
UNIVERSITÀ DEGLI STUDI DI CAGLIARI
FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA ELETTRONICA

Dipartimento di Ingegneria Elettrica ed Elettronica

Centre de Recherche en Automatique de Nancy
ENSEM - INPL

ALGORITHM FOR MULTI-VEHICLE GUIDANCE
ON A FIXED LATTICE FORMATION

Advisors Master Thesis by:
Prof. Jamal Daafouz Andrea BACCARA
Prof. Alessandro Giua
Prof. Claude Iung

Academic Year: 2007-2008



2



i

Theory is when all is known and nothing works.
Practice is when all works but no-one knows why.

We have joined theory and practice:
nothing works... and no-one knows why!

Albert Einstein



ii



Contents

1 Introduction 1

2 Independent agent guidance 5
2.1 Trajectory decision over an horizon with obstacles . . . . . . . 5

2.1.1 Model dynamics . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Obstacle avoidance . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Path following and waypoints . . . . . . . . . . . . . . 8

2.2 Formation mobility . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Flocking - global interaction . . . . . . . . . . . . . . . 10
2.2.2 Flocking - local interaction . . . . . . . . . . . . . . . . 11
2.2.3 Fixed lattice formation . . . . . . . . . . . . . . . . . . 11

2.3 Consensus of agents . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Rendez-vous in multi agent systems . . . . . . . . . . . 13
2.3.2 Velocity consensus . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Coordination problems . . . . . . . . . . . . . . . . . . 15

3 System modelling 17
3.1 Robots modeling . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Inertial e�ects . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Discrete time . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Convex obstacles . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



iv CONTENTS

4 Control strategy and stability analysis 25
4.1 Guidance control . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Formation control using Voronoi's regions . . . . . . . . . . . 29

4.2.1 Algorithm description . . . . . . . . . . . . . . . . . . 30
4.2.2 Proprieties of the algorithm . . . . . . . . . . . . . . . 31

4.3 Rendez-vous algorithm . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . . 32

4.4 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Simulation results 37
5.1 Guidance tests . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Obstacle avoidance test . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Formation stability test . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Rendez vous controller test . . . . . . . . . . . . . . . . . . . . 50

6 Conclusions 57

A Matlab script 59
A.1 Main script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Guidance control - high level . . . . . . . . . . . . . . . . . . . 65
A.3 Guidance control - low level . . . . . . . . . . . . . . . . . . . 67
A.4 Guidance controller in absence of obstacles . . . . . . . . . . . 68
A.5 Obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . . 69
A.6 Formation controller . . . . . . . . . . . . . . . . . . . . . . . 71
A.7 Voronoi controller . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.8 Mirrors computation . . . . . . . . . . . . . . . . . . . . . . . 73
A.9 Waypoint computation for rendez-vous controller . . . . . . . 76
A.10 Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Geometrical issues 79
B.1 Angular coe�cient of a straight line . . . . . . . . . . . . . . . 79
B.2 Distance between a point and a straight line . . . . . . . . . . 79
B.3 Distance between two points . . . . . . . . . . . . . . . . . . . 80



CONTENTS v

B.4 Cosine or Carnot's theorem . . . . . . . . . . . . . . . . . . . 80
B.5 Linear and angular speed . . . . . . . . . . . . . . . . . . . . . 80

C Basic issues 81
C.1 Holonomic agent . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D Notation 83



vi CONTENTS



Chapter 1

Introduction

Goal of this document is to introduce a new algorithm for the control of a
group of mobile robots in an unknown horizon with obstacles, moving in a
�xed lattice formation. Cooperation between multiple agents working on the
resolution of a common objective is quite a problem today. Indeed many
agents may e�ciently reduce the length of the mission. We will try to high-
light the most current problems typical in literature as well as the solution
that can be applied in certain environments such as transports (highways,
cars, satellites, ships...), health (tele surgery), communication systems, oper-
ating system design and others.

Recent works, like the ones considered, in this thesis, extend the old algo-
rithms to address the computational complexity of the on-line optimization.
The main improvement is given by a division of the algorithm in few levels,
where each level can compute a di�erent command for the agent. New tech-
nologies like multi-threading softwares and multi-processor hardware enable
the use of much shorter planning horizons and quicker-solver algorithms. We
are hereby considering a formation of non-holonomic robots without lead-
ers: the control's rules must be obtained by local or global information; we
also consider a car-like agent described by unicycle robots over a 2D space.
We consider the works of Defoort [3] like the reference papers for the agent
description: we consider the system in discrete time and a continuous 2D

1



2 CHAPTER 1. INTRODUCTION

space. The same problem can be generalized for a generic agent on a <n

space, generating the same kind of problems. Centralized systems are easily
implemented, although implementation results in an exponential growth of
the computational time based on the size of the group: this document will
try to focus on a decentralized approach of the problem. Neither global co-
ordination will be needed, or a leader. All the rules are given a priori, and
decisions will be taken by computing the local information of the sensors and
the external information received from the others robots, exchanged via com-
munication systems. It is highly important to focus on the communication
problems like band or power availability. In order to have a simple notation
we will not consider the delays of communication. These problematics grown
linear - not exponential - with the number of agents considered. Finally the
goal is to have group arriving at destination, ensemble, yet we do not want
to avoid the obstacles in a formation lattice. The avoidance of the obstacle
in �xed formation, like in the previous analyzed works [12], is simpler tough
not better choice as it would require much more space around the obstacle
than needed. On the other hand the classical �ocking algorithms [13] do not
allow to give an order to the �ock, like in the problem of military formation.

The original contribution of this work is the introduction of a switched
control system for the guidance of the robots. Some controllers have been
applied, both developed in this thesis and found in bibliography, and an
high level state machine that chooses, in real time, the better strategy to be
adopted. Moreover the geometrical approach of the algorithm can minimize
the computational load and the sensor's needs. Group stability and safety
will be guaranteed by a controller based on the geometrical theory of Voronoi.
This controller in according with the theory of Lindhe and Johansson [12] is
completely decentralized and is light from a computational point of view.

The second chapter of this thesis will cover all those situations where
one may possibly �nd an agent-interaction control problem without leader
or global control. A short review of the article, or the articles, will follow,
considering every kind of problem, without going into the details of the so-



3

lutions adopted in the considered papers. We will consider of guidance over
an horizon with obstacles, a problem of guidance in a formation and the
consensus problem, which can be divided in: rendez-vous problem, velocity
consensus and �nally coordination problems. In chapter three we will de-
scribe the our considered system, and a modeling of it will be done; a formal
and an informal explication of the problems that may be encountered will be
drawn.
In chapter four we will take the model of chapter two, of the read articles,
and solve the problem. Using a similar technique with [3], this paper de-
velops an algorithm for guidance control. The problem is mainly practical,
and the physic of the system must be respected. This point can help us to
use a simple geometrical approach for the guidance algorithm that decreases
once more the computational load. A high level state machine allows one to
switch between the controllers when an obstacle will be found.
Finally in chapter �ve a simulation with the software Matlab is presented.
Some testing will be done aiming to demonstrate the e�ciency of the algo-
rithm, the stability of the system and the low computational load requested
for each robot. In Appendix A one will �nd a transcription and an expli-
cation of the algorithm developed for the simulation. Appendix B contains
the geometrical formulas used in this thesis, and �nally in Appendix C some
basic issues about the notation of agents and observability are recalled.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Independent agent guidance

In this �rst section we will focus on the main situations that can be found
over an agent-interaction control problems. An agent is a structure evolved
by a given (non)linear dynamic and a possible additive noise. Each agent
can control its own dynamics. The goal is to minimize the accumulated joint
cost, consisting in a state dependent term and a term that depends on the
control.
We can �nd agent's control problematic in some di�erent application, over a
space from 1 to n dimension space. Despite it, the problems are always the
same: for this reason in this chapter we will not go into details of the speci�c
solutions found on the literature but we will give a general theory for each
kind of problematic. When not speci�ed we always consider non-holonomic
agents (see Appendix C).

2.1 Trajectory decision over an horizon with
obstacles

In this section we cover the problem of the cooperative control of a group of
agents, or [3] mobile and autonomous robots, over an unknown horizon. The
presence of constraints for all the agents says that we can avoid collisions
only if we can ensure the communication between the agents. Moreover,

5



6 CHAPTER 2. INDEPENDENT AGENT GUIDANCE

since the available power is limited, the distance between the agents and the
information exchanged are reduced at best. We don't consider here other
aspects of communication like dead zones, latency, ecc.
The problem is to compute the trajectory respecting the constraints over the
initial and �nal con�guration. The environment is not a priori known and
then must be found in real time.

2.1.1 Model dynamics
In this chapter and in the follows the index i, indicates the agent index, for
a total of N agents; k denotes the current time step. The dynamic can be
described [11] by a LTI model in continuous time:

q̇i(t) = Aiqi(t) + Biui(t) + ηi(t) (2.1)

and in discrete time:

qn(k + 1) = Aiqi(k) + Biui(k) + ηi(k) (2.2)

or by a non-linear model as:

q̇i(t) = f(qi(t), ui(t), ηi(t)) (2.3)

for i = 1, . . . , n, where qi(k) ∈ <n is the state vector, ui(k) ∈ <m is the
input vector and ηi(k) ∈ <n is the disturbance vector for the vehicle i. ηi(k)

is unknown zero-mean variable, bounded by ηmax. We do not consider now
the second level dynamic of the agents, hence we will not introduce the
e�ects of inertia on top of our problems. In chapter three we will give a
formulation of these e�ects on the mathematical computation, considering
them as negligible.

