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Abstract

The paper presents a two-phase design technique for semiactive suspensions. In
the first phase, we use a procedure proposed by Yoshida et al. to compute a target
active control law that can be implemented by Optimal Gain Switching. This control
law is such that the force generated by the suspension system is bounded within a
set U. In the second phase, we approximate this target by controlling the damper
coefficient of the semiactive suspension. We also compute the region of the state
space in which the force generated by the semiactive suspension is still within the set
U. The results of several simulations show that the use of a semiactive suspension

leads to minimal loss with respect to optimal performance of an active suspension.
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1 Introduction

The design of active suspensions for road vehicles aims to optimize the performance of

the vehicle with regard to comfort, road holding, and rideability.

In an active suspension there are no passive elements, such as dampers and springs.
The interaction between vehicle body and wheel is regulated by an actuator of variable
length. The actuator is usually hydraulically controlled and applies between body and
wheel a force that represents the control action generally determined with an optimization

procedure.

Active suspensions [3, 8, 14] have better performance than passive suspensions. However,
active suspension systems are rather complex, since they require several components such
as actuators, servovalves, high-pressure tanks for the control fluid, sensors for detecting the
system state, etc. The associated power, that must be provided by the vehicle engine, may
reach the order of several 10 kW [6] depending on the required performance. Furthermore,

these suspension systems have a high cost.

As a viable alternative to a purely active suspension system, the use of semiactive sus-
pensions has been considered [1, 4, 6, 7, 9, 12]. Such a system consists of a spring whose
stiffness is constant and of a damper whose characteristic coefficient f can be made to
change within an interval [ fiin, fmax| controlling the opening of a valve. The time required

to update f is usually less than 1072s.

A semiactive suspension is a valid engineering solution when it can reasonably approxi-
mate the performance of the active control. In fact, a semiactive suspension requires a
low power controller than can be easily realized at a lower cost than that of a fully active

one. In general, a semiactive suspension design consists of two phases [1]:

e Design a good active law, u(-) to be considered as a “target”.

e Design the semiactive suspension so that its control law ug(-) approximates as close

as possible the target law.

In the following two subsections, we discuss in detail these two phases.



1.1 Target active law

Thompson [14] was the first to explore the use of optimal control techniques to design an
active law so as to minimize a performance index of the form J = Y7 27 (k)Qxz(k) +
ru®(k), where x is the system state and u the control force provided by the actuator. This
design technique is called LQR, [10, 11] and has also been used by other authors [1, 3, 12].
I[ts two main advantages are: a) the optimal solution can be easily computed solving a

Riccati equation; b) it takes the form of a state feedback law with constant gains.

We observe that the performance of a suspension system is related to the minimization
of the term 27 Qz. The presence of the term ru? imposes a penalty on the magnitude of

the control force but cannot limit its maximal value within a given bound.

In this paper, we present a design technique in which we assume as optimal the control
law u*(-) that minimizes a performance index of the form J = Y 7z (k)Qz(k) under
the constraint |[u(k)| < wmax. The minimization of this index with a suitable choice of @
leads to a good performance. The constraint on the control input bounds the acceleration
of the sprung mass — at least in nominal operating conditions, i.e., when the linear model
of the suspension is valid — so as to ensure the comfort of the passengers. Furthermore,
this constraint limits the maximal force required from the controller, i.e., it leads to the

choice of a suitable actuator.

The main problem with this approach is that in general the law u*(-) cannot be imple-
mented as a feedback law with constant gains and that it is difficult to compute [15].

Thus its implementation in an on-board controller is unfeasible.

Yoshida et al. [16] have proposed, however, a methodology to approximate this law by
means of an adaptive controller that switches between different constant state feedback
gains. Fach K, is the state feedback gain that gives the optimal feedback law that
minimizes a performance index of the form J, = Y 77 pz” (k)Qxz(k) + ru®(k), where
the weight p belongs to a finite discrete set. We call this law Optimal Gain Switching
(OGS) and denote it by upgs(+). Yoshida provides a simple algorithm for choosing the
suitable weight p as a function of the present system state while always ensuring that
luocs (k)| < tmax holds. When the system state is far from the origin a small p is selected,

while for small disturbances a large p may be used.

