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Abstract

Hybrid systems are a mixture of interacting time-driven and event-driven dynamics.
There are some classes of hybrid systems for which tractable control design techniques
are available. Two of these subclasses are Piecewise Affine (PWA) and Max-Min-Plus-
Scaling (MMPS) systems. The context of this project is the equivalence between
continuous PWA systems and MMPS systems, in their discrete-time version. The
goal of this thesis is to study connections between them, and to do this we will focus on
the two kinds of functions that define these systems: continuous PWA functions and
MMPS functions. In this project we will therefore investigate how these two types of
functions are related, and we will develop algorithms to transform continuous PWA
functions into MMPS functions and vice versa.
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Sommario

I sistemi ibridi rappresentano un connubio tra sistemi ad avanzamento temporale e
sistemi ad eventi discreti. Esistono alcune classi di sistemi ibridi per le quali delle
tecniche efficaci di controllo sono disponibili. Due di queste classi sono i sistemi
Piecewise Affine (PWA) e i sistemi Max-Min-Plus-Scaling (MMPS). Il contesto in
cui si svolge questa tesi è l’equivalenza tra sistemi PWA continui e sistemi MMPS,
nella loro versione a tempo discreto. L’obiettivo di questa tesi è lo studio dei legami
tra queste due classi di sistemi, e a questo scopo, focalizzeremo la nostra attenzione
sui due tipi di funzione che definiscono questi sistemi: funzioni PWA continue e
funzioni MMPS. In questa tesi verranno quindi analizzate le relazioni tra questi due
tipi di funzione, e verranno inoltre sviluppati degli algoritmi allo scopo di trasformare
funzioni PWA continue in funzioni MMPS e viceversa.
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Chapter 1

Introduction

In this chapter we present a description of hybrid systems and a short survey of
some of their subclasses. We also see that these subclasses are equivalent under some
assumptions. At the end of the chapter there is an overview of this thesis.

This introduction is based on [3, 6, 7, 11, 12].

1.1 Hybrid systems

An hybrid system is a mixture of interacting time-driven and event-driven dynamics.
Some examples are manufacturing systems, traffic control systems, logistic systems,
electrical networks, etc. In time-driven systems, the time is the independent vari-
able: so, these systems can be described by using differential equations (if they are
continuous-time system) or difference equations (if they are discrete-time systems).
On the contrary, if we consider event-driven systems, the state changes only when an
event occurs. The states of an event-driven system are often called modes. We can
define an event as the start of an action (e.g. the semaphore light changing colour,
the shifting of the gears in a car): it could be an input event, an external event,
or also an event generated by time-driven dinamics (e.g. when the state reaches a
particular region of state space). So, we can consider an hybrid system as a set of
modes in which the system switches from a mode to another mode when a particular
event occurs. Moreover, for each mode, the system is described by a set of differential
or difference equations (in fact, for each mode, the system is a time-driven system).
A graphical representation is shown in Figure 1.1.

Recently, these systems have received a lot of attention from control community, even
if they have always been with us.

1



2 1.2. Different subclasses of hybrid systems

ẋ = f1(x, u)
y = g1(x, u)

ẋ = f2(x, u)
y = g2(x, u)

ẋ = f3(x, u)

y = g3(x, u)

ẋ = f4(x, u)
y = g4(x, u)

ẋ = fN(x, u)
y = gN (x, u)

Figure 1.1: Schematic representation of an hybrid system.

1.2 Different subclasses of hybrid systems

Since there do not exist methods to analyze the general class of hybrid systems, several
authors have focused on special subclasses of them. In this introduction, we will focus
on discrete-time linear hybrid models only. If we consider this kind of systems, each
subclass has some advantages over the others, but since these subclasses are equivalent
(although some of the equivalences are obtained under additional assumptions on
boundedness and well-posedness), we can transfer the advantages and the techniques
utilized for each one, to any of the other equivalent ones.

1.2.1 Piecewise Affine (PWA) systems

PWA systems [16] are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi

for
[

x(k)
u(k)

]
∈ Ωi (1.1)

where the finite set of polyhedra {Ωi} is a partition of input/state space, while the
variables x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp are respectively the states, the inputs
and the outputs at time k.
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A more exhaustive description of PWA systems will be given in Chapter 2.

The subclass of PWA systems is the most studied one, since they represent the
”simplest” extension of linear system that can model hybrid phenomena. They can
also easily approximate smooth nonlinear processes with arbitrary accuracy.

1.2.2 Max-Min-Plus-Scaling (MMPS) systems

MMPS functions [5] f : Rq −→ R are defined by the recursive grammar

f(x) = xi|α|max(fk(x), fl(x))|min(fk(x), fl(x))|fk(x) + fl(x)|βfk(x) (1.2)

with i ∈ {1, . . . , q}, α, β ∈ R and where fk(x) : Rq −→ R, fl(x) : Rq −→ R are again
MMPS functions; the symbol | stands for ”or”.

A vector-valued function f : Rq −→ Rr is MMPS if the above statement holds
component-wise.

MMPS systems are described by

x(k + 1) = Mx(x(k), u(k)) (1.3a)

y(k) = My(x(k), u(k)) (1.3b)

and in addition, if the system is constrained, also by

Mc(x(k), u(k)) ≤ c (1.3c)

where Mx, My and Mc are MMPS functions and the variables x(k) ∈ Rn, u(k) ∈ Rm

and y(k) ∈ Rp are respectively the states, the inputs and the outputs at time k.

The model (1.3) is a generalized framework that includes, e.g., max-plus linear sys-
tems, max-min-plus linear systems, max-plus polynomial systems, etc.

1.2.3 Mixed Logical Dynamical (MLD) Systems

MLD systems [2] are systems in which logic, dynamics and constraints are integrated.
They are described by the following model

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (1.4a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (1.4b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ e5 (1.4c)



4 1.2. Different subclasses of hybrid systems

where x(k) =
[
xT

r (k)xT
b (k)

]T with xr(k) ∈ Rnr and xb(k) ∈ {0, 1}nb (y(k) and u(k)
have a similar structure), and where z(k) ∈ Rrr and δ(k) ∈ {0, 1}rb are auxiliary
variables.

In MLD systems, the logic is converted into binary variables in linear equalities, for
obtaining a more mathematically tractable description.

MLD systems include linear hybrid systems, finite state machines, some classes of
discrete event systems, etc.

1.2.4 Linear Complementarity (LC) systems

LC systems [17] are described by the equations

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (1.5a)

y(k) = Cx(k) + D1u(k) + D2w(k) (1.5b)

v(k) = E1x(k) + E2u(k) + E3w(k) + g4 (1.5c)

0 ≤ v(k) ⊥ w(k) ≥ 0 (1.5d)

where v(k), w(k) ∈ Rs and v(k) ⊥ w(k) means that the two vectors are orthogonal,
so vT (k)w(k) = 0. v(k) and w(k) are called the complementarity variables.

LC systems are often used to describe constrained mechanical systems, electrical
networks with ideal diodes or other dynamical systems with piecewise linear relations,
variable structure systems, etc.

1.2.5 Extended Linear Complementarity (ELC) systems

ELC systems [4] are an extension of LC systems and they are given by the equations

x(k + 1) = Ax(k) + B1u(k) + B2d(k) (1.6a)

y(k) = Cx(k) + D1u(k) + D2d(k) (1.6b)

E1x(k) + E2u(k) + E3d(k) ≤ g4 (1.6c)
p∑

i=1

∏
j∈φi

(g4 − E1x(k) − E2u(k) − E3d(k))j = 0 (1.6d)

in which d(k) ∈ Rr is an auxiliary variable. If we look at (1.6c) and at (1.6d), we can
note that (1.6d) is equivalent to

∏
j∈φi

(g4 − E1x(k) − E2u(k) − E3d(k))j = 0 for each i ∈ 1, . . . , p (1.7)
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ELC

MMPS

MLD

LC

PWA

�

�

�

�

��

��

Figure 1.2: Graphical representation of the links between some subclasses of hybrid
systems. An arrow going from class A to class B means that A is a subset of B.
Arrows with a star mean that additional assumptions are required.

and therefore, we can see that (1.6c) can be considered as a system of linear inequal-
ities where there are p groups of them, and for each group at least one inequality
must hold with equality.

1.2.6 Equivalences

It can be proven that all subclasses of hybrid systems mentioned in this section are
equivalent, even if some assumptions relate to well-posedness of the problem and
to boundedness of inputs, states, outputs and auxiliary variables (or combinations
of them) are required sometimes [11, 12]. These equivalences are shown in Figure
1.2. Fortunately, these assumptions are not restrictive, so we can choose the suitable
model for a particular hybrid system and, if necessary, we can transforme it into the
subclass for which the desired technique is known or more efficient.

1.3 Overview of the MSc Thesis

In this thesis we study in an thoroughly way two subclasses of discrete-time linear
hybrid models: PWA and MMPS systems, in their discrete-time version. The goal
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of this thesis is to study connections between them, and to do it we focus on the two
kinds of functions that define these systems: PWA and MMPS functions.

In Chapter 2 there is the background knowledge: basic definitions and properties
for PWA and MMPS functions and an illustration of their equivalence (under some
assumptions). Moreover, it will be shown how to represent PWA functions and
MMPS functions in canonical form in MATLAB.

Chapter 3 deals with minimal realizations of PWA and MMPS functions.

In Chapter 4, we illustrate two strategies for the transformation from a continuous
PWA function into an equivalent MMPS one: the Gorokhovik-Zorko strategy and the
Ovchinnikov strategy. We also discuss about reduced realizations with Gorokhovik-
Zorko strategy.

In Chapter 5 is presented a method for transforming a MMPS function in canonical
form into the equivalent continuous PWA one.

Tests and results will be given in Chapter 6.

Chapter 7 contains the conclusions and considerations about this thesis and some
suggestions for future research.

In this thesis, in order to prevent confusion, we have chosen to always explain new
definitions (if not trivial) and to repeat the ones already given, when it is necessary
for a better understanding.



Chapter 2

PWA and MMPS functions

In this chapter we thoroughly analyse two kinds of functions:

• piecewise affine (PWA) functions

• max-min-plus-scaling (MMPS) functions

By means of these functions we can define PWA and MMPS systems of course. We
show properties of both functions, their equivalence, and a way for their representa-
tion in MATLAB.

2.1 Basic definitions and properties of PWA functions

As already said in Section 1.2.1, PWA systems are defined by partitioning the
state/input space in a finite number of polyhedral regions and associating to each
one an affine dynamic. Now, we give a precise definition for them.

Let us consider some definitions:

Definition 2.1. A polyhedron is a convex set X ⊆ Rn given as an intersection of
a finite number of half-spaces. Each half-space can be either closed (i.e {x ∈ Rn :
aT x ≤ b} where a ∈ Rn, b ∈ R) or open (i.e {x ∈ Rn : aT x < b} where a ∈ Rn, b ∈ R).
A bounded polyhedron is also called polytope.

Definition 2.2. Given a polyhedron X , then a polyhedral partition of X is a finite
set of closed polyhedra {Xi}i∈I satisfying:

1. intXi �= ∅ for each i ∈ I;

7



8 2.1. Basic definitions and properties of PWA functions

2. ∪i∈IXi = X ;

3. intXi ∩ intXj = ∅ for each i, j ∈ I, i �= j.

in which intXi denotes the interior of Xi.

Now, we are in the position to define a PWA function:

Definition 2.3. A function f : X → R, where X ⊆ Rn is a polyhedron, is PWA if
there exists a polyhedral partition {Xi}i∈I of X such that f is affine on each Xi, i.e.
f(x) = αT

i x + βi for all x ∈ Xi and i ∈ I.

A vector-valued function f : X → Rk is PWA if the Definition 2.3 holds component-
wise.

An example of a PWA function is the following:

Example 2.1.

f(x) =

⎧⎨
⎩

f1(x) = x + 1 x ≤ 3
f2(x) = 3 3 ≤ x ≤ 6
f3(x) = 0.5x + 2 x ≥ 6

(2.1)

Remark 2.1. Strictly speaking, by definition 2.3 we are defining a relation and not
a function. Indeed, if we look at the Example 2.1, we can see that the function f(x)
can have more than one output in the points on the boundaries between two regions
(e.g., we can have both f(3) = 4 and f(3) = 3). Instead, we do not have this problem
when we consider continuous PWA functions (see Section 2.1.1 for their definition),
since we have a unique output for every x ∈ X .

2.1.1 Continuous PWA functions

Let us consider a PWA function as given in Definition 2.3:

Definition 2.4. A PWA function f : X −→ Rk is said to be continuous if it is
continuous on any boundary between two regions.

A simple example of a continuous PWA function is the following (see Figure 2.1):

Example 2.2.

f(x) =

⎧⎨
⎩

f1(x) = x + 1 x ≤ 3
f2(x) = 4 3 ≤ x ≤ 6
f3(x) = 2x − 8 x ≥ 6

(2.2)
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x

f(x)

f1

f2

f3

Figure 2.1: Graphical representation of the function in Example 2.2.

In Theorem 2.1 below, an alternative definition for continuous PWA functions is
given. In order to give it, let us see some introductive definitions.

Definition 2.5. The epigraph of a function f : X → R is defined as:

epi f := {(x, t) ∈ X × R : f(x) ≤ t} (2.3)

Definition 2.6. The hypograph of a function f : X → R is defined as:

hyp f := {(x, t) ∈ X × R : f(x) ≥ t} (2.4)

Theorem 2.1. [10] A function f : X → Rk is a continuous PWA function if both
the epigraph and the hypograph of each scalar component are a finite union of closed
polyhedra.

2.2 Basic definitions and properties of MMPS functions

As already seen in Section 1.2.2, MMPS functions are defined by the operations
maximization, minimization, addition and scalar multiplication. Let us recall the
definition of an MMPS function:

Definition 2.7. MMPS functions f : Rq −→ R are defined by the recursive grammar:

f(x) = xi|α|max(fk(x), fl(x))|min(fk(x), fl(x))|fk(x) + fl(x)|βfk(x) (2.5)

where i ∈ {1, . . . , q}, α, β ∈ R and where fk(x) : Rq −→ R, fl(x) : Rq −→ R are
again MMPS functions; the symbol | stands for ”or”. A vector valued function
f : Rq −→ Rr is MMPS if the above statement holds component-wise.

Example 2.3. Examples of MMPS functions are:

f(x) = min(2x2 + 3max(min(3, 2x1 + 3x3), x1 + max(x2, 0)))

g(x) = 2x1 + 3x2 + 7 + 6min(x1, x3)

h(x) = max(min(1,−x1 + 2), x1 − 4) (see Figure 2.3)



10 2.2. Basic definitions and properties of MMPS functions

x

h(x)

Figure 2.2: Graphical representation of the function h(x) in Example 2.3.

Let us see now some properties of MMPS functions [6]:

1. The addition is distributive over both minimum and maximum:

min(f1, f2) + f3 = min(f1 + f3, f2 + f3) (2.6a)

max(f1, f2) + f3 = max(f1 + f3, f2 + f3) (2.6b)

2. Let β ∈ R+. Then we can write:

β min(f1, f2) = min(βf1, βf2) (2.7a)

β max(f1, f2) = max(βf1, βf2) (2.7b)

If the constant is negative we have to convert min into max and max into min
(let us consider again β ∈ R+):

− β min(f1, f2) = max(−βf1,−βf2) (2.8a)

− β max(f1, f2) = min(−βf1,−βf2) (2.8b)

3. Nestings of min operations can always be simplified in the following way (the
same holds for max operations):

min(. . . (min(min(f1, f2), f3), f4), . . . , fk)

= min(f1, . . . , fk)
(2.9)

4. If an expression is in the form min() + . . . + min(), we can always reduce it to
min() (the same holds for max operations):

min(f11, . . . , fk1) + min(f21, . . . , f2k2) + . . . + min(fl1, . . . , flkl
)

= min(f11 + f21 + . . . + fl1,

f11 + f21 + . . . + fl2, . . . , f1k1 + f2k2 + . . . + flkl
)

(2.10)
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and so, in a compact notation:

l∑
i=1

min
j=1,...,ki

(fij) = min
(j1,...,jl)∈

{1,...,k1}×...
×{1,...,kl}

(
l∑

i=1

fiji)

5. Minimization is distributive with respect to maximization and vice versa. Let
us see a simple example:

min(max(f1, f2),max(f3, f4))

= max(min(f1, f3),min(f1, f4),min(f2, f3),min(f2, f4))

max(min(f1, f2),min(f3, f4))

= min(max(f1, f3),max(f1, f4),max(f2, f3),max(f2, f4))

(2.11)

2.2.1 Canonical forms of MMPS functions

A canonical form is a structure where all expression can be written into. It is very
important to write every MMPS expression in a standard form with as few nestings as
possible, since in this way it becomes more easy, e.g., translating an MMPS function
into the other subclasses of hybrid systems, reducing the computational complexity
when we use them, etc.

Let us consider now the following definitions:

Definition 2.8. [6] An MMPS function is in conjunctive form if it is written as

min
j∈1,...,l

(max
i∈Ij

(aT
i x + bi)) (2.12)

or in disjunctive form if it is written as

max
j∈1,...,l

(min
i∈Ij

(aT
i x + bi)) (2.13)

where I1, . . . , Il ⊆ {1, . . . , N} are index sets and there are N possible components in
the form aT

i x + bi.

Definition 2.9. A level-n expression (with n ∈ N, n �= 0) is an expression with n−1
nestings. The number n equals the maximum number of min and max operations
encountered in each MMPS expression before arriving at an argument of the form
aT

i x + bi.

Example 2.4. min(2x + 1, 3x + 4) + 6 is a level-1 expression whereas
max(min(3x + 7, 0),min(2x − 6,−3x)) + 6min(4x, 3) is a level-2 expression.
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Now we can see some properties about conjunctive and disjunctive form [3, 6]:

1. The expression max(f1, . . . , fk)+min(g1, . . . , gl) can be written into either con-
junctive form or disjunctive form

max(f1, . . . , fk) + min(g1, . . . , gl)

= max(min(f1 + g1, . . . , f1 + gl), . . . ,

min(fk + g1, . . . , fk + gl))

= min(max(f1 + g1, . . . , fk + g1), . . . ,

max(f1 + gl, . . . , fk + gl))

(2.14)

We have used the property (2.6) in this case. By property (2.14) we can see
again that the max operator is distributive with respect to the min operator
and vice versa.

2. We can always convert a conjunctive form into a disjunctive form and vice
versa:

min(max(f11, . . . , f1k1), . . . ,max(fl1, . . . , flkl
))

= max(min(f11, f21, . . . , fl1),

min(f11, f21, . . . , fl2), . . . ,min(f1k1 , . . . , flkl
))

(2.15)

and therefore, in a compact notation

min
i=1,...,l

( max
j=1,...,ki

(fij)) = max
(j1,...,jl)∈

{1,...,k1}×...
×{1,...,kl}

( min
i=1,...,l

(fiji))

We have used the distributive property of min and max operation (see (2.11))
to interchange the order of the two operations. We can obviously convert a
disjunctive form in a conjunctive one in the same way.

3. The expression min(max(), . . . ,max(),min(), . . . ,min()) can be easily written
in a conjunctive form. Let’s see the following example:

min(max(f1, f2),min(f3, f4))

= min(max(f1, f2), f3, f4)

= min(max(f1, f2),max(f3, f3),max(f4, f4))

(2.16)

We have used the property (2.9) in this case.

4. By using properties (2.9) and (2.11) we can show that the expression
max(min(max(f1, f2), f3), f4) can be easily written in a conjunctive form. Let
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us consider the following example:

max(min(max(f1, f2), f3), f4)

= max(max(min(f1, f3),min(f2, f3)), f4)

= max(min(f1, f3),min(f2, f3), f4)

= min(max(f1, f2, f4),max(f1, f3, f4),max(f3, f2, f4), . . . ,

max(f3, f3, f4))

= min(max(f1, f2, f4),max(f1, f3, f4),max(f3, f2, f4), . . . ,

max(f3, f4))

= min(max(f1, f2, f4),max(f3, f4))

(2.17)

The terms max(f1, f3, f4) and max(f3, f2, f4) are superfluous, because they are
always bigger than max(f3, f4). Then we can remove them from the expression.

