

Controllo decentralizzato di reti di Petri mediante posti monitor

Maria Paola Ciullo

Università degli Studi di Cagliari

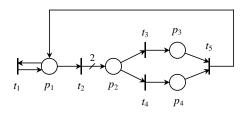
Tesi di Laurea Specialistica in Ingegneria Elettronica

Relatori: Prof. Alessandro Giua Ing. Carla Seatzu

15 Luglio 2009

Sommario

- Introduzione
- Approccio decentralizzato
- Implementazione
- Simulazioni
- Conclusioni


- Controllore decentralizzato → supervisori locali, ognuno controlla e osserva una parte del sistema
- Controllo decentralizzato e SED
- Obiettivi della tesi:
 - Determinazione di posti monitor decentralizzati per lo sviluppo di un controllore decentralizzato.
 - Studio e implementazione delle soluzioni

- Controllore decentralizzato → supervisori locali, ognuno controlla e osserva una parte del sistema
- Controllo decentralizzato e SED
- Objettivi della tesi:
 - Determinazione di posti monitor decentralizzati per lo sviluppo di un controllore decentralizzato
 - Studio e implementazione delle soluzioni

- Controllore decentralizzato → supervisori locali, ognuno controlla e osserva una parte del sistema
- Controllo decentralizzato e SED
- Obiettivi della tesi:
 - Determinazione di posti monitor decentralizzati per lo sviluppo di un controllore decentralizzato
 - Studio e implementazione delle soluzioni

- Controllore decentralizzato → supervisori locali, ognuno controlla e osserva una parte del sistema
- Controllo decentralizzato e SED
- Obiettivi della tesi:
 - Determinazione di posti monitor decentralizzati per lo sviluppo di un controllore decentralizzato
 - Studio e implementazione delle soluzioni

Rete di Petri

Una rete posto/transizione P/T è una struttura N = (P, T, Pre, Post) dove:

- \blacksquare P è un insieme di m posti rappresentati da cerchi
- lacktriangle T è un insieme di n transizioni rappresentate da barre
- $Pre: P \times T \rightarrow \mathbb{N}$ è la funzione di pre-incidenza che specifica gli archi diretti dai posti alle transizioni
- $Post: P \times T \rightarrow \mathbb{N}$ è la funzione di post-incidenza che specifica gli archi diretti dalle transizioni ai posti

Specifiche di mutua esclusione generalizzate

Specifiche statiche ⇒ marcature raggiungibili

Specifica statica
$$\Rightarrow$$
 GMEC \Rightarrow $w^TM \leq k \Rightarrow \mathcal{M}(w, k)$

GMEC
$$(w, k)$$
 dove $w \in \mathbb{Z}^m$ e $k \in \mathbb{Z}$

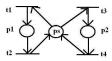
Più GMEC
$$(w_i, k_i)$$
 con $i = 1, ..., q \Rightarrow$ GMEC multipla (W, k)

$$W^T M \leq k \Rightarrow \mathcal{M}(W, k)$$

$$W = [w_1 \quad w_2 \quad \dots \quad w_q]^T \qquad e \qquad k = [k_1 \quad k_2 \quad \dots \quad k_q]^T$$

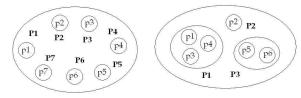
Posto monitor

Data una GMEC $(w, k) \Rightarrow$ controllore \Rightarrow posto monitor


Un monitor è un posto p_s aggiunto alla rete a ciclo aperto

L'aggiunta del posto monitor alla rete descrive un sistema a ciclo chiuso

PROCESSO + SUPERVISORE


GMEC multipla ightarrow q monitor, tanti quanti sono i vincoli della GMEC

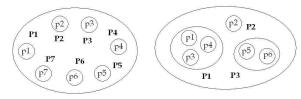
Sommario

- Introduzione
- Approccio decentralizzato
- Implementazione
- Simulazioni
- Conclusioni

Ipotesi

- Marcature $\Rightarrow R(N, M_0), \mathcal{M}(W, k)$
- Insieme P $\Rightarrow \nu$ sottoinsiemi P_i per $i = 1, ..., \nu$