The results of numerical simulations [13], show that for the case of a quarter car sus-



pension the active control laws u*(-) and upgs(+) are very similar and the corresponding
responses of the suspension system are also almost identical. When compared with the
LQR controller, the OGS controller has two fundamental advantages. Firstly, it ensures a
bound on the magnitude of the force that the actuator needs to provide. Secondly, while
the LQR controller realizes a particular trade-off between performance (term z7 Qz) and
comfort (term ru?), the OGS controller adapts the trade-off to different road conditions
and car velocities, applying different control laws depending on the magnitude of the

disturbance.

1.2 Semiactive approximation

On the base on the previous analysis, we propose to choose as target for the semiactive
control law u,(-) the law upgs(-). At each sampling instant £ the controller should select

the damper coefficent f in the set [fumin, fmax] SO as to minimize (upgs(k) — us(k))z.

In
this case it may happen that the condition |us(k)| < Umax is violated. We show how to
compute the state space region in which this condition holds, and we see that in practical

cases this region is large enough to contain most of all possible evolutions of the system.

Finally we compare the performance of the semiactive suspension system with that of an
active suspension that implements the OGS controller. Different simulations have been
carried out, considering the presence of input disturbances caused by the road profile or
the presence of initial conditions on the state. The results of these simulations show that
the semiactive suspension performes reasonably well, and is a good approximation of the

active suspension.

The semiactive control law we derive in this paper can be implemented with standard tools
of today technology. The control algorithm requires simple computations that a modern
microprocessor is capable of executing within the sampling period we have chosen (1072s).
The computation of the semiactive law requires the knowledge of the system’s state.
Although not all state variables (and the external disturbance is also a state variable) can
be measured, the system is observable and thus an observer can be designed to estimate
all state variables. We briefly comment on this point, but the design of an observer is not

addressed in this paper.



1.3 Advantages of an adaptive suspension

The choice of the OGS law as a target, leads to a suspension control law that changes to

“optimally” adapt to different road conditions.

The need for adaptive suspensions is deeply felt in many applications such as Sport Utility
Vehicles (SUV), a class of vehicles that is gaining more and more market shares both in
USA and Europe. It is desirable that such a vehicle behaves as a normal car on-road,

while offering the same performance of a off-road vehicle on a rough profile.
These requirements can be expressed as follows.

In nominal conditions on-road (small disturbances) the suspension control law should lead
to energic actions to keep the asset. In practice, this corresponds to a choice of a damper

coefficient f close to fiax-

Off-road, on the contrary, the suspension system is subject to high suspension deformation
and high deformation velocity. To avoid excessive forces, a choice of a damper coefficient

f close to fuin is suitable.

The approach prosed in this paper answers to this need, because it leads to design a sus-

pension that is not too soft for small disturbances, and not too stiff for large disturbances.

We stress that this control law should only be operative during nominal conditions, and
not in emergency conditions when the vehicle is subject to abrupt changes in direction
and velocity. In this case, of course, the control law we propose could be excluded and
the fmax value for the damper coefficient should be chosen by a standard safety system,

as already existing on many commercial vehicles.

A similar approach was also presented in [5] where a modified OGS technique was used
to design a tandem active-passive suspension systems. In this design two constraints on
the control force were considered: both the total force applied between wheel and body,
and the fraction of the force generated by the actuator should never exceed given bounds.
The new constraint on the active force leads to the dimensioning of a suitable actuator

to be added in parallel to the passive suspension.