By using properties (2.9) and (2.15), we have seen some examples of reductions of
level-2 and level-3 expressions into a conjunctive canonical form. It is possible to
formally prove that every MMPS expression can be transformed into a conjunctive
or disjunctive form.

Theorem 2.2. [6] The conjunctive and disjunctive form are canonical forms for any
MMPS expression.

2.3 Equivalence between continuous PWA and MMPS

functions

Let us see some important results on PWA and MMPS functions:

Theorem 2.3. [10, 14] Let f : Rn −→ R be a continuous PWA function as defined
in (2.4): then there exists index sets I1, . . . , Il ⊆ {1, . . . , N} such that:

f = min
j∈1,...,l

max
i∈Ij

(aT
i x + bi)

and there also exists index sets J1, . . . , Jk ⊆ {1, . . . , N}

f = max
j∈1,...,k

min
i∈Jj

(aT
i x + bi)

From [10, 14] and from Theorem 2.2, it follows that:

Theorem 2.4. Every MMPS function is also a continuous PWA function.
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Therefore, we can give the following proposition:

Proposition 2.5. [10, 14] MMPS and continuous PWA functions are equivalent.

By Proposition 2.5, it is clear that MMPS and continuous PWA systems are equiva-
lent too.

2.4 Implementation in MATLAB

For our aims, we need a MATLAB representation of PWA functions and MMPS
functions in canonical form. We only consider scalar functions for both cases. In this
section we show the MATLAB representation of these functions that we have chosen
for our aims.

2.4.1 Implementation of PWA functions

The representation chosen for PWA functions is quite similar to the one of MPT
toolbox [13], but with some differences.

Let us consider a PWA function f : X −→ R as defined in Definition 2.3:

f(x) = αT
i x + βi if x ∈ Xi

For each i ∈ {1, . . . , N}, we can say that x ∈ Xi if Hix ≤ Ki. Then we can represent
the PWA function with the following structure and fields:

f.α = {αT
1 , . . . , αT

N}
f.β = {β1, . . . , βN}
f.H = {H1, . . . ,HN}
f.K = {K1, . . . ,KN}

(2.18)

where N is the number of affine terms. The fields H and K are necessary for defining
every polyhedron of the polyhedral partition {Xi}.

Example 2.5. Let us consider the function given in Example 2.2

f(x) =

⎧⎨
⎩

f1(x) = x + 1 x ≤ 3
f2(x) = 4 3 ≤ x ≤ 6
f3(x) = 2x − 8 x ≥ 6
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For this function we have:

f.α = {1, 0, 2}
f.β = {1, 4,−8}
f.H = {1, [1 ; −1] ,−1}
f.K = {3, [6 ; −3] ,−6}

Sometimes it can happen that a single term is defined in more than one polyhedron.
This consideration lead us to study the generic case, in which N is the number
of different terms, and M is the number of polyhedra that define the polyhedral
partition {Xi}. Of course, we always have M ≥ N , with M = N only if the number of
terms equals the number of polyhedral regions. We can choose between two different
strategies for defining the PWA function:

1. We can use the previous notation, and so we have:

f.α = {αT
1 , . . . , αT

M}
f.β = {β1, . . . , βM}
f.H = {H1, . . . ,HM}
f.K = {K1, . . . ,KM}

(2.19)

We can see that all fields of this structure are cell arrays containing matrices.

In this case, if N < M , there surely are some index sets L1, . . . , Lj ⊆ {1, . . . ,M}
with more than one index in them, for which αk = αl and βk = βl for every
pair of indices k, l ∈ Lm, for m = 1, . . . , j.

2. Otherwise, we can use a new notation:

f.α = {αT
1 , . . . , αT

N}
f.β = {β1, . . . , βN}

f.H =
{
{H11, . . . ,H1t1}, . . . , {HN1, . . . ,HNtN }

}

f.K =
{
{K11, . . . ,K1t1}, . . . , {KN1, . . . ,KNtN }

}
(2.20)

Here, all fields are cell arrays whose the elements are cell arrays containing
matrices.

Therefore, every dynamic i is defined over ti different polyhedra. In this case,
f(x) = αT

i x + βi if Hijx ≤ Kij , for j = 1, . . . , ti.

For our purposes, it is better to use notation (2.20) in all cases (also when N = M and
therefore ti = 1 for each i ∈ {1, . . . , N}). In fact, as we will see in the continuation
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of the thesis, this representation is more suitable, especially for the conversion from
a continuous PWA function into the equivalent MMPS one. Anyway, it is possible
to use both notations, or also a mix between the two notations.

Example 2.6. Let us consider the following PWA function:

f(x) =

⎧⎨
⎩

f1(x) = 0 −5 ≤ x ≤ −2 or 2 ≤ x ≤ 5
f2(x) = x + 2 −2 ≤ x ≤ 0
f3(x) = −x + 2 0 ≤ x ≤ 2

If we use the MATLAB notation (2.20), we have the following representation for f :

f.α = {0, 1,−1}
f.β = {0, 2, 2}
f.H = {{[1 ; −1] , [1 ; −1]}, {[1 ; −1]}, {[1 ; −1]}}
f.K = {{[−2 ; 5] , [5 ; −2]}, {[0 ; 2]}, {[2 ; 0]}}

2.4.2 Implementation of MMPS functions in canonical form

We have already seen by Theorem 2.2 that every MMPS function can be represented
by one of its canonical forms, the conjunctive or the disjunctive one. For our aims,
we need to represent by MATLAB MMPS functions in canonical form only 1.

Let f : X −→ R be an MMPS function in the form

min
j=1,...,l

max
i∈Ij

(αT
i x + βi)

where X ⊂ Rn. We can use for it the following MATLAB representation

f.α = {αT
1 , . . . , αT

N}
f.β = {β1, . . . , βN}
f.terms = {[I11 . . . I1m1

], . . . , [Il1 . . . Ilml
]}

f.form = ‘conj’

f.A = A

f.b = b

(2.21)

1Actually, it is not always a strictly canonical form, i.e., we use the form

f(x) = max(f2(x),min(f1(x), f3(x)))

instead of

f(x) = max(min(f2(x), f2(x)),min(f1(x), f3(x)))
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where the fields α and β have the same meaning as in PWA representation, and
x ∈ X if Ax ≤ b. The terms A and b are not necessary since if they are absent, a
domain is defined by default (see Section 4.1.1). If we look at the field terms, we
have that Ij1, . . . , Ijmj

for j = 1, . . . , l are the indices in Ij . The string contained in
the field form is ‘conj’ if the function is in conjunctive form, while is ‘disj’ if it is in
the disjunctive one.

Example 2.7. Let us consider the following MMPS function

f(x) = max(min(f1(x), f2(x)),min(f1(x), f3(x))) ∀x ∈ X

in which

f1(x) = x2 + 1

f2(x) = x1

f3(x) = −x1 + 4

and X := {x ∈ R2 : −20 ≤ x1 ≤ 20, −20 ≤ x1 ≤ 20 }. In MATLAB we have the
following representation:

f.α = {[0 1], [1 0], [−1 0]}
f.β = {1, 0, 4}
f.terms = {[1 2], [1 3]}
f.form = ‘disj’

f.A = [1 0;−1 0; 0 1; 0 − 1]

f.b = [20; 20; 20; 20]

2.5 Summary

In this chapter we have at first described in detail PWA functions, for which we
have especially focused on the continuous ones, and MMPS functions, with a special
consideration for its canonical forms. Next, we have shown the equivalences between
continuous PWA and MMPS functions. At the end of the chapter we have seen how
we can describe PWA and MMPS functions in canonical form in MATLAB.
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Chapter 3

Minimal realizations of PWA

and MMPS functions

When we use PWA and MMPS functions, it is suitable to have a computational
complexity as small as possible. In order to do it, we need to have both kinds of
functions in their minimal representation. In this chapter we will describe these
representations for the two kinds of functions.

3.1 Minimal representation of PWA functions and merg-

ing of polyhedra

Let us consider a PWA function f : X −→ R as defined in Definition 2.3: so there
exists a polyhedral partition {Xi}i∈I of X such that f is affine on each Xi, i.e.
f(x) = αT

i x + βi for all x ∈ Xi and i ∈ I. As already said in Section 2.4.1, it could
happen that an affine term is defined in more than one polyhedron: this is the reason
why it is better to use for PWA functions a new definition different from Definition
2.3.

Definition 3.1. A function f : X ′ → R, where X ′ ⊆ Rn is a polyhedron, is PWA if
there exists a polyhedral partition {X ′

ij}i∈{1,...,M},j∈{1,...,mi} of X ′ such that f(x) =
αT

i x + βi on each X ′
ij for every i ∈ {1, . . . ,M} and j ∈ {1, . . . ,mi}, where mi is

the number of polyhedra in which the affine term αT
i x + βi is defined and M is the

number of affine terms. All the affine terms αT
i x + βi are different.

We therefore have some sets of polyhedra, that we can denote as X ′
1, . . . ,X ′

M where
for every i ∈ {1, . . . ,M} we have that X ′

i = {X ′
i1, . . . ,X ′

imi
} and f(x) = αT

i x + βi on
each polyhedra in X ′

i .

19
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xx

g(x) gMIN (x)

X̃ ′
11 X̃ ′

12 X̃ ′
21 X̃ ′

31 X̃ ′
13 X̃ ′

14 X ′
11 X ′

21 X ′
31 X ′

12

Figure 3.1: The PWA function g(x) in a non minimal representation (on the left)
and in a minimal one gMIN (x) (on the right).

Now we are in the position to define the minimal realization of a PWA function:

Definition 3.2. A minimal representation of a PWA function is a representation in
which each set of polyhedra X ′

i contains the minimal number of polyhedra.

So, when some or all the polyhedral regions in which the same affine term is defined
form a convex union, they have to be merged in order to compact the representation.

Example 3.1. Let us consider the function

g(x) =

⎧⎨
⎩

1 x ∈ {X̃ ′
11, X̃ ′

12, X̃ ′
13, X̃ ′

14}
x + 4 x ∈ X̃ ′

21

−x + 4 x ∈ X̃ ′
31

(3.1)

where g : X ′ −→ R and {X̃ ′
ij} is a polyhedral partition of X ′. This function is shown

in Figure 3.1 on the left, and, as we can see by the graph, is not in its minimal
representation. This one is given by the function

gMIN (x) =

⎧⎨
⎩

1 x ∈ {X ′
11,X ′

12}
x + 4 x ∈ X ′

21

−x + 4 x ∈ X ′
31

(3.2)

where gMIN : X ′ −→ R and in which {X ′
ij} is a new polyhedral partition of X ′. We

can note that X ′
11 = X̃ ′

11 ∪ X̃ ′
12 and X ′

12 = X̃ ′
13 ∪ X̃ ′

14, as is also shown in Figure 3.1
on the right. We can also see that X ′

11 and X ′
12 cannot be merged because they do

not form a convex union.

It frequently happens that there is not only one way for merging the polyhedra in
which an affine component fi is defined. Moreover, if the number of polyhedra that
should be merged is large, the number of possible combinations in which they can
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be merged becomes huge. A method for obtaining the minimal representation of a
PWA function, is given by the algorithm of optimal merging given in [9], that is a
quite efficient algorithm.

3.2 Minimal realizations for canonical forms of MMPS

functions

Let us consider an MMPS function in one of its canonical forms: we often have that
these canonical forms are not in their minimal representation.

As we already know from Definition 2.8, a generic MMPS function f in its conjunctive
form can be represented as

f(x) = min
j∈1,...,l

max
i∈Ij

(aT
i x + bi)

where I1, . . . , Il ⊆ {1, . . . , N} are index sets and there are N possible components in
the form aT

i x + bi.

Definition 3.3. The function f is in its minimal realization if there does not exist
a function

f1(x) = min
j∈1,...,l′

max
i∈I′j

(aT
i x + bi)

with l′ < l, such that f(x) ≡ f1(x), and next, if we cannot remove any entry in some
of the index sets Ij without modifying the meaning of the function.

We therefore have two kinds of reduction:

1. The first one is the reduction of max terms. Let us consider two different indices
l1, l2 ∈ {1, . . . , l}: we can remove, e.g., the index l1, if

max
i∈Il1

(aT
i x + bi) ≥ max

i∈Il2

(aT
i x + bi)

2. Once the first reduction has been applied, we have l′ max terms, with l′ ≤ l.
Let us now consider an index k ∈ {1, . . . , l′}: we can replace the index set Ik

with another index set I ′k with a smaller cardinality if

max
i∈Ik

(aT
i x + bi) ≥ max

i∈I′k
(aT

i x + bi)

The two kinds of reductions shown above can also be done in other cases.

Definition 3.3 is also valid, with proper modifications, for MMPS functions in dis-
junctive form, of course.
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Example 3.2. Let us consider the scalar MMPS function

g(x) = min
j∈1,...,l

max
i∈Ij

(aT
i x + bi)

= min(max(2x + 1, 0, 4),max(x + 2,−0.5x + 2),max(x + 8,−x + 8))

We can note that l = 3. g(x) is not in its minimal form: in fact we can equivalent
write it as

g1(x) = min
j∈1,...,l′

max
i∈I′j

(aT
i x + bi)

= min(max(2x + 1, 0, 4),max(x + 2,−0.5x + 2))

where l′ = 2 and therefore l′ < l. So we have g1(x) ≡ g(x). g1(x) is not the minimal
form of g(x) yet. In fact we can equivalent write g1(x) as

g2(x) = min(max(2x + 1, 4),max(x + 2,−0.5x + 2))

We have removed an entry in I ′1, but we still have g2(x) ≡ g1(x) ≡ g(x).

At the moment, there does not exist a general efficient algorithm for generating the
minimal realization of an MMPS function in canonical form yet [6].

3.3 Summary

In this chapter we have described the minimal realizations for PWA and canonical
forms of MMPS functions. These realizations are very important for having a smaller
computational complexity in our tasks. We have also seen that there exists an efficient
algorithm for obtaining the minimal realization of a PWA function, whereas there
does not exist an algorithm for doing it in the case of MMPS functions in canonical
form.



Chapter 4

From continuous PWA to

MMPS functions

We know from Theorem 2.3 that every continuous PWA function can be transformed
in an equivalent MMPS function, where the latter is in one of its canonical forms. In
this chapter we show two strategies for doing it: the Gorokhovik-Zorko strategy [10]
and the Ovchinnikov strategy [14]. In both cases we illustrate them with reference
to the MATLAB codes written for implementing these methods. All the routines for
the conversions can be launched by the code pwa2mmps and all the codes are given
in Appendix A. We only show the conversion into the disjunctive form, since because
of the duality between the canonical forms, we can easily obtain the conversion into
the conjunctive form through a few modifications of the strategies introduced here.

4.1 The Gorokhovik-Zorko strategy

4.1.1 Strategy

In this section we show the Gorokhovik-Zorko strategy, that is based on paper [10].

At first, we need to be sure that the PWA function in input to the code has some
characteristics:

• It must respect either the notation (2.19) or the notation (2.20) (it is also
possible a mix between the two notations);

• It must be continuous and PWA.

23
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For verifying it, we have created the MATLAB code testPWA, that verifies whether
the properties above have been respected and returns an error message otherwise.
Moreover, this code checks if some of the affine terms in the PWA function given as
input are equal (e.g., as in the MATLAB notation (2.19)) and returns as output the
same PWA function in the notation (2.20), and so all the affine terms will be different.
The code also performs the merging of polyhedral regions when it is necessary, by
means of an algorithm of greedy (non-optimal) merging given in [13], that is much
faster of the algorithm of optimal merging given in [9].

We can now illustrate the Gorokhovik-Zorko strategy, that has been implemented by
the MATLAB code pwa2mmpsDisjGor.

At first, of course, the subroutine testPWA above described has to be executed.
Next, we can proceed with the veritable strategy.

Let us consider a PWA function f : X ′ → R as described in Definition 3.1, but with
X ′ ⊂ Rn, where X ′ is a closed polyhedron. So there exists a polyhedral partition
{X ′

ij}i∈{1,...,M},j∈{1,...,mi} of X ′ such that f(x) = αT
i x + βi on each X ′

ij for every
i ∈ {1, . . . ,M} and j = 1, . . . ,mi, where mi is the number of polyhedra in which the
affine term αT

i x + βi is defined and M is the number of affine terms. This strategy
allows us to convert this PWA function into the equivalent MMPS function that we
can write, e.g., in its disjunctive form:

y = max
j=1,...,l

min
i∈Ij

fi (4.1)

where fi = αT
i x+βi and I1, . . . , Il ⊆ {1, . . . ,M}. But how can we find the index sets

Ij, for j = 1, . . . , l ? Let us consider the following proposition:

Proposition 4.1. We can say that Ij ⊆ {1, . . . ,M} can be an index set for the
MMPS function y in (4.1), and so Ij ∈ {I1, . . . , Il} if and only if

min
i∈Ij

fi ≤ f (4.2a)

or equivalently

hyp(min
i∈Ij

fi) ⊆ hyp f (4.2b)

We now give a proof of Proposition 4.1

Proof 4.1. We know from Theorem 2.3 that there surely exists an MMPS function
y = maxj=1,...,l mini∈Ij fi such that y = f . Let us now consider an index set Ij1 ⊆
{1, . . . ,M} such that mini∈Ij1

fi ≤ f . We can note that j1 can belong to {1, . . . , l}
without modifying the meaning of the function. Then, j1 can be included in {1, . . . , l}.
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x

f

f1

f2

f3

Figure 4.1: hyp(min(f1, f2, f3))

Suppose now that there exists an index set Ij2 ⊆ {1, . . . ,M} with j2 ∈ {1, . . . , l},
such that mini∈Ij2

fi � f , and so mini∈Ij2
fi > f for some x ∈ X ′. It is clear that

this is not possible and so j2 cannot be included in {1, . . . , l}, because in this case we
should have y > f in the points of X ′ in which mini∈Ij fi > f .

With MATLAB we can easily check if the condition (4.2b) is satisfied or not. Since
every min term is a concave function [15], the code can compute the hypograph of
each min term as the intersection of the hypographs of all its arguments, as shown
in the example of Figure 4.1. Therefore the hypograph of the PWA function can be
computed as the union of the polyhedra Hi, for i = 1, . . . ,M , where we define Hi as
follows:

Hi = hyp(fi) ∩ ((∪j=1,...,miX ′
ij) × R) (4.3a)

and so

hyp f = ∪i=1,...,MHi (4.3b)

An example of the method given by (4.3) is shown in Figure 4.2.

We are now able to find all min terms that satisfy the condition (4.2). Unfortunately,
finding all terms that satisfy the condition (4.2b) is very inefficient. For showing this,
let us first introduce the following definition:

Definition 4.1. The power set of a set R is the set of all its subsets, and it is denoted
as P(R).
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Figure 4.2: Computation of hyp f as given in (4.3)

Example 4.1. The power set of the set R = {1, 2, 3} is given by

P(R) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The code must verify the condition (4.2b) for each entry of the power set of the set
I = {1, . . . ,M} (except for the empty set of course). Let us try to better explain this
with an algorithm:

Algorithm 4.1.

1. Let I = {1, . . . ,M} and S a set defined as S = P(I) − ∅;

2. for each set Ij ∈ S do;

3. if hyp(mini∈Ij fi) � hyp f , then remove Ij from S;

4. endfor;

5. let S′ = S; return S′.

Now, if we consider the set S′ returned by Algorithm 4.1 we have that

y = max
Ij∈S′ min

i∈Ij

fi (4.4)

The code becomes very inefficient when |I| is too high, where |I| is the cardinality of
the set I: in fact, for a generic set J with |J | = N , the cardinality of its power set
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is |P(J)| = 2N . So, the Algorithm 4.1 must verify the condition (4.2b) for 2N − 1
times. It is evident that if |I| is quite high, the execution of the code could require a
lot of time.

