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Analysis of grafcet models by automatic generatioof the equivalent timed automaton

Abstract

The objective of this thesis is to give a contrébub solve the problem of formal verification on
GRAFCET models with time requirements.

GRAFCET is a standardized graphical model usecetxribe the behavior of sequential logic systems.
Currently, all solutions offered to engineers tafpen formal verification on GRAFCET models are
based on simulation techniques. However, the géoeraf simulation sequences is an error-prone,
tedious and time-consuming task. This explains f@ngal verification is today an active researchaare
Interesting results are now available for timedbendta formal verification. For this class of modele
tool UPPAAL allows to verify automatically timedqperties.

With this work we allow to take advantage of reswubtained on timed automata and to apply them to
perform formal verification of GRAFCET models. Inder to apply this technique a translation algonith
that allows to express automatically the behavia@ GRAFCET model with a timed automaton has been
carried out.

Sommario

L'obiettivo di questa tesi & dare un contributo nisblvere il problema della verifica formale di dwli
descritti in termini di GRAFCET con vincoli tempdira

Il GRAFCET é un modello grafico standardizzato agagr descrivere il comportamento di sistemi logici
sequenziali. Attualmente, tutte le soluzioni offeggli ingegneri per effettuare la verifica formalie
modelli GRAFCET sono basate su tecniche di simafsiln ogni caso la generazione di sequenze per la
simulazione & un processo incline all’errore, noiesdispendioso in termini di tempo. Questo spiega
perché la verifica formale al giorno d'oggi € uti\zd area di ricerca. Attualmente sono disponibili
interessanti risultati riguardo la verifica formalegli automi temporizzati. Per questa classe dietio
I'applicazione UPPAAL permette di verificare autdinamente le proprieta temporali.

Grazie ai risultati di questo lavoro, &€ possibileutsare i vantaggi ottenuti sugli automi tempostize
applicarli per effettuare la verifica formale di dedli GRAFCET. Per utilizzare queste tecniche, aost
realizzato un algoritmo che consente di esprimemddo automatico il comportamento di un modello
GRAFCET in termini di automa temporizzato.
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Chapter 1

Introduction



Contents

In this chapter we introduce the
objectives of this work. The problem of
grafcet models formal verification is
presented with the support of an example that
we’ll use in the entire document.

In the second part a brief bibliography
about previous research works on this field is
presented, then the approach used in this
work is introduced.



1.1 Objective of this work

The objective of this work is to contribute to tfeemal verification of GRAFCET models
with time requirements.

GRAFCET is a standardized graphical model usedescrbe the behavior of sequential
logic systems [IEC 60848]. This language is wideled in several industrial domains, like
railway transport, electrical power production anthnufacturing industry, to specify the
expected behavior of logic controllers. Defined=nance at the end of ‘70s, it was standardized
in France at the beginning of the ‘80s, and atitibernational level in 1988. Since this date,
several extensions have been proposed to enhaagedtieling possibilities of this model and
they are included in the latest version of theddaa [I[EC 60848].

Currently, all solutions offered to engineers taifyeif a GRAFCET model is correct are
based on simulation techniques. However, the gaoeraf simulation sequences is an error-
prone, tedious and time-consuming task. This emplaihy the formal verification is today an
active research area. Interesting results are nmitahle for the formal verification of timed
automata. For this class of models, the tool UPPAEmIts to verify automatically timed
properties.

So our idea is to take advantage of results okdaometimed automata and to apply them to
perform formal verification of GRAFCET models. Inder to apply this technique it is necessary
to have a method that allows to express autombtitted behavior of a GRAFCET model with a
timed automaton. The objective of this work is &wvelop this method.

1.2 Problem presentation

The formal verification problem is the problem a@rifying if a system satisfies to required
properties. Mainly, there are two classes of sgecif

- safeness specifies, that assure that no anomedmattion can be reached;

- liveness specifies, that assure that a requinaedition can be reached.

To perform a formal verification of GRAFCET basedduls is a very complex operation as
we will illustrate with the support of an examplet us consider the grafcet in figure 1.2.1.



This model is composed of five grafcet charts thestcribe the system behavior. A parallel
behavior is implemented by the presence of fivertshand there exist also several
synchronizations as several transitions that canfite®l simultaneously. The grafcet is
characterized by five input variables (pumpl_fgultmp2_fault, blockage, low debit, high debit)
and eight output variables (Reversal, pumpl, purap&ir pumpl, upstr pump2, dwnstr pumpl,
dnwstr pump2, out). We have transition conditidmet depend on input conditions (for example
transition {o 11 in grafcet FMP1), transition conditions that degpesn step activation (for
example transitions$ s1in grafcet Func) and transition conditions thgpete on step activation
time (for example transitior szin grafcet Func).



] p
| — —
4 purnp 1 fault 1 pumplfault - (231222 + 221)- (low debit + high debit) - blockage
12
[
L purnp L fault
— pumnplfault - (blockage +low debit - tugh debat }
11
~|» putnp | fault
|
FMP2
| —
| purnp 2falt — pump2fault - (332312 + 311} -(low debit + high debit) - blockage
22
|
| purnp2fault
- —+  pumpfaull - (blockage + low debit - high debit )
—|— putnp 2fault
|
]
ChP Func
[
4 24w —+ 11 - X2
37 51 —[ upsty puemp 1 52 —|: upstr pump?
— 24K3(32 out out
- 53712 +— X2 -+ X2 - Ss{22
Rev
53 upstr pumpl 54 upstr pump?2
L Tgh debit - (X53+X54) out out
41 Eeversal dwmstr pump | dwmnstr purmp?
L { high debit +2{50) putrg 1 purmnp2
1 = - X2

Figure 1.2.1 Water distribution grafcet control mockel



In order to present the problem of analysis of aAGRET' based model behavior let us
consider a starting situation (a situation is addedctive steps) and an input configuration. We
will calculate the evolution of the GRAFCET modabathe reached situation.

Let us consider the following starting situatiofl2,20,32,41,58 The set of enabled
transitions (a transition is said to be enabledllifits upstream steps are activated) from this
situation is{ti> 11112 10to0 21t20 23t32 31,141 4alss 5¢ -

Let suppose that input configuration is: pumplfault, pump2fault = 0, blockage = 0, low
debit = 1, high debit = 0. We suppose also that 3teis active less than 24 hours.

The set of firing transitions 1> 14 and the reached situation{i$1,20,32,41,58 But the
analysis is not completed yet as it still exists§ transitions.

The set of transitions that can be fired fr¢fi,20,32,41,58 is {txo 2ats3 s5¢ SO we have
another evolution that leads to situati¢hl,22,32,41,50 and we have to repeat the same
analysis.

From situation{11,22,32,41,5P the set of transitions that can be fireqtis sqtso 53 SO we
have another evolution that leads to situafi@h,22,32,40,52 As step 52 is just activated, the
set of transitions that can be fired is empty. Wiigation is a stable situation. We can evaluate
the set of emitted outputsupstream pump2,oput

This simple simulation shows how the behavior @RAFCET model could be complex. It
is obvious that a manual analysis is impossibleargineers must be assisted.

1.3 Previous works

Several works have been developed to be able t@gxphe behavior of a timed GRAFCET
model with timed automata [L'Her 01], [Bauer 04].

In [L'Her 01], authors propose a method to traesteGRAFCET into a timed automaton in
order to use the model-checker Kronos to perfornrmé&b verification. In this approach, a
location of a timed automaton represents a possdieation of the grafcet, a specific

! A detailed description of GRAFCET formalism is givin chapter 2



combination of the input values and a specific cimaiion of the temporizations.

From a technical point of view, this approach cduduse only for very small grafcets due to
the combinatorial explosion. For the grafcet orufegg1.2.1, we have: 32 different situations, 5
inputs, then 32 @} different combinations of the input values, 4 pemizations, then potentially
16 (2) different combinations of temporizations.

The size of the generated timed automaton coulkbeimportant. Potentially, it could have
16384 different locations. For each location, iaiso necessary to represent time evolutions or
input changes. In our case, we have for each mtadl or 32 transitions.

In [Bauer 04], authors propose a method to traada®FC program into a timed automaton
in order to use the model-checker Uppaal to perftormal verification. In this approach, a
timed automaton is associated for each SFC withgarallelism structure. For SFC with
parallelism structure, several automata are adsocidlo take into account synchronization
among SFC nets by step activation, authors intreduBoolean variable in timed automata for
each step. The value of this variable is fixedh®/¢orresponding automaton.

This method could not be used directly for GRAFCHEDdels as the behavior of a
GRAFCET model and the behavior of a SFC model #ferent. For example, in a SFC, it is
impossible to fire simultaneously two enabled tidmss from the same step. In GRAFCET
models, this evolution is possible.

The method proposed in [Bauer 04] is based on tharacteristics. To be used for
GRAFCET models, it is necessary to verify, befdre translation step, that it is impossible to
fire simultaneously two enabled transitions frome #ame step. For the grafcet on figure 1.2.1,
this property is not verified for transitiong 1 and &, s2 This grafcet could not be verified by
this method.

Therefore a specific method is necessary.

1.4 Proposed method

The proposed method consists to calculate the wdpdee of state of the grafcet before the
translation into a timed automaton. During thigyetaall the specificities of GRAFCET evolution
are taken into account, such as simultaneous fafrigansitions or research of stability.

The work presented in this master thesis is anneida of a previous work [Roussel 94]
developed by Jean-Marc Roussel for not-timed gtaftéhe LURPA laboratory (ENS - Cachan).
In his work he gives an important contribution tdve the problem of grafcet analysis first by



improving GRAFCET theoretic foundation as stabilitgtion and by introducing an extended
Boolean algebra (also dealt in [Roussel, Lesage &3 then by introducing a particular state
machine called Graph of Accessible Situations.his state machine each state represents a
grafcet situation and each evolution representsatcet evolution. It is important to underline
that only events that cause grafcet evolutiondaen into account and this is a key aspect since
it leads to avoid combinatorial explosion.

In our work, in a first step we extend the conagpgrafcet situation to the concept of grafcet
configuration by integration of time constraintsaatogic level, then, in a second step, time at
logic level is extended to a physic level in ortieobtain a timed automaton representation.

The first step allows to individuate all potentyalteachable grafcet configurations and
evolutions, then by analysis of timed automatonpalsical timing constraints are taken into
account to individuate which configurations areuatly reachable.

1.5 Outline

In chapter 2 grafcet formalism is introduced witisb elements and classical programming
structures, a particular attention on stability ljheon is given. In chapter 3 a particular state
machine (the Graph of Accessible Stable Configanafi used for grafcet representation and
analysis is introduced. In chapter 4 after a bpedsentation of theory notions about timed
transition systems and timed automaton formalismalgorithm that allows the translation of the
Graph of Accessible Stable Configurations intonaeti automaton is shown. In chapter 5 a case
study of a complex grafcet analysis by using aqyttool is presented with obtained results.



Chapter 2

The GRAFCET
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Contents

In the first part of this chapter we present
the GRAFCET formalism. All main aspects
are introduced including action assignation
and timed behaviors.

The second part is devoted to the
presentation of GRAFCET based models
stability analysis problem, in particular a
stability criterion is given.
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2.1 Introduction

In 1975, in France, a commission composed of usityeand industrial engineers with the
aim of carry out the means to describe the compglgstems of industrial automation was
established. The nature of the systems to be thescriell into the category of discrete event
systems, systems for which discrete space is matnemus, and whose evolution depends on the
occurrence or otherwise of special events. Theltre§icommission work was the definition of
the GRAphe Fonctionnel de Commande Etapes-Transitior GRAFCET, which was adopted
by the International Electrotechnical Commissiori 888, in the International Standard No 848,
as a language for describing systems of industigbmation. The GRAFCET language,
described by this standard, has served as foumdati®FC language of IEC standard 61131-3,
but the syntax and the semantics defined by eatheofwo standards are nevertheless distinct
because their scopes are different: GRAFCET is ecipation language and SFC is a
programming language. This standard is mainly feopte (design engineers, realization
engineers, maintenance engineers, etc) who nesgetfy the behavior of a system (control-
command of automatic machine, safety componeny, €gs specification language should also
serve as a communication means between designgérgsans of automated systems. In fact the
implementation of an automated system require@aticular, a description relating cause and
effect. To do that, the logical aspect of the amkibehavior of the system musts be described.
The sequential part of the system, which is accesiseBoolean input and output variables, is
the logical aspect of this physical system. Theab&r indicates the way in which the output
variables depend on the input variables (see figutel). The objective of the GRAFCET is to
specify the behavior of the sequential part ofsysems.

