers z1, ..

o8

. zn € C.
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Figure 3.6: Example of an agents formation scaling.

Im
2
£ £
1
; e &
Re
2
£ £
&) & 3
(2)
5

Figure 3.7: Example of the overall behavior of an agents formation under translation,
rotation and scaling.
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In order to represent the sensing graph, a digraph D of n nodes has been used,
in which 1,2 are leader agents, 3,...,n are followers agents, and an edge (j,1)
indicates that agent ¢ can measure the relative position of agent j, namely,
(zj — z;). In addition, it has been considered a sensing digraph without self-
loops. Since in a leader-follower network, the leader agents do not interact
with the follower agents, and do not need to access the information from the

follower agents, the sensing graph D has the following property.
(P1): Leader nodes (1 and 2) do not have incoming edges.
Thus, the Laplacian of D takes the following form.

I [ 022 ‘ O2x (n—2) ] (3.7)
Luy \ Lyy

In the following subsections analysis has been done for two internal dynamic
models of the agents, that is for the case of single-integrator kinematics and

double-integrator dynamics.

3.3.1 Single-Integrator Kinematics

Suppose that each agent is governed by a single-integrator kinematics
Zi = v, (38)

where z; € C represents the position of agent 7 in the plane and v; € C represent
the velocity control input. Consider the sensing graph D and suppose that the

agents take the following control laws:

Ui:O, i = 1’2’
vi= > wylz—z), i=3,...n, (3.9)
jeN;

where w;; = k;; €*% is a complex weight with k;; > 0 and «a;; € [—m, 7). For
a specific formation basis £ € C satisfying &; # ;, each agent ¢ can arbitrarily

choose weights w;;,j € N, , such that

D wi(§ - &) =0. (3.10)

JEN;

The interaction rule in (3.9) can be implemented locally by only accessing the

relative position information from its neighbors.
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Figure 3.8: Example of a complex weights control law for a formation basis.

Suppose we have the formation basis £ representing the agents formation

whose digraph is depicted in fig.(3.8a)

[ 1.5+ 1.5]
1.5+ 1.5
£ = —2.5 . (3.11)
—1.5¢
2.5

Follower agents will then choose complex weights such that equation 3.10 is
verified. For instance, let us consider agent,. Agent, has two incoming arcs
from leaders agent; and agents, with complex weights w4; and wgs. Thus, in
order to verify the aforementioned control law, weights have to be chosen such
that

Z wi(§ — &) = wa (& — &) + wa(&e — &)

jEN;
= wy[(—1.54 1.50) — (—1.50)] + wya[(1.5 + 1.5¢) — (—1.5¢)]
= w41(—1.5 + 3L) + U)42(1.5 + 3L> = 0.

As it can be seen, agenty can choose one of the weights arbitrarily, the other

one is then univocally determined. In this case, a practical choice is

Wy1 = —-1.5—-3
Wy = 1.5+ 3L,

which verify the relation above. In fig.(3.8b) are shown the resulting vectors

wy1dy4 and wyedsy, which are opposite and sum to zero as necessary.

If the two co-leaders were to be translated, the chosen weights would yield

a velocity v # 0, given by interaction rule (3.9). In this case, agent, will follow
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Figure 3.9: Interaction rule for complex weights. The picture exemplifies how com-
plex weights affect the velocity of an agent.

the co-leaders with a velocity
Vg4 = Wyt (Zl — Z4) + '11)42(22 — 24).

Let z = [21,22,...,2,]7 € C". Then the overall dynamics of the agents can
be written as

i=—Lz, (3.12)

where L is the complex-valued Laplacian of D defined earlier. Denote
21 =2 (0) and 29 = 22(0) (313)

Next, it is shown a necessary and sufficient condition such that any equilibrium

state of (3.12) forms a planar formation Fr.

Theorem 3.1. Assume that Z; # Z5 and moreover assume that £ € C" satisfies
& # & for i # j. Then every equilibrium state of (3.12) forms a planar
formation Fe = c11,, 4 co§ with

al |1 & B 21
SRHRH =

L§ =0 and det(Lff) 7& 0. (315)

iof and only if

Proof: (Sufficiency) From the condition L& = 0, it is known that L has a zero
eigenvalue with an associated eigenvector £. On the other hand, the Laplacian
L always has a zero eigenvalue with an associated eigenvector 1,. The two
eigenvectors 1,, and & are linearly independent because §; # §;. Moreover, it
follows from the condition det(Ls) # 0 that rank(L) =n — 2 and L has only
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two zero eigenvalues. So the null space of L is
ker(L) = {c11, + € : ¢1,¢0 € C} (3.16)

and thus every equilibrium state forms a planar formation F¢ = ¢;1, + c2€.
Notice that z1(t) = z; and 29(t) = Z. Therefore (3.14) follows.

(Necessity) Suppose on the contrary that L& # 0. Then L(ci1, + &) # 0
for any ¢; and ¢y, which means a state corresponding to a planar formation Fy
cannot be an equilibrium state of (3.12). On the other hand, suppose on the
contrary that det(L;;) = 0. Thus it could be found a vector n; € C™~2? such
that Lysms = 0. As a result n = [0 0 nf]" is the null space of L. It can be
checked that 1,, ¢ and 7 are linearly independent since §; # £; in {. Thus, the
equilibrium state 1 does not correspond to any planar formation F; generated
from basis €. [l

Remark 3.1. From Theorem 3.1 it can be seen that the equilibrium formation
of the n agents is uniquely determined by the two leaders’ location. If the
two leader agents do not remain stationary but asymptotically converge to two
different locations, then the limit positions of two co-leaders specify the planar
formation Fe. Hence, by controlling the motions of two co-leaders, the group

formation can be rotated, translated, and scaled.

Let us have the formation basis (3.11) already seen in the last example.

The inverse of a generic square (2 x 2) matrix is

a b
c d

1

-1 _
A= e

A:

Then, equation (3.14) can be written as

1 _ _
C1 _ ) &1 2_1 . (3‘17)
Co (2—&)|-1 1 Z2
Suppose that the conditions L =0 and  det(Lyss) # 0 are satisfied, then

theorem 3.1 holds. Substituting the values for & and & in the expression

C1 _1
Co 3

that is the relation by which parameters ¢; and ¢y can be determined. Let us

above we obtain

(3.18)

1.5+ 150 1.5—1.51 [zll

—1 1 Z9
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Figure 3.10: Example of a formation control by its leaders. In (a) is shown a digraph
for a formation basis. By translating its leaders (blue vertices) the entire formation
is being translated, as shown in (b).

consider leaders position z; = —1.5+3¢ and 2z, = 1.5+ 3¢. Then, the formation

will be determined by the following parameters

1
= 5(5251 — &%) = 1.5,

1
@:5P5+@ﬁ4.

As it can be seen from zZ; and Z,, leaders were simply translated along the
direction of the half positive imaginary axis. Moreover, parameters ¢; and
¢o obtained from theorem 3.1 affect the entire formation by only translating
it, without rotation nor scaling. Then, controlling the leaders movements the
whole formation can be controlled. In fig.(3.10) the formation basis before and
after translation is shown.

Theorem 3.1 requires to check whether det(Lys) # 0. A graphical condition

could also be given for the same purpose.

Theorem 3.2. For a digraph D and a formation basis €& € C™ satisfying
& # &G, if det(Lyy) # 0 for L satisfying LE = 0, then every follower node in

D is 2-reachable from a leader node.

Proof: Theorem can be proved in a contrapositive form.

Suppose that not every follower node in D is 2-reachable from a leader node.
That is, a node exists, say k, such that when it is removed from the graph,
some nodes are not reachable from a leader node any more. Let W denote the
set of nodes that are not reachable from a leader node after removing node &
and let W denote the nodes not in W U {k}. Then it is certain that nodes in

W are not reachable from any node in W.
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In particular, for i € W and j € W, the (i,j)-th entry of L must be
0. Relabelling the nodes in the order of 1,2,...,m,...,n such that W =
{1,...,m — 1}, m is the node k before relabelling, and W = {m + 1,...,n}.
Then the Laplacian L after relabelling must be of the following form

* * *
I —
loanW

where 1,, € C» ™ and Ly, € C»™*(m=m)  Denote the formation basis &

after relabelling by
€a
£ = ,
&b

where &, € C™Y and & € C» Y. From the definition of L and from the
conditions L& = 0 and L1, = 0, then it can be seen that

[lm LW]l(nferl) =0, (319&)
[l Lwlés = 0. (3.19b)

Since 1(,—m+1) and &, are linearly independent by assumption, it is then known
from (3.19) that rank[l,, Ly] < (n —m — 1) and therefore det(L;;) =0. O

Combining Theorem 3.1 and Theorem 3.2, it is known that in order to
uniquely define a planar formation, the digraph D should have the property
that every follower node is 2-reachable from a leader node. If the property
does not hold, then for whatever choice of weights, the planar formation can
be deformed and the digraph could not define a unique planar formation. For
example, consider a digraph D of 5 nodes shown in fig.(3.11a). For this digraph,
the follower nodes 4 and 5 are not 2-reachable from a leader node as they are
not reachable from any leader node when node 3 is removed. Consequently,
the digraph could not define a unique planar formation. As it can be seen
in fig.(3.11b), in addition to rotation, translation and scaling, the formation
can also be bent. Adding at least one of the two arcs (1,4) and (2,5), the
formation becomes 2-reachable and cannot be bent any more (fig.(3.11c)).

Theorem 3.2 can be verified from an algebraically point of view as well. A

formation basis for the group of agents represented by the digraph in fig.(3.11a)
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(b)

Figure 3.11: Example of a non 2-reachable agents formation. If the sensing digraph
is not 2-reachable then the agents formation (a) can be bent (b). Adding at least
one of the two blue arcs (c) the formation becomes 2-reachable and cannot be bent
any more.

could be

—2
_2 — 2L_

and the corresponding Laplacian matrix is

0 0
0 0
L= -1—1 -1+ 0 0
0 -2 1—¢ 14
i 0 20 —1—¢v 11— |

Note that the condition L& = 0 holds.

2-reachable, the determinant of Ly is zero as stated in theorem 3.2,

Nonetheless, since the digraph is not

det(Lss) =2(1 —¢)(1 —¢) = 2(1 +¢)(=1—1¢) = 0.

Adding at the digraph the arc (1,4), weighted by wy;, every follower node

becomes 2-reachable from a leader node.

relation L& = 0 becomes

0 0 0 0
0 0 0 0
L= -1—-1 —1+4+¢| 2 0 0
14+ 0 -2 1-3t 2+4+2
. 0 0 2t —1—¢v 1—1v |

The Laplacian which verifies the
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where blue numbers changed from the last configuration because of the new
arc. The determinant of the follower-follower sub-matrix is not null any more

because of the 2-reachability. Then,
det(Lss) =2(1—=30)(1 —¢) =22+ 2¢)(—1—1) = -4 #0.

as we expected.

The next step is to determine whether the n agents can asymptotically
reach a planar formation, i.e., the stability of system z = —Lz. Before pre-
senting the results on stability, it is provided a result on the invariance property
for the operation of pre-multiplying an invertible diagonal matrix D. It is an

important property ensuring that the equilibrium formations are preserved.

Theorem 3.3. Every equilibrium state of system (3.12) forms a planar for-

mation Iy if and only if every equilibrium state of the following system
z2=—-DLz (3.20)

forms a planar formation Fe for all invertible diagonal matrix

D= diag(dl, dg,' e ,dn) e Cnmm,

Proof: Since D is diagonal and invertible, it follows that the null space of DL
is the same as L. So the two systems have the same equilibrium states and

form the same planar formation. O

When L is pre-multiplied by D, the complex weights on edges having head
at agent ¢ are multiplied by a non-zero complex number d;. Therefore, the in-
teraction rule is still locally implementable using relative position information
only. Generally, for a complex-valued Laplacian L satisfying the conditions
of Theorem 3.1, L may have eigenvalues with both negative and positive real
parts and thus system (3.12) may not be asymptotically stable with respect to
the equilibrium subspace ker(L). In other words, the n agents may not be able
to asymptotically reach a planar formation F¢. However, it has been shown in
the next result that if certain conditions are satisfied, there exists an invertible
diagonal matrix D such that DL has all other eigenvalues with positive real
parts in addition to two 0 eigenvalues and thus z = —DLz is asymptotically
stable with respect to the equilibrium subspace ker(L). Such a matrix D is
called a stabilizing matriz. Since pre-multiplying such a matrix D does not

change the planar formation at equilibrium states from Theorem 3.3, a local
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interaction rule is thus obtained such that the n agents asymptotically reach

a desired planar formation Fp.

