
770 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 6, DECEMBER 1998

Discrete Event Representation of
Qualitative Models Using Petri Nets
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Abstract—The paper discusses how Petri nets may be used for
the qualitative modeling of physical systems. The qualitative state
of a system is represented by the marking of the net. The crossing
of a landmark value corresponds to the firing of a transition.

We give a formal procedure to construct a Petri net model cor-
responding to a given set of qualitative equations. The approach
can be used to study both autonomous systems and systems
with forcing inputs. The dynamic behavior of the system can
be studied as sequences of reachable markings of the net and
can be computed with standard Petri net execution techniques.
This approach also leads to a simple framework for the study of
hybrid systems, i.e., systems whose behavior is described by both
continuous and discrete event dynamics. Several examples, with
applications to diagnosis and control, are fully discussed.

Index Terms—Discrete event systems, hybrid systems, Petri
nets, qualitative physics.

I. INTRODUCTION

T HE simulation of a continuous or discrete time system
can be achieved, basically, in two ways: quantitatively

and qualitatively. Quantitative simulation entails an exact
description of the relationships between the various quantities
involved in the system functioning, in terms, e.g., of algebraic
differential or difference equations. Qualitative simulation, on
the other hand, exploits relationships that express qualitative
connections between the quantities [2], [3], [7], [10]. Such
a description does not contain as much information as a
quantitative analysis. However, in those cases where the
additional information provided by a quantitative description is
useless for the purpose of investigation, a qualitative analysis
is desirable.

Some advantages of qualitative simulation are [4]

• it permits to express incomplete knowledge and hence to
handle systems that are not completely known;

• it provides general solutions for classes of systems rather
than numerical solutions of each case;

• it treats homogeneously linear and nonlinear systems.

The major drawback of qualitative simulation is its funda-
mental ambiguity: given a qualitative model of a system and
a set of qualitative inputs, more than one qualitative behavior
can generally be found that follows from those initial data.
This ambiguity partially depends on the choice of the quantity
space used to represent the qualitative value of the variables.
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By refining the partitions of the real axis that define these
quantity spaces it is often possible to mitigate this ambiguity.

Another disadvantage of qualitative analysis derives from
the fact that we lack effective simple mathematical tools
for carrying out the simulation. Solving a set of qualitative
constraints requires ingenuity and the use of heuristics.

We propose a simple way of avoiding this problem. We note
that a qualitative system, with its discrete quantity state space
can also be seen as a discrete event system (DES) [15]. Thus
its behavior may be described by any of the models used to
represent a DES. This work focuses on the use of Petri nets
models [11].

Petri nets have been used in qualitative simulation by Okuda
and Ushio [12], [13]. These authors noted that eachplaceof a
net may be associated to a state of a variable while the firing
of eachtransition corresponds to crossing a landmark.

The approach presented in this paper, that is an extension
of [5] and [6], modifies the approach of Okuda and Ushio in
several ways. First, we assume that eachmarking (not place)
of a net may be associated to a state of a variable and that a
transition may represent more than one landmark crossing.
Thus when we consider variables with increasing quantity
spaces, we need not modify the structure of the net, but just
to change the number of tokens it contains. Second, in our
approach the behavior of the physical system is completely
captured in the structure of the net. Thus we need not give
additional interpretation rules that modify the standard Petri
net execution algorithm during simulation. This also allows us
to use some of the standard Petri net analysis techniques to
study the properties of the model [11], [14].

Recently, there has been large interest in the control com-
munity in the study of hybrid systems, i.e., systems whose
behavior is described by both continuous and discrete event
dynamics [1]. In our approach it is possible to model an hybrid
system as a mere discrete event system in the following way.
First, a qualitative description of the continuous time behaviors
is given. Second, the qualitative descriptions are captured by
discrete event models. Finally, a model that integrates all these
different discrete event behaviors is built using Petri nets. As
an example of this, in Section V we will discuss the model of
a nonlinear electric circuit.