In this chapter we will present the main notionsldbGRAFCET. All information is taken
from [IEC 60848], [J.Perrin, F.Binet 06] and [P.&@tghio 04].
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Figure 2.1.1 A grafcet as sequential part of a stem

2.2 Terms and definitions

(In alphabetic order)

- action: language element associated with a step indgaimactivity to be performed on
output variables;

- chart, graph: graphical presentation describing the behavia gfstem;

- directed link: language element indicating the evolution patletwben steps by
connecting steps to transitions and transitiorsteps;

- grafcet chart: function chart using GRAFCET;
- interpretation : part of the GRAFCET enabling to link:
- the input variables and the structure, by thermaed the transition-condition;

- the output variables and the structure, by thanma®f the actions;
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situation: name of the state of the system described byefraind characterized by the
active steps at a given instant;

step language element used for the definition of #aguential part of the system;

transient evolution: evolution characterized by the clearing of selvesaccessive
transitions on the occurrence of a single inpuhgve

transition: language element indicating a possible evolutibthe activity between two or
more steps;

transition condition: language element associated with a transitioicatithg the result of
a Boolean expression.

2.3 Structure and interpretation

The GRAFCET is used for the designing of grafcearthto provide a graphical and

synthetic representation of sequential system behakhe representation distinguishes:

thestructure, which allows possible evolutions between theadituns to be described,;

theinterpretation, which enables the relationship between inputpuivariables and the
structure (evolution, assignation and allocatiolesuare necessary to achieve this
interpretation).

The structure comprises the following basic items:

step a step is either active or inactive, the setabiva steps of a grafcet chart at any given
instant represents the situatioh this grafcet at this instant. We represent gicglly a
step with a rectangle and we distinguish activpssfeom inactive steps by a spot.

transition: a transition indicates that an evolution of tlotivity between two or more
steps may evolve. This evolution is realized bydlearing of the transition. We represent
graphically a transition by a transversal line.

directed link: a directed link connects one step to a transitiora transition to one steps.

The following elements are used for the interpretat

transition-condition: associated with each transition, the transitioneition is a logical
expression which is true or false and which is cose of input variableand/or internal
variables.
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- action: the action indicates, in a rectangle, what shalidr@e on the output variable, either
by assignation (continuous action), or allocatistored action).

Figure 2.3.1 shows the main grafcet elements.
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2.4 GRAFCET rules
2.4.1 Syntax rule

Step transition and transition step alternation klzdways be respected in all

forms of sequence.

Consequences:
- two steps shall never be connected directly Oiyected link;

- the directed link shall only connect a step toaasition or a transition to a step.
2.4.2 Evolution rules

As each situation is characterized by the set tWasteps at a given instant, the GRAFCET
evolution rules only affect the application, on gteps, of the evolution principle between the
situations of the sequential part of the system.

Rule 1 The initial situation, chosen by the designerthge situation at the

9%

initial time.

The initial situation is the situation at the ialttime. Therefore it is described by the set of
steps active at this time. The choice of the gibmatat the initial time depends on the
methodology relating to the type of sequential drthe considered system. Graphically, the
initial steps are indicated with a double rectangle

Rule 2 A transition is said to be enabled when all immeshapreceding steps
linked to this transition are active. The cleariafja transition occurs when the

transition is enabled and its associated transkammndition is true.
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Rule 3 The clearing of a transition causes simultaneotistyactivation of al

3%

the immediate succeeding steps and the deactivatioall the immediate

preceding steps.

\v

Rule 4 Several transitions which can be fired (clearedpudianeously are

simultaneously fired.

The evolution between two active situations implieat no other intermediate situation is
possible, the change from one representation ofstheation by a set of steps to another
representation is instantaneous.

Rule 5 If during the operation, an active step is simuéansly activated and

deactivated, it remains active.

If a step is included in the description of thegading situation and of the following one, it
can only, therefore, remain active.

2.5 Input events and internal events

2.5.1 Input events

Evolution rules show that only a change in the @alof the input variables may cause the
evolution of the grafcet. This change called "inpuént” shall be defined by the preceding value
and the succeeding value of all the input variafidlesharacterizing this single event. In practice,
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a set of input events is specified only by theestitange characterized (rising etge falling
edgé) by one or several Boolean input variables. We s@nthat "the event occurs" at the date
of the change of state of the input variables widicaracterize it. The input event specification is
implemented by a logical expression of one or sdveharacteristic variables, usually in a
transition-condition. It may also directly specé#y internal event but more rarely.

2.5.2 Internal events

Only certain input events could occur from a giva@tuation. The connection between a
situation and input event, which may occur fromsthkituation, is called internal event. This
notion is mainly used by the designer to condigaonoutput allocation to a set of internal events.
The description of a set of internal events isgened by one of the following ways:

- step activation the step activation describes the set of inteewahts each of which has
this step activation as a consequence.

- step deactivation the step deactivation describes the set of tteerial events which have,
for each one, this step deactivation as consequence

2.6 Output modes

The actions enable links to establish the connedieiween the evolution of the grafcet chart
and the outputs. Two output modes, continuous noodgored mode, describe how the outputs
depend on the evolution and on the system inputs.

2.6.1 Continuous mode (assignation on state)

In the continuous mode, the association of an motih a stepindicates that an output

! The rising edge of a logical variable, indicatgttte sign 1" in front of a Boolean variable, indicates thasth
rising edge is only true for the change from vaue value 1 of the concerned variable.

2 The falling edge of a logical variable noted bg gign " in front of a Boolean variable, indicates thastfalling
edge is only true for the change from value 1 toe#® of the concerned variable.
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variable has a true value if the step is active iritle assignation condition is verified. The
assignation condition is a logical expression efitiput variables and/or the internal ones. If one
of the conditions is not met and provided that tleep action relating to the same output meets
the conditions, the concerned output variable tékedalse value. Assignation refers to imposing
the value of the output variables (true or fal3éke set of local assignations (relating to thevacti
steps at a given instant) defines the assignafiai the output variables for this situation.

Assignation rule For a given situation, the value of the outputstielg to the

continuous actions is assigned:

to the true value, for each output relating to tdetions associated with active
steps and for which the assignation conditions\anefied;

to the false value, for the other outputs (whicle aot assigned to the true

value).

Figure 2.6.1 shows an example of an action assigneantinuous mode.

ash

2 MOVE

Figure 2.6.1 Example of continuous mode action aggiation

Action MOVE is executed if step 2 is active and conditemis true
2.6.2 Stored mode (allocation on event)

In the stored mode, the association of an actionteynal eventss used to indicate that an
output variable takes and maintains the enforcddevd one of these events occurs. Explicit
representations are necessary to describe theia@ssoof the actions with the events (activation
step, deactivation step, ...).

The value of an output relating to a stored actemains unchanged until a new specified
event modifies its value. Allocation refers to stgr at a considered instant, a determined value
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to an output variable.

Allocation rule: the value of an output, relating to a stored antiand
associated with an event, is allocated to the iaghid value, if the specified

internal event occurs the value of this outputu at the initialization.

Figure 2.6.2 shows an example of action assignedntinuous mode.

&

2 MOVE =1

Figure 2.6.2 Example of stored mode action assignan

The allocation of the value 1 to the output vaedOVE is performed on the occurrence of one
of the input events having the activation of theps2 as consequence.

2.7 The temporizations

In GRAFCET standard we can associate temporizatiorexpressions depending on input
events and internal events. A condition on a teiaption, like Boolean conditions, can be used
in transition-conditions and in assignation comais. We have two forms of condition on
temporization: TON and TOF.

2.7.1 TON

The TON condition is indicated with d/exp, whereegresents the delay time and exp is an
expression that can depend on input or/and interaaébles. TON functioning is described in
figure 2.7.1.
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Figure 2.7.1 A representation of TON condition

The condition d/exp becomes true when x becomealéqud. The clock x counts the time
elapsed from becoming true of expression exp emgssivhen the value d is reached, finally x is
reset when exp becomes false.

2.7.2 TOF

The TOF condition is indicated with exp/d, whereegresents the delay time and exp is an
expression that can depend on input or/and interaaables. TOF functioning is described in
figure 2.7.2.
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Figure 2.7.2 A representation of TOF condition

The condition exp/d becomes true when exp becoraesand it is still valid until x becomes
equal to d. The clock x counts the time elapsenhfb@coming false of expression exp end stops
when the value d is reached, finally x is resetrep becomes true.

2.8 Classical programming structures

In this paragraph several used classical programgmstructures are presented. In fact in
addition to simple sequence, there are other v&fuli particular structures.

2.8.1 Selection of sequences

We have a selection of sequences when a steplasvéa by more of one transition. If we
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want to carry out a choice we have to ensure us tthe different transition-conditions are
mutually exclusive.

t1-+4+ cl t2 4 o2

21 31
T |

Figure 2.8.1 Selection of sequence

In figure 2.8.1 we have to check thata2. = O, in fact starting from situation {1} in whic
step 1 is activated the grafcet can perform theetlewvolutions shown in figure 2.8.2.

cl-c2 {21}

d-c2 {31}
w >

clc2 >{21,31}

Figure 2.8.2 Possible evolutions for grafcet in figre 2.8.1

If c1 and c2 are not mutually exclusive for eackgdiole combination we have to carry out a
mutual exclusion to avoid that steps 21 and 31 &@ntheir following sequences) become active
simultaneously. However there exist some cases hitchwone can desire that under certain
conditions several sequences become active sineoltesty, in these cases we talk about
interpreted parallelism: the structure is the sarhdéigure 2.8.1 but a simultaneous sequence
activation is allowed.

Particular cases of selection of sequences areskie@and backward skip.
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Figure 2.8.3 Step skip

|

Figure 2.8.4 Backward skip

2.8.2 Activation and synchronization of parallel sguences

We have an activation of parallel sequences wheanaition is followed by several steps. In
figure 2.8.5 if transition t1 is fired step 12, 2Ad 32 become active and they lead to three
sequences that will evolve independently.

1
1+l
[ [ [

12 22 32

—+

Figure 2.8.5 Activation of parallel sequences

Synchronization occurs when several steps precedmsition. Necessary condition to have
transition firing is that all the parallel sequesn@@e completed, so that the final steps of each
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sequence are active. With reference to figure 2i86transition t1 is validated if and only if
steps 1F, 2F and 3F are simultaneously active.

1F =F sF

| | |
t14-cl

4

|

Figure 2.8.6 Synchronization of sequences

2.9 Temporal boundary of a given grafcet (UTE C 03:91)

The insulation of a system described by a grafsebdishes a description boundary that
defines a portion of the universe in an interna and an external one. This boundary insulation
corresponds to a border between an internal terhpoaée and an external temporal scale to the
model.

From the point of view of the external time scale event causes a change of the
instantaneous state of the system outputs. Fronpdhe of view of the internal time scale, the
time interval between the occurrence of a conditransition that becomes true and the actual
firing of the transition is very small but not zero

This separation is shown in figure 2.9.1. The eXdangptaken from [Roussel 94].
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Figure 2.9.1 Internal and external universe

Following the introduction of dual time scale, tB&RAFCET now presents the following
characteristics:

- only outputs associated with steps that belorgjdble situations are generated,;
- only stable situations are sensible to inpuestaanges;

- only instable situations are sensible to stepvaitbns/deactivations;

2.10 The stability notion

What has been introduced suggests that it is nage&s introduce a criterion of stability on
the GRAFCET.
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2.10.1 Stability of a situation
In [afcet 83], the stability of a situation is defd as follows:

1. Situation stability
When a grafcet reaches a situation, this is calletstable if at least a transition is

clearable, if any transition is clearable then tiguation is called stable.

By considering this definition to emphasize an im@ot aspect is important: the stability of
a situation depends not only on the situationfitsaet also on changes of the inputs that have
allowed achieving this situation.

2.10.2 Total instability criterion

The two criteria mentioned above need to be comgldtecause the essential properties
required by the models is that they are cycle ftbat is there are not stationary situations or
totally unstable situations. It is therefore neaeg$o define a criterion of instability.

The first two stability criteria considered were tlollowing.

2. Stability criterion (1)
The total instability has verified when the numbgkevolutions between two external events

Is greater than the number of steps in the oveyadfcet.

3. Stability criterion (2)
The total instability has verified when a grafcetiches twice the same situation between

two external events.

In his PhD thesis [Roussel 94], Jean-Marc Rous$elyws with the following two examples
that these two criteria of instability are not cdetely correct.

Example 1

This example puts in a critical position the ficsiterion. With reference to figure 2.10.1, the
grafcet consists of 7 steps but it needs 12 eariatto reach the stable situation {10,20} from the
initial situation to the occurrence tin.
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Figure 2.10.1 Example of crisis of first stabilitycriterion

Example 2

This example puts in a critical position the secoriterion. With reference to figure 2.10.2,
starting from initial situation, iffm occurs the grafcet reaches twice the unstableatsin
{10,21} and finally it reaches the stable situat{dg,20}.

— —

= HH = |-
-2
]

321 —+*m
21
=1 —+ TH10
12 22

=1 4 X0

Figure 2.10.2 Example of crisis of second stabilitgriterion

Then, in his PhD thesis Jean-Marc Roussel shovesvestability criterion:

4. Used stability criterion
If in occurrence of an external event a grafcetfpens twice the same evolution, then we

have total instability.