Problema


- Data una rete P/T $\langle N, M_0 \rangle$
- Data una GMEC (W, k)
- Data una partizione di posti

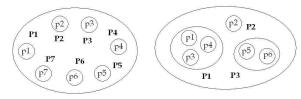
Obiettivo: realizzare ν controllori decentralizzati

Soluzione: Approccio A e Approccio B

Ipotesi

- Marcature $\Rightarrow R(N, M_0), \mathcal{M}(W, k)$
- Insieme P $\Rightarrow \nu$ sottoinsiemi P_i per $i = 1, ..., \nu$

Problema

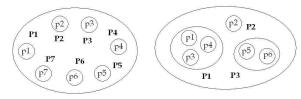

- Data una rete P/T $\langle N, M_0 \rangle$
- Data una GMEC (W, k)
- Data una partizione di posti

Obiettivo: realizzare u controllori decentralizzat

Soluzione: Approccio A e Approccio B

Ipotesi

- Marcature $\Rightarrow R(N, M_0), \mathcal{M}(W, k)$
- Insieme P $\Rightarrow \nu$ sottoinsiemi P_i per $i = 1, ..., \nu$


Problema

- Data una rete P/T $\langle N, M_0 \rangle$
- Data una GMEC (W, k)
- Data una partizione di posti

Obiettivo: realizzare ν controllori decentralizzati

Ipotesi

- Marcature $\Rightarrow R(N, M_0), \mathcal{M}(W, k)$
- Insieme P $\Rightarrow \nu$ sottoinsiemi P_i per $i = 1, ..., \nu$

Problema

- Data una rete P/T $\langle N, M_0 \rangle$
- Data una GMEC (W, k)
- Data una partizione di posti

Obiettivo: realizzare ν controllori decentralizzati

Soluzione: Approccio A e Approccio B

Massimizzare la cardinalità dell'insieme di marcature legali per il controllo decentralizzato

Ipotesi

- **1** i pesi delle GMEC possono assumere solo valori positivi $\rightarrow W \geq 0$, $k \geq 0$
- 2 insieme di posti singleton

Soluzione

Tecniche di programmazione non lineare intera

Massimizzare la cardinalità dell'insieme di marcature legali per il controllo decentralizzato

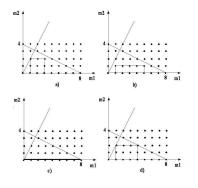
Ipotesi

- **1** i pesi delle GMEC possono assumere solo valori positivi $\rightarrow W \geq 0$, $k \geq 0$
- 2 insieme di posti singleton

Soluzione

Tecniche di programmazione non lineare intera

Massimizzare la cardinalità dell'insieme di marcature legali per il controllo decentralizzato


Ipotesi

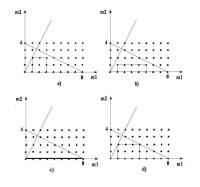
- **1** i pesi delle GMEC possono assumere solo valori positivi $\rightarrow W \geq 0$, $k \geq 0$
- 2 insieme di posti singleton

Soluzione

Tecniche di programmazione non lineare intera

Determinare un insieme di marcature legali decentralizzate massimale e in grado di garantire fairness

- Massimalità ⇒ nessun aumento senza violare i vincoli
- Fairness ⇒ caratteristiche simili


Ipotes

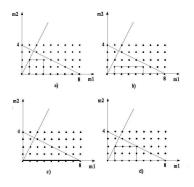
■ Rilassa i vincoli imposti

Soluzione

- Problema di programmazione lineare intera
- 2 Applicazione di algoritmi iterativ

Determinare un insieme di marcature legali decentralizzate massimale e in grado di garantire fairness

- Massimalità ⇒ nessun aumento senza violare i vincoli
- Fairness ⇒ caratteristiche simili


Ipotesi

Rilassa i vincoli imposti

Soluzione

- Problema di programmazione lineare intera
- 2 Applicazione di algoritmi iterativ

Determinare un insieme di marcature legali decentralizzate massimale e in grado di garantire fairness