Theorem 3.4. Consider a formation basis £ € C" satisfying & # & and
suppose a complex Laplacian L of the sensing graph D satisfies LE = 0 and
det(Lysy) # 0. If there exists a permutation matriz P such that all the leading
principal minors of PLysPT are mnon-zero, then a stabilizing matriz D for
system (3.12) exists.

Theorem 3.4 requires the following result related to the multiplicative in-

verse eigenvalue problem.

Theorem 3.5 (Ballantine(1970)). Let A be an n x n complex matriz all of
whose leading principal minors are non-zero. Then there is an n X n complex

diagonal matriz M such that all the eigenvalues of M A are positive and simple.

Proof of Theorem 3./: By the condition that there is a permutation matrix
P such that all the leading principal minors of PL;;PT are non-zero, then it
follows from Theorem 3.5 that there exists a diagonal matrix M such that
MPL;PT has all eigenvalues with positive real parts. Note that PTMPL;
has the same eigenvalues as M PL;; P since the permutation transformation
does not change the eigenvalues. Also, note that PTM P is a diagonal matrix
as well, and it can be denoted as M = PTMP. Let

1 0
D= " (3.21)

0 M
Then the system z = —D Lz has two zero eigenvalues and all the others have
negative real parts. As a result D is a stabilizing matrix. O]

By numerous simulations it is known that for most complex Laplacians L
with weights generated randomly satisfying L& = 0 and det(Lsy) # 0, all the
leading principal minors of Ly are non-zero. Thus, P = I. For rare cases,
a relabel of the nodes was needed. Consequently, central to find a stabilizing
matrix D such that

(3.22)

0 M

[2><2 0 ]

is to find the diagonal matrix M as stated in Ballantine’s theorem. Denote
M = diag(my, ..., my—2) and denote A ;) the sub-matrix formed by the first i
rows and columns of a matrix A. Algorithm 3.1 gives the complete description
in order to find D.
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Algorithm 3.1 Single-Integrator Kinematics

Find a permutation matrix P such that A = PL;;P” has all non-zero leading
principal minors.
fori=1,...,n—2do
Find m; to assign the eigenvalues of diag(my, ..., m;)An~;) in the open
right half complex plane.
end for

Construct D according to (3.22).

The algorithm suggests to find the diagonal entries of M one by one in an
iterative way. The success is ensured by the constructive proof to show the

existence of such a diagonal matrix in Ballantine(1970) [5].

Remark 3.2. It has been discussed how a planar formation is achieved by
a complex Laplacian based control law. The results can be simply extended to
reach and maintain a formation shape while moving. Suppose that the velocities
for single integrator kinematics model, of the two co-leaders are synchronized,
and say vo(t). When this synchronized velocity information is available to all
the followers, then the following control law is the adjusted one to reach a

formation while moving.

v; = vp(t), 1=1,2;

(3.23)
Ui = Z]’GN; wij(«zj — Zz) -+ ’Uo(t), 1= 3’. cn.

When the leaders’ velocity is not accessible by all followers, estimation schemes
can be adopted to estimate it and then the leaders’ velocity in (3.23) can be

replaced with the estimated one.

3.3.2 Double-Integrator Dynamics
Suppose that each agent is governed by a double-integrator dynamics

Z:i = V;
(3.24)

’(}Z':(li

where the position z; € C and the velocity v; € C are the state and the

acceleration a; € C is the control input. Consider the sensing graph D and
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suppose that each agent takes the control law

= i=1,2
a; = Z wij(zj —2) — v, =31, (3.25)
JEN;

where w;; = k;;e'* is a complex weight with k;; > 0 and «;; € [—7,7), and
v > 0 is a real number representing the damping gain. Write z = [zy, ..., 2,7

T

and v = [vy,...,v,]". Then the overall system of the n agents under the

interaction rule (3.25) can be written as

-1 sl

where L is the Laplacian of D defined in (3.1). The interaction rule (3.25)

similar to (3.9) can also be locally implemented, which requires only the relative

(3.26)

positions of the neighbors and its own velocity. Denote
Zy = lim z(t) and 2z = lim 29(t). (3.27)
t—o0 t—o0

Next it is shown that the condition in Theorem 3.1 is also a necessary and
sufficient condition such that the equilibrium states (z,v) of system (3.26)

form a planar formation F¢, i.e.,
Z=c1,+ ¢ and v =0, (3.28)

where ¢; and ¢o can be obtained from (3.14). Moreover, it is shown that the
equilibrium formations are invariant to the operation of pre-multiplying by an

invertible diagonal complex matrix D.

Theorem 3.6. Assume that z; # Z5 and moreover assume that & € C" satisfies
& # & fori# 5. Then the following are equivalent.

1. L& =0 and det(Lyys) # 0.
2. equilibrium state of system (3.26) forms a planar formation F.

3. Fvery equilibrium state of the following system

Z Opxen, 1, z
R et E
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for all invertible diagonal matriz D = diag(dy,ds, ..., d,) € C"*", forms

a planar formation F¢.

Proof: By simply checking system (3.29), it can be obtained that the equilib-
rium states satisfy Lz = 0 and v = 0, Thus, the conclusion follows from the

same argument in Theorem 3.1 and Theorem 3.3. O]

According to Theorem 3.6 the equilibrium formation for the double integra-
tor model is characterized (as was the case with the single integrator model)
by L& =0 and det(Lyss) # 0. Then it is clear from Theorem 3.2 that a neces-
sary graphical condition is that every follower node in D is 2-reachable from
a leader node. Also, similar to the single-integrator model, the eigenvalues of
system (3.26) may be distributed in the left half complex plane and the right
half complex plane such that trajectories of system (3.26) may not converge to
the equilibrium formation. Hence, an invertible diagonal matrix D is utilized

to assign the eigenvalues of

On n ]’VL
) (3.30)
—DL —~I,

in the open left half complex plane in addition to two 0 eigenvalues, i.e., to make
the n agents asymptotically reach a planar formation F¢ with the interaction
law (3.29). If such a matrix D exists, it is called a stabilizing matriz. The

following theorem shows the existence of such a matrix.

Theorem 3.7. Consider a formation basis { € C" satisfying & # & and
suppose a complex Laplacian L of the sensing graph D satisfies LE = 0 and
det(Lyss) # 0. If there is a permutation matriz P such that all leading principal
minors of PL;;PT are non-zero, then a stabilizing matriz D for system (3.26)

ex1sts.

Proof: Denote

On n [n
A= | (3.31)
—-DL —~I,
Let \; be an eigenvalue of A and let ¢ = [27 3T]T be the corresponding

eigenvector where x,y € C". Then from the equality AC = \;(, it is obtained
that

y = Aix, (3.32a)
—DLx — vy = \;. (3.32Db)
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Substituting (3.32a) into (3.32b) results in
—DLz = (A} + 9\,

which means
M4\ +0;=0 (3.33)

where o; is an eigenvalue of the matrix DL. Since L satisfies L& = 0 and
det(Lsf) # 0, it is known that DL has two zero eigenvalues for all invertible
diagonal matrix D. Without loss of generality, denote o7y = 09 = 0. For

01 = 09 = 0, the roots of the characteristic equation (3.33) are
>\z',1 =0, /\i’Q =—7< 0, 2= 1, 2.

Thus, to show the existence of a stabilizing matrix D, it remains to show that
o; (i =3,...,n) can be assigned such that the roots of the complex-coefficient
characteristic equation (3.33) have negative real part. It has been shown that

the roots are in the open half complex plane if and only if

By the assumption that there is a permutation matrix P such that all the
leading principal minors of PLPT are non-zero, then it follows from the same
argument as in the Theorem 3.4 that there exists a diagonal matrix M such
that the eigenvalues of M PL;;P" all have positive real parts. Denote the
eigenvalues of MPLPT by o},...,0!,. Then choose D as

I n-*

B ]02 EPTOMP (3.34)
where € > 0 is a scalar. Thus, the eigenvalues of DL are
op=09=0, o;=¢€0,, i=3,...,n. (3.35)
Then it can be checked that for sufficiently small € > 0
fe(oi) _ Re(a%) L (3.36)

Therefore, a stabilizing matrix D is derived, which makes a group of n agents

asymptotically reaches the planar formation F¢. O

72



From the proof of theorem 3.7, it is known that a stabilizing matrix can
also be obtained for the double-integrator case with a minor modification of

Algorithm (3.1). In fact, only the construction of D must be modified.

Algorithm 3.2 Double-Integrator Dynamics

Find a permutation matrix P such that A = PL;;P" has all non-zero leading
principal minors.
for i=1,....n—2do
Find m; to assign the eigenvalues of diag(my,---,m;)A@~; in the open
right half complex plane.
end for
Select an e satisfying conditions in the proof of (3.35)
Construct D according to (3.34).

Remark 3.3. It has been discussed how a planar formation is achieved by a
complex Laplacian based control law. The results can be simply extended to
reach and maintain a formation shape while moving. Suppose that the ac-
celerations ,for double integrator dynamics model, of the two co-leaders are
synchronized, and say ag(t). When this synchronized acceleration information
is available to all the followers, then the following control law is the adjusted

one to reach a formation while moving.

a; = —yvi + ao(t), i=12 (3.37)

When the leaders’ acceleration is not accessible by all followers, estimation
schemes can be adopted to estimate it and then the leaders’ acceleration in

(3.87) can be replaced with the estimated one.
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Chapter 4

The Isomorphism Problem.
Relabelling the Graph nodes

As we have seen in chapter (3), the stability of a multi-agent formation whose
single agent is modelled either by a single-integrator kinematics or by a double-
integrator dynamics, depends on the eigenvalues of the complex Laplacian
matrix that represents the sensing graph modelling the formation. In case of

instability, that is, the Laplacian matrix of the systems
2= —Lz, (4.1)

z Onxn  1In z
AR e ] “

happens to have eigenvalues in the half negative complex plane, by theorem

3.4, theorem 3.5 and theorem 3.7 it is possible to find a complex diagonal
matrix D such that the matrix DL has all eigenvalues in the half positive
complex plane and systems (4.1) and (4.2) are stable. Thus, the stability of a

leader-follower formation can be entirely ensured by finding:
e Single-Integrator Kinematics:
1. a permutation matrix P (if needed) such that the Laplacian sub-

matrix L = PL ##PT has all non-zero principal minors,

2. a complex diagonal matrix M (if needed) such that the matrix —DL

is stable, where D is

D:[[2X2 s (4.3)

0 PTMP
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e Double-Integrator Dynamics:
1. a permutation matrix P (if needed) such that the Laplacian sub-
matrix L = PL ##PT has all non-zero principal minors,
2. a complex diagonal matrix M and a scalar € > 0 (if needed) such

that the matrix —DL is stable, where D is

I 0
0 ePTMP

. (4.4)

It means that central to the stabilization of a formation is to find the per-
mutation matrix P and the diagonal matrix M fitting the given constraints.
In the following sections we present some algorithms aimed to solve these
problems. In particular, in section 4.1 a general algorithm design technique
called backtracking is presented. In section 4.2 two algorithms based on the
backtracking design are proposed to solve the permutation matrix problem.
Finally, in section 4.3 a comparison between the two proposed algorithms is
given. Implementation and testing are realized in MATLAB® modelling

language.