A correct grafcet verification implies a correctdacomplete application of all GRAFCET
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standard behaviors and a complete study of grdfekavior at the internal and external time
scale. We perform this analysis by constructiothefGraph of Accessible Stable Configurations,
that is presented in the following chapter.
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Chapter 3

The Graph of Accessible Stable
Configurations
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Contents

This chapter illustrates all aspects of the
state transition machine that we have carried
out in order to study the behavior of
GRAFCET based models: the Graph of
Accessible Stable Configurations (GASC).

In the first part we present the elements
of this state transition machine as state and
evolution and how time is taken into account.
In order to illustrate all following aspects we
introduce the context notion.

In the second part a particular tree
structure  (the Tree of Accessible
Configurations TAC) that allows a grafcet
analysis at the internal time scale is
introduced. The construction of this tree is
indispensable in order to obtain the Graph of
Accessible Stable Configurations.

In the third part the algorithms that
allow to build the TAC and the GASC are
shown. The stability analysis is performed
with the TAC construction.

In the last part we apply to a grafcet
portion these algorithms.
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3.1 Introduction

The Graph of Accessible Stable Configurations (GA&{Iows a complete analysis of a
grafcet behavior at the external time scale by watan of all possible grafcet states and
evolutions. In order to be sure of correctness wf analysis we have to apply all GRAFCET
standard rules. The form of GRAFCET temporizatioat e deal with in this work is the TON
applied on grafcet steps, but a particular grafi@atslation that allows to deal with TON and
TOF on input variables is presented in the follayviri this document.

The GASC is an extension of the Graph of AccessBitaations [Roussel 94] where the
situation notion is extended to configuration notto perform time integration. It is important to
underline that time notion is dealt only at a lolgigel then all timed events and conditions are
dealt as Boolean variables. The extension of titrthephysical level is performed in a second
analysis step with the construction of the equivalened automaton.

The construction of the GASC needs an intermeditgp, in fact to obtain grafcet behavior
at the external time scale it is necessary to parfofirst analysis at the internal time scaleywso
have to build a Tree of Accessible Configurationkere only root and leafs are stable
configurations and all internal nodes are interratdconfigurations.

In the following of this chapter this state traimsitmachine will be introduced with all main
characteristics.

3.2 Configuration

The first notion that we have to introduce is tbafgguration notion. In GRAFCET standard
a situationSit is defined as a set of active steps. But in otdestudy all possible grafcet
evolutions starting from a situation, the only imf@tion about active steps is not enough. For
example in figure 1.2.1, starting from situatiph?,20,32,41,58 it is necessary to know how
long step 32 has been activated. Then we havetém@xhe notion of situation by integration of
information about time.

In order to integrate a compact time representatvenintroduce a second séempthat
includes all grafcet timed conditions that are fiedi A third set is necessary to a complete
representation of a grafcet state and this is ¢h@fsemitted output®©ut Moreover, to complete
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our representation, we associate a cldtko each step for which at least a timed expresision
associated.
So we define as follows a configuration:

5. Configuration
A configuration Cfg is defined as a set of actiteps Sit, a set of true timed expressions
Temp and a set of emitted outputs Out.

For example, for situation {12,20,32,41,53} of gretf in figure 1.2.1 there are four distinct
configurations:

- 1:4{12,20,32,41,53},{},{Reversal,upstr pumpl,outydstr pumpl,pumpl};

- 2:{12,20,32,41,53},{5s/X12},{Reversal,upstr pumpit,dwnstr pumpl,pumpl},

- 3:{12,20,32,41,53},{24h/X32},{Reversal,upstr puthjput,dwnstr pumpl,pumpl};

- 4:{12,20,32,41,53},{5s/X12,24h/X32},{Reversal,uppumpl,out,dwnstr pumpl,pumpl}.

By looking at the figure 1.2.1 it is obvious thabnéiguration 3 and 4 are not stable
configurations: in fact if condition 24h/X32 is viezd we have transitiorsi s3firing and then an
evolution leads the grafcet to a new situation (eadsequently a new configuration). So it is
necessary to introduce the notion of invariant dom associated with a configuration.

3.2.1 The configuration invariant condition

The invariant condition associated with a configjorais a Boolean expression on input and
internal variables for which there are not posselelutions: this is the stability condition for a
configuration. In order to avoid grafcet evolutiomd the conditions relating to enabled
transitions must be false. Moreover, we have teican all possible variations of emitted outputs
set Out, then all input and internal variable iz that modify this set lead to a GASC
evolution. Finally we have to consider all possideiations of true timed condition set Temp.

We can give the following definitions:

! A more detailed description about temporizatioiishe dealt in the following of this chapter
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6. Situation invariant
The situation invariant condition is given by negatof application of OR operator
between the transition-conditions cond(f all validate transitions;t All step activation

variables and timed expressions are replaced viilirs values.

Inv (sit) = > cond(t,)

7. Timed invariant
The timed invariant condition is given by negatadrapplication of OR operator between
all timed expression tmp associated with the atgégateps that are not in the true timed

condition set Temp.
Inv(Temp) =Y d, /X,

where dn/X, OTemp

8. Output invariant

The output invariant condition is given by negatairapplication of OR operator between
the assignation condition cond(Oof all outputs @, associated with each step in Sit, that
are not present in the Out set and the negatioassfgnation condition condg) of all
outputs Qu associated with each active step in the Out sktstdp activation variables

and timed expressions are replaced with theirseslu

Inv(Out) =" cond(0, )+, cond(O,,,)
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9. Configuration invariant
The configuration invariant condition is given bppdication of AND operator between

these three invariant conditions
Inv (Cfg) = Inv(Sit) [Inv(Temp) [Inv (Out)

Let us consider, for example, the following confafion of grafcet in figure 1.2.1:
Cfg = 1:{12,20,32,41,53},{},{Reversal,upstr pumpipdwnstr pumpl,pumpl};
the three defined sets are:
Sit = {12,20,32,41,53}
Temp = {}
Out = {Reversal,upstr pump1,out,dwnstr pumpl,pumpl}

and the invariant conditions:

Inv(Sit) = pump1fault{blockaget low debitlhigh debit) + pump2fault- high debit
Inv(Temp) =24h/X32Bs/X12

Inv(Out) =1

3.3 Events

As each GASC configuration is a stable configuratiwe need at least an event to lead the
GASC from a configuration to another one. We havenput event every time that at least an
input variable changes its state and we have adtievent every time that a timed expression
changes its state. All timed events lead to a ahamghe Temp set but not all input events lead to
a change in the Sit or Out set. As temporizatiaesiternal variables of grafcet and inputs are
external variables of grafcet, since there is andawy between internal and external grafcet
universe (par. 2.9), it is impossible to have stangity between input and timed events (they are
uncorrelated). This result can be explained withreaample, let consider the following grafcet
portion:
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——1Ta —— lseciZ1

Figure 3.3.1 Timed and input events

It is impossible that the two eventa andf(1sec/X1) occur simultaneously: if we consider
eventta probability we can suppose that its probabilag lan uniform distribution ([A.Papoulis
02])) in the time (figure 3.3.2), to assume that occurs simultaneously with occurrence of
T(1sec/X1) implies that the area of a rectangle Wwilse O is not O and this is not possible (in
figure 3.3.2 ¢ is the instant of activation of step 1).

p.d.f.(ta)
A

>

1sec/X1
» t (sec

hi(sec)
1 _______

» t (sec

to o+l

Figure 3.3.2 Input events p.d.f. and timed events
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3.4 Evolution

In the Graph of Accessible Stable Configurationseaalution is caused by a change of at
least an input variable state or a timed expressiate that leads from a stable configuration to
another one.

We distinguish evolutions on the basis of cause@m$equence. The cause of an evolution
can be an input event or a timed event, the comseguof an evolution, mainly, can be a
configuration change that implies a variation ia 8it set (then at least a transition is cleared) o
a configuration change that doesn’'t imply changesSit set. We summarize all possible
combinations in table 3.4.1.

Cause Possible consequence

_ transition clearings o o
timed event | Temp setvariation Out set variation  Clock resets
(a variation in Sit)

) transition clearings o o
input event | Temp setvariation Out set variation  Clock resets
(a variation in Sit)

Table 3.4.1 Evolution causes/consequences

Now, as the objective of GASC construction is a plate grafcet analysis, in our state
machine we have to report all information aboutlevons: in each evolution we have to include
all causes and all consequences. Only by usingipfpsoach we can track all grafcet behaviors.

As shown in paragraph 1.2, the consequence of @t or timed event can be the firing of
one or more transitions (simultaneously), moreobefore to reach a stable grafcet situation (and
then a stable GASC configuration), a grafcet caachieone or more intermediate not stable
situations.

Generally, we can say that the consequence of put ior timed event is the firing of a
sequence of transition s&eqT(whereT is a set of cleared transitions).

In order to complete our representation we haveadtwsider also clock resets: we have a
clock reset Res(hif the new configuration contains a new steprividiich a timed expression
(and then a clockihis associated. As for transition firing, generallve associate with an
evolution a sequence of set of clock res#gR(whereR is a set of clock resets). The evolution
cause is represented by an expression that dependgut variables and timed expressions, this
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is called evolution contekt

10. Evolution
An evolution is characterized by a starting confagion StartCfg, an arrival configuration
ArrCfg, the evolution context Cevo, a sequencel@dred transition sets SeqT and a

sequence of clock reset sets SeqR.

As it's not possible to have timed events and inpuénts simultaneously, we study
separately evolutions caused by input events ameltievents: this is a very useful simplification.

3.5 Grafcet temporizations and timed events

An efficient and simple way of dealing with GRAFCEamporization is the key to perform a
low complex analysis of grafcet models. We haveidéet to deal only with a grafcet
temporization form: TON applied on a single stepvation variable Xi. We made this choice
because grafcet clocks can be stopped in partisiilations, but in timed automaton formalism
it is not possible to stop a clock. This problenn & solved in the case of TON applied on a
single step variable activation but it can’t in@ther cases.

3.5.1 Time representation

In the GASC we have decided to represent the tinae“lgic level”. All timed expressions
will be dealt as Boolean conditions that can be tufalse.

These considerations allow a translation of a gtafonfiguration into a timed automaton
state. Physically in the equivalent timed automatu clock is always active but this is not a
problem because in all automaton states for whicthé grafcet the relating clockis stopped,
there are not evolution conditions that depend lookch (because all relating conditions are
replaced with false).

! See paragraph 3.6
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3.5.2 Several temporizations associated with thersa step

A necessary observation is that several timed sgpyes can be associated with a step. Now,
it's obvious that it is not necessary to assocs&teeral clocks with the same step, because they
depend on the same activation step variable.

Let consider an ordered M-dimensional $ebnd(n)(read Timed Conditions on n) of timed
conditions associated with a step n/Xg,d/X,...dw/Xn,0m+1/Xn...dw/X> where d<d<...<dy:
each condition @ X, can’t be true if the previous conditiop.gX, is false.

For each step n we consider an ordered subsetsaid{n): the ordered set of timed
conditions on n that are still fals@ cond(n)(read False Timed Conditions on n). Formally:

FTcond(n) =0 dw/Xn | (dw/Xn O Tcond(n)) n (dm/X, OTemp)

Then, for each GASC configuration analysis, we es$® with each step n in Sit a set
FTcond(n) and we define for each configuration taVéeemp(read Waiting Temporizations) that
includes all first elements of all associated FToih

This procedure can be clarified with the suppomample in figure 3.5.1.

1 2

—1aeleec32 —— asZeec] —thelgec1

Figure 3.5.1 Grafcet and timed events

Let consider the configuration 1:{1,2},{},{}: thelefined sets are:
Tcond(1) = <lsec/X1,2sec/X1>, Tcond(2) = <lsec/X2>
FTcond(1) = <lsec/X1,2sec/X1>, FTcond(2) = <1s@e/X
Wtemp = {1sec/X1,1sec/X2}

Only timed expressions in Wtemp can cause a tinvetugon and then only these timed
expressions must be considered for the given corgigpn analysis.
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3.6 Context

Starting from a given stable configuration we caveéhthe same evolution by different
variations of input/internal variable state, so wan compact the representation with an
expression in Il that summarize all possible varieg that cause the same evolution.

3.6.1 Not timed context

This notion includes the concept of event and dwdi and it is tightly related to the
Boolean algebra extension Il introduced in [Rousketsage 93]. When it is not specified, with
context, we intend not timed context. In this case study only input and internal variable
variations while all timed conditions don’t change

11. Context
We call context the Il combinatorial expressionsttlwe associate with situations,

evolutions and transition sets.

Each context characterizes a precise set of intanthexternal variable variations.
We associate with each reached situation Sit duakcontext and a stability context.

12. Residual context
A residual context Cres describes the set of irgmd internal variable variations and

timed conditions that allows reaching this situatio

13. Stability context
A stability context Csta is the part of residuahtext for which the reached situation is

stable.

