

Tecniche di programmazione lineare per l'identificazione di reti di Petri

Pierandrea Secchi

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Tesi di Laurea Specialistica in Ingegneria Elettronica

Relatori: Prof. Ing. Alessandro Giua Dott.ssa Ing. Maria Paola Cabasino

23 luglio 2008

Indice

- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Concetto di identificazione e obiettivi

- Identificazione:
 - dato un comportamento osservato, consiste nel determinare un sistema il cui comportamento approssimi quello osservato.
- Reti di Petri:
 - comportamento osservato → linguaggio della rete

- Oggetto della tesi:
 - sviluppo di un pacchetto Matlab per l'identificazione di una rete posto/transizione (P/T), basata sulla programmazione lineare;
 - validazione sperimentale.

Motivazioni

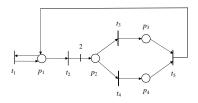
- In [DEDS07] Cabasino et al. hanno presentato un problema di identificazione che è stato risolto utilizzando la programmazione intera.
- Svantaggio:
 - complessità computazionale elevata.

- In [CDC08] Cabasino et al. hanno presentato un problema simile basato sulla programmazione lineare.
- Vantaggio:
 - complessità significativamente ridotta.

Indice

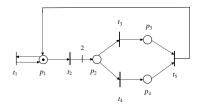
- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Struttura delle reti P/T



- Una rete P/T è una struttura N = (P, T, Pre, Post) dove:
 - P è un insieme di posti rappresentati da cerchi, |P| = m;
 - T è un insieme di transizioni rappresentate da barre, |T| = n;
 - Pre: P × T → N è la funzione di pre-incidenza che specifica gli archi diretti dai posti alle transizioni;
 - Post: P × T → N è la funzione di post-incidenza che specifica gli archi diretti dalle transizioni ai posti.

Evoluzione dinamica



- Marcatura: vettore $M: P \to \mathbb{N}$.
- Sistema di rete $\langle N, M_0 \rangle$: rete N con una marcatura iniziale M_0 .
- Transizione abilitata da una marcatura M: $M \ge Pre(\cdot, t)$. Scatto.
- Sequenza di scatto: sequenza di transizioni abilitata.
- Vettore di scatto: indica quante volte una transizione compare in una sequenza.
- **Equazione di stato**: $M = M_0 + C \cdot \vec{\sigma}$.
- Linguaggio:
 - $L(N, M_0) = \{ \sigma \in T^* \mid M_0[\sigma] \};$
 - $L_k(N, M_0) = \{ \sigma \in L(N, M_0) \mid |\sigma| \le k \}.$

Indice

- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Problema di identificazione

■ In [DEDS07] è stato enunciato il seguente problema di identificazione.

Dati:

- $P = \{p_1, \ldots, p_m\};$
- $T = \{t_1, \ldots, t_n\};$
- $\mathcal{L} \subset T^* \longrightarrow \text{linguaggio finito e chiuso per prefisso su } T$;
- $k \ge \max_{\sigma \in \mathcal{L}} |\sigma|$.
- Si vuole identificare $\langle N, M_0 \rangle$ tale che $L_k(N, M_0) = \mathcal{L}$.

Incognite:

- $M_0 \in \mathbb{N}^m$:
- $Post \in \mathbb{N}^{m \times n}$;
- $Pre \in \mathbb{N}^{m \times n}$.