Moreover, the MMPS function y obtained as illustrated in Proposition 4.2 is not
in the minimal form (see Definition 3.3), but on the contrary there are all possi-
ble min terms. In Section 4.1.2 we will illustrate the remaining part of the code
pwa2mmpsDisjGor, in which a method has been implemented for obtaining a re-
duced form for the function y.

4.1.2 Reduction of the obtained MMPS function

As seen in Section 3.2, it is better to find either the minimal form of an MMPS
function or at least a reduced form. Now we are going to see a way for obtaining a
reduced realization of (4.4).

Let us consider two index sets Jk1 , Jk2 ∈ S′. We can surely remove the index Jk1

from S′ if

min
i∈Jk1

fi ≤ min
i∈Jk2

fi (4.5a)

or equivalently

hyp(min
i∈Jk1

fi) ⊆ hyp(min
i∈Jk2

fi) (4.5b)

Example 4.2. Let f be the function in Figure 4.3, where hyp(min(f2, f3))
⊆ hyp(min(f1, f2)): therefore, min(f2, f3) is a redundant term and can be removed.

So, in order to discover and remove some redundant min terms for y, the code makes
use of the following algorithm:

Algorithm 4.2.

1. Let S′ be the collection of index sets returned by the Algorithm 4.1, ordered
on the basis of an increasing number of entries;

2. for each pair Jk, Jm ∈ S′, Jk �= Jm do;

3. if hyp(mini∈Jk
fi) ⊆ hyp(mini∈Jm fi), then remove Jk from S′;

4. endfor;

5. let S′′ = S′; return S′′.
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Figure 4.3: hyp(min(f2, f3)) ⊆ hyp(min(f1, f2))

Let us now illustrate the Algorithm 4.2: if we look at the collection of index sets S′′,
we can note that there does not exist a pair of index sets Jm1 , Jm2 ∈ S′′ such that

min
i∈Jm1

fi ≤ min
i∈Jm2

fi

Moreover, let us consider the collection of index sets in input S′. Let us also denote
as K1, . . . ,Kr all subcollections of index sets included in S′ such that, for each one
of these subcollections and for all index sets Jl1 , . . . , Jlnl

∈ Kl, with l = 1, . . . , r, we
have:

min
i∈Jl1

fi = min
i∈Jl2

fi = . . . = min
i∈Jlnl

fi

Because of the order of the sets in the collection S′, we can note that for each
subcollection Kl, only the index set with the smallest number of elements can be
kept (or one of the index sets if there are more than one of them). Therefore, we can
now equivalently represent the function y in the reduced form

ỹ = max
Ij∈S′′ min

i∈Ij

fi (4.6)

However, by using the Algorithm 4.2, we can remove lots of redundant min terms, but
not all. Let f be, e.g., the function in Figure 4.4: we can note that hyp(min(f5, f10)) ⊆
hyp(f), but there does not exist an index set Ip ∈ S′′, with Ip �= {5, 10}, such that
hyp(min(f5, f10)) ⊆ hyp(mini∈Ip(fi)), so the term min(f5, f10) cannot be removed
through the Algorithm 4.2.

If we want to remove this kind of terms once the Algorithm 4.2 has already been
applied, we can use the following algorithm:
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Figure 4.4: hyp(min(f5, f10)) ⊆ hyp f , but we cannot remove the term min(f5, f10)
from ỹ through the strategy of Algorithm 4.2

Algorithm 4.3.

1. Let S′′ be the collection of index sets returned by the Algorithm 4.2, ordered
on the basis of a decreasing number of entries;

2. for each Ik ∈ S′′ do

3. if hyp(mini∈Ik′ fi) ⊆ hyp(maxIk∈S′′,Ik �=Ik′ mini∈Ik
fi), then remove Ik′ from S′′;

4. endfor;

5. let S′′′ = S′′; return S′′′.

By means of Algorithm 4.3 above, the code checks for each index Ik ∈ S′′ if

min
i∈Ik′

fi ≤ max
Ik∈S′′
Ik �=Ik′

min
i∈Ik

fi (4.7)

In this case the index set Ik′ is removed from S′′.

Moreover, let us consider two index sets S1, S2 ∈ S′′ such that

max
Ik∈S′′−S1

min
i∈Ik

fi = f (4.8a)

max
Ik∈S′′−S2

min
i∈Ik

fi = f (4.8b)

max
Ik∈S′′−{S1,S2}

min
i∈Ik

fi ≤ f (4.8c)
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where |S1| > |S2|. In this case we can equivalently remove from S′′ either the index
set S1 or S2, but not both two. In order to obtain a MMPS function as reduced as
possible, we have an order of entries in S′′ as specified in the Step 1 of the Algorithm
4.3: because of this, the Algorithm 4.3 removes the index set S1, that is the one with
a bigger cardinality.

Unfortunately, we cannot say that the MMPS function

˜̃y = max
Ij∈S′′′ min

i∈Ij

fi (4.9)

is in the minimal form yet. For doing this, we have to prove it, but we are not able
yet.

4.1.3 Example

Let us consider the following continuous PWA function f : X −→ R:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 3 −20 ≤ x ≤ −7 or − 3 ≤ x ≤ −2 or

2 ≤ x ≤ 3 or 7 ≤ x ≤ 20
f2(x) = 3x + 24 −7 ≤ x ≤ −6
f3(x) = −x −6 ≤ x ≤ −3
f4(x) = −3x − 3 −2 ≤ x ≤ −1
f5(x) = 4x + 4 −1 ≤ x ≤ 0
f6(x) = −4x + 4 0 ≤ x ≤ 1
f7(x) = 3x − 3 1 ≤ x ≤ 2
f8(x) = x 3 ≤ x ≤ 6
f9(x) = −3x − 24 6 ≤ x ≤ 7

(4.10)

As we can see from the definition of the function, we have X =: {x ∈ R : −20 ≤ x ≤
20}.

We want to convert it into the equivalent MMPS function in disjunctive form, by
means of the Algorithms 4.1, 4.2 and 4.3.

At first, by using the Algorithm 4.1 we obtain an equivalent MMPS function y1 :
X −→ R with 432 min terms.

If we apply the Algorithm 4.2 to the function y1 we obtain the following function y2:

y2(x) = max(min(f1, f4),min(f1, f7),min(f3, f5),

min(f3, f8),min(f5, f6),min(f6, f8),min(f2, f3, f4),

min(f7, f8, f9)) ∀x ∈ X
(4.11)

The function y2 is not in the minimal form yet.
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By applying the Algorithm 4.3 to the function y2, we obtain the following function:

y(x) = max(min(f1, f4),min(f1, f7),min(f5, f6),min(f2, f3, f4),

min(f7, f8, f9)) ∀x ∈ X
(4.12)

This function y is in the minimal form.

This example is given in the file PWA example.

4.2 The Ovchinnikov strategy

4.2.1 Strategy

Another strategy for the conversion of a continuous PWA function into the equivalent
MMPS one is the Ovchinnikov strategy that is based on his paper [14]. In order to
implement this strategy we have created the code pwa2mmpsDisjOvc.

In this section, for a better comprehension, we proceed in the same way: at first we
illustrate the strategy as in [14], and next we give the algorithm used in the MATLAB
code pwa2mmpsDisjOvc.

Let f : X ′ −→ R be the continuous PWA function that we want to convert into the
equivalent MMPS function. We can define f as in Definition 3.1, but with X ′ ⊂ Rn,
where X ′ is a closed polyhedron. So there are M affine components of f , that we
denote as fi for i = 1, . . . ,M . All the components fi are different.

Let us consider now all the hyperplanes that are nonempty solution sets of the equa-
tions in the form fi = fj, for i < j and have nonempty intersections with the interior
of X ′. These hyperplanes form an hyperplane arrangement, that is, a finite set of
hyperplanes in an n dimensional space: therefore, every hyperplane is n − 1 dimen-
sional. We can define this hyperplane arrangement as H. The subdivision of X ′ by
the hyperplanes in H generates a polyhedral partition in X ′: we denote the set of
regions of this polyhedral partition as T .

Before to continue, some definitions have to be introduced:

Definition 4.2. A facet is a n − 1 dimensional face of a polyhedron in Rn.

Definition 4.3. Two polyhedral regions are adjacent if they have a facet in common.

Let us choose now all the pairs of affine component fp, fq of f such that the following
conditions are satisfied:
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Figure 4.5: A continuous PWA function f and its region sets T and T ′.

1. There is a pair of adjacent regions P,Q ∈ T such that fp = f on P and fq = f

on Q.

2. f = max(fp, fq) on P ∪Q

We now consider the collection of the hyperplanes that are nonempty solution sets
of the equations in the form fp = fq, for each pair fp, fq that satisfies the previ-
ous conditions, and we denote as H′ the hyperplane arrangement given by them.
We can easily see that H′ ⊆ H. Therefore let us denote as T ′ the set of re-
gions obtained through the subdivision of X ′ by the hyperplanes in H′. The set
of regions T ′ generates another polyhedral partition on X ′. We denote the re-
gions of T ′ as T ′

1 , . . . ,T ′
t , and for each j = 1, . . . , t we define the index set Sj as

Sj = {i ∈ {1, . . . ,M} : fi(x) ≥ f(x),∀x ∈ T ′
j }.

We can then represent the function f by the following equivalent MMPS function y:

y = max
j=1,...,t

min
i∈Sj

fi (4.13)

Unfortunately, the function (4.13) obtained by this strategy is not always in the
minimal form.

Example 4.3. In Figure 4.5 a continuous PWA function f is shown, together
with the region sets T and T ′ computed as previous described. For this func-
tion we have S1 = {1, 2} and S2 = {1, 3}, so the equivalent MMPS function is
y = max(min(f1, f2),min(f1, f3)). In this case the function y obtained by the Ovchin-
nikov strategy is in the minimal form, but this is not true for every function.
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But how can we implement this strategy in a MATLAB code? At first, as for the code
pwa2mmpsDisjGor described in Section 4.1, the subroutine testPWA already
seen there has to be executed, for the same reasons.

Next, we can find the region set T ′ by the following algorithm:

Algorithm 4.4.

1. Let X ′ be the domain of the function f ;

2. for each pair of adjacent polyhedral regions Xik,Xjl ∈ X ′, with i < j, do;

3. if fi ≥ fj on Xik and fi ≤ fj on Xjl, insert the hyperplane that splits the two
regions in H′;

4. endfor;

5. let T ′ the set of regions given by the intersection of X ′ with the regions of the
hyperplane arrangement H′; return T ′; stop;

Let us now explain Algorithm 4.4 in more detail. At first, we can see that for
each pair of polyhedral regions Xik,Xjl that satisfies the condition given in Step 2,
the hyperplane that splits these two regions is the set of solutions of the equation
fi = fj. So it can be put in H. Next, if also the condition in Step 3 is satisfied,
we have f = max(fi, fj) on Xik ∪ Xjl, and so, since the components are affine, there
surely exists at least a pair of adjacent regions P,Q ∈ T , with P ⊆ Xik and Q ⊆ Xjl

such that f = max(fi, fj) on P ∪ Q. The hyperplane that splits these two regions
can therefore be put in H′. By this method we can find all the possible hyperplanes
that have to be inserted in H′. We can then find all the regions T ′

1 , . . . ,T ′
t ∈ T ′.

Now, for each region T ′
j ∈ T ′, we can check for the affine components fi such that

fi ≥ f on T ′
j , with j = 1, . . . , t. In order to do it we can use the following algorithm:

Algorithm 4.5.

1. Let T ′ be the region set returned by Algorithm 4.4;

2. for each region T ′
j ∈ T ′, with j = 1, . . . , t and for each affine component fi of

f , with i = 1, . . . ,M , do;

3. if fi ≥ f on T ′
j , then insert the index i in the index set Sj;

4. endfor;

5. return the index sets Sj for j = 1, . . . , t;
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Now, we can finally write the PWA continuous function f as

max
j=1,...,t

min
i∈Sj

fi (4.14)

that is as in (4.13).

4.2.2 Example

Let us consider the continuous PWA function f : X −→ R given in (4.10):

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 3 −20 ≤ x ≤ −7 or − 3 ≤ x ≤ −2 or

2 ≤ x ≤ 3 or 7 ≤ x ≤ 20
f2(x) = 3x + 24 −7 ≤ x ≤ −6
f3(x) = −x −6 ≤ x ≤ −3
f4(x) = −3x − 3 −2 ≤ x ≤ −1
f5(x) = 4x + 4 −1 ≤ x ≤ 0
f6(x) = −4x + 4 0 ≤ x ≤ 1
f7(x) = 3x − 3 1 ≤ x ≤ 2
f8(x) = x 3 ≤ x ≤ 6
f9(x) = −3x − 24 6 ≤ x ≤ 7

(4.15)

where X := {x ∈ R : −20 ≤ x ≤ 20}.

By converting f into the equivalent MMPS function in disjunctive form, by means
of the Algorithms 4.4, and 4.5, we obtain the following MMPS function:

g(x) = max(min(f1, f3, f4, f6, f9),min(f1, f2, f4, f6, f9),min(f2, f5, f6, f9),

min(f1, f2, f5, f7, f9),min(f1, f2, f5, f7, f8),min(f2, f5, f7, f8, f9),

min(f2, f3, f4, f6, f9)) ∀x ∈ X
(4.16)

It is clear that the the function g is not in minimal form.

This example is given in the file PWA example.

4.3 Summary

Two strategies for the conversion of a continuous PWA function into the equivalent
MMPS one are discussed in this chapter: the Gorokhovik-Zorko strategy and the
Ovchinnikov one.

We have also examined how to obtain a reduced realization of the MMPS function
obtained by the Gorokhovik strategy.
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Moreover, some algorithms for implementing each one of these methods by MATLAB
are given.
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Chapter 5

From MMPS to continuous

PWA functions

We have shown in Chapter 4 two strategies for the conversion of a continuous PWA
function into an equivalent MMPS one given in canonical form. In this chapter, we
introduce the opposite strategy. In fact we know from Theorem 2.4 that every MMPS
function can be converted into an equivalent continuous PWA one. In this thesis we
only convert MMPS functions given in canonical form. We give here only the strategy
for the conversion from a function in disjunctive form since the conversion from a
function in conjunctive form is quite similar, with proper modifications. The strategy
for obtaining the continuous PWA function from an MMPS function in disjunctive
form has been implemented in the code mmps2pwaDisj, whereas the strategy for
obtaining it from an MMPS function in conjunctive form has been implemented in
the code mmps2pwaConj. Both routines can be launched by the code mmps2pwa.
All these codes are given in Appendix A.

5.1 Strategy

Let us consider an MMPS function y : X −→ R, with X ⊆ Rn, given in its disjunctive
canonical form

y = max
j=1,...,l

min
i∈Ij

fi (5.1)

where fi = αT
i x+βi for i = 1, . . . , P and Ij ⊆ {1, . . . , P} for j = 1, . . . , l. This MMPS

function can be either in the minimal form or in a non minimal one. We know from
Theorem 2.4 that there surely exists an equivalent continuous PWA function f in
which (5.1) can be transformed. We have therefore developed the MATLAB code
mmps2pwaDisj, in which a strategy for doing this is implemented.

37
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Figure 5.1: Computation of hyp y as given in (5.2)

At the beginning of the code, we have to be sure that the MMPS function in input
respects the notation (2.21). The MATLAB code testMMPS verifies this, returning
an error message if some of the fields do not respect the notation (2.21). Moreover,
the domain is added by default if the fields A and b are not present.

Now we can start describing the strategy. First of all we have to compute the hypo-
graph of each min term of y. We already know (see Section 4.1) that the hypograph
of each min term can be computed as the intersection of the hypographs of its argu-
ments. Next we can compute the hypograph of y as the union of the hypographs of
all min terms. So we have

hyp(y) = ∪j=1,...,l ∩i∈Ij hyp(fi) (5.2)

as we can see in Figure 5.1.

Therefore, for each affine component fi for i = 1, . . . , P we have to compute:

1. The set of polyhedra given by the set difference between the hypograph of y

and the hypograph of fi. We can denote it as Fi and so we have

Fi = hyp(y) \ hyp(fi) = {x ∈ X × R : x ∈ hyp(y), x /∈ hyp(fi)} (5.3)

2. The set of polyhedra given by the set difference between the hypograph of fi

and the hypograph of y. We can denote it as Ei and so we have

Ei = hyp(fi) \ hyp(y) = {x ∈ X × R : x ∈ hyp(fi), x /∈ hyp(y)} (5.4)
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3. The polyhedral set given by the projection of the set Fi ∪ Ei on X . We can
denote it as γi.

4. The set difference between X and γi, that we can denote as Di. We have

Di = X \ γi = {x ∈ Rn : x ∈ X , x /∈ γi} (5.5)

Until now we have obtained some polyhedral sets Di, for i = 1, . . . , P . Every set Di is
defined as Di = ∪j=1,...,di

Dij , since there are di polyhedra in Di. Let us now remove
from every set Di all polyhedra Dij such that intDij = ∅. We therefore have

Xi := {Dij ∈ Di : intDij �= ∅} (5.6)

So, we have obtained some polyhedral sets Xi, for i = 1, . . . , P , such that Xi =
∪j=1,...,xiXij, where xi ≤ di is the number of polyhedra in Xi. We are now in the
position to give the following proposition:

Proposition 5.1. Every polyhedral set Xi, for i = 1, . . . , P , is the set of polyhedral
regions in which every affine term fi is defined in the continuous PWA function f

equivalent to (5.1).

Proof 5.1. Let us consider the polyhedral set Fi: we can note that its projection in
X is not empty in the regions of X in which hyp y ⊃ hyp fi and therefore y > fi. If
we indeed consider the set Ei, its projection in X is not empty in the regions of X
in which hyp y ⊂ hyp fi and therefore y < fi. Then, for these two sets of polyhedral
regions of X , whose union has been defined as γi, we have either y > fi or y < fi,
and so y �= fi. Therefore fi is not the affine component defined on the points of the
polyhedral set γi and for obtaining the polyhedral regions in which fi is defined we
can start removing the set γi from X , and we can do this computing Di = X \γi. For
all the points in Di, we have hyp y = hyp fi and therefore y = fi. So the points in
Di are the candidates for belonging to the polyhedral regions in which fi is defined.
Let us now consider all polyhedra Dij ∈ Di such that intDij = ∅. These polyhedra
cannot belong to the polyhedral set Xi in which fi is defined because their interior is
empty and therefore they cannot be included in a polyhedral partition (see Definition
2.2) of X . However, since the function f must be continuous and PWA, for every
polyhedron Dij such that intDij = ∅, there surely exists a polyhedron Di′j′ ∈ D′

i,
with i′ �= i, such that intDi′j′ �= ∅ and Dij ⊂ Di′j′, and so there also exists an affine
component f ′

i defined on the points of Dij . This ends the proof. �

We can obtain a reduced realization of f doing the merging on the regions of Xi.

If Xi = ∅, and so xi = 0, it means that there does not exist any polyhedron Xij ∈ Xi,
and so the affine component fi is not necessary for defining the function f . This
can happen only if the MMPS function y is not in the minimal form. Indeed, no
unnecessary components can appear in an MMPS function in the minimal form.
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Figure 5.2: An example of the application of the strategy.

Example 5.1. In Figure 5.2 an example of the application of this strategy is shown.
Only the computation of X3 is illustrated in the figure. We can see that in the point
x′ ∈ D3 we have f3(x′) = y(x′). However, the point x′ is not a full dimensional
polyhedron in D3, and so it is not included in X3. It is also easy to note that x′ ∈ X1

since it is a subset of a full dimensional polyhedron in D1.

The strategy for obtaining the sets of polyhedral regions Xi in which every affine
component fi for i = 1, . . . , P is defined can be implemented in MATLAB by means
of the following algorithm:

Algorithm 5.1.