This paper is structured as follows. In Section 2 we present the dynamical model of
the quarter car suspension system considered in this work. In Section 3 we recall the

OGS control design as presented by Yoshida. In Section 4 we show how it is possible to



Figure 1: Scheme of two degree-of-freedom suspension: (a) active suspension; (b) semiactive

SUSpeENSIon.

approximate the OGS law with a semiactive suspension. We also define the state space
region in which the semiactive force is garanteed to never exceed the bound up.x. In
Section 5 we present the results of three different simulations. In Appendix we present
and prove a lemma that gives necessary and sufficient conditions for deriving the state
space region in which the semiactive law, that approximates an active law bounded to be
in U, is still within U.

2 Dynamical model of the suspension system

We refer to the suspension with two degrees of freedom schematized in Figure 1.a). We
used the following notation:
e M is the equivalent nonsprung mass consisting of the wheel and its moving parts;

e M, is the sprung mass, i.e., the part of the whole body mass and the load mass

pertaining to only one wheel;
e 1(t) is the nonsprung mass displacement at time ¢ with respect to a fixed reference;
e 15(t) is the displacement of the sprung mass with respect to the same fixed reference;
e 13(t) = &1(t) is the velocity of the nonsprung mass;
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e 14(t) = i5(t) is the velocity of the sprung mass;

e ), is the elastic constant of the tire, whose damping characteristics have been ne-
glected. This is in line with almost all researchers who have investigated synthesis

of active suspensions for motor vehicles as the tire damping is minimal,
e u(t) is the control action, i.e., the force produced by the actuator;

e 1((t) is the function representing the disturbance, which simulates the longitudinal

profile of the road.

It is readily shown that the state variable mathematical model of the system under study
is given by

i(t) = Ax(t) + Bu(t) + Lao(t) (1)
where z(t) = [z1(t)z2(t)z3(t)x4(t)]" is the state, whereas the constant matrices A, B and

L have the following structure:

0 010 0 0
0 00 1 0
A= At B = L k= At
i 000 4 —
0 000 —i5 0

The disturbance ((t) that takes into account the longitudinal road profile and also de-
pends on vehicle speed is assumed to be stochastic and may be characterized by its power

spectral density (PSD) distribution function.

Here, the road roughness characteristics are expressed by a signal whose PSD distribution

function is [8]
cV
) = e @)

where ¢ = (0?/7)a. o* denotes the road roughness variance and V' the vehicle speed,
whereas the coefficients ¢ and a depend on the type of road surface. The product is the

power spectrum of the white noise.

The signal xy(t), whose PSD is given by (2), may be obtained as the output of a linear
filter expressed by the differential equation

Zo(t) = —aVio(t) + w(t). (3)
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The problem of stochastic optimal control is usually formulated considering an augmented
system whose state variables also contain z,(t) while the disturbance is represented by

the white noise w(t).
Let xy(t) = x5(t) and by taking into account (3), the augmented system is [3]

#(t) = Az (t) + Bu(t) + Lw(t) (4)

;z:m.

The pair (A, B) is completely controllable, and the filter represented by (3) is asymptot-
ically stable (aV > 0); therefore, the pair (A, B) is stabilizable.

where Z(t) = [z, (t)z2(t)x3(t)z4(t)z5(t)]" and

A L
0 —aV

B
0

v B

?

The control law we will design in the following sections requires the knowledge of the
system state Z. Since not every component of Z(¢) is directly measurable, we reconstruct
the state through an appropriate state observer. To do this, we choose a suitable matrix

C for the output equation

y(t) = Cz(1). (5)
If we assume [3]
é:[1—1000] »
0 0 010

which correspond to measuring the suspension deformation and the sprung mass velocity,

the observability of the pair (A, C) is ensured.

