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ABSTRACT. We present a hybrid model based on a Petri net formalism that merges
the concepts of high-level nets with continuous nets. The model can represent jumps
in the state space and switches in the dynamics, both autonomous and controlled.
Classical Petri net concepts, such as the firing vector and the incidence matriz, can
be generalized to this model and used to derwve the evolution equation. We show how
this behaviour can be represented by an evolution graph. Two examples of controlled
switch and autonomous jump are discussed in detail.

RESUME. Cet article présente un modéle hybride fondé sur un formalisme qui allie
les concepts de réseaux de Petri de haut-niveau et de réseauz continus. Le modéle peut
représenter des discontinuités dans [’espace d’état et des commutations de modes de
fonctionnement, qu’ils soient autonomes ou controlés. Plusieurs notions classiques
concernant les réseaur de Petri, tels que le vecteur de franchissement et la matrice
d’incidence, peuvent étre généralisées a ce modéle. Ces notions sont employées pour
définir ’équation d’évolution et construire le graphe d’évolution correspondant. On
présente un exemple de commutateur controlé et un exemple de systéme avec discon-
tinuités.
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1 Introduction

The control of hybrid systems, i.e., systems with both continuous-time and
discrete-event dynamics, is a domain of increasing importance and several hy-
brid models [GRO 93, BRO 93] have been presented in the literature. A com-
prehensive survey of different models and of the relationships among them can
be found in [BRA 94].

Petri nets (PN) [MUR 89, REI 85] have originally been introduced to de-
scribe and analyze discrete event systems. Recently, much effort has been de-
voted to apply these models to hybrid systems. A recent survey of the relevant
literature can be found in [DAV 97].

Most of the hybrid PN models are properly speaking fluid models, i.e.,
the marking of the continuous places is a nonnegative real number fol-
lowing the original approach of David and Alla [DAV 92]. These mod-
els have also been extended to a stochastic framework by several authors
[HOR 96, WOL 98, BAL 98]. However, to describe more general hybrid mod-
els, whose continuous state variables may also take negative values, extended
net models have been considered. As an example, Differential Petri Nets by
Demongodin and Koussoulas [DEM 98] are nets with real markings. In other
approaches the Petri net formalism has been combined with Differential Alge-
braic Equations to model arbitrary continuous evolution [CHA 98, VAR 98].

In this paper, following [GIU 96], we describe a more general hybrid model,
called high-level hybrid Petri net that merges the concepts of high-level Petri
nets with continuous nets.

High-level nets are characterized by the use of structured individual tokens.
Colors, i.e., firing domains of the transitions and marking domains of the
places, have been used in the literature to give a compact representation of
systems. We use this feature in the discrete part of the nets. However, we also
use vectors of real numbers to represent the continuous state space of the net.
The use of real numbers as colors allows us to model arbitrary jumps in the
state space, as discussed later on. In the other hybrid nets cited above, only
a restricted type of state space jumps can be modeled, in the sense that the
magnitude of the discontinuity is constant and does not depend on the state
from which the jump occurs.

The continuous dynamics is ruled by the firing of continuous transitions, fol-
lowing the approach of [DAV 92]. However, we need to use marking dependent
firing velocities to represent the ordinary differential equations describing the
continuous evolution of systems. We also associate to a continuous transition
a vector of firing velocities rather than a single velocity.

We add an explicit notion of time and take into account the presence of ex-
ternal inputs, continuous and discrete. Each discrete transition has associated
a firing delay that may depend on the state of the system and on the external
discrete inputs. The firing velocity of a continuous transition may depend on
continuous external inputs.

Our model provides a simple graphical representation of hybrid systems
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and takes advantage of the modular structure of Petri nets in giving a compact
description of systems composed of interacting subsystems, both continuous-
time and discrete-event.

We define the incidence matriz of a high-level hybrid Petri net and use it
to derive a fundamental equation that describes the evolution of such a net in
terms of the firing of transitions, both continuous and discrete. This suggests
that other Petri nets analysis and control techniques may be generalized within
this framework as well.