1. Let X be the domain of y;

2. for each i = 1, . . . , P do

3. let Fi = hyp(y) \ hyp(fi);

4. let Ei = hyp(fi) \ hyp(y);

5. let γi the polyhedral set given by the projection of Fi ∪ Ei on X ;

6. let Xi = X \ γi;

7. merge the polyhedra in Xi;

8. endfor;
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9. return Xi for each i = 1, . . . , P .

In the MPT toolbox [13], the polyhedra that are not fully dimensional (and so with
an empty interior) are considered as empty. Then, by Step 6 of Algorithm 5.1, we
directly obtain the polyhedral sets Xi.

5.1.1 Example

Let us consider the MMPS function y : X −→ R, as given in (4.12): so we have:

y(x) = max(min(f1, f4),min(f1, f7),min(f5, f6),min(f2, f3, f4),min(f7, f8, f9))
(5.7)

where X =: {x ∈ R : −20 ≤ x ≤ 20}, f1(x) = 3, f2(x) = 3x + 24, f3(x) = −x,
f4(x) = −3x − 3, f5(x) = 4x + 4, f6(x) = −4x + 4, f7(x) = 3x − 3, f8(x) = x and
f9(x) = −3x − 24.

If we convert this function into an equivalent continuous PWA, we exactly obtain the
function f given in (4.10) and therefore we have:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 3 −20 ≤ x ≤ −7 or − 3 ≤ x ≤ −2 or

2 ≤ x ≤ 3 or 7 ≤ x ≤ 20
f2(x) = 3x + 24 −7 ≤ x ≤ −6
f3(x) = −x −6 ≤ x ≤ −3
f4(x) = −3x − 3 −2 ≤ x ≤ −1
f5(x) = 4x + 4 −1 ≤ x ≤ 0
f6(x) = −4x + 4 0 ≤ x ≤ 1
f7(x) = 3x − 3 1 ≤ x ≤ 2
f8(x) = x 3 ≤ x ≤ 6
f9(x) = −3x − 24 6 ≤ x ≤ 7

(5.8)

This example is given in the file MMPS example.

5.2 Summary

In this chapter, we have described a strategy for the conversion between a MMPS
function into an equivalent continuous PWA one.

The algorithm for the implementation of this strategy by MATLAB is also given.
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Chapter 6

Tests and results

Now, we can finally test the codes illustrated in the previous chapters, in order to
judge the obtained results and so the strategies and the performances of the codes.

For testing this codes, we have first generated random continuous PWA and MMPS
functions given in canonical form. In every test, the generated functions is converted
twice, and in different ways. At the end, the complete equivalence between the
generated function and the functions obtained by the conversions is tested.

Therefore, we analyse the results of these tests.

6.1 Tests description

In order to analyse the performances of the codes, we have implemented three dif-
ferent tests. For implementing them, we must be able to generate random functions
(continuous PWA and MMPS) and to check whether these functions are equivalent.
In the following subsections we describe the strategies used for doing this. In the
last subsection we give the algorithms used for the implementation of the tests. All
related MATLAB codes are given in Appendix A.

6.1.1 Creation of a continuous PWA function as the solution of a
Multi-Parametric Linear Programming Problem

For the realization of two of the tests, we must be able to generate some continuous
PWA functions. This is not an easy work, since the continuity on any boundary of
the regions must be respected, and therefore, especially for dimensions higher than
1, the task is prohibitive. So, we have to find an alternative way for generating
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continuous PWA functions of any dimension easily. Let us start considering the
following problem:

min
z

V = hT z (6.1a)

s. t. Gz ≤ S + Fx (6.1b)

where x ∈ Rn is the vector of parameters, z ∈ Rm is the optimization vector, V ∈ R
is the objective function, h ∈ Rm, G ∈ Rf×m, S ∈ Rf , and F ∈ Rf×n.

Problem (6.1) is known as multi-parametric linear programming. Suppose that we
want to compute the solution of (6.1) in a convex polyhedron K such that

K := {x ∈ Rn : Ax ≤ b}

We denote as K� ⊆ K the set of parameters such that problem (6.1) has a feasible
solution and this solution is unique. For any x̄ ∈ K�, let z�(x̄) denote the optimal
value of the optimizer z for x = x̄, and therefore let z� : K� −→ Rm denote the
function expressing the dependance on x of the optimal value of the optimizer.

We are now in the position to give the following theorem:

Theorem 6.1. [8] If there exists a solution of (6.1) and this solution is unique, then
the related set of feasible parameters K� is convex and the related optimizer z�(x) is
continuous and PWA.

Then, by starting from problem (6.1) and thanks to Theorem 6.1, we have found a
method for generating continuous PWA functions.

Now, we must implement this strategy in a MATLAB code in order to generate the
continuous PWA functions that will be used for the simulations. We have done this
in the MATLAB code continuousPWAgenerator.

In this code we have made some choices. Here, we explain the most relevant ones
only. For n, a value between 1 and 3 is chosen for avoiding large computational
times. This is the same reason why we have used for f a value between 1 and 6
and for m a value between 1 and 5. In fact, when m grows also the number of
regions in K� increases [1], and therefore the complexity too. After the choice of the
other parameters (f, h,G, S, F,A and b), the function mpt mplp [13] is launched.
This code solves the multi-parametric linear programming for the chosen parameters
h,G, S, F,A, b. We know from Theorem 6.1 that the optimizer function returned as
output by the code mpt mplp must be continuous and PWA, and therefore we can
use it in the simulations, after having converted it in the notation given in (2.20). We
have also decided not to use the returned functions for which the number of different
affine terms is not included between 3 and 10, for avoiding the use of either too simple
functions or too complex ones in the tests.
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6.1.2 Creation of a random MMPS function in canonical form

For one of the tests, we need to create some MMPS function in canonical form. We
have done this in the MATLAB code MMPSgenerator.

In this case, the implementation of the strategy is much easier than the implementa-
tion of the strategy for the creation of continuous PWA functions. Suppose that we
want to generate an MMPS function y : Rn −→ R in the form

min
j=1,...,l

max
i∈Ij

(αT
i x + βi)

where αi ∈ Rn, βi ∈ R and Ij ⊆ {1, . . . , P} for j = 1, . . . , l. For doing this, we
only have to generate P different affine terms and l max terms, with the notation
given in (2.21). For avoiding to have a large complexity, we have chosen 1 ≤ n ≤ 3,
3 ≤ P ≤ 10 and 1 ≤ l ≤ 10. We have also decided not to specify the domain of the
function here, since it will be added in the code testMMPS (see Appendix A) by
default, as we know from Section 5.1. The MMPS function created is not always in
the minimal form and moreover, most of the affine components could be useless for
the definition of the function, since they might be defined in no regions.

6.1.3 Checking for equivalence between two continuous PWA func-
tions

In two tests we need to know whether or not two continuous PWA functions are
equivalent. This is done in the MATLAB code isequalPWA.

We now describe the strategy used for this aim. Assume that we have two continuous
PWA functions f : X −→ R and g : X −→ R, where X ⊂ Rn is a polyhedron. The
procedure used to prove that f ≡ g is the following:

• Let {Xf,ij}i∈{1,...,Nf}, j∈{1,...,dfi
} and {Xg,kl}k∈{1,...,Ng}, l∈{1,...,dgk

} the polyhedral
partitions that define f and g respectively.

• Let H be a hyperbox in Rn such that all vertices of the polyhedra in {Xf,ij}
and {Xg,kl} are contained in the interior of H.

• Determine a new polyhedral partition {Xm}m∈{1,...,N} obtained by considering
all possible full-dimensional intersections between the polyhedra H, Xf,ij and
Xg,kl for i ∈ {1, . . . , Nf}, j ∈ {1, . . . , dfi

}, k ∈ {1, . . . , Ng} and l ∈ {1, . . . , dgk
}.

• Consider now the set of all the vertices of the polyhedra in {Xm}: we denote
this set as V .
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• If f(v) = g(v) for all vertices v ∈ V , then f ≡ g.

Indeed, since every polyhedron Xm is full dimensional, it is defined by at least n + 1
distinct vertices vm,1, . . . , vm,n+1, and therefore, if f(vm,i) = g(vm,i) for i = 1, . . . , n+
1, then this means that f(x) ≡ g(x) for all x ∈ Xm since f and g are affine on Xm

and since an affine function is uniquely defined by specifying the function in distinct
n + 1 points. Moreover, if this holds for all m ∈ {1, . . . , N} we get f(x) = g(x) for
all x ∈ X .

We can now give the Algorithm used in MATLAB for implementing this strategy

Algorithm 6.1.

1. Let {Xf,ij} and {Xg,kl} the polyhedral partitions in which f and g are defined,
and R an empty set;

2. for each pair of polyhedra Pf ∈ {Xf,ij} and Pg ∈ {Xg,kl} do;

3. if M = Pf ∩ Pg ∩ H is full-dimensional, insert M in R;

4. endfor;

5. let V the set of all vertices of the polyhedra in R;

6. if for each vertex v ∈ V we have f(v) = g(v), then return true, else return
false.

6.1.4 Checking for equivalence between two MMPS functions in
canonical form

In all tests we check whether two MMPS functions given in canonical form are equiv-
alent. For doing this we have decided to compare the hypographs of the two functions
and, if they are equal, we can say that the functions are equivalent.

We have implemented this strategy in the MATLAB code isequalMMPS.

6.1.5 Checking for equivalence between a continuous PWA function
and an MMPS function in canonical form

The comparison between a continuous PWA function and an MMPS one in canonical
form is required in two tests. In the codes isequalPWA2MMPSovc and ise-
qualPWA2MMPSgor we have implemented in two different ways the strategy for
checking whether these two functions are equal.
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By the code isequalPWA2MMPSovc, first the MMPS function in the input is
converted into the equivalent continuous PWA one and it is checked whether the
latter is equal to the continuous PWA in the input. Next, the continuous PWA
function is translated into the equivalent MMPS one (by the Ovchinnikov strategy
and in the same canonical form of the MMPS function in input), and then compared
with the MMPS function in the input. If in both cases the result of the test is positive,
then we can say that the two functions in input are equivalent.

The code isequalPWA2MMPSgor is almost equal, except that the conversion
from the continuous PWA function into the equivalent MMPS one is made by the
Gorokhovik-Zorko strategy.

6.1.6 Tests

The first test has been implemented in the code MMPSsimulations by the following
algorithm:

Algorithm 6.2. First test

1. Let y be a random MMPS function;

2. Convert y into the equivalent continuous PWA function. Denote this function
as p;

3. Convert p into the equivalent MMPS one in the canonical form of y by the
Gorokhovik-Zorko strategy. Denote this function as mg;

4. Convert p into the equivalent MMPS function in the canonical form of y by the
Ovchinnikov strategy. Denote this function as mo;

5. if y ≡ mg, y ≡ mo and p ≡ mo, then return true, else return false.

The equivalence between p and mo is checked by the code
isequalPWA2MMPSgor. We can note that we indirectly check for the equivalence
between mg and mo too (in fact, in one step of the code isequalPWA2MMPSgor,
p is converted into the equivalent MMPS one by the Gorokhovik-Zorko strategy. The
obtained function is mg, and is compared with mo).

This test is shown in Figure 6.1.

The second test has been implemented in the code PWAsimulationsGor by the
following algorithm:

Algorithm 6.3. Second test
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Figure 6.1: Graphical representation of the first test

1. Let f be a random continuous PWA function;

2. Convert f into the equivalent MMPS function in conjunctive form by the
Gorokhovik-Zorko strategy. Denote this function as mc;

3. Convert f into the equivalent MMPS function in disjunctive form by the
Gorokhovik-Zorko strategy. Denote this function as md;

4. Convert mc into the equivalent continuous PWA function. Denote this function
as pc;

5. Convert md into the equivalent continuous PWA function. Denote this function
as pd;

6. if f ≡ pc, pd ≡ mc and mc ≡ md, then return true, else return false.

The equivalence pd ≡ mc is checked by the code isequalPWA2MMPSgor.

The third test has been implemented in the code PWAsimulationsOvc by the
following algorithm:

Algorithm 6.4. Third test

1. Let f be a random continuous PWA function;

2. Convert f into the equivalent MMPS function in conjunctive form by the
Ovchinnikov strategy. Denote this function as mc;

3. Convert f into the equivalent MMPS function in disjunctive form by the Ovchin-
nikov strategy. Denote this function as md;

4. Convert mc into the equivalent continuous PWA function. Denote this function
as pc;

5. Convert md into the equivalent continuous PWA function. Denote this function
as pd;
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Figure 6.2: Graphical representation of the second and third tests

6. if f ≡ pc, pd ≡ mc and mc ≡ md, then return true, else return false.

The equivalence pd ≡ mc is checked by the code isequalPWA2MMPSovc.

The second and the third tests are shown in Figure 6.2.

As regards these tests, the equivalence between pc and pd is also checked, since of the
characteristics of the codes isequalPWA2MMPSgor and isequalPWA2MMPSovc
(see Section 6.1.5).

6.2 Results

Let us now analyse the results of the tests, in order to give the main conclusions. For
each test, we have realised a table in which the main results are shown as follows: at
first, we give the number of functions created (continuous PWA or MMPS depending
on the test), the number of functions tested (i.e the functions created for which the
whole test has been done), the number of functions discarded (i.e. the functions
created but not tested because the code has not worked and has returned an error),
the simulation time and the average simulation time for every function tested. In
the following part of the table we show the results for each comparison made in the
test. Finally, in the last two parts, we give the global results of the test, and also
the global results on the basis of the dimension of the function and of the number of
different affine terms in the function. We recall that a test is succesful only if all the
comparisons in it are succesful.

We can note by the first test (see Table 6.1) that the results are not always good,
since we have the 45.12% of failures. However, in this test, we do not have any failure
checking the equivalence between y and mg. We can therefore say that something
goes wrong when we use the Ovchinnikov strategy for the conversion of a continuous
PWA function into an equivalent MMPS one. This can be easily seen looking at
the second (see Table 6.2) and at the third test (see Table 6.3). In the second test,
where we only use the Gorokhovik-Zorko strategy for the conversion of the continuous
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PWA function generated, we only have the 0.94% of failures, whereas in the third
test, where we only use the Ovchinnikov strategy, we have the 52.46% of failures.

If we analyse the results of the third test, we can see that the number of failures grows
with the dimension and the number of affine terms of f . Indeed, for the 1-dimensional
case we do not have any failure whereas for the 3-dimensional case we only have the
4.4% of successful tests. Moreover, when f has at least 8 affine terms, we have the
100% of failures. We can say that this could be due to numerical problems. In fact,
the computational complexity of the tests (and therefore the number of operations
that must be executed) grows with the dimension of f and with the number of its
affine terms. But why do we have this difference of performances between the two
strategies? Let us try to study this. The codes for the Gorokhovik-Zorko conversion
makes mainly use of the functions belonging to MPT toolbox [13]. Instead, in the
codes for the Ovchinnikov conversion, there are many operations such as additions,
multiplications, equality and inequality tests. Therefore, in the second test, since the
MPT toolbox has been developing for some years, it is very likely that the numerical
problems have already taken into account, in order to decrease their influence. On
the contrary, in the third test, the influence of numerical problems has not been
adequately studied yet.

Numerical problems could be also the main reason of the high number of discarded
functions in the third test.

Failures of tests could also be due to a programming error somewhere in the code,
since a strict debugging has not been done.

However, if we look at the simulations times, we can see that in the second test the
average simulation time for every function tested is bigger than the average time
required by the third test. So, if the reasons of the failures of tests will be reduced,
the Ovchinnikov strategy could become a valid alternative of the Gorokhovik-Zorko
one.

6.2.1 Numerical issues

We have just seen that numerical problems should be the main reason of unsuccessful
tests and discarded functions. As we can see from the codes given in Appendix A
and especially from the codes for the conversion of a PWA function into the equiv-
alent MMPS one through the Ovchinnikov strategy, there are a lot of equality and
inequality comparisons. For the implementation of these comparisons, a tolerance
has been considered. In this work, the choice of the optimal value of this tolerance
for the different comparisons has not been studied in detail: therefore, in order to
obtain better results, this issue must be studied in a thoroughly way.
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First Test
This test is illustrated in Algorithm 6.2 and in Figure 6.1.

Functions created: 244
Functions tested: 215

Functions discarded: 29
Simulation time: 8:21 hours

Average simulation time for every function tested: 123.20 s

Comparison Successful Unsuccessful Successful Unsuccessful
comparisons comparisons comparisons (%) comparisons (%)

y ≡ mo 97 118 45.12% 54.88%
y ≡ mg 215 0 100% 0%
p ≡ mo 97 118 45.12% 54.88%

Dimension Globally Globally Globally Globally
of the successful unsuccessful successful unsuccessful

function tests tests tests (%) tests (%)
1 48 0 100% 0%
2 35 45 43.75% 56.25%
3 14 73 16.09% 83.91%

Total 97 118 45.12% 54.88%
Different Globally Globally Globally Globally

affine terms successful unsuccessful successful unsuccessful
in the function tests tests tests (%) tests (%)

3 16 1 94.12% 5.88%
4 29 2 93.55% 6.45%
5 12 15 44.44% 55.56%
6 9 14 39.13% 60.87%
7 8 17 32% 68%
8 11 27 28.95% 71.05%
9 8 26 23.53% 76.47%
10 4 16 20% 80%

Total 97 118 45.12% 54.88%

Table 6.1: Results of the first test.



52 6.2. Results

Second Test
This test is illustrated in Algorithm 6.3 and in Figure 6.2.

Functions created: 752
Functions tested: 744
Functions discarded: 8

Simulation time: 27:50 hours
Average simulation time for every function tested: 134.68 s

Comparison Successful Unsuccessful Successful Unsuccessful
comparisons comparisons comparisons (%) comparisons (%)

f ≡ pc 740 4 99.46% 0.54%
pd ≡ mc 741 3 99.60% 0.4%
md ≡ mc 744 0 100% 0%

Dimension Globally Globally Globally Globally
of the successful unsuccessful successful unsuccessful

function tests tests tests (%) tests (%)
1 55 0 100% 0%
2 316 0 100% 0%
3 366 7 98.12% 1.88%

Total 737 7 99.06% 0.94%
Different Globally Globally Globally Globally

affine terms successful unsuccessful successful unsuccessful
in the function tests tests tests (%) tests (%)

3 283 1 99.65% 0.35%
4 152 0 100% 0%
5 99 1 99% 1%
6 78 0 100% 0%
7 44 1 97.78% 2.22%
8 34 0 100% 0%
9 22 1 95.65% 4.35%
10 25 3 89.29% 10.71%

Total 737 7 99.06% 0.94%

Table 6.2: Results of the second test.
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Third Test
This test is illustrated in Algorithm 6.4 and in Figure 6.2.

Functions created: 482
Functions tested: 345

Functions discarded: 137
Simulation time: 7:40 hours

Average simulation time for every function tested: 80 s

Comparison Successful Unsuccessful Successful Unsuccessful
comparisons comparisons comparisons (%) comparisons (%)

f ≡ pc 194 151 56.23% 43.77%
pd ≡ mc 165 180 47.83% 52.17%
md ≡ mc 184 161 53.33% 46.67%

Dimension Globally Globally Globally Globally
of the successful unsuccessful successful unsuccessful

function tests tests tests (%) tests (%)
1 56 0 100% 0%
2 104 94 52.53% 47.47%
3 4 87 4.4% 95.6%

Total 164 181 47.54% 52.46%
Different Globally Globally Globally Globally

affine terms successful unsuccessful successful unsuccessful
in the function tests tests tests (%) tests (%)

3 112 61 64.74% 35.26%
4 36 49 42.35% 57.65%
5 11 30 26.83% 73.17%
6 4 18 18.18% 81.82%
7 1 9 10% 90%
8 0 9 0% 100%
9 0 2 0% 100%
10 0 3 0% 100%

Total 164 181 47.54% 52.46%

Table 6.3: Results of the third test.
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Chapter 7

Conclusions and future research

In this chapter we give the most important conclusions of this thesis and some rec-
ommendations for future research.