The control approach we will follow, makes use of a discrete-time state space model. Thus

we choose a sampling interval T and discretize equation (4) to obtain [11]

#(k +1) = Ga(k) + Hu(k) + Ww(k) (7)

~ T ~ ~ T ~ ~
G = eAT; H = (/ eATdT> B, W= </ eATdT> L.
0 0

It is known [11] that a system that is stabilizable and observable in the absence of sam-

where

pling maintains these properties after the introduction of sampling if and only if, for
every eigenvalue of the characteristic equation for the continuous-time control system,
the relationship

Re{\} = Re{)\;} (8)
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implies
2nm

In the actual case the set of eigenvalues of A are:

y /\t 1/2 N )\t 1/2
—aV, 0, 0, Z(E) , =1 (E)

so it is necessary to choose a sampling period T, such that:

1/2
T #nrm <A)\4—:> : (10)

3 OGS design of an active suspension

The design of the active suspension requires determining a suitable control law u(-) for

system (7).

We consider as target the control law u*(-) that minimizes a performance index of the

form:

7= Y (i), (1)
k=0
(with @ positive semidefinite) under constraint (7) and constraint

lu(k)] < Umax (k> 0). (12)

It is well known [15] that the optimal solution u*(-) does not correspond in general to a

feedback control law and furthermore its computation is quite burdensome.

Yoshida et al. [16] have proposed a simple procedure that well approximates the optimal
control law u*(-) by switching among feedback control laws whose gains can be computed
as solution of a family of LQR problems. We call this procedure Optimal Gain Switching
(OGS) and the corresponding feedback law will be denoted uogs(-).

Here we briefly outline the OGS procedure. Let us consider a family of performance

indexes
o0}

Jp =3 [p#" (1)Q&(k) + ru*(k)] (13)

k=0



For a given value of p the unconstrained control law u,(-) that minimizes J, can be written

uy(k) = K, (k)

where the gain matrix K, can be computed by solving an algebraic Riccati equation [10].

Furthermore, for a given value of p it is possible to compute a linear region I, in the state

space such that for any point z, within this region the following equation holds:
lu, (k)| = |K,,G”;j0| < Umax, (k> 0) (14)

where G, = G — HK,. Thus, if we consider the system (7) with input noise w(k) = 0,
feedback law u, and an initial state 7o € I', we can be sure that in its future evolution

the value of the control input will always satisfy equation (12).

Yoshida has shown that it is possible to determine suitable matrices Z, such that o € I',
if and only if —tina < Z,T0 < Umax, Where Upyay is a column vector whose components

are all equal to upa,. In effect,

_ K, -
Z p = Kp.Gp
K,Gir

so we only need to verify equation (14) for the first j, + 1 sampling instants. The value

of j, is a function of p and can be computed solving a linear programming problem.
The control procedure consists of two phases.

During the off-line phase, we choose a finite set of m values for p, namely {p1, -, pm}-
For each p; we compute the corresponding gain matrix K, and the linear region matrix
Z

Pi

During the on-line phase, at each sampling instant £ > 0 we choose a suitable gain. This
requires measuring the present state z(k), and determining p(k) = max{p; | z(k) € [',, }.

The suitable feedback gain to be applied at time instant % is then Ky, i.e., we choose

uoas(k) = —Kp(k)j(lf)- (15)

It has been shown by Yoshida that if no disturbance is acting on the system, then p(k) is

a nondecreasing function of k. This is not the case, however, in the model given by (7),
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because of the presence of w(k). Thus, in general it may be necessary at a given sampling

instant, to switch from one value of p to a smaller one.
It is important to highlight the advantages and limits of the OGS control scheme.

It has been shown by Yoshida that the control law upgs(+) leads to values of the perfor-
mance index (11) that are close the absolute minimum given by the optimal control law
u*(+). Furthermore in [13] it was shown that the performance in terms of state evolution,
resulting from the two laws are very close. Thus, we think that the OGS control law gives

a very good feedback approximation of the optimal law.

In [13] it was noted that a good choice of the values p; may influence the performance of
the OGS law. As m increases, the approximation is better, but the procedure becomes

computationally more intensive.

The computational complexity of the OGS control law requires some comments. The
most burdensome part of this procedure is the off-line phase, where the matrices Z,,
are computed. During the on-line phase, it is necessary at each sampling instant & to
compute at most m matrix products Z,,Z(k). The number of rows of the different Z,, is
not constant and is equal to j,, +1. In Section 5, we will discuss the number of elementary

operations required to compute the OGS control law at each sampling instant.