In this paper we show that this modeling formalism is rich enough to en-
compass large classes of hybrid systems and can easily represent many of the
features of the abstract model given in [BRA 94], that was shown to be ex-
tremely general. In particular we consider elementary net structures that can
be used to represent jumps in the state space and switches in the dynamics,
both autonomous and controlled.

We also show how it is possible to study the system’s dynamical behaviour
by constructing the evolution graph of the net. This graph describes the evolu-
tion (in terms of discrete event occurrences and phases associated with defined
continuous dynamics) of the net with time.

We would like to give some motivation for the use of real numbers as colors.
A dual semantic is associated with the arcs of a Petri net.

e Firstly, the Pre arcs from places to transitions specify the logical con-
ditions that must be fulfilled to enable a given transition. A transition
t is enabled and may fire only if the marking M is greater or equal to
Pre(-,t). Note that the set of markings that enable a given transition is
— in the notation of [VAL 85] — a right-closed set, i.e., if M enables t,
then any M' > M also enables t.

e Secondly, the incidence matrix specifies the constant marking variation
produced by the firing of a given transition ¢. Thus if M'[t)M", then
AM = M" — M' = Post(-,t) — Pre(-,t) = C(-, t).

This double semantic is essential to the definition of place-transition nets and
should be kept when extending the basic PN model to hybrid nets.

Let us now consider the counterpart of these semantics on an hybrid system.

A switch is a discrete event that corresponds to a change of dynamics of an
hybrid system. An autonomous switch is defined by assigning in the continuous
state space domain a switching boundary that is not necessarily right-closed.
If one wants to represent a switch with a transition firing, it is necessary to
specify for each state vector whether the transition may fire. Thus we need to
use a different firing color for each state vector value from which the switch
may occur.

A jump is a discrete event that corresponds to a discontinuity in the
continuous-time state from z(77) to x(rt). A jump represents a physical
event whose state variation Az = z(r%) — z(7~) may depend on the values of
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z(77). As an example, in a later section we present the net model of a bounc-
ing ball whose impact with the ground causes the abrupt change of velocity
from z(77) = —v to z(r+) = v, i.e., Ax = —2x(7). To represent this event
with a single transition, regardless of the value of z(77), we need again to use
a different firing color for each state vector value from which the jump may
occur.

The paper is structured as follows. Section 2 presents the formal definition
of high-level hybrid Petri nets and the rules governing their evolution. In
Section 3 several basic structures that represent elementary hybrid behaviours
are presented. Section 4 and Section 5 present two examples of dynamical
hybrid system modeling.

2 High-level hybrid Petri nets

In this section we give a formal definition of the hybrid model we propose.

2.1 Multisets and multirelations

Let D be a set. A multiset (resp., non negative multiset) over D is a mapping
a:D —Z (a: D — N) and may be represented as a = ), , a(d) ® d where
the sum is limited to the elements such that a(d) # 0. Let S(D) denote the
set of all non negative multisets over D. The multiset ¢ is the empty multiset
such that for all d € D,e(d) = 0.

Given two multisets «, 8 € S(D) and a number a € N:

e The sum of o and f is denoted as v = a + 8 and is defined as Vd € D :
v(d) = a(d) + B(d).

e The difference of a and g is denoted as v = a — 8 and is defined as
Vd € D : y(d) = a(d) — B(d). Note that the difference of two non
negative multisets may be negative.

e The product of a and a is denoted as v = a a and is defined as Vd € D :
Y(d) = a a(d).

e We write a < B iff Vd € D : a(d) < S(d).

Let f : D — RF be a function and o € S(D) a multiset over D. We
define f(a) = Y epa(d)f(d) € R, i.e., f(a) is the linear combination with
coefficients a(d) of the vectors f(d).

Let D, D’ be sets. A non negative multirelation over (D, D') is a non neg-
ative multiset p € S(D x D'). Let R(D, D') denote the set of all non negative
multirelations over (D, D'). The multirelation ¢ is the empty multirelation
such that for all d € D,d' € D', ¢(d,d') = 0.

For p € R(D,D') and d € D, let p[d] be the multiset over D' defined as
vd' € D' : pld|(d') = p(d,d"), i.e., pld] =3 ycp p(d,d') @ d'.
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For p € R(D,D') and a € S(D), let pla] be the multiset over
D' defined as Vd' € D' : pla](d') = ) ,cpald)p(d,d), ie, pla] =

Ywep (Zaepa(dp(d,d)) @ d'.