The paper is structured as follows. In Section II, we recall
the generalities on Petri nets and qualitative modeling. In
Section III, we give a formal procedure to construct a Petri
net model of a physical continuous time system represented
by qualitative equations. We consider models with different
quantity spaces and discuss the presence of forcing inputs. In

1083–4419/98$10.00 1998 IEEE



FANNI AND GIUA: DISCRETE EVENT REPRESENTATION 771

Section IV we apply this procedure to a spring-block system
(discussed also in [9]) and show how reachability and invariant
analysis (two well-know Petri net techniques) can be used
to study the behavior of the system. In Section V we give a
formal procedure to construct a Petri net model of an hybrid
system, and apply this procedure to a non linear circuit. In
Section VI we show how this modeling approach may be
used for diagnosis and control, using a double integrator as
an applied example.

II. GENERALITIES

A. Petri Nets

A place/transition net [11], [14] is a structure
Pre, Post, where is a set of places represented

by circles; is a set of transitions represented by bars;
Pre IN is the pre-incidence functionthat specifies
the arcs directed from places to transitions; Post IN
is the post-incidence functionthat specifies the arcs directed
from transitions to places. Theincidence matrixof the net is

Post Pre .
A marking is a vector IN that assigns to each

place of a net a nonnegative integer number of tokens,
represented by black dots. IN will denote the set of all
possible markings that may be defined on the net.

A transition is enabledat a marking iff
Pre . If is enabled at , then may fire yielding a new
marking with Post Pre . We will
write to denote that may fire at yielding . A
marking is deadif no transition is enabled at . A firing
sequencefrom is a (possibly empty) sequence of transi-
tions such that .
A marking is reachablein iff there exists a firing
sequence such that . The set of markings reachable
on a net from a marking is calledreachability setof
and and is denoted as . The reachability set can
be represented by a graph, calledreachability graph.

Example 1: Let us consider the Petri net in Fig. 1(a). The
set of places is , the set of transitions
is , the pre-incidence and post-incidence
functions can be expressed as matrices

Pre Post

The incidence matrix is

Note that the double arc from to has been represented,
as usual, with a single arc of weight 2.

Representing the markings of this net as vectors
, the initial marking, shown in the

figure, is .
To construct the reachability graph we put a node labeled

in the graph. Starting from , both and are enabled.

(a)

(b)

Fig. 1. (a) A Petri net and (b) its reachability graph.

If fires we reach the marking . If fires
we reach the marking . Thus we add a node
labeled , a node labeled , an arc labeled from to

, and an arc labeled from to . We continue this
construction to obtain the graph shown in Fig. 1(b).

The general algorithm to compute a reachability graph is
given in [14]. Note that a reachability graph may be infinite.
In this case it is still possible to construct a finite graph named
coverability graph[14].

Let Post and
Pre . A trap is a set of places such that:

A siphonis a set of places such
that: Traps and siphons have interesting
behavioral properties [11]. If a siphon is token-free under
some marking, then it remains token-free under each successor
marking. If a trap is marked under some marking, then it
remains marked under each successor marking.

B. Qualitative Models

Qualitative modeling exploits relationships that express
qualitative connections between the variables of a physical
system.

A qualitative model usesqualitative variableswith an
associatedquantity spacedefined as a set of disjoint intervals
(possibly of zero length, in which case they reduce to points)
that cover the real straight line. The qualitative value of a
variable is denoted .

The quantity space usually employed is that comprising the
intervals , , ; thus one writes ,

, and to denote the interval to which the
value of belongs. The laws that govern the system behavior
are expressed as equations between these qualitative variables.
One problem with this approach is the essential ambiguity of
the qualitative sum, as defined in Table I.

The qualitative sum ambiguity can be avoided using a finer
partition of the real axis that also gives a better description
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TABLE I
QUALITATIVE SUM TABLES FORQUANTITY SPACEf�; 0; +g AND f�2; � � � ; 2g

of the system behavior. As an example, we will often use the
quantity space . In
this case the qualitative sum follows the same rules
of algebraic addition, as can be seen in Table I for .

C. Petri Nets as Qualitative Models

We will use Petri nets as qualitative models of physical
systems with the following assumptions.

The qualitative value of each variable is associated with the
marking of a subset of places in the Petri net. Thus we have the
correspondence between qualitative states and markings. The
initial state of the system will determine the initial marking

of the net.
The firing of a transition will represent the change of a

qualitative variable from one qualitative value to another. Note
that a single transition may be enabled by several different
markings, thus the same transition may represent different
qualitative changes.

