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Analysis of grafcet models by automatic generation of the equivalent timed automaton 

Abstract 
The objective of this thesis is to give a contribute to solve the problem of formal verification on 
GRAFCET models with time requirements. 
GRAFCET is a standardized graphical model used to describe the behavior of sequential logic systems. 
Currently, all solutions offered to engineers to perform formal verification on GRAFCET models are 
based on simulation techniques. However, the generation of simulation sequences is an error-prone, 
tedious and time-consuming task. This explains why formal verification is today an active research area. 
Interesting results are now available for timed automata formal verification. For this class of models, the 
tool UPPAAL allows to verify automatically timed properties. 
With this work we allow to take advantage of results obtained on timed automata and to apply them to 
perform formal verification of GRAFCET models. In order to apply this technique a translation algorithm 
that allows to express automatically the behavior of a GRAFCET model with a timed automaton has been 
carried out. 

Sommario 
L’obiettivo di questa tesi è dare un contributo nel risolvere il problema della verifica formale di modelli 
descritti in termini di GRAFCET con vincoli temporali. 
Il GRAFCET è un modello grafico standardizzato usato per descrivere il comportamento di sistemi logici 
sequenziali. Attualmente, tutte le soluzioni offerte agli ingegneri per effettuare la verifica formale di 
modelli GRAFCET sono basate su tecniche di simulazione. In ogni caso la generazione di sequenze per la 
simulazione è un processo incline all’errore, noioso e dispendioso in termini di tempo. Questo spiega 
perché la verifica formale al giorno d’oggi è un’attiva area di ricerca. Attualmente sono disponibili 
interessanti risultati riguardo la verifica formale degli automi temporizzati. Per questa classe di modelli 
l’applicazione UPPAAL permette di verificare automaticamente le proprietà temporali. 
Grazie ai risultati di questo lavoro, è possibile sfruttare i vantaggi ottenuti sugli automi temporizzati e 
applicarli per effettuare la verifica formale di modelli GRAFCET. Per utilizzare queste tecniche, è stato 
realizzato un algoritmo che consente di esprimere in modo automatico il comportamento di un modello 
GRAFCET in termini di automa temporizzato. 
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Contents 
In this chapter we introduce the 

objectives of this work. The problem of 
grafcet models formal verification is 
presented with the support of an example that 
we’ll use in the entire document. 

In the second part a brief bibliography 
about previous research works on this field is 
presented, then the approach used in this 
work is introduced. 
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1.1 Objective of this work 

The objective of this work is to contribute to the formal verification of GRAFCET models 

with time requirements. 

GRAFCET is a standardized graphical model used to describe the behavior of sequential 

logic systems [IEC 60848]. This language is widely used in several industrial domains, like 

railway transport, electrical power production and manufacturing industry, to specify the 

expected behavior of logic controllers. Defined in France at the end of  ‘70s, it was standardized 

in France at the beginning of the ‘80s, and at the international level in 1988. Since this date, 

several extensions have been proposed to enhance the modeling possibilities of this model and 

they are included in the latest version of the standard [IEC 60848]. 

Currently, all solutions offered to engineers to verify if a GRAFCET model is correct are 

based on simulation techniques. However, the generation of simulation sequences is an error-

prone, tedious and time-consuming task. This explains why the formal verification is today an 

active research area. Interesting results are now available for the formal verification of timed 

automata. For this class of models, the tool UPPAAL permits to verify automatically timed 

properties. 

So our idea is to take advantage of results obtained on timed automata and to apply them to 

perform formal verification of GRAFCET models. In order to apply this technique it is necessary 

to have a method that allows to express automatically the behavior of a GRAFCET model with a 

timed automaton. The objective of this work is to develop this method. 

1.2 Problem presentation 

The formal verification problem is the problem of verifying if a system satisfies to required 

properties. Mainly, there are two classes of specify: 

- safeness specifies, that assure that no anomalous condition can be reached; 

- liveness specifies, that assure that a required condition can be reached. 

To perform a formal verification of GRAFCET based models is a very complex operation as 

we will illustrate with the support of an example. Let us consider the grafcet in figure 1.2.1. 
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This model is composed of five grafcet charts that describe the system behavior. A parallel 

behavior is implemented by the presence of five charts and there exist also several 

synchronizations as several transitions that can be fired simultaneously. The grafcet is 

characterized by five input variables (pump1_fault, pump2_fault, blockage, low debit, high debit) 

and eight output variables (Reversal, pump1, pump2, upstr pump1, upstr pump2, dwnstr pump1, 

dnwstr pump2, out). We have transition conditions that depend on input conditions (for example 

transition t10_11 in grafcet FMP1), transition conditions that depend on step activation (for 

example transition t50_51 in grafcet Func) and transition conditions that depend on step activation 

time (for example transition t51_53 in grafcet Func).  
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Figure 1.2.1 Water distribution grafcet control model 
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In order to present the problem of analysis of a GRAFCET1 based model behavior let us 

consider a starting situation (a situation is a set of active steps) and an input configuration. We 

will calculate the evolution of the GRAFCET model and the reached situation. 

Let us consider the following starting situation: {12,20,32,41,53}. The set of enabled 

transitions (a transition is said to be enabled if all its upstream steps are activated) from this 

situation is: {t12_11,t12_10,t20_21,t20_22,t32_31,t41_40,t53_50}. 

Let suppose that input configuration is: pump1fault = 1, pump2fault = 0, blockage = 0, low 

debit = 1, high debit = 0. We suppose also that step 32 is active less than 24 hours. 

The set of firing transitions is {t12_11} and the reached situation is {11,20,32,41,53}. But the 

analysis is not completed yet as it still exists firing transitions. 

The set of transitions that can be fired from {11,20,32,41,53} is {t20_22,t53_50} so we have 

another evolution that leads to situation {11,22,32,41,50} and we have to repeat the same 

analysis. 

From situation {11,22,32,41,50} the set of transitions that can be fired is {t41_40,t50_52} so we 

have another evolution that leads to situation {11,22,32,40,52}. As step 52 is just activated, the 

set of transitions that can be fired is empty. This situation is a stable situation. We can evaluate 

the set of emitted outputs: {upstream pump2,out}. 

This simple simulation shows how the behavior of a GRAFCET model could be complex. It 

is obvious that a manual analysis is impossible and engineers must be assisted. 

1.3 Previous works 

Several works have been developed to be able to express the behavior of a timed GRAFCET 

model with timed automata [L'Her 01], [Bauer 04]. 

In [L'Her 01], authors propose a method to translate a GRAFCET into a timed  automaton in 

order to use the model-checker Kronos to perform formal verification. In this approach, a 

location of a timed automaton represents a possible situation of the grafcet, a specific 

                                                 
 
 
 
 
 

1 A detailed description of GRAFCET formalism is given in chapter 2 
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combination of the input values and a specific combination of the temporizations. 

From a technical point of view, this approach could be use only for very small grafcets due to 

the combinatorial explosion. For the grafcet on figure 1.2.1, we have: 32 different situations, 5 

inputs, then 32 (25) different combinations of the input values, 4 temporizations, then potentially 

16 (24) different combinations of temporizations. 

The size of the generated timed automaton could be very important. Potentially, it could have 

16384 different locations. For each location, it is also necessary to represent time evolutions or 

input changes. In our case, we have for each location, 31 or 32 transitions. 

In [Bauer 04], authors propose a method to translate a SFC program into a timed  automaton 

in order to use the model-checker Uppaal to perform formal verification. In this approach, a 

timed automaton is associated for each SFC without parallelism structure. For SFC with 

parallelism structure, several automata are associated. To take into account synchronization 

among SFC nets by step activation, authors introduce a Boolean variable in timed automata for 

each step. The value of this variable is fixed by the corresponding automaton. 

This method could not be used directly for GRAFCET models as the behavior of a 

GRAFCET model and the behavior of a SFC model are different. For example, in a SFC, it is 

impossible to fire simultaneously two enabled transitions from the same step. In GRAFCET 

models, this evolution is possible.  

The method proposed in [Bauer 04] is based on this characteristics. To be used for 

GRAFCET models, it is necessary to verify, before the translation step, that it is impossible to 

fire simultaneously two enabled transitions from the same step. For the grafcet on figure 1.2.1, 

this property is not verified for transitions t50_51 and t50_52. This grafcet could not be verified by 

this method. 

Therefore a specific method is necessary. 

1.4 Proposed method 

The proposed method consists to calculate the whole space of state of the grafcet before the 

translation into a timed automaton. During this stage, all the specificities of GRAFCET evolution 

are taken into account, such as simultaneous firing of transitions or research of stability. 

The work presented in this master thesis is an extension of a previous work [Roussel 94]  

developed by Jean-Marc Roussel for not-timed grafcet at the LURPA laboratory (ENS - Cachan). 

In his work he gives an important contribution to solve the problem of grafcet analysis first by 
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improving GRAFCET theoretic foundation as stability notion and by introducing an extended 

Boolean algebra (also dealt in [Roussel, Lesage 93]) and then by introducing a particular state 

machine called Graph of Accessible Situations. In this state machine each state represents a 

grafcet situation and each evolution represents a grafcet evolution. It is important to underline 

that only events that cause grafcet evolutions are taken into account and this is a key aspect since 

it leads to avoid combinatorial explosion. 

In our work, in a first step we extend the concept of grafcet situation to the concept of grafcet 

configuration by integration of time constraints at a logic level, then, in a second step, time at 

logic level is extended to a physic level in order to obtain a timed automaton representation. 

The first step allows to individuate all potentially reachable grafcet configurations and 

evolutions, then by analysis of timed automaton all physical timing constraints are taken into 

account to individuate which configurations are actually reachable.  

1.5 Outline 

In chapter 2 grafcet formalism is introduced with base elements and classical programming 

structures, a particular attention on stability problem is given. In chapter 3 a particular state 

machine (the Graph of Accessible Stable Configurations) used for grafcet representation and 

analysis is introduced. In chapter 4 after a brief presentation of theory notions about timed 

transition systems and timed automaton formalism, an algorithm that allows the translation of the 

Graph of Accessible Stable Configurations into a timed automaton is shown. In chapter 5 a case 

study of a complex grafcet analysis by using a python tool is presented with obtained results. 
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Chapter 2  

The GRAFCET 
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Contents 
In the first part of this chapter we present 

the GRAFCET formalism. All main aspects 
are introduced including action assignation 
and timed behaviors. 

The second part is devoted to the 
presentation of GRAFCET based models 
stability analysis problem, in particular a 
stability criterion is given. 
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2.1 Introduction 

In 1975, in France, a commission composed of university and industrial engineers with the 

aim of carry out the means to describe the complex systems of industrial automation was 

established. The nature of the systems to be described fell into the category of discrete event 

systems, systems for which discrete space is not continuous, and whose evolution depends on the 

occurrence or otherwise of special events. The result of commission work was the definition of 

the GRAphe Fonctionnel de Commande Etapes-Transitions, or GRAFCET, which was adopted 

by the International Electrotechnical Commission in 1988, in the International Standard No 848, 

as a language for describing systems of industrial automation. The GRAFCET language, 

described by this standard, has served as foundation of SFC language of IEC standard 61131-3, 

but the syntax and the semantics defined by each of the two standards are nevertheless distinct 

because their scopes are different: GRAFCET is a specification language and SFC is a 

programming language. This standard is mainly for people (design engineers, realization 

engineers, maintenance engineers, etc) who need to specify the behavior of a system (control-

command of automatic machine, safety component, etc). This specification language should also 

serve as a communication means between designers and users of automated systems. In fact the 

implementation of an automated system requires, in particular, a description relating cause and 

effect. To do that, the logical aspect of the desired behavior of the system musts be described. 

The sequential part of the system, which is accessed via Boolean input and output variables, is 

the logical aspect of this physical system. The behavior indicates the way in which the output 

variables depend on the input variables (see figure 2.1.1). The objective of the GRAFCET is to 

specify the behavior of the sequential part of the systems. 

In this chapter we will present the main notions about GRAFCET. All information is taken 

from [IEC 60848], [J.Perrin, F.Binet 06] and [P.Chiacchio 04]. 
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Figure 2.1.1  A grafcet as sequential part of a system 

2.2 Terms and definitions 

(In alphabetic order) 

- action: language element associated with a step indicating an activity to be performed on 
output variables; 

- chart, graph: graphical presentation describing the behavior of a system; 

- directed link: language element indicating the evolution paths between steps by 
connecting steps to transitions and transitions to steps; 

- grafcet chart: function chart using GRAFCET; 

- interpretation : part of the GRAFCET enabling to link: 

- the input variables and the structure, by the means of the transition-condition; 

- the output variables and the structure, by the means of the actions; 
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- situation: name of the state of the system described by grafcet and characterized by the 
active steps at a given instant; 

- step: language element used for the definition of the sequential part of the system; 

- transient evolution: evolution characterized by the clearing of several successive 
transitions on the occurrence of a single input event; 

- transition : language element indicating a possible evolution of the activity between two or 
more steps; 

- transition condition: language element associated with a transition indicating the result of 
a Boolean expression. 