7.1 Conclusions

At the beginning of this thesis, we have given a definition for hybrid systems and we
have defined them as a mixture of interacting time-driven and event-driven dynamics.
Next we have described some subclasses of equivalent discrete-time linear hybrid
models.

Therefore we have focused on two classes of functions: PWA functions and MMPS
functions. By means of these functions we can define PWA and MMPS systems,
which are two subclasses of the discrete-time linear hybrid models. We have also
dealt with minimal realizations of both kinds of functions: we have seen that for
PWA functions there exists a quite efficient algorithm for obtaining it, whereas this
is not true for MMPS functions.

It has already been shown by other authors that the classes of continuous PWA
functions and MMPS functions are equivalent. Therefore, we have implemented by
MATLAB two methods for the conversion from a continuous PWA function into
the equivalent MMPS: the Gorokhovik-Zorko strategy and the Ovchinnikov strategy.
Next, we have developed and implemented by MATLAB a strategy for the oppo-
site conversion, that is, from an MMPS function (given in canonical form) into the
equivalent continuous PWA function.

After the Gorokhovik-Zorko method we have also been able to obtain a reduced
realization of the MMPS function returned as output.
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At the end of the thesis, we have tested these codes, by making a comparison between
the two different strategies implemented for the conversion from a continuous PWA
function into the equivalent MMPS one. For doing it we have also used our code
for the opposite conversion and other codes for the generation of partially random
functions (of both kinds) and for checking if these functions are equivalent.

We can surely say that the results obtained by the Gorokhovik-Zorko strategy are
better than the ones obtained by the Ovchinnikov strategy. Almost the 100% of the
tests has given a positive result. The few failures of tests could be due to numerical
problems. Unfortunately this code is not so efficient, since for higher dimensions and
especially for large numbers of affine terms, the code becomes very slow. Indeed, we
have seen that the computational complexity grows exponentially with the number
of affine terms. On the contrary the conversion obtained by the implementation of
the Ovchinnikov strategy is faster, but because of numerical problems the results
obtained are not so good. Only the 47% of the tests are positive, and this percentage
drastically decreases for higher dimensions and number of affine terms. Moreover,
the codes for the conversion do not work for the 28% of the functions that have to
be tested.

We can therefore say that the goals of this thesis have been partially reached, even
if we still need to improve on the codes, for having better results and efficiency.

7.2 Future research

We have implemented some algorithms for the conversion of a continuous PWA func-
tion into the equivalent MMPS one through two different methods: the Gorokhovik-
Zorko strategy and the Ovchinnikov strategy.

The algorithm by means of which we have implemented the Gorokhovik-Zorko strat-
egy has given good results, but its efficiency should be increased, since the code
becomes too slow when the dimension and the number of affine components of the
continuous PWA function are too high.

As regards the implementation of the Ovchinnikov strategy, the related algorithm is
quite fast, but the results are not so good as we wanted. This is because the influence
of numerical problems is very high, and so the code should be improved in order to
reduce this influence, therefore increasing the performances of the code.

After the conversion of a continuous PWA function through the
Gorokhovik strategy we are also able to obtain a reduced realization of the equiva-
lent MMPS function obtained: the realization of the latter could be minimal, since
a counter-example of this has not been found. Then, it should be proven if the
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realization obtained is indeed minimal or not.

To make this more general, we can say that some efficient strategies for obtaining
a minimal realization of an MMPS function should be developed, by starting both
from an arbitrary MMPS function and from an equivalent continuous PWA function.

A strategy for the conversion of an MMPS function in canonical form into the equiv-
alent continuous PWA function has been developed. This strategy should partially
be extended, in order to convert an arbitrary MMPS function.

All this problems can be summarized into a more general one: make a MATLAB
toolbox to convert any equivalent class of discrete-time linear hybrid models into
each other in the most efficient way, in order to use, for each kind of problem, the
best technique for solving this.
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Appendix A

Matlab codes

In this appendix we give the Matlab codes used for our aims. Most of the functions
present in these codes belong to the MPT toolbox [13].

A.1 mmps2pwa

function pwa = mmps2pwa(mmps)

% pwa = mmps2pwa(mmps)
% Convert a MMPS function into the equivalent continuous PWA function
% mmps -> MMPS function that must be converted
% pwa -> continuous PWA function obtained as output

% This function calls:
% mmps2pwaConj
% mmps2pwaDisj

% This function is called by:
% PWAsimulationsGor
% PWAsimulationsOvc
% MMPSsimulations

% A. Frau
% 2/7/07

if isfield(mmps,’form’)
form = mmps.form;
if strcmp(form,’conj’)

pwa = mmps2pwaConj(mmps);
elseif strcmp(form,’disj’)
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pwa = mmps2pwaDisj(mmps);
else

error(’Not valid string for the field "form"’);
end

else
pwa = mmps2pwaDisj(mmps); % default conversion

end

A.2 mmps2pwaConj

function pwa = mmps2pwaConj(mmps)

% pwa = mmps2pwaConj(mmps)
% Convert a MMPS function given in conjunctive form into
% the equivalent continuous PWA function
% mmps -> MMPS function that must be converted
% pwa -> continuous PWA function obtained as output

% This function calls:
% testMMPS

% This function is called by:
% mmps2pwa

% A. Frau
% 1/6/07

% Last modification 6/7/07

% Test

mmpsTest = testMMPS(mmps);

alfa = mmpsTest.alfa; beta = mmpsTest.beta;
maxTerms = mmpsTest.terms;
N_affine_terms_old = mmpsTest.N_affine_terms;
dimension = mmpsTest.dimension; domain = mmpsTest.domain;

% Computation of the epigraph of the MMPS function

[H_domain,K_domain] = double(domain);
H_termEpigraph = {}; K_termEpigraph = {}; termEpigraph = polytope;
for i = 1:N_affine_terms_old

H_termEpigraph{i} = [H_domain zeros(size(H_domain,1),1); alfa{i} -1];
K_termEpigraph{i} = [K_domain; -beta{i}];
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% epigraph of each affine term
termEpigraph(i) = polytope(H_termEpigraph{i},K_termEpigraph{i});

end

maxTermArrayEpigraphs = {}; maxTermEpigraph = {}; mmpsEpigraph = [];
for i = 1:length(maxTerms)

maxTermArrayEpigraphs{i} = [];
% Let us construct a polyarray for each max term
for j = 1:length(maxTerms{i})

% set of epigraphs of the affine components of every max term
maxTermArrayEpigraphs{i} = horzcat(maxTermArrayEpigraphs{i},...

termEpigraph(maxTerms{i}(j)));
end
% epigraph of each max term
maxTermEpigraph{i} = and(maxTermArrayEpigraphs{i});
% epigraph of the MMPS function
mmpsEpigraph = horzcat(mmpsEpigraph,maxTermEpigraph{i});

end

% Computation of the regions in which every affine component is defined

P_proj1 = {}; P_proj2 = {}; Regions = {};
H = {}; K = {};
for i = 1:N_affine_terms_old

% projection of the set-difference between the epigraph of
% the affine term i and the epigraph of the MMPS function
P_proj1{i} = union(projection((mldivide(termEpigraph(i),...

mmpsEpigraph)),1:1:dimension));
% projection of the set-difference between the epigraph
% of the MMPS function and the epigraph of the affine term i
P_proj2{i} = union(projection((mldivide(mmpsEpigraph,...

termEpigraph(i))),1:1:dimension));
% computation of the set of regions in which the affine term i is
% defined
Regions{i} = merge(mldivide(domain,[P_proj1{i},P_proj2{i}]));
[H{i},K{i}] = double(Regions{i});

end

% Elimination of the useless functions, that is, of the functions such
% that their set of regions is empty

alfa_new = {}; beta_new = {}; H_new = {}; K_new = {};
count = 0;
for i = 1:length(alfa)

if ~isempty(H{i})
count = count + 1;
alfa_new{count} = alfa{i};
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beta_new{count} = beta{i};
H_new{count} = H{i};
K_new{count} = K{i};

end
end

% Output

pwa.alfa = alfa_new;
pwa.beta = beta_new;
pwa.H = H_new;
pwa.K = K_new;
pwa.dimension = dimension; % additional field
pwa.N_affine_terms = count; % additional field

A.3 mmps2pwaDisj

function pwa = mmps2pwaDisj(mmps)

% pwa = mmps2pwaDisj(mmps)
% Convert a MMPS function given in disjunctive form into
% the equivalent continuous PWA function
% mmps -> MMPS function that must be converted
% pwa -> continuous PWA function obtained as output

% This function calls:
% testMMPS

% This function is called by:
% mmps2pwa

% A. Frau
% 1/6/07

% Last modification 6/7/07

% Test

mmpsTest = testMMPS(mmps);

alfa = mmpsTest.alfa; beta = mmpsTest.beta;
minTerms = mmpsTest.terms;
N_affine_terms_old = mmpsTest.N_affine_terms;
dimension = mmpsTest.dimension; domain = mmpsTest.domain;
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% Computation of the hypograph of the MMPS function

[H_domain,K_domain] = double(domain);
H_termHypograph = {}; K_termHypograph = {}; termHypograph = polytope;
for i = 1:N_affine_terms_old

H_termHypograph{i} = [H_domain zeros(size(H_domain,1),1); -alfa{i} 1];
K_termHypograph{i} = [K_domain; beta{i}];
% hypograph of each affine term
termHypograph(i) = polytope(H_termHypograph{i},K_termHypograph{i});

end

minTermArrayHypographs = {}; minTermHypograph = {}; mmpsHypograph = [];
for i = 1:length(minTerms)

minTermArrayHypographs{i} = [];
% Let us construct a polyarray for each min term
for j = 1:length(minTerms{i})

% set of hypographs of the affine components of every min term
minTermArrayHypographs{i} = horzcat(minTermArrayHypographs{i},...

termHypograph(minTerms{i}(j)));
end
% hypograph of each min term
minTermHypograph{i} = and(minTermArrayHypographs{i});
% hypograph of the MMPS function
mmpsHypograph = horzcat(mmpsHypograph,minTermHypograph{i});

end

% Computation of the regions in which every affine component is defined

P_proj1 = {}; P_proj2 = {}; Regions = {};
H = {}; K = {};
for i = 1:N_affine_terms_old

% projection of the set-difference between the hypograph of the
% affine term i and the hypograph of the MMPS function
P_proj1{i} = union(projection((mldivide(termHypograph(i),...

mmpsHypograph)),1:1:dimension));
% projection of the set-difference between the hypograph of the
% MMPS function and the hypograph of the affine term i
P_proj2{i} = union(projection((mldivide(mmpsHypograph,...

termHypograph(i))),1:1:dimension));
% computation of the set of regions in which the affine term i is
% defined
Regions{i} = merge(mldivide(domain,[P_proj1{i},P_proj2{i}]));
[H{i},K{i}] = double(Regions{i});

end

% Elimination of the useless functions, that is, of the functions such
% that their set of regions is empty
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alfa_new = {}; beta_new = {}; H_new = {}; K_new = {};
count = 0;
for i = 1:length(alfa)

if ~isempty(H{i})
count = count + 1;
alfa_new{count} = alfa{i};
beta_new{count} = beta{i};
H_new{count} = H{i};
K_new{count} = K{i};

end
end

% Output

pwa.alfa = alfa_new;
pwa.beta = beta_new;
pwa.H = H_new;
pwa.K = K_new;
pwa.dimension = dimension; % additional field
pwa.N_affine_terms = count; % additional field

A.4 pwa2mmps

function mmps = pwa2mmps(pwa,str,str2)

% mmps = pwa2mmps(pwa,str,str2)
% Convert a PWA function into the equivalent MMPS function
% pwa -> PWA function that must be converted
% str = ’conj’ -> Conjunctive form
% str = ’disj’ -> Disjunctive form
% str2 = ’Gor’ -> Gorokhovik strategy
% str2 = ’Ovc’ -> Ovchinnikov strategy
% mmps -> MMPS function obtained as output

% This function calls:
% pwa2mmpsConjGor
% pwa2mmpsDisjGor
% pwa2mmpsConjOvc
% pwa2mmpsDisjOvc

% This function is called by:
% PWAsimulationsOvc
% PWAsimulationsGor
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% MMPSsimulations

% A. Frau
% 29/6/07

% Last modification 13/7/07

if nargin == 1
str = ’disj’;
str2 = ’Gor’;

end

if nargin == 2
str2 = ’Gor’;

end

if ~isa(str,’char’)
error(’Second input must be a string’);

end

if ~isa(str2,’char’)
error(’Third input must be a string’);

end

if strcmp(str2,’Gor’)
if strcmp(str,’conj’)

mmps = pwa2mmpsConjGor(pwa);
elseif strcmp(str,’disj’)

mmps = pwa2mmpsDisjGor(pwa);
else

error(’Not a valid argument for the second input’);
end

elseif strcmp(str2,’Ovc’)
if strcmp(str,’conj’)

mmps = pwa2mmpsConjOvc(pwa);
elseif strcmp(str,’disj’)

mmps = pwa2mmpsDisjOvc(pwa);
else

error(’Not a valid argument for the second input’);
end

else
error(’Not a valid argument for the third input’);

end
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A.5 pwa2mmpsConjGor

function mmps = pwa2mmpsConjGor(pwa)

% mmps = pwa2mmpsConjGor(pwa)
% Changes a PWA function in the equivalent MMPS function
% in the conjunctive form through the Gorokhovik-Zorko strategy
% pwa -> PWA function that must be converted
% mmps -> MMPS function obtained as output

% This function calls:
% testPWA

% This function is called by:
% pwa2mmps

% A. Frau
% 29/6/07

% Last modification 6/7/07

% Test

pwaTest = testPWA(pwa);
alfa = pwaTest.alfa; beta = pwaTest.beta;
H = pwaTest.H; K = pwaTest.K;
dimension = pwaTest.dimension; P = pwaTest.P;
domain = pwaTest.domain;
N_affine_terms = pwaTest.N_affine_terms;

% Computation of the epigraph of the PWA function

H_nPlus1 = H; K_nPlus1 = K;
P_nPlus1 = {}; pwaEpigraph = polytope;
b = zeros(2,dimension+1); b(:,dimension+1) = [1 -1]’;
for i = 1:length(H)

for j = 1:length(H{i})
H_nPlus1{i}{j} = [H_nPlus1{i}{j} zeros(size(H_nPlus1{i}{j},1),1);...

alfa{i} -1; b];
K_nPlus1{i}{j} = [K_nPlus1{i}{j}; -beta{i}; 1e4; 1e4];
P_nPlus1{i}(j) = reduce(polytope(H_nPlus1{i}{j},K_nPlus1{i}{j}));

end
pwaEpigraph = [pwaEpigraph,P_nPlus1{i}];

end
% it is not necessary, but useful for improving efficiency
pwaEpigraph = merge(pwaEpigraph);
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% Computation of the epigraph of each affine term

[H_domain,K_domain] = double(domain);
H_termEpigraph = {}; K_termEpigraph = {};
termEpigraph = polytope;
for i = 1:length(P)

H_termEpigraph{i} = [H_domain zeros(size(H_domain,1),1);...
alfa{i} -1; b];

K_termEpigraph{i} = [K_domain; -beta{i}; 1e4; 1e4];
termEpigraph(i) = polytope(H_termEpigraph{i},K_termEpigraph{i});

end

% Computation of all max terms

all_max_terms = {}; count_all_max_terms = 0;
P_all_max_terms = {}; k = 0; cont = 0;
P_all_max_terms_intersection = polytope;
while(1)

if cont == 0
k = k + 1;
if k > N_affine_terms

break % exit from while loop
end
combination = 1:k;
cont = 1;

else
[combination,cont] = next_comb(combination,N_affine_terms);
if cont == 0

continue; % next while loop
end

end
P_all_max_terms_array = polytope;
for i = 1:k

P_all_max_terms_array = [P_all_max_terms_array termEpigraph(combination)];
end
P_all_max_terms_intersection = and(P_all_max_terms_array);
P_all_max_terms_intersection_ok = le(P_all_max_terms_intersection,pwaEpigraph);
% Is this a max term?
if P_all_max_terms_intersection_ok == 1

count_all_max_terms = count_all_max_terms + 1;
all_max_terms{count_all_max_terms} = combination;
P_all_max_terms{count_all_max_terms} = P_all_max_terms_intersection;

end
end

% Reduction
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% Computation of temporary max terms

index_all_max_terms = ones(count_all_max_terms,1);
for i = 1:count_all_max_terms

for j = 1:count_all_max_terms
if i~=j

if index_all_max_terms(i) == 1 && index_all_max_terms(j) == 1
if ge(P_all_max_terms{i},P_all_max_terms{j}) == 1

index_all_max_terms(j) = 0;
end

end
end

end
end

max_terms_temp = {};
P_max_terms_temp = polytope;
count_max_terms_temp = 0;

for i = 1:count_all_max_terms
if index_all_max_terms(i) == 1

count_max_terms_temp = count_max_terms_temp + 1;
P_max_terms_temp(count_max_terms_temp) = P_all_max_terms{i};
max_terms_temp{count_max_terms_temp} = all_max_terms{i};

end
end

% Reduction
% Computation of final max terms

% let us start from terms with a bigger number of terms
P_max_terms_temp = fliplr(P_max_terms_temp);
max_terms_temp = fliplr(max_terms_temp);

index_max_terms_temp = ones(count_max_terms_temp,1);

P_union = {};
for i = 1:count_max_terms_temp

P_union{i} = polytope;
for j = 1:count_max_terms_temp

if i ~= j
if index_max_terms_temp(j) == 1

P_union{i} = [P_union{i} P_max_terms_temp(j)];
end

end
end
if le(P_max_terms_temp(i),P_union{i})
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index_max_terms_temp(i) = 0;
end

end

max_terms = {};
count_max_terms = 0;
for i = 1:length(index_max_terms_temp)

if index_max_terms_temp(i) == 1
count_max_terms = count_max_terms + 1;
max_terms{count_max_terms} = max_terms_temp{i};

end
end

% Output

mmps.alfa = alfa; % affine terms
mmps.beta = beta; % affine terms
mmps.terms = max_terms; % max terms
mmps.form = ’conj’; % form
mmps.domain = domain; % domain
mmps.dimension = dimension; % dimension
mmps.terms_temp = max_terms_temp; % temporary max terms -> not useful for tests
mmps.all_terms = all_max_terms; % all max terms -> not useful for tests

A.6 pwa2mmpsDisjGor

function mmps = pwa2mmpsDisjGor(pwa)

% mmps = pwa2mmpsDisjGor(pwa)
% Converts a PWA function in the equivalent MMPS function
% in the disjunctive form through the Gorokhovik-Zorko strategy
% pwa -> PWA function that must be converted
% mmps -> MMPS function obtained as output

% This function calls:
% testPWA

% This function is called by:
% pwa2mmps

% A. Frau
% 29/6/07

% Last modification 6/7/07
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% Test

pwaTest = testPWA(pwa);
alfa = pwaTest.alfa; beta = pwaTest.beta;
H = pwaTest.H; K = pwaTest.K;
dimension = pwaTest.dimension; P = pwaTest.P;
domain = pwaTest.domain;
N_affine_terms = pwaTest.N_affine_terms;

% Computation of the hypograph of the PWA function

H_nPlus1 = H; K_nPlus1 = K;
P_nPlus1 = {}; pwaHypograph = polytope;
b = zeros(2,dimension+1); b(:,dimension+1) = [1 -1]’;
for i = 1:length(H)

for j = 1:length(H{i})
H_nPlus1{i}{j} = [H_nPlus1{i}{j} zeros(size(H_nPlus1{i}{j},1),1);...