- Massimalità ⇒ nessun aumento senza violare i vincoli
- Fairness ⇒ caratteristiche simili

Ipotesi

■ Rilassa i vincoli imposti

Soluzione

- 1 Problema di programmazione lineare intera
- 2 Applicazione di algoritmi iterativi

- 1 Determinare un punto $c \in \mathcal{M}(W,k) \Rightarrow$ Problema di Programmazione Lineare Intera
- 2 Definire un nuovo insieme di GMEC (\tilde{W}, \tilde{k}) traslate nel punto $c \Rightarrow$ operazioni matriciali
- f B Determinare un box intero massimale interno in $\mathcal{M}(ilde{W}, ilde{k})\Rightarrow {\sf Algoritmo\ HMB}$
- 1 Determinare le GMEC decentralizate nel sistema originale $\Rightarrow m = m' + c$

- Determinare un punto $c \in \mathcal{M}(W,k) \Rightarrow$ Problema di Programmazione Lineare Intera
- 2 Definire un nuovo insieme di GMEC (\tilde{W}, \tilde{k}) traslate nel punto $c \Rightarrow$ operazioni matriciali
- f B Determinare un box intero massimale interno in $\mathcal{M}(ilde{W}, ilde{k})\Rightarrow \mathsf{Algoritmo}\;\mathsf{HB}\;\mathsf{B}$ Algoritmo f HMB
- 4 Determinare le GMEC decentralizate nel sistema originale $\Rightarrow m = m' + c$

- Determinare un punto $c \in \mathcal{M}(W,k) \Rightarrow$ Problema di Programmazione Lineare Intera
- **2** Definire un nuovo insieme di GMEC (\tilde{W}, \tilde{k}) traslate nel punto $c \Rightarrow$ operazioni matriciali
- f B Determinare un box intero massimale interno in $\mathcal{M}(ilde{W}, ilde{k})\Rightarrow \mathsf{Algoritmo}\;\mathsf{HB}\;\mathsf{B}$ Algoritmo f HMB
- 4 Determinare le GMEC decentralizate nel sistema originale $\Rightarrow m = m' + c$

- Determinare un punto $c \in \mathcal{M}(W,k) \Rightarrow$ Problema di Programmazione Lineare Intera
- **2** Definire un nuovo insieme di GMEC (\tilde{W}, \tilde{k}) traslate nel punto $c \Rightarrow$ operazioni matriciali
- f B Determinare un box intero massimale interno in $\mathcal{M}(ilde{W}, ilde{k})\Rightarrow \mathsf{Algoritmo}\;\mathsf{HB}\;\mathsf{B}$ Algoritmo f HMB
- 4 Determinare le GMEC decentralizate nel sistema originale $\Rightarrow m = m' + c$

- Determinare un punto $c \in \mathcal{M}(W,k) \Rightarrow$ Problema di Programmazione Lineare Intera
- 2 Definire un nuovo insieme di GMEC (\tilde{W}, \tilde{k}) traslate nel punto $c \Rightarrow$ operazioni matriciali
- f B Determinare un box intero massimale interno in $\mathcal{M}(ilde{W}, ilde{k})\Rightarrow \mathsf{Algoritmo}\;\mathsf{HB}\;\mathsf{B}$ Algoritmo f HMB
- **4** Determinare le GMEC decentralizate nel sistema originale $\Rightarrow m = m' + c$

Algoritmo HB

Algoritmo HB (Hypercube Bound)

- A ogni step si assegna il lower bound o l'upper bound a un posto appartenente al supporto della GMEC corrente, il cui valore coincide con il lato dell'ipercubo corrente
- La soluzione trovata con l'Algoritmo HB fornisce un box interno massimale quando la sequenza di τ è strettamente crescente, tranne nella coda in cui la sequenza può essere costante, ma non viene garantita la massimalità del box se due o più valori di τ che non si trovano in coda sono uguali
- $\blacksquare \tau$ rappresenta metà lato dell'ipercubo