Insiemi \mathcal{E} e \mathcal{D}

- Dati $\mathcal{L} \subset T^*$ e $k \in \mathbb{N}$, si possono costruire:
 - insieme delle condizioni di abilitazione:

$$\mathcal{E} = \{ (\sigma, t) \mid \sigma \in \mathcal{L}, |\sigma| < k, \sigma t \in \mathcal{L} \} \subset T^* \times T;$$

insieme delle condizioni di disabilitazione:

$$\mathcal{D} = \{(\sigma, t) \mid \sigma \in \mathcal{L}, |\sigma| < k, \sigma t \notin \mathcal{L}\} \subset T^* \times T.$$

- Esempio:
 - $\mathcal{L} = \{ \varepsilon, t_1, t_1 t_2, t_1 t_3, t_1 t_2 t_3, t_1 t_3 t_2, t_1 t_3 t_3 \}$ e k = 3;
 - quindi $\mathcal{E} = \{(\varepsilon, t_1), (t_1, t_2), (t_1, t_3), (t_1t_2, t_3), (t_1t_3, t_2), (t_1t_3, t_3)\}$ e $\mathcal{D} = \{(\varepsilon, t_2), (\varepsilon, t_3), (t_1, t_1), (t_1t_2, t_1), (t_1t_2, t_2), (t_1t_3, t_1)\}.$
- Caratterizzazione del numero di posti della rete: $m = m_D = |D|$.

Constraint Set (CS)

■ Dati $\mathcal{L} \subset T^*$, $k \in \mathbb{N}$, \mathcal{E} e \mathcal{D} , è possibile costruire un insieme di vincoli algebrici lineari, che chiameremo *Constraint Set* (CS):

$$\begin{split} \mathcal{N}(\mathcal{E}, \mathcal{D}) &\triangleq \\ \left\{ \begin{array}{l} \textit{M}_0 + \textit{Post} \cdot \vec{\sigma} - \textit{Pre} \cdot (\vec{\sigma} + \vec{t}) \geq \vec{0} & \forall (\sigma, t) \in \mathcal{E} \\ \textit{M}_0(\textit{p}_{(\sigma, t)}) + \textit{Post}(\textit{p}_{(\sigma, t)}, \cdot) \cdot \vec{\sigma} - \textit{Pre}(\textit{p}_{(\sigma, t)}, \cdot) \cdot (\vec{\sigma} + \vec{t}) \leq -1 & \forall (\sigma, t) \in \mathcal{D} \\ \textit{M}_0 \in \mathbb{R}^{m_{\mathcal{D}}}_{\geq 0} & \\ \textit{Post}, \textit{Pre} \in \mathbb{R}^{m_{\mathcal{D}} \times n}_{\geq 0} \end{split} \right.$$

- $\langle N, M_0 \rangle$ soluzione del problema di identificazione se e solo se:
 - CS ammissibile:
 - M_0 , Post e Pre soluzioni intere.

Tecniche di riduzione dei posti

- Svantaggi della procedura di identificazione illustrata:
 - $m_{\mathcal{D}} = |\mathcal{D}|$;
 - caso peggiore: $|\mathcal{D}| = |T|^k$.

- In [CDC08] sono stati proposti due approcci per superare questo problema:
 - pre-riduzione: riduzione dei posti prima della risoluzione del CS;
 - post-riduzione: riduzione dei posti dopo la risoluzione del CS.

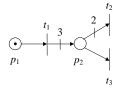
Pre-riduzione

- È data una partizione $\Pi(\mathcal{D}) = \{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_q\}$ dell'insieme \mathcal{D} .
- Constraint Set (CS) modificato:

$$\begin{split} \mathcal{N}(\mathcal{E}, \Pi(\mathcal{D})) &\triangleq \\ \left\{ \begin{array}{ll} \textit{M}_0 + \textit{Post} \cdot \vec{\sigma} - \textit{Pre} \cdot (\vec{\sigma} + \vec{t}) \geq \vec{0} & \forall (\sigma, t) \in \mathcal{E} \\ \textit{M}_0(p_i) + \textit{Post}(p_i, \cdot) \cdot \vec{\sigma} - \textit{Pre}(p_i, \cdot) \cdot (\vec{\sigma} + \vec{t}) < 0 & \forall (\sigma, t) \in \mathcal{D}_i \\ \textit{i} = 1, ..., q \\ \textit{M}_0 \in \mathbb{R}_{\geq 0}^q \\ \textit{Post}, \textit{Pre} \in \mathbb{R}_{\geq 0}^{q \times n} \end{split} \right.$$

- Informazioni aggiuntive sulla rete:
 - una transizione ha un solo posto in ingresso;
 - due o più transizioni stanno in una relazione di scelta libera.