The set of all possible states reachable from the initial state
will be given by the reachability set of the net. The
sequence of all possible behaviors is given by all sequences
of transitions firable from the initial marking.

The change of value of a qualitative variable, say, is often
depending on the value of another one, say. Thus, in the
Petri net model a transition that changes the marking of the
places associated tomay depend on the marking of the places
associated to. The influence of over may be represented
by self-loops, i.e., cycles in the net graph containing only one
place and one transition.

Consider a transition self-looped with places and as
in Fig. 2(a). The firing of is only possible if there is at least a
token in and at least a token in . The firing of , however,
does not change the number of tokens inand . To avoid
representing the two arcs betweenand and the two arcs
between and we simply assign to transition the label

. This can also be generalized to a self-loop ofarcs
using the label .

We will often need to give a compact representation of a
structure in which there are parallel transitions with different
labels , each of which may be the of single labels as

(a)

(b)

Fig. 2. Representation of (a) self-loops and (b) parallel transitions.

discussed above. A simpler representation of this will be a
single transition with label , as shown in Fig. 2(b).

III. PETRI NET MODELING OF QUALITATIVE SYSTEMS

In this section we discuss how from a qualitative model of a
continuous time system it is possible to derive a discrete event
model using Petri net structures.

Let us consider a continuous time system described by the
following set of state equations:

(1)

where is the state vector with components, is the input
vector with components, is a matrix, and

is a matrix.
The qualitative model corresponding to (1) is given by the

following set of qualitative equations:

(2)

i.e., the th qualitative equation is

(3)

We will consider two different models for state variables in
the quantity spaces and . For
each of these two cases, we will give general construction
algorithms to derive a Petri net model representing a given set
of qualitative equations.

Once a model has been constructed, the behavior of the net
can be studied with various techniques pertaining to Petri nets.
In particular, reachability analysis may be used to study the
evolution of the system with standard Petri net simulators [19].
Examples and discussions are presented in Section IV.

A. Model with Quantity Space

The following algorithm can be used to construct a Petri net
model when the quantity space of the variables is .
The coefficients and will take values in
as well.
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(a)

(b)

(c)

Fig. 3. Petri net model with quantity spacef�; 0; +g: (a) Subnet forxi

with [ai; i] 2 f0; +g, (b) subnet forxi with [ai; i] = �, and (c) subnet
for input uk.

Algorithm 1: Consider the qualitative equations (2).

1) Associate to each state variable a Petri net with
three places x , x , and x , as in Fig. 3(a). Here
a token in place x means that , a token
in place x means that , and so on. Thus,
we may write sign x x . A
physically meaningful initial marking will be such
that x x x .

2) Associate to each input a Petri net with three places
u , u , and u , as in Fig. 3(c). Here a token
in place u means that , and so on. A
physically meaningful initial marking will be such
that u u u .

3) In the net of each introduce four transitions as in
Fig. 3(c), whose firing will denote the crossing of a
landmark value. As an example, the transition from u
to u will fire when the qualitative value goes
from to 0. The transitions arecontrolled transitions,
i.e., they will fire according to external events and are
represented as empty boxes.

4) The qualitative value of the state variablewill change
according to the qualitative value of its derivative. Due
to the ambiguity of the qualitative sum, may be
positive when there exists at least a positive term in
the RHS of (3), i.e., when there exists at least a state
variable such that , or an input such
that . To represent this behavior, add several
transitions in parallel from x to x and from x to
x , one for each term in the sum at the RHS of (3).
A similar reasoning can be applied when variableis
decreasing.

In Fig. 3(a), are represented the parallel of the in-
creasing transitions with two single transitions and

labeled , , and the parallel of the decreasing
transitions with two single transitions and labeled

, , following the notation defined in Section II-C.
To determine the value of the labels on the transitions

we will consider two different cases.
a) . In this case let

where , ,
and

if
if

if
if

while

if
if

if
if .

Remark 1: Note that if the sets and are empty,
there will be no transitions in the net, and this corre-
sponds to .

With these labels we have introduced a transition
for each term in the RHS of (3), except for the term

. In fact, when , the term
will be missing from the RHS of (3).