4.1 Backtracking Algorithm Design Technique

Backtracking (see [27]) represents one of the most general techniques in algo-
rithm design. Many problems which deal with searching for a set of solutions or
which ask for an optimal solution satisfying some constraints can be solved us-
ing the backtracking formulation. In order to apply the backtracking method,
the desired solution must be expressible as an n-tuple (z1, ..., z,) where x; are
chosen from some finite set S;. Often the problem to be solved calls for find-
ing one vector which satisfies a criterion function P(z1,...,x,). Sometimes it
seeks all such vectors which satisfy P. For example, a simple problem to be
solved like sorting integers can be modelled by a backtracking technique. Let
us have a vector of n integers, say a € N, the problem is to find a permutation
of the a;s elements such that they are sorted in a descending order. To design
a backtracking algorithm just take the set S; as a finite set which includes
the integers 1 through n and a criterion function P of the form a; > a;y1,
for i = 1,...,n. Suppose m; is the size of set S; (|S;| = m;). Then there
are m = myms- - - m, n-tuples which are possible candidates for satisfying the

function P. For example, in the sorting problem we have that m; = 4, for
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¢t =1,...,n and consequently m = n!. To test all of the possible m solutions
of a problem in a brute force approach, would be very time consuming. The
backtracking technique algorithm instead, is able to search for the optimal
solutions testing for fewer than m n-tuples. The basic idea is to build up the
same vector one component at a time and to use modified criterion functions
Pi(z1,...,2;) (also called bounding functions and indicated by B; ) to test
whether the vector being formed has any chance of success. In this way, the
algorithm realizes if a partial vector either can or cannot lead to an optimal
solution. If the partial vector does not satisfy the bounding function B;, then
it cannot lead to an optimal solution and m;; ... m, possible test vectors can
be ignored entirely. In the design of a backtracking algorithm is often required
that the solutions satisfy a complex set of constraints. This set can be usually

divided into two categories:

e explicit constraints are rules which restrict each z; to take on values
only from a given set. For instance, in the sorting problem we have
seen earlier, an explicit constraint is to take values from the set S; =
{1,...,n} — {x1,...,z,-1}. The explicit constraints may or may not

depend on the particular instance I of the problem being solved,

e implicit constraints describe the way in which the x; must relate to

each other.

Explicit and implicit constraints are related to each other. In fact, explicit con-
straints define a possible solution space I of tuples, while implicit constraints
determine which of the tuples in I actually satisfy the criterion function. From
that point of view, a backtracking algorithm determines problem solutions by
systematically searching the solution space for the given problem instance.
This search is facilitated by using a tree organization for the solution space.
Many tree organizations may be possible for I. For example, we can see two
trees for a sorting problem of n = 3 integers in figure (4.1). Broadly speaking,
each node in the tree defines a problem state. All paths from the root to other
nodes define the state space of the problem. Solution states are those problem
states S for which the path from the root to S defines a tuple in the solution
space. In the tree of figure (4.1a) only the leaf nodes are solution states. An-
swers states are those solution states S for which the path from the root to
S defines a tuple which is a member of the set of solutions (i.e., it satisfies
the implicit constraints) of the problem. The tree organization of the solution

space will be referred to as the state space tree. The example in figure (4.1a) is
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Figure 4.1: Example of two different tree organizations for a solution space in a
backtracking algorithm. The problem being represented is the sorting of 3 positive
integers.

called a static tree because the tree organization is independent of the problem
instance being solved. When the tree organization is determined dynamically
as the solution space is being searched, then it is called dynamic tree. In this
case, it depends on the problem instance. For example, if the one instance of
the sorting problem is solved with the tree organization of figure (4.1a) and a
second instance with the tree organization of figure (4.1b) then the backtrack
algorithm has been using a dynamic tree.

Once a state space tree has been conceived of for any problem, this problem
may be solved by systematically generating the problem states, determining
which of these are solution states and finally determining which solution states
are answer states. The generation process begins with the root node and goes
further with his children and so on, until the state space has been completely

represented. In particular, there are three kind of nodes:

e a live node is a node that has been generated and all of whose children

has not yet been generated,

e a E-node (node being expanded) is a live node whose children are cur-
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rently being generated,

e a dead node is a generated node that is neither not to be expanded further

nor one for which all of its children have been generated.

For backtracking algorithms, nodes of the state space tree are generated in a
depth first way. In fact, as soon as a new child H of the current EF-node GG
is generated, this child will become the E-node. G will become the E-node
again when the sub-tree H has been fully explored.

For example, let us consider one of the state space tree of figure (4.1), where
it can be easily seen that nodes are labelled as in depth first search. Consider
node 2. This node is a live node as soon as it is generated. When node 3
is generated, it becomes a live node itself while node 2 becomes an E-node.
Because the three is visited in a depth first way, node 3 is the next node to
consider. Then it becomes an E-node while its first child is being generated
and so on. After the sub-tree 3 has been visited, node 2 becomes an F-node
again and so on until all its children have been generated. When the next
children of node 1 is considered, that is node 7, node 2 becomes a dead node.

In this process bounding functions will be used to kill live nodes without
generating their children. A depth first-like problem generally uses a stack to

keep track of the visited or the generated nodes. Hence, a recursive definition

of the backtracking algorithm is more natural. Let (z1,%s,...,7;) be a path
from the root to a node in a state space tree. Let T'(x1, xs, ..., z;) be the set of
all possible values for x;,; such that (x1,zs,...,x;11) is also a path to a prob-

lem state. We assume the existence of bounding functions B;,; (expressed as
predicates) such that B;yq(z1,za, ..., 2;41) is false for a path (1,29, ..., 2;11)
from the root node to a problem state only if the path cannot be extended
to reach an answer node. Thus, the candidates for position ¢ + 1 of the solu-
tion vectors x = [x1,...,x,| are generated by T and satisfied by B;;1. The

pseudo-code version of the backtracking can be seen in algorithm 4.1. In the
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Algorithm 4.1 Recursive Backtracking Algorithm

recursiveBACKTRACK (k)
Require: global n, x

for each xj such that xy € T(xy,...,25_1) and Bi(zy,...,z;) = true do
if (x1,...,x) is a path to an answer node then
Az
call recursiveBACKTRACK(k + 1)
end if
end for

backtrack implementation, A is the set of all n-tuples answer to the problem.
Note that the solution vector x is treated as a global array. Each recursive
call adjoins to the current vector an element and verifies the current bounding
function over that. For example, let us consider the k-th call. The k-th ele-
ment zj, is adjoined to the current tuple (xy,zs,...,z5_1) and the bounding
function By, is verified. The kth possible elements are generated one by one at
the k-th recursive call. If By, is true the next recursive call is made, otherwise
the current call keeps on adjoining ;s possible elements and checking Bj. If
no suitable xj is found, the for loop is exited without invoking the algorithm
again, and the last unresolved call is resumed. If a suitable x;, is found, a new
call over the tuple (1, s, ..., x) is made and the k + 1th element is searched
for. When k exceeds n, T'(x1, s, ..., x;_1) returns an empty set and hence the
for loop is never entered. Thus, no more recursive calls are possible, only the

resume of unresolved ones.

Remark 4.1. The algorithm search for all the actual solutions of the problem.
In order to have only a single solution, a flag can be added as a parameter to
indicate the first occurrence of success. Thus, the unresolved calls can be exited

and the program terminated.

4.1.1 Backtracking Efficiency

The importance of backtracking lies in its ability to solve some instances with
large n in a very small amount of time. The only difficulty is in predicting
the behavior of the algorithm for the problem instance we wish to solve. The

efficiency of a backtracking algorithm depends on 4 main factors:

1. the time to generate the next xy,
2. the number of x; satisfying the explicit constraints,

3. the time for the bounding functions B;,
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4. the number of x;, satisfying the B; for all i.

In order to decrease the time needed to compute the solutions, we can try to re-
duce the number of generated nodes by efficient bounding functions. Nonethe-
less, the most times, a more efficient bounding function means a function that
needs a higher computing time to evaluate. However, what is desired is a re-
duction in the overall execution time and not just a reduction in the number
of nodes generated. Hence, a balance between 3 and 4 should be searched for.

Once a state space organization tree is selected, the first three of the men-
tioned factors are relatively independent of the problem instance being solved.
Only the number of nodes generated (fourth condition) varies from one problem
instance to another. Hence, the worst case time for a backtracking algorithm

will generally depend on condition number 4). In fact,

1. if the number of nodes generated is 2", then
O(p(n)2"); (4.5)
2. if the number of nodes generated is n!, then

O(q(n)n!). (4.6)

Note that p(n) and q(n) are polynomials in n.

Generally speaking, the main issue with predicting the algorithm behavior
is due to the nature of the problem we want ot solve. In fact, the position
and the number of the actual solutions in the state space tree is unpredictable.
When we are searching for all the solutions, only the number of them affects
the algorithm performance. On the other hand, if we are searching for the first
occurrence, solutions’ position could be of great significance, since the choice of

a state space organization tree could degrade or improve algorithm efficiency.

4.1.2 Examples of Backtracking Design

We can see how a backtrack algorithm works by mean of examples. The
technique will be applied to solve the problem of sorting the elements of a vector
and the 8-Queens problem. The different nature of these problems shows the
flexibility of the backtracking design, despite the fact that backtracking itself
is not the algorithm of choice for those problems. Before proceeding with the

examples, let us have a summary of the main parts of a backtracking design.
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e S is the set of the explicit constraints while S, C S is the subset of the
explicit constraints at the k-th step.

e 3 is the criterion function while By is the bounding function at the k-th

step.
e T(xy,...,x5_1) is the function which supplies candidates at step k given
the explicit constraints satisfied in the previous k — 1 steps.
Sorting a vector of positive integers

Let a = [a; ay a3 a4]” be a vector of n = 4 positive integers, that is a € N*.
We want to sort the elements of a in an ascending order (from the smallest to

the biggest). The backtracking procedure will be modelled as follows:

e the set of the explicit constraints will be the set of the elements’ position

in vector a. Then,

S ={1,2,3,4}.
At each step k of the algorithm, the explicit constraints will then be
Sk g {17 27 374}7
e T(xy1,...,75_1) supplies at each step k a node to be examine. In this

case, the generic z; is the position of a vector element;

e the criterion function to satisfy is B = {a; < a;41} fori =1,..., 4, while
the bounding function at the generic k-th step is By = {ax = ax_1},

where ag(zy) |z € T(xq, ..., Tp—1).

7

Let us have a = [}1} . The way in which function 7" supplies candidates deter-
3

mines the state space organization tree of the backtracking instance. Suppose

that T" supplies the positions of the elements such that the state space tree
will be the one represented in fig.(4.2). The search for the solution will then
explore that tree in a depth first way, supplying a step-by-step algorithm as

follows:
K=1
—x1 =1
a(1) =7
K=2
— Xy =2

a2(2) =1 > a;(1) - FALSE — sub-tree 3 discharged
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9 = 15 34 5
3 8 13 19 2 2 0 15 51 5

0

R R 0 L

4 6 9 11 14 16 20 22 25 27 30 32 36 38 41 43 46 48 52 54 57 59 62 64

10 12 15 17 21 23 26 28 31 33 37 39 42 44 47 49 53 55 58 60 63 65

Figure 4.2: Example of a tree organization for the solution space of a sorting problem.
The green branches are the visited ones, while the red path is a path to a solution
state.

— x5 =3
a3(3) =4 > a;(1) - FALSE — sub-tree 8 discharged
— a9 =4
az(4) = 3 > a;(1) — FALSE — sub-tree 13 dis-
charged
T = empty, BACK-STEP
K=1
—x1 =2
a1(2) =1
K=2
— 1y =1
ax(1) =7 > a;(2) - TRUE — NEXT CALL
K=3
—x3=3
a3(3) = 4 > ay(l) - FALSE — sub-tree 20 dis-
charged

Without analysing each step of the algorithm, we can easily see that the actual
solution is = (2,4, 3,1), such that a = é . As it can be seen from the first
steps, the algorithm has been able to discﬁarge sub-trees 3, 8 and 13 without
visiting the whole sub-trees and finally find the solution in sub-tree 18 (red
path).

The problem of sorting a vector of elements is a problem which has only one
solution. Hence, not only is the algorithm performance affected by the number

of nodes generated during the calls but also by the position of the solution
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itself. In the example we have seen, a different state space tree organization
could have led to the solution faster. The main issue is that the position of
the solution is unpredictable and heuristics are then required in order to learn

the characteristic behavior of a specific problem.