We associate with each transition set T a minimnatext and a maximal context.

14. Minimal context
A minimal context Cmin describes the set of inpwt aternal variable variations and

timed conditions that allows to clear this set odnsitions (necessary condition for

clearing).
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15. Maximal context
A maximal context Cmax is the part of the minimahtext for which only this set of

transitions is cleared (necessary and sufficiemtdition for clearing).

We associate with each evolution an evolution ocdnte

16. Evolution context
An evolution context Cevo describes the set oftiapd internal variable variations and

timed conditions that allows the occurrence of gslution.

Example

In order to show these definitions we use the exammgfigure 3.6.1.

Figure 3.6.1 Gracfet example for the illustration & context notion

In figure 3.6.2 we represent the sets of variatithas correspond to the analysis of possible
evolutions starting from situation {2} that is réeed by situation {1} in occurrence of evemh.
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S1
S4

S3

S2

Figure 3.6.2 lllustration of context notion

We have four sets of input/internal variable vaoias:
- S1: set of input/internal variable variations ¥dnich the situation {2} is reached;

- S2: set of input/internal variable variations fohich the transition t2 is cleared after
reaching situation {2},

- S3: set of input/internal variable variations fohich the transition t3 is cleared after
reaching situation {2};

- S4: set of input/internal variable variations fohich the transition t4 is cleared after
reaching situation {2};

Formally, we define these four sets as follows:
S1={x|x +1m=1%};

S2 ={x |§ +tma = 1*};

S3={x|x +tmbc=1%;

S4 ={x|x +tmb=1%;

Where 1* is the neutral element of AND operatoH.n
In the following table we show the several contettiat we have defined giving their
expression in Il and the relating sets of inputatéons, starting from the reached situation {2}.
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Context Il expression Represented set
Residual context of Sit {2} tTm S1
Stability context of Sit {2} Tm- @+Db) S1 - (S20 S30 S4)
Minimal context of t2 tTm-a S2
Maximal context of t2 tTm - a-b S2 - (S31 S4)
Minimal context of t3 Tm-b-c S3
Maximal context of t3 0 4]
Minimal context of t4 Tm-b S4
Maximal context of t4 tm- a-b-c S4 - (S20 S3)
Minimal context of {t2, t3} Tm-a-b-c S2n S3
Maximal context of {t2, t3} 0 2
Minimal context of {t2, t4} Tm-a-b S2n S4
Maximal context of {t2, t4} m-a-b-c (S2n S4) - S3
Minimal context of {t3, t4} Tm-b-c S3n S4
Maximal context of {t3, t4} ™™ ‘a-b-c (S3n S4) - s2
Minimal context of {t2, t3, t4} Tm-a-b-c S2n S3Nn S4
Maximal context of {t2, t3, t4} Tm-a-b-c S2n S3Nn S4

Table 3.6.1 Context illustration

3.6.2 Timed context

As we define a context for not timed expressiores associate separately a context for timed

expressions.
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17. Timed context
We call timed context the Il combinatorial expressi that we associate with timed

evolutions.

Each timed context characterizes a precise seinudt variable variations and input and
internal variable conditions.

We associate with each reached configuration (fgr(a timed evolution) a timed residual
context and a timed stability context.

18. Timed residual context
A timed residual context TCres describes the seinwd condition variations and input

and internal variable conditions that allows reaaithis configuration.

19. Timed stability context
A timed stability context TCsta is the part of tihmesidual context for which the reached

configuration is stable.

We associate with each possible Temp set variaioimed minimal context and a timed
maximal context.

20. Timed minimal context
A timed minimal context TCmin describes the séinadd expression variations and input
and internal variable conditions that allows a tidhevolution (timed evolution necessary

condition).

21. Timed maximal context
A timed maximal context TCmax is the part of threeti minimal context for which only this

timed evolution is possible (timed evolution neagsand sufficient condition).

We associate with each timed evolution a timedwah context.
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22. Timed evolution context
A timed evolution context TCevo describes the fsétned expression variations and input

and internal variable conditions that allows thecaorence of this timed evolution.

Example

In order to show these definitions we use the exarpfigure 3.5.1. Let consider the
configuration 1:{1,2},{},{}, the set of waiting teporizations is: Wtemp = {1sec/X1,1sec/X2}.
In figure 3.6.3 we represent the sets of variatittvad correspond to the analysis of all possible
timed evolutions starting from the analyzed confagion.

S1

S3

S4

S2

Figure 3.6.3 lllustration of timed context notion

We have four sets of timed expression variatiomsiaput and internal variables conditions:

- S1: timed expression variations set for whichtihreed expression {1sec/X1} is added to
Temp;

- S2: timed expression variations set for whichtiheed expression {1sec/X2} is added to
Temp;

- S3: timed expression variations set and inputditmms for which there are not other
possible evolutions after timed evolution causedlbgk h;
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- S4: timed expression variations set and inputditmms for which there are not other
possible evolutions after timed evolution causealbgk .

Let us define the following configurations: 1:{1,2sec/X1},{}, 2:{1,2},{1sec/X2}{},
3:{1,2},{1sec/X1,1sec/X2,}{}.
In the following table we show the several contettitat we have defined giving their

expression in Il and the relating set of timed espions variations and input and internal
variables conditions.

Timed context [l expression Represented set
Timed minimal context of Cfg 2 1sec/X1 S1
Timed maximal context of Cfg 2 1sec/X1 1sec/X 2 S1-S2
Timed minimal context of Cfg 3 1sec/X2 S2
Timed maximal context of Cfg 3 1sec/X1 - 1sec/X2 S2-S1
Timed minimal context of Cfg 4 1sec/X1Lsec/X2 S S2
Timed maximal context of Cfg 4 1sec/X1sec/X2 S S2
Timed residual context of Cfg 2 1sec/X1 1sec/X 2 S1-S2
Timed stability context of Cfg 2 b - 1sec/X1: 1sec/X2 S3-S2
Timed residual context of Cfg 3 1sec/X1 - 1sec/X2 S2-S1
Timed stability context of Cfg 3 a - 1sec/X1 - 1sec/X2 S4-S1
Timed residual context of Cfg 4 1sec/X1sec/X2 S S2
Timed stability context of Cfg4 | a - b - 1sec/X1: 1sec/X2 S3N S4

Table 3.6.2 Timed context illustration
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3.7 The Tree of Accessible Configurations

In order to build the Graph of Accessible Stablenfiurations a grafcet behavior study at
the internal time scale is necessary.

The Tree of Accessible Configurations (TAC) is presentation of a grafcet behavior at the
internal time scale. Starting from a given stabtafiguration the TAC gives all possible
evolutions that we can have in a grafcet in oceuwoeeof all possible timed and input events.

In the TAC we have four main elements: root, inéémodes, leafs and directed links.

3.7.1 The root

The root is the starting stable configuration thatwant to analyze. The root is characterized
by:
- the configuration description Cfg: Sit, Temp, Qut
- the invariant condition Inv(Cfg);
- the set of waiting temporizations Wtemp;
- the set of enabled transitions EnT.

Starting from these parameters we can calculateteaofs parameters that we use for TAC
construction.
For each transition in EnT we evaluate:
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The actual transition condition (for a root)the actual transition condition

v

cond’(t) is given by the transition condition conl@fter application of the
following replacements: all timed expressiongXd are replaced with theirs
values (if /X7 Temp it is replaced with true, else it is replaeath false), all
step activation variables Xare replaced with theirs values (if,XSit it is

replaced with true, else it is replaced with falsa) falling and rising edges of

step activation variablesare replaced with false.

Then we can evaluate:

The set of clearable transitions (for a rootthe set of clearable transitiorST
Is composed of all enabled transitionsfor which the actual transition
condition cond’() is not false.

The following parameter defines all possible notetil evolutions.

The simultaneous clearable transitions sets (forraot): the simultaneous
clearable transitions setSCT, are the sets of transitions that can be fired
simultaneously. These sets are given by sets afatie transitions for which
the resulting maximal contexts are not false argltare characterized by an
evolution context Cevo. We calculate as followsdbeo:

Cevo(SCT) = Cmax(SCT) - D, d, /X,

where dn/X, O Wtemp
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The following parameter defines all possible tinegdlutions.

The simultaneous timed evolutions setke simultaneous timed evolutions sets

STevo, are the sets of timed evolutions that cape®rmed simultaneousl

o <

These sets are given by sets of timed evolutiontich the resulting time
maximal contexts are not false and they are charaz#d by a timed evolution

context TCevo. We evaluate as follows the TCevo:

TCevo(STevg) = TCmax(STeve) - Zj Cevo'(SCT))

Where Cevo’(SGJis the evolution context Cevo(SEafter replacement of a

timed expressions with theirs values.

3.7.2 Internal nodes
Internal nodes represent generic reached confignsatThe internal nodes are characterized
by:
- the configuration description Cfg: Sit, Temp, Qut
- the upstream configuratidgpCfg;

- the (timed) residual context (T)Cres, that isegivby the (timed) evolution context
(T)Cevo that allows to reach this configuration;

- the sequence of transitions sets SeqT,;
- the sequence of clock resets sets SeqR;

- the set of enabled transitions EnT.

All evolutions starting from a reached configuratiare performed at the internal time scale,
then there are not possible input or timed evenhte first consequence is that at this level for
each transition condition all timed expressions tinlgsreplaced with their values and all input
rising and falling edges are replaced with false.

We can calculate a new set of parameters that wefarsthe following step of TAC
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construction.
The first set of parameters that we have to evalisathe set of internal events. We have two
sets of internal events.

The set of step falling edgethe set of step falling edges FS is the setaysst

that are deactivated in the analyzed evolution.@xduate this set as follows:

FS =0 Xn | (X O Sit(UpCfg)) n (X, O Sit(Cfg))

The set of step rising edgethe set of step rising edges RS is the set pEste

that are activated in the analyzed evolution. Waweate this set as follows:

RS =0 X, | (X, O Sit(Cfg)) n (X, O Sit(UpCfg))

Then we have to establish which transitions caffired. In order to perform this operation
we have to transform the (timed) residual context @l transition conditions as follows.

The actual residual contextthe actual residual context Cres’ is given by the
(timed) residual context (T)Cres after applicatioof the following
replacements: each falling edge of input and tiraegressions is replaced with
the negation of the expression and each rising edfjenput and timed

expressions is replaced with the expression.

For each transition in EnT we evaluate:
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The actual transition condition(for an internal node) the actual transition

condition cond’() is given by:
cond’(t) = cond(t) - Cres’

Where in cond’(} the following replacements are performed: all dom
expressions X, are replaced with theirs values, all step actigativariables
X, are replaced with theirs values, each step fallaage] X, is replaced with
true if X,//FS and with false otherwise, each step rising et{eis replaced

with true if X,/7RS and with false otherwise.

Then we can evaluate:

The set of clearable transitions (for an internalode) the set of clearabile

147

transitionsCT is composed of all enabled transitiongot which the actual

transition condition (for the internal node) conigd (s not false.

The following parameter defines all possible eviohs at the internal time scale.

The simultaneous clearable transitions sets (for anternal node) the
simultaneous clearable transitions s&GT, are the sets of transitions that can
be fired simultaneously. These sets are given tsyodelearable transitions for
which the resulting maximal contexts are not false they are characterized

by an evolution context Cevo. We calculate as\vi@leach evolution context:

Cevo(SCT) = Cmax(SCT) - Cres

Then we evaluate the stability context Csta:
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Csta = Cres ) C,,,,(SCT)

If the stability context Csta is not false we ceeat fictitious “stability” evolution that is
characterized by the evolution context:

Cevo(Stab) = Csta

The obtained configuration is marked as leaf arttliatlevel the emitted outputs are evaluated.
3.7.3 Leafs

The leafs represent stable configurations. A leaharacterized by:
- the configuration description Cfg: Sit, Temp, Qut
- the stability context Csta;
- the sequence of transitions sets SeqT that alteaching the configuration;

- the sequence of clock resets sets SeqR metimeadhal evolutions;
3.7.4 Directed links

A direct link connects a root to e node, a noda twode or a node to a leaf. Each directed
link is characterized by:

- the upstream node UpNode;

- the downstream node DnNode;

- the (timed) evolution context (T)Cevo;
- the sequence of transitions sets SeqT,;

- the sequence of sets of clock resets SeqR.

We evaluate the set SeqT as follows:
SeqT =<SeqT, T>

Where SeqT is the sequence of transitions setsi@ea until the given evolution and T is the set
of cleared transition associated with the givengian.
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We evaluate the set SeqR as follows:
SegR = <SegR, R>

Where SeqR is the sequence of sets of clock resatsated until the given evolution and R is
the set of clock resets performed in the given ianh.
The set R is evaluated as follows:

for each step Xin Sit(DnCfg):
{if (X O Sit(UpCfg))
{if (a clock h; is associated with ¥ then R = RO h;; }}

3.7.5 TAC construction

For the TAC construction we use an algorithm. Betorshow this algorithm let us define all
used variables.

