
UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Facoltà di Ingegneria

Dipartimento di Ingegneria Elettrica ed Elettronica

Delft University of Technology

Delft Center for Systems and Control

DESIGN OF AN ADAPTIVE CRUISE CONTROLLER VIA

MPC/PWA-BASED METHODS

Relatori/Advisors:

Prof. Alessandro Giua, Tesi di laurea specialistica

Prof. Bart De Schutter, Master’s Thesis di:

Dr. Daniele Corona Nicola Manca

Corso di Laurea in Ingegneria Elettronica

Anno Accademico 2005/2006

iii

A TUDelft che ha reso possibile

la realizzazione di questo lavoro,

ai miei supervisors e a chi ha

sempre creduto in me.

iv

Abstract

An adaptive cruise controller (ACC) is a modern device of the automotive in-

dustry that aims to control the engine actuators so that the position and the

speed of a leading vehicle are tracked. This project focuses on the comparison

of two design methods for the ACC. In particular, a PI-based (proportional

integral action) as it is currently used in the automotive industry, and an

existing MPC-based (model predictive control) approach, developed for non-

linear and piecewise affine (PWA) systems, are compared. The former is a

standard PI where the coefficients are optimally tuned off-line using a set of

pre-designed curves. The second approach leads to a norm-1 mixed integer

optimization problem that is solved on-line via a branch cutting strategy that

prunes the tree of switching possibilities, reducing the number of linear pro-

grams. The added value of the MPC method is to allow the implementation

of constraints that model physical specifications, safety/comfort issues, and

mechanical stress of the vehicle. One of the most challenging aspect of this

study is that the gear-shift and some of the engine/friction nonlinearities are

included in the model of the system.

vi

Sommario

Un adaptive cruise controller (ACC) è un dispositivo moderno dell’industria

automotiva che si occupa di controllare gli attuatori del motore per poter

inseguire la velocità e la posizione del veicolo leader. Questo tesi di laurea

mette a confronto due metodi per l’ ACC. In particolare vengono confrontati,

un metodo basato sul PI (azione proporzionale integrale) come viene usato

nell’industria automotiva e un metodo basato sull’MPC (model predictive

control) sviluppato per sistemi non lineari e piecewise affine (PWA). Il primo

è un PI standard nel quale i coefficienti vengono ottimizzati off-line usando un

set di curve già note. Il secondo ci conduce ad un problema di ottimizzazione

con norma 1 mixed integer che viene risolto on-line utilizzando una strategia

che pota l’albero costruito su tutti i possibili eventi, riducendo il numero di

problemi lineari. Il valore aggiunto dell’MPC riguarda la possibilità di inserire

limitazioni sulle specifiche del veicolo, sicurezza, comfort e stress meccanico

sugli organi del motore. Uno degli aspetti più importanti di questo lavoro

riguarda l’inserimento di elementi non lineari come il cambio e l’attrito.

viii

Contents

1 Introduction 1

1.1 Adaptive cruise control . 1

1.2 Model predictive control . 5

1.2.1 Stability . 7

1.3 Hybrid systems . 8

1.3.1 Hybrid systems classes 10

1.3.2 An example . 11

1.4 Organization and contribution of this thesis 12

2 Model description 15

2.1 Problem formulation . 15

2.2 Physical constraints . 17

2.3 State space representation and approximations 20

2.3.1 Friction nonlinearity approximation 21

2.3.2 Gearshift modeling . 22

2.4 The discrete time system . 24

2.4.1 Numerical values . 25

2.5 Summary . 25

3 Implementation approaches 27

3.1 Hybrid MPC . 27

3.1.1 Cost function minimization 27

3.1.2 System constraints . 28

3.1.3 Linear problems enumeration 29

x CONTENTS

3.1.4 PWA/MPC branch cutting method 30

3.1.5 Ordering criteria . 37

3.1.6 Implementation example 39

3.2 Proportional integral action 42

3.2.1 General description . 42

3.2.2 Optimization of parameters 44

3.3 Summary . 49

4 Simulation 51

4.1 Numerical data . 52

4.2 First scenario . 57

4.3 Second scenario . 60

4.4 Third scenario . 62

4.5 Fourth scenario . 64

4.6 Fifth scenario . 66

4.7 Constant prediction . 69

4.8 Final remarks . 69

4.9 Summary . 72

5 Conclusion 73

5.1 Further investigations . 74

5.1.1 Physical model improvement 74

5.1.2 MPC/PWA algorithm improvement and analysis . . . 75

5.1.3 PI method improvement 75

5.1.4 Implementation investigation 75

A Code description: relevant subroutines 77

Chapter 1

Introduction

1.1 Adaptive cruise control

In the field of vehicle control, conventional cruise control systems have been

available on the market for many years. During the last years, modern cars

include more and more electronic systems. These systems are often governed

by a computer or a network of computers programmed with powerful soft-

ware. One of those new services is Adaptive Cruise Control (ACC), which

extends the conventional cruise control system to include automated car fol-

lowing when the preceding car is driving at a different speed than the desired

set-speed.

The conventional cruise control system (sometimes known as speed con-

trol or Autocruise) is a system to automatically control the speed of an auto-

mobile. The driver sets the speed and the system will take over the throttle

of the car to maintain the same speed. Historically the conventional speed

control with a centrifugal1 governor was used in automobiles as early as the

1910s, notably by Peerless 2. Peerless advertised that their system would

1A centrifugal governor is a specific type of governor that controls the speed of an

engine by regulating the amount of fuel admitted, so as to maintain a near constant speed

whatever the load or fuel supply conditions. It uses the principle of proportional control.
2Peerless was a United States automobile produced by the Peerless Motor Company of

Cleveland, Ohio.

2 Introduction

Figure 1.1: Buttons of a classic cruise control.

“maintain speed whether up hill or down”. The technology was invented by

James Watt and Matthew Boulton in 1788 for use in locomotives. It uses cen-

trifugal force to adjust throttle position as the speed of the engine changes

with different loads (e.g. when going up a hill). Modern cruise control (also

known as a speedostat) was invented in 1945 by the blind inventor and me-

chanical engineer Ralph Teetor. His idea was born out of the frustration of

riding in a car driven by his lawyer, who kept speeding up and slowing down

as he talked. The first car with Teetor’s system was the Chrysler Corporation

Imperial in 1958. This system calculated ground speed based on driveshaft

rotations and used a solenoid to vary throttle position as needed.

In modern designs, the cruise control may or may not need to be turned

on before use, in some designs it is always “on” but not always enabled,

others have a separate “on/off” switch, while still others just have an “on”

switch that must be pressed after the vehicle has been started. Most designs

have buttons for “set”, “resume”, “accelerate”, and “coast” functions. Some

1.1 Adaptive cruise control 3

also have a “cancel” button. Alternatively, tapping the brake on most cars

equipped with cruise control will disable it. The system is operated with

controls easily within the driver’s reach, usually with two or more buttons

on the steering wheel spokes or on the edge of the hub like those on Honda

vehicles, on the turn signal stalk like in some General Motors vehicles or on a

dedicated stalk like those found in Toyota and Mercedes-Benz vehicles. Early

designs used a dial to set speed choice.

The driver must bring the car up to speed manually and use a button to

set the cruise control to the current speed (an example image is shown in

Figure 1.1 and in Figure 1.2). The cruise control takes its speed signal from

a rotating driveshaft, speedometer cable, speed sensor (found on the wheels)

or from the engine revolutions per minute (RPM). Most systems do not allow

the use of the cruise control below a certain speed (normally 55 km/h) to

discourage use in city driving. The car will maintain that speed by pulling

the throttle cable with a solenoid or a vacuum driven servomechanism. On

the latest vehicles fitted with electronic throttle control, cruise control can be

easily integrated into the vehicle’s engine management system. Most systems

can be turned off both explicitly and automatically, when the driver hits the

brake or clutch. Cruise control often includes a memory feature to resume the

set speed after braking and a coast feature to reset the speed lower without

braking. When the cruise control is in effect, the throttle can still be used to

accelerate the car, but once it is released the car will then slow down until it

reaches the previously set speed.

The cruise control is independent of the environment, e.g. other vehicles

on the road. When the vehicle ahead is traveling slower than the desired

speed, the driver must at some point intervene with the brake pedal to avoid

a collision. Alternatively, he must overtake the vehicle. The ACC concept

extends the conventional cruise control system to include car following, see

also [45], [16], [32]. In the scenario above, the ACC would have automatically

lowered the speed of the car to match the speed of the vehicle ahead and to

maintain an appropriate distance. If the preceding vehicle would have later on

4 Introduction

increased its speed, the ACC system would have automatically increased the

speed (thereby following the car), unless it becomes greater than the desired

speed set by the driver. Devices of ACC are currently being introduced by

several car manufacturers in their latest car models. These systems consist

of a sensor, mounted in the front of the car, that measures the preceding

vehicle’s velocity and distance. The sensor could either be of optical or radar

type, but the radar sensor is often preferred since it is much less influenced

by the weather conditions than the optical sensor. The sensor information is

transmitted to an ACC controller (a computer) that controls the engine and

brake systems. The first generation of ACC will only allow gentle acceleration

and deceleration. A major reason for this is that the driver should never be

surprised by the actions of the ACC system and the driver should always be

able to intervene if the system does not comply with the driver’s intentions.

These systems will only work in highway traffic, where the required speed

changes are moderate. The second generation of ACC will allow a greater

acceleration and deceleration, which is necessary in suburban areas where

the speed and distance is relatively low, but where the relative speed may be

rather high. It is important to remember that the ACC is only a service to

help the driver, not a replacement of the driver. The driver is still in charge

of the car at any moment, regardless whether the ACC system is active or

not [45].

A difficulty that arises in suburban areas is that it might be hard to find

a model of the car dynamics that is good enough. Since the controller must

be able to accelerate and decelerate quite hard, it must be carefully designed

so it does not behave in an inconvenient manner which causes discomfort to

the driver. There must not be any big overshoots and also if the acceleration

is hard, it must be smooth. Hence, the design of the controller requires a

good model of the car dynamics. But even if a good model is known, it still

might be hard to design a suitable controller.

The advantages to use intelligent adaptation are manifold. As first it

offers a comfortable optional to built in the cars and it gives an advantages

1.2 Model predictive control 5

Figure 1.2: An example of a cruise control on a Jeep Steering Wheel.

for the driver. It is also well known that excessive vehicle speed on roadways

is a major cause of traffic accidents, injuries, deaths. Additionally bad use

of the vehicles often results in high fuel consumption and excessive pollutant

emissions(e.g., carbon monoxide (CO), hydrocarbons (HC), and oxides of

nitrogen (NOx)). This has been documented in many accident reports and

safety studies [26], [49].

1.2 Model predictive control

Model predictive control (MPC) (also referred to as receding horizon con-

trol) is a control strategy that offers attractive solutions for the regulation of

constrained linear or nonlinear systems and, more recently, also for the reg-

ulation of hybrid systems. Within a relatively short time, MPC has reached

a certain maturity due to the continuously increasing interest shown for this

distinctive part of control theory. Since 1970 various techniques have been

developed for the design of model based control systems for robust multivari-

able control of industrial unit processes (see [6,14,15,19–22,46,47,53,56],).

6 Introduction

Predictive control was pioneered simultaneously by Richalet et al. [53] and

Cutler and Ramaker [15]. MPC technology has evolved from a basic multi-

variable process control technology to a technology that enables operation of

processes within well defined operating constraints.

One of the reasons for the fruitful achievements of MPC algorithms con-

sists in the intuitive way of addressing the control problem. In comparison

with conventional control, which often uses a pre-computed state or output

feedback control law, predictive control uses a discrete-time model of the

system to obtain an estimate (prediction) of its future behavior. At each

discrete-time instant k, the measured variables and the process model (lin-

ear, nonlinear or hybrid) are used to (predict) calculate the future behavior

of the controlled plant over a specified time horizon, which is usually called

the prediction horizon and is denoted by Np as depicted in Figure 1.3. This

is achieved by considering a future control scenario as the input sequence

applied to the process model, which must be calculated such that certain

desired constraints and objectives are fulfilled. To do that, a performance

oriented cost function is minimized subject to constraints, yielding an opti-

mal sequence of controls over a specified time horizon, which is usually called

control horizon and is denoted by Nc (see Figure 1.3). The feedback control

law is then obtained in a receding horizon manner by applying to the sys-

tem only the first element of the computed sequence of optimal controls, and

repeating the whole procedure at the next discrete-time step.

MPC is built around the following key principles:

• The explicit use of a process model for calculating predictions of the

future plant behavior;

• The optimization of an objective function subject to constraints, which

yields an optimal sequence of controls;

• The receding horizon strategy, according to which only the first element

of the optimal sequence of controls is applied on-line.

1.2 Model predictive control 7

future

k

control horizon prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past
setpoint r

Figure 1.3: A graphical illustration of Model Predictive Control [54].

1.2.1 Stability

We distinguish two different cases, namely the unconstrained and constrained

case. A predictive controller which is stable for the unconstrained case is not

automatically stable for the constrained case. When inequality constraints

are absent, the problem of stability can be easily obtained, being the con-

troller a linear and time-invariant system (LTI). If we introduce an end-point

constraints the closed-loop system becomes asymptotically stable. Since the

end-point constraint is an equality constraint, it still holds that the result-

ing controller is linear and time-invariant. To guarantee stability we can also

choose an infinite control orizon (Np = ∞) in the unconstrained case.

As reported in [59], the issue of stability becomes even more complicated

in the case where constraints have to be satisfied. When there are only con-

straints on the control signal, stability can be ensured if the process itself

is stable [58, 66]. In the general case with constraints on input, output and

states, the main problem is feasibility. The existence of a stabilizing control

law is not at all trivial. The two main results on stability in constrained pre-

dictive control are the papers by Rawlings and Muske [52] and Kothare et

al. [38]. For more information about stability and robustness see also [40,59].