The 8-Queens problem

The 8-queens (see [27]) is a classical combinatorial problem where 8 queens
must be placed on an 8 x 8 chessboard so that no two attack, that is no two of
them are on the same row, column or diagonal. In figure (4.3) a solution for
the problem is shown. The chessboard is modelled like a matrix where row and
column are numbered from 1 to 8. The queens themselves can be numbered
from 1 to 8. Since each queen must be on a different row, we can assume
that queen 7 is to be placed on row 7. All solutions to the 8-queens problem
can therefore be represented as 8-tuples (xy, ..., zs) where x; is the column on

which queen i is placed. Using this formulation, the explicit constraints are
S;=41,2,3,4,5,6,7,8}, 1<i<mn.

Hence, the solution space consists of 88 8-tuples.

The implicit constraints for this problem are:

1. no two x;’s can be the same (that is, all queens must be in a different

column);
2. no two queens can be on the same diagonal.

The first constraint implies that all solutions are permutations of the 8-tuple
(1,2,3,4,5,6,7,8). Hence, the size of the solution space reduces from 8% tuples
to 8! tuples. The second constraint can be expressed in mathematical terms
modelling the chessboard as a two dimensional array, where each row and
column can be enumerated like in figure (4.3). In that way, we can see that
for every element on the same diagonal which runs from the bottom left to the
top right, each element has the same row — column value. Also, every element
on the same diagonal which goes from the lower right to the upper left has
the same row + column. Suppose two queens are placed at positions (i, j) and

(k,1). Then by the above they are on the same diagonal only if
i—j=k—1l or itj=k+l.
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Figure 4.3: Example of a solution for the 8-queens problem.

The first equation implies

j—l=i—k

while the second implies
j—1l=k—1.

Therefore two queens lie on the same diagonal if and only if
g =1 =i — k. (4.7)

Implicit constraints are the bounding functions that are used to verify at each

step that the non attack configuration holds.

As an example, let us see some steps for an easier instance of the problem,
the 4-queens, represented in figure (4.4). The first step (fig. 4.4a) places the
first queen in position (1,1) and a second call is made. The second call (fig.
4.4b) tries to place the second queen in positions (2,1) and (2,2) but they
are forbidden by the bounding functions. The second call ends to place the
queen in position (2,3). The third call (fig. 4.4c) tries all the positions in
row 3 without any success and the backtrack process ends the current call and
resumes the last one. The position of queen 2 is then changed (fig. 4.4d), and
she is moved in (2,4) while the next call is finally able to place the third queen
in (3,2). Then the fourth call is made, but no queen can be placed in row
4. Since the other queens cannot be moved further, the backtrack ends the
last 3 calls and move back resuming the first one. The algorithm continues

as described until a solution is reached. For example, a feasible solution is

x=(2,4,1,3).
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Figure 4.4: Some steps for the 4-queens problem.
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4.2 The permutation matrix P

The problem of finding a permutation matrix P such that the matrix L #f given

from the equation
L= PL;PT (4.8)

has all non-zero leading principal minors, can be solved by an algorithm de-
signed with a backtracking technique (see sec. 4.1). To understand how this

can be made, we can rewrite equation (4.8) as follows:

(&

r
&
Lff = 6;; Lff |:€i €j €p - €Eg (49)

e

T
S

where the generic vector e; € R™ is the ith column vector of the identity
matrix I, that is the ith orthonormal vector of the canonical base of R™ vector
space. As it can be seen from equation (4.9), the first row of P is equal to the
first column of PT, the second row is equal to the second column and so on.
Hence, we can enumerate the rows of P and consequently the columns of P”
which will have the same sequence of numbers. If the ordered set of rows of
P is (i,j,h,...,s) so the ordered set of column of PT will be (i,75,h,...,s),
that is the same. The problem of finding P could be seen as the problem
of finding the right sequence of numbers representing the vectors e;-th such
that, the permutation matrix P obtained, allows constraints over L #f to hold.
That is the starting point for the backtracking algorithm. In fact, sets S;
of explicit constraints for backtracking the solution, are sets of real numbers
chosen through 1 to n, where n is the order of the permutation matrix P.
Then,

S;={1,...,n}, 1<i<max-steps. (4.10)

For the current problem, the overall objective, that is, the criterion function
P(xq,x9,...,1,) where z; € {1,2,...,n}, is to obtain a matrix ﬁff with all
non-zero leading principal minors. In the following subsections we will see two
methods for verifying the determinant of L 7¢ sub-matrices and some different
T function used to learn the behavior of the backtracking with the problem

being solved.
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4.2.1 Computing the Determinant.Algorithm 1

The bounding functions B; check for the determinant of the leading principal
minor of order i at each i-th step. They can be written in predicate form as

follows:
B; = {det(Ljq) # 0 == TRUE?}. (4.11)

For example, consider a generic step, say the k-th step. The algorithm searches
for a feasible x; to add at the already obtained partial solution (x1, s, ...,
Tr—1). When a feasible zj, is added at the k — 1-tuple, the upper part of ﬁff
can be built using rows and columns of Ly; addressed by the values of the
x;8 in the tuple. The bounding function By checks for the determinant of the
leading principal minor f/ff[lwk] then. If det [A/ff[lNk] # (0 then we can proceed
to the next step. On the other hand, if det f)ff[1~k] = 0 for all feasible xj, the
backtrack ends the current step and resumes the k —1-th step. In resuming the
previous call, a new x_; is chosen from T'(xy, s, ..., T;_o), that is a not yet
used row of Ly, and the algorithm verifies again the bounding function. If the
bounding function is true, then the k-th step can be reached again, otherwise a
new x;_1 should be still searched for the k — 1-th step. The process, described

in algorithm 4.2 is the same for each step. The algorithm has been designed

Algorithm 4.2 Permutation Matrix Solver

recursive BACKTRACK (k)
Require: global n, b, p
for each xj such that z), € T'(z1,...,2,-1) and By, = {det(ﬁff[lwk}) #0} —
true do
if (zq,...,x) is a path to an answer node then
b+ x
if k == n then
p=1
END CALL
end if
call recursiveBACKTRACK(k + 1)
end if
if p == 1 then
END CALL
end if
end for

in order to search for the first occurrence of a solution. In fact, when the first
node answer is reached in the solution tree space, the algorithm ends. A flag

is raised and each of the previous non-terminated calls are ended. As it can
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be seen from algorithm 4.2 the flag used is the boolean variable p that is set

to 1 only when the answer is found.

The solution is the n-tuple of the first n real numbers, ordered as we need
to order the rows of an identity matrix I to obtain the permutation matrix
P we are searching for. For instance, let us have n = 5 and a solution like
{2,3,4,1,5}. That means that the permutation matrix we need has the second
row of I as first, the third row of I as second, and so on. The algorithm tracks
the solution by mean of the vector b whose elements are the integers from 1 to

n which are ordered call after call.

Efficiency

The algorithm performance depends largely on the bounding functions, which

compute the determinant of each L ¢f sub-matrix.

Provided that a solution is a n-tuple of integers from 1 to n ordered in a
specific manner, the solution space will have n! possible solutions to explore.
In fact, the way in which n different numbers can be combined is exactly the
factorial of n. Hence,the algorithm ,as a worst case, must check all the n!

nodes of the state space tree and its overall complexity is
O (p(n)n!), (4.12)

where p(n) is a polynomial in n that takes account of nodes generation, xys
generation and bounding functions evaluation (see sec. 4.1). In this case we
assume that only B;s evaluation accounts for the expression of p(n). It seems
a reasonable simplification given that for each bounding function we have to
compute the determinant of a matrix. In fact, the complexity to evaluate the
determinant of a matrix of order n is at least O(2n?), significantly more than
the necessary time to make the algorithm pick numbers from a given set. In
order to find a solution, we have to evaluate the determinant of all leading
principal minors, and it means that p(n) is the sum of the operations needed

to accomplish that. We can write in formulas:
2.3 03, a3 3 3
p(n) = 5(1°+2°+3 o)y =)0 (4.13)

Equation 4.13 can be written in a closed form by Faulhaber’s formula, that for
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the case of the sum of cubes takes the form (see appendix D and [41]):
~3_1 4 3., .2
Zz = Z(n +2n° 4+ n?). (4.14)
i=1
The polynomial p(n) can then be written as

p(n) = %(n4 + 2n® + n?), (4.15)

and, can be expressed asymptotically as

0 (p(n)) = O <1n4> | (4.16)

Thus, the overall complexity of the backtrack algorithm for the calculus of the

permutation matrix P is

O (p(n)n!) = O (%#m) , (4.17)

that is higher than a simply factorial time complexity. In order to have better
performance, what can be changed is the function 7. In fact, T" supplies, at
each call, the z; to be added to the path already done. Since we are searching
for the first occurrence of the solution, different ways of adding z; to the
tuple (x1,...,2;-1) could result in a better performance for the backtracking

algorithm, that is a solution could be found earlier.

Experimental Results

Experimental results in [29] have shown that, for randomly generated Lapla-
cian matrices, the most times the solution is an identity matrix. It means
that, the randomly generated Laplacian matrix has already all non-null prin-
cipal minors. Then, a function 7" which takes account of this fact would be
preferable. In order to study the efficiency of the algorithm another function

T has been chosen. The two different T used are:

e T, which supplies values z; in order to search for the nearest solution
to the identity matrix. That is, if x;_; = 5 the first value supplied at the
k-th call will be 2, = 6. Then, if the bounding function is not verified,
the next value will be x;, = 7 and so on. As it will be seen this function

T is the one which has better results, according to [29];
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Figure 4.5: Comparison between different state space organization trees in the
determinant-based backtracking algorithm. Black line represents algorithm with Ty
while blue line represents algorithm with Ty,. Function T,;; makes the algorithm a
little faster.

e Ty, which supplies values z; randomly picking them from the set of the
explicit constraints S; until all values are tried. That is, at the k-th call

T €S =85 —(x1,...,Tk1).

Note that T, implements a static state space tree organization while Ty,
because of the randomness of the search, implements a dynamic state space
tree organization. In fact, Ty changes the state space tree organization for
each instance of the problem.

In figure (4.5) a comparison between the two backtracking implementations
with different T's is shown. Algorithm which implements Ty; (black line) results
to be the fastest of the two. We can explain that by mean of a simple example.

Let us have the following real non-singular matrix:

0N

Il
w O =
N =N
— N

Its leading principal minors are



which are non-singular as well since det(A;) = 1 # 0 and det(As) = 1 # 0.
In this case the two implementations of the algorithm will lead to different

solutions, because of the different search methods.

For Ty, the algorithm will lead to the solution

s

I
o o =
o~ o
—_ o o

that is, as expected, the identity matrix since all leading principal minors are

already non-null.

For T, the algorithm will lead to the solution

s

I
_ o O
o = O
o O =

that is a solution as well, since A = PAPT has all non-null leading principal

minors.

The point is that the first algorithm has to compute a smaller number of
determinants in searching for the solution because it searches for the nearest
solution to the identity matrix. Since the experiments showed that randomly
generated complex Laplacian matrices for the most times do not need any
permutation of rows and columns, then algorithm which implements T}j, results

to be slower because of the higher number of bounding functions evaluations.

4.2.2 Gauss Elimination Method.Algorithm 2

The permutation matrix problem solved with a determinant-based backtrack-
ing algorithm has a worst case complexity of O (p(n)n!) = O (in'n!), as we
have already seen. Even though this is an upper bound and is reached only if
all combinations are tried (i.e. for a singular matrix); a more fast algorithm
would be preferable. We can have a better worst case complexity by modifying
the bounding functions By, used at each call k. To do so, we need to analyse

the automorphism equation
Ly = PL;PT. (4.18)
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In subsections 2.3.2 and 2.3.3 we have seen the Gauss elimination method with
total pivoting and the correspondent LU factorization, which have the general

expression

LU = PAQ, (4.19)

where

e [ € C™™is a complex unit lower triangular matrix,

e U € C™™ is a complex upper triangular matrix,

A € C™™ is a complex square matrix,

P, Q) € R™™™ are two permutation matrices.