2.3 Structure and interpretation 

The GRAFCET is used for the designing of grafcet charts to provide a graphical and 

synthetic representation of sequential system behavior. The representation distinguishes: 

- the structure, which allows possible evolutions between the situations to be described; 

- the interpretation , which enables the relationship between input, output variables and the 
structure (evolution, assignation and allocation rules are necessary to achieve this 
interpretation). 

The structure comprises the following basic items: 

- step: a step is either active or inactive, the set of active steps of a grafcet chart at any given 
instant represents the situation of this grafcet at this instant. We represent graphically a 
step with a rectangle and we distinguish active steps from inactive steps by a spot. 

- transition : a transition indicates that an evolution of the activity between two or more 
steps may evolve. This evolution is realized by the clearing of the transition. We represent 
graphically a transition by a transversal line. 

- directed link: a directed link connects one step to a transition, or a transition to one steps. 

The following elements are used for the interpretation: 

- transition-condition : associated with each transition, the transition-condition is a logical 
expression which is true or false and which is composed of input variables and/or internal 
variables. 
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- action: the action indicates, in a rectangle, what shall be done on the output variable, either 
by assignation (continuous action), or allocation (stored action). 

Figure 2.3.1 shows the main grafcet elements. 
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Figure 2.3.1 Structure and interpretation elements used in a grafcet chart 
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2.4 GRAFCET rules 

2.4.1 Syntax rule 

Step transition and transition step alternation shall always be respected in all 

forms of sequence. 

Consequences: 

- two steps shall never be connected directly by a directed link; 

- the directed link shall only connect a step to a transition or a transition to a step. 

2.4.2 Evolution rules 

As each situation is characterized by the set of active steps at a given instant, the GRAFCET 

evolution rules only affect the application, on the steps, of the evolution principle between the 

situations of the sequential part of the system. 

Rule 1: The initial situation, chosen by the designer, is the situation at the 

initial time. 

The initial situation is the situation at the initial time. Therefore it is described by the set of 

steps active at this time. The choice of the situation at the initial time depends on the 

methodology relating to the type of sequential part of the considered system. Graphically, the 

initial steps are indicated with a double rectangle. 

Rule 2: A transition is said to be enabled when all immediately preceding steps 

linked to this transition are active. The clearing of a transition occurs when the 

transition is enabled and its associated transition-condition is true. 
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Rule 3: The clearing of a transition causes simultaneously the activation of all 

the immediate succeeding steps and the deactivation of all the immediate 

preceding steps. 

 

Rule 4: Several transitions which can be fired (cleared) simultaneously are 

simultaneously fired. 

The evolution between two active situations implies that no other intermediate situation is 

possible, the change from one representation of the situation by a set of steps to another 

representation is instantaneous. 

Rule 5: If during the operation, an active step is simultaneously activated and 

deactivated, it remains active. 

If a step is included in the description of the preceding situation and of the following one, it 

can only, therefore, remain active. 

2.5 Input events and internal events 

2.5.1 Input events 

Evolution rules show that only a change in the values of the input variables may cause the 

evolution of the grafcet. This change called "input event" shall be defined by the preceding value 

and the succeeding value of all the input variables for characterizing this single event. In practice, 
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a set of input events is specified only by the state change characterized (rising edge1 or falling 

edge2) by one or several Boolean input variables. We can say that "the event occurs" at the date 

of the change of state of the input variables which characterize it. The input event specification is 

implemented by a logical expression of one or several characteristic variables, usually in a 

transition-condition. It may also directly specify an internal event but more rarely. 

2.5.2 Internal events 

Only certain input events could occur from a given situation. The connection between a 

situation and input event, which may occur from this situation, is called internal event. This 

notion is mainly used by the designer to condition an output allocation to a set of internal events. 

The description of a set of internal events is performed by one of the following ways: 

- step activation: the step activation describes the set of internal events each of which has 
this step activation as a consequence. 

- step deactivation: the step deactivation describes the set of the internal events which have, 
for each one, this step deactivation as consequence. 

2.6 Output modes 

The actions enable links to establish the connection between the evolution of the grafcet chart 

and the outputs. Two output modes, continuous mode or stored mode, describe how the outputs 

depend on the evolution and on the system inputs. 

2.6.1 Continuous mode (assignation on state) 

In the continuous mode, the association of an action with a step indicates that an output 

                                                 
 
 
 
 
 

1 The rising edge of a logical variable, indicated by the sign "↑" in front of a Boolean variable, indicates that this 
rising edge is only true for the change from value 0 to value 1 of the concerned variable. 

2 The falling edge of a logical variable noted by the sign "↓" in front of a Boolean variable, indicates that this falling 
edge is only true for the change from value 1 to value 0 of the concerned variable. 
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variable has a true value if the step is active and if the assignation condition is verified. The 

assignation condition is a logical expression of the input variables and/or the internal ones. If one 

of the conditions is not met and provided that no other action relating to the same output meets 

the conditions, the concerned output variable takes the false value. Assignation refers to imposing 

the value of the output variables (true or false). The set of local assignations (relating to the active 

steps at a given instant) defines the assignation of all the output variables for this situation. 

Assignation rule. For a given situation, the value of the outputs relating to the 

continuous actions is assigned: 

to the true value, for each output relating to the actions associated with active 

steps and for which the assignation conditions are verified; 

to the false value, for the other outputs (which are not assigned to the true 

value). 

Figure 2.6.1 shows an example of an action assigned in continuous mode. 

  
Figure 2.6.1 Example of continuous mode action assignation 

Action MOVE  is executed if step 2 is active and condition a·b is true  

2.6.2 Stored mode (allocation on event) 

In the stored mode, the association of an action to internal events is used to indicate that an 

output variable takes and maintains the enforced value if one of these events occurs. Explicit 

representations are necessary to describe the association of the actions with the events (activation 

step, deactivation step, ...). 

The value of an output relating to a stored action remains unchanged until a new specified 

event modifies its value. Allocation refers to storing, at a considered instant, a determined value 
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to an output variable. 

Allocation rule: the value of an output, relating to a stored action and 

associated with an event, is allocated to the indicated value, if the specified 

internal event occurs the value of this output is null at the initialization. 

Figure 2.6.2 shows an example of action assigned in continuous mode. 

 
Figure 2.6.2 Example of stored mode action assignation 

The allocation of the value 1 to the output variable MOVE  is performed on the occurrence of one 

of the input events having the activation of the step 2 as consequence. 

2.7 The temporizations 

In GRAFCET standard we can associate temporizations to expressions depending on input 

events and internal events. A condition on a temporization, like Boolean conditions, can be used 

in transition-conditions and in assignation conditions. We have two forms of condition on 

temporization: TON and TOF. 

2.7.1 TON 

The TON condition is indicated with d/exp, where d represents the delay time and exp is an 

expression that can depend on input or/and internal variables. TON functioning is described in 

figure 2.7.1. 

2 MOVE := 1 
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Figure 2.7.1 A representation of TON condition 

The condition d/exp becomes true when x becomes equal to d. The clock x counts the time 

elapsed from becoming true of expression exp end stops when the value d is reached, finally x is 

reset when exp becomes false. 

2.7.2 TOF 

The TOF condition is indicated with exp/d, where d represents the delay time and exp is an 

expression that can depend on input or/and internal variables. TOF functioning is described in 

figure 2.7.2. 
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Figure 2.7.2 A representation of TOF condition 

The condition exp/d becomes true when exp becomes true and it is still valid until x becomes 

equal to d. The clock x counts the time elapsed from becoming false of expression exp end stops 

when the value d is reached, finally x is reset when exp becomes true.  

2.8 Classical programming structures 

In this paragraph several used classical programming structures are presented. In fact in 

addition to simple sequence, there are other very useful particular structures. 

2.8.1 Selection of sequences 

We have a selection of sequences when a step is followed by more of one transition. If we 
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want to carry out a choice we have to ensure us that the different transition-conditions are 

mutually exclusive.  

 
Figure 2.8.1 Selection of sequence 

In figure 2.8.1 we have to check that c1·c2 = 0, in fact starting from situation {1} in which 

step 1 is activated the grafcet can perform the three evolutions shown in figure 2.8.2. 

 
Figure 2.8.2 Possible evolutions for grafcet in figure 2.8.1 

If c1 and c2 are not mutually exclusive for each possible combination we have to carry out a 

mutual exclusion to avoid that steps 21 and 31 (and so their following sequences) become active 

simultaneously. However there exist some cases in which one can desire that under certain 

conditions several sequences become active simultaneously, in these cases we talk about 

interpreted parallelism: the structure is the same of figure 2.8.1 but a simultaneous sequence 

activation is allowed. 

Particular cases of selection of sequences are step skip and backward skip. 

1c ·c2 
{1}  

{21} 

{31} 

{21,31} 

c1· 2c  

c1·c2 
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Figure 2.8.3 Step skip 

 
Figure 2.8.4 Backward skip 

2.8.2 Activation and synchronization of parallel sequences 

We have an activation of parallel sequences when a transition is followed by several steps. In 

figure 2.8.5 if transition t1 is fired step 12, 22 and 32 become active and they lead to three 

sequences that will evolve independently. 

 
Figure 2.8.5 Activation of parallel sequences 

Synchronization occurs when several steps precede a transition. Necessary condition to have 

transition firing is that all the parallel sequences are completed, so that the final steps of each 
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sequence are active. With reference to figure 2.8.6 the transition t1 is validated if and only if 

steps 1F, 2F and 3F are simultaneously active. 

  
Figure 2.8.6 Synchronization of sequences 

2.9 Temporal boundary of a given grafcet (UTE C 03-191) 

The insulation of a system described by a grafcet establishes a description boundary that 

defines a portion of the universe in an internal one and an external one. This boundary insulation 

corresponds to a border between an internal temporal scale and an external temporal scale to the 

model. 

From the point of view of the external time scale an event causes a change of the 

instantaneous state of the system outputs. From the point of view of the internal time scale, the 

time interval between the occurrence of a condition-transition that becomes true and the actual 

firing of the transition is very small but not zero. 

This separation is shown in figure 2.9.1. The example is taken from [Roussel 94]. 
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Figure 2.9.1 Internal and external universe 

Following the introduction of dual time scale, the GRAFCET now presents the following 

characteristics: 

- only outputs associated with steps that belong to stable situations are generated; 

- only stable situations are sensible to input state changes; 

- only instable situations are sensible to step activations/deactivations; 

2.10 The stability notion 

What has been introduced suggests that it is necessary to introduce a criterion of stability on 

the GRAFCET. 

External universe 
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2.10.1 Stability of a situation 

In [afcet 83], the stability of a situation is defined as follows:  

1. Situation stability 

When a grafcet reaches a situation, this is called unstable if at least a transition is 

clearable, if any transition is clearable then the situation is called stable. 

By considering this definition to emphasize an important aspect is important: the stability of 

a situation depends not only on the situation itself but also on changes of the inputs that have 

allowed achieving this situation. 

2.10.2 Total instability criterion 

The two criteria mentioned above need to be completed because the essential properties 

required by the models is that they are cycle free, that is there are not stationary situations or 

totally unstable situations. It is therefore necessary to define a criterion of instability. 

The first two stability criteria considered were the following. 

2. Stability criterion (1) 

The total instability has verified when the number of evolutions between two external events 

is greater than the number of steps in the overall grafcet. 

3. Stability criterion (2) 

The total instability has verified when a grafcet reaches twice the same situation between 

two external events. 

In his PhD thesis [Roussel 94], Jean-Marc Roussel, shows with the following two examples 

that these two criteria of instability are not completely correct. 

Example 1 

This example puts in a critical position the first criterion. With reference to figure 2.10.1, the 

grafcet consists of 7 steps but it needs 12 evolutions to reach the stable situation {10,20} from the 

initial situation to the occurrence of ↑m. 
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Figure 2.10.1 Example of crisis of first stability criterion 

Example 2 

This example puts in a critical position the second criterion. With reference to figure 2.10.2, 

starting from initial situation, if ↑m occurs the grafcet reaches twice the unstable situation 

{10,21} and finally it reaches the stable situation {10,20}. 

 
Figure 2.10.2 Example of crisis of second stability criterion 

Then, in his PhD thesis Jean-Marc Roussel shows a new stability criterion: 

4. Used stability criterion 

If in occurrence of an external event a grafcet performs twice the same evolution, then we 

have total instability. 

