
University of Cagliari

Faculty of Engineering

Department of Electronic Engineering

Algorithms for the Stabilization of a Leader-Follower formation

described via complex Laplacian

Candidate: Fabrizio Serpi Advisors: Prof. Alessandro Giua

Prof. Zhiyun Lin

October 24, 2012

Table of Content

Part I

• Introduction

Part II

• Algorithms and Simulations

Part III

• Application to a MAS formation

Introduction

Part I

Introduction

Introduction

Introduction

• Agents formation is represented by graphs.

• Complex-valued Laplacian-based formation control.

• Weighted directed graphs.

• Complex - valued Laplacian L.

• Leader-follower formation with 2 co-leaders.

• Single - integrator kinematics.

• Double - integrator dynamics.

Introduction

Introduction

• Agents can reach a planar formation if matrix −L is stable.

• If matrix −L is unstable then exist a complex diagonal matrix D such that −DL is

stable.

• Consider a group of m agents.

• 2 co-leaders labelled 1 and 2.

• m − 2 followers labelled from 3 to m.

• Leader nodes (1 and 2) do not have incoming edges. The Laplacian matrix takes

the following form

L =

 02×2 02×(m−2)

Llf Lff

 .

Algorithms and Simulations
P matrix

MIEP

Part II

Algorithms and Simulations

Algorithms and Simulations
P matrix

MIEP

Preliminaries

• (Ballantine , Friedland) Matrix A to be stabilized has to have all non-zero leading

principal minors.

• Given a group of agents, find:

1 a permutation matrix P such that L̂ff = PLff PT has all non-zero principal minors,
2 a complex diagonal matrix M such that the matrix −DL is stable, where D is:

• Single-Integrator Kinematics

D =

I2 0

0 M

 .
• Double-Integrator Dynamics

D =

I2 0

0 εM

 .

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Backtracking Design Technique

• The solution must be expressible as an n-tuple (x1, . . . , xn) where xi ∈ Si .

• Si is a finite set.

• The problem calls for finding vectors satisfying a criterion function P(x1, . . . , xn).

• The basic idea is to build up the same vector one component at a time.

• T (x1, x2, . . . , xi) generates values for xi+1 such that (x1, x2, . . . , xi+1) is also a

partial solution.

• Use bounding functions Bi to test whether the vector has any chance of success.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Backtracking Efficiency

• Algorithm has been implemented in a recursive way.

• Worst case time complexity for a backtracking algorithm.

1 number of possible solutions generated→ 2n

O(q(n)2n).

2 number possible solutions generated→ n!

O(p(n)n!).

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Modelling the Automorphism Problem

• The problem of finding P which solves equation L̂ff = PLff PT , can be solved by a

backtracking-based algorithm.

• Rewrite the automorphism equation:

L̂ff =



eT
i

eT
j

eT
h

...

eT
s


Lff

[
ei ej eh · · · es

]
.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Modelling the Automorphism Problem

• Find the right sequence of the vectors ei -th such that, the permutation matrix P

obtained, allows constraints over L̂ff to hold.

• Sets Si are sets of real numbers chosen through 1 to n, where n is the order of P:

Si = {1, . . . , n}, 1 ≤ i ≤ max-steps.

• For the current problem, the criterion function P(x1, . . . , xn) is to obtain a matrix L̂ff

with all non-zero leading principal minors.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Modelling the Automorphism Problem

• Determinant - based algorithm.

• Determinants of the leading principal minors are explicitly computed.

• Gauss - based algorithm.

• Principal minors are tested via the LU factorization of the entire matrix.

• Algorithms have been design to search for the first occurrence of a solution.

• Different ways to generate the partial solutions have been used.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Determinant-based Algorithm

• The overall complexity of the algorithm is

O (p(n)n!) = O
(

1
6

n4n!
)
.

• Two different T function have been used:

• Td1 supplies values xi in order to search for the nearest solution to the identity matrix.

• Td2 supplies values xi randomly picking them from the set Si until all values are tried.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Determinant-based Algorithm

0 5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

Matrix Order [n]

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

pmsd1 − I

pmsd2 − Random

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Gauss-based Algorithm

• Automorphism equation.

L̂ff = PLff P
T .

• The Gauss elimination method with total pivoting and the correspondent LU

factorization are

LU = PAQ.

• The automorphism problem can be seen as a LU factorization with total pivoting,

where Q = PT .

L̂ff = L̂gÛg = PLff P
T .

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Gauss-based Algorithm

• The equivalence of the two problems is ensured by the existence theorem for the
LU factorization.

• LU factorization exists for a matrix if all its leading principal minors are non-null.

• The highest number of tuples that can be generated is n!.

• The overall worst case complexity for the algorithm results to be

O (p(n)n!) = O
(

2
3

n3n!
)
.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Gauss-based Algorithm

• From a Gauss elimination point of view, we chose four different Ts. At call k ,

• Tg1 searches for the next non-null pivot element along the diagonal from position k to n;

• Tg2 searches randomly for a non-null pivot element along the sub-diagonal from

position k to n;

• Tg3 searches for the pivot element with maximum modulus along the diagonal, from

position k to n.