4 Semiactive approximation of the OGS law

In this section we show how the OGS law, that requires an actuator, may be approximated
by a semiactive suspension, whose varying parameter is the characteristic coefficient of

the damper f.

In Figure 1.b, we have represented a conventional semiactive suspension composed of a

spring with elastic constant ), and of a damper with adaptive characteristic coefficient

f.
The effect of this suspension is equivalent [3] to that of a control force

us(k) =[ Xy =Xs +f —f 0]z(k). (16)
Note that, as f may vary, u,(k) is both a function of f and of (k).

In general, f can only take values in a real set [fiin, fmax]- We propose to choose at each
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step k the value of f(k) to minimize the difference

F(f,2(k)] = (uocs(k) — us(k))*. (17)

A similar approach, in which an active control law is approximated by a semiactive sus-
pension by minimizing the square difference between the active and semiactive laws was

presented in [1].

Let us first assume that x3(k) # x4(k); then the value f*(k) such that F[f*(k),z(k)] =0

is

£ () = uogs(k) + s (w2(k) — 21(K)) _ _uogs(k) + AsAx(k)
x4(k) — x3(k) Awv(k)

where Ax = x5 — x; is the suspension deformation and Av = x4, — x3 is its rate of change.

(18)

It is easy to see that in this case

fma.x lf f*(k) > fma.x
f(k) = fer[r;"ln afrg ]F[fvj(k)] = f*(k) lf f*(k) € [fmin; fmax] : (19)
e fmin lf f*(k) < fmin

When z3(k) = z4(k), regardless of the values of f the damper does not give any contri-
bution to us(k). Thus, in this case we assume that if £ > 0 then f(k) = f(k — 1), i.e.,

the value of the damper coefficient is not updated, while if £ = 0 we arbitrarily choose

F(0) = frmax-

We would like now to discuss an interesting point. The OGS law was designed to approx-
imate the optimal target u*; this procedure ensured that the constraint (12) was always
satisfied, i.e., the force upgs acting on the body of the vehicle does never exceed in mag-
nitude the value up,,. In this section, we are discussing a semiactive approximation wu,
of the OGS law; in this case, however, the constraint (12) may be violated in some state

space regions.

It is possible to prove that, regardless of the value of upgg, the approximation w4 satisfies
constraint (12) if and only if Az and Av assume particular values.
Proposition 1. Let Az = x5 — x; and Av = x4 — x3. The relation |ug| < upax holds if

and only if (Ax, Av) belongs to one of the following regions.

Umax + )\SA‘,I; Umax — )\sAaj

e Region 1: Az € (—oo0, —@), and Av € [—

.

)\s fmax ’ fmin
max max max )\SA max ~ )\SA
e Region 2: Ax € [—u)\ ,UA |, and Av € [—u f+ x, “ 7 x]
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Region 1

- Umax

- Umax

Figure 2: Regions of the state space defined in Proposition 1.

max max )\sA max ~ )\SA
e Region 3: Aare(u ,00), and Av € [—u i x)u x]
)‘s fmin fma.x
Proof. Follows from Lemma 2 in appendix. O

The regions defined in the previous proposition can be drawn in the Az — Awv plane and

are shown in Figure 2.

5 Applicative example

In this section we discuss the results of several simulations. First, however, we explain

the choices we have made for the various parameters.

The proposed procedure has been applied to the quarter car suspension shown in Figure 1,
with values of the parameters taken from [14]: M; = 28.58Kg, M, = 288.90Kg, \; =
155900N/m. The value of \; = 14345N/m has been taken from [2].
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To define completely the augmented matrix A it is necessary to assume reference values
for a and V. In the following we have taken o = 0.15m~' and V = 30m/s. These
values of o and V' have been used in [8] to describe an asphalt road profile. Note that
these are nominal design parameters according to which our procedure determines the
gain feedbacks for the active control. In the actual simulation the road profile that is
creating the disturbance may well be different (e.g., it may correspond to uneven roads

as in simulation 2 below).