If we compare equations (4.18) and (4.19) together, we can say that the first

one could be seen as a special case of an LU factorization with total pivoting
Liy = L,U, = PL;PT, (4.20)

where (Q = PT. The question is how we can benefit from the LU factorization

of the relabelled Laplacian sub-matrix. Rewrite factors IA/g and Ug as block

matrices -
i |0
R A A o)
- 4.21
A~ k Y
U = Ué) p
o’ o,

where 0, w,p are vectors and ﬁék),Ug(k) e C**k) are the leading principal

minors of order k of f/g and Ug. The block product between the two factors

iy ]

WT(A]ék) WID + Lunting

results in

A

Ly =1L,U, = (4.22)

where it can be easily seen that 2;’32 = igk)Ug(k) is the leading principal minor

of order k of the relabelled Laplacian sub-matrix. Since IA/g is a unit lower
triangular matrix, so are its leading principal minors. Then, the determinant

of ﬁ;’? is

det (i;’?) = det (f/ék)> det ((7;“) = det ((7;“) : (4.23)

93



A

where det (ﬁé’”) = 1. Moreover, U, is an upper triangular matrix and so are

its leading principal minors. Then, we can write

k
det <L§f})> = T was (4.24)
=1

which is valid for £ = 1,...,n. Equation (4.24) shows that the determinant
of each principal minor (and of the entire matrix) can be computed as the
product of the diagonal elements of the factor matrix Ug. Therefore, a leading
principal minor of flff has non-zero determinant if and only if all diagonal
elements of the corresponding leading principal minor of Ug are non-null. It
means that, the problem of finding a permutation matrix P such that ﬁff
has all non-zero leading principal minors can be formulated as the problem of
finding a permutation matrix P such that LU factorization (4.20) exists. The
equivalence of the two problems is ensured by theorem (2.5) whose proof can

be found in section 2.3.

Theorem 4.1. Let A € F"™ be a non-singular matriz, and let Ay be its
leading principal minors of order k. If Ay is non-singular fork=1,...,n—1

then the LU factorization of A exist and is unique.

The next question that needs an answer is what happens to the elements
of Ly after the operation of permutation. This is important in order to define
the bounding functions for the backtracking procedure.

In section 2.3 we have seen two main types of LU factorizations:

e LU factorization with partial pivoting, where pivot elements are chosen

among the elements in the sub-columns under the main diagonal,

e LU factorization with total pivoting, where pivot elements are chosen in

the sub-matrix that has not been triangulated yet.

In the case of equation (4.20) we are wondering where the pivot elements are
chosen from. To have an answer, we need to do some mathematics. Permuta-
tion matrix P can be written in terms of its row vectors and P? in terms of
its column vectors. Moreover, the Laplacian sub-matrix too can be written in

terms of its column vectors as

Lyp=1[h I ls - 1], (4.25)
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where [; € C" for i = 1,...,n. Thus, equation (4.18) can be written as follows

Lyp= e

(N

T
T
T
€j
T
h

e

T
s

[[1 ly Iy -

ln} [ei ej ep -

el - (4.26)

By multiplying the first two matrices, the following partial result is obtained

elly elly elly -+ ell,
efll eJTJQ e]T-lg e]T-ln
L= |etl efly efly - ell, [ei e en oo e
_ezl_l ela efls - efln (4.27)
lix
lh3 € €5 €p es] .
Then, matrix L #¢ results to be
Zilei Zilej Zileh Ziles
ljgei ljgej llz@h lj2€s
Lff = lhgei lhgej lhgeh e lh3€5 (428)
_l_snei l_snej l_sneh e l_snes_
Recalling the properties of vectors e; € R™, we have that
i = e = elyer =1 .
o _kl g kR kk} elements of Ly, (4.29)
lij = lkjew = QZijew = lkw
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and matrix L #f results to be

Lff: lhi lhj lhh lhs (430)

The diagonal elements remain along the diagonal even after the pivoting oper-
ation. The expression L 1t = PL;PT can then be seen as a Gauss elimination
with diagonal pivoting. Now we are ready to define the backtracking algorithm

for the Gaussian elimination case.

Algorithm 4.3 explains how the backtrack process with Gaussian elimi-
nation works. The new bounding functions appear to be simply predicates
without any additional computational effort. This is not quite true since the
k-th step of Gaussian elimination modifies the elements of the sub-matrix
L f(k~n), that is, the pivot candidates for the k +1 call as well. Hence, bound-
ing functions can be seen as functions which operate in two steps throughout
two consecutive calls. During a generic call £ — 1, the algorithm modifies the

pivot candidates and at call k one of them is chosen.

Algorithm 4.3 Permutation Matrix Solver with Gaussian Elimination

recursiveBACKTRACK (k)
Require: global n, b, p
for each x such that z, € T(z1,...,2,_1) and By = {ug # 0} — true
do
if (x1,...,x) is a path to an answer node then
b+ x
EXECUTE the k-th step of Gaussian Elimination
if k == n then
p=1
END CALL
end if
call recursiveBACKTRACK(k + 1)
end if
if p == 1 then
END CALL
end if
end for
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Efficiency

As we have said for algorithm 4.2, the number of nodes generated is unpre-
dictable, so the worst case is considered in order to study the performance of
algorithm 4.3. The worst case complexity can be easily obtained from the gen-
eral formula already seen for the backtrack process when the highest number

of tuples that can be generated is n!,
O (p(n)n!). (4.31)

In this case, for each possible tuple, an LU factorization is needed. Thus, for

each tuple we have the polynomial complexity

2

O(p(n)) =0 (§n3) : (4.32)

Therefore, the overall worst case complexity for algorithm 4.3 results to be

O (p(n)n!) = O (gn?’n!> | (4.33)

which is an order of magnitude smaller than the worst case complexity for

algorithm 4.2.

Experimental Results

As in the case of the determinant-based backtracking procedure, algorithm 4.3
has been implemented with different T" functions. From a Gauss elimination

point of view, we chose four different T's :

e at call k, T, searches for the next non-null pivot element along the

diagonal from position &k to n;

e at call k, T, searches randomly for a non-null pivot element along the
sub-diagonal from position k£ to n. Moreover, the pivot positions are

remembered so that when a call is resumed no pivot is chosen two times;

e at call k, T3 searches for the pivot element with maximum modulus
along the diagonal, from position k to n. In practice, diagonal elements
are ordered in a descending order considering their modulus. Then, at
each step of a call, they could be sequentially tried from the biggest to

the smallest;
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Figure 4.6: Comparison among different state space organization trees in the Gauss-
based backtracking algorithm. Black line represents algorithm with 7Ty; while blue
line represents algorithm with Tjy2. Function Ty; makes the algorithm the fastest
while function T'g2 the slowest.

e at call £, T,4 searches for the next non-null element along the diagonal
from position n to k. It can be seen that function 7,4 works in the

opposite way with respect to function k, T;.
A fifth function has been defined based on the ones defined above:

e at call k, function Ty5 behaves like one of the functions among Ty, T

and Tyz. The choice is made randomly.

Note that T,; and Ty, are nothing less than the same functions already tried
for the determinant-based algorithm.

In figure (4.6) a comparison in terms of time execution among the different
Tys implementations is shown. Functions Ty, T3 and T4 have fundamentally
the same performance while, as already seen for the determinant-based case,
function 7,5 has the worst performance. Note that function Tj5 has a behavior
that averages out the performances of the other four functions.

As in the previous case, different node generations can yield different solu-

tions. Let us have the following Laplacian sub-matrix:

5—1 -2 -2+ 3
- —1+2 2 1—1
Ly = )
-2t —1+2t 2+ -1
1 L —2 —-1-2
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that is non-singular and whose leading principal minors are non-null. Solution

yielded from the algorithm that implements 7T}, is

Py =

o O o =
o O = O
o = O O
= o O O

as we expected since Lyy do not need a relabelling and T}, searches for the
nearest solution to an identity matrix. The other T" functions has yielded the

following solutions:

Tyo leads to

000 1
0010
P2 = ;
2711 0 0 0
0100
e T3 leads to i i
1000
000 1
Pyz = ;
P70 01 0
0 1 0 0]
o T, leads to i i
000 1
1000
Py = ;
7101 0 0
0 0 1 0]
o 75 leads to
100 0
0001
P =
P10 01 0
0100

where only P,3 and P,s are equal. Then the solution is not unique since five
algorithms have yielded four different solutions. This results were expected

because already shown by the determinant-based algorithm.
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4.3 Comparing Algorithms

The two different implementations of the algorithm in terms of bounding func-
tions, have shown to have different performances for what concern the worst

case complexity. In fact, we found that:

o determinant-based backtracking algorithm has the worst case complexity

0 (plrynt) =0 G

o Gauss-based backtracking algorithm has the worst case complexity

O (p(n)n!) = O @ni”n!) |

Practical results have simply confirmed what stated above.

Experiments have been made using the following test matrices:
Test 1) complex random follower-follower Laplacian matrices;
Test 2) complex random non-singular matrices;

Test 3) complex random singular matrices.

where matrix values were drawn from the standard uniform distribution on the
open interval(0;1). In figure (4.7) a comparison among the proposed algorithm
over a Laplacian sub-matrices is shown. Algorithms worked over a Laplacian
sub-matrix of variable order, from a minimum of 3 to a maximum of 70. Figure
(4.7b) shows a comparison between the best of the two implementations, that
are algorithms with Ty and Tj;. The difference in terms of time execution
between the determinant-based implementation and the Gauss-based imple-
mentation is unquestionable. That difference is even more evident in figure
(4.9) where algorithms have been tested with random complex singular ma-
trices. In that case, the maximum order of the test matrices has been chosen
to be 9. Figure (4.9b) shows the comparison between the best 7" function of
the two implementations. Again, Gauss-based algorithm has an overcoming
performance. In figure (4.8) the results of experiment 2 are shown. Algo-
rithm implementations have been tested with random complex non-singular
matrices, with a maximum order of 70. As it can be seen, the performance

algorithms reached are the same as in experiment 1.
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Remark 4.2. Recall that the complex Laplacian matriz has been defined as

the matrix whose elements are:

—Wj; ifi#j and j € N,
o ifi#j andj ¢ N,
ij =

>

JEN

\

What we notice is that the diagonal elements are the sum of the elements in the
same row. Since the Laplacian matriz in the experiments has been built using
random values from the range (0;1), the complex weights w;; result to have
both positive real and positive imaginary parts. Then the following condition

holds for the diagonal elements:
|lkk| > |lk]| fOT’ k= 1,...,n.

It simply means that the diagonal elements are already the elements with the
maximum modulus, and then the Gauss elimination with diagonal pivoting has
a stability performance in between that of the Gauss with partial pivoting and

that of the Gauss with total pivoting.
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Figure 4.7: Comparison among different backtracking implementations. Tests have
been made over complex random follower-follower Laplacian matrices.
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Figure 4.8: Comparison among different backtracking implementations. Tests have

been made over complex random non-singular matrices.

103



—Tg1
—Tg2
—Tg3
Tg4
Tg5
Tdit
\ — Td2

i

Execution Time [sec]

Wi

N
@
IN
~
©
©

Matrix Order [n]

(a)

Execution Time [sec]

—Tg1
Td1
4 1 1 1 1 1 1
5 6

Matrix Order [n]

N
@
~
<
o
©

(b)

Figure 4.9: Comparison among different backtracking implementations. Tests have
been made over complex random singular matrices.
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Chapter 5

The Multiplicative IEP and

Ballantine’s Theorem

An Inverse Eigenvalue Problem (see [14]) concerns the reconstruction of a
matrix from prescribed spectral data, which may consist of the complete or
only partial information of eigenvalues or eigenvectors. Such a problem has
been encountered in chapter 3 where in order to stabilize the Laplacian matrix
L € C™™ of a sensing digraph, a complex diagonal matrix D € C"*™)
was needed such that the matrix obtained from the product DL had all its
eigenvalues in the right half complex plane. The problem mentioned is called
the Multiplicative Inverse Eigenvalue Problem and, in the specific case, only
partial information of the desired eigenvalues is given. They must have positive
real parts. In this chapter we will analyse the multiplicative problem and give

algorithms to find the desired complex diagonal matrix.

5.1 The Inverse Eigenvalue Problem of a Matrix

In a mathematical model (see [13] and [14]), it is generally assumed that there
is a correspondence between the endogenous variables, that is, the internal
parameters, and the ezogenous variables, that is, the external behavior. As a
consequence, when dealing with physical systems, problems can be classified

in two main types.