-alfa{i} 1; b];
K_nPlus1{i}{j} = [K_nPlus1{i}{j}; beta{i}; 1e4; 1e4];
P_nPlus1{i}(j) = reduce(polytope(H_nPlus1{i}{j},K_nPlus1{i}{j}));

end
pwaHypograph = [pwaHypograph,P_nPlus1{i}];

end
% it is not necessary, but useful for improving efficiency
pwaHypograph = merge(pwaHypograph);

% Computation of the hypograph of each affine term

[H_domain,K_domain] = double(domain);
H_termHypograph = {}; K_termHypograph = {};
termHypograph = polytope;
for i = 1:length(P)

H_termHypograph{i} = [H_domain zeros(size(H_domain,1),1); -alfa{i} 1; b];
K_termHypograph{i} = [K_domain; beta{i}; 1e4; 1e4];
termHypograph(i) = polytope(H_termHypograph{i},K_termHypograph{i});

end

% Computation of all min terms

all_min_terms = {}; count_all_min_terms = 0;
P_all_min_terms = {}; k = 0; cont = 0;
P_all_min_terms_intersection = polytope;
while(1)

if cont == 0
k = k + 1;
if k > N_affine_terms
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break % exit from while loop
end
combination = 1:k;
cont = 1;

else
[combination,cont] = next_comb(combination,N_affine_terms);
if cont == 0

continue; % next while loop
end

end
P_all_min_terms_array = polytope;
for i = 1:k

P_all_min_terms_array = [P_all_min_terms_array termHypograph(combination)];
end
P_all_min_terms_intersection = and(P_all_min_terms_array);
P_all_min_terms_intersection_ok = le(P_all_min_terms_intersection,pwaHypograph);
% Is this a min term?
if P_all_min_terms_intersection_ok == 1

count_all_min_terms = count_all_min_terms + 1;
all_min_terms{count_all_min_terms} = combination;
P_all_min_terms{count_all_min_terms} = P_all_min_terms_intersection;

end
end

% Reduction
% Computation of temporary min terms

index_all_min_terms = ones(count_all_min_terms,1);
for i = 1:count_all_min_terms

for j = 1:count_all_min_terms
if i~=j

if index_all_min_terms(i) == 1 && index_all_min_terms(j) == 1
if ge(P_all_min_terms{i},P_all_min_terms{j}) == 1

index_all_min_terms(j) = 0;
end

end
end

end
end

min_terms_temp = {};
P_min_terms_temp = polytope;
count_min_terms_temp = 0;

for i = 1:count_all_min_terms
if index_all_min_terms(i) == 1

count_min_terms_temp = count_min_terms_temp + 1;
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P_min_terms_temp(count_min_terms_temp) = P_all_min_terms{i};
min_terms_temp{count_min_terms_temp} = all_min_terms{i};

end
end

% Reduction
% Computation of final min terms

% let us start from terms with a bigger number of terms
P_min_terms_temp = fliplr(P_min_terms_temp);
min_terms_temp = fliplr(min_terms_temp);

index_min_terms_temp = ones(count_min_terms_temp,1);

P_union = {};
for i = 1:count_min_terms_temp

P_union{i} = polytope;
for j = 1:count_min_terms_temp

if i ~= j
if index_min_terms_temp(j) == 1
% union of hypographs of all min terms except the i
P_union{i} = [P_union{i} P_min_terms_temp(j)];

end
end

end
if le(P_min_terms_temp(i),P_union{i})

index_min_terms_temp(i) = 0;
end

end

min_terms = {};
count_min_terms = 0;
for i = 1:length(index_min_terms_temp)

if index_min_terms_temp(i) == 1
count_min_terms = count_min_terms + 1;
min_terms{count_min_terms} = min_terms_temp{i};

end
end

% Output

mmps.alfa = alfa; % affine terms
mmps.beta = beta; % affine terms
mmps.terms = min_terms; % min terms
mmps.form = ’disj’; % form
mmps.domain = domain; % domain
mmps.dimension = dimension; % dimension
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mmps.terms_temp = min_terms_temp; % temporary min_terms -> not useful for tests
mmps.all_terms = all_min_terms; % all min terms -> not useful for tests

A.7 pwa2mmpsConjOvc

function mmps = pwa2mmpsConjOvc(pwa)

% mmps = pwa2mmpsConjOvc(pwa)
% Converts a PWA function in the equivalent MMPS function in
% the conjunctive form through the Ovchinnikov strategy
% pwa -> PWA function that must be converted
% mmps -> MMPS function obtained as output

% This function calls:
% testPWA
% evalPWA

% This function is called by
% pwa2mmps

% A. Frau
% 20/7/07

% Last modification 25/5/07
% Last modification 29/5/07
% Last modification 30/5/07
% Last modification 12/7/07

% Test

pwaTest = testPWA(pwa);

alfa = pwaTest.alfa; beta = pwaTest.beta;
H = pwaTest.H; K = pwaTest.K;
N_affine_terms = pwaTest.N_affine_terms; dimension = pwaTest.dimension;
P = pwaTest.P; domain = pwaTest.domain;

% Computation of vertices

V = {}; R = {}; adjV = {};
for i = 1:length(P)

for j = 1:length(P{i})
% the vertices are already stored in polytope structure,
% so the computation is very fast
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[V{i}{j},R{i}{j},P{i}(j),adjV{i}{j}] = extreme(P{i}(j));
end

end

% Computation of adjacent regions in which
% pwa = min(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))

adj_vertices = {}; adj_regions = []; min_regions = [];
for i = 1:length(P)

for j = 1:length(P)
if i<j % because otherwise is redundant (i > j) or wrong (i = j)

for k = 1:length(P{i})
for l = 1:length(P{j})

adj_vertices{i,j,k,l} = [];
for m = 1:size(V{i}{k},1)

for n = 1:size(V{j}{l},1)
if all(abs(V{i}{k}(m,:)-V{j}{l}(n,:)) <= 1e-10)

% vertices in common between
% P{i}(k) and P{j}(l)
adj_vertices{i,j,k,l} = ...

[adj_vertices{i,j,k,l}; V{i}{k}(m,:)];
end

end
end
if isempty(adj_vertices{i,j,k,l})

% no adjacent vertices between P{i}(k) and
% P{j}(l)
adj_regions(i,j,k,l) = 0;
min_regions(i,j,k,l) = 0;

elseif size(adj_vertices{i,j,k,l},1) == dimension
% P{i}(k) and P{j}(l) are adjacent
adj_regions(i,j,k,l) = 1;
% comparison in all vertex of P{i}{k} and in all
% vertex of P{j}{l}
if all(alfa{i}*V{i}{k}’+beta{i}-...

(alfa{j}*V{i}{k}’+beta{j}) <= 1e-9) &&...
all(alfa{j}*V{j}{l}’+beta{j}-...
(alfa{i}*V{j}{l}’+beta{i}) <= 1e-9)
% pwa = min(pwa_i,pwa_j)
% on union(P{i}(k),P{j}(l))
min_regions(i,j,k,l) = 1;

else
% pwa != min(pwa_i,pwa_j)
% on union(P{i}(k),P{j}(l))
min_regions(i,j,k,l) = 0;

end
else
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adj_regions(i,j,k,l) = 0;
min_regions(i,j,k,l) = 0;

end
end

end
end

end
end

min_array = [];
for i = 1:length(P)

for j = 1:length(P)
if i<j

for k = 1:length(P{i})
for l = 1:length(P{j})

if min_regions(i,j,k,l) == 1
% [i k j l] belong to min_array if pwa =
% min(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))
min_array = [min_array;i k j l];

end
end

end
end

end
end

% Some outputs

mmps.alfa = alfa;
mmps.beta = beta;
mmps.domain = domain;
mmps.form = ’conj’;

if isempty(min_array)
% The function is convex if there does not exist a pair of
% regions such that pwa = min(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))
mmps.terms = {1:N_affine_terms};
return

end

% Computation of the hyperplanes that split the pairs of regions above
% computed, and therefore computation of the constraint in common
% between each pair of adjacent regions in
% which pwa = min(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))

min_constrH = []; min_constrK = [];
index = 1; count_min_constr = 0;



76 A.7. pwa2mmpsConjOvc

for i = 1:size(min_array,1)
for j = 1:size(H{min_array(i,1)}{min_array(i,2)},1)

for k = 1:size(H{min_array(i,3)}{min_array(i,4)},1)
if all(abs(H{min_array(i,1)}{min_array(i,2)}(j,:) + ...

H{min_array(i,3)}{min_array(i,4)}(k,:)) <= 1e-7) &&...
all(abs(K{min_array(i,1)}{min_array(i,2)}(j) + ...

K{min_array(i,3)}{min_array(i,4)}(k)) <= 1e-7)
% let us verify if the constraint is already in min_constr
for m = 1:count_min_constr

if (all(abs(min_constrH(m,:) - ...
H{min_array(i,1)}{min_array(i,2)}(j,:)) <= 1e-7) &&...
all(abs(min_constrK(m,:) - ...
K{min_array(i,1)}{min_array(i,2)}(j,:)) <= 1e-7)) ||...

(all(abs(min_constrH(m,:) + ...
H{min_array(i,1)}{min_array(i,2)}(j,:)) <= 1e-7) &&...
all(abs(min_constrK(m,:) + ...
K{min_array(i,1)}{min_array(i,2)}(j,:)) <= 1e-7))
index = 0;
break

end
end
if (index == 1)

min_constrH = ...
[min_constrH;H{min_array(i,1)}{min_array(i,2)}(j,:);];

min_constrK = ...
[min_constrK;K{min_array(i,1)}{min_array(i,2)}(j,:);];

count_min_constr = count_min_constr + 1;
end
index = 1;

end
end

end
end

% Computation of all regions in which we compute if pwa_i <= pwa

% all possible combinations of 0 and 1
comb = makebits(size(min_constrH,1));

RegionsTempH = {}; RegionsTempK = {};
RegionsTemp = polytope; RegionsTemp2 = polytope;
count = 0;
for i = 1:size(comb,1)

RegionsTempH{i} = []; RegionsTempK{i} = [];
for j = 1:size(comb,2)

if comb(i,j) == 1
RegionsTempH{i} = [RegionsTempH{i};min_constrH(j,:);];
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RegionsTempK{i} = [RegionsTempK{i};min_constrK(j,:);];
else

RegionsTempH{i} = [RegionsTempH{i};-min_constrH(j,:);];
RegionsTempK{i} = [RegionsTempK{i};-min_constrK(j,:);];

end
end
RegionsTemp = polytope(RegionsTempH{i},RegionsTempK{i});
if isfulldim(RegionsTemp)

RegionsTempInters = intersect(RegionsTemp,domain);
if isfulldim(RegionsTempInters);

count = count + 1;
RegionsTemp2(count) = RegionsTempInters;

end
end

end

% The union of the temporary regions obtained must be equal to the domain

if union(RegionsTemp2) ~= domain
error([’The union of the temporary regions’,...

’ obtained must be equal to the domain’]);
end

% Elimination of identical regions, they must appear only once

identical = ones(1,length(RegionsTemp2));
for i = 1:length(RegionsTemp2)

for j = i+1:length(RegionsTemp2)
if RegionsTemp2(i) == RegionsTemp2(j)

identical(j) = 0;
end

end
end

Regions = polytope; count_Regions = 0;
for i = 1:length(RegionsTemp2)

if identical(i) == 1
count_Regions = count_Regions + 1;
Regions(count_Regions) = RegionsTemp2(i);

end
end

% The union of the regions obtained must be equal to the domain

if union(Regions) ~= domain
error([’The union of the regions’,...

’ obtained must be equal to the domain’]);
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end

% For each region in which the test must be done, we find all vertices of
% the regions of pwa that lies in that region, and an affine component
% defined in this vertex

VV_Regions = {};
for l = 1:length(Regions)

VV_Regions{l} = [];
for i = 1:length(V)

for j = 1:length(V{i})
for k = 1:size(V{i}{j},1)

[isin,inwhich] = isinside(Regions(l),V{i}{j}(k,:)’);
if isin == 1

VV_Regions{l} = [VV_Regions{l};V{i}{j}(k,:)];
end

end
end

end
VV_Regions{l} = unique(VV_Regions{l},’rows’);

end

% We verify in every region which affine component pwa_i is <= than pwa
% in all points of the region

termsArray = []; terms = {};
for i = 1:length(Regions)

terms{i} = [];
for j = 1:N_affine_terms

termsArray(i,j) = 1;
for k = 1:size(VV_Regions{i},1)

if alfa{j}*VV_Regions{i}(k,:)’+beta{j} - ...
evalPWA(pwaTest,VV_Regions{i}(k,:)’) <= 1e-9;

continue;
else

termsArray(i,j) = 0;
break

end
end
if termsArray(i,j) == 1

terms{i} = [terms{i} j];
end

end
end

mmps.terms = terms;
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A.8 pwa2mmpsDisjOvc

function mmps = pwa2mmpsDisjOvc(pwa)

% mmps = pwa2mmpsDisjOvc(pwa)
% Converts a PWA function in the equivalent MMPS function
% in the disjunctive form through the Ovchinnikov strategy
% pwa -> PWA function that must be converted
% mmps -> MMPS function obtained as output

% This function calls:
% testPWA
% evalPWA

% This function is called by:
% pwa2mmps

% A. Frau
% 20/7/07

% Last modification 25/5/07
% Last modification 29/5/07
% Last modification 30/5/07
% Last modification 12/7/07

% Test

pwaTest = testPWA(pwa);

alfa = pwaTest.alfa; beta = pwaTest.beta;
H = pwaTest.H; K = pwaTest.K;
N_affine_terms = pwaTest.N_affine_terms;
dimension = pwaTest.dimension;
P = pwaTest.P; domain = pwaTest.domain;

% Computation of vertices

V = {}; R = {}; adjV = {};
for i = 1:length(P)

for j = 1:length(P{i})
% the vertices are already stored in polytope structure,
% so the computation is very fast
[V{i}{j},R{i}{j},P{i}(j),adjV{i}{j}] = extreme(P{i}(j));

end
end
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% Computation of adjacent regions in which
% pwa = max(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))

adj_vertices = {}; adj_regions = []; max_regions = [];
for i = 1:length(P)

for j = 1:length(P)
if i<j % because otherwise is redundant or wrong (i = j)

for k = 1:length(P{i})
for l = 1:length(P{j})

adj_vertices{i,j,k,l} = [];
for m = 1:size(V{i}{k},1)

for n = 1:size(V{j}{l},1)
if all(abs(V{i}{k}(m,:)-V{j}{l}(n,:)) <= 1e-10)

% vertices in common between P{i}(k)
% and P{j}(l)
adj_vertices{i,j,k,l} = ...

[adj_vertices{i,j,k,l}; V{i}{k}(m,:)];
end

end
end
if isempty(adj_vertices{i,j,k,l})

% no adjacent vertices between P{i}(k) and
% P{j}(l)
adj_regions(i,j,k,l) = 0;
max_regions(i,j,k,l) = 0;

elseif size(adj_vertices{i,j,k,l},1) == dimension
% P{i}(k) and P{j}(l) are adjacent
adj_regions(i,j,k,l) = 1;
% comparison in all vertex of P{i}{k} and in all
% vertex of P{j}{l}
if all(alfa{i}*V{i}{k}’+beta{i}-...

(alfa{j}*V{i}{k}’+beta{j}) >= -1e-9) &...
all(alfa{j}*V{j}{l}’+beta{j}-...

(alfa{i}*V{j}{l}’+beta{i}) >= -1e-9)
% pwa = max(pwa_i,pwa_j)
% on union(P{i}(k),P{j}(l))
max_regions(i,j,k,l) = 1;

else
% pwa != max(pwa_i,pwa_j)
% on union(P{i}(k),P{j}(l))
max_regions(i,j,k,l) = 0;

end
else

adj_regions(i,j,k,l) = 0;
max_regions(i,j,k,l) = 0;

end
end
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end
end

end
end

max_array = [];
for i = 1:length(P)

for j = 1:length(P)
if i<j

for k = 1:length(P{i})
for l = 1:length(P{j})

if max_regions(i,j,k,l) == 1
% [i k j l] belong to max_array if pwa =
% max(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))
max_array = [max_array;i k j l];

end
end

end
end

end
end

% Some outputs

mmps.alfa = alfa;
mmps.beta = beta;
mmps.domain = domain;
mmps.form = ’disj’;

if isempty(max_array)
% The function is concave if there does not exist a pair of regions
% such that pwa = max(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))
mmps.terms = {1:N_affine_terms};
return

end

% Computation of the hyperplanes that split the pairs of regions above
% computed, and therefore computation of the constraint in common
% between each pair of adjacent regions in
% which pwa = max(pwa_i,pwa_j) on union(P{i}(k),P{j}(l))

max_constrH = []; max_constrK = [];
index = 1; count_max_constr = 0;
for i = 1:size(max_array,1)

for j = 1:size(H{max_array(i,1)}{max_array(i,2)},1)
for k = 1:size(H{max_array(i,3)}{max_array(i,4)},1)

if all(abs(H{max_array(i,1)}{max_array(i,2)}(j,:) +...
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H{max_array(i,3)}{max_array(i,4)}(k,:)) <= 1e-7) &&...
all(abs(K{max_array(i,1)}{max_array(i,2)}(j) +...

K{max_array(i,3)}{max_array(i,4)}(k)) <= 1e-7)
% let us verify if the constraint is already in max_constr
for m = 1:count_max_constr

if (all(abs(max_constrH(m,:) -...
H{max_array(i,1)}{max_array(i,2)}(j,:)) <= 1e-7) &&...
all(abs(max_constrK(m,:) -...
K{max_array(i,1)}{max_array(i,2)}(j,:)) <= 1e-7)) ||...

(all(abs(max_constrH(m,:) +...
H{max_array(i,1)}{max_array(i,2)}(j,:)) <= 1e-7) &&...
all(abs(max_constrK(m,:) +...
K{max_array(i,1)}{max_array(i,2)}(j,:)) <= 1e-7))
index = 0;
break

end
end
if (index == 1)

max_constrH = ...
[max_constrH;H{max_array(i,1)}{max_array(i,2)}(j,:);];

max_constrK = ...
[max_constrK;K{max_array(i,1)}{max_array(i,2)}(j,:);];

count_max_constr = count_max_constr + 1;
end
index = 1;

end
end

end
end

% Computation of all regions in which we compute if pwa_i >= pwa

% all possible combinations of 0 and 1
comb = makebits(size(max_constrH,1));

RegionsTempH = {}; RegionsTempK = {};
RegionsTemp = polytope; RegionsTemp2 = polytope;
count = 0;
for i = 1:size(comb,1)

RegionsTempH{i} = []; RegionsTempK{i} = [];
for j = 1:size(comb,2)

if comb(i,j) == 1
RegionsTempH{i} = [RegionsTempH{i};max_constrH(j,:);];
RegionsTempK{i} = [RegionsTempK{i};max_constrK(j,:);];

else
RegionsTempH{i} = [RegionsTempH{i};-max_constrH(j,:);];
RegionsTempK{i} = [RegionsTempK{i};-max_constrK(j,:);];
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end
end
RegionsTemp = polytope(RegionsTempH{i},RegionsTempK{i});
if isfulldim(RegionsTemp)

RegionsTempInters = intersect(RegionsTemp,domain);
if isfulldim(RegionsTempInters);

count = count + 1;
RegionsTemp2(count) = RegionsTempInters;

end
end

end

% The union of the temporary regions obtained must be equal to the domain

if union(RegionsTemp2) ~= domain
error([’The union of the temporary regions’,...

’ obtained must be equal to the domain’]);
end

% Elimination of identical regions, they must appear only once

identical = ones(1,length(RegionsTemp2));
for i = 1:length(RegionsTemp2)

for j = i+1:length(RegionsTemp2)
if RegionsTemp2(i) == RegionsTemp2(j)

identical(j) = 0;
end

end
end

Regions = polytope; count_Regions = 0;
for i = 1:length(RegionsTemp2)

if identical(i) == 1
count_Regions = count_Regions + 1;
Regions(count_Regions) = RegionsTemp2(i);

end
end

% The union of the regions obtained must be equal to
% the domain

if union(Regions) ~= domain
error([’The union of the regions’,...