8 Introduction

()x,u
()x,u

()x,u
()x,u

()x,u
()x,u

()x,u
()x,u()x,u

()x,u

y = g

y = g
x = f

y = g

x = f
y = g

x = f

x = f1

N

3

3

2

2

1

y = g4

x = f4N

Figure 1.4: Schematic representation of a hybrid system [54].

1.3 Hybrid systems

Hybrid means, in general, heterogeneous in nature or composition and the

term hybrid systems means systems with behavior defined by entities or pro-

cesses of distinct characteristics. Hybrid3 systems arise, for instance, from the

combination of an analog continuous-time process and a digital time asyn-

chronous controller. Hybrid dynamical systems generate variables or signals,

that are mixed signals consisting of combinations of continuous or discrete

value or time signals, and through them interaction with other systems and

the environment occurs. More specifically, some of these signals take values

from a continuous set (the set of real numbers) and others take values from

a discrete, typically finite set (the set of symbols). Furthermore, these con-

tinuous or discrete-valued signals depend on independent variables such as

time, which may also be continuous or discrete [1]. In general we could say

that a hybrid system can be in one of several modes whereby in each mode

3Term used in this context for the first time by Witsenhausen in 1966, for describing

the combination of continuous dynamical and discrete event systems [51].

1.3 Hybrid systems 9

Figure 1.5: The control community shakes hands with the computer science com-

munity to better understand the role and the benefits of hybrid systems [40].

the behavior of the system can be described by a system of difference or dif-

ferential equations, and that the system switches from one mode to another

due to the occurrence of an event (see Figure 1.4) [54]. The investigation of

hybrid systems is creating a new and fascinating discipline bridging control

engineering, mathematics and computer science (see Figure 1.5). There has

been significant research activity in the area of hybrid systems in the past

decade involving researchers from several areas. It is not difficult to come

up with interesting applications in the mechanical area: control of robotic

manipulators driving nails or breaking objects [8], reduction of rattling in

gear boxes of cars, drilling machines [50], simulation of crash-tests, regulat-

ing landing maneuvers of aircraft, design of juggling robots [9], and so on.

Examples are not only found in the mechanical domain. Nowadays switches

like thyristors and diodes are used in electrical networks for a great variety

of applications in both power engineering and signal processing.

10 Introduction

1.3.1 Hybrid systems classes

As described in [40] there are several approaches to model hybrid systems.

Hybrid automata [7] can model a large class of hybrid systems as they con-

sider a discrete event system where the continuous dynamics in each discrete

state are modeled by an arbitrary differential (difference) equation. Such

models are used in [7] to formulate a general stability analysis and controller

synthesis framework for hybrid systems. Results for modeling and stabil-

ity analysis of hybrid systems have also been presented in the more recent

works [44], where dynamical properties of hybrid automata are investigated,

and [29], where a new formalism based on hybrid time domains is defined for

hybrid systems and it is employed to derive results on stability. These results

are very important because they provide a unified view on solution concepts

and stability theory for general hybrid systems (see also [61] for a compre-

hensive overview). However, a general model of hybrid systems, although it

can capture a lot of situations (high modeling power), usually leads to a high

level of complexity with respect to analysis and controller design techniques.

Indeed, for a particular instance, a high analytical and computational com-

plexity originates from the fact that the structure of particular classes of

hybrid systems is not exploited. Therefore, in each choice of modeling for-

malism there is always the trade-off between the modeling power and the

complexity of the analysis. That is why the research in hybrid systems also

focuses on particular subclasses that have a simpler representation and more

structure, but still include a wide range of industrially relevant processes.

The following classes of hybrid systems are part of this category:

• Piecewise affine (PWA) systems [25,36,57];

• Switched systems [43];

• Mixed logical dynamical (MLD) systems [2, 4];

• Linear complementarity (LC) systems [33,60];

• Discrete event systems extended to include time driven dynamics [10];

1.3 Hybrid systems 11

• Max-min-plus-scaling (MMPS) systems [55].

In particular, PWA systems have become popular due to their accessible

mathematical description on one hand, and their ability to model a broad

class of (hybrid) systems on the other hand: in [34] it has been proven that

PWA systems are equivalent under certain mild assumptions with other rele-

vant classes of hybrid systems, such as MLD systems, LC systems and MMPS

systems. Also, it is well known that PWA systems can approximate nonlin-

ear systems arbitrarily well [57] and they can arise from the interconnec-

tion of linear systems and automata [24]. The modeling power of PWA sys-

tems has already been shown in several applications, such as switched power

converters [18], optimal control of DC-DC converters and direct torque con-

trol of three-phase induction motors [27], applications to automotive systems

[3, 5, 62], and systems biology [23,48], to mention just a few.

1.3.2 An example

A familiar simple example of a practical hybrid control system is the heat-

ing and cooling system of a typical home. The furnace and air conditioner,

along with the heat flow characteristics of the home, form a continuous-time

system, which is to be controlled. The thermostat is a simple asynchronous

discrete-event system, which basically handles the symbols [too hot, too

cold, normal]. The temperature of the room is translated into these repre-

sentations in the thermostat and the thermostat’s response is translated back

to electrical currents, which control the furnace, air conditioner, blower, etc.

There are several reasons for using hybrid models to represent dynamic be-

havior of interest in addition to the ones already mentioned. Reducing com-

plexity was and still is an important reason for dealing with hybrid systems.

This is accomplished in hybrid systems by incorporating models of dynamic

processes at different levels of abstraction; in fact in this example the ther-

mostat in the above example sees a very simple, but adequate for the task

in hand, model of the complex heat flow dynamics [1].

12 Introduction

1.4 Organization and contribution of this the-

sis

The thesis moves from the general concepts of hybrid systems to derive a

physical model of a car (in particular a smart) describing the gearshift and

the friction as hybrid system. The hybrid model derived is then used as bench-

mark for two adaptive cruise controllers. The first is modeled using the model

predictive control (MPC) and the second using a proportional and integral

action (PI). Both controller are simulated, commented and compared. Finally

it is given a comment on the comparisons and some further investigations.

More specifically:

• The second chapter gives a mathematical description of the smart and

introduces the constraints on it. This chapter uses hybrid system theory

to give the physical model of the car approximating the gearshift and

the friction. At the end of the chapter we give an approximate PWA

model, which is used to make the predictions. Moreover we provide a

description of the ACC design goals, problematic and constraints.

• In Chapter 3, we present two methods used to build an adaptive cruise

controller on the smart. We first describe the model predictive control

and the algorithm used to implement it. The algorithm [42] is based

on branch and bound strategy which reduces the number of analyzed

possible paths through a tree of possibilities. As second instance we

describe the PI-based controller: how it is structured, how many pa-

rameters are needed and how we design the parameters.

• In Chapter 4, we enumerate five references scenarios used for the sim-

ulations:

1. A constant references.

2. A time-varying references.

3. A constant references in the fifth/sixth switching gear value.

1.4 Organization and contribution of this thesis 13

4. A sinusoidal varying velocity.

5. An emergency stop.

We expose the results for each scenarios using the two methods com-

paring the on-line number of variables used, the efficiency and other

important results. Finally we comment and evaluate the results point-

ing out advantages & disadvantage for each scenario.

• In the last chapter, we give some final comments and we describe some

of the open research topics. Firstly, we suggest to improve the accuracy

of the model better describing the physical system. As second instance,

we propose an idea to develop a more efficient MPC controller, im-

proving the branch and bound algorithm. Finally, it is also necessary

to implement this control strategy on a real car.

14 Introduction

Chapter 2

Model description

2.1 Problem formulation

In this section we describe the model for the experimental set-up that will be

used as a benchmark. The aim of an ACC is to ensure a minimal separation

between the vehicles and a speed adaptation. In a basic ACC application two

cars are driving one after the other (see Figure 2.1). In general platoons of cars

can also be considered, see for instance [28], in a multi-agent framework, but

here we restricted to the basic experimental condition of only two vehicles,

allowing better insight into the physics of the global system with a reduced

number of variables. We assume that the front vehicle communicates its speed

and position to the rear vehicle, which has to track them as good as possible.

So, for the control design purpose, only the dynamics of the rear vehicle can

be considered.

An accurate model of the system considers the air drag proportional to

the square of the speed and a constant road-tire static friction, proportional

to the weight of the vehicle. The differential equation describing the dynamics

of the rear vehicle is [12] :

ms̈(t) + (cṡ2 + µmg)sgn(ṡ(t)) = b(j, ṡ)u(t), (2.1)

16 Model description

Figure 2.1: ACC set-up.

Parameter Description Numerical value Unit

m Mass of vehicle 800 kg

R Average wheel radius 0.28 m

c Viscous coefficient 0.5 kg/m

µ Coulomb friction coefficient (dry asphalt) 0.01 —

g Gravity acceleration 9.8 m/s2

wmin Minimum engine rotational speed 105 rad/s

wmax Maximum engine rotational speed 630 rad/s

p(j) Transmission rate — —

b(j, ṡ) Traction force — N

u Throttle control action — —

Te Engine torque — Nm

Table 2.1: Definitions and values of the entries of equation (3.19).

2.2 Physical constraints 17

where s(t) is the position at time t, ṡ(t) is the velocity , s̈(t) is the ac-

celeration, b(j, ṡ)u(t) is the traction force, proportional to the normalized

throttle/brake position u(t), considered as an input. The symbols m, c, µ

and g, with their numerical values are listed in Table 2.1. The value of the

function sgn(ṡ(t)) is equal to 1, 0 or −1 when its argument is positive, null

or negative respectively. Note that the traction force depends on the cur-

rent gear j = {1, . . . , 6} and on the ground speed ṡ(t). Numerical values

for the smart actually measured for a real vehicle are listed in Table 2.1.

Additionally we provide the function b(j, ṡ) in Figure 2.3, obtained from the

transmission ratio of the engine torque curve [64] in the engine rotational

velocity w ∈ [wmin, wmax], see Table 2.1. More specifically we have

b(j, ṡ) =
Te(w)p(j)

R
, (2.2)

ṡ =
wR

p(j)
, (2.3)

where Te(w) is the engine torque, R is the average radius of the wheels,

p(j) represents the gear ratios. Here we have omitted the dependency on

time t of s, w and j. The values of p(j), including also the efficiency of the

transmission from engine to wheel, are listed in Table 2.2. Since the maximal

engine torque (Te,max = 80 Nm) may be considered constant [64] in the range

w ∈ [200, 480], we also give the values of b(j) in the last column of Table

2.2.

Braking will be simulated by applying a negative throttle. Due to friction

behavior in motion inversion [30], model (3.19) is valid as long as the ground

speed ṡ is different from zero, hence we impose ṡ to be above a nonzero

minimum velocity as shown in Table 2.4.

2.2 Physical constraints

The physical construction of the engine components, result in defining con-

straints on the behavior of the system, that limit the maximum and the

18 Model description

Gear j Transmission rate p(j) Traction force b(j) (N)

I 14.203 4057

II 10.310 2945

III 7.407 2116

IV 5.625 1607

V 4.083 1166

VI 2.933 838

Table 2.2: Values of the transmission rate and of the maximum traction force

transmitted on the wheels in a Smart.

minimum velocity. More precisely, for t ≥ 0,

vmin ≤ ṡ(t) ≤ vmax (2.4)

with vmin and vmax values listed on Table 2.4.

Additionally are considering a vehicle with 6 gears, hence, for all t ≥ 0

the constraint,

j(t) ∈ [1, 2, 3, 4, 5, 6] (2.5)

must be specified.

Another important constraint regarding the gearshift is about the max-

imum and the minimum switching velocity for each gears. In Figure 2.4

using asterisks are reported the minimum velocity allowed for each of them,

using stars the maximum. Between the two symbols is included the allowed

interval for each gears, for example the velocity interval for the first gear is

[3.94m/s, 9.46m/s]. The other exact value are reported in Table 2.6. We can

formalize the constraint saying:

vL(j) ≤ ṡ(t) ≤ vH(j), (2.6)

where vL(j), vH(j) are the maximum and minimum velocity mentioned above.

Note that these constraints can not be violated because they represent

the mechanical limitations of the vehicle.

2.2 Physical constraints 19

Parameter Description Numerical Value Unit

adec Comfort deceleration 2 m/s2

aacc Comfort acceleration 2.5 m/s2

umax Maximum throttle brake 1 -

Table 2.3: Value of the physical constraints regarding comfort, economy and safety

Parameter Description Numerical Value Unit

vmin Minimum velocity 2 m/s

vmax Maximum velocity 40 m/s

Table 2.4: Value of the physical constraints.

We are interesting in model comfort, economy, safety and fuel consump-

tion. Hence It is necessary to formulate some constraints.

The first fixes an upper and a lower limit for acceleration:

adec 6 ˙v(t) 6 aacc, (2.7)

with adec and aacc in Table 2.3. A gradual increment and decrement of the

velocity give to the driver and to the passengers a good sensation of comfort.

The second is on the control input :

|u(t)| 6 umax, (2.8)

where the normalized value of u(t) represents a throttle action if it is

positive and a breaking action if negative. This constraint reduces the fuel

consumption and increase the safety on board.

Finally the third forbids jumps of gears, that usually provoke non optimal

fuel consumption in up-shifting and mechanical stress in down-shifting:

|j(t + dt)− j(t)| ≤ 1, (2.9)

where dt is a finite small time-interval.

20 Model description

2.3 State space representation and approxi-

mations

Let now we define

x , [s, ṡ]T = [xp, xv]
T, (2.10)

the state variable; with

ẋp = ṡ(t) = xv = v,

the velocity, and

ẋv = s̈(t) = a,

the acceleration.

Consequently, we are able to represent the system as:

[
ẋp

ẋv

]
= f(x, u) =

[
xv

− c
m

x2
v − µg

]
+

[
0

b(j,xv)
m

]
u(t). (2.11)

Note that this model is nonlinear because of the quadratic term of the

friction and of the traction force, and hybrid, because of the dependencies of

b from the gear value.