When , we should consider several cases. If
, again the term will not affect the RHS

of (3) and thus there will be no corresponding transition
in the parallel of transitions represented by and .
If , the term can never contribute
to give a negative value to and thus there will be
no corresponding transition in the parallel . Finally,
if , the term can never contributes
to give a positive value to hence there will be no
corresponding transition in the parallel .

b) . In this case the labels and
are constructed as before. However, the two parallels of
transitions and consist of two single transitions
with no label as in Fig. 3(b). In fact, when
( ), because of the ambiguity of the qualitative
sum, the term could give a negative (positive)
value to and thus the transition ( ) could fire
regardless of the marking of the other subnets.

Examples of application of this algorithm can be found
in Section IV-A (autonomous system) and in Section IV-C
(system with forcing inputs).

B. Model with Finer Quantity Space

We now assume that the quantity space of the variables be
partitioned in finer intervals, so as to avoid the ambiguity of
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Fig. 4. Petri net model with quantity spacef�n; � � � ; ng.

qualitative sum, as discussed in Section II-B. In particular,
each state variable and each input takes qualitative
values in the set . The coefficients
and are assumed to be integers (this can be done with
a suitable normalization).

Algorithm 2: Consider the qualitative equations (2).

1) Associate to each state variablea Petri net with two
places x and x, as in Fig. 4. The qualitative value
of is related to the marking of the net as follows:

x . A physically meaningful initial
marking will be such that x x .
Thus, when there are, say, tokens in place xand

tokens in place x the qualitative value of is
.

2) Associate to each input a Petri net with two places,
labeled u and u , as in Fig. 4. The value of is
related to the marking of this net in the same way
discussed for the subnet.

3) Associate to each variable a Petri net with two places,
labeled x and x , as in Fig. 4. Since is defined
by (3), its quantity space is ,
where . Thus, the value
of is related to the marking of the net as follows:

x .
Since the initial value of is a function of the

qualitative values of the state variables and inputs, a
physically meaningful initial marking will be such
that

x x x

u u

where , ,
, and .

The initial marking of the complementary place will be
x x .

4) The qualitative value of the state variablewill change
according to the qualitative value of its derivative. Thus,
two transitions will be introduced in each subnet, as

(a)

(b)

Fig. 5. Modified Petri net model with quantity spacef�n; � � � ; ng. (a)
Subnet for the case[ai; i] < 0 and (b) subnet for the case[ai; i] > 0.

in Fig. 4. The increasing (decreasing) transition( )
may only fire when ( ) moving a token
from x to x (from x to x ), thus it will have a label

( ).
Each time the value changes, according to (3)

there will be a corresponding change in all the such
that . Thus, the firing of the transitions in
each subnet may also change the token content of the
places in some subnet. This can be modeled adding
arcs of weight between the transitions of and
the places of . As an example, in Fig. 4 the dotted arcs
correspond to a coefficient . The direction of
the arcs should be reversed if . Finally, these
arcs will not be present if .

This construction needs to be partially modified for
arcs between the transitions in the subnet and the
places in the subnet, arcs that will be present if

. In fact, transition associated to may
fire only if , i.e., if there are at least
tokens in placex . If , the firing of will
remove tokens from placex and add tokens
to placex . A similar reasoning can be applied to the
firing of transition . This behavior is captured in the
construction shown in Fig. 5(a), where we have removed
the labels in the transitions and because we have
explicitly represented the self-loops. If , we
need to use the construction shown in Fig. 5(b).

5) In each subnet introduce two controlled transitions
and , as in Fig. 4, whose firing will denote the

crossing of a landmark value.
Each time the value changes, according to (3)

there will be a corresponding change in all the such
that . Thus, the firing of the transitions in each

subnet may also change the token content of the
places in some subnet. This can be modeled adding
arcs of weight between the transitions of and
the places of . As an example, in Fig. 4 the dashed
arcs correspond to a coefficient . The direction
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Fig. 6. Spring-block system.

of the arcs should be reversed if . Finally, these
arcs will not be present if .

Remark 2: The previously described construction may be
simplified if (3) contains only one term for a given. In fact,
in this case the qualitative value of is equal to the qualitative
value of a state variable or of an input (possibly changed
of sign). Thus, we need not introduce thesubnet.