2.2  Structure and marking

A High-Level Hybrid Petri Net (HLHPN) is a 6-tuple G = (P, T, F,Z,0,v)
where:

e P = PpUP¢ is a disjoint union of discrete places (represented by circles)
and continuous places (represented by squares). Each place p € P has
associated a marking domain D(p). In particular if p € Pp then D(p) =
{c1,... ,cr} is aset of discrete colors, if p € Po then D(p) = R°(P) | where
¢(p) € N is the dimension of the continuous place. We define mp = |Pp|,
me = |Pcol, and m =mp + me.

e T =Tp UTc is a disjoint union of discrete transitions (represented by
bars) and continuous transitions (represented by boxes). Each transition
t € Tc has associated a dimension ¢(t) € N. We define np = |Tp|,
ne = |Tel|, and n = np + ne.

o FFC (PxT)U(T x P) is a relation specifying the arcs from places to
transitions and vice versa. We write Fxy = F'N((Px xTy)U(Ty x Px))
for X,Y € {D,C}.

For all x € PUT we write *z = {y | (y,z) € F}and z* ={y | (z,y) €
F}. For all transitions ¢, let Pt = *t U ¢*.

Given a transition t € T, let Pt = {p;,---,p.}. We associate to t a
firing domain D(t) C D(py) X --- x D(p,).

Given a transition ¢t € T¢, let PPN Pp = {p1,--- ,p,}. We associate to ¢
a firing domain D(t) C D(p1) X --- x D(p;).

e 7 is an inscription that assigns to each arc in F' a weight. There will be
different kind of inscriptions depending on the kind of arcs. Let a = (¢, p)
or a = (p,t).

— If a € Fpp U Fpc then Z, is a multirelation p, € R(D(t), D(p)).
— If a € Fep then 7, is a vector function f, : D(t) — Re(®)
— If a € Foe then Z, is a matrix A, € Re®)xe(®)

We will extend the inscription Z to all elements in (P x T') U (T x P) by
assuming that if a € F, then 7, is the appropriate null element, i.e., the
null multirelation, the null function, or a zero matrix.

e The mapping § associates to each discrete transition a time delay that is
a function of the marking of the net and of the external discrete inputs.
We denote by 6; : M x Up — Rt U {0} the component associated to
transition ¢t. Here M is the set of all possible markings, and Up is the
set of all possible discrete inputs, as defined in the following.
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e The mapping v associates to each continuous transition a firing velocity
vector that is a function of the marking of the net and of the external
continuous inputs. We denote by v; : M x Ue — R*®) the component
associated to transition t. Here Uq is the set of all possible continuous
inputs of the net as defined in the following,.

The marking of a net is a function of time M (7) that associates to each
place p a value M,(7). For all p € Pp, M,(1) € S(D(p)), while for all p €
Pc,Mpy(t) € D(p). The set of all possible markings of a net is denoted M.
Note that while a discrete place may be empty, because its marking may be the
empty multiset £ € S(D(p)), a continuous place is always marked by a vector
belonging to D(p) = Re(P) .

We assume there are kp discrete input signals up;(7) : R — {0,1}. Thus a
discrete input is a vector up(7) = [up1(7) -+ - upk, (7)]7. The set of all possible
discrete inputs of a net is denoted Up.

We assume there are ko continuous input signals uc;(7) : R — R. Thus
a continuous input is a vector uc(r) = [uci(7) - ucke (7)]T. The set of all
possible continuous inputs of a net is denoted U¢.

A well formed HLHPN, is a net whose arc relation F' and inscription 7
satisfy the following conditions.

1. For all p € Pp and for all t € T¢, [(p,t) € F < (t,p) € F] and
P(p,t) = P(t,p)-

2. Forallt € T¢, *tN Po = 0.

As in [DAV 97], the first condition implies that the firing of a continuous
transition ¢t does not change the marking of a discrete place p, even if there
may be arcs between p and t because the enabling of t is conditioned by the
marking of p.