Se
$$au_1 < au_2 < \dots < au_{\mu} = au_{\mu+1} = \dots = au_{2m}$$

 $\mathcal{B}(I^*, u^*)$ è un box interno massimale incluso in $\mathcal{M}(\tilde{W}, \tilde{k})$

Algoritmo HMB e caso non singleton

Algoritmo HMB (Hypercube Maximal Bound)

• Si cercano tutte le variabili alle quali corrisponde lo stesso upper bound che differisce da τ_m e si verifica se i loro upper bound o lower bound possano essere rispettivamente aumentato o diminuito ulteriormente

Caso non singleton

Se
$$\mathcal{B}(I^*, u^*)$$
 è un box intero massimale

Se l'insieme dei posti P è partizionato in u sottoinsiemi di posti p_i

si definiscono $q \times \nu$ GMEC decentralizzate

Sommario

- Introduzione
- Approccio decentralizzato
- Implementazione
- Simulazioni
- Conclusioni

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- 2 Algoritmo HME
- Caso non singleton

- I Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- \square Marcature legali $\mathcal{M}(W,k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- 2 Algoritmo HMB
- Caso non singleton

- **1** Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- \square Marcature legali $\mathcal{M}(W,k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- Algoritmo HMB
- Caso non singleton

- 1 Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- 2 Marcature legali $\mathcal{M}(W, k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- Algoritmo HMB
- Caso non singleton

- **1** Marcature legali $\mathcal{M}(W, k)$ nell'ipercube
- \square Marcature legali $\mathcal{M}(W,k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- Algoritmo HMB
- Caso non singleton

- 1 Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- \square Marcature legali $\mathcal{M}(W,k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- Algoritmo HMB
- Caso non singleton

- **1** Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- 2 Marcature legali $\mathcal{M}(W,k)$ interne alla GMEC

Strumenti utilizzati: Matlab e glpkmex

- Algoritmo HB
- 2 Algoritmo HMB
- Caso non singleton

- 1 Marcature legali $\mathcal{M}(W, k)$ nell'ipercubo
- 2 Marcature legali $\mathcal{M}(W, k)$ interne alla GMEC

Sommario

- Introduzione
- Approccio decentralizzato
- Implementazione
- Simulazioni
- Conclusioni

Testare le funzionalità del programma e valutare i tempi di elaborazione

- 1 2 casi didattici → testare il software
- 2 casi con significato fisico → aumentare la complessità
- 3 1 caso parametrico \rightarrow valutare i temp

Validazione della soluzione ightarrow conteggio delle marcature

Testare le funzionalità del programma e valutare i tempi di elaborazione

- 1 2 casi didattici → testare il software
- 2 2 casi con significato físico → aumentare la complessità
- \blacksquare 1 caso parametrico \rightarrow valutare i tempi

 $\mathsf{Validazione}$ della soluzione o conteggio delle marcature

Testare le funzionalità del programma e valutare i tempi di elaborazione

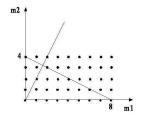
- 1 2 casi didattici → testare il software
- 2 2 casi con significato fisico → aumentare la complessità
- \blacksquare 1 caso parametrico \rightarrow valutare i tempi

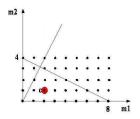
Validazione della soluzione → conteggio delle marcature

Testare le funzionalità del programma e valutare i tempi di elaborazione

- 1 2 casi didattici → testare il software
- 2 2 casi con significato fisico → aumentare la complessità
- 3 1 caso parametrico → valutare i tempi

Validazione della soluzione ightarrow conteggio delle marcature

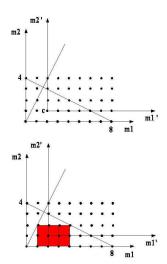

Testare le funzionalità del programma e valutare i tempi di elaborazione


- 1 2 casi didattici → testare il software
- 2 2 casi con significato fisico → aumentare la complessità
- $\mathbf{3}$ 1 caso parametrico \rightarrow valutare i tempi