Model (2.11) contains both state variables. To reduce the complexity of

the simulation model we have chosen to consider only the contribution of the

velocity. This led to reduced the amount of time needed to write the matlab

code for the MPC controllers. Anyway to avoid any collisions it is possible

to insert a constraints which does not allow the follower velocity to pass the

leader velocity, but for our test this is to much restrictive and it will not be

implemented. We intend to use the following model as simulation tool, for

the tested controllers (the MPC and the PI):

ẋv = f(x, u) = − c

m
x2

v − µg +
b(j, xv)

m
· u(t). (2.12)

2.3 State space representation and approximations 21

Figure 2.2: Nonlinear friction (solid) and PWA approximation (dashed).

constant value

c1 7.5

c2 32.5

f1 0

f2 −500

Table 2.5: Friction PWA approximation values.

2.3.1 Friction nonlinearity approximation

The quadratic term of the friction introduces a nonlinearity, that can be

tackled using the PWA approximation in Figure 2.2:

c

m
x2

v ≈

{
−c1xv + f1 xv < vmax

2

−c2xv + f2 xv ≥ vmax

2

with c1, c2, f1, f2 defined as in Table 2.5. Thus the model becomes:

f(x, u) ≈





−c1xv + f1 − µg + b(j,xv)
m

u(t) xv < vmax

2

−c2xv + f2 − µg + b(j,xv)
m

u(t) xv ≥ vmax

2

(2.13)

The first mode i = 1 is active when v(t) < vmax

2
instead the second one

i = 2 is active when v(t) ≥ vmax

2
.

22 Model description

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

ground velocity m/s

T
ra

ct
io

n
fo

rc
e

an
d

ro
ad

 lo
ad

 (
N

)

LOAD
GEAR I
GEAR II
GEAR III
GEAR IV
GEAR V
GEAR VI

I

II

III

IV

V

VI

Figure 2.3: Traction force transmitted to the wheel at maximum throttle input for

different gears.

2.3.2 Gearshift modeling

The admissible range of velocities for the given gear is explained in equation

(2.6) and in Figure 2.4. Note that the switching condition is not uniquely

defined, thus different gears are admitted for a specific value of the speed. For

our interest we need a strategy to approximate the inequality (2.6) to avoid

overlap and to assign for each velocity value a different gear. We choose to

use an approximation that aims to emphasize the gear usage on the higher

speed in order to meet efficiency of the engine defined as follow:

v0 + v1j ≤ xv ≤ v0 + v1(j + 1), (2.14)

which preserves linearity and a one-to-one relation between velocity and cur-

rent gear. Within this condition the approximation depends only on the

choice of the two values v0 and v1. Depicted as squares in Figure 2.4 there

are the lower limit used for each gears and as rhombus the maximum values.

In our model v0 = −7, v1 = 7.

Consequently considering the bj values from Table 2.2 we can write:

2.3 State space representation and approximations 23

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Gear

S
hi

ft
sp

ee
d

(m
/s

)

Low exact
High exact
High appr.
Low appr.

Figure 2.4: Approximation of switching velocities for different gears.

Gear Min. Velocity (m/s) Max. Velocity (m/s)

I 3.94 9.46

II 5.43 13.04

III 7.56 18.15

IV 9.96 23.90

V 13.70 32.93

VI 19.10 45.84

Table 2.6: Ground velocity switching condition per gear shift position.

24 Model description

f(x, u) ≈





−c1xv + f1 − µg + b1
m

u(t) v0 + v1 ≤ xv ≤ v0 + 2v1

−c1xv + f1 − µg + b2
m

u(t) v0 + 2v1 ≤ xv ≤ v0 + 3v1

−c1xv + f1 − µg + b3
m

u(t) v0 + 3v1 ≤ xv ≤ v0 + 4v1

−c2xv + f2 − µg + b4
m

u(t) v0 + 4v1 ≤ xv ≤ v0 + 5v1

−c2xv + f2 − µg + b5
m

u(t) v0 + 5v1 ≤ xv ≤ v0 + 6v1

−c2xv + f2 − µg + b6
m

u(t) v0 + 6v1 ≤ xv ≤ v0 + 7v1,

(2.15)

this models the PWA approximation of the simulation model in equa-

tion (2.11).

2.4 The discrete time system

In the previous section we have derived the PWA model of the system :

ẋ2 = ci · xv +
bj

m
· u(t) + fi − µg, (2.16)

the discrete-time representation of (2.16) is

xv(k + 1) = Aixv(k) + Bju(k) + Fi, (2.17)

with i ∈ [1, 2]; j ∈ [1, 2, 3] when i = 1 and j ∈ [4, 5, 6] when i = 2. This

is shown also in the equation (2.15) where we have chosen the upper bound

velocity of the third modes from the gearshift approximation equal to the

upper bound velocity of the first mode of the friction approximation. For

this reason we have six modes in total.

2.5 Summary 25

2.4.1 Numerical values

The numerical values of the matrices in equation (2.17) are:

A1 = 0.9907

A2 = 0.9602

B1 = 5.0476

B2 = 3.6640

B3 = 2.6326

B4 = 1.9685

B5 = 1.4283

B6 = 1.0265

F1 = −0.0975

F2 = 0.5164,

(2.18)

we have used sampling time T = 1s with zero order hold method.

2.5 Summary

In this chapter it was introduced and explained the model used for the control

design. First it was given a physical model of the vehicle (smart) with its

constraints, then, due to the nonlinearity of friction and the integer variables

of the gearshift, it was approximated as a PWA system. The discrete time

model used in this thesis was also given.

26 Model description

Chapter 3

Implementation approaches

3.1 Hybrid MPC

3.1.1 Cost function minimization

The hybrid control signal u(k), j(k) is designed by solving a constrained finite

time optimal control problem, in an MPC receding horizon fashion. In this

framework the prediction or acquisition of Np samples ahead of the front

vehicle trajectory is used to compute the optimal control law u(k), j(k). The

MPC approach is largely used to design the control action of constrained

systems and in particular PWA systems (see [4,17,37,41] to cite a few). The

control action is obtained by solving

min
ũ(Np),̃(Np)

J(θ(k), ũ(Np), ̃(Np)) ,
Np∑
i=1

||Qxε(k + i)||1 + ||Q∆u∆u(k + i− 1)||1 + ||Q∆j∆j(k + i− 1)||1,
(3.1)

subject to the particular prediction model that will be described in the se-

quel and the constraints deriving from physical and design specifications as

described in Section 2.2. Note that we are interested to minimize the num-

ber of gear switchings ∆j, the variation of the control input ∆u and the

error with a given reference trajectory communicated by the leading vehi-

28 Implementation approaches

g
65432

ggggg
1

Figure 3.1: Gearshift rules represented by an automaton.

cle. Here ε(k) , v(k)− ηv(k) is the tracking error (where ηv(k) is the speed

of the leader vehicle), ũ(Np, k) , [u(k), . . . , u(k + Np − 1)]T the sequence

of control inputs, Qx, Q∆u and Q∆j are weight matrices of appropriate di-

mension, θ(k) is a set of parameters containing the initial conditions and

the Np prediction of the reference trajectory. In this application we have

θ(k) , [v(k), u(k − 1), j(k − 1), ηv(k + 1), . . . , ηv(k + Np)]
T.

Additionally an appropriately tuned shorter control horizon Nc < Np

may also be studied, i.e., ∆u(k + i) = 0, i = Nc, . . . , Np − 1. This choice has

the general advantage of reducing the number of variables and of providing a

smoother solution. Nevertheless here we only consider Np = Nc. The choice

of the 1-norm in (3.1) offers a valid trade-off between the complexity of the

optimization problem and the quality of the solution.

3.1.2 System constraints

The minimization of this cost function is subject to the constraints described

in Section 2.2, which are formulated with a set of inequalities to model com-

fort, economy, safety and other limitations.

We can summarize the expressions of the constraints set in discrete as:

vmin ≤ v(k) ≤ vmax

adecT 6 v(k + 1)− v(k) 6 aaccT

−umax ≤ u(k) ≤ umax

1 ≤ j(k) ≤ 6

−1 ≤ j(k + 1)− j(k) ≤ 1,

(3.2)

where k is the discrete time and T is the sampling time.

3.1 Hybrid MPC 29

3.1.3 Linear problems enumeration

The simplest way to find the searched optimum consists in enumerating all

the possible sequences of modes over the prediction horizon, solve all the LP

subproblems with the corresponding sequences, compare them, and choose

the optimum. For a given sequence of modes, two situations may occur:

either there is no solution satisfying the constraints (infeasibility) or the

LP subproblem is feasible. Let INp = (i(0) i(1) · · · i(Np − 1))T ∈ INp

be a sequence of modes on the horizon Np, for each feasible sequence INp

an optimal continuous control sequence ũ∗(Np) and a corresponding cost

J∗Np
(θ(k), INp) can be obtained. The searched optimum is then given by the

sequence of modes which minimizes (3.1):

J∗Np
(θ(k)) = min

̃(Np),ũ(Np,k)
(JNp(θ(k), ũ(Np), ̃(Np))) (3.3)

This method, called exhaustive enumeration, becomes untractable when the

number of modes and/or the length of the prediction horizon increases be-

cause it leads to solve a number of linear subproblems that grows exponen-

tially with Np and with the numbers of the modes. In fact the problem is

exponential [42]. For a given depth, the width of the tree is fixed by the

number of possible modes for the system. Each leaf is LP subproblem and

one of them is the searched optimum. The sequences of modes construction

must follow the automaton reported on Figure 3.1 because it represents the

physical constraints as reported in (2.4). The total number of LP subprob-

lems is upper bounded by 3Np−1 because if the current discrete state at time

k correspond to the second, the third, the fourth or the fifth, the possible

discrete state at time k + 1 takes values from a set of three elements. The

3Np−1 expression arises considering that in this worst case we have 3 LP for

the first discrete depth of the tree (P = 1), 3 · 3 LP for P = 2 (because

we have three new LP for each precedent nodes), and so on until P = Np.

Consistently the total number it is lower bounded by 2Np−1 because if the

current discrete state at time k corresponds to the first or the sixth gear the

possible discrete state at time k + 1 takes values from a set of two elements;

30 Implementation approaches

Current state δ lower gear same gear higher gear

g1 – g1 g2

g2 g1 g2 g3

g3 g2 g3 g4

g4 g3 g4 g5

g5 g4 g5 g6

g6 g5 g6 –

Table 3.1: Transition Table for the automaton in Figure 3.1.

first and last line in Table 3.1. This concept is more clear looking at the

automaton in Figure 3.1 and the transition Table 3.1.

Automatically a tree of possibilities arises and its size depends on the

horizon length. Each final leaf represents an LP problem with the relative

gear-path and where each intermediate node is a partial path having its

corresponding cost function; an example of this tree is shown in Figure 3.2

where we are considering the first gear as initial discrete mode.

3.1.4 PWA/MPC branch cutting method

Exhaustive enumeration consists of completely covering the tree of possibil-

ities. In order to reduce the computational effort the exhaustive search can

be pruned. The method was proposed by S. Leirens [42] and it is based on

branch and bound(B&B) [39]. B&B is a general algorithmic method for find-

ing optimal solutions of various optimization problems, especially in discrete

and combinatorial optimization. It is basically an enumeration approach in

a fashion that prunes the nonpromising search space. The general idea may

be described in terms of finding the minimal or maximal value of a function

f(x) over a set of admissible values of the argument x called feasible region.

Both f and x may be of arbitrary nature. A B&B procedure requires two

tools.

The first one is a smart way of covering the feasible region by several

3.1 Hybrid MPC 31

2

P=Np

P=Np−1

P=2

P=1

gg

gg

1
gggg

1
g

g
1

g

1g

g g g

5

4 5 6 5 6

6

2

2 3

Figure 3.2: Tree of possibilities for the event driven evolution following the graph

in Figure 3.1.

smaller feasible subregions (ideally, splitting into subregions). This is called

branching, since the procedure may be repeated recursively to each of the

subregions and all produced subregions naturally form a tree structure, called

search tree or B&B tree or something similar. Its nodes are the constructed

subregions.

Another tool is bounding, which is a fast way of finding upper and lower

bounds for the optimal solution within a feasible subregion.

For a given problem space an efficient partition will divide the solution

space into a small set containing high value (or low cost) solutions to be ex-

amined more closely and a larger set of their opposites (those to be ignored).

While desirable, efficient divisions are often difficult to achieve in practice

and so the creation of an effective algorithm is highly dependent upon the

nature of the problem to be solved and the skill of the analyst creating the

algorithm.

The core of the approach is a simple observation that (for a minimization

task) if the lower bound for a subregion A from the search tree is greater than

the upper bound for any other (previously examined) subregion B, then A

may be safely discarded from the search. This step is called pruning. It is

32 Implementation approaches

usually implemented by maintaining a global variable m that records the

minimum upper bound seen among all subregions examined so far; any node

whose lower bound is greater than m can be discarded.

It may happen that the upper bound for a node matches its lower bound;

that value is then the minimum of the function within the corresponding

subregion. Sometimes there is a direct way of finding such a minimum. In

both these cases it is said that the node is solved. Note that this node may

still be pruned as the algorithm progresses.

Ideally the procedure stops when all nodes of the search tree are either

pruned or solved. At that point, all non-pruned subregions will have their

upper and lower bounds equal to the global minimum of the function. In

practice the procedure is often terminated after a given time; at that point,

the minimum lower bound and the maximum upper bound, among all non-

pruned sections, define a range of values that contains the global minimum.

Alternatively, within an overriding time constraint, the algorithm may be

terminated when some error criterion such as (max-min)/(min + max) falls

below a specified value.

The efficiency of the method depends critically on the effectiveness of the

branching and bounding algorithms used; bad choices could lead to repeated

branching, without any pruning, until the sub-regions become very small. In

that case the method would be reduced to an exhaustive enumeration of the

domain, which is often impractically large. There is no universal bounding

algorithm that works for all problems, and there is little hope that one will

ever be found; therefore the general paradigm needs to be implemented sep-

arately for each application, with branching and bounding algorithms that

are specially designed for it.