A correct grafcet verification implies a correct and complete application of all GRAFCET 
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standard behaviors and a complete study of grafcet behavior at the internal and external time 

scale. We perform this analysis by construction of the Graph of Accessible Stable Configurations, 

that is presented in the following chapter.  
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Chapter 3 

The Graph of Accessible Stable 
Configurations 



 

 
 
 
 

 
 
 
 

32 

Contents 
This chapter illustrates all aspects of the 

state transition machine that we have carried 
out in order to study the behavior of 
GRAFCET based models: the Graph of 
Accessible Stable Configurations (GASC). 

In the first part we present the elements 
of this state transition machine as state and 
evolution and how time is taken into account. 
In order to illustrate all following aspects we 
introduce the context notion. 

In the second part a particular tree 
structure (the Tree of Accessible 
Configurations TAC) that allows a grafcet 
analysis at the internal time scale is 
introduced. The construction of this tree is 
indispensable in order to obtain the Graph of 
Accessible Stable Configurations. 

In the third part the algorithms that 
allow to build the TAC and the GASC are 
shown. The stability analysis is performed 
with the TAC construction. 

In the last part we apply to a grafcet 
portion these algorithms.  



 

 
 
 
 

 
 
 
 

33 

3.1 Introduction 

The Graph of Accessible Stable Configurations (GASC) allows a complete analysis of a 

grafcet behavior at the external time scale by evaluation of all possible grafcet states and 

evolutions. In order to be sure of correctness of our analysis we have to apply all GRAFCET 

standard rules. The form of GRAFCET temporization that we deal with in this work is the TON 

applied on grafcet steps, but a particular grafcet translation that allows to deal with TON and 

TOF on input variables is presented in the following of this document. 

The GASC is an extension of the Graph of Accessible Situations [Roussel 94] where the 

situation notion is extended to configuration notion to perform time integration. It is important to 

underline that time notion is dealt only at a logic level then all timed events and conditions are 

dealt as Boolean variables. The extension of time at the physical level is performed in a second 

analysis step with the construction of the equivalent timed automaton. 

The construction of the GASC needs an intermediate step, in fact to obtain grafcet behavior 

at the external time scale it is necessary to perform a first analysis at the internal time scale, so we 

have to build a Tree of Accessible Configurations where only root and leafs are stable 

configurations and all internal nodes are intermediate configurations. 

In the following of this chapter this state transition machine will be introduced with all main 

characteristics. 

3.2 Configuration 

The first notion that we have to introduce is the configuration notion. In GRAFCET standard 

a situation Sit is defined as a set of active steps. But in order to study all possible grafcet 

evolutions starting from a situation, the only information about active steps is not enough. For 

example in figure 1.2.1, starting from situation {12,20,32,41,53}, it is necessary to know how 

long step 32 has been activated. Then we have to extend the notion of situation by integration of 

information about time. 

In order to integrate a compact time representation we introduce a second set Temp that 

includes all grafcet timed conditions that are verified. A third set is necessary to a complete 

representation of a grafcet state and this is the set of emitted outputs Out. Moreover, to complete 
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our representation, we associate a clock1 h to each step for which at least a timed expression is 

associated. 

So we define as follows a configuration: 

5. Configuration 

A configuration Cfg is defined as a set of active steps Sit, a set of true timed expressions 

Temp and a set of emitted outputs Out. 

For example, for situation {12,20,32,41,53} of grafcet in figure 1.2.1 there are four distinct 

configurations:  

- 1:{12,20,32,41,53},{},{Reversal,upstr pump1,out,dwnstr pump1,pump1}; 

- 2:{12,20,32,41,53},{5s/X12},{Reversal,upstr pump1,out,dwnstr pump1,pump1}; 

- 3:{12,20,32,41,53},{24h/X32},{Reversal,upstr pump1,out,dwnstr pump1,pump1}; 

- 4:{12,20,32,41,53},{5s/X12,24h/X32},{Reversal,upstr pump1,out,dwnstr pump1,pump1}. 

By looking at the figure 1.2.1 it is obvious that configuration 3 and 4 are not stable 

configurations: in fact if condition 24h/X32 is verified we have transition t32_33 firing and then an 

evolution leads the grafcet to a new situation (and consequently a new configuration). So it is 

necessary to introduce the notion of invariant condition associated with a configuration. 

3.2.1 The configuration invariant condition 

The invariant condition associated with a configuration is a Boolean expression on input and 

internal variables for which there are not possible evolutions: this is the stability condition for a 

configuration. In order to avoid grafcet evolutions all the conditions relating to enabled 

transitions must be false. Moreover, we have to consider all possible variations of emitted outputs 

set Out, then all input and internal variable variations that modify this set lead to a GASC 

evolution. Finally we have to consider all possible variations of true timed condition set Temp. 

We can give the following definitions: 
                                                 

 
 
 
 
 

1 A more detailed description about temporizations will be dealt in the following of this chapter 
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6. Situation invariant 

The situation invariant condition is given by negation of application of OR operator 

between the transition-conditions cond(ti) of all validate transitions ti. All step activation 

variables and timed expressions are replaced with theirs values. 

∑∑∑∑====
i i )t(cond)sit(Inv  

7. Timed invariant 

The timed invariant condition is given by negation of application of OR operator between 

all timed expression tmp associated with the activated steps that are not in the true timed 

condition set Temp. 

∑∑∑∑====
n,m nm X/d)Temp(Inv  

where dm/Xn ∉Temp 

8. Output invariant 

The output invariant condition is given by negation of application of OR operator between 

the assignation condition cond(Ok) of all outputs Ok, associated with each step in Sit, that 

are not present in the Out set and the negation of assignation condition cond(Oexk) of all 

outputs Oexk associated with each active step in the Out set. All step activation variables 

and timed expressions are replaced with theirs values. 

∑∑∑∑ ∑∑∑∑++++====
h k kexh )O(cond)O(cond)Out(Inv  
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9. Configuration invariant 

The configuration invariant condition is given by application of AND operator between 

these three invariant conditions 

)Out(Inv)Temp(Inv)Sit(Inv)Cfg(Inv ⋅⋅⋅⋅⋅⋅⋅⋅====  

Let us consider, for example, the following configuration of grafcet in figure 1.2.1: 

Cfg = 1:{12,20,32,41,53},{},{Reversal,upstr pump1,out,dwnstr pump1,pump1}; 

the three defined sets are: 

Sit = {12,20,32,41,53} 

Temp = {} 

Out = {Reversal,upstr pump1,out,dwnstr pump1,pump1} 

and the invariant conditions: 

Inv(Sit) = debithigh pump2fault)debithigh debit low(blockagepump1fault ++⋅+⋅  

Inv(Temp) = 5s/X1224h/X32⋅  

Inv(Out) = 1 

3.3 Events 

As each GASC configuration is a stable configuration, we need at least an event to lead the 

GASC from a configuration to another one. We have an input event every time that at least an 

input variable changes its state and we have a timed event every time that a timed expression 

changes its state. All timed events lead to a change in the Temp set but not all input events lead to 

a change in the Sit or Out set. As temporizations are internal variables of grafcet and inputs are 

external variables of grafcet, since there is a boundary between internal and external grafcet 

universe (par. 2.9), it is impossible to have simultaneity between input and timed events (they are 

uncorrelated). This result can be explained with an example, let consider the following grafcet 

portion: 
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Figure 3.3.1 Timed and input events 

It is impossible that the two events ↑a and ↑(1sec/X1) occur simultaneously: if we consider 

event ↑a probability we can suppose that its probability has an uniform distribution ([A.Papoulis 

02]) in the time (figure 3.3.2), to assume that ↑a occurs simultaneously with occurrence of 

↑(1sec/X1) implies that the area of a rectangle with base 0 is not 0 and this is not possible (in 

figure 3.3.2 t0 is the instant of activation of step 1). 

 
Figure 3.3.2 Input events p.d.f. and timed events 
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3.4 Evolution 

In the Graph of Accessible Stable Configurations an evolution is caused by a change of at 

least an input variable state or a timed expression state that leads from a stable configuration to 

another one.  

We distinguish evolutions on the basis of cause and consequence. The cause of an evolution 

can be an input event or a timed event, the consequence of an evolution, mainly, can be a 

configuration change that implies a variation in the Sit set (then at least a transition is cleared) or 

a configuration change that doesn’t imply changes in Sit set. We summarize all possible 

combinations in table 3.4.1. 
 

Cause Possible consequence 

timed event 
transition clearings 

(a variation in Sit) 
Temp set variation Out set variation Clock resets  

input event 
transition clearings 

(a variation in Sit) 
Temp set variation Out set variation Clock resets 

Table 3.4.1 Evolution causes/consequences 

Now, as the objective of GASC construction is a complete grafcet analysis, in our state 

machine we have to report all information about evolutions: in each evolution we have to include 

all causes and all consequences. Only by using this approach we can track all grafcet behaviors. 

As shown in paragraph 1.2, the consequence of an input or timed event can be the firing of 

one or more transitions (simultaneously), moreover, before to reach a stable grafcet situation (and 

then a stable GASC configuration), a grafcet can reach one or more intermediate not stable 

situations.  

Generally, we can say that the consequence of an input or timed event is the firing of a 

sequence of transition sets SeqT (where T is a set of cleared transitions).  

In order to complete our representation we have to consider also clock resets: we have a 

clock reset Res(hi) if the new configuration contains a new step i for which a timed expression 

(and then a clock hi) is associated. As for transition firing, generally, we associate with an 

evolution a sequence of set of clock resets SeqR (where R is a set of clock resets). The evolution 

cause is represented by an expression that depends on input variables and timed expressions, this 
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is called evolution context1. 

10. Evolution 

An evolution is characterized by a starting configuration StartCfg, an arrival configuration 

ArrCfg, the evolution context Cevo, a sequence of cleared transition sets SeqT and a 

sequence of clock reset sets SeqR. 

As it’s not possible to have timed events and input events simultaneously, we study 

separately evolutions caused by input events and timed events: this is a very useful simplification. 

3.5 Grafcet temporizations and timed events 

An efficient and simple way of dealing with GRAFCET temporization is the key to perform a 

low complex analysis of grafcet models. We have decided to deal only with a grafcet 

temporization form: TON applied on a single step activation variable Xi. We made this choice 

because grafcet clocks can be stopped in particular situations, but in timed automaton formalism 

it is not possible to stop a clock. This problem can be solved in the case of TON applied on a 

single step variable activation but it can’t in all other cases.  

3.5.1 Time representation 

In the GASC we have decided to represent the time at a “logic level”. All timed expressions 

will be dealt as Boolean conditions that can be true or false.  

These considerations allow a translation of a grafcet configuration into a timed automaton 

state. Physically in the equivalent timed automaton the clock is always active but this is not a 

problem because in all automaton states for which in the grafcet the relating clock hi is stopped, 

there are not evolution conditions that depend on clock hi (because all relating conditions are 

replaced with false). 

                                                 
 
 
 
 
 

1 See paragraph 3.6 
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3.5.2 Several temporizations associated with the same step 

A necessary observation is that several timed expressions can be associated with a step. Now, 

it’s obvious that it is not necessary to associate several clocks with the same step, because they 

depend on the same activation step variable.  

Let consider an ordered M-dimensional set Tcond(n) (read Timed Conditions on n) of timed 

conditions associated with a step n <d1/Xn,d2/Xn…dm/Xn,dm+1/Xn…dM/Xn> where d1<d2<…<dM: 

each condition dm/Xn can’t be true if the previous condition dm-1/Xn is false. 

For each step n we consider an ordered subsets of Tcond(n): the ordered set of timed 

conditions on n that are still false FTcond(n) (read False Timed Conditions on n). Formally: 

FTcond(n) = ∀ ∀ ∀ ∀ dm/Xn |||| (dm/Xn ∈ ∈ ∈ ∈ Tcond(n)) ∩∩∩∩ (dm/Xn ∉∉∉∉Temp)     

Then, for each GASC configuration analysis, we associate with each step n in Sit a set 

FTcond(n) and we define for each configuration a set Wtemp (read Waiting Temporizations) that 

includes all first elements of all associated FTcond(n). 

This procedure can be clarified with the support of example in figure 3.5.1. 

 
Figure 3.5.1 Grafcet and timed events 

Let consider the configuration  1:{1,2},{},{}: the defined sets are: 

Tcond(1) = <1sec/X1,2sec/X1> , Tcond(2) = <1sec/X2>  

FTcond(1) = <1sec/X1,2sec/X1> , FTcond(2) = <1sec/X2>  

Wtemp = {1sec/X1,1sec/X2} 

Only timed expressions in Wtemp can cause a timed evolution and then only these timed 

expressions must be considered for the given configuration analysis. 
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3.6 Context 

Starting from a given stable configuration we can have the same evolution by different 

variations of input/internal variable state, so we can compact the representation with an 

expression in II that summarize all possible variations that cause the same evolution. 

3.6.1 Not timed context 

This notion includes the concept of event and condition, and it is tightly related to the 

Boolean algebra extension II introduced in [Roussel, Lesage 93]. When it is not specified, with 

context, we intend not timed context. In this case we study only input and internal variable 

variations while all  timed conditions don’t change. 