The second condition implies that there can only be arcs from continuous
transitions to continuous places, but not vice versa. This, however, is not a
limitation because: (a) the state of a continuous place does not enable/disable
a continuous transition; (b) the arc inscription or the firing velocity may take
negative values, so that when (¢,p) € F the marking of the continuous place p
may decrease as the continuous transition ¢ fires, even if (p,t) & F.

A hybrid system (G, M(0)) is a well formed net with an initial marking
M (0). In the following we will always assume that the nets are well formed.
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2.3 Enabling and firing

2.3.1 Dziscrete transitions

A transition t € T is enabled with respect to (wrt) a firing element d € D(t)
at a marking M (7) if:

Vp € *tN Pp, Mp(T) > p(p,t)[d];
Vp € *tNPo, My(r)= fipu(d).

This means that a discrete transition ¢ is enabled wrt a firing color d € D(t)
if each input discrete place p has at least as many tokens as specified by the
arc inscription p(,+)[d], and if each input continuous place p contains the token
fo) (d)

An enabled discrete transition ¢ fires only after it has remained enabled for
a period of time equal to its firing delay d; (we call this condition firability).
Its firing changes impulsively the marking of the net.

A transition t € Tp is firable wrt a firing element d € D(t) at a marking
M (7) and given an external discrete input up(7) if:

(V1 € [T = 6:(M(7),up(7)) ;7]) (3d' € D(t)) : t was enabled at 7" wrt d'
{ AND

t is enabled at 7 wrt d

In particular if at time 7 only one discrete transition ¢ € T is firable wrt a
single element d, then that transition must fire and the marking of the net will
change as follows:

Vp € Pp, My(t") = My(t7) + ppld] = pip.eld];

Vp € Pe, Mp(TJr) = Mp(Ti) + f(t,p)(d) - f(p,t)(d)'

[1]

It may be the case that more than one discrete transition is firable at time
7 (or equivalently, one transition is firable wrt more than one element d). In
this case we assume that between 7~ and 77 the net behaves as an untimed
net in which the conflicts are resolved selecting with predefined rules (e.g., pri-
orities) one transition among all those firable. If after the firing of the selected
transition other transitions are still firable, the procedure is repeated. We will
assume that the evolution is such that only a finite number of transitions will
fire between 7~ and 71, In this case, the evolution of the marking will be given
by:

Vp € Pp, My(rt) = My(r7) + Y Apwpd = ppoldl};

Vp€ Po, My(r") =My(r") + XA S (d) = fon(d)};

where the sum is taken over all the different transition firings. It may be
possible to relax the hypothesis that only a finite number of transitions fire
between 7~ and 71, as in [DRA 94].
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As we have seen, the firability of a transition ¢ depends on the value of ¢;.
Some particular cases that may be worth discussing are the following:

e Autonomous constant delay transition (denoted by a label {r}):

0t(M,up) = r = const.

e Controlled constant delay transition, i.e., the effect of the control is only
that of making the transition firable (denoted by a label {r},,cu,)

r =const if up € Up;

6t(M,U) = {

o0 if’U,D ¢UD

2.3.2 Continuous transitions

A transition ¢t € T is enabled wrt a firing element d € D(t) at a marking
M(7) if:

Vp € *tN Pp, Mp(T) > p(p,t)[d]'

This means that a continuous transition ¢ is enabled wrt a firing color d € D(t)
if each input discrete place p has at least as many tokens as specified by the
arc inscription p(, ) [d]. The marking of continuous places does not affect the
enabling of a continuous transition.

An enabled transition t € T¢ fires continuously with velocity v;. Its effect
is that of changing the marking of its output continuous places, while by the
well-formedness condition 1 it does not modify the marking of any discrete
place. The evolution of the marking of a place p € Po due to the continuous
firing of transition ¢t € T¢ is given by the differential equation:

D) S iy M) () 2
te*pNTc

Note that the firing of a continuous transition ¢ does not depend on the par-
ticular element d € D(t) wrt whom the transition is enabled, but may depend
on the marking M and on the external continuous input uc. We denote the
dependence of v; on external input uc by the label {v;},,..