General output is bounded by local constraints then bounded by Yi:

yi(k) = Ci(k) + Diui(k) ∈ Yi (2.4)



2.1. TRAJECTORYDECISION OVERANHORIZONWITHOBSTACLES7

For each agent we also have constraints over the maximum, for each compo-
nent l ∈ {1, . . . , m} of the input ui.

|ui,l(t)| ≤ ui,l,max (2.5)

It's widely considered in literature that the state

qi(t) =

[
pi(t)

θi(t)

]
(2.6)

simply represent the position pi(t) and the orientation θi(t) of our agent
over the n-dimensional space: our notation here under will consider this
convention. It is important that the trajectories of the agent never collide
with each other so, in order to ensure that:

||pi(k)− pj(k)|| ≥ S (2.7)

where i, j ∈ {1, . . . , n} and i 6= j. S is the minimum gap between two
agents at the k time.

2.1.2 Obstacle avoidance
Let us now suppose to be facing the problem of the obstacle avoidance sensor-
based. Obstacles can be either physical or merely non-driving zones. The
controller for the obstacle avoidance used alone, does not guide the agent to
a destination state but can prevent it to drive into an obstacle. There are
two families of controllers: the �rst is a reactive on-line controller [9] and the
second one is an o�-line controller [10] based on a replan of the trajectory.

Each agent i �nds an ensemble Ωi(t) = [O1, O2, . . . , OMi
] of Mi obstacles.

The ensemble is time varying because the sensor �nds new obstacles with
the movement of the agent. The goal is not to collide with the obstacles. We
can see each obstacle Oo as a in�nite set of points:

distance(pi(t), Oo(t)) > ρi ∀Oo;∀o ∈ 1, . . . , Mi (2.8)



8 CHAPTER 2. INDEPENDENT AGENT GUIDANCE

See Appendix B for the function distance. ρi indicates the radium of the
agent while oo indicates the position of the generic (external) point in the
obstacle.

2.1.3 Path following and waypoints
Once given an initial position and a destination state there are many ways to
reach the goal. The agent can arrive directly at destination minimizing the
distance; it can be required to follow a path or to reach some intermediate
waypoints before reaching the goal (or the possible route of the agent can be
bounded). If we got waypoints the optimum control problem associated to
each i agent is to �nd the input ui such as:

minui

∫ tk+Td

tk

(α||pi(k)− wi||2 + β||ui(k)||2)dt (2.9)

where wi is the next waypoint for the agent i. α and β are just correctional
proportional factors. The problem in (2.9) can be bounded by all the con-
straints as (2.7), (2.5) and (2.8). If we have a goal to be reached without
intermediate waypoints [9], we'll have a law like: qd = q(s) with 0 ≤ s ≤ sf ,
and qd that indicates the desiderate state to be reached, then a path to follow
bounded with a range sf (independent in all the dimension of the space), the
control objectives will be:

limt→+∞δ(t) ≤ εδ (2.10)

with εδ is a positive number arbitrarily small, δ(t) is the distance with the
path at time t:

δ(t) = ||q(t)− qd(t)||
We also cite [15] and [8] where you can �nd a virtual vehicle approach for
guidance over a given path, ruled by di�erential equation with error feedback,
and a dynamic path following approach with the criterion to stay close to
the path to have a great strength against measurement errors and external
disturbance. In �ocking [13] the waypoint is considered as a special agent,



2.2. FORMATION MOBILITY 9

where the potential with another agent is an attractive one. In literature
we can �nd some solutions for the problem explained. Depending on the
particular case analyzed, indeed, it is possible to face the physics of the
problem to de�ne the optimal controller.

2.2 Formation mobility

Here we will present the problem of stability control of a formation of au-
tonomous agents. The task is to �nd a control with an approach which yields
a good �xed formation convergence and disturbance rejection. For the mo-
ment we consider each as a point over the space, then it will be de�ned only
by its center

qi(t) =




xi,1(t)

. . .

xi,n(t)


 (2.11)

Considering N robots placed over the n-dimensional space, equipped with
sensors for the relative distance with the other robots, that follows that
simple given discrete dynamic on <n:

qi(k + 1) = qi(k) + ui(k) (2.12)

The goal is to �nd a control law which satis�es the following aims:

• Agents should never collide with each other;

• Formation should be asymptotically stable;

• Algorithm should be decentralized;



10 CHAPTER 2. INDEPENDENT AGENT GUIDANCE

We can describe as a vector the state χ of the formation:

χ =
[
qT
1 . . . qT

N

]T

=




x1,1

. . .

x1,n

. . .

xN,1

. . .

xN,n




(2.13)

To ensure the collision rejection we have to ensure the respect of a security
distance d between the robots as de�ned in (2.7). In this section we will not
consider the high level algorithm that will computes the waypoints. Here we
only consider a group of holonomic agents.

2.2.1 Flocking - global interaction
Flocking [13],[16] is a collective behavior of large number of interacting agents
with a common group objective. In �ocking we can ensure the three points
listed in the previous subparagraph with an algorithm of velocity consensus:
see section 2.3.2. Moreover a controller algorithm it is necessary to ensure
the achieving of the common objective. Fixing a distance

d(t) = ||pi(t)− pj(t)|| > 0 ∀i ∈ Ni(t) (2.14)

between an agent and the others, de�ning the neighbors set of i as Ni(t). We
can introduce the notion of communication graph as follows

De�nition 2.2.1 a communication graph G = (V, E) is a undirected graph
consisting of a set of N vertices V = {1, . . . , N} and a set of edges E =

{(i, j) ∈ V × V |i ∈ Nj} containing pairs of nodes that represent interagent
communication speci�cation. The graph is undirected because (i, j) ∈ E ⇔
(j, i) ∈ E. The adjacency matrix A(G) = [aij] of the undirected graph G is
then a symmetric matrix with aij = 1 if the two vertices i and j are neighbors,
and aij = 0 otherwise.



2.2. FORMATION MOBILITY 11

For simplicity we will always consider undirected communication graphs. In
�ocking, the lattice can be completely connected or quasi-connected; in this
last case we have a lattice with some holes. Inside the lattice, all the agents
respects the de�ned constraints of the velocity (2.5) and of the distance
between each other (2.14).
Usually the two kinds of lattice are made together by the �ocking algorithm.
If we want a stable, but ordinate lattice group of agent we need to use an
approach of "military formation" as explained in the next section.
To ensure the stability of the group, we can introduce a potential function
that depends on the distance between two agents.

Vi =
N∑

j=1,i6=j

Vi,j(di,j) (2.15)

where di,j = |pi − pj| = dj,i, and Vi,j(di,j) represents a decreasing potential
function that ensure the stability.

2.2.2 Flocking - local interaction
Global interaction requires a lot of communication power and band availabil-
ity in order to ensure the need to have the state of any agent available to the
others. A more interesting approach is then to reduce communication needs,
allowing only interactions between neighbors. De�ning the neighbors set as
the set Ni(t) of all the agents j whose ||pi − pj|| < d.
The graph sketched in de�nition 2.2.1, will be changed with a neighbors
graph that will have a number Ni(t) of vertex and a consequent, reduced,
number of edges. Also our potential function (2.15) will be then modi�ed as:

V ′
ni =





Vi,j(di,j) di,j < d,

Vi,j(d) di,j ≥ d
(2.16)

2.2.3 Fixed lattice formation
The �xed lattice formation controller builds a well ordinated formation lattice
- like an army corp - in the way chosen by the implemented algorithm. The



12 CHAPTER 2. INDEPENDENT AGENT GUIDANCE

net movement of the group should be externally controllable (by manual or
high level controller), in order to move the whole formation around obstacles
and choose a goal. This high-level control change the value of a constant
factor - depending on the form of the algorithm - that moves the whole
group in the chosen direction.

2.3 Consensus of agents
The third problem that we are about to present is called in the literature
"Consensus Problem" [1],[6]. Consensus gathers the experiences from the
whole group: in consensus the input of every agent is carefully considered
and an outcome is crafted that best meets the needs of the group. Using
updates in discrete time it is possible to reach the consensus using algorithm
of weighted average of the state of the agents. It is important to have at
least a partial observability of the scenario i.e.: assuming the observed output
de�ned as yi(t) = Cqi(t) + η′i(t) we have to ensure the classic condition of
observability over the matrix C (see Appendix C.2). It's here considered an
output y(t) a�icted by noise (η′(t)) Describing each agent in discrete time
by its state as in (2.2), the average consensus algorithm takes the general
form of:

zi = (1− l) · (qi(k)) + l · (yi(k))

qi(k + 1) = Qi,jzi

(2.17)

Where [2] 0 < l < 1 is the optimal gain that depends on the noise co-variance.
Q is the Consensus matrix with proprieties:

• Qi,j ≥ 0;

• ΣiQi,j = 1;

• ΣjQi,j = 1,

The form of Q depends on the kind of mean we want to introduce in the
consensus algorithm. We consider three types of consensus: the �rst called



2.3. CONSENSUS OF AGENTS 13

Rendez-Vous has the goal to lead all agents in a consensus point in the space;
the second one Velocity consensus ensures homogenous speed to all agents;
and the last one - coordination problem considers as state exclusively the
direction of the agents without taking care of their position in the space. It is
also possible combine the three problems in a generical form, however we will
analyze each problem separatly to have a simple notation. Communication
problems - that should be accounted for - are not being considered in our
analysis.