11. Context 

We call context the II combinatorial expressions that we associate with situations, 

evolutions and transition sets. 

Each context characterizes a precise set of internal and external variable variations. 

We associate with each reached situation Sit a residual context and a stability context. 

12. Residual context 

A residual context Cres describes the set of input and internal variable variations and 

timed conditions that allows reaching this situation. 

13. Stability context 

A stability context Csta is the part of residual context for which the reached situation is 

stable. 

We associate with each transition set T a minimal context and a maximal context. 

14. Minimal context 

A minimal context Cmin describes the set of input and internal variable variations and 

timed conditions that allows to clear this set of transitions (necessary condition for 

clearing). 
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15. Maximal context 

A maximal context Cmax is the part of the minimal context for which only this set of 

transitions is cleared (necessary and sufficient condition for clearing). 

We associate with each evolution an evolution context. 

16. Evolution context 

An evolution context Cevo describes the set of input and internal variable variations and 

timed conditions that allows the occurrence of this evolution. 

Example 

In order to show these definitions we use the example in figure 3.6.1.  

 
Figure 3.6.1 Gracfet example for the illustration of context notion 

In figure 3.6.2 we represent the sets of variations that correspond to the analysis of possible 

evolutions starting from situation {2} that is reached by situation {1} in occurrence of event ↑m. 
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Figure 3.6.2 Illustration of context notion 

We have four sets of input/internal variable variations: 

- S1: set of input/internal variable variations for which the situation {2} is reached; 

- S2: set of input/internal variable variations for which the transition t2 is cleared after 
reaching situation {2}; 

- S3: set of input/internal variable variations for which the transition t3 is cleared after 
reaching situation {2}; 

- S4: set of input/internal variable variations for which the transition t4 is cleared after 
reaching situation {2}; 

Formally, we define these four sets as follows: 

S1 = {x | x  + ↑m = 1*}; 

S2 = {x | x  + ↑m·a = 1*}; 

S3 = {x | x  + ↑m·b·c = 1*}; 

S4 = {x | x  + ↑m·b = 1*}; 

Where 1* is the neutral element of AND operator in II. 

In the following table we show the several contexts that we have defined giving their 

expression in II and the relating sets of input variations, starting from the reached situation {2}. 

S1 
S4 

S3 

S2 
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Context II expression Represented set 

Residual context of Sit {2} ↑m S1 

Stability context of Sit {2} ↑m · )ba( +  S1 – (S2 ∪ S3 ∪ S4) 

Minimal context of t2 ↑m · a S2 

Maximal context of t2 ↑m · a ·b  S2 – (S3 ∪ S4) 

Minimal context of t3 ↑m · b · c S3 

Maximal context of t3 0 ø 

Minimal context of t4 ↑m · b S4 

Maximal context of t4 ↑m · a · b · c  S4 – (S2 ∪ S3) 

Minimal context of {t2, t3} ↑m · a · b · c S2 ∩ S3 

Maximal context of {t2, t3} 0 ø 

Minimal context of {t2, t4} ↑m · a · b S2 ∩ S4 

Maximal context of {t2, t4} ↑m · a · b · c  (S2 ∩ S4) – S3 

Minimal context of {t3, t4} ↑m · b · c S3 ∩ S4 

Maximal context of {t3, t4} ↑m ·a · b · c (S3 ∩ S4) – S2 

Minimal context of {t2, t3, t4} ↑m · a · b · c S2 ∩ S3 ∩ S4 

Maximal context of {t2, t3, t4} ↑m · a · b · c S2 ∩ S3 ∩ S4 

Table 3.6.1 Context illustration 

3.6.2 Timed context 

As we define a context for not timed expressions, we associate separately a context for timed 

expressions. 
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17. Timed context 

We call timed context the II combinatorial expressions that we associate with timed 

evolutions. 

Each timed context characterizes a precise set of timed variable variations and input and 

internal variable conditions. 

We associate with each reached configuration Cfg (after a timed evolution) a timed residual 

context and a timed stability context. 

18. Timed residual context 

A timed residual context TCres describes the set of timed condition variations and input 

and internal variable conditions that allows reaching this configuration. 

19. Timed stability context 

A timed stability context TCsta is the part of timed residual context for which the reached 

configuration is stable. 

We associate with each possible Temp set variation a timed minimal context and a timed 

maximal context. 

20. Timed minimal context 

A timed minimal context TCmin describes the set of timed expression variations and input 

and internal variable conditions that allows a timed evolution (timed evolution necessary 

condition). 

21. Timed maximal context 

A timed maximal context TCmax is the part of the timed minimal context for which only this 

timed evolution is possible (timed evolution necessary and sufficient condition). 

We associate with each timed evolution a timed evolution context. 
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22. Timed evolution context 

A timed evolution context TCevo describes the set of timed expression variations and input 

and internal variable conditions that allows the occurrence of this timed evolution. 

Example 

In order to show these definitions we use the example in figure 3.5.1. Let consider the 

configuration  1:{1,2},{},{}, the set of waiting temporizations is: Wtemp = {1sec/X1,1sec/X2}. 

In figure 3.6.3 we represent the sets of variations that correspond to the analysis of all possible 

timed evolutions starting from the analyzed configuration. 

 
Figure 3.6.3 Illustration of timed context notion 

We have four sets of timed expression variations and input and internal variables conditions: 

- S1: timed expression variations set for which the timed expression {1sec/X1} is added to 
Temp; 

- S2: timed expression variations set for which the timed expression {1sec/X2} is added to 
Temp; 

- S3: timed expression variations set and input conditions for which there are not other 
possible evolutions after timed evolution caused by clock h1; 

S1 

S3 

S2 

S4 
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- S4: timed expression variations set and input conditions for which there are not other 
possible evolutions after timed evolution caused by clock h2. 

Let us define the following configurations: 1:{1,2},{1sec/X1},{}, 2:{1,2},{1sec/X2},{}, 

3:{1,2},{1sec/X1,1sec/X2,},{}. 

In the following table we show the several contexts that we have defined giving their 

expression in II and the relating set of timed expressions variations and input and internal 

variables conditions. 
 

Timed context II expression Represented set 

Timed minimal context of Cfg 2 1sec/X1 S1 

Timed maximal context of Cfg 2 1sec/X1 · 2Xsec/1  S1 – S2 

Timed minimal context of Cfg 3 1sec/X2 S2 

Timed maximal context of Cfg 3 1Xsec/1  · 1sec/X2 S2 – S1 

Timed minimal context of Cfg 4 1sec/X1 · 1sec/X2 S1 ∩ S2 

Timed maximal context of Cfg 4 1sec/X1 · 1sec/X2 S1 ∩ S2 

Timed residual context of Cfg 2 1sec/X1 · 2Xsec/1  S1 – S2 

Timed stability context of Cfg 2 b  · 1sec/X1 · 2Xsec/1  S3 – S2 

Timed residual context of Cfg 3 1Xsec/1  · 1sec/X2 S2 – S1 

Timed stability context of Cfg 3 a  · 1Xsec/1  · 1sec/X2 S4 – S1 

Timed residual context of Cfg 4 1sec/X1 · 1sec/X2 S1 ∩ S2 

Timed stability context of Cfg 4 a  · b  · 1sec/X1 · 1sec/X2 S3 ∩ S4 

Table 3.6.2 Timed context illustration 
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3.7 The Tree of Accessible Configurations 

In order to build the Graph of Accessible Stable Configurations a grafcet behavior study at 

the internal time scale is necessary. 

The Tree of Accessible Configurations (TAC) is a representation of a grafcet behavior at the 

internal time scale. Starting from a given stable configuration the TAC gives all possible 

evolutions that we can have in a grafcet in occurrence of all possible timed and input events. 

In the TAC we have four main elements: root, internal nodes, leafs and directed links. 

3.7.1 The root 

The root is the starting stable configuration that we want to analyze. The root is characterized 

by: 

- the configuration description Cfg: Sit, Temp, Out; 

- the invariant condition Inv(Cfg); 

- the set of waiting temporizations Wtemp; 

- the set of enabled transitions EnT. 

Starting from these parameters we can calculate a set of parameters that we use for TAC 

construction. 

For each transition ti in EnT we evaluate: 
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The actual transition condition (for a root): the actual transition condition 

cond’(ti) is given by the transition condition cond(ti) after application of the 

following replacements: all timed expressions dm/Xn are replaced with theirs 

values (if dm/Xn∈ Temp it is replaced with true, else it is replaced with false), all 

step activation variables Xn are replaced with theirs values (if Xn∈ Sit it is 

replaced with true, else it is replaced with false), all falling and rising edges of 

step activation variables Xn are replaced with false. 

Then we can evaluate: 

The set of clearable transitions (for a root): the set of clearable transitions CT 

is composed of all enabled transitions ti for which the actual transition 

condition cond’(ti) is not false. 

The following parameter defines all possible not timed evolutions. 

The simultaneous clearable transitions sets (for a root): the simultaneous 

clearable transitions sets SCT, are the sets of transitions that can be fired 

simultaneously. These sets are given by sets of clearable transitions for which 

the resulting maximal contexts are not false and they are characterized by an 

evolution context Cevo. We calculate as follows the Cevo: 

Cevo(SCTi) = Cmax(SCTi) · ∑∑∑∑ n,m nm X/d  

where dm/Xn ∈ ∈ ∈ ∈ Wtemp 

 



 

 
 
 
 

 
 
 
 

50 

The following parameter defines all possible timed evolutions. 

The simultaneous timed evolutions sets: the simultaneous timed evolutions sets 

STevo, are the sets of timed evolutions that can be performed simultaneously. 

These sets are given by sets of timed evolutions for which the resulting timed 

maximal contexts are not false and they are characterized by a timed evolution 

context TCevo. We evaluate as follows the TCevo: 

TCevo(STevoi) = TCmax(STevoi) · ∑∑∑∑ j j )CTS('Cevo  

Where Cevo’(SCTj) is the evolution context Cevo(SCTj) after replacement of all 

timed expressions with theirs values. 

3.7.2 Internal nodes 

Internal nodes represent generic reached configurations. The internal nodes are characterized 

by: 

- the configuration description Cfg: Sit, Temp, Out; 

- the upstream configuration UpCfg; 

- the (timed) residual context (T)Cres, that is given by the (timed) evolution context 
(T)Cevo that allows to reach this configuration; 

- the sequence of transitions sets SeqT; 

- the sequence of clock resets sets SeqR; 

- the set of enabled transitions EnT. 

All evolutions starting from a reached configuration are performed at the internal time scale, 

then there are not possible input or timed events. The first consequence is that at this level for 

each transition condition all timed expressions must be replaced with their values and all input 

rising and falling edges are replaced with false. 

We can calculate a new set of parameters that we use for the following step of TAC 
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construction. 

The first set of parameters that we have to evaluate is the set of internal events. We have two 

sets of internal events. 

The set of step falling edges: the set of step falling edges FS is the set of steps 

that are deactivated in the analyzed evolution. We evaluate this set as follows: 

FS = ∀∀∀∀ Xn |||| (Xn ∈ ∈ ∈ ∈ Sit(UpCfg)) ∩∩∩∩ (Xn ∉∉∉∉ Sit(Cfg)) 

 

The set of step rising edges: the set of step rising edges RS is the set of steps 

that are activated in the analyzed evolution. We evaluate this set as follows: 

RS = ∀∀∀∀ Xn |||| (Xn ∈ ∈ ∈ ∈ Sit(Cfg)) ∩∩∩∩ (Xn ∉∉∉∉ Sit(UpCfg))    

Then we have to establish which transitions can be fired. In order to perform this operation 

we have to transform the (timed) residual context and all transition conditions as follows. 

The actual residual context: the actual residual context Cres’ is given by the 

(timed) residual context (T)Cres after application of the following 

replacements: each falling edge of input and timed expressions is replaced with 

the negation of the expression and each rising edge of input and timed 

expressions is replaced with the expression. 

For each transition ti in EnT we evaluate: 
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The actual transition condition (for an internal node): the actual transition 

condition cond’(ti) is given by: 

cond’(ti) = cond(ti) · Cres’ 

Where in cond’(ti) the following replacements are performed: all timed 

expressions dm/Xn are replaced with theirs values, all step activation variables 

Xn are replaced with theirs values, each step falling edge ↓Xn is replaced with 

true if Xn∈ FS and with false otherwise, each step rising edge ↑Xn is replaced 

with true if Xn∈ RS and with false otherwise. 

Then we can evaluate: 

The set of clearable transitions (for an internal node): the set of clearable 

transitions CT is composed of all enabled transitions ti for which the actual 

transition condition (for the internal node) cond’(ti) is not false. 

The following parameter defines all possible evolutions at the internal time scale. 