’ obtained must be equal to the domain’]);
end

% For each region in which the test must be done, we find all vertices of
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% the regions of pwa that lies in that region, and an affine component
% defined in this vertex

VV_Regions = {};
for l = 1:length(Regions)

VV_Regions{l} = []; % VV_Regions{l,2} = [];
for i = 1:length(V)

for j = 1:length(V{i})
for k = 1:size(V{i}{j},1)

[isin,inwhich] = isinside(Regions(l),V{i}{j}(k,:)’);
if isin == 1

VV_Regions{l} = [VV_Regions{l};V{i}{j}(k,:)];
end

end
end

end
VV_Regions{l} = unique(VV_Regions{l},’rows’);

end

% We verify in every region which affine component pwa_i is >= than pwa
% in all points of the region

termsArray = []; terms = {};
for i = 1:length(Regions)

terms{i} = [];
for j = 1:N_affine_terms

termsArray(i,j) = 1;
for k = 1:size(VV_Regions{i},1)

if alfa{j}*VV_Regions{i}(k,:)’+beta{j} - ...
evalPWA(pwaTest,VV_Regions{i}(k,:)’) >= -1e-9;

continue;
else

termsArray(i,j) = 0;
break

end
end
if termsArray(i,j) == 1

terms{i} = [terms{i} j];
end

end
end

mmps.terms = terms;
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A.9 testMMPS

function mmpsTest = testMMPS(mmps)

% mmpsTest = testMMPS(mmps);
% The code tests if the input is a valid MMPS function
% mmps -> MMPS function that must be tested
% mmpsTest -> MMPS function after the tests, with some additional fields

% This function is called by
% mmps2pwaConj
% mmps2pwaDisj

% A. Frau
% 30/6/07

% Last modification 2/7/07

% If the test has already been done, don’t do it again

if isfield(mmps,’test’)
mmpsTest = mmps;
return

end

alfa = mmps.alfa; beta = mmps.beta; terms = mmps.terms;

% The fields must have the right dimension

if length(alfa) ~= length(beta)
error(’alfa and beta must have the same length’);

end

N_affine_terms = length(alfa);

% Every component of alfa and beta must have 1 row
% Every component of beta must have 1 column

for i = 1:N_affine_terms
if size(alfa{i},1) ~= 1

error([’alfa{’,int2str(i),’} must have 1 row’]);
end
if size(beta{i},1) ~= 1

error([’beta{’,int2str(i),’} must have 1 row’]);
end
if size(beta{i},2) ~= 1
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error([’beta{’,int2str(i),’} must have 1 column’]);
end

end

% Any component of alfa,beta must have the same length

for i = 1:N_affine_terms-1
if length(alfa{i}) ~= length(alfa{i+1})

error(’Any component of alfa must have the same length’);
end

end

dimension = length(alfa{1});

% If A and b are fields, so they must have the right dimensions

if isfield(mmps,’A’) && isfield(mmps,’b’)
if size(mmps.A,2) ~= dimension

error([’The number of columns of A must be ’,int2str(dimension)]);
return

end
if size(mmps.b,2) ~= dimension

error(’The number of columns of b must be 1’);
return

end
end

% In the (max or min) terms of a MMPS function cannot appear a
% non-existent affine term

max_affine_term = 0;
for i = 1:length(terms)

if max(terms{i}) > max_affine_term
max_affine_term = max(terms{i});

end
end

if max_affine_term > N_affine_terms
error(’In a term of a MMPS function cannot appear a non-existent affine term’);

end

% Output

if isfield(mmps,’form’)
mmpsTest.form = mmps.form;

else
% if there is not the field ’form’, then is disjunctive by
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% default
mmpsTest.form = ’disj’;

end

if isfield(mmps,’domain’)
mmpsTest.domain = mmps.domain;

elseif isfield(mmps,’A’) && isfield(mmps,’b’)
mmpsTest.domain = polytope(mmps.A,mmps.b);

else
mmpsTest.domain = unitbox(dimension,1e4); % domain used by default

end

mmpsTest.alfa = alfa;
mmpsTest.beta = beta;
mmpsTest.terms = terms;
mmpsTest.N_affine_terms = N_affine_terms;
mmpsTest.dimension = dimension;
mmpsTest.test = ’ok’;

A.10 testPWA

function pwaTest = testPWA(pwa)

% pwaTest = testPWA(pwa);
% The code tests if the input is a valid and continuous PWA function. The
% same function is returned as output
% pwa -> PWA function that must be tested
% pwaTest -> PWA function after the tests, with some additional fields

% This function is called by:
% pwa2mmpsConjOvc
% pwa2mmpsDisjOvc
% pwa2mmpsConjGor
% pwa2mmpsDisjGor

% A. Frau
% 25/6/07

% Last modification 28/6/07
% Last modification 2/7/07

% If the test has already been done, don’t do it again

if isfield(pwa,’test’)
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pwaTest = pwa;
return

end

alfa = pwa.alfa; beta = pwa.beta; H = pwa.H; K = pwa.K;

% The fields must have the right dimension

if length(alfa) ~= length(beta) || length(alfa) ~= length(H) ||...
length(alfa) ~= length(K)

error(’alfa, beta, H and K must have the same length’);
return

end

% number of affine components of the PWA function in input

N_affine_terms_old = length(alfa);

% Every component of alfa and beta must have 1 row

for i = 1:N_affine_terms_old
if size(alfa{i},1) ~= 1

error([’alfa{’,int2str(i),’} must have 1 row’]);
end
if size(beta{i},1) ~= 1

error([’beta{’,int2str(i),’} must have 1 row’]);
end
if size(beta{i},2) ~= 1

error([’beta{’,int2str(i),’} must have 1 column’]);
end

end

% All components of alfa must have the same length

for i = 1:N_affine_terms_old-1
if length(alfa{i}) ~= length(alfa{i+1})

error(’Any component of alfa must have the same length’);
end

end

dimension = length(alfa{1}); % dimension of the function

% If H{i} and K{i} are cells, they must have the same length

H_cell = {}; K_cell = {};
for i = 1:length(H)

if iscell(H{i}) == 0
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H_cell{i} = {H{i}}; % all the entries of H become cells
K_cell{i} = {K{i}}; % all the entries of K become cells

else
H_cell{i} = H{i};
K_cell{i} = K{i};

end
end

for i = 1:length(H_cell)
if length(H_cell{i}) ~= length(K_cell{i})

error([’H{’,int2str(i),’} and K{’,int2str(i),...
’} must have the same length’]);

return
end

end

% Every component of H must have the number of columns equal to the
% dimension
% Every component of K must have the number of columns equal to 1
% The number of rows of H{i}{j} must be equal to the one of K{i}{j}

for i = 1:length(H_cell)
for j = 1:length(H_cell{i})

if size(H_cell{i}{j},2) ~= dimension
error([’The number of columns of H{’,int2str(i),...

’}{’,int2str(j),’} must be ’,int2str(dimension)]);
return

end
if size(K_cell{i}{j},2) ~= 1

error([’The number of columns of K{’,int2str(i),’}{’...
,int2str(j),’} must be equal to 1’]);

return
end
if size(H_cell{i}{j},1) ~= size(K_cell{i}{j},1)

error([’H{’,int2str(i),’}{’,int2str(j),’} and K{’,...
int2str(i),’}{’,int2str(j),...
’} must have the same number of rows’]);

return
end

end
end

% Redefinition the PWA function, for avoiding identical affine terms

index1 = zeros(N_affine_terms_old,1);
index2 = zeros(N_affine_terms_old,1);
count = 0;
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for i = 1:N_affine_terms_old
if index2(i) == 0 % if not comparised yet

count = count + 1;
for j = i+1:N_affine_terms_old

if index2(j) == 0 % if not comparised yet
if all(abs(alfa{i}-alfa{j}) <= 1e-10) &...

abs(beta{i}-beta{j}) <= 1e-10
index1(j) = count;
index2(j) = 1;

end
end

end
index1(i) = count;
index2(i) = 1; % not necessary

end
end

alfa_new = {}; beta_new = {};
f = {};
for i = 1:max(index1)

f{i} = find(index1 == i);
alfa_new{i} = alfa{f{i}(1)};
beta_new{i} = beta{f{i}(1)};

end

count2 = {};
guardH_new = {}; guardK_new = {};
for i = 1:max(index1)

guardH_new{i} = {};
guardK_new{i} = {};
count2{i} = 0;
for j = 1:N_affine_terms_old

if index1(j) == i
for k = 1:length(H_cell{j})

count2{i} = count2{i} + 1;
guardH_new{i}{count2{i}} = H_cell{j}{k} ;
guardK_new{i}{count2{i}} = K_cell{j}{k} ;

end
end

end
end

% The set of regions that defines the PWA functions must be a
% polyhedral partition of the domain

P = {};
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for i = 1:length(guardH_new)
for j = 1:length(guardH_new{i})

P{i}(j) = reduce(polytope(guardH_new{i}{j},guardK_new{i}{j}));
end
P{i} = merge(P{i});

end

for i = 1:length(P)
for j = 1:length(P{i})

for k = 1:length(P)
for l = 1:length(P{k})

if i ~= k || j ~= l
% if the intersection is not empty
if and(P{i}(j),P{k}(l)) ~= polytope

disp([’and(P{’,int2str(i),’}(’,int2str(j),...
’),P{’,int2str(k),’}(’,int2str(l),...
’)) is full dimensional’]);

error([’The set of regions is not a’,...
’ polyhedral partition of the domain’]);

end
end

end
end

end
end

% The domain must be a convex set of regions

P_domain = [];
for i = 1:length(P)

for j = 1:length(P{i})
P_domain = [P_domain P{i}(j)];

end
end

if ~isconvex(P_domain)
error(’The domain is not a convex set of regions’);

end

P_domain = union(P_domain); V = {};
H_def = {}; K_def = {};
for i = 1:length(P)

for j = 1:length(P{i})
[H_def{i}{j},K_def{i}{j}] = double(P{i}(j));
% R and adjV are not necessary
[V{i}{j},R{i}{j},P{i}(j),adjV{i}{j}] = extreme(P{i}(j));

end
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end

% Let us compute, for each couple of components, the vertices
% in common between the two sets of regions

common_vertices = cell(length(alfa_new),length(alfa_new));
for i = 1:length(P)

for j = 1:length(P)
if i<j % because otherwise is redundant

for k = 1:length(P{i})
for l = 1:length(P{j})

for m = 1:size(V{i}{k},1)
for n = 1:size(V{j}{l},1)

if all(abs(V{i}{k}(m,:)-V{j}{l}(n,:))...
<= 1e-10)

common_vertices{i,j} = ...
[common_vertices{i,j}; V{i}{k}(m,:)];

end
end

end
end

end
end

end
end

% Verification of the continuity of the function

for i = 1:length(V)
for j = 1:length(V)

% if there are some vertices in common
if ~isempty(common_vertices{i,j})

if any(abs(alfa_new{i}*common_vertices{i,j}’+beta_new{i} - ...
alfa_new{j}*common_vertices{i,j}’-beta_new{j})...
>= 1e-9) == 1

error(’The function is not continuous’);
end

end
end

end

% Output

pwaTest.alfa = alfa_new;
pwaTest.beta = beta_new;
pwaTest.H = H_def;
pwaTest.K = K_def;
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% if "test" is a field of pwa, the test won’t be done anymore
pwaTest.test = ’ok’;

% Fields used for computations in functions that call this one

pwaTest.P = P;
pwaTest.domain = P_domain;
pwaTest.dimension = dimension;
pwaTest.N_affine_terms = length(alfa_new);

A.11 evalPWA

function value = evalPWA(pwa,x)

% value = evalPWA(pwa,x)
% The function computes the value of the PWA function in a selected point
% value -> value of the PWA function "pwa" in "x"
% x must be a column matrix

% This function is called by
% isequalPWA
% pwa2mmpsConjOvc
% pwa2mmpsDisjOvc

% A.Frau
% 21/6/07

% Test

pwaTest = testPWA(pwa);

if size(x,1) ~= pwaTest.dimension || size(x,2) ~= 1
error(’The dimension of x is incorrect’);

end

alfa = pwaTest.alfa;
beta = pwaTest.beta;
P = pwaTest.P;

% Computation of the value of the function in x

value = []; h = 0;
for i = 1:length(P)

for j = 1:length(P{i})
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if isinside(P{i}(j),x) == 1
value = alfa{i}*x + beta{i};
h = 1;
break

end
end
if h == 1

break
end

end

if isempty(value) == 1
error(’x is not inside any polytope!!!’);

end

A.12 isequalPWA

function value = isequalPWA(pwa1,pwa2)

% value = isequalPWA(pwa1,pwa2)
% Returns true(1) if the PWA functions are equivalent,
% false(0) otherwise
% pwa1, pwa2 -> PWA functions that must be compared

% This function calls
% evalPWA

% This function is called by
% PWAsimulationsGor
% PWAsimulationsOvc

% A. Frau
% 24/6/07

% Last modification 3/7/07

% Test

pwaTest1 = testPWA(pwa1); % the tests are already here
pwaTest2 = testPWA(pwa2); % the tests are already here

% The dimension and the domain of the functions must be the same

if pwaTest1.dimension ~= pwaTest2.dimension
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error(’The dimensions of the PWA functions are different’);
end

if pwaTest1.domain ~= pwaTest2.domain
error(’The domains must be equal’);

end

P1 = pwaTest1.P; % sets of regions of the function pwa1
P2 = pwaTest2.P; % sets of regions of the function pwa2

% Computation of all vertices of the regions of pwa1

VV1 = [];
for i = 1:length(P1)

for j = 1:length(P1{i})
% the computation of vertices is fast because they are
% already stored in the polytope structure
V1{i}{j} = extreme(P1{i}(j));
VV1 = [VV1;V1{i}{j}];

end
end

% Computation of all vertices of the regions of pwa2

VV2 = [];
for i = 1:length(P2)

for j = 1:length(P2{i})
% the computation of vertices is fast because they are
% already stored in the polytope structure
V2{i}{j} = extreme(P2{i}(j));
VV2 = [VV2;V2{i}{j}];

end
end

% Computation of the hyperbox. All vertices must lie in
% the interior of this hyperbox

VVall = [VV1; VV2];
boundaries = max(VVall,[],1) + 1;
dimension = pwaTest1.dimension;
hbox_H = [eye(dimension);-eye(dimension)];
hbox_K = [boundaries’;boundaries’];
hbox = polytope(hbox_H,hbox_K); % Hyperbox

count = 0; P_int = {}; P_cell = {};
for i = 1:length(P1)

for j = 1:length(P1{i})
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for k = 1:length(P2)
for l = 1:length(P2{k})

P_int{i,j,k,l} = and(P1{i}(j),P2{k}(l));
% otherwise next intersection cannot be computed
if ~isempty(P_int{i,j,k,l}) &&...

isfulldim(P_int{i,j,k,l})
P_int{i,j,k,l} = and(P_int{i,j,k,l},hbox);
if ~isempty(P_int{i,j,k,l}) &&...

isfulldim(P_int{i,j,k,l})
count = count + 1;
P_cell{count} = P_int{i,j,k,l};

end
end

end
end

end
end

VV = []; V = {};
for i = 1:length(P_cell)

V{i} = extreme(P_cell{i});
VV = [VV;V{i}];

end
% For having only different vertices
VV = unique (VV,’rows’);

value1 = []; value2 = [];
for i = 1:size(VV,1)

value1(i) = evalPWA(pwa1,VV(i,:)’);
value2(i) = evalPWA(pwa2,VV(i,:)’);

end

% Output

value = all(abs(value1-value2) <= 1e-9);

A.13 isequalMMPS

function value = isequalMMPS(mmps1,mmps2)

% value = isequalMMPS(mmps1,mmps2)
% Returns true(1) if the MMPS functions are equivalent,
% false(0) otherwise
% mmps1, mmps2 -> MMPS functions that must be compared
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% This function is called by:
% PWAsimulationsGor
% PWAsimulationsOvc
% MMPSsimulations

% A. Frau
% 5/7/07

mmpsTest1 = testMMPS(mmps1);
mmpsTest2 = testMMPS(mmps2);

% The dimension and the domain of the functions must be the same

if mmpsTest1.dimension ~= mmpsTest2.dimension
error(’The functions must have the same dimension’);

end

if mmpsTest1.domain ~= mmpsTest2.domain
error(’The functions must have the same domain’);

end

domain = mmpsTest1.domain;
dimension = mmpsTest1.dimension;

alfa1 = mmpsTest1.alfa; beta1 = mmpsTest1.beta;
terms1 = mmpsTest1.terms; form1 = mmpsTest1.form;
N_affine_terms1 = mmpsTest1.N_affine_terms;

alfa2 = mmpsTest2.alfa; beta2 = mmpsTest2.beta;
terms2 = mmpsTest2.terms; form2 = mmpsTest2.form;
N_affine_terms2 = mmpsTest2.N_affine_terms;

[H_domain,K_domain] = double(domain);

b = zeros(2,dimension+1);
b(:,dimension+1) = [1 -1]’;
H_domain_nPlus1 = [H_domain zeros(size(H_domain,1),1); b];
K_domain_nPlus1 = [K_domain; 1e4; 1e4];
domain_nPlus1 = polytope(H_domain_nPlus1,K_domain_nPlus1);

% Computation of the epigraph or hypograph of each affine
% component of the function mmps1

H_affineEpiHyp1 = {}; K_affineEpiHyp1 = {};
affineEpiHyp1 = polytope;
for i = 1:N_affine_terms1
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if strcmp(form1,’disj’)
H_affineEpiHyp1{i} = [H_domain zeros(size(H_domain,1),1);...

-alfa1{i} 1; b];
K_affineEpiHyp1{i} = [K_domain; beta1{i}; 1e4; 1e4];
% Hypograph of each affine component
affineEpiHyp1(i) = polytope(H_affineEpiHyp1{i},...

K_affineEpiHyp1{i});
else

H_affineEpiHyp1{i} = [H_domain zeros(size(H_domain,1),1);...
alfa1{i} -1; b];

K_affineEpiHyp1{i} = [K_domain; -beta1{i}; 1e4; 1e4];
% Epigraph of each affine component
affineEpiHyp1(i) = polytope(H_affineEpiHyp1{i},...

K_affineEpiHyp1{i});
end

end

TermArrayEpiHyp1 = {}; TermEpiHyp1 = {}; EpiHyp1 = polytope;
for i = 1:length(terms1)

TermArrayEpiHyp1{i} = [];
for j = 1:length(terms1{i})

TermArrayEpiHyp1{i} = horzcat(TermArrayEpiHyp1{i},...
affineEpiHyp1(terms1{i}(j)));

end
TermEpiHyp1{i} = and(TermArrayEpiHyp1{i});
% Computation of the epigraph or hypograph of the function mmps1
EpiHyp1 = [EpiHyp1,TermEpiHyp1{i}];

end

if strcmp(form1,’conj’)
Hypograph1 = mldivide(domain_nPlus1,EpiHyp1);

else
Hypograph1 = EpiHyp1;

end

% Computation of the epigraph or hypograph of each affine
% component of the function mmps2

H_affineEpiHyp2 = {}; K_affineEpiHyp2 = {};
affineEpiHyp2 = polytope;
for i = 1:N_affine_terms2

if strcmp(form2,’disj’)
H_affineEpiHyp2{i} = [H_domain zeros(size(H_domain,1),1);...

-alfa2{i} 1; b];
K_affineEpiHyp2{i} = [K_domain; beta2{i}; 1e4; 1e4];
% Hypograph of each affine component
affineEpiHyp2(i) = polytope(H_affineEpiHyp2{i},...
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K_affineEpiHyp2{i});
else

H_affineEpiHyp2{i} = [H_domain zeros(size(H_domain,1),1);...
alfa2{i} -1; b];

K_affineEpiHyp2{i} = [K_domain; -beta2{i}; 1e4; 1e4];
% Epigraph of each affine component
affineEpiHyp2(i) = polytope(H_affineEpiHyp2{i},...