2.3.1 Rendez-vous in multi agent systems

The problem is to drive a group of agents towards a consensus point of the
space in an appointed �nite time. Then we have to design a controller that,
with no communication or with a limited one, can drive our multiple agents
to a certain point, ensuring that they arrive at destination only once and all
at the same time.
Agents may not "agree" to the rendezvous location and therefore they will
have to adapt to di�erent conditions, react accordingly, and learn how to
avoid the factors that complicate the process of rendezvous. De�ning the
agents with (2.6) and the con�guration space like on (2.13), the design ob-
jective is to construct feedback controllers that lead multi-agent system to
rendezvous, i.e. all agents should converge to a common point q∗ in the state
space de�ned by pi(t)

We can have a Radio-based approach, in this case each agent can receive
news from the others using a communication system (see de�nition (2.2.1).
As de�ned above, each agent is aware of the state of only those agents be-
longing to its communication system in the considered time instant. The
control law in discrete time will be (defying ui(k) = [νi(k)ωi(k)]) in the form
[5]:

νi(k + 1) = νi(qi, qj, tk)

ωi(k + 1) = ωi(qi, qj, tk)
(2.18)



14 CHAPTER 2. INDEPENDENT AGENT GUIDANCE

that accounts only for the state of the agent considered and of its neighbor to
compute the new command law. This approach is so easy to implement but
requires focus on all the communication di�erent problematics such as band
allowed, power management and noise. Another approach is the one sensor
based, where each agent must have the same horizon perception and a good
landmark. Obviously, the fundamental rendezvous strategy implemented in
each agent must be the same. They will compute their command law basing
on the perception, with sensors, of the state of the other agent. Algorithm
to solve this problem can be of many types. In [14] we have a list and a
comparison of each algorithm type, from the deterministic to the probabilistic
ones.
It is no question of better or worse algorithm: the success of an algorithm will
depend upon the physics of the problems to be faced: sensor noise, sensor
dissimilarities, a-synchronicity and non identical landmarks.

2.3.2 Velocity consensus

Let us consider a �nite number N of autonomous ideal punctiform agents,
then described by (2.2). Let us suppose a uni-dimensional space for simplic-
ity: all the agents will move in the same direction but at di�erent speed.
The request is to have, in a �nite time, that all agents move asymptotically
at the same velocity. The problem is extendable without noticeable changes
to the n-dimensional space. We want to avoid the trivial solution ν = 0 (ν
represents the linear speed of our agent), so:





∑
i,j∈Ni(k) aij||νj − νi||2 ≤ 0

νi(t) ≥ νmin ∀i ∈ Ni(k); k > 0
(2.19)

where aij is a constant that depends on the position of the agents. We've also
introduced a constant νmin to avoid an asymptotical decreasing solution.



2.3. CONSENSUS OF AGENTS 15

2.3.3 Coordination problems
We consider the same N agents of section 2.3.2 but now we suppose that
they move in the n-dimensional space at the same linear speed νi = ν, but
with di�erent and variable heading θi ∈ [0, 2π[. Considering the discrete-
time evolution of the whole system we can modify the direction of each
agent at each time step, according to its velocity. We want all the agents to
coordinate themselves towards an all-together direction θd not a-priori given
but computed step by step on the basis of the actual direction of the agents.
To know the state of others agents we have to build directed weighted graph
that represents the communication between neighbors agents.
The updated direction of each agent is given by a weighted average of the
direction of its neighbors Ni(k), meaning [17]:

θi(k + 1) =
θi(k) + Σjwji(k)θj(k)

1 + Σjwji

j ∈ Ni(k) (2.20)

w it's just a weight for the link between the two agents i and j at t. This
equation is nothing but approximation, depending on the chosen model. In
this case, we are facing a stability problem of a linear time-varying switched
system described by:

θ(k + 1) = Ai,lθ(k) with Ai,l =





1
1+Σjwji

if l = i

wli

1+Σjwji
if l 6= i

(2.21)

Furthermore, we have a system without perturbation as (2.2)where the state
qi(t) represents - we are not interested in the position - only the direction
of each agent i with Bi,j = 0 for ∀j ∈ 1 . . . m. We got some advantages
over the other problematic. Indeed here we can simplify our system knowing
that the A matrix is stochastic and square; knowing that its rows all sum
to 1 with non-negative entries and positive on the diagonal. In case of non-
perturbation we will not have to care about possible stability problems.



16 CHAPTER 2. INDEPENDENT AGENT GUIDANCE



Chapter 3

System modelling

We consider a group R of N agents that will move over a bi-dimensional,
continuous and in�nite horizon in a discrete time. Any agent will compute
each independent trajectory, knowing only where the waypoint W is and
with the only help of his sensors. As already stated, we do not have leader
neither do we have a global sensor or controller.
Every agent Ri ∈ R, with i ∈ {1, . . . , N}, it is an unicycle robot with two
independent drive wheels like in picture 3.1. The robots are initially placed
as a formation and the goal is to arrive to destination in the same formation
form that they were placed as per picture 3.3. By the way, they have to
arrive to destination via the shortest way and in a �nite time, or better in
the shortest time possible.

3.1 Robots modeling
It's possible to describe each robot like a circle with radius ρ and center xi, yi;
θi describe the orientation of the robot. Then we can describe each robot as:





ẋ(t) = ν(t) cos θ(t)

ẏ(t) = ν(t) sin θ(t)

θ̇(t) = ω(t)

with θ ∈ [0, 2π[ (3.1)

17



18 CHAPTER 3. SYSTEM MODELLING

Figure 3.1: Unicycle car-like robot

q(t) =




x(t)

y(t)

θ(t)


 (3.2)

where ν and ω are the linear and the angular speeds respectively bounded
by:

|νi(t)| ≤ νmax |ωi(t)| ≤ ωmax ∀i ∈ {1, . . . , N} (3.3)

Then in a compact form:

q̇(t) = B(q) · u(t) (3.4)

With B(q) =




cosθ 0

sinθ 0

0 1


 and

u = [ν, ω] (3.5)

It can be useful also have a reduced form, not considering the dimension of
the robot, so that its angular speed can be ignored:

p(t) =
[
x(t) y(t)

]T
(3.6)



3.2. OBSTACLES 19

3.1.1 Inertial e�ects
To complete the description of the system we give also a second degree dy-
namic [4]. Here we consider the inertial e�ects and give the dynamic in terms
of acceleration: those e�ects, however, will be taken as negligible, in order to
simplify the algorithm.

Mq̈(t) = B(q)τ − A(q)λ (3.7)

where M in the inertial matrix, B is the transformation matrix (to change
from cartesian to polar coordinates), λ represent the constraints on the sys-
tem as a vector and �nally τ gives the command input as the torque control
of the wheels.

3.1.2 Discrete time
Till here, all the laws are in a continuous time. Now we de�ne the same model
in a discrete time, how we will use it in the next chapter for the algorithm,
and obviously how we have used it in the simulation. The dynamic law will
be formulated as follows:

q(k + 1) = q(k) + B(q) · u(k) + η(k) (3.8)

Our time-line t is then sampled with a sampling time ts and bounded by
a tmax. The index of the sampling time is indicated by k. η is a random
unknown perturbation over the system, bounded by η ≤ ηmax. We suppose
that the computing time of all our algorithm plus the refresh time and the
intercommunication time, result in a lesser time than the sampling time ts.

3.2 Obstacles
M obstacles have been placed on the robots' trajectory. Placement of the
obstacles is unknown to the robots till their sensors detect it. The ensemble
of M obstacle Ω = {O1, O2, . . . , Oo, . . . , OM} is �xed. We need not know an



20 CHAPTER 3. SYSTEM MODELLING

Figure 3.2: Circular obstacle starting from a generic convex one.

a-priori trajectory, but only the obstacles that can cause crash in the next
time step. Obstacles can be of two types: convex obstacles and in�nite walls.
By the combination of this two types we can de�ne all the possible situations.

3.2.1 Convex obstacles

Every convex obstacle is taken as circular (see picture 3.2) then de�ned by his
center [XoYo] - computed as centroid of the convex obstacle - and his radium
ro, then the following inequalities are just an application of (2.8). Even a
neighbor robot may be taken as an obstacle, if it is placed over the path.
Once the robot �nds the obstacle in his way, the sensor gives its coordinates
(position and radius) to the controller then the agent compute a crash-free
trajectory. We shall call Oi(t) ⊆ Ω and Qi(t) ⊆ R the set of obstacles and
robots respectively than may crash with the robot i at time t. We write
Ci(t) = Oi(t)

⋃Qi(t), and rco the radium of the object co ∈ Ci(t) then we
want to ensure the following constraints:

distance(pi(t), Oo(t)) > ρ + ro ∀Oo(t) ∈ Oi(t) (3.9)

distance(pi(t), pj(t)) > 2ρ ∀pi ∈ Qn(t) (3.10)



3.2. OBSTACLES 21

ρ as ever represents the radius of each robot. We can resume the two condi-
tions above in only one condition as follows:

distance(pn(t), ci(t)) > ρ + rci
∀ci ∈ Cn(t) (3.11)

In the same way each robot needs to know the position of the neighbor robots
when it is in formation, but does not need the position of the other robots
when the formation is broken to avoid an obstacle: that must be anyway
under radio coverage.

3.2.2 Walls
We consider only in�nite walls. Indeed an eventual �nite wall can be de-
scribed by the sensor of the robot like an in�nite wall in tk−1 and like an
empty space in tk where tk is the time where the sensor stop to see the wall
like a problem for the robot's trip in the next sampling time. We can observe
that the half space is a particular case of convex obstacle. Indeed an half
space is always a convex connected region.
An in�nite wall divide the horizon in two parts. Describing our wall like a
straight line y = ax+b we can ensure that the robot is in the closed half-space
considering it as the center of cartesian system the position of the robots

y − yi = a(x− xi) + b (3.12)

where b is the intersection of the in�nite wall with the new y-axe. If b > 0

all the in�nite straight lines with same a and values of b′ > b generate the
non-permitted half-space. To avoid crash we need to compute the distance
between this straight line and the origin (see Appendix B.3):

dw =
−b

±√1 + a2
(3.13)

We must then simply ensure that this distance is less than than the dimension
of our robot:

dw < ρ (3.14)



22 CHAPTER 3. SYSTEM MODELLING

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 3.3: Formation: the black circle indicate the obstacle, while the red
X indicate the waypoints.