• Tg4 searches for the next non-null element along the diagonal from position n to k .

• function Tg5 behaves like one of the functions among Tg1, Tg2 and Tg3. The choice is

made randomly.

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Gauss-based Algorithm

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

Matrix Order [n]

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Tg1

Tg2

Tg3

Tg4

Tg5

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Comparing Algorithms - complex random Lff

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Matrix Order [n]

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Tg1

Tg2

Tg3

Tg4

Tg5

Td1

Td2

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Comparing Algorithms - complex random Lff

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

Matrix Order [n]

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Tg1

Td1

Algorithms and Simulations
P matrix

MIEP

Backtracking
Modelling the problem
Determinant-based
Gauss-based
Comparison

Comparing Algorithms - complex random singular matrices

2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Matrix Order [n]

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Tg1

Td1

Algorithms and Simulations
P matrix

MIEP
Ballantine

Multiplicative IEP

• The MAS is able to reach a planar formation if and only if the matrix −DL has all

stable eigenvalues.

• The problem of finding D is known as Multiplicative Inverse Eigenvalue Problem.

• Friedland (1975) proved the solvability for the MIEP.

• Ballantine (1970) proved the existence of a complex diagonal matrix M such that

complex matrix MA has eigenvalues with positive real parts.

Algorithms and Simulations
P matrix

MIEP
Ballantine

Ballantine’s Theorem

• The diagonal matrix can be computed one element at a time.

• Each diagonal element is chosen in order to modify the eigenvalues of a leading

principal minor.

• the process is iterative, from the smallest to the biggest leading principal minor.

• (Complex case) di belongs to a sector which contains the positive real axis.

• Depending on where and how the diagonal elements are searched for, the

algorithm supplies different solutions for the same problem.

Algorithms and Simulations
P matrix

MIEP
Ballantine

Ballantine’s Theorem

• W = {di : dr,i ∈ [dr,min, dr,max], dm,i ∈ [dm,min, dm,max]}

Re

Im

W

Algorithms and Simulations
P matrix

MIEP
Ballantine

Ballantine’s Theorem

• di = dr,i + ιdm,i = |di | eι arg(di)

Re

Im

arg(di)

W

Algorithms and Simulations
P matrix

MIEP
Ballantine

Ballantine’s Theorem

• di = dr,i + ιdm,i = |di | eι arg(di)

Re

Im

W

Application
Conclusion

Part III

Application to a MAS formation

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations

• Simulations for the single-integrator kinematics and the double-integrator

dynamics.

• Formation basis

ξ =



0

4

4− 4ι

2− 4ι

−4ι



Re

Im

v1 v2

v3
v4

v5

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - SIK - unforced case

−15 −10 −5 0 5 10

−5

0

5

10

15

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - SIK - unforced case

−4 −2 0 2 4 6 8

−4

−2

0

2

4

6

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - SIK - forced case

0 50 100 150 200 250 300 350 400 450 500

−100

−50

0

50

100

150

200

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - SIK - forced case

470 475 480 485 490 495 500 505

110

115

120

125

130

135

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - DID - unforced case

−8 −6 −4 −2 0 2

−4

−2

0

2

4

6

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - DID - unforced case

−6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - DID - forced case

−12000 −10000 −8000 −6000 −4000 −2000 0 2000 4000

−10000

−8000

−6000

−4000

−2000

0

2000

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - DID - forced case

−8 −6 −4 −2 0 2 4 6 8 10 12

−10

−8

−6

−4

−2

0

2

4

6

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Single - Integrator Kinematics
Double - Integrator Dynamics

Simulations - DID - forced case

−6291 −6290 −6289 −6288 −6287 −6286 −6285

−1.094

−1.094

−1.0939

−1.0939

−1.0938

−1.0938

−1.0937

−1.0937

−1.0936

−1.0936

x 10
4

Real axis

Im
a
g
in

a
ry

 a
x
is

v1 (l)

v2 (l)

v3 (f)

v4 (f)

v5 (f)

Application
Conclusion

Conclusion

• The algorithms discussed have their limits.

• High complexity for the worst case of the permutation matrix problem.

• The impossibility of choosing directly the eigenvalues in the MIEP.

• Still they can be used for further research.

• Practical applications of interest could be

• collision avoidance,

• limited sensing capability.

Application
Conclusion

THANK YOU!

	Introduction
	Introduction

	Algorithms and Simulations
	Algorithms and Simulations
	Permutation matrix
	Backtracking design
	Modelling the Automorphism Problem
	Determinant-based Algorithm
	Gauss-based Algorithm
	Comparing Algorithms

	Multiplicative IEP
	Ballantine's Theorem

	Application to a MAS formation
	Application
	Experiment I: SIK
	Experiment II: DID

	Conclusion