In our case the optimization problem associated with the predictive con-

trol has a particular structure: the cost is additive with positive terms. The

key idea of the suggested partial enumeration algorithm consists in finding

in an efficient way a a sub-optimum partial cost in order to prune the tree

i.e., cut branches that cannot lead to the optimum.

3.1 Hybrid MPC 33

For a partial horizon P (1 ≤ P ≤ Np), i.e., at a depth P in the tree, a

partial cost is defined as follows:

JP (θ(k), ũ(Np, k), ̃(Np)) =
∑P

i=1 ||Qxε(k + i)||1 + ||Q∆u∆u(k + i− 1)||1+
||Q∆j∆j(k + i− 1)||1.

(3.4)

The partial horizon P is a pointer, a cursor which moves itself from the first

useful node of the tree (P = 1) until the end of the tree (P = Np), as shown

in Figure 3.2. The top of the tree has a P cursor equal to zero because it

does not represent a partial horizon. In fact a model predictive control with

a horizon equal to zero does not exist.

The proposed approach is a recursive algorithm which is composed of a

descent strategy to explore the tree of possibilities and a criterion of branch

cutting. If we suppose to have the tree described in Section 3.1.3, we can

summarize the method in two big steps.

Algorithm 1: Find the sub-optimum

INPUT: the tree of possibilities, Np (the prediction horizon).

OUTPUT: J∗sub (the sub-optimum cost).

Define ̃P = [j1, ..., jP] as valid vector sequence for the automaton in

Figure 3.1. We also define J̃list as a vector to store a list of needed partial

cost function.

1. The pointer P is initialized with P = 1. The vector ̃∗P−1is initialized

with the discrete label of the node at the top of the tree, ̃∗P−1 = j(k).

2. We define ̃P = [̃∗P−1, succ(jP−1)] every possible path with fixed ̃∗P−1

and “floating1” last element tree

3. Minimize (3.4) as follows:

J∗P (θ(k)) = min
̃P

(min
ũP

JP (θ(k), ũP , ̃P)), (3.5)

1Floating in the sense that it is determined by the automaton in Figure 3.1.

34 Implementation approaches

exhaustively over every possible successors of (jp−1). We add all these

results to the vector J̃list because we will need them in step 2.

4. We define ̃∗P the sub-optimum path vector as:

̃∗P−1, arg(min
̃P

(min
ũP

JP (θ(k), ũP , ̃P))), (3.6)

5. If P = Np go to step f, else go back to step b and increment P = P +1.

6. The vector ̃∗P is completed. It became ̃∗Np
, it is the path which reach

the sub-optimum leaf. The last J∗Pl
stored is the sub-optimum cost ,

we call it J∗sub.

¥
An example is depicted in Figure 3.3 where we indicate the sub-optimum

path in red bolded, we indicate the final sub-optimum leaf with a bolded

circle. On the right side of each node is reported the partial cost function

value calculated using (3.4).

• At the level P = 1 we have ̃∗P−1 = {g1}. The choice is here between a

cost of 2 or a cost of 3. Since the lower is 2 (g1) we update ̃∗P = {g1, g1}.

• At the level P = 2 the lower is 3 (g1 again). Consequently ̃∗P =

{g1, g1, g1}.

• At this level we cut a part of the tree to give a full explanation. The

missing part is depicted with a series of dots.

• At the level P = Np we must chose between 9 (g4), 8 (g5) and 7 (g6). It

is intuitive than the final ̃∗P = ̃∗Np
= {g1, g1, g1, ..., g5, g6} and J∗sub = 7.

For a distract lector it seems now that the algorithm could end. But at

level P = 1 the ̃∗P = {g1, g2} has a partial cost function (J = 3) lower

than the J∗sub = 7 found in 6. It means that it is possible to find a lower

sub-optimum exploring that part of the tree. This is explained in the next

algorithm.

3.1 Hybrid MPC 35

Sub optimum

P=Np

P=Np−1

P=2

P=1

5

3

gg

gg

1
gggg

1
g

g
1

g

1g

g g g

5

4 5 6 5 6

6

2

2 32

79 8

5

3

2

Figure 3.3: First step of the B&B method.

Algorithm 2: Find the optimum

INPUT: the tree of possibilities, Np (the prediction horizon), J∗sub (the sub-

optimum cost).

OUTPUT: J∗opt (the sub-optimum cost), ̃∗Np
(the optimum path vector).

Define q as a cursor which moves through the vector J̃list. Each J̃list(q)

value is a J∗P partial cost mentioned in step 3 of algorithm 1. At every J̃list(q)

vector corresponds a properly ̃P (q) which is the partial sub-optimum path.

1. Initialize q = 1.

2. If J∗sub > J̃list(q) we start to explore the part of the tree identified by

the ̃P (q) path.

• If P 6= Np, minimize (3.4) as follows:

J∗P = min
̃∗P (q)

(min
ũP

JP (θ(k), ũP , ̃∗P (q))), (3.7)

exhaustively over every possible successors of ̃P (q). We compare

the obtained values with J∗sub. For each J∗P ≥ J∗sub values or with

36 Implementation approaches

infeasible minimization we cut that branch identified by ̃∗P (q) be-

cause we do not need to explore it. We add each J∗P < J∗sub values

into the J̃list vector.

• If P = Np, we update the sub-optimum value J∗sub = J̃list(q) and

its relative ̃∗Np
path it is the new sub-optimum final path .

3. If J∗sub ≤ J̃list(q) or J∗sub = J̃list(q) and P 6= Np or the minimization (3.7)

is infeasible, then we cut that branch identified by ̃P (q)

4. If J∗sub = J∗P and P = Npwe use the ordering criterion in Section 3.1.5.

5. q = q + 1

6. If q ≤ length(J̃list) go back to step b.

7. The last J∗sub stored is the optimum cost J∗opt. Consequently its rela-

tive ̃∗Np
path vector is our optimum path .

¥
This second algorithm can be explained with the aim of the Figure 3.4 where

we indicate the final sub-optimum leaf with a bolded red circle, the optimum

path in green bolded and the optimum leaf with a bolded green circle. On the

right side of each node is reported the partial cost function value calculated

using (3.4). At this point J̃list = 3 relative to ̃P = [g1, g2] and J∗sub = 7.

• q = 1

• J∗sub > J̃list(1), we start to explore [̃P , g1], [̃P , g2], [̃P , g3].

• The first has J∗P > J∗sub: we cut that branch with a cross.

The second has J∗P < J∗suband P 6= Np: J̃list = [J̃list, J
∗
P].

The third has J∗P > J∗sub: we cut that branch with a cross.

• q = 2

• length(J̃list) = q

3.1 Hybrid MPC 37

Optimum

P=Np

P=Np−1

P=2

P=1

8

Sub optimum

2

3

5

89 7

2 32

2

6

65654

5

ggg

g1

g
1

g

g
1

g g g g
1

g g

g g

3

5

9 4 8

6 9

Figure 3.4: Second step of the B&B method.

• At this level we cut a part of the tree to give a full explanation. The

missing part is depicted with a series of dots.

• J∗sub > J̃list(Np − 1), we start to explore [̃P , g5], [̃P , g6].

• The first has J∗P < J∗sub and P = Np: we update the sub-optimum value

J∗sub = J̃list(2) and its relative ̃∗Np
path it is the new sub-optimum

path .

The second has J∗P > J∗sub: we cut that branch with a cross.

• q = 3

• length(J̃list) < q

• the last stored J∗sub = 6 is the optimum cost J∗opt and its relative ̃∗Np
=

{g1, g2, g2, ..., g6, g5} path vector is our optimum path .

3.1.5 Ordering criteria

In the particular case where the cost functions at two nodes of equal deepness

(P) have the same value we must formulate a criterion to choose between

38 Implementation approaches

two of them. Before giving the ordering criterion, let us call J1 and J2, with

J1 = J2, the costs corresponding respectively to the node N1 and the node

N2. We will denoted also the corresponding paths as ̃1 (reft., node N1) and

̃2 (reft., node N2). The ordering criterions is based on three rules and is

given by the following algorithm.

Algorithm 3: Ordering criteria

1. Compare u1, u2 where u1 = argmin(J1), u2 = argmin(J2).

• If u1 > u2, we choose N2.

• If u1 < u2, we choose N1.

• If u1 = u2, go to the next step.

2. Compare ̃1P
and ̃2P

with ̃P−1.

• If ̃1P
= ̃P−1 and ̃2P

6= ̃P−1, we choose N1.

• If ̃2P
= ̃P−1 and ̃1P

6= ̃P−1, we choose N2.

• If ̃1P
= ̃2P

= ̃(P − 1), go to the next step.

3. Compare ̃1P
with ̃2P

• If ̃1P
> ̃2P

, we choose N2.

• If ̃1P
< ̃2P

, we choose N1.

¥
The rules come from physical considerations. They are enumerated in order

of importance. The first prefers a smaller control. The second prefers as next

gear the same of the last one reducing the switching number of the gears.

The third chooses the lower gear to improve the security on board.

For example in Figure 3.5(a) the same cost function values (J = 2) for the

two possible nodes is found. Hence we look at the control values to choose

the best path. If it happens that also the control values are the same, we

3.1 Hybrid MPC 39

1

u=0.5u=0.3 J=2,J=2,

2 32

2

g1

g
1

g

g
1

g g g g

(a) Choose on the lower control

u=0.5

1
gggg

1
g

g
1

g

1g

2

2 32 Np

J=2, J=2, u=0.5

(b) Choose reducing the gears switching.

Figure 3.5: An example of the ordering criterion.

choose the best path comparing the last gear as showed in Figure 3.5(b),

where it is preferred the 1− 1 instead than the 1− 2 path.

3.1.6 Implementation example

Consider the following example with an horizon Np = 3 and choose as initial

discrete state the first gear we need the enumerate all the state equation

using (2.17) until reached the horizon:





xv(k + 1) = Aixv(k) + Bju(k) + Fi

xv(k + 2) = Aixv(k + 1) + Bju(k + 1) + Fi

xv(k + 3) = Aixv(k + 2) + Bju(k + 2) + Fi

(3.8)

Substituting xv(k + 1) in xv(k + 2) and then xv(k + 2) in xv(k + 3):





xv(k + 1) = Aixv(k) + Bju(k) + Fi

xv(k + 2) = Ai(Aixv(k) + Bju(k) + Fi) + Bju(k + 1) + Fi

xv(k + 3) = Ai(Ai(Aixv(k) + Bju(k) + Fi) + Bju(k + 1)

+Fi) + Bju(k + 2) + Fi

(3.9)

40 Implementation approaches

We do not know what will be the gear at k+1 and k+2 so we need to enumer-

ate all the possibilities following the automaton switching rule on Figure 3.1.

With Np = 3 the possible paths are:

g1 − g1 − g1

g1 − g1 − g2

g1 − g2 − g1

g1 − g2 − g2

g1 − g2 − g3

If we use these possible paths to write all the systems remembering (2.15),

we have the five following evolutions:

3.1 Hybrid MPC 41

1)





xv(k + 1) = A1xv(k) + B1u(k) + F1

xv(k + 2) = A1(A1xv(k) + B1u(k) + F1) + B1u(k + 1) + F1

xv(k + 3) = A1(A1(A1xv(k) + B1u(k) + F1) + B1u(k + 1)+

F1) + B1u(k + 2) + F1

2)





xv(k + 1) = A1xv(k) + B1u(k) + F1

xv(k + 2) = A1(A1xv(k) + B1u(k) + F1) + B1u(k + 1) + F1

xv(k + 3) = A2(A1(A1xv(k) + B1u(k) + F1) + B1u(k + 1)+

F1) + B2u(k + 2) + F2

3)





xv(k + 1) = A1xv(k) + B1u(k) + F1

xv(k + 2) = A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1) + F2

xv(k + 3) = A1(A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1)+

F2) + B1u(k + 2) + F1

4)





xv(k + 1) = A1xv(k) + B1u(k) + F1

xv(k + 2) = A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1) + F2

xv(k + 3) = A2(A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1)+

F2) + B2u(k + 2) + F2

5)





xv(k + 1) = A1xv(k) + B1u(k) + F1

xv(k + 2) = A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1) + F2

xv(k + 3) = A3(A2(A1xv(k) + B1u(k) + F1) + B2u(k + 1)+

F2) + B3u(k + 2) + F3

(3.10)

In general we have:




xv(k + 1) = f1(xv(k), ũNp , ̃Np)

xv(k + 1) = f2(xv(k), ũNp , ̃Np)

xv(k + 1) = f3(xv(k), ũNp , ̃Np)

(3.11)

where f1, f2, f3 are linear expression of ũNp . Substituting in (2.12) we

42 Implementation approaches

obtain:

||min F (xv(k), ũNp)|| (3.12)

subject to the set of constraints described in section 2.2. If we choose this

specific sequence ̃Np = [g1, g2, g3] the above equation is a LP.

3.2 Proportional integral action

This a classic proportional-integral-derivative (PID) controller with the ab-

sence of the derivative actions. In general the controller takes a measured

value from a process or other apparatus and compares it with a reference

setpoint value. The difference (or “error” signal) is then used to adjust some

input to the process in order to bring the process’ measured value to its de-

sired setpoint. Unlike simpler controllers, the PID can adjust process outputs

based on the history and rate of change of the error signal, which gives more

accurate and stable control. The “error” below is found by subtracting the

measured quantity from the setpoint. “PI” is named after its two correcting

terms, whose sum constitutes the output of the PI controller.

1. Proportional: To handle the immediate error, the error is multiplied

by a constant P (for “proportional”).

2. Integral: To learn from the past, the error is integrated and multiplied

by a constant I (for “integral”).