Esempio



- $\mathcal{L} = \{\varepsilon, t_1, t_1t_2, t_1t_3, t_1t_2t_3, t_1t_3t_2, t_1t_3t_3\}$ e k = 3.
- t_1 ha un solo posto in ingresso; t_2 e t_3 sono in relazione di scelta libera.
- $\mathcal{E} = \{ (\varepsilon, t_1), (t_1, t_2), (t_1, t_3), (t_1t_2, t_3), (t_1t_3, t_2), (t_1t_3, t_3) \}$ e $\mathcal{D} = \{ (\varepsilon, t_2), (\varepsilon, t_3), (t_1, t_1), (t_1t_2, t_1), (t_1t_2, t_2), (t_1t_3, t_1) \};$
- **2** $\mathcal{D}_1 = \{(t_1, t_1), (t_1t_2, t_1), (t_1t_3, t_1)\} \subset \mathcal{D},$ $\mathcal{D}_2 = \{(\varepsilon, t_2), (\varepsilon, t_3), (t_1t_2, t_2)\} \subset \mathcal{D} \in \mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2;$
- 3 a = |P| = 2.

Post-riduzione

- $P_{(\sigma,t)} = \{ p \in P \mid M_0(p) + C(p,\cdot) \cdot \vec{\sigma} < Pre(p,t) \} \text{ per ogni } (\sigma,t) \in \mathcal{D}.$
- Hitting set: $\hat{P} \subset P$ tale che $\hat{P} \cap P_{(\sigma,t)} \neq \emptyset$ per ogni $(\sigma,t) \in \mathcal{D}$.
- I posti in $P \setminus \hat{P}$ sono detti posti ridondanti.
- Per ogni $(\sigma, t) \in \mathcal{D} \longrightarrow \vec{y}_{(\sigma, t)} \in \{0, 1\}^m$ vettore caratteristico di $P_{(\sigma, t)}$.

$$\left\{ \begin{array}{ll} \textit{minimizza} & \vec{1}^T \cdot \vec{x} \\ \textit{tale che} & \vec{x}^T \cdot \vec{y}_{(\sigma,t)} \geq 1 \\ & \vec{x} \in \{0,1\}^m \end{array} \right. \quad \forall (\sigma,t) \in \mathcal{D}$$

■ Minimo hitting set: $\hat{P} = \{p \in P \mid x^*(p) = 1\}.$

Esempio

$$\mathcal{L} = \{ \varepsilon, t_1, t_2 \} \text{ e } k = 2.$$

- **1** $\mathcal{E} = \{(\varepsilon, t_1), (\varepsilon, t_2)\}\$ e $\mathcal{D} = \{(t_1, t_1), (t_1, t_2), (t_2, t_1), (t_2, t_2)\}.$
- 2 Quindi $m = m_D = 4$ (Figura (a)).
- 3 $P_{(t_1,t_1)} = \{p_{11}, p_{12}, p_{21}\}, P_{(t_1,t_2)} = \{p_{12}, p_{21}\}, P_{(t_2,t_1)} = \{p_{12}, p_{21}\}, P_{(t_2,t_2)} = \{p_{12}, p_{21}, p_{22}\}: \hat{P} = \{p_{21}\} \text{ è il minimo } \textit{hitting set.}$
- 4 Quindi $p = |\hat{P}| = 1$ (Figura (b)).

Indice

- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Programmi realizzati

- Il pacchetto software di Matlab comprende:
 - 8 programmi realizzati attraverso funzioni;
 - 8 file dati corrispondenti, realizzati attraverso script.
- Risoluzione dei problemi di programmazione lineare con GLPK.