Validazione della soluzione → conteggio delle marcature

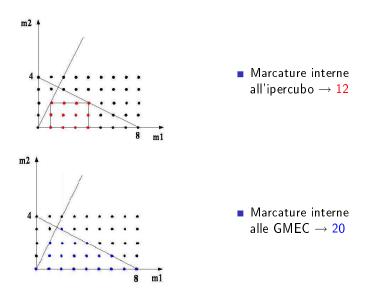
Caso didattico

$$\mathcal{M}(W,k) = \{ m \in \mathbb{N}^2 \mid m(p_1) + 2m(p_2) \le 8, \\ -2m(p_1) + m(p_2) \le 0 \}$$



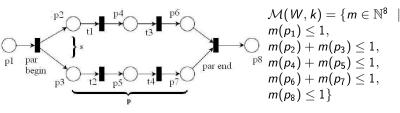
 Si rappresentano i vincoli espressi dalle GMEC e si determina M(W, k)

■ Risolvendo un LIPP si determina un punto $c \in \mathcal{M}(W, k)$


Caso didattico

 Si fissa un nuovo sistema d'assi con centro in c

 Con gli Algoritmi HB e HMB si determinano i boundaries dell'ipercubo


Marcature

Caso parametrico

Rete costituita da:

- transizione par begin
- struttura di sequenzialità
- transizione par end

Rete con s=2 p=3

Casi analizzati:

$$s = 2, s = 6, s = 9$$

$$p = 2, p = 3, p = 5$$

Tempi di elaborazione

I tempi sono espressi in secondi

$p \setminus s$	2	6	9
2	0.272335	0.839425	0.997365
3	0.329425	0.887091	1.873017
5	0.603750	1.950972	4.779424

Tempo di elaborazione per	
l'esecuzione dell'Algoritmo	HMB

$p \setminus s$	2	6	9
2	0.572660	1.571516	1.970390
3	0.698623	1.934852	3.636547
5	1.321578	3.924730	9.786135

 Tempo di esecuzione del caso non singleton

$p \setminus s$	2	6	9
2	0.765561	1.725765	2.375036
3	0.849274	2.329903	3.874122
5	1.421067	4.295428	10.41877

 Tempo di esecuzione per il conteggio delle marcature

Sommario

- Introduzione
- Approccio decentralizzato
- Implementazione
- Simulazioni
- Conclusioni

Contributi della tesi

- Lo sviluppo di un software in Matlab che permette di eseguire gli algoritm trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema d programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzion
- 4 Una serie di simulazioni che dimostrano la validità dell'approccio

- 1 Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzion
- Una serie di simulazioni che dimostrano la validità dell'approccio

- Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzion
- 4 Una serie di simulazioni che dimostrano la validità dell'approccio

- Stabilire dei criteri per la ripartizione dei posti della rete
- 2 Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzione
- Una serie di simulazioni che dimostrano la validità dell'approccio

- Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- La realizzazione di una funzione in grado di valutare la bontà della soluzione
- Una serie di simulazioni che dimostrano la validità dell'approccio

- Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- La realizzazione di una funzione in grado di valutare la bontà della soluzione
- Una serie di simulazioni che dimostrano la validità dell'approccio

- Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- La realizzazione di una funzione in grado di valutare la bontà della soluzione
- 4 Una serie di simulazioni che dimostrano la validità dell'approccio

- 1 Stabilire dei criteri per la ripartizione dei posti della rete
- Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzione
- 4 Una serie di simulazioni che dimostrano la validità dell'approccio

- 1 Stabilire dei criteri per la ripartizione dei posti della rete
- 2 Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Contributi della tesi

- 1 Lo sviluppo di un software in Matlab che permette di eseguire gli algoritmi trattati, con alcuni miglioramenti
- 2 Una modifica del campo di definizione delle variabili del problema di programmazione lineare
- 3 La realizzazione di una funzione in grado di valutare la bontà della soluzione
- 4 Una serie di simulazioni che dimostrano la validità dell'approccio

- 1 Stabilire dei criteri per la ripartizione dei posti della rete
- 2 Stabilire dei criteri che permettano di vincolare l'insieme di GMEC al fine di non avere un problema illimitato
- 3 Conoscere i legami che si creano quando l'applicazione degli algoritmi avviene conoscendo la rete di Petri

Grazie per l'attenzione