3.2.1 General description

As reported in (2.10) we define

x = [xp, xv]
T, (3.13)

as state vector where xp is the position and xv is the velocity of the follower

vehicle. We recall, as described in section 3.1.1, the reference trajectory η,

defined as follow

η = [ηp, ηv]
T, (3.14)

3.2 Proportional integral action 43

Figure 3.6: Block diagram of the PI control system.

where respectively ηp and ηv are the position and the velocity of the leader

vehicle. Referring to the Figure 3.6, the summatory computes the velocity

error

ev = ηv − xv, (3.15)

and the position error

ep = ηp − xp. (3.16)

The PI block uses this error to calculate the desired acceleration ad using:

ad = Kdv · ev + (Kdx1 ·Kdx2) · ep. (3.17)

In the above equation compare three parameters, Kdv, Kdx1, Kdx2. In the

next section 3.2.2 it is explained how we choose and tune them. The desired

acceleration is sent to the block FL, to calculate the control input as:

u · b(j, ṡ) = m · ad + cṡ2 + µmg (3.18)

It is fed into the Smart model block with the correspondent gear which

integrates (3.19)

ms̈(t) + (cṡ2 + µmg)sgn(ṡ(t)) = b(j, ṡ)u(t), (3.19)

using the Matlab ode45 subroutine. The output is the current state (3.13)

with the current gear looped in feedback to the previous blocks.

44 Implementation approaches

σ

K
d∞

K
d0

K
dv

e
p

|
0

Figure 3.7: Function kdv versus its variables. The σ, kd0, kd∞ are to be optimally

tuned.

3.2.2 Optimization of parameters

Better performance of the basic PI can be obtained by adapting the constants

with the state/error value. This is done [65] by introducing some correction

functions which depend on 3 parameters.

Kdx1 = Kdx1∞ + (Kdx10 −Kdx1∞) · e−σdx1·x2
v ,

Kdx2 = Kdx2∞ + (Kdx20 −Kdx2∞) · e−σdx2·e2
p ,

Kdv = Kdv∞ + (Kdv0 −Kdv∞) · e−σdv ·e2
p .

(3.20)

As an example Kdv is depicted in Figure 3.7.

The nine parameters to be tuned are :

3.2 Proportional integral action 45

parameter value

Kdv∞ 0.71

Kdv0 0.26

σdv 0.007

Kdx1∞ 1.1

Kdx10 0.6

σdx1 0.3

Kdx2∞ 0.14

Kdx20 0.18

σdx2 0.026

Table 3.2: Tuned set of parameters.

1. Kdv∞

2. Kdv0

3. σdv

4. Kdx1∞

5. Kdx10

6. σdx1

7. Kdx2∞

8. Kdx20

9. σdx2

They are chosen optimizing the closed loop response. The parameters are

obtained by solving

46 Implementation approaches

parameter value

Kp 0.91

KI 0.55

Table 3.3: Ziegler-Nichols parameters.

min
(Kdx1,Kdx2,Kdv)

J(Kdx1, Kdx2, Kdv) ,
isim∑
i=1

||Qxε(k + i)||1 + ||Q∆u∆u(k + i− 1)||1 + ||Q∆j∆j(k + i− 1)||1,
(3.21)

where isim is the length of the simulation and the other terms are the same

of the equation (3.1) in the chapter 3.1.1. The values of the weight matrix

are in table 4.1. As reference trajectory ηref for the optimization we chose

the nominal scenario with constant velocity, see Section 4.2.

As initial values for these parameters we had a tuned set listed in Ta-

ble 3.2. This configuration was obtained using a different experimental model

and for this reason we are not allowed to reuse them for our model (3.19),

for which they may not be optimal. For this reason we needed an offline part

to compute a new optimal set of parameters. We set a search range tuning

the PI coefficients via Ziegler-Nichols(ZN) method

ad = KpZN
· ev + KIZN

· ex. (3.22)

The Ziegler-Nichols values are reported in Table 3.2.2. Exploring variations

around the ZN solution may result in better performance. To this purpose

we fix a range on the 9 parameters.

The range is established using a mixed criterion, using ZN values and

tuned set values.

More precisely

• For Kdv∞ and Kdv0 , we centered the interval on KpZN
. The lower bound

(LB) is Kp − 20% and the upper bound (UB) is Kp + 20%

3.2 Proportional integral action 47

upper bound value lower bound value

Kdv∞M 1.365 Kdv∞m 0.455

Kdv0M 1.365 Kdv0m 0.455

σdvM 1000 σdvm 0

Kdx1∞M 0.37 Kdx1∞m -0.22

Kdx10M 0.46 Kdx10m -0.27

σdx1M 1000 σdx1m 0

Kdx2∞M 2.2 Kdx2∞m -1.27

Kdx20M 1.8 Kdx20m -1.03

σdx2M 1000 σdx2m 0

Table 3.4: Upper and lower bound limits to search the optimal values for the

parameters.

• σdv, σdx1 and σdx2 represent the width of the bell shaped curve in Fig-

ure 3.7. They can variate between 0 and 1000.

• Upper bound and lower bound for Kdx1∞ , Kdx10 , Kdx2∞ and Kdx20 are

derived from the following system




Kdx1∞(UB) ·Kdx2∞(UB) = KIZN
+ 50%

Kdx10(UB) ·Kdx20(UB) = KIZN
+ 50%

Kdx1∞(LB) ·Kdx2∞(LB) = KIZN
− 50%

Kdx10(LB) ·Kdx20(LB) = KIZN
− 50%

Kdx2∞(UB) = K∞set ·Kdx1∞(UB)

Kdx20(UB) = K0set ·Kdx10(UB)

Kdx2∞(LB) = K∞set ·Kdx1∞(LB)

Kdx20(LB) = K0set ·Kdx10(LB),

(3.23)

where K∞set and K0set are respectively 5.88 and 3.84. They are derived

comparing the relative bell shaped set tuned curve. In Table 3.4 we report

the intervals for all nine parameters.

We have done the search using two methods, each method has the first

step different but the second in common:

48 Implementation approaches

1. (a) Monte Carlo algorithm: We ran 5000 simulations with random

values choosing from the intervals in Table 3.4. Hence we choose

the best set.

(b) Random line search: The search fixes a random direction long

which we minimize, this minimum fixes a new starting point to

determine again a random direction until 5000 evaluations are

made. More precisely the problem is

min
θ

f(θ)

s.t

θm ≤ θ ≤ θM

where f(θ) is the cost of evolution over the nominal scenario, θm

and θM are respectively the lower and the upper bound of θ ∈ R9.

We can summarize the method as follow

i. Set θ0.

ii. Generate δ ∈ R9 random uniform distribution in [−1, 1].

iii. Define θ∗ = θ0 + α∗δ

with

α∗ = argmin[f(θ)]

s.t

θ = θ0 + αδ.

This minimization is not exact: we sample the α range with a

finite number of point and we choose as α∗ the one that gives

the lowest cost.

iv. θ0 = θ∗

v. Go to step 1(b)ii if the total numbers of function evaluations

has not reached a maximum value.

2. The sets found in the previous step is used as initial point for the Matlab

function fmincon which attempts to find a constrained minimum of a

scalar function of several variables starting from an initial estimate.

3.3 Summary 49

The output of fmincon is finally our optimal parameters set to use in the

PI equation (3.17).

3.3 Summary

The goal of this chapter is to explain the methods used to implement an adap-

tive cruise controller applied to the Smart model described in the second

chapter. It described two possible solutions:

1. A MPC/PWA-based method

2. An adaptive PI controller

The first minimized an appropriate cost function based on a prediction hori-

zon to calculate ONLINE the optimal control. It was designed by solving a

constrained finite time optimal control problem, in an MPC receding horizon

fashion.

The second used a built-in equation with nine parameters to design the

hybrid control signal. It had a preliminary OFFLINE part too, because we

optimized the nine parameters adapting them to the simulation smart phys-

ical model and the nominal scenario.

50 Implementation approaches

Chapter 4

Simulation

The two methods were implemented in Matlab 7, Windows XP Version 2002

Service Pack 2 OS on an Intel Pentium 4, 2.99 GHz processor with 0.99

GB of RAM . The MPC problems is solved1 with the programming subtourine

linprog built in Matlab 7 . The optimal choice of coefficients for method

PI is obtained via the nonlinear programming subroutine fmincon built in

Matlab 7. The integration of equation (3.19) is done with the Matlab ode45

subroutine with relative and absolute tolerances 1.0× 10−8, max step

size 1.0 × 10−3, with the assumption that the input value of u, j remains

unchanged during the sampling time interval2. The length of the whole sim-

ulation period is 52 s. The experiments, carried out in computer simulation,

allowed us to establish the comparison issues among the different methods

described previously. Additionally they exhibit a positive and encouraging

motivation to perform a field trials. It should however be remarked that, for

a possible embedded solution in a real smart, several technical issues should

be regarded, like the sensor system, the resources of the on-board electron-

ics, the real-life disturbances and the actuators delays. The cost of the device

1More information about the used subroutines are given in Appendix A.
2In an MPC-based scenario the previously computed control signal is fed into the plant

until the computation of the next value. In this preliminary study, mainly characterized

by computer simulation, we neglect this aspect, that becomes relevant in a real-time ap-

plication.

52 Simulation

Description Numerical value

State weight matrix Qx 1

Input weight matrix Q∆u 0.1

Shift weight matrix Q∆j 0.5

Prediction horizon Np 2

Control horizon Nc 2

Sampling time T 1 s

Simulation time 52 s

Throttle initial position 0

Initial gear 1

State initial condition 5 m/s

Leading vehicle speed 5 m/s

Table 4.1: General implementation data and initial conditions for the simulation.

is also a relevant discrimination parameter. Note that modern technology

(differential GPS, laser sensors and extended Kalman filters [31]) provides

fast and highly accurate measurements, up to 0.1m/s error in velocity. The

general data common to all experiments are summarized in Table 4.1. Initial

conditions are given and we assume that the vehicle has a low initial speed

and it is in first gear [13].

4.1 Numerical data

As general simulation system we use the block scheme depicted in Figure 4.1.

The output of the controller block are the control u(k) and the gear j(k).

The controller measures its current state, receives the reference state, and

predicts3 the reference in the next Np future samples. On the basis of previous

gear and control input information it evaluates the optimal decision strategy.

3If the leading vehicle is human driven, it is not significant to predict the reference in

a long term future. Hence we limited to Np = 2 [13]. If automatically driven vehicles [35],

then longer Np may be taken.

4.1 Numerical data 53

parameters PI1 values PI2 values

Kdv∞M 1.0087 1.0087

Kdv0M 0.9841 0.7333

σdvM 0.3986 0.2233

Kdx1∞M 0.0040 -0.0039

Kdx10M -0.2700 0.1271

σdx1M 0.1912 0.1404

Kdx2∞M -0.0001 1.0120

Kdx20M 1.7061 0.4977

σdx2M 0.3723 0.1542

Table 4.2: PI1 & PI2 tuned parameters used for the simulation.

Figure 4.1: Block scheme representation of the simulation system.

54 Simulation

In the on-line method this is done by solving an optimal control problem

In the off-line methods by consulting a pre-scheduled table with the tuned

parameters. The update of the state system is implemented using the non-

linear “real” model (3.19) described in Section 2.1 as represented in Figure 4.1

with an engine picture.

We perform a comparison of 3 methods. The first is MPC as described

in Section 3.1 with the initial condition reported in Table 4.1. The other two

are 2 variants of PI. As explained in Section 3.2 PI1 is tuned using Monte

Carlo algorithm and PI2 using random line search algorithm, both of the PI

tuned parameters used in the simulation are reported in Table 4.2.

The 3 methods are simulated in five different scenarios with five different

leader velocity.

• In two scenarios the leading vehicle is moving with constant speed,

in Figure 4.2(a) with 15m/s (54Km/h) and in Figure 4.2(c) with a

constant speed of 35m/s (126Km/h). The vehicles reaches the desired

constant velocity in both cases. The highest velocity is relevant to test

the performance of the engine at high speed and of the gearbox actua-

tors in an intermediate switching velocity.

• We chose two cases with varying velocity (Figure 4.2(b),Figure 4.2(d))

to simulate irregular movement of the leading vehicle, in particular in

Figure 4.2(d) we will use also a constant horizon to check the behavior

of the controller.

• Finally we test the model in an emergency breaking manoeuvre as

depicted in Figure 4.2(e).

Most of the results are depicted for the entire simulation time, in par-

ticular for every methods implementation we consider five different plots for

each scenarios.

These plots show:

Control action: How the control action varies during the simulation.

4.1 Numerical data 55

0 10 20 30 40 50 60
14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16
Leader velocity

Time (s)

m
/s

(a)

0 10 20 30 40 50 60
10

12

14

16

18

20

22

24
Leader velocity

Time (s)

m
/s

(b)

0 10 20 30 40 50 60
34

34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

36
Leader velocity

Time (s)

m
/s

(c)

0 10 20 30 40 50 60
22

23

24

25

26

27

28
Leader velocity

Time (s)

m
/s

(d)

0 10 20 30 40 50
0

5

10

15

20

25
Leader velocity

Time (s)

m
/s

(e)

Figure 4.2: The considered five possible scenarios for the reference velocity of the

leading vehicle.

56 Simulation

Control action variation: Related to energy saving and environmental is-

sue.

Velocity curves: We plot the reference in red and the follower velocity in

blue.

Acceleration: Related to comfort issues.

Gearshifts: It shows how many different gears are needed to reach and to

track the reference.

4.2 First scenario 57

4.2 First scenario

1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control action

Time (s)

MPC
PI 1=PI 2
Constraints

(a)

1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Delta U

∆
u

Time (s)

MPC
PI 1=PI 2

(b)

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16
Velocity

Time (s)

m
/s

MPC
PI 1=PI 2
leader

(c)

1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

5
Acceleration

Time (s)

MPC
PI 1=PI 2
Constraints

(d)

1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Gearshift

Time (s)

G
ea

rs
 (

k)

MPC
PI 1=PI 2

(e)

Figure 4.3: Plots for the first scenario.