- Calcolo del linguaggio
 - sintassi: $[maxL, n] = PN_k 2maxL_n(M0, Post, Pre, k);$
 - descrizione: calcolo del linguaggio delle stringhe di lunghezza k generato da una rete P/T.
- **Costruzione degli insiemi** \mathcal{E} e \mathcal{D}
 - sintassi: $[E, D] = maxL_n_k 2E_D(maxL, n, k)$;
 - descrizione: costruzione gli insiemi \mathcal{E} e \mathcal{D} a partire dal linguaggio delle stringhe di lunghezza k.

Programmi realizzati

- Costruzione del Constraint Set (CS)
 - sintassi: $[q, A, b, ctype, lb, vartype] = E_D_pre_red2CS(E, D, pre_red);$
 - descrizione: costruzione dell'insieme dei vincoli secondo la sintassi del risolutore GLPKMEX, a partire dagli insiemi \mathcal{E} e \mathcal{D} , sfruttando eventuali informazioni di pre-riduzione.
- Estrazione della rete P/T
 - sintassi: [M0, Post, Pre, fm, ex] = CS_infoPN2PN
 (q, A, b, ctype, lb, vartype, P_inv, P_inc, P_dec, T_inv, T_inc, T_dec, state_mach, mark_graph, ord_PN, Gmec, msglev, dual, lpsolver);
 - descrizione: estrazione della rete P/T a partire dall'insieme dei vincoli mediante l'ausilio di GLPK

Programmi realizzati

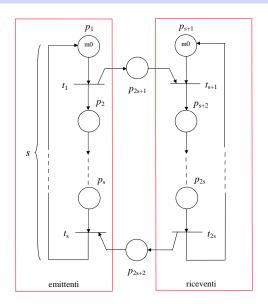
- Estrazione della rete P/T ridotta
 - sintassi: [red_M0, red_Post, red_Pre] = PN_D2post_red_PN(M0, Post, Pre, D, msglev);
 - descrizione: estrazione della rete P/T ridotta applicando una post-riduzione.
- Esecuzione dell'intera procedura
 - sintassi: [red_M0, red_Post, red_Pre, maxL2] = identif_proced (maxL, n, k, pre_red, T_inv, T_inc, T_dec, state_mach, ord_PN, msglev, dual, lpsolver);
 - descrizione: esecuzione della procedura completa di identificazione richiamando i programmi precedenti.
- Altri due programmi per costruire due reti P/T parametriche.

Indice

- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Presentazione generale

- La funzionalità dei programmi è stata testata su diverse reti P/T, al variare dei seguenti parametri:
 - l'intero *k*;
 - il numero di gettoni della marcatura iniziale;
 - i pesi degli archi;
 - le dimensioni della rete da testare.
- Test effettuati su un PC con processore da 2 GHz e RAM da 1 GB.
- Dati più importanti ricavati:
 - limiti di affidabilità dei risolutori di GLPK;
 - linguaggi *L_k* generati;
 - cardinalità dell'insieme D;
 - dimensioni della matrice A contenente i coefficienti dei vincoli;
 - numero di posti;
 - tempi di computazione.



S	k	<i>m</i> 0	card_maxL	card_D	size_A	size_A _{pr}
2	4	1	1	12	60 × 108	44 × 72
2	4	5	10	15	210 × 126	168 × 99
2	4	15	10	15	210 × 126	168 × 99
3	6	1	4	72	546 × 546	270 × 247
3	6	10	274	302	9306 × 1222	4504×585
3	6	20	274	302	9306 × 1222	4504 × 585
4	8	1	15	378	2600 × 1768	920 × 578
4	8	10	7635	8718	211248 × 8313	65570×2567
5	10	1	56	1835	8610 × 4410	2330×1113
5	10	2	25008	78727	o.o.t.	o.o.t.
6	12	1	210	8503	22692 × 9300	4932 × 1900
6	12	2	o.o.t.	o.o.t.	o.o.t.	o.o.t.
7	14	1	792	38248	51170 × 17458	9254 × 2987
8	16	1	3003	168598	0.0.t.	o.o.t.