Nodesis the set of unexplored nodeBnodesis the set of TAC nodedJpNodeis an
upstream nodeDnNodeis a downstream nod®&ootis the tree rootUpCfg is an upstream
configuration DnCfgis a downstream configuratioAn_cfgis the analyzed configuration.

The setlinks, associated with nodes, contains the informatiooutiall possible evolutions
that can be performed at the internal time scalachEelement of links is a set
{UpNode,DnNode,Cevo,SeqT,SeqR}.

The setSlinks associated with stable configurations, contaims information about all
possible evolutions that can be performed at thereal time scale. Each element of Slinks is a
set {UpCfg,DnCfg,Cevo,SeqT,SeqR}.

A tree structure is individuated by the Root, tldes set, the Leafs set the links set and the
Slink set.



55

TAC construction algorithm (pseudo-code)

Function BuildTree(An_cfg,grafcet) {
/I Association of a root to the analyzed configigatwith a function that evaluate all root parameste
Root = new root(An_cfg);
evaluate all SCT(Root);
evaluate all STevo(Root);
for O SCT { // Evaluation of all possible not timed evolutions
evaluate(DnNode,Cevo, T,R); /I Evaluation of all evolution parameters
links = links O {Root,DnNode,Cevo, T,R}; / Add the internal time scale evolution
Nodes = Nodes[] DnNode; /I Add the reached node
for 00 STevo{ // Evaluation of all possible timed evolutions
evaluate(DnNode,Cevo,,R);
links = links O {root,DnNode,Cevo,,R};
Nodes = Nodesd DnNode;}
for O n O Nodes{//Analysis of each unexplored node
Nodes = Nodes - n/ delete the node n from the set of unexploressod
evaluate all SCT(n);// Evaluation of all possible not timed evolutictarting from n
for O SCT{
evaluate(DnNode,Cevo,T,R);
if(T OSeqT) {// Check if total instability condition is verified
SeqT = SeqT(n)d T;
SegR = SeqR(hJ R;
links = links O {n,DnNode,Cevo,SeqT,SeqR};
Tnodes = Tnoded1 n; // add n to the Tree of Accessible Configurations
Nodes = Nodesd DnNode; //add DnNode to the unexplored noges
else{// If there is a totally instable situation the erris reported
SeqT =SeqT(n)d T;
SegR = SeqR(hd R;
links = links O {n,ERROR,Cevo,SeqT,SeqR},
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TNodes = TNodesD ERROR; }

if(Csta(n)) { // If the stability context is not false the nodeileaf

}

out_evaluation(n); //evaluation of emitted outputs

L = new leaf(n);// creation of a leaf with the node n

links = links O {n,L,Csta,SeqT,SeqR}//add the stability evolution
leaf = leafs L; // add the leaf to the set of leafs

/ladd an evolution between root configuration aedflconfiguration:

Slinks = Slinks O {cfg(Root),cfg(L),Csta,SeqT,SeqR};
}

Tree = {Root,Tnodes,Leafs,links,Slinks}

Return Tree;

}
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3.7.6 Individuation of totally instable situations

In paragraph 2.10.2 we introduced the criterioriotdl instability. The construction of the
TAC allows us to find totally instable situations.

Individuation rule: we have a totally instable situation if, for a givevolution

we meet twice the same set of transitions.

We associate with this kind of evolution a reachede that we call ERROR, this reached
node allows the analyst to individuate totally aidée situations.

3.7.7 A particular case: a leaf configuration is eggal to the root configuration

There are particular cases in which a leaf of the toincides with the root of the tree. This
is not an instable situation, but anyway this staation that requires attention, because we have
an evolution that leads to the starting configortithen, potentially, we have a useless
evolution.

3.8 The GASC construction

The construction of the GASC is performed with #pplication of algorithm reported in the
paragraph 3.8.1;

3.8.1 GASC construction algorithm

Before to show this algorithm let us define alldisariables.

UScfgis the set of unexplored stable configuratidms; (Locations) is the set of GASC pairs
configuration/invariantGlink is the set of GASC evolutions.

We define the initial configuration as 1:{Sit1},fQutl}, where Sitl is the set of initial steps
and Outl is the set of initial activated outputs.
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GASC construction algorithm (pseudo-code)

Function BuildGASC(grafcet) {
UScfg = cfg;
for 00 An_cfg 00 UScfg {//An_cfg is the analyzed configuration
UScfg = UScfg — An_cfgl/Delete the configuration from the set of unexptbconfigurations
Tree = BuildTree(An_cfg,grafcet);//Construction of the TAC
/ladd all unexplored stable configurations to #e¢ UScfg:
for OL OLeafs(Tree)
if (cfg(L) O EScfg) UScfg = UScfdd cfg(n);
Invariant = Tree.Inv(Root); //Evaluate the invariant of the Tree root
/IAdd the analyzed configuration and the relatimgariant to the GASC:
Loc = Loc O {An_cfg,Invariant}
/ladd all evolutions to the evolution set Glinks:
for O Ink O Slinks(Tree)
Glinks = Clinks O Ink;
}
GASC = {Loc,Glinks}

/[This function evaluate the initial configuratiamd all possible starting evolutions:
GASC = GASC.InitialConfiguration(grafcet);

return GASC,

}
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3.8.2 Evaluation of the initial configuration

The initial grafcet situation can be different frahe situation in which only initial steps are

activated. Let us consider the example in figur2.1t.if at the starting time the condition
pumplfault is true, the initial situation is {11,3Q,40,50}.

In order to consider this kind of situations weided to introduce a fictitious configuration

0: INIT, {}, {}. Starting from this initial configuation, all not timed evolutions relating to the
configuration 1 are analyzed and if it is necessaitjal evolutions are associated. The way to
evaluate the initial evolutions is the following:

indicate with O the new initial configuration;

evaluate Inv’(1) as Inv(1) where all time depeamnpéexpressions are replaced with false;
link configurations 0 and 1 with an evolution cheterized by:

- an empty transition set;

- an evolution context given by the resulting cdiodi invariant Cevo(INIT) = Inv’(1);

- aset of clock reset operations depending od )Sstéps;

for each not timed evolution of 1 make the foliogireplacements in Cevo(SgT

- replace all input edges with false;

- replace all time depending expressions with false

if the resulting Cevo’(SCTYis not false, associate an evolution that linkgith the arrival
configuration relating to SGTharacterized by the SC3equence of transitions sets SeqT,
the evolution condition Cevo’'(SGTand the SCiTsequence of reset operations SeqR.

3.8.3 Dealing with TON and TOF input conditions

A representation of TON and TOF on input variabdesnpossible by using timed automata.

The only way to deal with this kind of problemsasgrafcet transformation before its GASC
generation. We translate the grafcet in a formafatvs the analysis by means of GASC.
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TON on input conditions

In figure 3.8.1 Cond(d/exp) is a generic Booleampregsion that depends on expression
d/exp, where d is a time constant and exp is adaooéxpression of input variables.

Figure 3.8.1 A grafcet with a TON on input condition

The solution is the construction of a grafcet vatBtructure like figure 3.8.2: this grafcet
“simulates” expression d/exp behavior:

- if step F is activated the condition d/exp isél
- if step W is activated the condition exp is tfaeless than a time d so d/exp is false;

- if step T is activated the condition exp is tfaeat least a time d and the condition d/exp
is true.
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by —— A Weemp tot —— Exp

ty —— exp

Figure 3.8.2 The grafcet solution for TON problem

In the starting grafcet all expressions d/exp epgaced with:
d/exp = XT - exp + XW- exp- (d/XW)

TOF on input conditions

In figure 3.8.3 Cond(exp/d) is a generic Booleampregsion that depends on expression
exp/d, where d is a time constant and exp is adzwoéxpression of input variables.

Figure 3.8.3 A grafcet with a TOF on an input condion
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The solution is the construction of a grafcet wahstructure like figure 3.8.4: this grafcet
“simulates” expression exp/d behavior:

- if step Fis active the condition exp/d is false;
- if step T is active the condition exp is true d@hen condition exp/d too is true;

- if step W is active the condition exp is false ess than a time d and the condition exp/d
is still true.

t: | &xp

twa_—— m-;:p twb—— EXp

Figure 3.8.4 The grafcet solution for TOF problem

In the starting grafcet all expressions exp/d epgaced with:

exp/d = exp + XT + XW- d/ XW
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3.9 GASC formal definition

We can give a formal definition for a GASC.

23. Graph of Accessible Stable Configurations
A GASC is a tuple (Cfg,cf¢d, TEXP,EXP,SEQT,SEQR,INV) where:

- Cfgis afinite set of control states (configurations)

- cfgy [JCfg is the initial configuration;

- His a finite set of clocKs;

- TEXP is a set of timed expressiohgX,;

- EXP is a set of Boolean expressions on grafcet inptiables;

- SEQT is a set oBeqT;

- SEQR is a set oBegR;

- INV is a set of invariantgv(cfg);

- E [JCfg x SEQT xTEXPXEXP xSEQR X Cfg is a finite set of evolutions;

- evo = (cfg, SeqT, Texp, exp, SeqR, cfg’) [/E represents an evolution froafy to cfg'.

We also writefg 0 BPH TRRBRPR _ cfg’ for evo;

3.10 An example of application

We conclude this chapter with the application @& #hgorithm to the grafcet portion in figure
3.10.1.
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1 . 4 .
_ tgs——
tio——as+lsec 4 tj3—— a«2seci 4 43 b
5
2 [_©° 3 |
| |
I
to——1zec/Z2 l

[
Figure 3.10.1 The analyzed grafcet portion

Let us consider the stable configuration 1: {1,4¥{ We have to evaluate the Tree of
Accessible Configurations of configuration 1. THe#aoned TAC and GASC are shown in figure

3.10.2 and 3.10.3.

1 {1,414
<{tys}>; b - 1sec/X4; <{}>
<{}>; b- lsec/X4; <{}> LE00
3:1,4}{1sec/X4}.{} )
<{}.{t 12}>; a -b- 1sec/X4; <{} {h}> N\
4:2,410.0

<{}>; a-b- lsec/X4; <{}>

<({t 12> a -b- 1sec/X4;
<{hih 2>

3:{1,4}{1sec/X4},{}

5:{2,4},{},{O2}

Figure 3.10.2 TAC graphical representation
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1 {1454

<{tss},...>; b -1secX4...; <{},... >

a

<{> a-b- 1sec/x4; <{> St > a b Lsec/X4; <{h{h}>

3:{1,4},{1sec/X4}{} 5:{2,4}{},{02}

Figure 3.10.3 GASC graphical representation

In order to have a more simple representation nkiariants are not reported, but normally
they must be indicated.
Now we show how the Tree and the Graph have besnated.

3.10.1 Root analysis

Root description:
Sit = {1,4}; Temp = {}; Out = {}; Wtemp = {1sec/X4} EnT = {t;5,t13,tas}

Configuration invariants:

Inv(Sit) = b, Inv(Temp) =1sec/X4-2seciX4, Inv(Out) =1

Inv(Cfg) = b -1sec/X4 -2seclX 4
Actual transition conditions:
cond’(t;p) = 0; cond’(t3) = 0; cond’(ks) = b
Clearable transitions set:
CT ={tss}

Evaluation of all not timed evolutions:
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The only set of transitions for which the maximahtext is not false is SGF {tys}
Cmax(SCT) =b
Cevo(SCT) =b -1sec/X 4
Evaluation of all timed evolutions:
The only possible timed evolution is STewo{lsec/X4}
TCmax(STevg) = 1sec/X4

TCevo(STevg) = 1sec/X4 b
3.10.2 Direct links starting from the root

Not timed evolutions:
SCTy:
UpNode = Root = 1:{1,4},{},{}
Cevo = b -1sec/X4
SeqT = <{s}>; SeqR = <{}>
DnNode: (Cfg = 2:{1,5},{},{}; UpCfg = 1:{1,4},0.{} ; Cres = b 1seciX4; SeqT = <{ts}>; SedR = <{}>)
Timed evolutions:
STeva:
UpNode = Root = 1:{1,4},{},{}
TCevo = 1sec/X4b
SeqT = <{}>; SeqR = <{}>
DnNode: ( Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{14},01,{3; TCres = 1sec/X4 -b; SeqT = <{}>; SeqR = <{}>)

3.10.3 Analysis of an internal node

Analyzed node:
(Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,4},{}.{}; TCres = 1sec/X4b:; SeqT = <{}>; SeqR = <{}>)
EnT = {ti2,ti3,tas}

Evaluation of node parameters:
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FS={}, RS={}
Cres’ = 1sec/X4b
cond’(t,) = a - 1sec/X4 - 1sec/X® = a b
cond’(ty3) = a- 2sec/X4 - 1sec/Xd- =0
cond’(s) = b - 1sec/X4b =0
CT ={ti2}
Evaluation of all possible evolutions at the intdriime scale:
The only set of transitions for which the maximahtext is not false is SGF {t;,}
Cmax(SCT) =a b
Cevo(SCT) =a b - 1sec/X4b =a b - 1sec/X4
Evaluation of the stability context:
Csta = 1sec/X4b - E = 1sec/X4 a -b