The simultaneous clearable transitions sets (for an internal node): the 

simultaneous clearable transitions sets SCT, are the sets of transitions that can 

be fired simultaneously. These sets are given by sets of clearable transitions for 

which the resulting maximal contexts are not false and they are characterized 

by an evolution context Cevo. We calculate as follows each evolution context: 

Cevo(SCTi) = Cmax(SCTi) · Cres 

Then we evaluate the stability context Csta: 
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Csta = Cres · ∑∑∑∑ j jmax )SCT(C  

If the stability context Csta is not false we create a fictitious “stability” evolution  that is 

characterized by the evolution context: 

Cevo(Stab) = Csta 

The obtained configuration is marked as leaf and at this level the emitted outputs are evaluated. 

3.7.3 Leafs 

The leafs represent stable configurations. A leaf is characterized by: 

- the configuration description Cfg: Sit, Temp, Out; 

- the stability context Csta; 

- the sequence of transitions sets SeqT that allows reaching the configuration; 

- the sequence of clock resets sets SeqR met in all internal evolutions; 

3.7.4 Directed links 

A direct link connects a root to e node, a node to a node or a node to a leaf. Each directed 

link is characterized by: 

- the upstream node UpNode; 

- the downstream node DnNode; 

- the (timed) evolution context (T)Cevo; 

- the sequence of transitions sets SeqT; 

- the sequence of sets of clock resets SeqR. 

We evaluate the set SeqT as follows: 

SeqT = <SeqT, T> 

Where SeqT is the sequence of transitions sets evaluated until the given evolution and T is the set 

of cleared transition associated with the given evolution. 
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We evaluate the set SeqR as follows: 

SeqR = <SeqR, R> 

Where SeqR is the sequence of sets of clock resets evaluated until the given evolution and R is 

the set of clock resets performed in the given evolution. 

The set R is evaluated as follows: 

for each step Xi in Sit(DnCfg):  

{if (X i ∉ ∉ ∉ ∉ Sit(UpCfg))  

{if (a clock hi is associated with Xi) then R = R ∪∪∪∪ hi; }} 

3.7.5 TAC construction 

For the TAC construction we use an algorithm. Before to show this algorithm let us define all 

used variables.  

Nodes is the set of unexplored nodes, Tnodes is the set of TAC nodes, UpNode is an 

upstream node, DnNode is a downstream node, Root is the tree root, UpCfg is an upstream 

configuration, DnCfg is a downstream configuration, An_cfg is the analyzed configuration.  

The set links, associated with nodes, contains the information about all possible evolutions 

that can be performed at the internal time scale. Each element of links is a set 

{UpNode,DnNode,Cevo,SeqT,SeqR}. 

The set Slinks, associated with stable configurations, contains the information about all 

possible evolutions that can be performed at the external time scale. Each element of Slinks is a 

set {UpCfg,DnCfg,Cevo,SeqT,SeqR}. 

A tree structure is individuated by the Root, the Tnodes set, the Leafs set the links set and the 

Slink set. 
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TAC construction algorithm (pseudo-code) 

 

Function BuildTree(An_cfg,grafcet) { 

// Association of a root to the analyzed configuration with a function that evaluate all root parameters  

Root = new root(An_cfg);  

evaluate all SCT(Root); 

evaluate all STevo(Root); 

for ∀ ∀ ∀ ∀ SCT {  // Evaluation of all possible not timed evolutions 

evaluate(DnNode,Cevo,T,R);  // Evaluation of all evolution parameters 

 links = links ∪ ∪ ∪ ∪ {Root,DnNode,Cevo,T,R};  // Add the internal time scale evolution 

Nodes = Nodes  ∪ ∪ ∪ ∪ DnNode;  // Add the reached node } 

for ∀ ∀ ∀ ∀ STevo{   // Evaluation of all possible timed evolutions 

 evaluate(DnNode,Cevo,,R); 

 links = links ∪ ∪ ∪ ∪ {root,DnNode,Cevo,,R}; 

Nodes = Nodes  ∪ ∪ ∪ ∪ DnNode;} 

for ∀ ∀ ∀ ∀ n ∈ ∈ ∈ ∈ Nodes{ //Analysis of each unexplored node 

Nodes = Nodes - n; // delete the node n from the set of unexplored nodes 

 evaluate all SCT(n); // Evaluation of all possible not timed evolutions starting from n 

 for ∀ ∀ ∀ ∀ SCT{ 

  evaluate(DnNode,Cevo,T,R); 

  if(T ∉∉∉∉SeqT) { // Check if total instability condition is verified 

SeqT = SeqT(n) ∪ Τ; ∪ Τ; ∪ Τ; ∪ Τ;    

SeqR = SeqR(n) ∪  ∪  ∪  ∪ R;;;; 

   links = links ∪ ∪ ∪ ∪ {n,DnNode,Cevo,SeqT,SeqR}; 

Tnodes = Tnodes ∪∪∪∪ n; // add n  to the Tree of Accessible Configurations 

Nodes = Nodes  ∪ ∪ ∪ ∪ DnNode; //add DnNode to the unexplored nodes } 

  else{  // If there is a totally instable situation the error is reported 

SeqT = SeqT(n) ∪ Τ; ∪ Τ; ∪ Τ; ∪ Τ;    

SeqR = SeqR(n) ∪  ∪  ∪  ∪ R;;;; 

links = links ∪ ∪ ∪ ∪ {n,ERROR,Cevo,SeqT,SeqR}; 
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TNodes = TNodes  ∪ ∪ ∪ ∪ ERROR; } 

if(Csta(n)) { // If the stability context is not false the node is a leaf 

out_evaluation(n); //evaluation of emitted outputs 

L = new leaf(n); // creation of a leaf with the node n 

links = links ∪ ∪ ∪ ∪ {n,L,Csta,SeqT,SeqR}; //add the stability evolution 

leaf = leafs ∪ ∪ ∪ ∪ L; // add the leaf to the set of leafs 

//add an evolution between root configuration and leaf configuration: 

Slinks = Slinks ∪ ∪ ∪ ∪ {cfg(Root),cfg(L),Csta,SeqT,SeqR}; 

} 

} 

Tree = {Root,Tnodes,Leafs,links,Slinks} 

Return Tree; 

} 
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3.7.6 Individuation of totally instable situations 

In paragraph 2.10.2 we introduced the criterion of total instability. The construction of the 

TAC allows us to find totally instable situations. 

Individuation rule: we have a totally instable situation if, for a given evolution, 

we meet twice the same set of transitions. 

We associate with this kind of evolution a reached node that we call ERROR, this reached 

node allows the analyst to individuate totally instable situations. 

3.7.7 A particular case: a leaf configuration is equal to the root configuration 

There are particular cases in which a leaf of the tree coincides with the root of the tree. This 

is not an instable situation, but anyway this is a situation that requires attention, because we have 

an evolution that leads to the starting configuration, then, potentially, we have a useless 

evolution. 

3.8 The GASC construction 

The construction of the GASC is performed with the application of algorithm reported in the 

paragraph 3.8.1; 

3.8.1 GASC construction algorithm 

Before to show this algorithm let us define all used variables.  

UScfg is the set of unexplored stable configurations, Loc (Locations) is the set of GASC pairs 

configuration/invariant, Glink is the set of GASC evolutions.  

We define the initial configuration as 1:{Sit1},{},{Out1}, where Sit1 is the set of initial steps 

and Out1 is the set of initial activated outputs. 
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GASC construction algorithm (pseudo-code) 

 

Function BuildGASC(grafcet) { 

UScfg = cfg1; 

for ∀ ∀ ∀ ∀ An____cfg ∈ ∈ ∈ ∈ UScfg { //An_cfg is the analyzed configuration 

 UScfg = UScfg – An_cfg; //Delete the configuration from the set of unexplored configurations 

Tree = BuildTree(An_cfg,grafcet); //Construction of the TAC 

 //add all unexplored stable configurations to the set UScfg: 

for ∀∀∀∀ L ∈ ∈ ∈ ∈ Leafs(Tree) 

if (cfg(L)  ∉  ∉  ∉  ∉ EScfg) UScfg = UScfg ∪ ∪ ∪ ∪ cfg((((n); 

 Invariant = Tree.Inv(Root);   //Evaluate the invariant of the Tree root 

 //Add the analyzed configuration and the relating invariant to the GASC: 

Loc = Loc ∪ ∪ ∪ ∪ {An_cfg,Invariant} 

//add all evolutions to the evolution set Glinks: 

for ∀∀∀∀ lnk ∈ ∈ ∈ ∈ Slinks(Tree) 

 Glinks = Clinks ∪ ∪ ∪ ∪ lnk; 

} 

GASC = {Loc,Glinks} 

//This function evaluate the initial configuration and all possible starting evolutions: 

GASC = GASC.InitialConfiguration(grafcet); 

return GASC; 

} 
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3.8.2 Evaluation of the initial configuration 

The initial grafcet situation can be different from the situation in which only initial steps are 

activated. Let us consider the example in figure 1.2.1: if at the starting time the condition 

pump1fault is true, the initial situation is {11,20,31,40,50}. 

In order to consider this kind of situations we decided to introduce a fictitious configuration 

0: INIT, {}, {}. Starting from this initial configuration, all not timed evolutions relating to the 

configuration 1 are analyzed and if it is necessary initial evolutions are associated. The way to 

evaluate the initial evolutions is the following: 

- indicate with 0 the new initial configuration; 

- evaluate Inv’(1) as Inv(1) where all time depending expressions are replaced with false; 

- link configurations 0 and 1 with an evolution characterized by: 

- an empty transition set; 

- an evolution context given by the resulting condition invariant Cevo(INIT) = Inv’(1); 

- a set of clock reset operations depending on Sit(1) steps; 

- for each not timed evolution of 1 make the following replacements in Cevo(SCTi): 

- replace all input edges with false; 

- replace all time depending expressions with false; 

- if the resulting Cevo’(SCTi) is not false, associate an evolution that links 0 with the arrival 
configuration relating to SCTi characterized by the SCTi sequence of transitions sets SeqT, 
the evolution condition Cevo’(SCTi) and the SCTi sequence of reset operations SeqR. 

3.8.3 Dealing with TON and TOF input conditions  

A representation of TON and TOF on input variables is impossible by using timed automata. 

The only way to deal with this kind of problems is a grafcet transformation before its GASC 

generation. We translate the grafcet in a form that allows the analysis by means of GASC. 
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TON on input conditions 

In figure 3.8.1 Cond(d/exp) is a generic Boolean expression that depends on expression 

d/exp, where d is a time constant and exp is a Boolean expression of input variables. 

 
Figure 3.8.1 A grafcet with a TON on input condition 

The solution is the construction of a grafcet with a structure like figure 3.8.2: this grafcet 

“simulates” expression d/exp behavior: 

- if step F is activated the condition d/exp is false; 

- if step W is activated the condition exp is true for less than a time d so d/exp is false; 

- if step T is activated the condition exp is true for at least a time d and the condition d/exp 
is true. 
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Figure 3.8.2 The grafcet solution for TON problem 

In the starting grafcet all expressions d/exp are replaced with: 

d/exp = XT · exp + XW · exp · (d/XW) 

TOF on input conditions 

In figure 3.8.3 Cond(exp/d) is a generic Boolean expression that depends on expression 

exp/d, where d is a time constant and exp is a Boolean expression of input variables. 

 
Figure 3.8.3 A grafcet with a TOF on an input condition 
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The solution is the construction of a grafcet with a structure like figure 3.8.4: this grafcet 

“simulates” expression exp/d behavior: 

- if step F is active the condition exp/d is false; 

- if step T is active the condition exp is true and then condition exp/d too is true; 

- if step W is active the condition exp is false for less than a time d and the condition exp/d 
is still true. 

 
Figure 3.8.4 The grafcet solution for TOF problem 

In the starting grafcet all expressions exp/d are replaced with: 

exp/d = exp + XT + XW · XW/d  
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3.9 GASC formal definition 

We can give a formal definition for a GASC. 

23. Graph of Accessible Stable Configurations 

A GASC is a tuple (Cfg,cfg0,H,TEXP,EXP,SEQT,SEQR,INV) where: 

- Cfg is a finite set of control states (configurations); 

- cfg0 ∈ Cfg is the initial configuration; 

- H is a finite set of clocks hi; 

- TEXP is a set of timed expressions dm/Xn; 

- EXP is a set of Boolean expressions on grafcet input variables; 

- SEQT is a set of SeqT; 

- SEQR is a set of SeqR; 

- INV is a set of invariants Inv(cfg); 

- E ⊆ Cfg ×  SEQT × TEXP× EXP × SEQR × Cfg is a finite set of evolutions; 

- evo = 〈cfg, SeqT, Texp, exp, SeqR, cfg’〉 ∈ E represents an evolution from cfg to cfg’. 