Direct Problems A direct problem is the process of analysing and deriving
the spectral information and, hence, inducing the dynamical behavior of
a system from a priori known physical parameter such as mass, length,

elasticity, inductance, capacitance, and so on.
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Inverse Problems An inverse problem is to validate, determine, or estimate
the parameters of the system according to its observed or expected be-

havior.

The concern in the direct problem is to express the behavior in terms of param-
eters whereas in the inverse problem the concern is to express the parameters
in terms of behavior. In the former the behavior usually is a deterministic
consequence of the parameters. In the latter the inverse problem often turns
out to be ill-posed in that it has multiple solutions.

Among the inverse problems of various nature, there is the particular class
of eigenvalue problems associated with matrices. In this context, an Inverse
Figenvalue Problem concerns the reconstruction of a matriz from prescribed
spectral data, which may consist of the complete or only partial information of
eigenvalues or eigenvectors. The objective of an inverse eigenvalue problem is
to construct a matriz that maintains a certain specific structure as well as that
given spectral property. To confine the construction to certain special classes
of matrices is often necessary for the inverse problem to be more meaningful,
either physically or mathematically. The solution to an inverse eigenvalue

problem therefore should satisfy two constraints:
1. the spectral constraint, referring to the prescribed spectral data;
2. the structural constraint, referring to the desirable structure.

In practice, it may occur that one of the two constraints in an IEP ! should
be enforced more critically than the other, for example, due to physical real-
izability. Without this, the physical system simply cannot be built. There are
also situations when one constraint could be more relaxed than the other, for
example, due to the physical uncertainty. When the two constraints cannot be
satisfied simultaneously, the inverse eigenvalue problem could be formulated
in a least squares setting, in which one of the two constraints is compromised.
Note that the meaning of "being structured” can be taken in different ways.
Some of the structures, such as Jacobi or Toeplitz, result in matrices forming
linear subspaces; structures such as non-negative or stochastic, limit entries of
matrices in a certain range and so on.

These constraints define a variety of inverse eigenvalue problems, that
can be classified according to characteristics such as additive, multiplicative,

parametrized, structured, partially described or least squares. Nonetheless, an

nverse Eigenvalue Problem.
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Z

= J

|_ (single variate)

Figure 5.1: Main classification of Inverse Eigenvalue Problems.

[EP often carries overlapping characteristics and it is sometimes difficult to de-
termine which characteristic is the most prominent. In general, the following

types can be defined:

MVIEP =  Multi-Variate Inverse Eigenvalue Problem
LSIEP =  Least Square Inverse Eigenvalue Problem
PIEP =  Parametrized Inverse Eigenvalue Problem
SIEP =  Structured Inverse Eigenvalue Problem
PDIEP =  Partially Described Inverse Eigenvalue Problem
AIEP = Additive Inverse Eigenvalue Problem
MIEP =  Multiplicative Inverse Eigenvalue Problem

In figure (5.1) a possible inclusion relationship among the different IEPs is

shown. The inclusion diagram implies several points.

e The MVIEP is the most general class of IEP. Nonetheless, the single

variate has been the most studied.

e All single variate problems have a natural generalization to the Least

Squares formulation.

e The AIEP and the MIEP are two extensively studied special cases of the
PIEP.

e The PDIEP is the most difficult to classify. It arises when there are no
reasonable tools available to evaluate the entire spectral information due

to, for instance, the complexity or the size of the physical system the
IEP belongs to.
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Note that the given classification is neither definite nor complete. It is sim-
ply a representation of the main IEPs. In fact, other characterizations and
overlapping are possible. In figure (5.2) a finer classification is depicted and
acronyms are explained in table 5.1.

Associated with any IEP four fundamental questions of different nature

arise:
1. the theory of solvability,
2. the practice of computability,
3. the analysis of sensitivity,
4. the reality of feasibility.

The problem of solvability consists in finding necessary or sufficient condi-
tions under which an inverse eigenvalue problem has a solution. Related to
the solvability is the issue of uniqueness of a solution. On the other hand, the
main concern in computability has been to the develop a procedure by which,
knowing a priori that the given spectral data are feasible, a matrix can be
constructed numerically. The discussion on sensitivity concerns perturbation
analysis when an IEP is modified by changes in the spectral data. The feasi-
bility is a matter of differentiation between whether the given data are exact
or approximate, complete or incomplete, and whether an exact value or only
an estimate of the parameters of the physical system is needed. Each of these
questions is essential but challenging to the understanding of a given IEP. Un-
fortunately, not many [EPs are comprehensively understood in all these four

aspects.
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Figure 5.2: Classification of Inverse Eigenvalue Problems.
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Acronym Meaning

AIEP Additive IEP

ECIEP Equality Constrained TEP
ISEP Inverse Singular/Eigenvalue Problem
ISVP Inverse Singular Value Problem
JIEP Jacoby IEP

LSIEP Least Square TEP

MIEP Multiplicative IEP

MVIEP Multi-Variate IEP

NIEP Non-negative IEP

PAP Pole Assignment Problem
PEIEP IEP with Prescribed Entries
PIEP Parametrized IEP

PDIEP Partially Described IEP
RNIEP Real-valued Non-negative IEP
SHIEP Schur-Horn TEP

SIEP Structured IEP

SNIEP Symmetric Non-negative IEP
StIEP Stochastic IEP

STISVP Sing-Thompson ISVP

TolEP Toeplitz IEP

UHIEP Unitary Hessenberg TEP

Table 5.1: Summary of the acronyms for IEPs.

5.2 Application: The Pole Assignment Problem

Inverse Eigenvalue Problems arise from a remarkable variety of applications.

The list includes applications like:
e control design,
e system identification,
e seismic tomography;,
e principal component analysis,
e cxploration and remote sensing,
e antenna array processing,
e geophysics,
e molecular spectroscopy,
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e particle physics,

e structural analysis,

e circuit theory,

e mechanical simulation.

A common phenomenon that stands out in most of these applications is that
the physical parameters of the underlying system are to be reconstructed from
knowledge of its dynamical behavior. The meaning of "dynamical behavior" can
be qualified in a different ways. For example, vibrations depend on natural
frequencies and normal modes, stability controls depend on the location of
eigenvalues, and so on. In that context, the spectral information used to affect
the dynamical behavior varies in various ways. If the physical parameters can
be, as they are, described mathematically in the form of a matrix, then the
problem is an IEP. The structure of the matrix is usually inherited from the
physical properties of the underlying system.

A valuable example is the Pole Assignment Problem, extensively studied
and documented in the literature because of its importance in practice. Con-

sider first the following dynamic state equation:
&(t) = Az(t) + Bu(t), (5.1)

where z(t) € R™. The two given matrices A € R™*™ and B € R(™™) are
invariant in time. One classical problem in control theory is to select the input
u(t) so that the dynamics of the resulting x(¢) is driven into a certain desired
state. Depending on how the input wu(¢) is calculated, there are generally two

types of controls:
e the State Feedback Control,
e the Output Feedback Control.

As it can be seen in figure (5.2), the PAP is a special case of the PIEP.

5.2.1 State Feedback PAP

In state feedback control, the input u(t) is selected as a linear function of the
current state x(t), that is,

u(t) = Fx(t). (5.2)
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In this way, the system is changed to a closed-loop dynamical system:

x(t) = (A+ BF)x(t). (5.3)

A general goal in such a control scheme is to choose the gain matriz F € R(m*™)

so as to achieve stability or speed up response. There are many ways to do that.
One way is to minimize a certain cost function in the so-called linear quadratic
regulator. Another way is to directly translate the task to the selection of F
so that the spectrum o(A+ BF') is bounded in a certain region of the complex
plan. Obviously, in the latter the choice of the region affects the degree of
difficulty of control. The location of the spectrum can be further restrict by
reassigning eigenvalues of the matrix A + BF' to a prescribed set. This leads
to a special type of inverse eigenvalue problem usually referred to as the State

Feedback Pole Assignment Problem.

(State Feedback PAP) Given A € R"™™ and B € R™™ and a set of
complex numbers {\;}7_,, closed under complex conjugation, find F €
R(™x7) such that

o(A+ BF) ={ )}

5.2.2 Output Feedback PAP

It is often the case in practice that the state z(t) is not directly observable.
Instead, only the output y(t) is available. State and output are related by the

following equation
y(t) = Ca(t), (5.4)

where C' € RP*™ is a known matrix. The input u(¢) must now be chosen as

a linear function of the current output y(¢), that is,
u(t) = Ky(t). (5.5)
The closed-loop dynamical system thus becomes
i(t) = (A+ BKC)x(t). (5.6)

The goal is to select the output matriz K € R™*P) g0 as to reassign the
eigenvalues of A + BKC'. This output feedback PAP once again gives rise to
a special type of IEP.
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(Output Feedback PAP) A ¢ R™™ B ¢ R™™ and C € RP»*™ and a
set of complex numbers {\;}7_;, closed under complex conjugation, find
K € R(m*P) guch that

o(A+ BKC) = {\:}7_;.

5.3 Multivariate IEP

What can be noted first both from figures (5.1) and (5.2) is that the main
distinction in IEPs is between single variate and multivariate inverse problems.
Nonetheless, the single variate one has been the most studied because of its

importance in practice.

A Multivariate Eigenvalue Problem is to find real scalars {\q, ..., \,;,} and

a real vector x € R™ such that equations
Az = Az (5.7)

|zi|l=1, i=1,...,m. (5.8)

are satisfied, in which A € S(n) ? is a given positive definite matrix partitioned

into blocks:

All A12 s Alm
A - A.Ql A.QQ R Agm ,
Aml Am2 s Amm

A is the diagonal matrix
A =diag{\ 1, ..., A\nln, }

with [,,, the identity matrix of size n;, and x € R" is partitioned into blocks

r=[z1,...,z5]"

with x; € R™. Note that, the single variate case when m = 1 is simply a

classical symmetric eigenvalue problem.

28(n) :={ all symmetric matrices in R(n)}.
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5.4 Single variate IEP

In this section the main IEPs showed in figure (5.1) are listed together with
some of their variations and definitions. In order to define the IEPs, symbols

M, N will be used to denote the following subsets of square matrices:

n) = R(”X"),

n) :={ all symmetric matrices in R(n)},

S »n X

n) :={ all orthogonal matrices in R(n)},

Q

n) = Crxn),

Ry

n) :={ all Hermitian matrices in C(n)},

(n)
(n)
(n)
Dr(n) :={ all diagonal matrices in R(n)},
(n)
(n)
(n)

Dc(n) = { all diagonal matrices in C(n)}.

5.4.1 Parametrized IEP

The class of Parametrized Inverse Eigenvalue Problem can include many other
IEPs since many of them can be regarded as a parameter estimation prob-
lem. Nonetheless, the way these parameters regulate the problem allows us to
narrow down the list of included IEPs.

A generic PIEP can be described as follows:

(PIEP) Given a family of matrices A(c) € M with ¢ = [c1,...,¢,] € F™
and scalars {A1,...,\,} C F, find a parameter ¢ such that o(A(c)) =
{0

Note that the number m of parameters in ¢ may be different from n. Depending
on how the family of matrices A(c) is specifically defined in terms of ¢, the PIEP
can appear and be solved very differently. Nonetheless, a common feature in
all variations is that the parameter c is used as a control that modulates to

the underlying problem in a certain specific way. Some variations are:

(PIEP1) A(c) = Ao+ > ¢;A; where A; € R(n) and F = R.
=1

(PIEP2) A(c) = Ao+ > ¢;A; where A; € S(n) and F = R.
i=1
A different and more complicated formulation of the PIEP is the following one:

(PIEP3) Given matrices A € C(n), B; € Ct»™i) ¢y € Clxm) 4 =1,...,q,
and scalars {\;,...,\,} C C, find matrices K; € C™*%) guch that

q
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Note that, for ¢ = 1, the PIEP3 includes as special cases the state feedback as
well as the output feedback pole assignment problems.

A few interesting special cases of the PIEP are:

(AIEP) Given a matrix A € M, scalars {\i,...,\,} C F, and a class of
matrices AV, find a matrix X € N such that o(X + A) = {\1,..., A\, }.

(MIEP) Given a matrix A € M, scalars {\1,...,\,} C F, and a class of
matrices NV, find a matrix X € A such that o(XA) = {\,..., A\ }.