K_affineEpiHyp2{i});
end

end

TermArrayEpiHyp2 = {}; TermEpiHyp2 = {}; EpiHyp2 = polytope;
for i = 1:length(terms2)

TermArrayEpiHyp2{i} = [];
for j = 1:length(terms2{i})

TermArrayEpiHyp2{i} = horzcat(TermArrayEpiHyp2{i},...
affineEpiHyp2(terms2{i}(j)));

end
TermEpiHyp2{i} = and(TermArrayEpiHyp2{i});
% Computation of the epigraph or hypograph of the function mmps2
EpiHyp2 = [EpiHyp2,TermEpiHyp2{i}];

end

if strcmp(form2,’conj’)
Hypograph2 = mldivide(domain_nPlus1,EpiHyp2);

else
Hypograph2 = EpiHyp2;

end

Hypographs_diff = [Hypograph1\Hypograph2 Hypograph2\Hypograph1];

% the 2 tests are identical if there are no numerical problems
if (Hypographs_diff == polytope) && Hypograph1 == Hypograph2

value = 1;
else

value = 0;
end

A.14 isequalPWA2MMPSovc

function value = isequalPWA2MMPSovc(pwa,mmps)

% value = isequalPWA2MMPSovc(pwa,mmps) Ok
% Returns true(1) if the functions are equivalent,
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% false(0) otherwise
% In this test the PWA function is converted into the
% equivalent MMPS one by the Ovchinnikov strategy.
% pwa, mmps -> PWA function and MMPS one that must be compared

% This function calls:
% testMMPS
% testPWA
% pwa2mmps
% mmps2pwa
% isequalPWA
% isequalMMPS

% This function is called by:
% PWAsimulationsGor

% A. Frau
% 19/7/07

% Test

mmpsTest = testMMPS(mmps);
pwaTest = testPWA(pwa);

% The dimension and the domain of the functions must be the same

if mmpsTest.dimension ~= pwaTest.dimension
error(’The functions must have the same dimension’);

end

if mmpsTest.domain ~= pwaTest.domain
error(’The functions must have the same domain’);

end

% Comparison between the MMPS function in input and the MMPS one
% obtained by the conversion of the PWA function given in input

mmpsT = pwa2mmps(pwaTest,mmpsTest.form,’Ovc’);
valueMMPS = isequalMMPS(mmpsTest,mmpsT);

% Comparison between the PWA function in input and the PWA one
% obtained by the conversion of the MMPS function given in input

pwaT = mmps2pwa(mmpsTest);
valuePWA = isequalPWA(pwaTest,pwaT);

% Output
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value = valueMMPS & valuePWA;

A.15 isequalPWA2MMPSgor

function value = isequalPWA2MMPSgor(pwa,mmps)

% value = isequalPWA2MMPSgor(pwa,mmps)
% Returns true(1) if the functions are equivalent,
% false(0) otherwise
% In this test the PWA function is converted into the equivalent
% MMPS one by the Gorokhovik-Zorko strategy.
% pwa, mmps -> PWA function and MMPS one that must be compared

% This function calls:
% testMMPS
% testPWA
% pwa2mmps
% mmps2pwa
% isequalPWA
% isequalMMPS

% This function is called by:
% PWAsimulationsGor
% MMPSsimulations

% A. Frau
% 19/7/07

% Test

mmpsTest = testMMPS(mmps);
pwaTest = testPWA(pwa);

% The dimension and the domain of the functions must be the same

if mmpsTest.dimension ~= pwaTest.dimension
error(’The functions must have the same dimension’);

end

if mmpsTest.domain ~= pwaTest.domain
error(’The functions must have the same domain’);

end
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% Comparison between the MMPS function in input and the MMPS one
% obtained by the conversion of the PWA function given in input

mmpsT = pwa2mmps(pwaTest,mmpsTest.form,’Gor’);
valueMMPS = isequalMMPS(mmpsTest,mmpsT);

% Comparison between the PWA function in input and the PWA one
% obtained by the conversion of the MMPS function given in input

pwaT = mmps2pwa(mmpsTest);
valuePWA = isequalPWA(pwaTest,pwaT);

% Output

value = valueMMPS & valuePWA;

A.16 continuousPWAgenerator

function pwaOut = continuousPWAgenerator(num)

% pwaOut = continuousPWAgenerator(num)
% Generator of partially random continuous PWA functions

% A. Frau
% 9/7/07

% This function calls:
% testPWA

% This function is called by:
% PWAsimulationsGor
% PWAsimulationsOvc

if nargin == 0
num = 1;

end

count = 0;
pwa = {}; pwaOut = {};

while(count <= num)
try

m = abs(rmat(1,1,3)) + 1; % inputs 1 < m < 4
n = abs(rmat(1,1,2)) + 1; % states 1 < n < 3
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% number of constraints in the MPLP 2 < n < 8
f = abs(rmat(1,1,6)) + 2;
% The meaning of the fields is explained in the MPT toolbox
matrices.H = rmat(1,m,5,0,0.8);
matrices.F = zeros(1,n);
matrices.G = abs(rmat(f,m,3,0,0.5));
matrices.W = abs(rmat(f,1,3,0,0.5)) + 1;
matrices.E = rmat(f,n,5,0,0.5);
matrices.bndA = [eye(n); -eye(n)];
matrices.bndb = 1e4*ones(2*n,1);
Pn = polytope; Fi = {}; Gi = {};
Options.debug_level = 0;
Options.verbose = 1;
Options.max_iter = 5; % default value is 20
[Pn,Fi,Gi,activeConstraints,Phard] = mpt_mplp(matrices,Options);
% the domain must be convex, otherwise it is discarded
if ~isconvex(Phard)

continue
end
for i = 1:size(Fi{1},1)

for j = 1:length(Pn)
pwa{count+i}.alfa{j} = Fi{j}(i,:);
pwa{count+i}.beta{j} = Gi{j}(i);
[pwa{count+i}.H{j},pwa{count+i}.K{j}] = double(Pn(j));

end
pwaOut{count+i} = testPWA(pwa{count+i});

end
count = count + size(Fi{1},1);
if count >= num

break
end

catch
continue

end
end

A.17 MMPSgenerator

function mmps = MMPSgenerator(num)

% mmps = MMPSgenerator(num);
% Generator of partially random MMPS functions

% This function is called by:
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% MMPSsimulations

% A. Frau
% 19/6/07

if nargin == 0
num = 1;

end

mmps = {};

for l = 1:num
dimension = 1 + abs(rmat(1,1,2)); % 1 <= dimension <= 3
N_affine_terms = 3 + abs(rmat(1,1,7)); % 3 < N_affine_terms < 10

% Generation of different affine components
alfa = {}; beta = {};
index = 0;
while (index == 0)

for i = 1:N_affine_terms
alfa{i} = rmat(1,dimension,10);
beta{i} = rmat(1,1,20);

end
index = 1;
for i = 1:N_affine_terms

for j = i+1:N_affine_terms
if all(alfa{i} == alfa{j}) && all(beta{i} == beta{j})

index = 0;
break

end
end
if index == 0

break
end

end
end

N_terms = 10; % max number of terms
cont = 0; count = 0; % initialization
terms = {}; k = 0;

while(1)
if cont == 0

k = k + 1;
if k > N_affine_terms

break
end
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combination = 1:k;
cont = 1;

else
[combination,cont] = next_comb(combination,N_affine_terms);
if cont == 0

continue
end

end
if abs(rmat(1,1,1,0,0.70)) == 1 % 20% of possibility to be 1

count = count + 1;
terms{count} = combination;

end
if count >= N_terms

break
end

end

if count == 0
terms{1} = 1:N_affine_terms; % there must be at least 1 term

end

mmps{l}.alfa = alfa;
mmps{l}.beta = beta;
mmps{l}.terms = terms;
if abs(rmat(1,1,1,0,0.25)) == 1 % 50% of possibility to be 1

mmps{l}.form = ’conj’;
else

mmps{l}.form = ’disj’;
end
mmps{l}.dimension = dimension;
mmps{l}.N_affine_terms = N_affine_terms;

end

A.18 rmat

function matrix=rmat(rows,cols,bound,el,pel)

% Syntax: matrix=rmat(rows,cols,bound,el,pel) or
% matrix=rmat([rows,cols],bound,el,pel)
%
% Purpose: Generates a random integer matrix.
% matrix=rmat(rows,cols,bound) returns a rows by cols matrix,
% the elements of which are random integers in the interval
% [-bound,bound].
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% matrix=rmat(rows,cols,bound,el,pel) returns a rows by cols
% matrix, the elements of which are random integers in the
% interval [-bound,bound], but some elements may be equal to
% el with a probability pel.
% matrix=rmat(size(a),bound,el,pel) returns a matrix that has the
% same size as a.
%
% Inputs: rows integer, optional (default value: 3)
% cols integer, optional (default value: rows)
% bound integer, optional (default value: 5)
% el real
% pel real, optional (default value: 0.2)
%
% Outputs: matrix rows by cols matrix

% Created: Nov 15, 1991 by Bart De Schutter
% Last revised: Oct 24, 2003 by Bart De Schutter

nargin_local=nargin;
if ( nargin_local < 1 ),

rows=3;
cols=3;
bound=5;

else
len_arg_1=length(rows);
if ( len_arg_1 > 2 )

error(...
’Use rmat(size(a),bound,el,pel) instead of rbmat(a,bound,el,pel).’);

elseif ( len_arg_1 == 1 )
if ( nargin_local < 2 )

cols=rows;
end;
if ( nargin_local < 3 ),

bound=5;
end;

else
nargin_local=nargin_local+1;
if ( nargin_local == 5 )

pel=el;
end;
if ( nargin_local >= 4 ),

el=bound;
end;
if ( nargin_local >= 3 )

bound=cols;
else

bound=5;
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end;
cols=rows(2);
rows=rows(1);

end;
end;
if ( rows*cols == 0 )

matrix=zeros(rows,cols);
return;

end;
bound=floor(bound);
matrix=floor((2*bound+1)*rand(rows,cols))-bound;
if ( nargin_local > 3 ),

if ( nargin_local == 4 ),
pel=0.2;

end;
index=find(rand(rows,cols)<pel);
matrix(index)=el*ones(size(index));

end;

A.19 makebits

function A = makebits(n)

% A = makebits(n)
% Produce all combinations with n elements of 0s and 1s

% This function is called by:
% pwa2mmpsConjOvc
% pwa2mmpsDisjOvc

r = [ 0:2^n-1 ]; A = [];
for i = 1 : n
A = [A;r];
end

c = [];
for i = 0 : n-1
c = [ 2^i c ];
end
c = c’;
B = [];
for i = 1 : 2^n
B = [B c];
end
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A = sign(bitand(A,B))’;

A.20 next comb

function [comb,cont]=next_comb(comb,n)

% Syntax: [comb,cont]=next_comb(comb,n)
%
% Purpose: Calculates the next combination of the natural numbers from 1
% to n, given the current combination comb. To get all possible
% combinations, the initial combination should be [1:k] with
% k the number of elements in the combination.
% Returns cont=0 if there are no more combinations.
%
% Inputs: comb k element integer vector
% n integer
%
% Outputs: comb k element integer vector
% cont boolean
%
% See also: all_combs

% Created: Oct 20, 1993 by Bart De Schutter
% Last revised

% This function is called by
% pwa2mmpsConjOvc
% pwa2mmpsDisjOvc
% MMPSgenerator

k=length(comb); max_el=[n+1-k:n]; index=find(comb==max_el); cont=1;
if ( length(index)==0 ),

comb(k)=comb(k)+1;
else

pos=min(index)-1;
if ( pos==0 ),

cont=0;
else

el=comb(pos)+1;
comb([pos:k])=[el:k-pos+el];

end;
end;
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A.21 PWAsimulationsOvc

% PWAsimulationsOvc
% This script file continuously generates continuous PWA
% function and checks if the transformations between the
% PWA into the equivalent MMPS and vice versa are correct

% A. Frau
% 7/9/07

m = [];
no_test = zeros(1,3);
count = 0; tested = 0; discarded = 0;
ok = 0; no = 0;
ok_dimension = zeros(1,3); no_dimension = zeros(1,3);
ok_affine_terms = zeros(1,10); no_affine_terms = zeros(1,10);

while(1)
try
% one group of continuous PWA functions with the same
% polyhedral partition;
pwa_set = continuousPWAgenerator;

for i = 1:length(pwa_set)
% number of affine terms between 3 and 10
if pwa_set{i}.N_affine_terms <= 2 ||...

pwa_set{i}.N_affine_terms >= 11
continue

end
mmpsc = pwa2mmps(pwa_set{i},’conj’,’Ovc’);
mmpsd = pwa2mmps(pwa_set{i},’disj’,’Ovc’);
pwac = mmps2pwa(mmpsc);
pwad = mmps2pwa(mmpsd);
count = count + 1;
m(count,1) = isequalPWA(pwa_set{i},pwac);
m(count,2) = isequalPWA2MMPSovc(pwad,mmpsc);
m(count,3) = isequalMMPS(mmpsc,mmpsd);
tested = tested + 1;
for j = 1:3

if m(count,j) == 0
no_test(j) = no_test(j) + 1;

end
end
if all(m(count,:))

ok = ok + 1;
ok_dimension(pwa_set{i}.dimension) =...

ok_dimension(pwa_set{i}.dimension) + 1;
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ok_affine_terms(pwa_set{i}.N_affine_terms) =...
ok_affine_terms(pwa_set{i}.N_affine_terms) + 1;

else
no = no + 1;
no_dimension(pwa_set{i}.dimension) =...

no_dimension(pwa_set{i}.dimension) + 1;
no_affine_terms(pwa_set{i}.N_affine_terms) =...

no_affine_terms(pwa_set{i}.N_affine_terms) + 1;
end
disp(’.’);

end
catch

discarded = discarded + 1;
disp(lasterr);

end
end

A.22 PWAsimulationsGor

% This script file continuously generates continuous PWA
% function and checks if the transformations between the
% PWA into the equivalent MMPS and vice versa are correct

% A. Frau
% 7/9/07

m = [];
no_test = zeros(1,3);
count = 0; tested = 0; discarded = 0;
ok = 0; no = 0;
ok_dimension = zeros(1,3); no_dimension = zeros(1,3);
ok_affine_terms = zeros(1,10); no_affine_terms = zeros(1,10);

while(1)
try
% one group of continuous PWA functions with the same
% polyhedral partition
pwa_set = continuousPWAgenerator;

for i = 1:length(pwa_set)
if pwa_set{i}.N_affine_terms <= 2 || pwa_set{i}.N_affine_terms >= 11

continue
end
mmpsc = pwa2mmps(pwa_set{i},’conj’,’Gor’);
mmpsd = pwa2mmps(pwa_set{i},’disj’,’Gor’);
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pwac = mmps2pwa(mmpsc);
pwad = mmps2pwa(mmpsd);
count = count + 1;
m(count,1) = isequalPWA(pwa_set{i},pwac);
m(count,2) = isequalPWA2MMPSgor(pwad,mmpsc);
m(count,3) = isequalMMPS(mmpsc,mmpsd);
tested = tested + 1;
for j = 1:3

if m(count,j) == 0
no_test(j) = no_test(j) + 1;

end
end
if all(m(count,:))

ok = ok + 1;
ok_dimension(pwa_set{i}.dimension) = ...

ok_dimension(pwa_set{i}.dimension) + 1;
ok_affine_terms(pwa_set{i}.N_affine_terms) = ...

ok_affine_terms(pwa_set{i}.N_affine_terms) + 1;
else

no = no + 1;
no_dimension(pwa_set{i}.dimension) = ...

no_dimension(pwa_set{i}.dimension) + 1;
no_affine_terms(pwa_set{i}.N_affine_terms) = ...

no_affine_terms(pwa_set{i}.N_affine_terms) + 1;
end
disp(’.’);

end
catch

discarded = discarded + 1;
disp(lasterr);

end
end

A.23 MMPSsimulations

% This script file continuously generates MMPS function and check
% if the transformations between the MMPS into the equivalent
% continuous PWA and vice versa are correct

% A. Frau
% 13/9/07

m = [];
no_test = zeros(1,3);
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count = 0; tested = 0; discarded = 0;
ok = 0; no = 0;
ok_conj = 0; ok_disj = 0;
no_conj = 0; no_disj = 0;
ok_dimension = zeros(1,3); no_dimension = zeros(1,3);
ok_affine_terms = zeros(1,10); no_affine_terms = zeros(1,10);

while(1)
try

mmpsOut = MMPSgenerator;
mmps = testMMPS(mmpsOut{1});
pwa = mmps2pwa(mmps);
mmpso = pwa2mmps(pwa,mmps.form,’Ovc’);
mmpsg = pwa2mmps(pwa,mmps.form,’Gor’);
count = count + 1;
m(count,1) = isequalMMPS(mmps,mmpso);
m(count,2) = isequalMMPS(mmps,mmpsg);
m(count,3) = isequalPWA2MMPSgor(pwa,mmpso);
tested = tested + 1;
for j = 1:3

if m(count,j) == 0
no_test(j) = no_test(j) + 1;

end
end
if all(m(count,:))

ok = ok + 1;
ok_dimension(mmps.dimension) = ...

ok_dimension(mmps.dimension) + 1;
ok_affine_terms(mmps.N_affine_terms) = ...

ok_affine_terms(mmps.N_affine_terms) + 1;
if strcmp(mmps.form,’disj’)

ok_disj = ok_disj + 1;
else

ok_conj = ok_conj + 1;
end

else
no = no + 1;
no_dimension(mmps.dimension) = ...

no_dimension(mmps.dimension) + 1;
no_affine_terms(mmps.N_affine_terms) = ...

no_affine_terms(mmps.N_affine_terms) + 1;
if strcmp(mmps.form,’disj’)

no_disj = no_disj + 1;
else

no_conj = no_conj + 1;
end

end
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disp(’.’);
catch

discarded = discarded + 1;
disp(lasterr);

end
end

A.24 PWA example

% PWA_example

PWA_ex.alfa = {0,3,-1,-3,4,-4,3,1,-3};
PWA_ex.beta = {3,24,0,-3,4,4,-3,0,24};
PWA_ex.H = {{[-1;1],[-1;1],[-1;1],[-1;1]},[-1;1],[-1;1],...

[-1;1],[-1;1],[-1;1],[-1;1],[-1;1],[-1;1]};
PWA_ex.K = {{[20;-7],[3;-2],[-2;3],[-7;20]},[7;-6],[6;-3],...

[2;-1],[1;0],[0;1],[-1;2],[-3;6],[-6;7]};

% Gorokhovik_Zorko strategy
MMPS_ex_GOR = pwa2mmps(PWA_ex,’disj’,’Gor’);

% Ovchinnikov strategy
MMPS_ex_OVC = pwa2mmps(PWA_ex,’disj’,’Ovc’);

A.25 MMPS example

% MMPS_example

MMPS_ex.alfa = {0,3,-1,-3,4,-4,3,1,-3};
MMPS_ex.beta = {3,24,0,-3,4,4,-3,0,24};
MMPS_ex.terms = {[7 8 9],[2 3 4],[5 6],[1 7],[1 4]};
MMPS_ex.form = ’disj’;
MMPS_ex.A = [-1;1];
MMPS_ex.b = [20;20];

PWA_ex_Out = mmps2pwa(MMPS_ex);
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zur Algebra und Geometrie/Contributions to Algebra and Geometry, 43(1):297–
302, 2002.

[15] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1972.

[16] E.D. Sontag. Nonlinear regulation: the piecewise linear approach. IEEE Trans-
actions on Automatic Control, 26(2):346–357, April 1981.

[17] A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hybrid
systems. IEEE Transactions on Automatic Control, 43:483–490, 1998.