3.3 Destination
Once given the destination point W = [Xw, Yw]T and placed each robot Ri

in a state qi = [xi, yi, θi]
T , each robot Ri do not will arrive exactly in W , but

in a point Wi computed as follows:

Wi = W + (q̂i,0 − CGform(t = 0)) (3.15)

as we can see in �gure 3.3. CGform is the center of gravity of our lattice
formation. At this point we have to compute the problem (2.9) with α = 1

and β = 1. If we do not have obstacles in our route, the shortest way will
be a straight line joining the agent with the waypoint, but this will not be
the real trajectory because we do take into account the �nite, angular speed
of the robot (see also picture 3.4) and the initial orientation of each robot
θ(t = 0) = θ0. Indeed the problem (2.9) will be bounded by (3.3), (3.9) and
(3.10).



3.3. DESTINATION 23

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 3.4: Middle of the guidance simulation



24 CHAPTER 3. SYSTEM MODELLING



Chapter 4

Control strategy and stability
analysis

The considered problem will be solved with three independent controllers.
Indeed every robot compute its own trajectory with a guidance controller,
that can guide the robot on its route avoiding the obstacle. The second
controller called Formation controller will ensure that the robots will stay
in a �xed formation. Once arrived in the nearness of an obstacle, we don't
want to avoid it in formation, therefore will not need the formation controller.
We will switch to a rendez-vous algorithm that will drive each agent, one
by one, to a new group placed in the other side of the obstacle, in order to
re-gather towards destination.

4.1 Guidance control
The planning problem is to compute the trajectory for every robot in every
sampling time. We use the idea of [3] to divide the guidance coordination
in two steps. First of all, every robot has simpli�ed trajectory q̌i(k), for
the next sampling time tk+1, that considers only the constraints over the
speeds(3.3), and over the distance from the obstacles (3.9). A cost function
like (2.9) will then be applied. The associated command law is ûi(k), to

25



26 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS

compute the trajectory using (3.8). As said if Oi(tk) is empty for all the
0 ≤ tk ≤ tmax all that the robot does, is to go by a straight line to the
waypointWi de�ned by the coordinates as in (3.15). The guidance command
ug,i(k+1) = [νi(k+1)ωi(k+1)] will be computed in the next way (to simplify
the notation here we write a generic variable x(k) as xk). First of all we try
to reach waypoint at the max speed as possible. Only when we reach the
waypoint we need to decrease the linear speed.




ˇνk+1 = νmax if Ywi
≥ y

ˇνk+1 = −νmax if Ywi
< y

(4.1)

After that, we will compute the angular speed. As shown in picture 4.1
maybe our robot is oriented in a di�erent way than desiderated. But we
have to take count of the limited angular speed, that limits the maximum
variation θmax of rotation. Introducing θwi

∈ [0; π[ as the angle between the
reference and the waypoint:





ˇθk+1 = θk + θmax if θwi
> θk + θmax

ˇθk+1 = θk − θmax if θwi
< θk − θmax

ˇθk+1 = θwn else

(4.2)

Therefore, in absence of obstacles, the command law will be:



ω̂k+1 = ˇθk+1 − θk

ν̂k+1 = ˇνk+1

(4.3)

In presence of the obstacles Oi(t) (indicating as θi,o the angle between the
reference system and the obstacle Oi,o), the command law will be computed to
minimize the distance of the path to avoid the obstacles. Using the Carnot's
theorem (see Appendix B.4) we can �nd the αi,o angle: with the notation of
picture 4.2 α is the angle to compute, c is computed knowing the maximum
linear speed νmax, while a and b are bounded by (3.9). In this way, we have
to choose between two di�erent points marked as the two red Xs:




´θk+1 = θi,o − αi,o if θi,o ≥ ˇθk+1

´θk+1 = θi,o + αi,o else
(4.4)



4.1. GUIDANCE CONTROL 27

Figure 4.1: Orientation of the robots without obstacles

ˇθk+1 will be our new chosen orientation. The new arriving point can be,
once again bounded by the maximum speed (in this case, angular speed)
available for the robot. But now we cannot let the robot free to go as it
is bearing a di�erent angulation than desired and risk of crash with the
obstacles becomes possible. Linear speed must be turned on zero till robots
are back in the initial direction. With the same formulation of (4.1),(4.2)
and (4.3) we will obtain





θ̂k+1 = θk + θmax

ν̂k+1 = 0
if ´θk+1 − θk > θmax (4.5)





θ̂k+1 = θk − θmax

ν̂k+1 = 0
if ´θk+1 − θk < −(θmax) (4.6)





θ̂k+1 = ´θk+1

ν̂k+1 = νmax

else (4.7)

Once the simpli�ed trajectory q̂n(k) is computed (as 3.4), each robot sends
it to one another. Those trajectories will be seen as an obstacle by other
robots, therefore we shall apply the same algorithm explicated above with a
new set of obstacle Ĉi(k) that is merely the sum of the true obstacles with



28 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS

Figure 4.2: Computing of the angle for the obstacle's avoidance

Figure 4.3: Orientation of the robots with obstacles



4.2. FORMATION CONTROL USING VORONOI'S REGIONS 29

the simpli�ed trajectories of the robots that can cause crash as in (3.11), ob-
taining in this way a new command and than the optimal planned trajectory
q∗i(k). This way, we have a guidance control that guarantees the reach of
the waypoint with a full avoidance of any obstacle, and no crash between
the robots. Of course we must be satis�ed, that the request that the two
trajectories will be computed in a shorter time than the sampling one. We
also note that each robot doesn't know the destination point of the other
robots, having then a full decentralized control.

4.2 Formation control using Voronoi's regions
Now we explained the technics based on Lindhé and Johansson's work [12] for
the stability of a mobile-robots formation. The proposed solution is to �x the
position of each agent inside the formation as the center of the Voronoi region
computed. Afterwards we shall introduce the concept of Voronoi Regions.

De�nition 4.2.1 (Voronoi Region) Let Z = {z1, . . . , zm} be a set of points
in <2. The Voronoi region Ri(Z) ⊂ <2 consist of all points that are closer
to zi than any other point in Z:

Ri(Z) = {x : |x− zi| < |x− zj|∀j 6= i} (4.8)

The line segments

lli(Z) = {x : ∃l 6= i : |x− zi| = |x− zl| < |x− zj|∀j 6= i, l} (4.9)

represents the boundaries of Ri(Z). The set of Voronoi vertices Vi(Z) for zi

are the points:
V lj

i = ll,i(Z) ∩ lj,i(Z) (4.10)

De�nition 4.2.2 (Neighbor set) It is �nally easy to de�ne the set of neigh-
bors, Ni of the agent i as all agents that share a Voronoi vertex with it. We
denote as Ci ⊂ Ni the close neighbors set, i.e. the set of all agents that share
two or more vertex with the agent i.



30 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS

The algorithm of Lindhé and Johansson can stabilize a formation, with a
collision safety and formation cohesion. The algorithm works �ne with non-
holonomic agents and is completely decentralized; moreover it is very light
from the computational point of view and �nally does not need a communi-
cation system. For all this reasons I choose this algorithm from the literature
as my formation control. On the other hand this algorithm has some very
strong requests:

• The formation's lattice must be exagonal then each agent has exactly
3,4 or 6 neighbors;

• at start all at interagent distance d;

• we must have minimum 7 robots in the formation;

• the perturbation over the process must be small enough (later we will
give a dimension at this "small");

4.2.1 Algorithm description
The idea at the base of the algorithm is that each agent has to compute his
Voronoi region inside the formation and then moves to the centroid of it. To
be sure that also externals agents (agents with Ni < 6) have a �nite Voronoi
region, we build imaginary neighbors though mirroring of real agent (then
we call as "mirrors" this fakes agents):

M(px, py) = px − py − px

||py − px||d (4.11)

where px represents the position of our considered agent and py the position
of the agent to be mirrored, d their distance. Once computed the mirrors we
compute the centroid of the vertex of the Voronoi region as:

ci =

∑
z∈Vi(Ni)

z

size(Vi(Ni))
(4.12)

then we apply the command:

uvoro,i = uf,i = ci − pi (4.13)



4.2. FORMATION CONTROL USING VORONOI'S REGIONS 31

Having a limited linear speed bounded by (3.3) we must ensure that |u| <

νmax/ts where ts is the sampling time. We don't care about the angular
speed that here we supposed in�nite. Indeed in this algorithm we suppose no-
dimensional agents. As formulated above, algorithm requires to be computed
in the same time by all the agents, then we required a radio synchronization
of the clock.

4.2.2 Proprieties of the algorithm

Safety

Being the Voronoi's regions normally de�ned as convex and being the centroid
of them inside the region, the centroid as de�ned is a convex combination of
the points of the regions. On the other hand the agents move from a point
inside the regions to the centroid of it and we can then assume that there
will be no interagent collisions. We have also to ensure that each robot in
one iteration does not move farther than 1

2
Rmax where Rmax indicates the

distance covered by the sensor.

Stability

Having, as said, a convex region, around the robot described by q∗, will be
applied a convex function f that computes them with a radium maximum
of d, where d indicates the distance between two robots, the Jacobian of our
function:

J =
df

dq
|q=q∗ (4.14)

has two eigenvalues λ1,2 = 1 that correspond to the 2 degrees of freedom,
and others eigenvalues all inside the unit circle that tell us that we can have
and preserve the stability of the formation if the perturbations are η < d

[12].



32 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS

Region of attraction

Having others controllers in parallel with the formation controller we want to
know how much we can move our robot without breaking up of the formation.
Simulations done by Lindhé and Johansson tell us that any perturbation to
the original position that is inside of a circle of radius d/

√
3 will be rejected

by the controller, otherwise the group may not converge to desired formation.
Then we have to limit to this value the range of our guidance control.