The Additive IEP is a special case of the PIEP with A(X) = A+ X and X
playing the role of ¢, and the Multiplicative IEP corresponds to the case where
A(X) = X A. By being more specific on the class A of matrices, the problems

themselves can be divided into further subclasses.

Additive IEP

The key feature of the Additive IEP is that a given matrix A is perturbed by
the addition of a specially structured matrix X in order to match the desired
eigenvalues. The eigenvalue information can provide at most n equations,
so sometimes it may be desirable to limit the number of free parameters in
X. Nonetheless, the set N’ can be taken quite liberally. Set A can then
be used to impose a certain structural constraint on the solution matrix X.
For example, structure on A sometimes arises naturally because of engineers’
design constraints. In that sense, the Additive IEP presents itself various

special cases:

(AIEP1) M =R(n), F =R, N = Dr(n),
(AIEP2) M = 8(n), F =R, N = Dg(n),
(AIEP3) M =C(n), F =C, N = D¢(n),
(AIEP4) M = H(n), F =R, N = Dg(n).

Another interesting variant of the AIEP arises in, for example, control
theory or algorithm design, where the stability is at issue. In such a problem
it is more practically critical to have eigenvalues located in a certain region

than at a certain points. One such problem can be stated as follows:

(AIEP5) Given A € R(n), find X € N with 0(A + X) lies in a certain fixed
region, say the right half, of the complex plane.
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From a solvability point of view, Friedland proved the following theorem
for the AIEP3:

Theorem 5.1. For any specified {\y,..., A}, the AIEP3 is solvable. The
number of solutions is finite and does not exceed n!. Moreover, for almost all

{1, ., A}, there are exactly n! solutions.

Multiplicative TEP

The Multiplicative IEP arises when the task is to pre-multiply a given matrix
A by a specially structured matrix X to reposition or to precondition the
distribution of its eigenvalues. This is very similar to but more general than
the idea of preconditioning the matrix A where it is desired to find an efficient
preconditioner M for A so that the product M~!'A approximates the identity.
Although the sense in which M~!A should approximate the identity differs
according to the underlying method to be used, the general setting in the
MIEP can be applied to the optimal preconditioning of a given matrix A.

Perhaps, the simplest possible preconditioners are the diagonal scaling:
(MIEP1) M =R(n), F =R, N =Dx(n),

(MIEP2) M =S8(n), F =R, N =Dg(n),

(MIEP3) M =C(n), F =C, N = D¢(n).

Some other types of multiplicative inverse eigenvalue problems are worth

to mention:

(MIEP4) Given a matrix A € H,, and scalars {\1,...,\,} C R, find a matrix
X € Dr(n) such that (X TAX 1) = {\, ..., A}

(MIEP5) Given a matrix A € R(n), find X € Dg(n) with positive entries
such that (X A) lies in the right-half complex plane.

From a solvability point of view, Friedland proved the following theorem
for the MIEP3:

Theorem 5.2. If all principal minors of A are distinct from zero, then the
MIEP3 is solvable for arbitrary {1, ..., Ay} and there exist at most n! distinct

solutions.
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5.4.2 Structured IEP

A generic Structured Inverse Eigenvalue Problem may be stated as follows:

(SIEP) Given scalars {\1,...,\,} € F, find X € N which consists of spe-
cially structured matrices such that o(X) = {A,..., A\, }.

By demanding X to belong to N, where a structure is defined, the SIEP is
required to meet both the spectral constraints and the structural constraints.
The structural constraint usually is imposed due to the realizability of the
underlying physical system.

Many types of structures have been considered for the SIEP. The following

are of the most interesting:

(SIEP1) F =R and N = {all Toeplitz matrices in S(n)},

(SIEP2) F =R and N = {all pre-symmetric Jacobi matrices in S(n)},
(SIEP3) F =R and N = {all non-negative matrices in S(n)},
(SIEP4) F =R and N = {all non-negative matrices in R(n)},
(SIEP5) F = C and N = {all row-stochastic matrices in R(n)}.

The spectra of structured matrices may also be structured. So sometimes
additional spectral information is given. The following problems are of exam-

ple:

(SIEP6a) Given scalars {\1,...,\,} and {p, ..., n—1} C R that satisfy the
interlacing property A\; < p; < A\jyq fori =1,...,n — 1, find a Jacobi

matrix J so that o(J) = {\,...,\,} and o(J) = {p1, ..., fin—1} where
J is the leading (n — 1) x (n — 1) principal sub-matrix of .J.

(SIEP6b) Given scalars {\q,..., Ao, } and {p1, ..., p2n_o} C C, find tridiag-
onal symmetric matrices C' and K such that the determinant det(Q(\))
of the A-matrix Q(\) = A?I + A\C' + K has zeros precisely {\, ..., Ao}

and det(Q(\)) has zeros precisely {y1, . . ., fian_s where Q()) is obtained
by deleting the last row and the last column of Q(\).

5.4.3 Least Squares IEP

An Inverse Eigenvalue Problem, especially for the real-valued case, may not
necessarily have an exact solution. Moreover, the spectral information, in prac-

tice, often is obtained by estimation and hence it does not need to be rigorously
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obtained. That is, there are situations where an approximate solution in the
sense of least squares would be satisfactory. Problems we have hereinbefore
seen can be generalized to the least squares formulation. However, any inverse
eigenvalue problem has two constraints. Thus depending on which constraint
is to be enforced explicitly, two ways of defining a least squares approximation
are possible.

One natural way is to measure and to minimize the discrepancy among the

eigenvalues:

(LSIEPa) Given a set of scalars {\},..., A5} C F(m < n), find a matrix
X e Nandaseto ={oy,...,0,}ofindiceswith1 <oy <--- <0, <n

such that the function

1 m
F(X,0) =~ Ao, (X)) — A2, 5.9
(X,0)i= 5 1 00) = X) (59)
where \;(X),7 = 1,...,n are eigenvalues of the matrix X, is minimized.

Note that the set of prescribed eigenvalues has cardinality m which might be
less than n. Consequently, associated with the LSIEP for each fixed X is

always a combinatorics problem
min > (A, (X) = X)), (5.10)

1<o1 < <om<n 4
=1

that looks for the closest match between a subset of spectrum of X and the
prescribed eigenvalues.
Another way to formulate the least squares approximation is to measure

and to minimize the discrepancy between the matrices:

(LSIEPD) Given the set M whose elements satisfy a certain spectral con-
straint and a set A that defines a structural constraint, find X € M

that minimizes the function
F(X):= % | X — P(X) | (5.11)
where P(X) is the projection of X onto N.
The spectral constraint could be,for example, the isospectral surface
W(A) ={X e R(n) | X =QTAQ,Q € O(n)} C S(n)
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where the complete spectral A := diag{\, ..., \,} is given, or the set
W, V) :={X € R(n) or S(n) | XV =VT},

where only a portion of eigenvalues I' := diag{ i, ..., A\x} and eigenvalues V' :=
[v1,...,vx] are given. Note that if F/(X) = 0 at a least square solution, then we
have also solved the inverse eigenvalue problem of finding X € N that satisfies
M. So a general SIEP can be solved through the setup of an LSIEPD.

For engineering applications, it is mostly the case that the realizability of
the physical system is more critical than the accuracy of the eigenvalues. That
is, the structural constraint A/ has to be enforced in order that the construction
of a physical system be realizable whereas a discrepancy in the eigenvalues is
sometimes tolerable because often these eigenvalues are an estimate anyway.

There are several variations to the LSIEP. In the LSIEPa it can be noted
that the number of variable parameters for adjusting the matrix X, for exam-
ple, the degree of freedom in NV, could be different from the dimension n. One
special case of the LSIEPa where the number [ of free parameters might also

differ from the number m of the partially prescribed eigenvalues:
!
(LSIEPal) N = {A(d) = Ap+>_ d;A; | Ao, A1, ..., A € S(n) given}, F =R.
i=1

Problem LSIEPal may be seen in terms of LSIEPb. For a given A’ :=
diag{A},..., A5}, consider the subset

[ = {Qdiag(AZ,, A.)Q" € O(n), A € Dr(n —m)} (5.12)

and the affine subspace

A= {A(d) |d e RY (5.13)

with A(d) defined in LSIEPal. Since I' contains all symmetric matrices in
R™*7) with A%,..., A\ ass part of the spectrum, finding the shortest distance
between A and I' would be another meaningful least squares approximation.

The problem can be formulate as follows:

(LSIEPDb1) Find d € R, Q € O(n), and A, € Dr(n — m) such that the

function
1 . .
G(d,Q,A) = 5 | A(d) — Q diag(A},, A)Q" [|7, (5.14)
is minimized.
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Other variations of LSIEPb include:
(LSIEPb2) M = W(A), N = {A}.
(LSIEPb3) M = W(A), N' = {all Toeplitz matrices in S(n)}.

(LSIEPb4) M =W, V), N = {A} and N = R(n) or S(n).

5.4.4 Partially Described IEP

In the reconstruction of a system, instead of knowing the complete spectrum,
there are also situations where only a portion of eigenvalues and eigenvectors
are available. This is especially the case when due to the complexity or the size
of the physical system, no reasonable analytical tools are available to evaluate
the entire spectral information. This is the case where a Partially described
IEP arises. A generic PDIEP is as follows:

(PDIEP) Given vectors {v™1, ... v®} C F* and scalars {\;,...,\s} C F
where 1 < k < n, find a matrix X € A such that Xv® = \o0® for
i=1,..., k.

We could also consider the following variations:

(PDIEP1) F =R, N = {all Toeplitz matrices in S(n)}.

(PDIEP2) F =R, N = {all Jacobi matrices in S(n)}.

(PDIEP3) F =R, NV = {all pre-symmetric Jacobi matrices in S(n)}.
Other variations of the PDIEP include:

(PDIEP4) Given two distinct scalars A, u, € R and two non-zero vectors
z,y € R, find two Jacobi matrices J and J so that Jr = Az and
Jy = py, where J and J differ only in the (n,n) position.

(PDIEPS5) Given distinct scalars {Ay,...,A,} C R and a non-zero vector
z € R", find a Jacobi matrix J such that A(J) = {A\1,...,\,} and that

either Jxr = \jz or Jxr = \,x.

(PDIEPG6) Construct an n x n symmetric band matrix of bandwidth p from
the knowledge of all the eigenvalues and the first p components of all the

normalized eigenvectors.
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5.5 Ballantine’s Theorem and Stability

In chapter 3 we have seen that a multi-agent system can be controlled by
relatively simply laws when its formation is modelled by a 2-reachable complex
weighted digraph. More specifically, the control of a multi-agent formation can
be done via the complex Laplacian associated to the sensing digraph modelling
the formation itself. In both single-integrator kinematics and double-integrator
dynamics what it turned out is that the stability of the whole system, that is,
the capability of the agents to reach the desired planar formation depends on
the stability of the Laplacian matrix. In other words, the multi-agent system

is able to reach a planar formation if and only if the matrix
_DIL (5.15)

has all stable eigenvalues. Moreover, since the formation of n agents has two
co-leaders and none of them have incoming edges, the Laplacian matrix can

then be written as

I —

(5.16)

0252 ‘ 025 (n—2) ]
Luy ‘ Lyy

from which it is clear that two of the n eigenvalues are zero. Then the stability
issue involves only a Laplacian sub-matrix, the follower-follower matrix L.
What is needed to find, is a complex diagonal matrix M such that matrix D

18:

Single-Integrator Kinematics

I 0
D= : (5.17)
0 M
Double-Integrator Dynamics
I 0
D= : (5.18)
0 eM

and matrix (5.15) is stable.
The problem we must solve is a Multiplicative Inverse Eigenvalue Problem,
a special case of the Parametrized Inverse Eigenvalue Problem we have already

encountered in section 5.4.1. More precisely, having that

Ly € C™™ and M € De(m), m=n—2, (5.19)
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the problem is what has been denoted as MIEP3, a variant of the MIEP.
Fortunately, a theorem for the existence of the solution of such a problem has
been yielded by Friedland (theorem 5.2) which states that the solution exist
if and only if all principal minors of L;; are non-null. Unfortunately, there is
no efficient algorithm to find such a solution (see [14]). In order to solve the
stabilization problem then, a different way should be found. As stated in [29],
Ballantine’s theorem ensure that the diagonal matrix can be computed one
element at a time and it can suggest a valuable algorithm for our purpose.