3.10.4 Update the set of direct links

Evolutions:
SCT;:
UpNode: (Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{1,3,{},{}; TCres = 1sec/X4 b; SeqT = <{}>; SeqR = <{}>)
Cevo=ab - 1sec/X4
SeqT = <{},{t12}>, SeqR = <{},{h,}>
DnNode:( Cfg = 4:{2,4}{}.{}; UpCfg = 3:{1,4},{1sedX4} {};Cres = a Db - 1sec/X4; SeqT = <{}{}>; SeqR = <{},{h;}>)
Stability evolutions:
Leaf = (Cfg = 3:{1,4},{1sec/X4},{}; TCsta = 1sec/X4a b; SeqT = <{}>; SeqR =<{}>)
UpNode = (Cfg = 3:{1,4},{1sec/X4},{}; UpCfg = 1:{14},{}.{}; TCres = 1sec/X4 b; SeqT =<{}>; SeqR =<{}>)
TCevo = 1sec/X4a-b
SeqT = <{}>, SeqR = <{}>

DnNode: Leaf
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3.10.5 Analysis of a second internal node

Analyzed node:
(Cfg = 4:{2,4},{}.{};UpCfg = 3:{1,4},{1sec/X4},{}; Cres = ab -1sec/X4; SeqT = <{}L{t-}>, SeqR = <{},{h.,}>)
ENnT = {t5, 145}

Evaluation of node parameters:

FS = {X2}, RS = {X1}

Cres’ =a b - 1sec/X4

cond’() = 1sec/X2 - ab- 1sec/X4 = 0
cond'(s) = b - ab-1sec/X4=0
CT={

There are not possible evolutions.
Evaluation of the stability context:
Csta=ab- 1sec/X4

Stability evolution:
Leaf = (Cfg = 5:{2,4},{},{02}; Csta=a b - 1sec/X4; SeqT = <{},{t}>; SeqR = <{},{h,}>)
UpNode = (Cfg = 4:{2,4}.{.{; UpCfg = 3:{1,4}{1sec/X4}{}; Cevo=a b - 1sec/X4; SeqT = <{}{t}> SeqR = <{}.{h}>)
Cevo =ab - 1sec/X4
SeqT = <{h{t:}>, SeqR = <{}.{h,}>

DnNode: Leaf
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Contents

The first part of this chapter is devoted to
introduce all main theoretical notions about
timed transition systems and timed automata,
then a particular means for timed automata
analysis called region graph is presented.

In the second part an algorithm that
allows to translate a Graph of Accessible
Stable Configurations into a corresponding
equivalent timed automaton is presented with
all results obtained in terms of study of
reachability of a configuration.

The chapter is concluded with two
examples: the first one illustrates how all
introduced algorithms have to be applied, the
second one illustrates how the obtained
equivalent timed automaton can be analyzed
with the support of UPPAAL.
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4.1 Introduction

It's simple to observe that the form of the GASCvery similar to the form of a timed
automaton: we have a set of locations, each lataiocharacterized by an invariant and the
evolutions are caused by input and timed events.

This is not a casual result: we have carried oat@ASC in order to obtain a GRAFCET
representation as close as possible to timed atbonfarmalism. For example a more simple
choose can be to use a representation that altost®p clocks, but in this case the more similar
formalism is the automaton chronometer class tredgmts undecidability problems.

4.2 Timed automata

Timed automatahave been proposed by R. Alur and D. Dill in t980s [Alu 90], [Alu 94]
as a model for real-time systems. A timed automéataa classical finite automaton which can
manipulate clocks, evolving continuously and syoabusly with absolute time. Each transition
is labeled by a constraint over clock values (atstled guard), which indicates when the
transition can be fired, and a set of clocks tedset when the transition is fired. Each locat®n i
constrained by an invariant, which restricts thegilde values of the clocks for being in the state.

4.2.1 Some notation

Let X be a finite set of clocks. A (clock) valuatienover X is a functionv : X — R which
associates to each clogkts valuev(x) O R. We denote br*the set of clock valuations ovEr
Let bet O R, we writev + T for the clock valuation associating with clackhe valuev(x) + 1. If
ris a subset oX, [r < O]v is the valuatiorv’ such that’(x) = 0 if x O r, andv’(x) = v(x) otherwise.
We write C(X) for the set of clock constraints over We note byC’'(X) the restriction of£(X) to

11 See [Alur 90], [Alur 94], [P.W.Kopke 95], [A.Pusi6], [A. Di Febbraro, A. Giua 02],
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positive Boolean combinations only containing comsts of the fornx < ¢ orx < c. We interpret
clock constraints over clock valuations: a valuatio satisfies the atomic constrairtx c

whenevewr(x) x c. When a valuatiom satisfies a constrait we writev  g.

4.2.2 Syntax
We define a timed automaton as follows:

24. Timed automaton

A timed automaton is a tup{e, /o, X,Inv,T,2) where:

L is a finite set of control states (locations);

- /o [JL is the initial location;

- Xis afinite set of clocks;

- T [JL xC(X) x 2 x2* xL is a finite set of transitions;

- e=(,9g,0r ) [JT represents a transition fromto /', g is the guard o€, r is the set
of clocks that is reset l®y andois the action oé. We also write¢ %% . ¢’ for e;

- Inv: L — C'(X) associates with each location an invariant;

- 2 is an alphabet of actions.

4.2.3 Timed transition system, bisimulation and quient

In this paragraph we give the main notions thap hel understand how a reachability
problem study on timed automata can be performed.

25. State transition system

A state transition system (or transition systeng tapleT = (S,2, —,S,,Sr) Where:

- Sis a set of states (possibly infinite);

- Zis an alphabet of actions;

- — [JS x2 xS is the transition relation: ifs, g, s’) [/—, wheres, s’ [/Sando [7 2, we
writeso9- s’;

- Sy is the set of initial states

- Seis the set of final states (it can be omitted)
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26. Timed transition system

A timed transition system is a tu@e= (S, 2, —,s¢) Where:

- Sis a set of states (possibly infinite);

- so/Jsis the initial state;

- Zis an alphabet of actions;

- — [JS x(Z[JR) xS is the transition relation. Moreover, the relatien satisfies the
three following conditions:
I if st¥. g, thens=s":
Il if scf.s ands'od . s” with 7, 7 /7R thensoHY - s”;

I if sof-s with 7/7R then for allo < 7 < 7, there exists” such thatsod - s” and
s obf . s
27. Bisimulation
LetT = (S,2,—,S0,Sr) be a transition system. An equivalence relatidi'S x S between
the states of is a bisimulation if:
- (s [J8) 06 [0Sy) = (8 [Sy),
- (s /[J8) [ [ISg) = (8 [7Sg),
- (s OB 2.s) = s [JS | (8 09. &) (s’ [J3).

28. Predecessors set

LetT = (S,2,—,S0,Sr) be a transition system. Given a subSef/S and a generatop;, we

define the set af-predecessors &

PrefS)={s US| (/s [JS)s :8. s }

Proposition 1.Let T = (S,%,—,S,,Sr) be a transition system. Necessary and sufficientlition
so thatlT] S x S be a bisimulation is that the following conditicer® verified:

- the setS, is the union of equivalence classes$of
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- the setS; is the union of equivalence classe$pf

- for each equivalence clagsll [N and for eacho %, the setPreq(m) is the union of
equivalence classes 0Of

29. Quotient
LetT = (S,2,—,S,,S¢) be a transition system and let’/S xS be a bisimulation. We define

quotientT///the transition systerV/ /= (S /[{2,—,So/JSe/J where:

The states s& ///= /15 coincides with the equivalence classegjof

Sol ={mJS I m[JS};

- SelO={mOSI0] mJSg};

the transition— is defined as follows/rgt (7SI o [72 118 1Tif 1m/7Prey 7).

We can underline two important results that all@lvieig our GASC reachability problem after a
translation into a timed automaton.

Result 1.Let suppose that, in the quotiertjs reachable by by means of generator We can
say that in the original system starting from estette inrtit is possible to reach at least a state in
Tt by means of generator

Result 2.Let suppose that, in the quotiertjs not reachable by by means of generator We
can say that in the original system there are tad¢s inrt from which it is possible to reach at
least a state i by means of generator

If we can evaluate the quotient of a timed automaitb each timed automaton location
represents a GASC configuration and each autontadmsition represents a GASC evolution,
then we can evaluate all reachable configuratidriseoanalyzed GASC.

4.2.4 Region graph

A state of a timed automaton is a p@iv) O L x R* where/ is the location and is the clock
valuation. The semantic of a timed automaton i®migas a timed transition system with action
transitions (labeled with elements @f) and delay transitions (labeled with real numbers
representing the delay). Classically, an executioa timed transition system TTS is a sequence
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of consecutive transitions. A staid] S is said to be reachable #$if there exists an execution
from s, tos.

30. Semantic of a timed automaton

Let A = (L,%,X,Inv,T,2) be a timed automaton. The semantiAas defined as the timed
transition systen$, = (S,sq,—,2) Where:

- S=L xR

- so = (Yo,vo) Wherevy(x) = 0 for eachx [7X;

- the transition relation— is composed of:

| action transitions: {,v)-2. ( ¢',v) iff there existy o&% . ¢’ /7T such thatv ¢ g,
V' = [r«0]vandv |= Inv({);

Il delay transitions: ift 7R, ((,v) ol - (¢v + D) iff v+ T £lnv(0).

Given a timed automaton, let us define for eacklkcipa valueM; that is the biggest integer
thatx; is confronted with in the guards. We can giveftil®wing definition.

31. Regions
Let consider the equivalence relation//X x X between timed automaton continuous

states: given two states= (x4, X,...,X,) andx’ = (X'y, X'2,...,X"), thenx =x’ if -
- [ [x/=[x]  or (Zx-J> M) D(Zx’ij> M);

- LxsM *)=0 = X)=0;

- LjIxisMy =M (%)=0 = X'i)=0;

where/x_/is the integral part ok and (x)/7[0,1) is its fractional part.

Proposition 2. Let consider the equivalence relatmnl S x S between the&s, states defined as
follows: given two states/{v) and ¢’,v’), then ¢,v) = (¢,v’) if / = ¢ andv =Vv'. This relation is a
finite bisimulation ors.
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Proposition 3. The number of equivalence classes of relattatefined on a timed transition
system associated with an n-dimensional timed aatom is less or equal than

N=|LJ( |‘J (M, +1))-nt-2".

A gquotient of a timed automaton is also called waggraph, practically a region graph is a
finite automaton. In figure 4.2.1 an example ofd@drautomaton and region graph is shown.

1] 1 2
i T ! El ]
=10 D=x=1 =1
a a T
5 4 3
T T
zrd ax=10 ! ! /
w2 =12 lex=2

Figure 4.2.1 An example of region graph

4.3 Timed automata for GASC analysis

We translate the GASC into a timed automaton ireotd solve a problem of configuration
reachability. The translation of a grafcet modeloira GASC implies to introduce some
simplification: we deal with time at a logic levéis the time is dealt at a logic level it is obwsou
that we can’t perform all possible controls on tihvexpressions, the result is that in the GASC
there are certain configurations that is physicathpossible to reach. The GASC gives a
necessary condition of reachability: if a grafcenfoguration is not reachable by its GASC, then
the analyzed grafcet can’t reach this configurat\ioe versa we can't say that if a configuration
is reachable by the GASC then it is reachable byatialyzed grafcet. With the translation of the
GASC into a timed automaton we can individuatenatl physically reachable configurations and
then delete them.
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4.3.1 Timed automaton construction

Let us call/; the equivalent timed automaton initial locatiorg @btain the equivalent timed

automaton with the following steps:

for each GASC clock; in H associate a timed automaton clack X;

associate the initial timed automaton locatfero the initial GASC configurationfg,, all
clocks are reset in the initial location;

for each configurationfg; (with i # 1) in Cfg associate a timed automaton locatipn
for each Boolean expressiexp; in EXP associate an actianin %;

for each timed automaton locatiGrand GASC configuratiotfg;:

- for each timed expressiod,,/ X in Inv(Temp) associate with the locatigh an
invariantinv: x, < dm;

for each GASC evolutiorvo; (cfg, SeqT, Texp, exp, SeqR, cfg’) in E associate a timed
automaton transitios (¢, gi, G, i, ) in T where:

- for each timed expressiom, 84X, in Texp; associate with the guatggda conditionx,2d,,,
for each timed expressiod,, /X, in Texp; associate with the guargl a condition

Xn<dm;

- if there is at least an expressiog/Xl, in Texp; then there are not associated actions
(o=") else the associated actiofis exp;

- for each GASC clock; in Seqr; associate a timed automaton cleckeset;

It's obvious that in certain situations the equerdltimed automaton is a nondeterministic

timed automaton.