We also write cfg  → ⋅ SeqRexp,TexpSeqT, cfg’ for evo; 

3.10 An example of application 

We conclude this chapter with the application of the algorithm to the grafcet portion in figure 

3.10.1. 
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Figure 3.10.1 The analyzed grafcet portion 

Let us consider the stable configuration 1: {1,4},{},{}. We have to evaluate the Tree of 

Accessible Configurations of configuration 1. The obtained TAC and GASC are shown in figure 

3.10.2 and 3.10.3. 

 
Figure 3.10.2 TAC graphical representation 

1: {1,4},{},{} 
 

2:{1,5},{},{} 
 

3:{1,4},{1sec/X4},{}  
 

3:{1,4},{1sec/X4},{}  
 

4:{2,4},{},{} 
 

<{t 45}>; b · 4Xsec/1 ; <{}> 
 

  <{}>; b · 1sec/X4; <{}> 

 

<{},{ t 12}>; a ·b · 1sec/X4; <{},{h2}>  
 

<{}>; a ·b · 1sec/X4; <{}> 
 

<{},{ t 12}>; a ·b · 1sec/X4;  
<{},{h 2}> 

 

5:{2,4},{},{O2} 
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Figure 3.10.3 GASC graphical representation 

In order to have a more simple representation the invariants are not reported, but normally 

they must be indicated. 

Now we show how the Tree and the Graph have been evaluated. 

3.10.1 Root analysis 

Root description: 

Sit = {1,4}; Temp = {}; Out = {}; Wtemp = {1sec/X4}; EnT = {t12,t13,t45} 

Configuration invariants: 

Inv(Sit) = b ,   Inv(Temp) = 4Xsec/1 · 4Xsec/2 ,   Inv(Out) = 1 

Inv(Cfg) = b · 4Xsec/1 · 4Xsec/2  

Actual transition conditions: 

cond’(t12) = 0; cond’(t13) = 0; cond’(t45) = b 

Clearable transitions set:  

CT = {t45} 

Evaluation of all not timed evolutions: 

1: {1,4},{},{} 
 

… 
 

3:{1,4},{1sec/X4},{}  
 

5:{2,4},{},{O2} 
 

<{t 45},…>; b · 4Xsec/1 …; <{},… > 
 

<{},{ t 12}>; a ·b · 1sec/X4; <{},{h2}>  
 <{}>; a ·b · 1sec/X4; <{}> 

 



 

 
 
 
 

 
 
 
 

66 

The only set of transitions for which the maximal context is not false is SCT1 = {t45} 

Cmax(SCT1) = b 

Cevo(SCT1) = b · 4Xsec/1  

Evaluation of all timed evolutions: 

The only possible timed evolution is STevo1 = {1sec/X4} 

TCmax(STevo1) = 1sec/X4 

TCevo(STevo1) = 1sec/X4 ·b  

3.10.2 Direct links starting from the root 

Not timed evolutions: 

SCT1: 

UpNode = Root = 1:{1,4},{},{} 

Cevo = b · 4Xsec/1  

SeqT = <{t45}>; SeqR = <{}> 

DnNode: (Cfg = 2:{1,5},{},{}; UpCfg = 1:{1,4},{},{} ; Cres = b · 4Xsec/1 ; SeqT = <{t45}>;  SeqR = <{}>) 

Timed evolutions: 

STevo1: 

UpNode = Root = 1:{1,4},{},{} 

TCevo = 1sec/X4 ·b  

SeqT = <{}>; SeqR = <{}> 

DnNode: ( Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,4},{},{}; TCres = 1sec/X4 ·b ; SeqT = <{}>; SeqR = <{}>) 

3.10.3 Analysis of an internal node 

Analyzed node: 

(Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,4},{},{};  TCres = 1sec/X4 ·b ; SeqT = <{}>; SeqR = <{}>) 

EnT = {t12,t13,t45} 

Evaluation of node parameters: 
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FS = {}, RS = {} 

Cres’ = 1sec/X4 ·b  

cond’(t12) = a · 1sec/X4 · 1sec/X4 ·b  = a ·b  

cond’(t13) =  a · 2sec/X4 · 1sec/X4 ·b  = 0 

cond’(t45) = b · 1sec/X4 ·b  = 0 

CT = {t12} 

Evaluation of all possible evolutions at the internal time scale: 

The only set of transitions for which the maximal context is not false is SCT1 = {t12} 

Cmax(SCT1) = a ·b  

Cevo(SCT1) = a ·b  · 1sec/X4 ·b  = a ·b  · 1sec/X4 

Evaluation of the stability context: 

Csta = 1sec/X4 ·b · ba⋅  = 1sec/X4 ·a ·b  

3.10.4 Update the set of direct links 

Evolutions: 

SCT1: 

UpNode: (Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,4},{},{}; TCres = 1sec/X4 ·b ; SeqT = <{}>; SeqR = <{}>) 

Cevo = a ·b  · 1sec/X4 

SeqT = <{},{t12}>, SeqR = <{},{h2}> 

DnNode:( Cfg = 4:{2,4},{},{}; UpCfg = 3:{1,4},{1sec/X4},{};Cres = a ·b  · 1sec/X4; SeqT = <{},{ t12}>; SeqR = <{},{h2}>) 

Stability evolutions: 

Leaf = (Cfg = 3:{1,4},{1sec/X4},{}; TCsta = 1sec/X4 ·a ·b ; SeqT = <{}>; SeqR = <{}>) 

UpNode = (Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,4},{},{}; TCres = 1sec/X4 ·b ; SeqT = <{}>; SeqR = <{}>) 

TCevo = 1sec/X4 ·a ·b  

SeqT = <{}>, SeqR = <{}> 

DnNode: Leaf 
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3.10.5 Analysis of a second internal node 

Analyzed node: 

(Cfg = 4:{2,4},{},{};UpCfg = 3:{1,4},{1sec/X4},{}; Cres = a·b ·1sec/X4; SeqT = <{},{t12}>, SeqR = <{},{h2}>) 

EnT = {t2,t45} 

Evaluation of node parameters: 

FS = {X2}, RS = {X1} 

Cres’ = a ·b · 1sec/X4 

cond’(t2) = 1sec/X2 · a ·b · 1sec/X4 = 0 

cond’(t45) = b · a ·b · 1sec/X4 = 0 

CT = {} 

There are not possible evolutions. 

Evaluation of the stability context: 

Csta = a ·b · 1sec/X4 

Stability evolution: 

Leaf = (Cfg = 5:{2,4},{},{O2}; Csta = a ·b · 1sec/X4; SeqT = <{},{t12}>; SeqR = <{},{h2}>) 

UpNode = (Cfg = 4:{2,4},{},{}; UpCfg = 3:{1,4},{1sec/X4},{};  Cevo = a ·b · 1sec/X4;  SeqT = <{},{t12}>;  SeqR = <{},{h2}>) 

Cevo = a ·b · 1sec/X4 

SeqT = <{},{t12}>,  SeqR = <{},{h2}>  

DnNode: Leaf 
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Chapter 4 

The Equivalent Timed Automaton 
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Contents 
The first part of this chapter is devoted to 

introduce all main theoretical notions about 
timed transition systems and timed automata, 
then a particular means for timed automata 
analysis called region graph is presented.  

In the second part an algorithm that 
allows to translate a Graph of Accessible 
Stable Configurations into a corresponding 
equivalent timed automaton is presented with 
all results obtained in terms of study of 
reachability of a configuration. 

The chapter is concluded with two 
examples: the first one illustrates how all 
introduced algorithms have to be applied, the 
second one illustrates how the obtained 
equivalent timed automaton can be analyzed 
with the support of UPPAAL. 
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4.1 Introduction 

It’s simple to observe that the form of the GASC is very similar to the form of a timed 

automaton: we have a set of locations, each location is characterized by an invariant and the 

evolutions are caused by input and timed events.  

This is not a casual result: we have carried out the GASC in order to obtain a GRAFCET 

representation as close as possible to timed automaton formalism. For example a more simple 

choose can be to use a representation that allows to stop clocks, but in this case the more similar 

formalism is the automaton chronometer class that presents undecidability problems. 

4.2 Timed automata 

Timed automata1 have been proposed by R. Alur and D. Dill in the 1990s [Alu 90], [Alu 94] 

as a model for real-time systems. A timed automaton is a classical finite automaton which can 

manipulate clocks, evolving continuously and synchronously with absolute time. Each transition 

is labeled by a constraint over clock values (also called guard), which indicates when the 

transition can be fired, and a set of clocks to be reset when the transition is fired. Each location is 

constrained by an invariant, which restricts the possible values of the clocks for being in the state. 

4.2.1 Some notation 

Let X be a finite set of clocks. A (clock) valuation v over X is a function v : X →  which 

associates to each clock x its value v(x) ∈ . We denote by X
 the set of clock valuations over X. 

Let be τ ∈ , we write v + τ for the clock valuation associating with clock x the value v(x) + τ. If 

r is a subset of X, [r ← 0]v is the valuation v’ such that v’(x) = 0 if x ∈ r, and v’(x) = v(x) otherwise. 

We write C(X) for the set of clock constraints over X. We note by C’(X) the restriction of C(X) to 

                                                 
 
 
 
 
 

1 1 See [Alur 90], [Alur 94], [P.W.Kopke 95], [A.Puri 96], [A. Di Febbraro, A. Giua 02],  
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positive Boolean combinations only containing constraints of the form x ≤ c or x < c. We interpret 
clock constraints over clock valuations: a valuation v satisfies the atomic constraint x ⋈ c 

whenever v(x) ⋈ c. When a valuation v satisfies a constraint g, we write v ⊧ g. 

4.2.2 Syntax 

We define a timed automaton as follows: 

24. Timed automaton 

A timed automaton is a tuple (L,l0,X,Inv,T,Σ) where: 

- L is a finite set of control states (locations); 

- l0 ∈ L is the initial location; 

- X is a finite set of clocks; 

- T ⊆ L × C(X) × Σ × 2X × L is a finite set of transitions; 

- e = 〈l, g, σ, r, l’〉 ∈ T represents a transition from l to l’, g is the guard of e, r is the set 

of clocks that is reset by e, and σ is the action of e. We also write l  →
σ r,,g  l’ for e; 

- Inv: L → C’(X) associates with each location an invariant; 

- Σ  is an alphabet of actions. 

4.2.3 Timed transition system, bisimulation and quotient 

In this paragraph we give the main notions that help to understand how a reachability 

problem study on timed automata can be performed. 

25. State transition system 

A state transition system (or transition system) is a tuple T = (S,Σ, →,S0,SF) where: 

- S is a set of states (possibly infinite); 

- Σ is an alphabet of actions; 

- → ⊆ S × Σ × S is the transition relation: if (s, σ, s’) ∈ →, where s, s’ ∈ S and σ ∈ Σ, we 

write s →σ s’; 

- S0 is the set of initial states; 

- SF is the set of final states (it can be omitted). 
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26. Timed transition system 

A timed transition system is a tuple S = (S, Σ, →,s0) where: 

- S is a set of states (possibly infinite); 

- s0 ∈ S is the initial state; 

- Σ is an alphabet of actions; 

- → ⊆ S × (Σ ∪ ) × S is the transition relation. Moreover, the relation → satisfies the 

three following conditions: 

I if s →0 s’ , then s = s’ ; 

II if s →τ s’  and s’ →τ' s’’  with τ, τ' ∈  then s  → τ+τ ' s’’ ; 

III if s →τ s’  with τ ∈  then for all 0 ≤ τ' ≤ τ, there exists s’’ such that s →τ' s’’  and  

s’’  → τ−τ ' s’. 

27. Bisimulation 

Let T = (S,Σ,→,S0,SF) be a transition system.  An equivalence relation ∼ ⊆ S × S between 

the states of T is a bisimulation if: 

- (s ∼ ŝ) ∧ (s ∈ S0) ⇒ (ŝ ∈ S0); 

- (s ∼ ŝ) ∧ (s ∈ SF) ⇒ (ŝ ∈ SF); 

- (s ∼ ŝ) ∧ (s  →
σ  s’)      ⇒  ∃ s’ ∈ S | (ŝ  →

σ  ŝ') ∧ (s’ ∼ ŝ’). 

28. Predecessors set 

Let T = (S,Σ,→,S0,SF) be a transition system. Given a subset S’ ⊆ S and a generator σ, we 

define the set of σ−predecessors of S’:  

Preσ(S') = { s ∈ S | (∃ s’ ∈ S’) s  →
σ  s’  } 

 

Proposition 1. Let T = (S,Σ,→,S0,SF) be a transition system. Necessary and sufficient condition 

so that ∼⊆ S × S be a bisimulation is that the following conditions are verified: 

- the set S0 is the union of equivalence classes of ∼; 
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- the set SF is the union of equivalence classes of ∼; 

- for each equivalence class π ∈ Π∼ and for each σ ∈ Σ, the set Preσ(π) is the union of 
equivalence classes of ∼. 