4.3 Rendez-vous algorithm
If the formation of robots will �nd an obstacle we want to have an indepen-
dent avoidance of the obstacle for each robot, Then we have to "turn o�" the
formation control. Our problem is that, as de�ned in previous paragraph, the
formation control needs that the robots are in an hexagonal lattice, yet done,
before to be turned on. We now need an algorithm that allows the robots
to come back in a hexagonal lattice formation (obviously, always without a
global control).

4.3.1 Proposed algorithm
The idea is to have, in each robot a memory of the form of the initial lattice
formation, and the initial position of the robot in it. Using the simpli�ed
form (3.6) of the lattice at starting point ( for t = t0) we can compute the
barycentre of it as:

CG(t0) =

∑N
i=1 pi(t0)

N
(4.15)

The position of each robot can be then described as a relative position com-
pared to the barycentre.

p̂i(t0) = pi(t0)− CG(t0) (4.16)

We can also assume as radius of the formation the maximum value of p̂i(t0):

Rf (t0) = (max||p̂i(t0)||) (4.17)



4.3. RENDEZ-VOUS ALGORITHM 33

Figure 4.4: Computation of the new waypoint; d = ς(rf(t0) + ro)

keeping in memory these two values, it is easy to think that our problem now
is to compute the position of the barycentre of the formation CG′ after the
obstacle avoidance. The idea is to put it on the other side of the obstacle
towards the waypoint (see picture 4.4). The computed waypoint will be:





X ′
W = Xo + ς(rf(t0) + ro)cos(θo,w)

Y ′
W = Yo + ς(rf(t0) + ro)sin(θo,mw)

(4.18)

Where:

• ς > 1 is a real constant used as a safety factor correction;

• Xo and Yo indicates the position of the obstacle Oo ∈ Ω;

• ro is the radius of the considered obstacle;

• θo,w is the angle between the reference system and the straight line that
join Oo with the destination Wi of the agent Ri.

Finally we can use this waypoint as the new destination in the guidance
control while all the robots are in position, forming the new formation ready
to start once more to the �nal destination.



34 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS

Figure 4.5: State machine

4.4 State machine

Now, as explained, we have three totally independent controller for the guid-
ance of our robot to destination: a guidance controller, a formation stability
controller (Voroni based) and a rendez-vous control. We need a high-level
controller, in our case implemented as a state machine, to switch between
the Voronoi control and the Rendez-vous control. The guidance control will
be always active, but will switch the waypoint towards which it is head-
ing. See �gure 4.5. When the detector �nds a close obstacle Oo so that
d(pi(t), Oo(t)) ≤ dmax we switch from the �rst state (controller of Voronoi)
to the second one (rendez-vous). During this switching a new waypoint Wo

will be computed, as (4.18).
Once the robot i arrives to the waypoint it sends an ack(i) = 1 and goes in
the wait state, where it waits for the others. When:

ack(i) = 1 ∀i ∈ 1 . . . N (4.19)

the waypoint as input of the guidance controller will be restored to the des-
tination point W , and the state will be switch back to the �rst state.



4.4. STATE MACHINE 35

Controls - resuming table:
State Name Active controls Resuming formula
]1 Normal guidance Guidance; Voronoi q(k + 1) = q(k) + ug(k) + uf (k) + η(k)

]2 Obstacle avoiding Guidance q(k + 1) = q(k) + ug(k) + η(k)

]3 Waiting - q(k + 1) = q(k) + η(k)



36 CHAPTER 4. CONTROL STRATEGY AND STABILITY ANALYSIS



Chapter 5

Simulation results

Aiming to test our system, we realize a model with Matlab. We will test each
part of the system independently and then the ensemble of the algorithm will
be tested. Testing with and without perturbation will be done with the task
to show the goodness of the algorithm and the stability of the system. For all
the simulation we have choosen (when not otherwise stated) the same initial
condition so it is easier to make a comparison between the picture attached.
We simulate a formation of 10 robots (only in one case we will choose a small
formation of 3 robots), with a dimension of 10 cm. The sampling time is 0.1
seconds (fs = 10Hz), and we choose a time of 30 secs, then 300 sampling
times, for the whole simulation. The robots have a maximum linear speed
νmax of 4 m/s, a speed slow enough to permit the real time computation
of the trajectory. The angular speed is also bounded by a max value of
ωmax = 2rad/s. The initial orientation of the robots relevant to X is θ = 0:
horizontally in the pictures. At the end of each simulation it will be gave a
resuming table useful to reproduce the test.

5.1 Guidance tests

First of all, we simulate the guidance algorithm without noise and with no
obstacles. We do the test on a 10-robots formation, in a hexagonal lattice as

37



38 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.1: Begin of the simulation

shown in picture 5.1 (but any initial placement of the robots can be choose for
this test). In �gure 5.2 we can see how the robots move over the horizon.
It is easy to note that the choice of initial orientation of the robots with
θ = 0 (the direction of the X axis on the picture) combined with the limited
angular speed draws a curve trajectory. In picture 5.3 it is showed how, even
in absence of a controller for the stability of the formation, we can have all
robots converging in the same destination point and reaching the waypoint in
a �nite time as shown in �gure 5.4. The pictures 5.5 and 5.6 show that the
minimum distance from each robots to the others starts, as said, with a value
of 1 meter, but never goes below the imposed distance of 30 cm between the
centers of the two circular robots. Indeed the robots will arrive at destination
without crash between them. Discontinuities, as you can easily observe on
the picture, after about 75 and 110 sampling time, will occur when a robot
will reaches its destination point.



5.1. GUIDANCE TESTS 39

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.2: Middle of the guidance simulation

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.3: Trajectories of the robots



40 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.4: Arrive of the robots

0 50 100 150 200 250 300 350

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

D
is

ta
nc

e 
be

tw
ee

n 
ro

bo
ts

Figure 5.5: Minimum distance between the robots (large view)



5.2. OBSTACLE AVOIDANCE TEST 41

20 40 60 80 100 120 140

0.2

0.25

0.3

0.35

0.4

Time

D
is

ta
nc

e 
be

tw
ee

n 
ro

bo
ts

Figure 5.6: Minimum distance between the robots (close view)

Guidance control test - resuming table:
number of agents 10
number of obstacles 0
radius of each agent 10 cm
sampling time 0.1 s
maximum linear speed 4 m/s
maximum angular speed 2 rad/s
position of waypoint [7,8]
θ(t0) 0
noise maximum value 0

5.2 Obstacle avoidance test

We introduce now, in the model, some obstacles on the route of our robots.
In pictures 5.7, 5.8 and 5.9 we can see the evolution of the system once the



42 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.7: Obstacle avoidance - 1

robots �nd the obstacle. In picture 5.10 it is shown another application with
a model consisting of only 3 robots and three obstacles. We can note that
the algorithm works �ne as far as avoidance of the obstacles since each robot
safety keeps at a security distance from them. It is also interesting to note
that, once the robot has reached the obstacle, it chooses the trajectory to
follow and, bounded by his angular speed, waits to be oriented in the correct
direction before continuing. This fact it can be observed when the blue robot
reach the second obstacle in picture 5.10.



5.2. OBSTACLE AVOIDANCE TEST 43

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.8: Obstacle avoidance - 2

−2 0 2 4 6 8

−1

0

1

2

3

4

5

6

7

8

9

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.9: Obstacle avoidance - 3



44 CHAPTER 5. SIMULATION RESULTS

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.10: Obstacle avoidance of a system of 3 robots in a Horizon with 3
obstacles

Obstacles avoidance test ]1 - resuming table:
number of agents 10
number of obstacles 0
radius of each agent 10 cm
radius of the obstacle 70 cm
sampling time 0.1 s
maximum linear speed 4 m/s
maximum angular speed 2 rad/s
θ(t0) 0
position of waypoint [7,8]
noise maximum value 0



5.3. FORMATION STABILITY TEST 45

Obstacles avoidance test ]2 - resuming table:
number of agents 3
radius of each agent 10 cm
number of obstacles 3
radius of the obstacle 1 70 cm
position of obstacle 1 [15,10]
radius of the obstacle 2 40 cm
position of obstacle 2 [6,5]
radius of the obstacle 3 30 cm
position of obstacle 3 [12,6]
sampling time 0.1 s
maximum linear speed 4 m/s
maximum angular speed 2 rad/s
θ(t0) 0
position of waypoint [15,10]
noise maximum value 0

5.3 Formation stability test
The goal of the formation controller (Voronoi controller) is to stabilize the
formation against external perturbations. Perturbation can represent incerti-
tude of measures of the sensor and a rough terrain in which the robot moves.
We shall then apply an external perturbation model by means a random ma-
trix to be added to the control. The maximum value of this random noise
is 5 centimeters in both directions (for each sampling time). In picture
5.11 and 5.12 we can observe that the shape of the lattice formation does
not change in time as we wish: all we have is a translational movement of
the formation as a group in a (random, in reality) direction. We should not
be worried by this fact as this movement is not a problem of the formation
controller. Picture 5.12 shows longs regions of voronoi in the external of
the lattice, derived by a computational error of the software that considers
those regions not in�nite like the others outside our formation. Indeed the



46 CHAPTER 5. SIMULATION RESULTS

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.11: Starting voronoi regions

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x (arbitrary units)

y 
(a

rb
itr

ar
y 

un
its

)

Figure 5.12: Voronoi regions of the formation after 10 seconds



5.3. FORMATION STABILITY TEST 47

0 20 40 60 80 100 120
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Time

m
in

im
um

 d
is

ta
nc

e 
be

tw
ee

n 
ro

bo
ts

Figure 5.13: Distance between the robots applying over the formation a
random noise and the voronoi controller



48 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.14: Simulation of the system with formation and guidance control,
both applied - after half travel

software computes also the "mirrors", explained in chapter 3, represented in
the pictures by a black triangle. Thus we ensure a closed and �nite region
of Voronoi for all the "true" agents. Finally in picture 5.13 it is easy to note
that the distance between two robots will maintain in time, more or less the
ideal distance of 1 meter. In pictures 5.14 and 5.15 we can see how, it is
possible to reach the waypoint in a lattice formation as desiderate with the
combination of the two controllers.