The existence of a stabilizing matrix has been stated by Ballantine too [5]
both for the real and the complex case. More precisely, Ballantine stated that
a complex diagonal matrix which makes eigenvalues positive or with positive
real parts could exist. This is what we need since, with such a matrix, matrix
(5.15) would have all stable eigenvalues.

Theorem 5.3 states the existence for the real case.

Theorem 5.3 (Real case). Let A be an m x m real matriz all of whose leading
principal minors are positive. Then there is an m x m positive diagonal matriz

M such that all the roots of M A are positive and simple.

Proof: In order to prove the statement induction on m is used. For m = 1 the
result is trivial, so suppose that m > 2 and that the result holds for matrices
of order m — 1. Let A be an m x m real matrix all of whose leading principal
minors are positive and let A; be its leading principal sub-matrix of order
m — 1. Then all the Ipm’s of A; are positive, so by our induction assertion
there is a positive diagonal matrix M; of order m — 1 such that all roots of
M Ay are positive and simple. Let d be a real number to be determined later

(but treated as a variable for the present). Let A be partitioned as follows:

A Ay
As Ay

A:

Y

where Ay is 1 x 1. Define an m x m diagonal matrix M (depending on d) by

M:Mlo.
0 d

Let M A = C(d), where now we emphasize the dependence on d. Then

conformable partition:

MlAl MlAQ

cO=1" 0
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so the non-zero roots of C(0) are just those of M;A;, hence are positive and
simple (and there are exactly m — 1 of them). C(0) also has a simple root at
zero. Thus for all sufficiently small d > 0 the real parts of the roots of C(d)
are (still) m distinct real numbers at least n — 1 of which are positive. (This
follows from the fact that the roots of C(d) are continuous functions of d.)
Choose some such d. Then the roots of C(d) are still real and simple (since
non-real roots must occur in conjugate pairs) and at least m — 1 of them are
positive. But the determinant of C'(d) is positive since those of A and M are,
so in fact all m roots of C'(d) are positive. This conclude the proof of the

induction step and hence of the theorem. O

Note that this same kind of argument can be used to prove that, when A
is an m X m complex matrix all of whose leading principal minors are non-
zero and also an open sector containing the positive real axis is prescribed,
this same kind of argument yields a complex m x m diagonal matrix M such
that all the roots of M A lie in the prescribed sector. Theorem 5.4 states the

existence for the complex case.

Theorem 5.4 (Ballantine(1970)). Let A be an m x m complex matriz all of
whose leading principal minors are non-zero. Then there is an m X m complex

diagonal matriz M such that all the eigenvalues of M A are positive and simple.

As described in the proof of theorem 5.3, the diagonal matrix M can be
found step by step computing the diagonal elements one at a time, both in the
real and the complex case. This leads to algorithm 5.1 which fundamentally
works searching for the diagonal elements of M and verifying whether the real
part of the eigenvalues is positive. The algorithm has been implemented in
two different manners. What distinguishes the two realizations is the way in
which eigenvalues are considered. In the first implementation the eigenvalues
are computed for each d; tried, while in the second implementation (sec. 5.6)
no eigenvalue is computed but a bounding for them is considered. Moreover,
in order to improve the algorithm convergence, different ways to pick elements
d; from W are tried.

5.5.1 Simulations

The first implementation of the Ballantine’s algorithm has been made by com-
puting the eigenvalues of the matrix Mj;; L1~y at each step ¢. The elements

d; to be tried has been picked from the set W in different ways.
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Algorithm 5.1 Stabilization by a complex Diagonal matrix

Require: Lff, dlm(Lff) =m
fori=1,...,mdo
for d; e W c C do
M[lwi} = diag(dl, ceey dz)
Api) = My Ly i)
o(Apmg) = {A1, - A}
if ®{\} >0, for k=1,...7 then
step to the next ¢
else
try a new d; € W
end if
end for
end for
return M = diag(dy,...,dy)

In figure (5.3) an example of search into VW can be seen. Elements d; are
chosen so that they belongs to straight lines parallel to the imaginary axis. In
fact, as soon as the real part d,; of the element is chosen, all the imaginary
parts that belong to the segment which points have real part d,; are picked,
and elements d; are tried.

Figures (5.4) and (5.5) show instead a circular set W. In the first, elements
d; are searched along the straight lines which cross the axis in their origin.
The direction can be modified so that the entire set VW is spanned. In figure
(5.5) instead, elements d; are chosen along circles centred in the origin of the
complex plane. Set W is completely spanned by varying the radius of the

circle.

Im

di = dp; + tdp,

Figure 5.3: Set W and search strategy for Ballantine’s-based algorithm. Elements
d; are chosen from segments parallel to the imaginary axis.

Let us have the sensing digraph and the formation basis depicted in figure

124



Im

di = drﬂ' + Ldmﬂ' = ’d1| et arg(d;)

Figure 5.4: Set W and search strategy for Ballantine’s-based algorithm. Elements
d; are chosen from segments with variable direction.

Im

di = dr,i + Ldmﬂ' = ’dz’ et arg(d;)

Figure 5.5: Set W and search strategy for Ballantine’s-based algorithm. Elements
d; are chosen from circles with variable radius.

(5.6). The corresponding Laplacian matrix is

[ 0 0 0
0 0 0
L=|-1—1 —1+.| 2 0 0 , (5.20)
-1+ 0 -2 1-3t 242
0 0 2t —1—¢v 1—1v |

and conditions L& = 0 and L1, = 0 hold. The eigenvalues of L are
o(L) ={0,0,2,2.2496 — 3.6, —0.2496 — 3.6}, (5.21)

where two of them are zero as expected. However, one of the eigenvalues of
the follower-follower Laplacian has negative real part so a diagonal matrix

must be found in order to condition that eigenvalue and have all eigenvalues
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Im

0
2
1 9 E=11—1
Re -2
3 2—2
4 5)

Figure 5.6: Formation basis and sensing digraph.

with positive real part. Matrix Ly has non-zero leading principal minors
so the Ballantine’s theorem holds without a relabelling being necessary. The

algorithm yields the following solution

05 0 0
Mi=1]10 01. 0
0 0 0.2

and the new eigenvalues of the conditioned follower-follower Laplacian matrix
MLy are

o(Lss) = {1,0.0564 — 0.04361, 0.4436 + 0.34361},

with all positive real parts as desired. This solution has been obtained by the
algorithm with the search model depicted in figure (5.3), that is the one which
search elements d; along straight lines parallel to the imaginary axis. If the

search method depicted in figure (5.4) is used, the following solution is found

0.5 0 0
M;= | 0 0.2+0.0405¢ 0
0 0 —0.2+0.4370¢

and the eigenvalues of MyL;s are

o(Lysy) = {1,0.0096 — 0.2954¢,0.5490 + 0.3729¢}.

The third search method, depicted in figure (5.5), yields the following so-
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lution instead

0.5 0 0
Mz = |0 0.0980 + 0.0199¢ 0 ;
0 0 0.0732 + 0.0682¢

and the new eigenvalues of MLy are
o(Lysr) =4{1,0.2974 — 0.2256¢,0.0015 — 0.0536¢}.

What we have obtained, is the proof that not only does Ballantine’s algorithm
ensure that a stabilizing matrix can be found computing its diagonal elements
one at a time, but also verifying the existence of different solutions to the
problem.

The main drawback on this approach is that Ballantine-based algorithm
does not converge as the matrix order increase. This is a problem that could
depend on factors such as the difficulties in computing exactly the eigenval-
ues of high order complex matrices and the finiteness of the set VW in which
elements d; are searched for. Moreover, it has been noted that many times a
change in the first diagonal element d; changes the entire solution or at least
some other diagonal elements d;, especially when d; is chosen out of the set W.
It could suggest that for matrices of higher order not only would be important
where the solution is searched but also from which point the search starts.
This fact could affect the convergence of the algorithm as well as the other
two aforementioned reasons. Unfortunately the positions of the solutions are
unpredictable and then there is not a rigorous way to choose where to search

for a solution and where to start from.

5.6 Bounding the Eigenvalues of a Complex Ma-
trix
Eigenvalues of a complex matrix can be bounded in several ways. Examples

of bounds can be seen in [36], [37], and [43] where circular and rectangular

regions containing the eigenvalues are defined for a complex square matrix.

In particular, in [36] the following bound is presented.

Rectangular Region Let A be a complex matrix of order n, with eigenvalues
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Im

R(A) _ o Sr(A) | g R(A) | o S() | g
. [ ]
Re
ROK(A) _, MrA4) g * ROK(A) o SCKA) 4 g

n n

Figure 5.7: Rectangular bound for the eigenvalues of a complex square matrix.

Aty ..oy Ap. Then all of the eigenvalues lie in the rectangle
Cx Cx
[?R(t;(/l)) —ay, §R(trn(A)) —l—ozj} " [\s(tl;l(A)) _8,, I(tr(A)) —l—ﬁj], (5.22)

Parameters a;; and f3; are

a; = (”;1) <(kj(A)+§R(tr(A2))) —w) (5.23)

n—1
- (5

for 7 = 1,2,3. The rectangular region then varies with j and is tighter

S
[NIES

N|=
[N

((k:j(A) + %(tr(AQ))) - w) BT

n

for k3(A) that has the following expression:

b = ( (jap - LY _ AL - AN TR

This bound describes, in the complex plane, a rectangular region which con-

tains all the eigenvalues of a complex square matrix. As it can be seen from

the equations above, a; and §; are positive quantities, and the rectangle is the
one in figure (5.7).

The main idea is to use algorithm 5.1 with the described bound instead

of computing the eigenvalues at each step. That is, at each step, element d;

must be found so that the rectangular region for matrix M;; L1~ is in the
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right half of the complex plane. To ensure that, it suffices to find elements d;

for the left side of the rectangle so that w — «y is positive. That is, the
conditions to be verified are:
R(tr(A
() (5.26)
n
R(tr(A
(tr(4) o . (5.27)
n

From condition (5.26) we obtain a bound for the set W. Suppose we are
at the step k of the algorithm and Ap;—y) has been already stabilized. Since

n > 0, we are interested in the sign of the trace of Aj;.4). Then, we can write

R(tr(A))

- > 0= nkr+dirlikr — dirlier > 0 = dirlier > dirler — kg, (5.28)

k—1

where nyr = Y dplpy is the real part of the trace of matrix Mpx—11Lsfp1~k—1)-
h=1

Depending on the sign of l.r, we have:

if likr > 0
l
dyr > dklﬂ - nk—R, (5.29)
likr  lkr
if lkkR <0
l
dpr < dyg 5L TR (5.30)
likr  lkkr
Consequently, we can write
. lrkr kR
mgn(lkkR)dkR > dk[ (531)

lerl  lkerl

Equation (5.31) is describing nothing more than a sub-plane bounded from a

straight line of the form
Y = drprmy — q, (5.32)

where y, = sign(lgxr)drr, Mmr = |ll::;| and ¢, = \Zﬁl' That sub-plane is our

set W. In figures (5.8) and (5.9) the two possible sub-planes are depicted.

In summary, elements d; can be found in the following way:
1. chose a range for dyj,

2. for each dj; compute

Uk = dgrmy — Qg
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sign(dkR)

/ dkl

T

Figure 5.8: Set W = {d;, € C : sign(lprr)drr > dpr ‘;W A8} and |zlf§;ffa| > 0.

kkR| -

sign(dkR)

N dir

T

Figure 5.9: Set W = {dy. € C : sign(lxr)dir > dirily — 2} and 5L < 0.
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that is the minimum value for g, such that drr sign(lgxr) Uk,
3. chose yr = yr + e, where e > 0 and let e varies in a positive range,
4. Compute dkR = Sign(lkkR)yk.

The algorithm has been tested in Matlab and the code is shown in appendix
G. Unfortunately the bound results to be too loose and the algorithm is not

able to converge.
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Chapter 6

Application to a Planar
Multi-Agent Formation

In chapter 3 we have seen how a multi-agent planar formation can be con-
trolled by simply laws that exploits the complex Laplacian of the sensing di-
graph which represents the formation its