In the first scenario the leading vehicle is moving with a constant velocity

of 15m/s depicted using the red color in Figure 4.3(c). Obviously each method

tries to reach the reference velocity as clear in all figures. PI 1 method and PI

2 method do not exhibit remarkable difference. They are practically identical

for this scenario.

• Figure 4.3(a) and 4.3(b) plot, respectively, the control and its deriva-

58 Simulation

Method MPC PI 1 PI 2

Computational features

On-line time (s) 0.2272 5.8808e-004 6.1826e-004

Off-line time (s) 0.2810 5.8615e+004 5.5986e+004

Programming features

Program class LP LP LP

On-line method Y Y Y

variables 8 9 9

Solution features

Cost of evolution 30.8148 7.8206 7.8206

Max acc. (m/s2) 2.0344 4.9367 4.9367

Max dec. (m/s2) 0.0077 0 0

Max ∆u(k) 0.7979 1 1

Min ∆u(k) 0.0874 0 0

Vel. overshoot (m/s) 0.0076 -5.5914e-010 3.0033e-008

Transient at 5% (s) 4 4 6

gear-switches 3 3 3

Table 4.3: Comparison issues for the 3 methods with the scenario in Figure 4.2(a)

with Np = 2.

tive. The PI methods apply initially a strong control action while MPC

is more comfortable and it applies a control below the 0.8 value. Once

reached the target velocity the PIs decrease the value of control action

at 5s and the MPC at 7s, then they remain constant until the end of

simulation.

• Velocity and acceleration are showed in Figure 4.3(c) and 4.3(d). The

PIs can not maintain the acceleration within the 2.5 comfort value, as

depicted in the Figure 4.3(d). From the begining of the simulation until

the third second the PI acceleration violates the constraint. It continues

to decrease until the fourth second and from here it remains constant.

4.2 First scenario 59

Instead the MPC curve shows a compliance to the acceleration upper

bound constraint, and it respects the comfort standard. Starting from

5s it slowly reduces the acceleration in sight of the leader. Finally the

MPC acceleration remains constant starting form 6s.

• In Figure 4.3(e) is depicted the gearshift. The final gear is the third

and the MPC stays one second more using the second gear, because its

action is more gradual.

In Table 4.3 are reported and compared relevant data for the simulation

process. The on-line time values for the MPC case is significantly longer

than the PIs because the quantity of used memory and of used variable

requires a larger hardware usage. MPC solves on-line a significant number

of LP (linear problem) instead PIs computes a series of arithmetic simple

operations. The cost of the evolution is lower in the PIs because they do not

embed specific constrains on the acceleration. This feature permits to reduce

the error faster. Both PIs lose on the comfort, in fact the max acceleration

value is much bigger than the MPC. With this scenario the number of gears

are the same for all methods.

60 Simulation

4.3 Second scenario

5 10 15 20 25 30 35 40 45 50
−1

0

1

Control action

Time (s)

MPC
Constraints

5 10 15 20 25 30 35 40 45 50
−1

0

1

Time (s)

PI 1
Constraints

5 10 15 20 25 30 35 40 45 50
−1

0

1

Time (s)

PI 2
Constraints

(a)

0 10 20 30 40 50
−2

−1

0

1
Delta U

∆
u

MPC

0 10 20 30 40 50
−2

0

2

∆
u

PI 1

0 10 20 30 40 50
−2

0

2

∆
u

Time (s)

PI 2

(b)

0 10 20 30 40 50 60
0

10

20

30
Velocity

m
/s

MPC
leader

0 10 20 30 40 50 60
0

10

20

30

m
/s

PI 1
leader

0 10 20 30 40 50 60
0

10

20

30

m
/s

Time (s)

PI 2
leader

(c)

0 10 20 30 40 50 60
−5

0

5
Acceleration

Time (s)

MPC
Constraints

0 10 20 30 40 50 60
−5

0

5

Time (s)

PI 1
Constraints

0 10 20 30 40 50 60
−5

0

5

Time (s)

PI 2
Constraints

(d)

0 10 20 30 40 50 60
1

2

3

4
Gearshift

G
ea

rs
 (

k)

MPC

0 10 20 30 40 50 60
1

2

3

4

G
ea

rs
 (

k)

PI 1

0 10 20 30 40 50 60
1

2

3

4

G
ea

rs
 (

k)

Time (s)

PI 2

(e)

Figure 4.4: Plots for the second scenario.

In the second scenario the leading vehicle is moving with a variable speed.

This scenario simulates a traffic situation velocity between 10m/s and 25m/s

as depicted in Figure 4.4(c). Obviously each method tries to reach the ref-

erence, as clear in Figure 4.4(c). PI 1 method and PI 2 method have some

minor differences which are explained below.

• In Figure 4.4(a) the MPC method shows a smoother feature ruled by

4.3 Second scenario 61

Method MPC PI 1 PI 2

Computational features

On-line time (s) 0.1856 5.7059e-004 5.8933e-004

Off-line time (s) 0.9220 5.8615e+004 5.5986e+004

Programming features

Program class LP LP LP

On-line method Y Y Y

variables 8 9 9

Solution features

Cost of evolution 144.3111 113.3920 111.3622

Max acc. (m/s2) 2.0344 4.9367 4.9367

Max dec. (m/s2) 2.1083 2.3887 2.6073

Max ∆u(k) 0.8314 1.1456 1.2625

Min ∆u(k) 1.2720 -2 -2

Transient at 5% (s) – – –

gear-switches 8 14 14

Table 4.4: Comparison issues for the 3 methods with the scenario in Figure 4.2(b)

with Np = 2.

the cost function minimization (3.1) as also shown of its derivative in

Figure 4.4(b). There are also some differences between the two PI meth-

ods, in particular at the 27s of the simulation time probably because

for the random relationship of the parameters.

• The velocity plot in Figure 4.4(c) shows that the MPC response, in

blue, is lightly less efficient in tracking the reference. There are some

difference between the two PI methods like in the control plotting at

time 27s where the first PI gives smoother control behavior. For the

first PI, we can also observe that the acceleration trend is rather similar

to the MPC one.

62 Simulation

• In Figure 4.4(e) is reported the evolution of the gearshift. We imme-

diately notice that the number of gear switches for the PI methods is

higher than MPC method. We are interested in reducing the number

of the gear switches in order to reduce the fuel consumption, the usury

and the stress of the engine. It is evident in this scenario the big dif-

ference of switches, MPC switches 8 times and PIs switches 14 times,

as reported in Table 4.4. From this point of view the MPC performs

better than the PI methods.

The difference between the costs of the evolution in the MPC and in the

PIs is here smaller than in the previous scenario. In fact the optimization of

the PIs parameters is obtained with the nominal scenario in Figure 4.2(a),

as mentioned in Section 3.2.2.

4.4 Third scenario

This scenario is similar to the first scenario (see Figure 4.2(a) and Fig-

ure 4.2(e)). We choose to use this scenario as benchmark because it tests

the transient engine performance at high speed. Additionally, the velocity of

35m/s is exactly the switching velocity between the fifth and the sixth gear.

In the PWA framework it is relevant to test the behavior of the different

methods when it matters to regulate a hybrid system along the switching

manifold [11].

• In Figure 4.6(a) and 4.6(b) are plotted respectively the control and its

derivative. The PI methods apply first a stronger control action instead

MPC is less aggressive. Both methods saturate the maximum control

value due to the high speed of the leader. Once reached the reference

velocity, the PI 2 decreases its control input to 0.8, at 25s. The PI 1

and the MPC at 27s reach the control stationary value of 0.6, then they

remain constant until the end of simulation. The Figure 4.6(b) shows

that the PI methods have a more aggressive control action especially

before the time of 25s. This aspects implies a bigger consume of fuel.

4.4 Third scenario 63

0 5 10 15 20 25 30 35 40

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control action

Time (s)

MPC
PI 1=PI 2
Constraints

(a)

1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Delta U

∆
u

Time (s)

MPC
PI 1=PI 2

(b)

0 5 10 15 20 25 30

10

15

20

25

30

35

Velocity

Time (s)

m
/s

MPC
PI 1=PI 2
leader

(c)

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5
Acceleration

Time (s)

MPC
PI 1=PI 2
Constraints

(d)

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Gearshift

Time (s)

G
ea

rs
 (

k)

MPC
PI 1
PI 2

(e)

Figure 4.5: Plots for the third scenario.

• Velocity and acceleration are showed in Figures 4.6(c) and 4.6(d). The

absence of a constraints in the PI method in the velocity Figure leads to

a more aggressive behavior of the PIs. In fact, for the entire transient

time, the velocity of the PIs is higher than the MPC one. Without

any constraints the PIs acceleration can not stay under the 2.5 value

comfort constraints. Before the simulation time of 4s the acceleration

obtained using the PIS violates the constraints value losing on comfort

and performance. The PIs acceleration remains constant starting form

64 Simulation

21s. Instead the MPC curve shows a compliance to the acceleration

upper bound constraint respecting the comfort standard. The MPC

acceleration remains zero starting form 25s.

• In Figure 4.6(e) is depicted the gearshift. The number of gear switches

are similar for the three methods. The main difference regards the PI

2 which chooses as final gear the sixth. Probably because the PI 2

controller pass of a small value the leader velocity of 35m/s.

4.5 Fourth scenario

A varying velocity of the leader (see Figure 4.2(d)) here is proposed in order

to test the main difference of the controllers. The irregular movements of

the leader simulate a mixed traffic situation where the vehicles flow does

not allow the drivers to maintain a constant velocity. Note that this realistic

situation does not allow to use a traditional cruise controller.

• In Figure 4.6(a) and 4.6(b) are depicted respectively the control and its

variation. The PI methods apply first a stronger control action instead

MPC is less aggressive, like it has been seen in the previous testing

scenarios. The control variation shows that the MPC method, in this

case, is less regular mainly during the transient.

• Velocity and acceleration are showed in Figure 4.6(c) and 4.6(d).

As explained in the previous scenarios, the absence of a constraint in

the PI methods in the velocity Figure 4.3(c) lead to a more aggressive

behavior. In fact, for the entire transient time , the velocity of the PIs

is higher than the MPC one.

Without any constraints the acceleration resulting from the PIs con-

trollers can not stay within the 2.5m/s2 upperbound comfort require-

ments. Before the simulation time of 3s the PIs acceleration violate the

4.5 Fourth scenario 65

0 10 20 30 40 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control action

Time (s)

MPC
PI 1=PI 2
Constraints

(a)

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Delta U

∆
u

Time (s)

MPC
PI 1=PI 2

(b)

0 10 20 30 40 50 60
5

10

15

20

25

30
Velocity

Time (s)

m
/s

MPC
PI 1=PI 2
leader

(c)

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

4
Acceleration

Time (s)

MPC
PI 1=PI 2
Constraints

(d)

0 10 20 30 40 50

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Gearshift

Time (s)

G
ea

rs
 (

k)

MPC
PI 1=PI 2

(e)

Figure 4.6: Plots for the fourth scenario.

constraints value losing on comfort. The MPC curve shows a compli-

ance to the acceleration upper bound constraint respecting the comfort

standard.

• In Figure 4.6(e) is depicted the gearshift. The number of gear switches

are the same for the three methods.

In Table 4.5 are reported the most relevant value for a comparison. The

online time shows a faster behavior of the PIs which means a faster reactions

66 Simulation

Method MPC PI 1 PI 2

Computational features

On-line time (s) 0.1921 5.6762e-004 5.8341e-004

Off-line time (s) 0.9220 5.8615e+004 5.5986e+004

Programming features

Program class LP LP LP

On-line method Y Y Y

variables 8 9 9

Solution features

Cost of evolution 155 105.91 105.91

Max acc. (m/s2) 2.0344 3.4969 3.4969

Max dec. (m/s2) 0.7287 0.7183 0.7183

Max ∆u(k) 1 1 1

Min ∆u(k) 0.1315 0.5142 0.5142

Transient at 5% (s) 10 10 12

gear-switches 2 2 2

Table 4.5: Comparison issues for the 3 methods with the scenario in Figure 4.2(d)

with Np = 2.

time. The cost of evolution is lower in the PIs cases because of absence of

acceleration constraints which allow the PIs to use a bigger acceleration and

so a smoother control action. In fact the maximum PIs acceleration resulting

from value, listed in Table 4.5, are twice as much as the MPC ones.

4.6 Fifth scenario

This scenario aims to simulate an emergency situation, where the leading

vehicle brakes abruptly, see Figure 4.2. The maximum value of the leading

vehicle deceleration is 8m/s2. This is a very challenging situation and it is

difficult that the controllers follow faithfully the leader velocity.

4.6 Fifth scenario 67

2 4 6 8 10 12 14 16
−1

0

1
Control action

Time (s)

MPC
Constraints

2 4 6 8 10 12 14 16
−1

0

1

Time (s)

PI 1
Constraints

2 4 6 8 10 12 14 16
−1

0

1

Time (s)

PI 2
Constraints

(a)

2 4 6 8 10 12 14 16

−1

0

1

2
Delta U

∆
u

MPC

2 4 6 8 10 12 14 16

−1

0

1

2

∆
u

PI 1

2 4 6 8 10 12 14 16

−1

0

1

2

∆
u

Time (s)

PI 2

(b)

2 4 6 8 10 12 14 16
0

10

20

Velocity

m
/s MPC

leader

2 4 6 8 10 12 14 16
0

10

20

m
/s PI 1

leader

2 4 6 8 10 12 14 16
0

10

20

m
/s

Time (s)

PI 2
leader

(c)

2 4 6 8 10 12 14 16

−4

−2

0

2

Acceleration

Time (s)

MPC
Constraints

2 4 6 8 10 12 14 16

−4

−2

0

2

Time (s)

PI 1
Constraints

2 4 6 8 10 12 14 16

−4

−2

0

2

Time (s)

PI 2
Constraints

(d)

2 4 6 8 10 12 14 16
1

2

3

Gearshift

G
ea

rs
 (

k)

MPC

2 4 6 8 10 12 14 16
1

2

3

G
ea

rs
 (

k)

PI 1

2 4 6 8 10 12 14 16
1

2

3

G
ea

rs
 (

k)

Time (s)

PI 2

(e)

Figure 4.7: Plots for the fifth scenario.