5	k	<i>m</i> 0	card_D	q	q_{pr}	p	p _{pr}
2	4	1	12	12	8	4	4
2	4	5	15	14	11	3	3
2	4	15	15	14	11	3	3
3	6	1	72	42	19	7	7
3	6	10	302	94	45	6	6
3	6	20	302	94	45	6	6
4	8	1	378	104	34	9	9
4	8	10	8718	489	151	8	8
5	10	1	1835	210	53	11	11
5	10	2	78727	o.o.t.	o.o.t.	o.o.t.	o.o.t.
6	12	1	8503	372	76	13	13
6	12	2	o.o.t.	o.o.t.	o.o.t.	o.o.t.	o.o.t.
7	14	1	38248	602	103	15	15
8	16	1	168598	0.0.t.	o.o.t.	0.0.t.	0.0.t.

S	k	<i>m</i> 0	t _{PPL [sec]}	t _{PPL_pr} [sec]	t _{proc [sec]}	t _{proc_pr} [sec]
2	4	1	0	0	0	0
2	4	5	0	0	0	0
2	4	15	0	0	0	0
3	6	1	0	0	0	0
3	6	10	0	0	2	1
3	6	20	0	0	2	1
4	8	1	0	0	1	0
4	8	10	102	6	828	418
5	10	1	6	0	25	5
5	10	2	o.o.t.	o.o.t.	o.o.t.	o.o.t.
6	12	1	60	2	262	49
6	12	2	o.o.t.	o.o.t.	o.o.t.	o.o.t.
7	14	1	46	5	1933	467
8	16	1	0.0.t.	o.o.t.	o.o.t.	0.0.t.

Rete ridotta per s = 2 e m0 = 1 ($p_{pr} = 4$):

$$M_0 = \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \end{array}
ight], \quad Post = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{array}
ight], \quad Pre = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight].$$

■ Rete ridotta per s = 2 e m0 = 5 ($p_{pr} = 3$):

$$M_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad Post = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad Pre = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Risultati più importanti del testing

- La complessità del problema di programmazione lineare aumenta più velocemente al crescere di k.
- La tecnica di pre-riduzione:
 - dipende fortemente dal tipo di rete;
 - non è determinante per ricavare una rete finale con un dato numero di posti.
- La tecnica di post-riduzione:
 - spesso estrae una rete con un numero di posti di poche unità;
 - spesso riesce a ricostruire una rete simile a quella sotto testing.
- Generalmente il tempo di esecuzione dell'intera procedura aumenta più velocemente al crescere di k.
- La programmazione lineare riduce drasticamente la complessità computazionale rispetto alla programmazione intera.

Indice

- Introduzione
- Nozioni preliminari
- Procedura di identificazione di una rete P/T
- Toolbox di Matlab
- Testing di reti P/T
- Conclusioni

Contributi e ricerca futura

- Contributi della tesi alla ricerca:
 - implementativo: sviluppo di un toolbox Matlab per l'identificazione di una rete P/T;
 - sperimentale: la programmazione lineare riduce sensibilmente il tempo di risoluzione di un problema di identificazione rispetto alla programmazione intera;
 - sperimentale: la tecnica di post-riduzione permette in tutti i casi trattati di estrarre una rete con un numero di posti molto più piccolo rispetto alla rete non ridotta;
 - sperimentale: i risolutori di GLPK non sono totalmente affidabili sopratutto per problemi di grandi dimensioni.

 Ricerca futura: identificazione di una rete di Petri a partire dal grafo di raggiungibilità/copertura.

Grazie per l'attenzione