An example of application of this algorithm can be found
in Section IV-B.

IV. CASE STUDY OF CONTINUOUS SYSTEMS

In this first example we consider the dynamic system
discussed in [9] and shown in Fig. 6, that consists of a block
and a spring. We will present different Petri net models all
describing such a system.

The dynamic equations of this system are

(4)

where is the block mass, the friction coefficient, the
spring elastic constant, andthe block position. If denotes
the block velocity, (4) may be rewritten as:

(5)

We will assume, for sake of simplicity, that , and
. We will also consider separately two cases: ,

i.e., conservative system, and , i.e., dissipative system.
If , the qualitative model of the system is given by the

following set of qualitative equations:

(6)

If , the qualitative model of the system is given by the
following set of qualitative equations:

(7)

A. Model with Quantity Space

Let us first consider the case . If the quantity space
of and is the set , following Algorithm 1 (6)
can be represented with the Petri net model in Fig. 7. Here a
token in place x means that , a token in place x0
means that , and so on. Thus, we may write
sign x x and sign v v .
A physically meaningful initial marking will be such that

Fig. 7. Petri net model of the spring-block system with quantity space
f�; 0; +g and its reachability graph.

x x x and v v
v .

The model captures the qualitative behavior described by
(6). In fact, the qualitative value of may increase (decrease)
moving a token from, say, place xto place x0, only when
there is token in v (v ), i.e., when ( ).
Similarly, the qualitative value of may increase (decrease)
only when there is a token in place x(x ), i.e., when
( ).

Starting from the initial marking shown in Fig. 7, the
reachability graph of the net is shown in the same fig-
ure (the dashed arcs should not be considered), where
we have represented the markings as vectors:

x x x v v v . Thus,
the marking in Fig. 7 is .

The reachability graph shows that, starting from the initial
state , the system will oscillate, never
reaching the steady state corresponding
to the rest marking . In this case the
reachability analysis is feasible, because the state space of
the system consists of only nine possible markings. When the
complexity of the net increases and the state space becomes
very large it may be useful to resort to structural analysis,
studying the properties of the net that solely depend on its
structure.

In the net in Fig. 7 the set of places
is both a trap and a siphon. Hence,

if the initial marking is since is a token-free siphon
it will always remain token free, i.e., no transition will ever
fire. Conversely, if the initial marking assigns at least a
token to the marking will not be reachable because
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Fig. 8. Petri net model of the conservative spring-block system with quantity
spacef�2; � � � ; 2g and its reachability graph.

under this marking the trap is token-free. These simple
observations lead to the same conclusions that can be drawn
from the graph in Fig. 7, without having to construct the
reachability graph itself.

Let us now consider the case . The system is now
governed by the qualitative equations (7). In this case if

, due to the ambiguity of the qualitative sum it may be
the case that (and thus the velocity may increase) even
if or . Similarly, if it may be the case
that even if or . The corresponding
Petri net model, derived by Algorithm 1, is the one in Fig. 7,
where the labels in quotes are removed. (This corresponds to
removing some self-loops.) Starting from the initial marking of
the net, the reachability graph of the net is also shown in Fig. 7
where both continuous and dashed arcs should be considered.
Now, from the initial marking it is
possible to reach the rest state from
which no further evolution is possible.

B. Model with Finer Quantity Space

The previous qualitative description in terms of the quantity
space may be too poor in describing the evolution
of the spring-block system. We can also capture the behavior of
this dynamic system with a finer quantity space
for state variables and . Here we assume .

Let us first consider the case that is represented
with the Petri net in Fig. 8. This model has been constructed
following Algorithm 2. As discussed in Remark 2, it is not

Fig. 9. Petri net model of the dissipative spring-block system with quantity
spacef�2; � � � ; 2g and its reachability graph.

necessary to introduce the places associated to the derivatives
of the state variables, because , and .

In this model we have associated to each variable such
as the position (velocity ) two places: x and x(v and
v ). The qualitative value of is x ; the
qualitative value of is v . Since the position

may increase only when the velocity is greater than 0
[i.e., ] the transition whose firing increases the
token count in place has a selfloop of 3 arc with place

. A similar explanation can be given for the presence of
all other selfloops in the figure. In the same figure is also
given the reachability graph of the net from the initial marking

x x v v that
corresponds to the initial state . Note
again that the rest marking is never reached
from an initial marking different from .