5.3. FORMATION STABILITY TEST 49

−2 0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.15: Simulation of the system with formation and guidance control,
both applied - Destination reached



50 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.16: Obstacle with formation controller

Formation stability test - resuming table:
number of agents 10
radius of each agent 10 cm
number of obstacles 0
sampling time 0.1 s
maximum linear speed 4 m/s
maximum angular speed ∞
θ(t0) 0
noise maximum value 0.5 m/s

5.4 Rendez vous controller test

If we place an obstacle in the model, path of the formation, with no change
of state as explained in chapter 3, the situation will become as shown in
pictures 5.16, 5.17 and 5.18. We can observe that once that the �rsts robots



5.4. RENDEZ VOUS CONTROLLER TEST 51

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.17: Obstacle with formation controller

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.18: Obstacle with formation controller



52 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.19: Rendez-Vous controller - 1st step: it be build a new waypoint
for the formation

�nd an obstacle, the others go their way, breaking thus hexagonal lattice and
jeopardizing the mission of Voronoi's controller. In a better case the Voronoi's
controller will compute a bad command on the base of bad regions (as in case
of picture 5.18). In the worst case we will have a computational over�ow and
a block of the system. At this point it is necessary show the work of the
last one controller: the rendez-vous controller, that has the task to re-build
the formation after avoidance of the obstacle by this lattice. When the �rst
robot �nds an obstacle (�gure 5.19) it will send via radio the command to
others to change the state of the state machine, after which each robot will
build the new waypoint, as explained in chapter 3. The new waypoint will
be reached without a formation stabilization control as showed in pictures
5.20 and 5.21. After it the formation controlled will be turned on once again
and the lattice can drive ensemble till destination. As we can see in pictures
5.22 and 5.23 we have a problem when we pass from the third state to the



5.4. RENDEZ VOUS CONTROLLER TEST 53

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.20: Rendez-Vous controller - 2th step: every robot guide himself to
the new waypoint



54 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.21: Rendez-Vous controller - 3th step: the formation it is been
recomposed



5.4. RENDEZ VOUS CONTROLLER TEST 55

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.22: State machine - instability on the switch

�rst one of the state machine. Indeed when we reach the new waypoint on
the other side of the obstacle each robot waits for the others in his position.
There, all commands are de-activated but the noise is still acting over our
robot, so when all other agents will arrive the formation will not be exactly
hexagonal. This problem can be solved introducing another kind of controller
when the Voronoi controller is not active.



56 CHAPTER 5. SIMULATION RESULTS

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

X (arbitrary unit)

Y
 (

ar
bi

tr
ar

y 
un

it)

Figure 5.23: State machine - instability on the switch

Rendez-Vous controller test - resuming table:
number of agents 10
radius of each agent 10 cm
number of obstacles 1
radius of the obstacle 0.7
position of the obstacle [5,4]
sampling time 0.1 s
maximum linear speed 4 m/s
maximum angular speed ∞
θ(t0) 0
position of the waypoint [8,11]
noise maximum value 0.5 m/s



Chapter 6

Conclusions

In this thesis we have take two papers and relative ideas, joined them to solve
a new problem. With the help of some literature we have introduced an hy-
brid system based on a state machine to join the three developed controllers.
It will be also developed a Matlab software with the goal to test the good-
ness of our theory. Hence this thesis completes the previous works analyzed,
giving to the scienti�c community a new approach to solve the formation
problem in robotics but also in other �elds of study. Indeed as yet said, the
work is very speci�c for a single application, but the theory of the agents it
can be applied to many di�erent areas. It is interesting to see how you can
be optimize it by using a n-dimensional space, or just 3-D for �ying robots.
It is possible to improve my work with in other ways, overcoming the limits
of this work. First of all, we have used the work of Lindhe-Johansson as
idea for the formation control: I also chose a hexagonal lattice, as the initial
formation of the group of robots. It is a strong limitation and it would be
interesting to �nd an algorithm that uses the Voronoi's control with a lattice
of every convex form. As said we have a great limit over the speed and the
intra-robot distance to ensure the stability and the safeness. It is possible to
solve this problem using a controller based on a �ocking potential (or also a
speed consensus) that ensure the stability also for a great disturbance.

57



58 CHAPTER 6. CONCLUSIONS



Appendix A

Matlab script

Below the Matlab script done for the simulation of the proposed algorithm.
The �rst script is the main �le: after giving the initial condition there is a for
cycle that represent the time (every cycle is a sampling time). The control
laws will be computed at each sampling time and will be done an high-level
control to the choice of the state.

A.1 Main script
% Andrea Baccara 2008
% Main �le: modeling of a system of N agents in a horizon with obstacles
% Agents must travel in a lattice formation and arrive to destination in
% the same lattice form. Thei have to avoid the obstacles all by themselfs.

%%%%%%%% initial conditions %%%%%%%%

clear all
close all
clc
%ROBOTS:
%������������������������-
% initial position

59



60 APPENDIX A. MATLAB SCRIPT

P(:,1) = [0 0]';
P(:,2) = [-0.5 0.866]';
P(:,3) = [-0.5 -0.866]';
P(:,4) = [-1 0]';
P(:,5) = [0.5 -0.866]';
P(:,6) = [0.5 0.866]';
P(:,7) = [1 0]';
P(:,8) = [2 0]';
P(:,9) = [1.5 0.866]';
P(:,10) = [1.5 -0.866]';

% radius of each agent
ro = 0.1;

% teta: initial orientation of the agent
% 0<=teta<pi
teta(1:size(P,2)) = 0;

% initial condition of the state machine
state(1:size(P,2)) = 0;

% max linear speed
Vmax = 4;
% max angular speed
Wmax = 2;
% sensor range:
Rmax = 1;

%DESTINATION:
%������������������������-
W = [11 15]';

%OBSTACLES:



A.1. MAIN SCRIPT 61

%������������������������-
%O: centroid of the obstacles
% rO: radium of each obstacle
O(:,1) = [5 3.5]';
rO(1) = 0.7;
O(:,2) = [9 12]';
rO(2) = 0.4;
O(:,3) = [6 8.5]';
rO(3) = 0.3;

% NOISE:
%������������������������-
varns = 0.05;

% TIME:
%������������������������-
ck=0.1;
t = 0:ck:30;
maxT = size(t,2);

%%%%%%%% Computing %%%%%%%%

%maximum distance that each robot can run in a sampling time:
dismax = Vmax*ck;
if dismax < Rmax + 1/sqrt(3)

dmax = dismax-Rmax;
else dmax = 1/sqrt(3);
end

%maximum rotation of the robot in a sampling time
tetamax = Wmax*ck;

% centroid of the group



62 APPENDIX A. MATLAB SCRIPT

baricentro(1,1) = sum(P(1,:))/size(P,2);
baricentro(2,1) = sum(P(2,:))/size(P,2);

% radius of the group
for (i=1:size(P,2))

bd = P(:,i) - baricentro;
end
radgr = max(max(bd)) + ro/2;

% waypoint for each robot
for (p = 1:size(P,2))

Wyp(p) = W;
end

% waypoint in the form of initial formation lattice
for (i=1:size(P,2))

Wyp(:,i) = W - baricentro + P(:,i);
end

%Plotting:
%������������������������-
%plot the waypoint as a red X
foraxis = [W O P];
aa = 0:pi/50:2*pi;
plot (W(1,1),W(2,1),'xr');
hold on

%%%%%%%% Simulation %%%%%%%%

for (time = 1:maxT)

%plotting:
%������������������������-



A.1. MAIN SCRIPT 63

hold o�
% plot of the waypoint as a red X
plot (W(1,1),W(2,1),'xr');
hold on
% plot of the agents
for (i=1:size(P,2))

�ll (P(1,i)+ro*sin(aa),P(2,i)+ro*cos(aa),i);
end
% plot of the obstacles
for (i=1:size(O,2))

�ll (O(1,i)+rO(i)*sin(aa),O(2,i)+rO(i)*cos(aa),'k');
end
% add axis labels
xlabel('x (arbitrary units)');
ylabel('y (arbitrary units)');
axis ([min(foraxis(1,:))-1 max(foraxis(1,:))+1 ...
min(foraxis(2,:))-1 max(foraxis(2,:))+1])

%plot of mirrors
%plot (M(1,N+1:length(M)),M(2,N+1:length(M)),'�k');

% state machine
%������������������������-
% state0 -> open space: I want to stay in a formation group
% state1 -> (not a true state)
% I got an obstacle, compute the new waypoint
% state2 -> After an obstacle I want to come back in a formation

for (p = 1:size(P,2))
for (o=1:size(O,2))

disO(o) = distance (O(:,o)',P(:,p)');
end
disW(p) = distance (Wyp(:,p)',P(:,p)');



64 APPENDIX A. MATLAB SCRIPT

if any (disO < (3*ro + rO)) & state == 0
state = 1;
break

end
end

if state == 1
[Wyp] = newWyp(O,rO,disO,Wyp,W,radgr);
state = 2;
dmax = dismax;

end

if all (disW < ro)
if state == 2

state = 0;
for (p = 1:size(P,2))

Wyp(p) = W;
end
if dismax < Rmax + 1/sqrt(3)

dmax = dismax-Rmax;
else dmax = 1/sqrt(3);
end

elseif state == 0;
break

end
end

%here it be computed the random noise.
%������������������������-
% Vn = (-1)�time*5*varns*rand(size(P,1),size(P,2));
% Wn = (-1)�time*10*varns*rand(size(P,1),size(P,2));
% noise = rumore(size(P,2),Vn,Wn);



A.2. GUIDANCE CONTROL - HIGH LEVEL 65

noise = (-1)�time*varns*rand(size(P,1),size(P,2));

% Control laws:
%������������������������-

% guidance control
[P2,teta,Pn] = main_obst(P,ro,teta,O,rO,Wyp,dmax,tetamax,ck);
u2 = P2 - P;

% Formation Control
if state == 0

u1 = main_voro(P,Rmax/2);
else u1 = 0*u1;
end

% it apply the control law over the process.
P = P + u2 + u1 + noise;

end

A.2 Guidance control - high level
function [P,teta,Pn] = main_obst(P,ro,teta,O,rO,W,dismax,tetamax,ck)

% Andrea Baccara 2008
% Guide of a group of agent over an horizon with obstacles
% Here we consider a system without perturbations.