The control approach we have followed in this paper makes use of a discrete-time state
space model. The choice of the sampling interval 7" needs some warrant. We have assumed
T = 0.01s that is to say a sampling frequency equal to wy = 27/T ~ 6 - 10°rad/s. This is

essentially due to four important reasons.

e The bandwidth of the passive suspension system described by eq. (1) is wy < 2 -
10%rad/s. A sampling frequency of w, ~ 6 - 10°rad/s is in good agreement with

Shannon’s theorem [11] that requires wy > 2wy,

1/2
e This choice of sampling interval is consistent with eq. (10). In fact, 27 (]K[—tl) ~
8.5 -1072s and thus we can be sure that the sampled system will maintain the

properties of stabilizability and observability.

e We have observed that an increment in the sampling frequency produces a corre-
sponding increment in the various j, which characterize the linear regions. As j,
increases, the time to compute at each step the target control force upgs(k) also
increases. In fact, to determine the value of p associated to a given state z(k) we
need to compute Z,%(k), where the matrix Z, has j, + 1 rows. For the chosen value

of T' we have that j, < 100 for all p’s, as shown below.

The clock time of standard microprocessors that may be used to implement such a
controller is of the order of 100ns, and since each addition/multiplication requires
up to a few clock cycles, we are sure that the sampling time does not imposes any

real time constraint.

e To change f the controller must change the opening of the damper valve. Present
technology impose a limit of about 102Hz on the updating frequency of the damper

coeflicient.

We have taken umax = —umin = 3000N that is slightly less than the total weight resting
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0 1 2 3 |4 |5 |6 |7/ 8 9 10
pi 1001101105 | 1 |4 |20|50]100 ]| 1000 | 10°
Jp; || 88 | 97 | 46 | 4238 |36 |35 | 35 | 35 | 34

Table 1: Weight coefficients p and relative indices j,.

on one wheel. A control force of higher magnitude may cause loss of contact between
wheel and road. Furthermore, this constraint also limits the acceleration of the sprung

mass and this is a necessary condition for the comfort of passengers.

The matrices ) and R, taken from [14] and fitted to the new state space, are:

(11 —-1.00 0

-1 1 000
Q= 0 00O0]|;r=08-10".

0 000

| 0 0 00 0

These weights, realizing a trade-off between road holding and comfort, lead to a good

performance.

Another important aspect of the proposed design procedure deals with the choice of the
weighting coefficients {p1, p2, ..., pm}. The weighting coefficient p; should be determined
such that the linear region I', contains all initial conditions of interest. The weighting
coefficient p,, should be selected such that the region I', ~covers small disturbances or
very small system noises. The other weighting coefficients have been chosen, following
Yoshida [16] such that the ratio of the 2-norm for two adjacent gains K, is ~ 1.6 + 1.8.
We assumed m = 10 as it seems a good trade-off between computational efficiency and
performance. The chosen values are shown in the table below. It can be noted that in

this case j, is a nonincreasing function of p.

Finally we have assumed fi, = 800Ns/m and fi.x = 3000Ns/m. From these numerical
values we can observe that the regions of the state space defined in Proposition 1 are not
very restrictive and the evolution of the system is almost always in region 2. In fact we

have: Umax/As =~ 20cm and Umayx/ fin = 4m/s.

To show the performance of our semiactive suspension design, we have simulated three

different situations.
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5.1 Simulation 1

In the first simulation we considered null initial conditions, i.e., Z(0) = 0.

We assumed that the only disturbance acting on the system is caused by an asphalt road
profile of the same type of the one that was used to derive the augmented matrix A.
The corresponding parameters, as discussed above, are [8]: o = 0.15m™ !, V = 30m/s, e

o = 9mm?.
The results of this simulation are shown in Figure 3.