4.3.2 Analysis of the equivalent timed automaton ahGASC simplification

The analysis of the equivalent timed automatoneiggomed by construction of the region

graph. As there is a 1-1 correspondence betweemaiibn locations and GASC configurations,
if a given location is not reachable by timed autton then the corresponding configuration is
not physically reachable by the analyzed grafcet.

The GASC simplification is performed as followst Reach be the set of locationg

reachable in the timed automaton, for each corditum cfg; in Cfg if the corresponding location
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/i is not inReach thencfg; is deleted from the GASC.
4.3.3 Equivalent timed automaton complexity and angsis simplification

As a grafcet can be the representation of very texngystems, the analyzed model can be
very complex and it can be characterized by a Jarge number of temporizations. The
consequence is that the equivalent timed automedonbe characterized by a large number of
clocks and then a very large number of clock regi@ut it's obvious that for each location not
all clocks and guard are relevant in order to emalithe system behavior, then a technique of
active-clock reduction can be useful.

A method that generalizes active-clock reductioprigosed in [G.Behrmann, P.Bouyer 03].
On this work, authors propose a location-basedefizone abstraction which computes an
abstraction based on the relevguoiards for a particular state of the model (as epgao all
guards), then they propose a location-based biationl The result is a region graph
simplification.

4.4 An example of application

In this paragraph we show a step by step exampdégofithm application. The simplicity of
this example allows to have an overall view of tésults of this work.
Let consider the grafcet in figure 4.4.1.

]
1
t)—— lzecZ(1
5 Oz
tz—— Ta

Figure 4.4.1 A final example
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4.4.1 TAC construction

The initial configuration is 1{1},{},{}
Root 1:{1}.{},{} analysis
Root description:

Sit = {1}; Temp = {}; Out = {}; Wtemp = {1sec/X1};EnT = {t;}
Configuration invariants:
Inv(Sit) =1, Inv(Temp) “sec/X1, Inv(Out) = 1
Inv(Cfg) = 1sec/X1
Actual transition conditions:
cond’(t) = 0;
Clearable transitions set:
CT={

There are not possible not timed evolutions.
Evaluation of all timed evolutions:

The only possible timed evolution is STewo{1sec/X1}
TCmax(STeve) = 1sec/X1
TCevo(STevg) = 1sec/X1

Direct links starting from the root
Timed evolutions:

STevaq:
UpNode = Root = 1:{1},{},{}
TCevo = 1sec/X1
SeqT = <{}>; SeqR = <{}>
DnNode: N2 ( Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1:{3,{}.{}; TCres = 1sec/X1; SeqT = <{}>; SeqR = <{}>)

Internal node N2analysis
Analyzed node:

(Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1:{1},{}.{}; TCr es = 1sec/X1; SeqT = <{}>; SeqR = <{}>)
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EnT = {t}
Evaluation of node parameters:
FS={}, RS={}
Cres’ = 1sec/X1
cond'(t) = 1sec/X1 =1
CT ={t.}
Evaluation of all possible evolutions at the intdriime scale:
The only set of transitions for which the maximahtext is not false is SGF {t}
Cmax(SCT) =1
Cevo(SCT) =1 - 1sec/X1 = 1sec/X1

Evaluation of the stability context:
Csta=1sec/X1-0=0

Update the set of direct links
Evolutions:

SCT;:

UpNode: (Cfg = 2:{1},{1sec/X1},{}; UpCfg = 1.{1},{} .{}; TCres = 1sec/X1; SeqT = <{}>; SeqR = <{}>)

Cevo = 1sec/X1
SeqT = <{},{t.}>, SeqR = <{}.{}>

DnNode:

N3 ( Cfg = 3:{2},{}.{}; UpCfg = 2:{1},{1sec/X1},{}; Cres = 1sec/X1; SeqT = <{}.{}>; SeqR =<{},{}»)

Internal node N3analysis
Analyzed node:

(Cfg = 3:{2},{}.{};UpCfg = 2:{1},{1sec/X1},{}; Cres = lsec/X1; SeqT = <{},{{}>, SeqR = <{}.{}>)

EnT = {tz}
Evaluation of node parameters:
FS = {X2}, RS = {X1}

Cres’ = 1sec/X1
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cond’'(t) =0
CT={}

There are not possible evolutions.
Evaluation of the stability context:
Csta = 1sec/X1

This node is a leaf.
Stability evolution:

Leaf: (Cfg = 4:{2},{},{02};UpCfg = 3:{2},{}.{}; Cst a = 1sec/X1; SeqT = <{},{#>, SeqR = <{},{}>)
UpNode = (Cfg = 3:{2},{},{}; UpCfg = 2:{1} {1sec/X1},{}; Cevo = 1sec/X1; SeqT = <{},{{i}>; SeqR =<{}.{}>)
Cevo = 1sec/X1
SeqT = <{}.{ti}>, SeqR =<{}{}>
DnNode: Leaf

Root 4:{2},{},{O2} analysis
Root description:

Sit = {2}; Temp = {}; Out = {02}; Wtemp = {}; EnT ={t,}
Configuration invariants:
Inv(Sit) = T_a, Inv(Temp) =1, Inv(Out) =1
Inv(Cfg) = ' a
Actual transition conditions:
cond’(t) = Ta;
Clearable transitions set:
CT = {t3}
Evaluation of all not timed evolutions:
The only set of transitions for which the maximahtext is not false is SGFE {t,}
Cmax(SCT) = ta
Cevo(SCT) =1a

Direct links starting from the root
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Not timed evolutions:
SCT;:
UpNode = Root = 3:{2},{},{02}
Cevo =ta
SeqT = <{}>; SeqR = <{h}>
DnNode: N2 ( Cfg = 1:{1},{}.{}; UpCfg = 4:{2},{},{O 2}; Cres =1a; SeqT = <{§}>; SeqR = <{h}>)

Internal node N2analysis
Analyzed node:

(Cfg = 1:{1}.{1.{}; UpCfg = 4:{2},{},{02}; Cres = 1a; SeqT = <{i}>; SeqR = <{h}>)
EnT = {t}
Evaluation of node parameters:
FS = {X2}, RS = {X1}
Cres’'=a
cond’(ty) = 1sec/X1 =0
CT={

There are not possible evolutions.
Evaluation of the stability context:
Csta =fta

This node is a leaf.
Stability evolution:

Leaf: (Cfg = 1:{1},{},{;UpCfg = 4:{2},{}{02}; Cst a=1a; SeqT = <{f}>; SeqR = <{h}>)
UpNode =(Cfg = 1:{1},{},{}; UpCfg = 4:{2},{},{02}; Cres = 1a; SeqT = <{}>; SeqR = <{h}>)
Cevo =ta
SeqT = <{t}>, SeqR =<h.}>

DnNode: Leaf

All stable configurations have been analyzed.
Graphical representation:



1 {133.0 4:{2},{}{02}

Inv = 1sec/X1 Inv=1a
l<{}>; 1sec/X1; <{}> l<{tz}>; ta; <{h}>
2:{1}{1sec/X1},{} L{1L{3.{4
Cres = 1sec/X1 Cres =ta
<{1{t > Lsec/X1; <{}.{}> <{tz}>; ta; <{h}>
325L{.{} {134
Cres = 1sec/X1 Csta =fa

<{1{t > 1sec/X1; <{},{>

4:{2},{},{02}
Csta = 1sec/X1

Figure 4.4.2 Trees of Accessible Configurations

4.4.2 GASC construction

Configurations:
cfgy = 1: {1}.{h{} cfg 2= 4: {2},{},{02}
Cfg = {cfg,,cfgy}
The initial configuration is cfg
Clocks:

H={hy}
Set of timed expressions:
TEXP = {1sec/X1lsec/X1}
Set of expressions on grafcet input variables:
EXP={1a,1a}

Set SEQT of SeqT associated with evolutions:
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SeqT, = <{}.{t 1}>, SeqT, = <{t,}>
SEQT = {SeqT,SeqTh}
Set SEQR of SegR associated with evolutions:
SeqR = <{},{}>, SeqR, = <{h,}>
SEQR = {SeqR SeqR}
Set INV of invariants Inv:
Invy = 1se—c/X1, Inv, = T_
INV ={Inv 1,Invy}
Set E of evolutions evo:
evo, =(cfgy,1sec/X1, ,SeqifSeqR,cfg,), eve ={cfg,, ,1a,Seqb,SeqR,cfgy),
E = {evo,evo}
Evaluation of the initial configuration/evolution:

As there are not possible transitions starting foemfiguration cfg, starting from the fictitious configuration gfg

there is only an empty evolution that leads tq @fgere clock his reset.

Graphical representation:

<>1 ) <{h l}> l {1}7{}’{}
INIT I Inv = 1sec/X1
<{t-}>; ta; <{h}> <{},{t }>; 1sec/X1; <{1.{}>

4:{2},,{02)

Inv=1a

Figure 4.4.3 Graph of Accessible Stable Configuratins

4.4.3 Equivalent timed automaton construction

Clocks:
X; corresponds to clock h

X ={xq}



Locations:

¢4 corresponds to configuration gfgnd/, corresponds to configuration gfg

L ={/4,05}
The initial configuration ig;.

Alphabet:

>={ra ,T_a}
Set of invariants Inv:

Invy; = {x, <1}

Inv ={Inv,}
Set T of transitions;e
€ = (01,00,01.11,02), & = (l2,05,02,I2,01),
Where g ={x1>1}, g, ={}, 0,=", o ="1a’, r; ={}, r, ={x4}

Graphical representation

X1:=0
—> 1
{x1=1}
1a, x:=0 X1 >1
2

Figure 4.4.4 Equivalent timed automaton

4.4.4 Region graph construction

The maximum integer that xs confronted with is 1. We can see that in laoa® the clock
X1 doesn't influence automaton behavior, moreoveforeeto return in location 1 this clock

“passes through” a reset.
The region graph of this timed automaton is:
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Ta

zx1

Figure 4.4.5 Region graph of the equivalent timedwwomaton

All timed automaton locations (1 and 2) are reathathen all GASC configurations are
physically reachable. In this case, this is an obsiresult but if there are three or four clocles th
reachability study problem becomes complex and itipossible to perform an analysis without

a region graph study.

4.5 An UPPAAL aided grafcet analysis

The GASC translation into a timed automaton alldwsapply timed automata automatic
verification tools to a grafcet model. In this pgaph we show how a grafcet verification can be

performed with the support of UPPAAL

Let us consider the grafcet in figure 4.5.1.

]
1

t1—1zeci1

o2

(2 —Ta

]

3

03

4

42

t3 1—1sec/3=

Figure 4.5.1 grafcet analyzed with UPPAAL support
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Let us suppose that the following properties havest verified:
- (A) safeness specify: outputs O2 and O3 can’enée activated simultaneously;

- (B) liveness specify: output O2 can be emitted.

A third property that has to be verified is theese of deadlocks.
The GASC that represents grafcet behavior is repted in figure 4.5.2.

={t1}.{tz} >,
ar1sec{1- 1sec203, {h}

EvoZ

<{t3) =, Tsec¥1-1sec35, <{tLE2).13), (14} =, arlsecii1 1seciX3,

(hy) 0 p
(B} (h)>
\{tl},

a- lsec/Z1 - 1220203

2} ,a, {}
{(hy} evod
_ {t1,t37,
a- legec/H1 - ]secJ’X{E} (3
={tz}. {4} >.a, 2,3},{1.{02,03
. <(h}.(h}> {2,313 {0203}
EVOE
2 {4}, a - 15ec/33,{}

evob

{(241.0(3.{02}

Figure 4.5.2 GASC of grafcet in figure 4.5.1

Each evolution is marked with an id (evol is theletion 1, evo2 is the evolution 2...)
We can see that property (A) is not verified in BASC configuration (3). Potentially we
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have the following result: property (A) is not exd and property (B) is verified. However, we
can't say property (A) is not verified and property (B) igified” as a configuration reachability
in the GASC is only a necessary condition.

Then we have to translate our GASC into an equialéimed automaton and then to
perform a verification on obtained automaton.

The equivalent timed automaton representation iRAAL is shown in figure 4.5.3.

Name: |GASC Parameters: |

fle=188&x3<1
x1=0,
evo=2
®l==18&8&x3>=1
sl Bfex3==1 w1=0.
- %3=0,
o
x1==18&x%3<
_ evp=4
sl )1 >=18&x3>=1
evo=8 evo=7

not_a? 13

evo=6

Figure 4.5.3 Equivalent timed automaton UPPAAL repesentation

We associate a location li to each configuraticand a transition evo = j to each GASC
evolution evoj.

We can see that the obtained automaton is a nanaatstic timed automaton. We have
nondeterminism between evolutions 2 and 4 and legtwes/olutions 3 and 7. This is not a
problem, as we only want to know if a locationaachable and if a transition can be cleared.