Let us now consider the case that is represented
with the Petri net in Fig. 9. In this model we have explicitly
represented the qualitative value of the acceleration
introducing the two places a and a. Since ,
the quantity space of is . The qualitative value
of the acceleration is a . The marking of the
subnet changes every time the marking of theand subnet
changes.

A physically meaningful initial marking will be such
that: x x ; v v ; a

x v ; and a a .
As an example, in Fig. 9 it is also represented

the reachability graph of the net for initial marking
x x v v a

a that corresponds to the
initial state . The reachability
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Fig. 10. Petri net model of the dissipative spring-block system with quantity
spacef�; 0; +g, forcing inputu and its compacted reachability graph.

graph shows that the rest marking ,
corresponding to the steady state ,
may now be reached from any other initial state.

C. Model with Forcing Inputs

In the previous examples we have considered a spring-block
system without external forces. It is also possible to take into
account external forcing inputs.

The dynamic equation (4) becomes

(8)

where is an external force.
The qualitative model of the system is given by the follow-

ing set of qualitative equations:

(9)

If the quantity space of the variables is , using
Algorithm 1 we obtain the Petri net model shown in Fig. 10(a).

The reachability set of this net is composed of 27
different markings, since each of the three subnets can
have three different markings. We can however represent
the reachability graph in a more compact form by projecting
the total marking x x x v

v v u u u along the first
six components. In the complete reachability graph there

will be a transition from marking
(corresponding to the state
to marking (corresponding to the
state , while no transition
will lead from marking to marking

( in this case) or from
to marking

( in this case). Thus in the compacted reachability
graph, we introduce a transition labeled ufrom marking

to marking to show that this
transition may only fire when .

The compacted reachability graph for the net in Fig. 10(a)
is shown in Fig. 10(b).

V. HYBRID SYSTEMS

An hybrid system can be described in general terms as a
system whose behavior is ruled by different sets of differential
(or difference) equations. Each set is valid in a particular do-
main of the state space. Thus we distinguish a continuous time
evolution within a domain (interstateevolution) and a discrete
event evolution between domains (intrastateevolution).

If the interstate evolution can be described by qualitative
equations, following the approach described in the previous
sections, a Petri net model can be constructed. In this section
we show how the different models, each valid in a given
domain of the state space, can be combined to construct an
overall Petri net model of the system.

Algorithm 3: Let us assume the system is ruled by different
sets of qualitative equations of the form given in (2), each
valid in a given domain .

1) Construct a Petri net model for the set of qualitative
equations associated to each domain.

2) For each model, check if the state from which each tran-
sition is fireable is consistent with the domain constraint.
If not, either restrict the firing of the transition adding
self-loops or remove the transition if it can never fire.

3) Combine the different models in a single Petri net with
set of transitions given by the union of all transitions of
the different models.

A simple example will clarify this algorithm.
Consider the circuit in Fig. 11(a). We consider the quantity

space . Due to the nonlinear behavior of the diode,
we can distinguish two different behaviors.

In the domain , the diode is conducting and
the circuit is ruled by the qualitative equation

(10)

In the domain , the diode is reverse biased and
the circuit is ruled by the qualitative equation

(11)

The Petri net model corresponding to (10) is shown in the
LHS of Fig. 11(b). We now take into account the restrictions
imposed by the domain .
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(a)

(b)

(c)

(d)

Fig. 11. (a) Nonlinear circuit, (b) Petri net model for domainD1, (c) Petri
net model for domainD2, and (d) overall model.

Let us consider transition . This transition may fire when
and . Since this state does not belong to the

domain, we remove transition .
Let us consider transition . This transition may fire when

, regardless of the value of . However, the states
and do not belong to

. Thus, to impose that may only fire from the state
, we add a self-loop with place u,

introducing the corresponding label on .
Taking into account all these restrictions we obtain the

model in the RHS of Fig. 11(b).
The Petri net model corresponding to (11) is shown in

the LHS of Fig. 11(c). Taking into account the restrictions
imposed by the domain we obtain the model in the RHS
of Fig. 11(c).