• In Figure 4.6(a) and 4.6(b) are depicted respectively the control and its

derivative. The MPC method is the first to notice first the deceleration

of the leading vehicle. In fact it reacts at 4s, one second before than

PIs.

The PI methods apply a stronger control action instead MPC is more

comfortable. The PI 2 shows an excessive positive control at 12s in

both figure. PI 1 and MPC are more efficient.

68 Simulation

Method MPC PI 1 PI 2

Computational features

On-line time (s) 0.1669 5.6006e-004 5.9498e-004

Off-line time (s) 0.9220 5.8615e+004 5.5986e+004

Programming features

Program class LP LP LP

On-line method Y Y Y

variables 8 9 9

Solution features

Cost of evolution 122.34 88.073 89.045

Max acc. (m/s2) 2.0344 4.9367 4.9367

Max dec. (m/s2) 2.5130 3.8375 3.7456

Max ∆u(k) 0.2425 1 1.6577

Min ∆u(k) 0.9854 1.1450 1.2273

Transient at 5% (s) – – –

gear-switches 2 2 2

Table 4.6: Comparison issues for the 3 methods with the scenario in Figure 4.2(e)

with Np = 2.

• Like explained in the all previous scenarios, the absence of a constraints

in the PI methods in the velocity Figure leads to a more aggressive be-

havior of the PIs. In fact here we see a stronger deceleration of the

PIs. Without any constraints the acceleration resulting from the PIs

controllers can not stay within the 2.5m/s2 lowerbound comfort re-

quirements. The MPC curve shows a compliance to the acceleration

lower bound constraint respecting the comfort standard.

• In the last figure is depicted the gearshift evolution.For this scenario

no particular remarks are necessary.

4.7 Constant prediction 69

4.7 Constant prediction

A particular attention, here, is given to the MPC prediction horizon. In fact

for every scenarios we assumed that the prediction of the reference is exactly

known. This can be explained considering, for example, a series of vehicles

in line which communicate their movements intentions to each others. Here

we consider the case where there are not any communication between the

vehicles and predictions are considered constant with value of the current

state of the reference.

Using an horizon of Np = 2 it is not possible to remark any visible

difference. Then we compare them with an horizon of Np = 5. The simulation

plots are in Figure 4.8.

As expected the constant prediction horizon simulation gives a slower

response to the future velocity of the leader. In fact using the exact curve

as prediction horizon the method predicts what will happen, so the breaking

system can react even before the leading vehicle reducing its velocity as can

be find in Figure 4.8(a). Such anticipation is reflect also in the acceleration

(Figure 4.8(c)) and in the gearshift (Figure 4.8(e)), which are anticipated at

a distance of 1s. If we consider longer horizon this trend will be amplified.

Until now it seems than we have only advantages to use a bigger window

horizon prediction, but the disadvantages are the online-time. In fact the

bigger is the prediction horizon the higher are the time needed to compute

the optimal controller. In fact, as explained in section 3.1.3, the number

of LP sub problems grows exponentially with Np. This leads to much longer

computational time. As an example a list of computational time as a function

of Np is given in Table 4.7.

4.8 Final remarks

In general the PIs approaches show a smaller cost function J compared to

the MPC controller. This is explained, in the most cases, by the possibility

to add the needed constraints in the MPC method. In fact in all scenarios

70 Simulation

Np online-time s

3 0.5240

4 0.6961

5 0.9533

6 1.3957

7 1.4574

8 3.9320

9 7.6429

Table 4.7: Comparisons of the fifth scenario online-time enlarging the prediction

horizon Np.

the PIs violate the 2.5m/s imposed in the MPC; the error term in (3.1) is the

most important responsible of this difference because the MPC needs more

time to reduces the error due the acceleration constraints. We expect that if

the PIs would have a way to add this constraint4, the cost function became

more similar.

Generally the MPC needs a time response more bigger than the PIs.

We must remark that the differences between the two methods is because

the MPC solves mixed integer minimization on-line problem and the PIs

compute only some arithmetic operations. In fact due to the nature of the

problem the MPC requires an online computational time higher than that of

the PIs. We use an algorithm described in Section 3.1.4 to drastically reduce

them. Despite that, it is still not competitive with PI. However it is capable

to handle constraints and provide overall more comfortable drive solutions.

The number of gear switches, in almost every simulation scenario, are

the same for the MPC and the PI except for the variable scenario 4.2(b).

Potentially the PI is instable in the gear switching because it is not capable

to manage integers variable and it has the parameters tuned on the nominal

scenario in Figure 4.2(a). This aspect implies that the switched gears can not

4Note that a further development of this study may consider to cascade the PI block

with a saturation on the acceleration.

4.8 Final remarks 71

0 5 10 15

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control action

Time (s)

MPC
MPC const PRED
Constraints

(a)

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Delta U

∆
u

Time (s)

MPC
MPC const PRED

(b)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20
Velocity

Time (s)

m
/s

MPC
MPC const PRED
leader

(c)

0 2 4 6 8 10 12 14 16
−3

−2

−1

0

1

2

3
Acceleration

Time (s)

MPC
MPC const PRED
Constraints

(d)

0 5 10 15

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Gearshift

Time (s)

G
ea

rs
 (

k)

MPC
MPC const PRED

(e)

Figure 4.8: MPC constant prediction horizon Np = 5 and MPC Np = 5 in the

fifth scenario.

be optimal in a different scenario.

An advantage of the MPC is the possibility to embed a set of constraints

in the control problem. We also must remark the possibility to tune the weight

matrixes Q , see Table 4.1, allowing to give more importance to the reduction

of gear switching, or the reduction to the control change, or to the tracking

error. The main advantage of the MPC is the smoother response obtained by

the control predictive action. In fact the MPC uses an information about the

72 Simulation

future. This aspects implies than the control action can predict an abrupt

manoeuvre of the reference.

With the aid of a Matlab tool [63] we calculated the used memory by the

two methods. The tool gives as results the total memory allocated by Matlab.

We find the result subtracting from the total allocated memory the amount

needed by the software to run (8.454MB). In particular the amount needed

by MPC is 3.776MB (12.230MB−8.454MB) instead the amount needed by

PI is 1.444MB(9, 898MB−8.454MB), the results are reported in Table 4.8.

MPC needs more memory because of the Matlab function linprog.

MPC PI

3.7776 MB 1.444 MB

Table 4.8: Used ram memory by the MPC and the PIs simulations.

4.9 Summary

In this chapter we described the results of the simulation carried out with

the PI and the MPC approaches using five different scenarios depicted in

Figure 4.2.

These scenarios included:

• Two varying velocities.

• Two constant velocities.

• One emergency manoeuvre, specifically an abrupt stop.

For each scenario we drew the plots of velocity and its derivative, the

control action and its derivative and the switches during time evolution. Fur-

thermore we had also collected, in comparison tables, other data of interest

that cannot be conveyed with the mentioned plots.

At the end of the chapter we gave a final assessment between the two

methods highlighting advantages and disadvantages.

Chapter 5

Conclusion

In this thesis we have presented a benchmark that serves as test bed to com-

pare an ACC via a MPC/PWA method with a version of the ACC used

in industry (based on PI methods) approach. The overall goal of the ACC

is to track a given velocity reference. The significant challenge consists in

the fact that a rather real simulation model of the system, including engine

nonlinearities, hydraulic friction and tire versus ground static friction, was

used. Additionally we have modeled the gear shift of the vehicle, using real

field data. Constraints related to road safety, comfort, energy saving and me-

chanical stress are also considered. The main part of the work was devoted to

adapt the method proposed by S. Leirens [42] to our physical model (3.19) as

better explained in Appendix A. This method tackles the exponential num-

ber of LP deriving from exhaustive enumeration pruning the tree of derived

possibilities via a Branch & Bound algorithm. The goal of this adaptation

was to reduce drastically the number of linear problem in order to give a

faster response to the MPC controller. We are successful in adapt this meth-

ods and the performance are near the PIs ones. But, as it can be seen in the

simulations, carried out a slower time response from the MPC. It is slower

but it has a smoother response with better comfort an it allows to insert the

needed constraints in the optimization process. It is less aggressive than the

PI and it has the possibilities to predict the events. This can not be done

74 Conclusion

with the PIs controllers which is more difficult to adapt on a particular situ-

ation because it is tuned on the nominal scenario. Additionally to adapt the

initial parameters shown in Table 3.2 of PI we must built an off-line part of

the code which requested a lot of time to run.

The flexibility of the MPC method gives to it an added value which is

missing in the PIs. Instead the PIs offer a more aggressive control.

As conclusion we can summarize that the PI has in general an efficient

behavior but with a lot of limits derived from its strict structure. It offers

a good response but it has not the possibility to include constraints. MPC

shows a interesting behavior and generally we can say that it is efficient but

it still need some adaption and some more test to tune correctly the weights

and the parameters.

5.1 Further investigations

At least four open areas on which we can focus for a forthcoming research.

5.1.1 Physical model improvement

As reported in Chapter 2 the brake system is considered as a negative throttle

so the braking force is computed using the traction force with a negative sign.

But in a real car model the braking force is more intense than the traction

force. This aspects implies that to use a model closer to a real vehicle it

is necessary to know an exact modeling of it for the braking system of the

Smart.

The modeling of the gearshift condition should be refined. Specifically,

it should include not only a velocity criterion but also criteria based on

acceleration, external condition or other various aspects.

5.1 Further investigations 75

5.1.2 MPC/PWA algorithm improvement and analy-

sis

The method used here, proposed by S. Leirens [42], can be enhanced. In

fact, as described in Section A and in Section 3.1.4, the second block of

the algorithm explores again the sub-optimal potential nodes stored in a

dynamical list. The access at this list and its sorting can be modified in

order to reduce the total number of LP problems. In fact we implemented a

simple FIFO access but could be interesting to formulate a list of access and

sort criteria.

It can be very interesting to investigate how the method proposed by

S. Leirens gains towards a brute-force enumeration of all the possible tree

structure, for this specific application. In particular it would be interesting

to quantify the efficiency of this algorithm of the B&B family. Which advan-

tages, in terms of performance and complexity, could this method give?

5.1.3 PI method improvement

One of the most disadvantage of the PI is the absence of constraints. As

it is shown in the simulation chapter one of the more important missing

constraints is on the acceleration. This aspect implies a uncomfortable be-

havior as described in the previous chapter. It might be interesting, as future

implementation, to force the PI in some manner to follow an acceleration

constraint.

5.1.4 Implementation investigation

Every simulation run using Matlab but the ACC must be tested in a real

car and in a real situation to achieve the most important results. The second

step of this thesis should be a real implementation. In fact we do not know

how can be performed a real implementation in a car in terms of hardware

and mechanical parts. It can be also interesting to see if the needed hardware

it is to much excessive.

76 Conclusion

For the sake of simplicity we did not consider the position from the state

space. Including the position is important to prevent collisions. From a com-

putational point of view the complexity would not increase because the po-

sition is built-in in the physical model.

Appendix A

Code description: relevant

subroutines

In this appendix we give some technical explanation about the code used

to adapt the MPC/PWA based method proposed by S. Leirens [42] to the

physical model (3.19) in Chapter 2.1.

The function used to compute the minimization over the prediction hori-

zon is called

expl found, below is reported the input and the output:

[Uott,GEARott,Jott]= expl_found(Np,GEARk,GEARprec,vk,UPREC,xrefK);

The outputs are respectively the optimal control, the optimal gear and

the optimal MPC cost function. The inputs respectively are the length of the

horizon, the current gear, the previous gear, the current velocity, the previous

control and the reference velocity.

This function is divided into two block:

1 Find the sub-optimum. As depicted in Figure 3.3 in Chapter 3,

in the first block we find the sub-optimum comparing at each P depth the

possible nodes (two or three). This is implemented using some if inside the

while loop which flows the entire tree. Below is reported the if part where

the choice is between three possible nodes comparing the MPC cost function

value (3.21) in Section 3.1.1.

78 Code description: relevant subroutines

if(JJ(3)<JJ(1))

if(JJ(3)<JJ(2))

GEARk=GEARGEAR(3);memoria(2,q)=JJ(3);memoria(9,q)=uu(3);

memoria(3,q)=GEARGEAR(1);memoria(4,q)=

GEARGEAR(2);

memoria(5,q)=JJ(1);memoria(6,q)=JJ(2);

memoria(7,q)=uu(1);memoria(8,q)=uu(2);

elseif(JJ(3)==JJ(2))

if(uu(3)>uu(2))

GEARk=GEARGEAR(2);memoria(2,q)=JJ(2);memoria(9,q)=uu(2);

memoria(3,q)=GEARGEAR(1);memoria(4,q)=

GEARGEAR(3);

memoria(5,q)=JJ(1);memoria(6,q)=JJ(3);

memoria(7,q)=uu(1);memoria(8,q)=uu(3);

else

GEARk=GEARGEAR(3);memoria(2,q)=JJ(3);memoria(9,q)=uu(3);

memoria(3,q)=GEARGEAR(1);memoria(4,q)=

GEARGEAR(2);

memoria(5,q)=JJ(1);memoria(6,q)=JJ(2);

memoria(7,q)=uu(1);memoria(8,q)=uu(2);

end

end

end

The matrix memoria stores the information about every explored node. At

the end of the first block we have a Jsuboptimum and a Usuboptimum value.