Now we have to “ask” to UPPAAL which locations aeachable, which transitions can be
cleared and if the system is deadlock free. In URP&ve have a language that allows to verify
these properties. The results are shown in figlset4
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Owerview
E<>5R5C.11
E<»GRASC.12
E<»GRSC.13
E«<>GASC.evo==8

il i E=rad ir]

Query
All not deadlock

Comment

P

Status

™ T

E<>GASC.I2 : :
Property is satisfiad., P Location 12 is reachak

E<=GASC.I3

Property is not SE't'SﬁEd'\"b Location I3 is not reachat
E<>GASC.evo==
Property is satisfied.
E<>GASC.evo==
Property is satisfied.
E<>=GASC.evo==

Property is not satisfied. \

Lt D The following transitions

Property is not satisfied. \ i K
can't be cleared:

E<>GASC.evo== g
sty is ot el evo6, evos, evo4, evo2, evoll

E<>GASC.evo==
Froperty is satisfied.
E<>GASC.evo==
Property is not satisfied.
E<>GASC.evo==

Property is not satisfied., There are not deadloc
A[] not deadlodk

Property is satisfied.

Figure 4.5.4 UPPAAL verification

Then we obtain the simplified GASC in figure 4.5.5.
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{1,620, {13Y, (1) =, a-lsecZ(1-1eec/303,

(1) <(h;}.{hy}>
{1.34.{}.4} EVOS

_ {t1,t33,
a- 1seciZ1 - 1secZ3
{ <{12) {4} >,
Bvo T <{h}.{h}>
evos
(<)

{241, (3.{0z}

Figure 4.5.5 Simplified GASC

The simplified GASC gives a necessary and sufficierachability condition. Then all
specifies are verified: there are not deadlockéeast a configuration which contains the output
02 is reachable, no configurations which containa®@ O3 are reachable.
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Case study

In this chapter we present a case study.
The analyzed grafcet represents a problem of
water distribution.

The complexity of this grafcet doesn’t
allow a manual analysis. The GASC
evaluation is performed by a python tool that
has been carried out by using the algorithm
presented in this work. This tool is used at the
LURPA laboratory in order to perform
formal verification on grafcet models.
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5.1 The python tool

The results obtained in this work have been implease into a python code. This tool
evaluates the Tree of Accessible Configurations dhd Graph of Accessible Stable
Configurations of a grafcet model. Given a grafaktpossible reachable configurations and all
evolutions are reported. Also instability casesraported.

5.2 Water distribution problem

The analyzed grafcet is the model presented iritstechapter. The case study concerns the
distribution of a water provision used by severalduction channels. The system is composed of
a tank, two pumps, six valves and distribution desi The request is to generate the start and
stop signals for the pumps and the closing and spgrals for the valves. We have to take into
account eventual pump faults, circuit problems difigérent requests of distribution. Each pump
is characterized by an upstream valve and a doearstvalve. The output and reversal valve are
common valves (figure 5.2.1).

e
reversal out
&
pump 1
pumpZ

Figure 5.2.1 Water distribution problem
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This problem was studied in [Roussel 94] and it wamposed by a specialist industrial in water
distribution, we report the same grafcet solutiathva modification: as in [Roussel 94] time was
not taken into account, all timed expressions weptaced with Boolean variables, in this case
we don’t have this limitation.

5.2.1 System description

Distribution requests

Two request type: a low supply “low debit” requasd a high supply “high debit” request.
Only a high supply request at time can be coveretl a high and low supply request can be
covered simultaneously.

The pumps

We have two pumps “pumpl” and “pump2” that wortealately. Normally a pump works
only 24 hours and each day a commutation is negessaorder to have an equilibrate work
distribution. This commutation is performed afteattall currently requests have been covered.

A pump fault can be verified: in this case the eysis stopped and all valves are closed, then
when a new request is received the other one difetlare not other faults) is used. When the
pump is repaired, after that all in progress retyuae covered, a new commutation is performed.

The valves

For each pump we have an upstream valve and a tl@ansvalve, the associated variables
are: “upstream pumpl”, “downstream pumpl”, “ugaim pump2”, and “downstream pump2”.
The general fault

We can individuate a general fault in our systemh #s is reported with signal “blockage”.
In this case the system is stopped and all valveslased. All requests are ignored until the
problem is solved.

System functioning

Let suppose that a request is received and atdepsmp has not faults. If the pump is off,
when a request is received the upstream valve emexp and after five seconds the pump is
switched on, the downstream valve is opened amdttiteewater distribution starts.

If the pump is working the request is covered imstaeously. When a request of end
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distribution is received, the distribution is stedpand if this is the last request then the pump is
switched off and the valves are closed. A requesepresented with the signals “high debit”
and/or “low debit”: if the Boolean value is trueethwe have a request, the notion of end request
IS not necessary.

5.2.2 The grafcet

The grafcet is the same that we showed in figu2el LFMP1 and FMP2 describe pumpl and
pump?2 functioning, ChP generates the pump switchR®y generates the signal to open reversal
valve and Func imposes system behavior.

purnp 1 fault - (331 - X22 + %21} (low debit + high dehit) - blockage

FMP1

— putnp 1 fault - (blockage + low debit - high debit )
11
Q pump 1 fault

FMP2

pumnp2fault - (%32 - 312 + X11)- (low debit + high debit) - blockage

a1 - pumpZfault - (hlockage + low debit - high debit )
Q putnp 2 fault
ChP Func
2403031 A2 Xi2
upstr pumpl upstr putnp?
24W332 out out
58212 — X2 -+ Xz 582(22
upett purp 1 upstr putnp
tgh debit - (X53+X54) out out
dwnstr purnp 1 dwnstr pump2
( high debit + X50) pumpl pump
X2 X212

Figure 5.2.2 Analyzed grafcet
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This grafcet has been analyzed with the python teelshow the main results.

5.2.3 Python tool results

The python tool gives the following results:

F3h :

SJituations (Condition

= [{lD,20,31,40,501,f 1] : blockage.
[{11,20,31,40,501,4 1] : blockage.
[{10,21,31,40,501, 1] : blockage.
[{10,20,32,40,501,1 1] : blockage.

LD, 21,51, 40,507, 1+

32 Jituations, 670 evalutions, 0 instabilites.

de ztabilite)

—

grafcet properties

fh24.fpumplfault.fpumpiault+fh24.fhigh_dehit.fluw_
shed.pumpl fanlt. /spunp2fanl t+/h24d, high debit. low d
Ahad, fpumpl fault, pump2faul £+ h24, fhigh debit. /low d
had, /pumplfaul £, punp2faul e+h24, shigh debit. flow del
Jhzd.punplfaul topunp=fault

chage.hd.punpl fault. /punpafanl t+hid, fhigh debit. /low deb:

e.had. fpumpl fault. punpafanl t+hid, fhigh debic, Alow deh:

configuration description

Spunplfanltl Apunp2fa
Apunplfaul tLpumpAfau.

Jpunplfault. Spumpsfan.
had. hlgh debit. spumplfault. punp2faul:
fhzdihigh debit.punplfanlt. spunpefan
hiZd.high debit.pumplfanlt. /fpunpEfanl:
fhZd. high debit, /mmplfanlt. famp2fan

[4ll. 20,32, 40,500 .0 13—+ B
[{10,21,32,4n,50},{ 1] : bloc

[£11,21,32,.40,500 0 17 @ h2d. punpifault. punp2fault
[{12,20,31,40,51 4 +] = /[5000ms /]
[{1z,21,31,40,51}, 0 %] : /[5000ms 1
[{l2,20,32,40,51),¢ V] = /[S5000ms/%] -
[fl2,21,32,40,51),¢ 1] ;[SDnnms;X12].;hlackage.
[{1l1,22,31,40,52,¢ V] = A[5000ma/%22]. /blockadge.
[{11,22,32,40,52,¢ +] = /[5000ma/¥22]. /blockade.
[f10,22,31,40,52,0 1] = /[5000ms/¥22]. /hlockade.
[{1l0,22,32,40,52),4 1] f[SDnnmsfxzz].fhlackage.

[{12,20,31,40,53, {EDDDmSEXlE}]
[{12,20,31,41,53), {5000ns/%121]
[{12,21,31,40,53), {5000ms/%121]
[{12,21,31,41,53), {5000ns /121 ]
[112,20,32,40,53), {5000ns %121 ]
[{12,20,52,41,53), {5000na/%121]
[f12,21,52,40,53), (5000ns /121 ]
[i12,21,52,41,53),5000us/%121]
[{11,22,31,40,541, (5000ns/%221 ]
[{11,22,31,41,54), {5000ns/4221 ]
[111,22,532,40,541, {50000z /X221 ]
[{11,22,32,41,54), (5000ns /%221 ]
[110,22,31,40,54), {5000ns /4221 ]
[{10,22,51,41,541, (5000ns/ %221 ]
[110,22,52,40,54), (500003 /221 ]
[110,22,52,41,541, {5000us /4221 ]

Evolutions :

(Arigine : Extremite @ Conditiom :
~ Init : [{10,20,31,40,50% 4 1]

- Init T [431,20,.31,40,508, 4 1]

- Init : [{10,21,31,40,50%,. &£ 1]

- Init @ [f10,20,32,40,50% & 17

- Init : [f11,21,31,40,50% .4 17

- Init : [{f11,20,32,40,50% & 1]

: blockage.
: blockage.
: blockage.
: blockage.
: Ahad.punplfault.punpafanlt
i blockage.hzZd. punplfaul £. /fpunp2faul t+had, fhigh debit, £

fblockage. /hads
Aolockage. fhZd.
age: ‘h2d.
age. had.
age.h2d.high debit. /pamplfaul £, spunpfanlt

age.hid. fhigh debit.low debit. fpumpl fault. fmu

S T e T W ) S P B

Jbloc
fBlo

Fhlac
Jbhloc

i o

hZd.high debit. fpunplfault. fpumpafan
high debit./pumplitanic.panpafanlt
fhigh debit, low debit. /pumplfault. S
high debit. /pumplfault.punpifault

il debitlew debitr/pumpl fanl t. pu

unplfaul t. punp2fault

invariant description

Low debit. /pumplfanlt. pum
punplfault. spunp=fault

Jblockage.
fblockage.
sblockage.
/blockage.
Jblockage.
Jhlockage.
sblockage.

Jhad.
‘had.

Chemin : Tempo.

fhad,
hiZd.high debic.punplfault. /fpunpZfanlt
hid. fhigh debit.low debit.punplfault. fpum)

hid.high
h24, /hi

fhigh debit, low debit. pumplfanlt. fpu

high debit. /rumplfault, sunnefanlt
hig) evolution description |’

debit.Tow debit. pumplfanlt. fpu

Lancee : Tempo. Arretee |

/h24. jpumpl fault, fmpZfaul t+/hz4, shigh dekd
Shad,punplfanlt., spunpafanl teihed7high debit
AhEd. Spumpl fault, punp2faul t+/h24. fhigh debit
hid. fpumplfanlt, spunp2fanlc+hzd, Aiigh debit. .

[Init,{tld 11,t20 211]

Figure 5.2.3 Python tool results
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With the Python tool we can know in a few secoie humber of (potentially) reachable
configurations, the number of possible evolutioifisthere are instable situations, for each
reachable configuration we have its description ismdvariant and for each evolution we know
the sequence of transitions sets and the evolutogse.

In this case we have 32 configurations, 670 evafistiand there are not instability situations.
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Chapter 6

Concluding remarks
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6.1 Our results

With this work an important contribution has beéneg to solve the problem of GRAFCET
model formal verification. Let us summarize all psethat have to be applied to perform a
complete analysis.

- Logic level time:

- complete grafcet analysis at the internal timalesand construction of the Tree of
Accessible Configurations — instability detection;

- grafcet behavior at the external time scale dgon with the construction of the
Graph of Accessible Stable Configurations — necgszandition for reachability.

- Physical level time:
- equivalent timed automaton construction — phydioze implementation;
- equivalent timed automaton analysis — reachgtstiidy;

- Graph of Accessible Stable Configurations sinngdiion — necessary and sufficient
condition for reachability.

The more delicate step is the TAC construction &ABCET behavior interpretation is
performed at this level: the presence of an efrtinia level compromises all analysis results. The
GASC representation, as it has been defined, allawsndividuate all possible reachable
configurations with a detailed description andealblution causes and consequences. This is a
very important aspect because if a non desiredvii@hia detected, the analyst individuates:

- the input configuration/event and timed conditibat generate the unexpected behavior;
- which transition sets and in which order are redda

- the starting configurations from which the unectpd behavior can be reached.

An other important aspect is that all this inforioatis obtained with the minimum possible
computational complexity.
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6.2 Further investigations

The results obtained in this work will be improvetth further investigations. As not all
grafcet possibilities are considered, as storedorat this work is widely open to new
investigation possibilities. As a python tool foAGC has been carried out, a second python tool
for equivalent timed automaton construction will baplemented, probably with a direct
intarface with UPPAAL tool.
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