We finally compose the two nets in a single Petri net, shown
in Fig. 11(d), whose transitions are given by the union of the
transitions of the two original nets. Combining the two nets,
we have that there will be three transitions in parallel between
place v and v0, (i.e., its label is ). Since
regardless of the value of one of these transitions may fire,
we remove the label, as shown in Fig. 11(d).

(a)

(b)

(c)

Fig. 12. (a) Double integrator, (b) Petri net model, and (c) compacted
reachability graph.

VI. A PPLICATION TO CONTROL AND DIAGNOSIS

The main motivation for the research on qualitative mod-
eling derives from the areas of diagnosis of physical systems
[2], [3], [7], [10].

Discrete event system theory has been mainly focused on
control [15], and Petri nets have often been used in this context
[8]. There have also been some applications of discrete event
theory in the diagnosis domain [16]–[18].

In our approach, qualitative systems are represented as Petri
nets. Thus, all techniques developed for the diagnosis and
control of discrete event systems may potentially be applied.

We discuss a simple example. Let us consider the double
integrator shown in Fig. 12(a), ruled by the equations

The corresponding Petri net model (with quantity space
) and its compacted reachability graph are shown

in Fig. 12(b) and (c), assuming the markings as vectors
.
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Two classical control problems may be the following.

• Stability: Is it possible to find a control law such that
a set of target states is reached in a finite number of
steps?

As an example, let’s take as target the state
, corresponding to the marking

. A possible feedback control law for
solving this problem is the following:

, as can be checked by
inspection of the reachability graph.

• Forbidden state avoidance: Is it possible to find a control
law such that a set of forbidden states are never reached?

As an example, let’s take as forbidden the state
, corresponding to the marking

. The maximally permissible feedback
control law for solving this problem is the following:

.

Formal derivations of control policies for Petri net models can
be found in the literature [8].

A Petri net model may also be used for model based
diagnosis. Comparing the observed behavior of the system
and the behavior predicted by the net, it is possible to find
conflicts. It is also possible to construct fault models—by
changing the qualitative equations that rule the behavior of
the system—and to derive the corresponding net to check if
the observed behavior can be explained by a particular fault.

As an example, we consider again the double integrator in
Fig. 12(a). Let be the only measurable variable, and assume
that the input has a constant value . We consider that
each single integrator may be malfunctioning because its input
signal is stuck-at or at 0 or at . Thus the reachability graph
of the fault-free system and the simplified reachability graph
(the nodes are not labeled) of the system affected by each of
the six faults are shown in Fig. 13. The graph for the fault, say,

stuck-at 0, has been computed using the Petri net model
corresponding to the faulty equation

Let us consider an observed behavior in which the state
variable changes from value to and then
to again. Clearly this behavior is not consistent with
the reachability graph of the fault-free system. This behavior
can only be explained by a stuck-at—fault on the input of
the second integrator (i.e., by a fault such that )
and corresponds to the evolution shown in the corresponding
reachability graph by a thick arrow.

VII. CONCLUSIONS

The paper discussed how Petri nets may be used for the
qualitative modeling of physical systems.

Given the quantitative description of a physical system
behavior, the corresponding qualitative description is derived
and is compiled into a Petri net structure. Different Petri
net structures may be used to represent the same qualitative

Fig. 13. Example of diagnosis of the double integrator. Reachability graph
of the fault free system with[u] = +, and simplified reachability graphs for
the faulty circuit.

behavior depending on the choice of the variable quantity
space. Both systems described by homogeneous differential
equations and systems with external forcing inputs have been
considered.

This approach has also been extended to hybrid systems,
integrating both continuous and discrete behaviors in the same
net model.

Finally, examples of how this approach may be used for
diagnosis and control have been given.

There are some advantages in using Petri nets to represent
the qualitative behavior of a system. First, there is a simple and
intuitive correspondence between the marking of the net and
the state of the system. Second, the dynamic behavior of the
system can be studied as sequences of reachable markings of
the net. These evolutions can be computed with standard Petri
net execution techniques using existing software packages.
Third, the mathematical properties of Petri nets may be used
to predict important characteristics of the system behavior
without resorting to its simulation. In the paper it was briefly
pointed out how siphons and traps prove to be important
concepts to determine the existence of a steady state. This
is an area open to further investigation.
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