 

29. Quotient 

Let T = (S,Σ,→,S0,SF) be a transition system and let ∼ ⊆ S × S be a bisimulation. We define 

quotient T/∼ the transition system T/∼ = (S /∼,Σ,→,S0 /∼,SF /∼) where: 

- The states set S /∼ = Π∼ coincides with the equivalence classes of ∼; 

- S0 /∼ = {π ∈ S /∼ | π ⊆ S0}; 

- SF /∼ = {π ∈ S /∼ | π ⊆ SF}; 

- the transition → is defined as follows: ∀π,π' ∈ S /∼, ∀σ ∈ Σ    π  →
σ π' if π ⊆ Preσ(π). 

 

We can underline two important results that allow solving our GASC reachability problem after a 

translation into a timed automaton. 

Result 1. Let suppose that, in the quotient, π’ is reachable by π by means of generator σ. We can 

say that in the original system starting from each state in π it is possible to reach at least a state in 

π’ by means of generator σ. 

Result 2. Let suppose that, in the quotient, π’ is not reachable by π by means of generator σ. We 

can say that in the original system there are not states in π from which it is possible to reach at 

least a state in π’ by means of generator σ. 
 

If we can evaluate the quotient of a timed automaton, if each timed automaton location 

represents a GASC configuration and each automaton transition represents a GASC evolution, 

then we can evaluate all reachable configurations of the analyzed GASC. 

4.2.4 Region graph 

A state of a timed automaton is a pair (l,v) ∈ L × X where l is the location and v is the clock 

valuation. The semantic of a timed automaton is given as a timed transition system with action 

transitions (labeled with elements of Σ) and delay transitions (labeled with real numbers 

representing the delay). Classically, an execution in a timed transition system TTS is a sequence 
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of consecutive transitions. A state s ∈ S is said to be reachable in S if there exists an execution 

from s0 to s. 

30. Semantic of a timed automaton 

Let A = (L,l0,X,Inv,T,Σ) be a timed automaton. The semantic of A is defined as the timed 

transition system SA = (S,s0,→,Σ) where: 

- S = L × X; 

- s0 = (l0,v0) where v0(x) = 0 for each x ∈ X; 

- the transition relation → is composed of: 

I action transitions: (l,v)  →
σ ( l’,v’) iff there exists l  → σ r,,g  l’ ∈ T such that v ⊧  g, 

v’ = [ r ← 0] v and v’ |= Inv(l’); 

II delay transitions: if τ ∈ ℝ, (l,v) →
τ  (l,v + τ) iff v + τ  ⊧ Inv(l). 

 

Given a timed automaton, let us define for each clock xi a value Mi that is the biggest integer 

that xi is confronted with in the guards. We can give the following definition. 

31. Regions 

Let consider the equivalence relation ≈ ⊆ X × X between timed automaton continuous 

states: given two states x = (x1, x2,…,xn) and x’ = (x’1, x’2,…,x’n), then x ≈ x’ if: 

- ∀i    xi = x’i or (xi > Mi) ∧ (x’i > Mi); 

- ∀i | xi ≤ Mi  〈xi〉 = 0 ⇔ 〈x’i〉 = 0; 

- ∀i,j | xi ≤ Mi, xj ≤ Mj 〈xi〉 = 0 ⇔ 〈x’i〉 = 0; 

where x is the integral part of x and 〈x〉∈ [0,1) is its fractional part. 

Proposition 2. Let consider the equivalence relation ≈ ⊆ S × S between the SA states defined as 

follows: given two states (l,v) and (l’,v’), then (l,v) ≈ (l’,v’) if l ≈ l’ and v ≈ v’. This relation is a 

finite bisimulation on S. 
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Proposition 3. The number of equivalence classes of relation ≈ defined on a timed transition 

system associated with an n-dimensional timed automaton is less or equal than 

N=|L|·(∏
=

+
n

1i
i )1M( )·n!·2n. 

 

A quotient of a timed automaton is also called region graph, practically a region graph is a 

finite automaton. In figure 4.2.1 an example of timed automaton and region graph is shown. 

 
Figure 4.2.1 An example of region graph 

4.3 Timed automata for GASC analysis 

We translate the GASC into a timed automaton in order to solve a problem of configuration 

reachability. The translation of a grafcet model into a GASC implies to introduce some 

simplification: we deal with time at a logic level. As the time is dealt at a logic level it is obvious 

that we can’t perform all possible controls on timed expressions, the result is that in the GASC 

there are certain configurations that is physically impossible to reach. The GASC gives a 

necessary condition of reachability: if a grafcet configuration is not reachable by its GASC, then 

the analyzed grafcet can’t reach this configuration. Vice versa we can’t say that if a configuration 

is reachable by the GASC then it is reachable by the analyzed grafcet. With the translation of the 

GASC into a timed automaton we can individuate all not physically reachable configurations and 

then delete them. 
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4.3.1 Timed automaton construction 

Let us call l1 the equivalent timed automaton initial location, we obtain the equivalent timed 

automaton with the following steps: 

- for each GASC clock hi in H associate a timed automaton clock xi in X; 

- associate the initial timed automaton location l1 to the initial GASC configuration cfg1, all 
clocks are reset in the initial location; 

- for each configuration cfgi (with i ≠ 1) in Cfg associate a timed automaton location li; 

- for each Boolean expression expi in EXP associate an action σ in Σ; 

- for each timed automaton location li and GASC configuration cfgi: 

- for each timed expression nm X/d in Inv(Temp) associate with the location li an 
invariant Invij: xn ≤ dm; 

- for each GASC evolution evoi 〈cfgi, SeqTi, Texpi, expi, SeqRi, cfgi’〉 in E associate a timed 
automaton transition ei 〈li, gi, σi, ri, l’i〉  in T where: 

- for each timed expression dm / Xn in Texpi associate with the guard gi a condition xn≥dm, 

for each timed expression nm X/d  in Texpi associate with the guard gi a condition 
xn<dm; 

- if there is at least an expression dm/Xn in Texpi then there are not associated actions 
(σi=‘’) else the associated action σi is expi;  

- for each GASC clock hj in SeqRi associate a timed automaton clock xj reset; 

It’s obvious that in certain situations the equivalent timed automaton is a nondeterministic 

timed automaton. 

4.3.2 Analysis of the equivalent timed automaton and GASC simplification 

The analysis of the equivalent timed automaton is performed by construction of the region 

graph. As there is a 1-1 correspondence between automaton locations and GASC configurations, 

if a given location is not reachable by timed automaton then the corresponding configuration is 

not physically reachable by the analyzed grafcet. 

The GASC simplification is performed as follows: let Reach be the set of locations li 

reachable in the timed automaton, for each configuration cfgi in Cfg if the corresponding location 
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li is not in Reach then cfgi is deleted from the GASC. 

4.3.3 Equivalent timed automaton complexity and analysis simplification 

As a grafcet can be the representation of very complex systems, the analyzed model can be 

very complex and it can be characterized by a very large number of temporizations. The 

consequence is that the equivalent timed automaton can be characterized by a large number of 

clocks and then a very large number of clock regions. But it’s obvious that for each location not 

all clocks and guard are relevant in order to evaluate the system behavior, then a technique of 

active-clock reduction can be useful.  

A method that generalizes active-clock reduction is proposed in [G.Behrmann, P.Bouyer 03]. 

On this work, authors propose a location-based finite zone abstraction which computes an 

abstraction based on the relevant guards for a particular state of the model (as opposed to all 

guards), then they propose a location-based bisimulation. The result is a region graph 

simplification. 

4.4 An example of application 

In this paragraph we show a step by step example of algorithm application. The simplicity of 

this example allows to have an overall view of the results of this work. 

Let consider the grafcet in figure 4.4.1. 

 
Figure 4.4.1 A final example 
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4.4.1 TAC construction 

The initial configuration is 1: {1},{},{} 

Root 1:{1},{},{}  analysis 

Root description: 

Sit = {1}; Temp = {}; Out = {}; Wtemp = {1sec/X1}; EnT = {t1} 

Configuration invariants: 

Inv(Sit) = 1,   Inv(Temp) = 1Xsec/1 ,   Inv(Out) = 1 

Inv(Cfg) = 1Xsec/1  

Actual transition conditions: 

cond’(t1) = 0; 

Clearable transitions set:  

CT = {} 

There are not possible not timed evolutions. 

Evaluation of all timed evolutions: 

The only possible timed evolution is STevo1 = {1sec/X1} 

TCmax(STevo1) = 1sec/X1 

TCevo(STevo1) = 1sec/X1 

Direct links starting from the root 

Timed evolutions: 

STevo1: 

UpNode = Root = 1:{1},{},{} 

TCevo = 1sec/X1 

SeqT = <{}>; SeqR = <{}> 

DnNode: N2 ( Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1:{1},{},{}; TCres = 1sec/X1; SeqT = <{}>; SeqR = <{}>) 

Internal node N2 analysis 

Analyzed node: 

(Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1:{1},{},{}; TCr es = 1sec/X1; SeqT = <{}>; SeqR = <{}>) 
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EnT = {t1} 

Evaluation of node parameters: 

FS = {}, RS = {} 

Cres’ = 1sec/X1 

cond’(t1) = 1sec/X1 = 1 

CT = {t1} 

Evaluation of all possible evolutions at the internal time scale: 

The only set of transitions for which the maximal context is not false is SCT1 = {t1} 

Cmax(SCT1) = 1 

Cevo(SCT1) = 1 · 1sec/X1 = 1sec/X1 

Evaluation of the stability context: 

Csta = 1sec/X1 · 0 = 0 

Update the set of direct links 

Evolutions: 

SCT1: 

UpNode: (Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1:{1},{} ,{}; TCres = 1sec/X1; SeqT = <{}>; SeqR = <{}>) 

Cevo = 1sec/X1 

SeqT = <{},{t1}>, SeqR = <{},{}> 

DnNode:  

N3 ( Cfg = 3:{2},{},{}; UpCfg = 2:{1},{1sec/X1},{};  Cres = 1sec/X1; SeqT = <{},{t1}>; SeqR = <{},{}>) 

Internal node N3 analysis 

Analyzed node: 

(Cfg = 3:{2},{},{};UpCfg = 2:{1},{1sec/X1},{}; Cres  = 1sec/X1; SeqT = <{},{t1}>, SeqR = <{},{}>) 

EnT = {t2} 

Evaluation of node parameters: 

FS = {X2}, RS = {X1} 

Cres’ = 1sec/X1 
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cond’(t2) = 0 

CT = {} 

There are not possible evolutions. 

Evaluation of the stability context: 

Csta = 1sec/X1 

This node is a leaf. 

Stability evolution: 

Leaf: (Cfg = 4:{2},{},{O2};UpCfg = 3:{2},{},{}; Cst a = 1sec/X1; SeqT = <{},{t1}>, SeqR = <{},{}>) 

UpNode = (Cfg = 3:{2},{},{}; UpCfg = 2:{1},{1sec/X1},{};  Cevo = 1sec/X1;  SeqT = <{},{t1}>;  SeqR = <{},{}>) 

Cevo = 1sec/X1 

SeqT = <{},{t1}>,  SeqR = <{},{}>  

DnNode: Leaf 

Root 4:{2},{},{O2}  analysis 

Root description: 

Sit = {2}; Temp = {}; Out = {O2}; Wtemp = {}; EnT = {t 2} 

Configuration invariants: 

Inv(Sit) = a↑ ,   Inv(Temp) = 1,   Inv(Out) = 1 

Inv(Cfg) = a↑  

Actual transition conditions: 

cond’(t2) = ↑a; 

Clearable transitions set:  

CT = {t2} 

Evaluation of all not timed evolutions: 

The only set of transitions for which the maximal context is not false is SCT1 = {t2} 

Cmax(SCT1) = ↑a 

Cevo(SCT1) = ↑a 

Direct links starting from the root 
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Not timed evolutions: 

SCT1: 

UpNode = Root = 3:{2},{},{O2} 

Cevo = ↑a 

SeqT = <{t2}>; SeqR = <{h1}> 

DnNode: N2 ( Cfg = 1:{1},{},{}; UpCfg = 4:{2},{},{O 2}; Cres = ↑a; SeqT = <{t2}>; SeqR = <{h1}>) 

Internal node N2 analysis 

Analyzed node: 

(Cfg = 1:{1},{},{}; UpCfg = 4:{2},{},{O2}; Cres = ↑a; SeqT = <{t2}>; SeqR = <{h1}>) 

EnT = {t1} 

Evaluation of node parameters: 

FS = {X2}, RS = {X1} 

Cres’ = a 

cond’(t1) = 1sec/X1 = 0 

CT = {} 

There are not possible evolutions. 

Evaluation of the stability context: 

Csta = ↑a 

This node is a leaf. 