% P: position of the agents
% ro: radium of each agent
% teta: initial orientation of the agent



66 APPENDIX A. MATLAB SCRIPT

% O: position of the obstacles
% rO: radium of each obstacle
% dismax: max distance bounded by linear speed
% tetamax: max rotation bounded by angular speed
% ck: sampling time
%%%%%%%%

%calcolo la traiettoria sempli�cata
for (p=1:size(P,2))

[Pn(:,p),tetan(1,p)] = ostacoli (P(:,p),teta(1,p),W(:,p),O,rO,ro,dismax,tetamax);
end

% I build On (with relatives rOn) thei are the sum of O and P.
% Actually I consider the simply�ed trajectory of other agents like an
% obstacle:

rOn = rO;
for (p=1:size(P,2)-1)

rOn = [rOn ro];
end

for (p=1:size(P,2))
if p == 1
On = [O P(:,2:size(P,2))];

else On = [O P(:,1:p-1) P(:,p+1:size(P,2))];
end

% computing of the optimal trajectory
[P(:,p),teta(1,p)] = ostacoli (P(:,p),teta(1,p),W(:,p),On,rOn,ro,dismax,tetamax);
end



A.3. GUIDANCE CONTROL - LOW LEVEL 67

A.3 Guidance control - low level
function [P,teta] = ostacoli (P,teta,W,O,rO,ro,dismax,tetamax)

% Andrea Baccara 2008
% this function compute for one robot the trajectory knowing the position

% of the obstacle and the waypoint.

% disW: distance between robot and waypoint
disW = distance(P',W');

% it compute the speed
if disW > dismax

Vel = dismax;
else Vel = disW;
end

%it compute teta
% m is the angle between the robot and the waypoint
m = atan((W(2,1)-P(2,1))/(W(1,1)-P(1,1)));
if m<0

m = m + pi;
elseif m > pi/2 - 0.02

m = 0;
end

%it compute the trajectory without obstacle consideration
[Pn,tetan] = nobst (P,W,m,teta,tetamax,Vel);

% it compute the angular coe�. between robot and obstacle
for (i=1:size(O,2))

if (O(1,i)-P(1)) > 0.01
mO(i) = (O(2,i)-P(2))/(O(1,i)-P(1));

elseif (O(1,i)-P(1)) < -0.01



68 APPENDIX A. MATLAB SCRIPT

mO(i) = (O(2,i)-P(2))/(O(1,i)-P(1));
else mO(i)= pi/2;
end

end

% it compute the distance of the point preview with the Obstacle
for (i=1:size(O,2))

disO(i) = distance (O(:,i)',Pn');
end

if all (disO > (2*ro + rO))
P=Pn;
teta=tetan;

else
for (i=1:size(O,2))

if (disO(i) <= (2*ro + rO(i)))
[P,teta] = obst (P,rO(i)+2*ro,disO(i),Vel,mO(i),m,teta,tetan,tetamax);
break

end
end

end

A.4 Guidance controller in absence of obstacles
function [Pn,tetan] = nobst (P,W,m,teta,tetamax,Vel)
% Andrea Baccara 2008
% this function compute the trajectory command for the robots in absence of

% obstacles.

%it compute the new orientation tetan
if (m - teta) > tetamax



A.5. OBSTACLE AVOIDANCE 69

tetan = teta + tetamax;
elseif (m - teta) < -(tetamax)

tetan = teta - tetamax;
else tetan = m;
end

% it compute the new arriving point Pn.

if (P(2,1)-W(2,1)) < -0.1
Pn(1,1) = P(1,1) + (cos(teta)*Vel);
Pn(2,1) = P(2,1) + (sin(teta)*Vel);

elseif (P(2,1)-W(2,1)) > 0.1
Pn(1,1) = P(1,1) - (cos(teta)*Vel);
Pn(2,1) = P(2,1) - (sin(teta)*Vel);

elseif (P(1,1)-W(1,1)) < -0.1 | (P(1,1)-W(1,1)) > 0.1
Pn(1,1) = P(1,1) + (cos(teta)*Vel);
Pn(2,1) = P(2,1);

else Pn=P;
end

A.5 Obstacle avoidance
function [C,teta] = obst (A,a,b,c,mO,m,teta,tetan,tetamax)
% Andrea Baccara 2008
% It compute the trajectory command for the robots in presence of

% obstacles.

% A: initial position of the robot
% C: command.
% a: �nal distance between robot and obstacle



70 APPENDIX A. MATLAB SCRIPT

% b: initial distance between robot and obstacle
% c: a-b
% mO: angle between robot and obstacle
% m: angle between robot and waypoint
% teta: orientation of the robot
% tetan: new orientation computed by the function 'nobst'

% alfa angle between b and c
alfa = acos((c�2-a�2+b�2)/(2*b*c));
atm = atan(mO);

if atan(mO) >= tetan
tetan = atan(mO) - alfa;

else tetan = atan(mO) + alfa;
end

if (tetan - teta) > tetamax
teta = teta + tetamax;
C=A;

elseif (tetan - teta) < -(tetamax)
teta = teta - tetamax;
C=A;

else teta = tetan;
C(1,:) = A(1,:) + (cos(teta)*c);
C(2,:) = A(2,:) + (sin(teta)*c);

end



A.6. FORMATION CONTROLLER 71

A.6 Formation controller
function [u] = main_voro(P,dismax)

% Andrea Baccara 2007
% Here we stabilize the formation using a controller that compute the
% region of Voronoi for each robot inside the formation and guide it in

% the centroid of its region.

% P: position of the agents

% M gives the position of all the agents + all the mirrors
M = [P(1,1:size(P,2));P(2,1:size(P,2))];
[V,C] = voronoin (M');

% compute of the mirrors
[M] = mirror(C,P);

% computing Voronoi regions (and eventually patch it on the �gure)
[V,C] = voronoin (M');
% for k = 1:length(C)

% if all(C{k} =1) % If at least one of the indices is 1,
% % then it is an open region and we can't
% % patch that.
% patch(V(C{k},1),V(C{k},2),k); % use color k.

end
end

C1 = C(1:size(P,2)); % I only consider the true agents

%it compute the control law:
[u,B] = vorocontrol (V,C1,P,dismax);

% plot of the centroids



72 APPENDIX A. MATLAB SCRIPT

for (b=1:size(B,2))
plot (B(1,b),B(2,b),'xk');

end

% it plot the edges of the regions
for k=1:length(C)

plot (V(C{k}),V(C{k}+length(V)));
end

A.7 Voronoi controller
function [d,B] = vorocontrol (V,C,P,dismax)
% Andrea Baccara 2008
% this function take as input the position of the agents and the relatives
% Voronoi's regions, compute the centroid of each region and move the agent
% in the direction of it.

N = length (P);
for (i = 1:N)

B(1,i) = sum(V(C{i}))*1 / (length(C{i})*1);
B(2,i) = sum(V(C{i}+length(V)))*1/ (length(C{i})*1);
if B(:,i) = inf

d(:,i) = B(:,i) - P(:,i);
else d(:,i) = 0;
end

end

for (i=1:(2*length(d)))
if abs(d(i))>dismax/2

if d(i) > 0



A.8. MIRRORS COMPUTATION 73

d(i) = dismax/2;
else

d(i) = -dismax/2;
end

end
end

A.8 Mirrors computation
function [M] = mirror (C,P)
% Andrea Baccara 2007
% This function take as input the vertex of the regions of Voronoi and the
% position of the Agents, and compute the matrix M of all the agents added
% with the fake agents build by a mirroring action of the real ones.

% Initializing:
% Cn has the same information of C, but put the information in a square
% matrix where in rows we have the vertex of the region for each agent.