2 Find the optimum. In the second block we compare the obtained

sub-optimum with each stored values in matrix memoria, simply by flowing

it. If the J value in matrix is smaller than the current Jsuboptimum and if

it corresponds to a node at the end of the tree we simple update the sub-

optimum values with the new ones:

79

if(J1<Jsuboptimum)

Jsuboptimum=J1; Usuboptimum=u1;GEARsubott=percorsoN(2);

end

if(J2<Jsuboptimum)

Jsuboptimum=J2; Usuboptimum=u2;GEARsubott=percorsoN(2);

end

if(J3<Jsuboptimum)

Jsuboptimum=J3; Usuboptimum=u3;GEARsubott=percorsoN(2);

end

If the J value in matrix is smaller than the actual Jsuboptimum and if it

corresponds to a node in the middle of the tree we explore the new part of

the tree starting from that node,

if(J1<Jsuboptimum)

memoria=[candidati;[percorsoN 1 zeros(1,(Np-1)-

length(percorsoN))]];

end if(J2<Jsuboptimum)

memoria=[candidati;[percorsoN 2 zeros(1,(Np-1)-

length(percorsoN))]];

end if(J3<Jsuboptimum)

memoria=[candidati;[percorsoN 3 zeros(1,(Np-1)-

length(percorsoN))]];

end

If the relative node has a lower cost function (J1, J2, J3) we update the

memoria matrix with that new path. We continue to flow the matrix memoria

until is finished. At this point the last Jsuboptimum value stored became the

optimum.

80 Code description: relevant subroutines

Bibliography

[1] P.J. Antsaklis and X.D. Koutsoukos. Hybrid Systems Control, volume 7.

Encyclopedia of Physical Science and Technology, Third Edition, Aca-

demic Press, 2005.

[2] A. Bemporad. Efficient conversion of mixed logical dynamical systems

into an equivalent piecewise affine form. IEEE Trans. Automatic Contr.,

49(5):832–838, May 2004.

[3] A. Bemporad, P. Borodani, and Mannelli. Hybrid control of an automo-

tive robotized gearbox for reduction of consumptions and emissions. In:

Hybrid Systems: Computation and Control. Vol. 2623 of Lecture Notes

in Computer Science, pages 81–96, 2003.

[4] A. Bemporad and M. Morari. Control of systems integrating logic, dy-

namics, and constraints. Automatica, 35(3):407–427, March 1999.

[5] F. Borrelli. Constrained Optimal Control of Linear & Hybrid Systems,

volume 290. Springer Verlag, 2003.

[6] S.P. Boyd and C.H. Barratt. Linear Controller Design, Limits of per-

formance. Prentice Hall, Information and System Sciences Series, En-

glewood Cliffs, New Jersey, 1991.

[7] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for

hybrid control: model and optimal control theory. IEEE Transactions

on Automatic Control, 43(1):31–45, 1998.

82 BIBLIOGRAPHY

[8] B. Brogliato, S. I. Niculescu, and P. Orthant. On the control of finitedi-

mensional mechanical systems with unilateral constraints. IEEE Trans-

actions on Automatic Control, pages 200–215, 1997.

[9] B. Brogliato and A. Z. Rio. On the control of complementary-slackness

mechanical juggling systems. IEEE Transactions on Automatic Control,

pages 235–246, 2000.

[10] C.G.Cassandras, D.L. Pepyne, and Y. Wardi. Optimal control of a class

of hybrid systems. IEEE Transactions on Automatic Control, 46(3):398–

415, 2001.

[11] D. Corona, I. Necoara, B. De Schutter, and T.J.J. van den Boom. Robust

hybrid MPC applied to the design of an adaptive cruise controller for a

road vehicle. In CDC06, pages 1721–1726, San Diego, USA, December

2006.

[12] D. Corona and B. De Schutter. Adaptive cruise controller for a smart:

comparisson benchmark for mpc-pwa control methods. In ADHS’06

second Conf. on Analysis and Design of Hybrid Systems, volume 1, pages

1–6, june 2006.

[13] D. Corona and B. De Schutter. Adaptive cruise controller for a Smart:

A comparison benchmark for MPC-PWA control methods. Technical

Report 07-005, Delft Center for Systems and Control, Delft University

of Technology, Delft, The Netherlands, February 2007.

[14] C.R. Cutler. Dynamic matrix control, an optimal multivariable control

algorithm with constraints. Dissertation Abstracts Int. Part B: Science

and Engineering, 44(8):228, June 1983.

[15] C.R. Cutler and B.L. Ramaker. Dynamic matrix control - a computer

control algorithm. In Proc. Joint American Control Conf., San Fran-

cisco, CA, USA, 1980.

BIBLIOGRAPHY 83

[16] J. Sjöberg D. Axehill. “Adaptive Cruise Control for Heavy Vehicles”.

Master’s thesis, Linköping University, Institutionen för systemteknik,

Linköping, Sweden, 2003.

[17] B. De Schutter and T.J.J. Van den Boom. MPC for continuous

piecewise-affine systems. Systems & Contr. Letters, 52(3–4):179–192,

July 2004.

[18] D.M.W.Leenaerts. Further extensions to chuas explicit piecewise linear

function descriptions. Int. Journal of Circuit Theory and Applications,

24:621–633, 1996.

[19] J.C. Doyle. Analysis of feedback systems with structured uncertainties.

In IEE Proc., volume 129-D, pages 242–250, September 1982.

[20] J.C. Doyle. Lecture notes in advances in multivariable control. In

ONR/Honeywell Workshop on Advances in Multivariable Control, Tech.

Rep., Honeywell, Minneapolis, MN, 1984.

[21] J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control sys-

tems. MacMillan Publishing Company, New York, USA, 1992.

[22] J.C. Doyle, A. Packard, and K. Zhou. Review on lfts, lmis and µ. In Proc.

of the 30th Conf. on Decision and Control, pages 1227–1232, Brighton,

UK.

[23] S. Drulhe, G. Ferrari-Trecate, H. de Jong, and A. Viari. Reconstruction

of switching thresholds in piecewise-affine models of genetic regulatory

networks. In: Hybrid Systems: Computation and Control. Vol. 3927 of

Lecture Notes in Computer Science, pages 184–199, 2006.

[24] E.D.Sontag. Sontag, e. d., 1996. interconnected automata and linear sys-

tems: A theoretical framework in discrete-time. In Hybrid Systems III:

Verification and Control, pages 1049–1056, Springer, New York, 1996.

84 BIBLIOGRAPHY

[25] G. Ferrari-Trecate, F. A. Cuzzola, D. Mignone, and M. Morari. Anal-

ysis of discrete-time piecewise affine and hybrid systems. Automatica,

38(12):2139–2146, 2002.

[26] National Center for Statistics and Analysis. Traffic safety

facts 2004: Speeding , [online document], http: http://www-

nrd.nhtsa.dot.gov/pdf/nrd-30/ncsa/tsf2004/809915.pdf. 2005.

[27] T. Geyer, G. Papafotiou, and M. Morari. Model predictive control in

power electronics: A hybrid systems approach. In 44-th IEEE Conf. on

Decision and Control, pages 5606–5611, Seville, Spain, 2005.

[28] D.N. Godbole and J. Lygeros. Longitudinal control of the lead car of a

platoon. IEEE Trans. Vehicular Technology, 43(4):1125–1135, Novem-

ber 1994.

[29] R. Goebel and A. R. Teel. Solutions to hybrid inclusions via set and

graphical convergence with stability theory applications. Automatica,

42(4):573–587, 2006.

[30] F. Gustafsson. Slip–based tire–road friction estimation. Automatica,

33(6):1087–1099, June 1997.

[31] R. Hallouzi, V. Verdult, H. Hellendoorn, and J. Ploeg. Experimen-

tal evaluation of a co-operative driving set-up based on inter-vehicle

communication. In Proc. IFAC Symposium on Intelligent Autonomous

Vehicles, Lisbon, Portugal, July 2004.

[32] P. R. Haney and M. J. Richardson. Adaptive cruise control, system

optimisation and development for motor vehicles. Journal of Navigation,

53(1):42–47, January 2000.

[33] W. P. M. H. Heemels, J. M. Schumacher, and S. Weiland. Linear com-

plementarity systems. SIAM journal on applied mathematics, 60(4):234–

1269, 2000.

BIBLIOGRAPHY 85

[34] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. On the equiva-

lence classes of hybrid dynamical models. In Proc. 40th IEEE Conf. on

Dec. and Contr., pages 364–369, Orlando, USA, December 2001.

[35] P.A. Ioannou and C.C. Chien. Autonomous intelligent cruise control.

IEEE Trans. Vehicular Technology, 42(4):657–672, November 1993.

[36] M. Johansson and A. Rantzer. Computation of piecewise quadratic lya-

punov functions for hybrid systems. In IEEE Transactions on Automatic

Control, volume 43, pages 555–559, 1998.

[37] E.C. Kerrigan and D.Q. Mayne. Optimal control of constrained, piece-

wise affine systems with bounded disturbances. In Proc. 41th IEEE

Conf. on Dec. and Contr., pages 1552–1557, Las Vegas, USA, December

2002.

[38] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust contrained

predictive control using linear matrix inequalities. Automatica.

[39] A. H. Land and A. G. Doig. An automatic method for solving dis-

crete programming problems econometrica. Econometrica, 28(3):497–

520, July 1960.

[40] M. Lazar. Model Predictive Control of Hybrid Systems: Stability and

Robustness. PhD thesis, Technische Universiteit Eindhoven, Eindhoven,

The Netherlands, 2006.

[41] M. Lazar, W.P.M.H., S. Heemels, S. Weiland, A. Bemporad, and O. Pas-

travanu. Infinity norms as Lyapunov functions for model predictive

control of constrained PWA systems. In LNCS: Hybrid Systems: Com-

putation and Control, number 3414, pages 417–432, Zürich, Switzerland,

2005. Springer Verlag.

[42] S. Leirens, J. Buisson, P. Bastard, and J. L. Coullon. An efficient al-

gorithm for solving model predictive control of switched affine systems.

86 BIBLIOGRAPHY

ADHS’06 second Conf. on Analysis and Design of Hybrid Systems, 1(1–

4):1–6, June 2006.

[43] D. Liberzon. Switching in systems and control. Birkhauser, Boston,

2003.

[44] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. Sastry. Dy-

namical properties of hybrid automata. IEEE Transactions on Auto-

matic Control, 48:2–17, 2003.

[45] E. Hesslow M. Persson, F. Botling and R. Johansson. Stop and go

controller for adaptive cruise control. In Proc. IEEE Int. Conf. on Contr.

application and IEEE Int. symposium on computer aided control system

design, pages 1692–1697, Kohala Coast-Island of Hawai, USA, August

1999.

[46] J.M. Maciejowski. Multivariable Feedback Control Design. Addison-

Wesley Publishers, Wokingham, UK, 1989.

[47] M. Morari and E. Zafiriou. Robust Process Control. Prentice Hall,

Englewood Cliffs, New Jersey, USA, 1989.

[48] M.W.J.M Musters and N.A.W. van Riel. Analysis of the transformating

growth factor-beta1 pathway and extracellular matrix formation as a

hybrid system. In: 26th Conf. of the IEEE Engineering in Medicine and

Biology Society, pages 2901–2904, 2004.

[49] M. Barth O. Servin, K. Boriboonsomsin. An energy and emissions

impact evaluation of intelligent speed adaptation. In Proc. of the

IEEE ITSC 2006 2006 IEEE Intelligent Transportation Systems Conf.,

Toronto, Canada, September 2006.

[50] F. Pfeiffer and C. Glocker. Multibody dynamics with unilateral con-

tacts wiley. In ONR/Honeywell Workshop on Advances in Multivariable

Control, Chichester, 1996.

BIBLIOGRAPHY 87

[51] A. Yu. Pogromsky, M. Jirstrand, and P. Spangeus. On stability and

passivity of a class of hybrid systems. In Proc. of the 37-th IEEE Conf.

on Decision and Control’98, pages 3705–3710, Tampa (USA), 1998.

[52] J.B. Rawlings and K.R. Muske. The stability of constrained receding

horizon control. IEEE AC.

[53] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive

heuristic control: Applications to industrial processes. Automatica, pages

413–428, 1978.

[54] B. De Schutter and M. Heemels. Modeling and Control of Hybrid Sys-

tems. Lecture notes for the course, TUDelft, 2005.

[55] B.De Schutter and T.J.J. van den Boom. Model predictive control for

max-plus-linear discrete event systems. Automatica, 37(7):1049–1056,

2001.

[56] A.R.M. Soeterboek. Predictive control - A Unified Approach. Prentice

Hall, Englewood Cliffs, New Jersey, USA, 1992.

[57] E. D. Sontag. Nonlinear regulation: the piecewise linear approach. IEEE

Transactions on Automatic Control, 26(2):346–357, 1981.

[58] E.D. Sontag. An algebraic approach to bounded controllability of linear

systems. Int. J. Contr., pages 181–188, 1984.

[59] Ton J.J. van den Boom and Ton C.P.M. Backx. Model Predictive Con-

trol. Lecture notes for the course, TUDelft, 2005.

[60] A. J. van der Schaft and J. M. Schumacher. An introduction to hy-

brid dynamical systems. IEEE Transactions on Automatic Control,

43(3):483–490, 1998.

[61] A. J. van der Schaft and J. M. Schumacher. An introduction to hybrid

dynamical systems.Vol. 251 of Lecture Notes in Control and Information

Sciences. Springer, 2000.

88 BIBLIOGRAPHY

[62] M. Vasak, M. Baotic, M. Morari, I. Petrovic, and N. Peric. Con-

strained optimal control of an electronic throttle. Int. Journal of Control,

79(5):465–478, 2006.

[63] Mathworks Website. http://www.mathworks.com/matlabcentral/.

[64] Smart Website. http://www.smart-training-online.com/.

[65] D. Yanakiev and I. Kanellakopoulos. Nonlinear spacing policies for au-

tomated heavy-duty vehicles. In IEEE Transactions on vehicular tech-

nology, volume 47, November 1998.

[66] A. Zheng, V. Balakrishnan, and M. Morari. Constrained stabilization

of discrete-time-systems. Int. Journal of Robust & Nonlinear Control,

5(5):461–485, 1995.