Figure a) shows the road profile x5 along with the wheel x; and sprung mass x5 displace-
ment. It is possible to observe that the semiactive suspension filters the high frequencies

smoothing the movement of the sprung mass.

Figures b) and c¢) compare the wheel and sprung mass displacement of the semiactive
suspension with that of a completely active one. The two curves are quite similar, that
is to say we have not lost in performance by substituting the actuator with the adaptive

passive suspension.

Figure d) compares the semiactive control force u, with the reference active force uf, .
The value of ug,;¢ at a sampling instant &, is the value of the active force computed by the
OGS controller for the given z(k). The two values are different only when f saturates. We
also note that u, is always bounded in magnitude by um.,: this is because the evolution

in the plane Ax—Awv is always contained in region 2.
Figure e) shows the value of damper coefficient f as a function of time.

It is important to underline that the system evolution is always internal to ', , because

P10

the small value of the disturbance does not move the state vector too far from the origin.

5.2 Simulation 2

In the second simulation we considered again zero initial conditions.

We assumed, however, that the disturbance acting on the system be caused by a very
rough road profile. Crosby and Karnopp [4, Fig. 10] gave the power spectral density
for such an input disturbance. We were able to obtain a similar power spectral density

by choosing in eq. (2) the following parameter values: a = 0.2m™!, ¢*> = 0.1m? and
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Figure 3: The results of simulation 1. (a) E%?olution of zo (dotted), z1 (continuous) and xs
(dashed) for the semiactive suspension. (b) Evolution of x1 for the semiactive (thick) and active
(thin) suspension. (c) Evolution of xo for the semiactive (thick) and active (thin) suspension.
(d) Evolution of semiactive force ug (thick) and reference active force ug,eg (thin). (e) Evolution

of the damper coefficient f of the semiactive suspension.



V = 20m/s.
The results of this simulation are shown in Figure 4.
Figures from a) to e) are similar to those of Simulation 1.

Figure f) shows the values of the index i of the linear regions I, as a function of time. The

disturbance is sufficiently large to move the state away from I', , although the evolution

P10
is always contained within I',,.

5.3 Simulation 3

In the third simulation we considered an initial state different from zero and no distur-
bance. We assumed 7(0) =[0.015 0.1 0 0 0]%.

The results of this simulation are shown in Figure 5.

Figures a) and b) compare the wheel and sprung mass displacement of the semiactive

suspension with that of a completely active one. The two curves are quite similar.

Figure c¢) compares the semiactive control force u; with the reference active force uf, .

Figure d) shows the value of damper coefficient f as a function of time.

Figure e) shows the system evolution in the plane Az—Awv. We observe that this evolution
is contained in region 2 (as defined in Proposition 1). This means that |us| never exceeds

the value tny,y, as also shown in Figure c).

Figure f) shows the values of the index ¢ of the linear regions I',, as a function of time.

6 Conclusions

This paper presents a two-phase design technique for semiactive suspensions.

In the first phase, a procedure proposed by Yoshida et al. is used to compute a target
active control law that can be implemented by Optimal Gain Switching. This control law

is such that the force generated by the suspension system is bounded within a set U.

In the second phase, this target is approximated by controlling the damper coefficient of

the semiactive suspension. We have also computed the region of the state space in which
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Figure 4: The results of simulation 2. (a) E%}%lution of zo (dotted), z1 (continuous) and xs
(dashed) for the semiactive suspension. (b) Evolution of x1 for the semiactive (thick) and active
(thin) suspension. (c) Evolution of xo for the semiactive (thick) and active (thin) suspension.
(d) Evolution of semiactive force ug (thick) and reference active force ug,eg (thin). (e) Evolution
of the damper coefficient f of the semiactive suspension. (f) Values of the index i of the linear

regions ', during the evolution of the semiactive suspension.
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evolution in the Az—Awv plane. (f) Values of the index i of the linear regions I',, during

the evolution of the semiactive suspension.



the force generated by the semiactive suspension is ensured to be within the set U.