Stability evolution: 

Leaf: (Cfg = 1:{1},{},{};UpCfg = 4:{2},{},{O2}; Cst a = ↑a; SeqT = <{t2}>; SeqR = <{h1}>) 

UpNode = (Cfg = 1:{1},{},{}; UpCfg = 4:{2},{},{O2}; Cres = ↑a; SeqT = <{t2}>; SeqR = <{h1}>)  

Cevo = ↑a 

SeqT = <{t2}>,  SeqR = <{h1}>  

DnNode: Leaf 

 

All stable configurations have been analyzed. 

Graphical representation: 
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Figure 4.4.2 Trees of Accessible Configurations 

4.4.2 GASC construction 

Configurations:  

cfg1 =  1: {1},{},{}, cfg 2 =  4: {2},{},{O2} 

Cfg = {cfg1,cfg2} 

The initial configuration is cfg1. 

Clocks: 

H = {h1} 

Set of timed expressions: 

TEXP = {1sec/X1, 1Xsec/1 } 

Set of expressions on grafcet input variables: 

EXP = { a↑ , a↑ } 

Set SEQT of SeqT associated with evolutions: 

 <{},{t 1}>; 1sec/X1; <{},{}>  
 

 <{},{t 1}>; 1sec/X1; <{},{}>  
 

  <{}>; 1sec/X1; <{}> 
 

   <{t2}>; ↑a; <{h1}>  
 

  <{t2}>; ↑a; <{h1}>  
 

1: {1},{},{} 

Inv = 1Xsec/1  
 

2:{1},{1sec/X1},{} 
Cres = 1sec/X1 

 

3:{2},{},{} 
Cres = 1sec/X1 

 

4: {2},{},{O2} 

Inv = a↑  

 

1:{1},{},{} 
Cres = ↑a 

 

4:{2},{},{O2} 
Csta = 1sec/X1 

 

1:{1},{},{} 
Csta = ↑a 
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SeqT1 = <{},{t 1}>, SeqT2 = <{t2}> 

SEQT = {SeqT1,SeqT2} 

Set SEQR of SeqR associated with evolutions: 

SeqR1 = <{},{}>, SeqR2 = <{h2}> 

SEQR = {SeqR1,SeqR2} 

Set INV of invariants Inv: 

Inv1 = 1Xsec/1 , Inv2 = a↑  

INV = {Inv 1,Inv2} 

Set E of evolutions evo: 

evo1 = 〈cfg1,1sec/X1, ,SeqT1,SeqR1,cfg2〉, evo2 = 〈cfg2, ,↑a,SeqT2,SeqR2,cfg1〉, 

E = {evo1,evo2} 

Evaluation of the initial configuration/evolution: 

As there are not possible transitions starting from configuration cfg1, starting from the fictitious configuration cfg0 

there is only an empty evolution that leads to cfg1 where clock h1 is reset. 

Graphical representation:  

 
Figure 4.4.3 Graph of Accessible Stable Configurations 

4.4.3 Equivalent timed automaton construction 

Clocks: 

x1 corresponds to clock h1 

X = {x 1} 

1: {1},{},{} 

Inv = 1Xsec/1  
 

4: {2},{},{O2} 

Inv = a↑  
 

  <{t2}>; ↑a; <{h1}>  
 

<{},{t 1}>; 1sec/X1; <{},{}>  
 

INIT 
<>, , <{h1} > 
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Locations:  

l1 corresponds to configuration cfg1 and l2 corresponds to configuration cfg2 

L = {l1,l2} 

The initial configuration is l1. 

Alphabet: 

Σ =  { a↑ , a↑ } 

Set of invariants Inv: 

Inv11 = {x1 ≤ 1} 

Inv = {Inv11} 

Set T of transitions ei: 

e1 = 〈l1,g1,σ1,r1,l2〉, e2 = 〈l2,g2,σ2,r2,l1〉, 

Where g1 = {x 1 ≥ 1}, g2 = {}, σ1= ‘’, σ2 = ‘↑a’, r1 = {}, r 2 = {x 1} 

Graphical representation 

 
Figure 4.4.4 Equivalent timed automaton 

4.4.4 Region graph construction 

The maximum integer that x1 is confronted with is 1. We can see that in location 2 the clock 

x1 doesn’t influence automaton behavior, moreover, before to return in location 1 this clock 

“passes through” a reset. 

The region graph of this timed automaton is: 

1 
{x 1 ≤ 1} 

 

2 
 
 

  ↑a, x1:= 0
 

x1 ≥ 1 
 

x1:= 0 
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Figure 4.4.5 Region graph of the equivalent timed automaton 

All timed automaton locations (1 and 2) are reachable, then all GASC configurations are 

physically reachable. In this case, this is an obvious result but if there are three or four clocks the 

reachability study problem becomes complex and it is impossible to perform an analysis without 

a region graph study. 

4.5 An UPPAAL aided grafcet analysis 

The GASC translation into a timed automaton allows to apply timed automata automatic 

verification tools to a grafcet model. In this paragraph we show how a grafcet verification can be 

performed with the support of UPPAAL. 

Let us consider the grafcet in figure 4.5.1. 

 
Figure 4.5.1 grafcet analyzed with UPPAAL support 
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Let us suppose that the following properties have to be verified: 

- (A) safeness specify: outputs O2 and O3 can’t never be activated simultaneously; 

- (B) liveness specify: output O2 can be emitted. 

A third property that has to be verified is the absence of deadlocks. 

The GASC that represents grafcet behavior is represented in figure 4.5.2. 

 
Figure 4.5.2 GASC of grafcet in figure 4.5.1 

Each evolution is marked with an id (evo1 is the evolution 1, evo2 is the evolution 2…) 

We can see that property (A) is not verified in the GASC configuration (3). Potentially we 
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have the following result: property (A) is not verified and property (B) is verified. However, we 

can’t say “property (A) is not verified and property (B) is verified” as a configuration reachability 

in the GASC is only a necessary condition. 

Then we have to translate our GASC into an equivalent  timed automaton and then to 

perform a verification on obtained automaton. 

The equivalent timed automaton representation in UPPAAL is shown in figure 4.5.3. 

 
Figure 4.5.3 Equivalent timed automaton UPPAAL representation 

We associate a location li to each configuration i and a transition evo = j to each GASC 

evolution evoj. 

We can see that the obtained automaton is a nondeterministic timed automaton. We have 

nondeterminism between evolutions 2 and 4 and between evolutions 3 and 7. This is not a 

problem, as we only want to know if a location is reachable and if a transition can be cleared. 

Now we have to “ask” to UPPAAL which locations are reachable, which transitions can be 

cleared and if the system is deadlock free. In UPPAAL we have a language that allows to verify 

these properties. The results are shown in figure 4.5.4. 



 

 
 
 
 

 
 
 
 

89 

 
Figure 4.5.4 UPPAAL verification 

Then we obtain the simplified GASC in figure 4.5.5. 

Location l2 is reachable 

Location l3 is not reachable 

The following transitions 
can’t be cleared: 

evo6, evo5, evo4, evo2, evo1 

There are not deadlocks 
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Figure 4.5.5 Simplified GASC 

The simplified GASC gives a necessary and sufficient reachability condition. Then all 

specifies are verified: there are not deadlocks, at least a configuration which contains the output 

O2 is reachable, no configurations which contain O2 and O3 are reachable. 
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Chapter 5 

Case study 



 

 
 
 
 

 
 
 
 

92 

Case study 
In this chapter we present a case study. 

The analyzed grafcet represents a problem of 
water distribution. 

The complexity of this grafcet doesn’t 
allow a manual analysis. The GASC 
evaluation is performed by a python tool that 
has been carried out by using the algorithm 
presented in this work. This tool is used at the 
LURPA laboratory in order to perform 
formal verification on grafcet models. 
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5.1 The python tool 

The results obtained in this work have been implemented into a python code. This tool 

evaluates the Tree of Accessible Configurations and the Graph of Accessible Stable 

Configurations of a grafcet model. Given a grafcet all possible reachable configurations and all 

evolutions are reported. Also instability cases are reported. 

5.2 Water distribution problem 

The analyzed grafcet is the model presented in the first chapter. The case study concerns the 

distribution of a water provision used by several production channels. The system is composed of 

a tank, two pumps, six valves and distribution devices. The request is to generate the start and 

stop signals for the pumps and the closing and open signals for the valves. We have to take into 

account eventual pump faults, circuit problems and different requests of distribution. Each pump 

is characterized by an upstream valve and a downstream valve. The output and reversal valve are 

common valves (figure 5.2.1). 

 
Figure 5.2.1 Water distribution problem 
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This problem was studied in [Roussel 94] and it was proposed by a specialist industrial in water 

distribution, we report the same grafcet solution with a modification: as in [Roussel 94] time was 

not taken into account, all timed expressions were replaced with Boolean variables, in this case 

we don’t have this limitation. 

5.2.1 System description 

Distribution requests 

Two request type: a low supply “low debit” request and a high supply “high debit” request. 

Only a high supply request at time can be covered and a high and low supply request can be 

covered simultaneously. 

The pumps 

We have two pumps “pump1” and  “pump2” that work alternately. Normally a pump works 

only 24 hours and each day a commutation is necessary in order to have an equilibrate work 

distribution. This commutation is performed after that all currently requests have been covered. 

A pump fault can be verified: in this case the system is stopped and all valves are closed, then 

when a new request is received the other one (if there are not other faults) is used. When the 

pump is repaired, after that all in progress requests are covered, a new commutation is performed. 

The valves 

For each pump we have an upstream valve and a downstream valve, the associated variables 

are: “upstream pump1”,  “downstream pump1”,  “upstream pump2”,  and “downstream pump2”. 

The general fault 

We can individuate a general fault in our system and this is reported with signal “blockage”. 

In this case the system is stopped and all valves are closed. All requests are ignored until the 

problem is solved. 

System functioning 

Let suppose that a request is received and at least a pump has not faults. If the pump is off, 

when a request is received the upstream valve is opened and after five seconds the pump is 

switched on, the downstream valve is opened and then the water distribution starts. 

If the pump is working the request is covered instantaneously. When a request of end 
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distribution is received, the distribution is stopped and if this is the last request then the pump is 

switched off and the valves are closed. A request is represented with the signals “high debit” 

and/or “low debit”: if the Boolean value is true then we have a request, the notion of end request 

is not necessary. 

5.2.2 The grafcet 

The grafcet is the same that we showed in figure 1.2.1, FMP1 and FMP2 describe pump1 and 

pump2 functioning, ChP generates the pump switching, Rev generates the signal to open reversal 

valve and Func imposes system behavior. 

 
Figure 5.2.2 Analyzed grafcet 
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This grafcet has been analyzed with the python tool, we show the main results. 

5.2.3 Python tool results 

The python tool gives the following results: 

 
Figure 5.2.3 Python tool results 

grafcet properties 
 

configuration description 
 

invariant description 
 

evolution description 
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With the Python tool we can know in a few second: the number of (potentially) reachable 

configurations, the number of possible evolutions, if there are instable situations, for each 

reachable configuration we have its description and its invariant and for each evolution we know 

the sequence of transitions sets and the evolution cause. 

In this case we have 32 configurations, 670 evolutions and there are not instability situations. 
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Chapter 6 

Concluding remarks 
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6.1 Our results 

With this work an important contribution has been given to solve the problem of GRAFCET 

model formal verification. Let us summarize all steps that have to be applied to perform a 

complete analysis. 

- Logic level time: 

- complete grafcet analysis at the internal time scale and construction of the Tree of 
Accessible Configurations – instability detection; 

- grafcet behavior at the external time scale description with the construction of the 
Graph of Accessible Stable Configurations – necessary condition for reachability. 

- Physical level time: 

- equivalent timed automaton construction – physical time implementation; 

- equivalent timed automaton analysis – reachability study; 

- Graph of Accessible Stable Configurations simplification – necessary and sufficient 
condition for reachability. 

The more delicate step is the TAC construction as GRAFCET behavior interpretation is 

performed at this level: the presence of an error at this level compromises all analysis results. The 

GASC representation, as it has been defined, allows to individuate all possible reachable 

configurations with a detailed description and all evolution causes and consequences. This is a 

very important aspect because if a non desired behavior is detected, the analyst individuates:  

- the input configuration/event and timed condition that generate the unexpected behavior; 

- which transition sets and in which order are cleared; 

- the starting configurations from which the unexpected behavior can be reached. 

An other important aspect is that all this information is obtained with the minimum possible 

computational complexity. 
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6.2 Further investigations 

The results obtained in this work will be improved with further investigations. As not all 

grafcet possibilities are considered, as stored actions, this work is widely open to new 

investigation possibilities. As a python tool for GASC has been carried out, a second python tool 

for equivalent timed automaton construction will be implemented, probably with a direct 

intarface with UPPAAL tool. 
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