Cn = 0*ones(length(C));
%it build the Cn matrix
for (i = 1:length(C))% number of Voronoi's regions

for (k = 1:size(C{i},2))
Cn(i,k) = C{i}(k);

end
end

%it delete the in�nite from the vertexs
for (k = 1:length(Cn(:,1))*length(Cn(1,:)))

if Cn(k) == 1
Cn(k) = 0;

end



74 APPENDIX A. MATLAB SCRIPT

end

%it build the Nb matrix:
%Nb é la matrice dei vicini, ovvero mi dirà quanti
%vertici l'agente i ha in comune con l'agente j
Nb = 0*ones(length(Cn));%Nb é la matrice dei vicini, ovvero mi dirà quanti
%vertici l'agente i ha in comune con l'agente j
for (k = 1:length(Cn(1,:))*length(Cn(:,1)))

if Cn(k) = 0
[a,b] = �nd(Cn == Cn(k));
for (i = 1:length(a))

for (j = (i+1):length(a))
Nb(a(i),a(j)) = Nb(a(i),a(j))+1;
Nb(a(j),a(i)) = Nb(a(j),a(i))+1;

end
Cn(a(i),b(i)) = 0;

end
end

end

%it build the NeighNum matrix
%it return the number of Neighbors for each agent

NeighNum = 0*ones(1,length(Nb));
for (i = 1:length(Nb(:,1)))

for (j = 1:length(Nb(1,:)))
if Nb(i,j) = 0

NeighNum(i) = NeighNum(i) + 1;
end

end
end

%it build the mirrors
ai=1;



A.8. MIRRORS COMPUTATION 75

for (i = 1:length(NeighNum))
if NeighNum(i) < 6 %then the agent is external and I build the Mirrors

for (j = 1:length(Nb(i,:)))
if Nb(i,j) = 0

Mirr(1,ai) = 2*P(1,i) - P(1,j);
Mirr(2,ai) = 2*P(2,i) - P(2,j);
ai=ai+1;

end
end

end
end

% it delete the duplicate mirrors.
M(:,1) = Mirr(:,1);
M = [P M];
Dmir = 0.4;
for (k=2:length(Mirr))

N=size(M,2);
t=0;
for (i=1:N)

if norm(Mirr(:,k)-M(:,i))<Dmir
t=0;
break

else t = 1;
end

end
if t==1

M = [M Mirr(:,k)];
end

end



76 APPENDIX A. MATLAB SCRIPT

A.9 Waypoint computation for rendez-vous con-
troller

function [wyp] = newWyp (O,rO,disO,W,Wc,radgr)
% Andrea Baccara 2008
% it computed the new waypoint (rendez-vous point)
% W gives the old waypoint. Wc is the destination point, radgr is the
% radium of the formation.

[dism,obm] = min(disO);

if (O(1,obm)-W(1)) > 0.02
mO = (O(2,obm)-Wc(2))/(O(1,obm)-Wc(1));

elseif (O(1,obm) - Wc(1)) < -0.02
mO = (O(2,obm)-Wc(2))/(O(1,obm)-Wc(1));

else mO = pi/2;
end
mmO = atan(mO);

% the coe�cient 0.7 is for the safety distance
wypc(1) = (rO(obm) + radgr + 0.7)*cos(mmO) + O(1,obm);
wypc(2) = (rO(obm) + radgr + 0.7)*sin(mmO) + O(2,obm);

for (i=1:size(W,2))
wyp(:,i) = (wypc)' - Wc + W(:,i);

end

A.10 Noise generation
function [noise] = rumore (N,Vn,Wn)
% Andrea Baccara 2008



A.10. NOISE GENERATION 77

for (i=1:N)
noise(1,i) = (cos(Wn(1,i))*Vn(1,i));
noise(2,i) = (sin(Wn(2,i))*Vn(2,i));

end



78 APPENDIX A. MATLAB SCRIPT



Appendix B

Geometrical issues

B.1 Angular coe�cient of a straight line
Describing one straight line in bi-dimensional space as y = mx+q, we call an-
gular coe�cient the parameter m that has the propriety to have the value of
the tangent of the angle between the X-axe of the reference and the straight
line; q is the value of the intersection between the straight line and the Y-axe.

Having two points in the space (x1, y1) and (x2, y2) we can compute the
value of m as:

m =
y2 − y1

x2 − x1

B.2 Distance between a point and a straight
line

In a bi-dimensional space, we can write a straight line as y = mx + q, and
having a point P = [x0, y0], we can compute their distance as:

d =
y0 −mx0 − q

±√1 + m2

the ± symbol is placed to ensure to have a positive value of the distance.

79



80 APPENDIX B. GEOMETRICAL ISSUES

B.3 Distance between two points
We compute the distance between two points x = [x1, x2, . . . , xN] and y =

[y1, y2, . . . , yN] in a N-dimensional space as:

distance(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xN − yN)2

B.4 Cosine or Carnot's theorem
Using the Carnot's theorem we can compute, knowing the length a, b and c

of a generic triangle, the angle α between the two sides b and c:

a2 = b2 + c2 − 2bc · cosα ⇒
⇒ α = arccos(

c2 − a2 − b2

2ab
)

B.5 Linear and angular speed
We can de�ne the linear and the angular speed of an agent x = [x, y] in a
bi-dimensional space as:

ν =
√

ẋ + ẏ

ω =
ÿẋ− ẍẏ

ẋ + ẏ



Appendix C

Basic issues

C.1 Holonomic agent
May be de�ned as holonomic a system which all constraints are holonomic
then if all the constraints can be described as follows: f(x1, x2, x3, . . . , xN , t) =

0 where the constraints depend only to the variables xj and the time t. In
robotics, we de�ne holonomic robots the ones that have the number of con-
trollable degrees of freedom equal or greater than the number of all possible
degrees of freedom. A robot is considered to be redundant if it has more
controllable degrees of freedom than degrees of freedom in its task space.

C.2 Observability
A linear system 




ẋ(t) = Ax(t)

y(t) = Cx(t)

is observable if [7], for every initial state x(0), the value of the state can
be evaluated basing on the observation of the free evolution for a tf ≥ 0.
Defying an observability matrix:

O = [C|CA|CA2| . . . |CAn−1]T

81



82 APPENDIX C. BASIC ISSUES

if and only if rank(O) = n - where n is the dimension of the state - the
system is observable.



Appendix D

Notation

a, b, c generic sides of a triangle;

ck sampling time;

d distance;

CG barycenter or center of gravity;

Ci Oi

⋃Qi;

i index of the generic agent;

j index of the generic agent;

k generic time instant in discrete time;

m number of inputs;

M number of obstacle;

M Mirror;

N number of agents;

n number of dimensions of the space;

o generic obstacle;

83



84 APPENDIX D. NOTATION

Oi set of obstacles found by the agent i;

Ni number of neighbors of agent i;

p position of the agent;

q state of the agent;

Qi set of robots that can cause crash with the agent i;

R generic agent/robot;

r radium of a generic obstacle;

t time variable;

t0 starting time;

tk generic time in discrete time;

un command law (input);

xi i-th coordinate on a n-dimensional space;

Xo x-coordinate of the i-th obstacle;

Xw x-coordinate of the generic waypoint;

y output;

Yo y-coordinate of the i-th obstacle;

Yw y-coordinate of the generic waypoint;

W waypoint;

α generic angle;

ν linear speed;

ρ radium of each agent;



85

ω angular speed;

θ orientation of the agent;

Ω ensemble of all the obstacle;



86 APPENDIX D. NOTATION



Bibliography

[1] Bauso, D., Giarré, L., and Pesenti, R. (2007). Distributed consensus
for swithched networks with unknown but bounded disturbances. In 3rd
international workshop on network control systems, Nancy, France.

[2] Carli, R., Chiuso, A., Schenato, L., and Zampieri, S. (2007). Consensus
algorithm design for distributed estimation. In 3rd international workshop
on network control systems, Nancy, France.

[3] Defoort, M. (2007). Commande robuste décentralisée à l'horizon glissant
d'une �ottile de robots mobiles. Technical report, LAGIS UMR CNRS,
Ecole centrale de Lille, BP48, cite scienti�que, 59 651 Villeneuve-d'Ascq,
France.

[4] Defoort, M., Floquet, T., Kokosy, A., and Perruqueti, W. (2006). Integral
sliding mode control for trajectory tracking of a unicycle type mobile robot.
In Decision and Control, 46th IEEE Conference on.

[5] Dimargonas, D. and Kyriakopoulos, K. (2007). On the rendezvous prob-
lem for multiple nonholonomic agents. In IEEE Transactions on Automatic
Control, volume 52.

[6] Ferrari-Trecarte, G., Galbusera, L., Marciandi, M., and Scattolini, R.
(2007). model predictive control schemes for consensus in multi-agent
systems with integrator dynamics and time-varyng communication. In 3rd
international workshop on network control systems, Nancy, France.

87



88 BIBLIOGRAPHY

[7] Giua, A. and Seatzu, C. (2006). Analisi dei Sistemi Dinamici. Springer
Italia. University of Cagliari.

[8] Hu, X. and Stotsky, A. (2001). Control of mobile patforms using a vir-
tual vehicle approach. In IEEE transactions on automatic control, volume
46,N◦11.

[9] Hu, X., Alarcon, D., and Gustavi, T. (2003). Sensor-based navigation co-
ordination for mobile robots. In Proceedings of the 42nd IEEE Conference
on Decision and Control Maui, Hawaii USA.

[10] Khatib, O. (1998). Real time obstacle avoidance for manipulators and
mobile robots.

[11] Kuwata, Y., Richards, A., Schouwenaars, T., and How, J. (2006). De-
centralized robust receding horizon control for multi-vehicle guidance. In
IEEE American Control Conference, pages 2047,2052.

[12] Lindhé, M. and Johansson, K. (2006). A formation control algorithm
using voronoi regions. Technical report, CTS-HYCON Workshop on Non-
linear and Hybrid Control, Paris, France.

[13] Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Al-
gorithms and theory. Technical report.

[14] Roy, N. and Dudek, G. (1997). Learning to rendezvous during multi-
agent exploration. In Proceedings of the Sixth European Workshop on
Learning Robots, Brighton, UK.

[15] Sarkar, N., Yun, X., and Kumar, V. (1993). Dynamic path following:
a new control algorithm for mobile robots. In Proceedings of the 32nd
conference on decision and control, Sant'Antonio - Texas, USA.

[16] Tanner, H., Jadbabaie, A., and Pappas, G. (2003). Stability of �ocking
motion. Technical Report MS-CIS-03-03. University of Pennsylvania.



BIBLIOGRAPHY 89

[17] Theys, J. (2005). Joint spectral radius: theory and approximations.
Doctorate thesis, Université Catholique de Louvain, Center for systems
engineering and applied mechanics.