The results of several simulations have shown that the use of a semiactive suspension

leads to minimal loss with respect to the performance of an active OGS suspension.
Appendix

Let us consider a semiactive suspension whose damper coefficient f is adapted so that the
suspension force ug, given by eq. (16), is as close as possible to a reference active force w.

This can be done with the procedure outlined in egs. (18) (19) where we set upgs = u.

We assume that u € U, where U = [tmin, Umax]- We also assume that f € [fiin, fmax]. The
following lemma gives necessary and sufficient conditions for ug to belong to the set U as
well. This is done by finding suitable constraint sets for the evolution of the suspension
deformation Ax = x5 — x7 and of its velocity Av = x4 — x3.

Lemma 2. The relation u; € U holds if and only if (Az, Av) belongs to one of the
following regions.

max max )\SA min AsA
e Region 1: AxE(—oo,—u ), and AvE[—u + T Umin x

).

)\s fmax ’ fmin
max min max ASA min )\sA
e Region 2: Ax € [—u)\ ,—u)\ |, and Av € [—u f+ x,_u jj x]
min max )\sA min ASA
e Region 3: Az € (—u)\ ,+00), and Av € [—u f+ x, - f+ x]

Proof. We will give a geometrical proof relative to the case AzA; < upi, that corresponds

to region 1. The proofs for the other cases can be derived with a similar reasoning.

Let us consider Figure 6. The thick line represents the generic curve f*(u) — as given by
(18) setting upgs = u — for a given value of Az and Av. The striped segment on the

horizontal axis represents the domain of u, for the line f* considered, as u ranges in U.

If —Az)A; < Upin, the intersection —A\;Az of f* with the horizontal axis lies on the left
of Umin. The dashed lines s; and sy — passing through points A and D, respectively
— correspond to the extreme values of Av in region 1 for the chosen value of Az, i.e.,
line sy corresponds to Av = —(Umin + AsAZ)/ fmax, While line sy corresponds to Av =
—(Umax + AsAx)/ fmin- Thus, the generic line f* for Az, Av in region 1 must be contained

within the cone defined by lines s; and s,.
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1. We first prove that all lines f* that are not within the cone s; — s, lead to values of

ug not in U.

(a) Let us consider a line f* within the cone r — s;. For all values of u in U, f

saturates at the value fi.. and this leads to uy; < Umin.

(b) Let us consider a line f* within the cone defined by sy and the positive real
axis. For all values of u in U, f saturates at the value f,;, and this leads to

Us > Umax-

(c) Let us consider a line f* with a negative slope. For all values of v in U, f

saturates at the value fu;, and this leads to us < tUmin.

2. Secondly, we prove that for all lines f* that are within the cone s; — s, the condition
us € U can never be violated. We observe, in fact, that the condition can only be
violated when u; # u, i.e., when f is in saturation and thus takes either the value

fmin OF fmax. Let us consider a generic line f* within this cone.

(a) If the line f* intersects the segment A-B, then there exist values of v in U such
that f saturates at fnax but the saturation leads to values of u, € U. If the
line does not intersect the segment A-B, then for all values of u in U, f cannot

saturate at fmax.

(b) If the line f* intersects the segment C-D, then there exist values of u in U such
that f saturates at f;, but the saturation leads to values of uy, € U. If the
line does not intersect the segment C-D, then for all values of v in U, f cannot

saturate at fumin.

We have proved that for all lines f* within the cone s; — s, if f saturates then

us € U, hence condition (12) can never be violated.

A similar construction can be drawn for the case —Ax A, € U. In this case the intersection
of the line f* with the horizontal axis lies within U, and the two lines s; and s, that delimit

region 2 pass through points C and D, respectively.

A similar construction can be drawn for the case —Axz\; > Uma. In this case the inter-
section of the line f* with the horizontal axis lies on the right of .y, and the two lines

s1 and sy that delimit region 3 pass through points C and B, respectively.
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