2.4 FEvolution and fundamental equation

To keep track of the transition firings, we define a firing vector o(r). The
component of o associated to transition ¢ is denoted oy and is defined as follows.

e For all t € Tp,o:(r) € S(D(t)) is a multiset that expresses how many
times and wrt which elements d € D(t) transition ¢ has fired in the time
interval [0, 7].
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e Forall t € To,04(7) € REM*1 is defined as

.
o(1) = / ve(1')dr’
0
where v;(7) expresses the firing speed of transition ¢ at time 7, i.e.,

(r) = vi(M(7),uc (7)) if tis enabled at M(7);
UeT) = {0}e®) <1 otherwise.

We define the incidence matriz of a HLHPN as the matrix C' of dimension
m X n and such that:

P(t,p) — Pp,t) ifpe Pp and t € Tp;

_ ) fuwp) — foor)y ifp€PoandteTp;
Cl,t) = ¢ ifpe Ppand t € T¢;
A(t

p) if p€ Poand t € T.

where ¢ is the empty multirelation.

Let us now define the “o” operator (it is similar to the matrix product with

substitution defined in [MUR 89]) as follows:

e Vpe R(D,D"),Ya € §(D),poa = pla] (the evaluation of p in a);
e Vf:D — R Ya € S(D), foa= f(a) (the evaluation of f in a);
e VAc R VB e RM Ao B = A- B (the matrix product).

Then from [[1]] and [[2]] it follows that
Vpe Pp, My(1) = Mp(0) + 3 cr, {Pp)[0e(T)] = pip.ploe(T)]}

Vp € Po, Mp(t) = Mp(0)  + 3 seqy {fitp) (0e(T)) = fip,p)(0e(7))}
+ 2 tete At - o (T

and writing it in matrix form we obtain the fundamental equation:

M(r) = M(0) 4+ Coo(r)
There are some particular cases that may be worth considering.

o If Po = () and Tc = 0, the net reduces to a timed colored net with
possible external discrete inputs.

o If Po = 0, Tc = () and for all p,D(p) = {c1} = {e} (i.e., the place
domain is a singleton), we have the classical timed place/transition net
with colorless tokens and possible external discrete inputs.
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2.5 FEvolution graph

The evolution, wrt time, of a hybrid system modeled by HLHPN can be
concisely represented in a diagram composed by a sequence of phases (shown
as boxes) and transitions (shown as bars) connected by arrows, called Evolution
Graph.

Each bar represents a discrete transition and is labeled by its occurrence
time instant 7;. The firing vector and the marking of the net before the transi-
tion firing — o (7, ) and M (7; ) — and after the transition firing — o(7;") and
M (7;") — are shown on the right hand side (RHS) of the bar. Only the initial
firing vector and the initial value of the marking of the net are associated to

the initial bar marked with = = 0.

The delay 0 associated to the discrete transition is shown on the left hand
side (LHS) of the bar. In the case of controlled transition, the value of the
forcing discrete input is shown on the LHS of the bar as well.

The continuous behaviour between two discrete transitions (phase) is repre-
sented by a box containing the firing velocity vectors of the enabled continuous
transitions v, (M (7),uc/(7)), (t; € Te).- On the RHS of each box the values of
the discrete inputs up, of the firing vector o(7), and of the marking of the net
M (7) are shown.

The arrows connecting bars and boxes represent the logical sequence of
continuous phases and discrete events. It is worth noting that simultaneous
discrete transitions firings (multiple firings at the same time instant 7) can be
well represented by the proposed evolution graph by a sequence of bars labeled
M, 732 ete.

3 Basic hybrid structures
A hybrid behaviour occurs when a system is characterized by interacting
continuous and discrete event subsystems.

Usually continuous and discrete event systems are modeled by differential
equations and by automata or Petri nets respectively. HLHPN are an extension
of Petri net structures, and, therefore, can represent discrete event systems as
a particular case.

The aim of this section is to show how HLHPN can model purely continuous
systems and basic hybrid behaviours such as switches and jumps [BRA 94].

3.1 Continuous evolution

The model of continuous subsystems we consider is represented by a differ-
ential equation of the form

to(r) = ¢lro(1);uc(r); 7]
C CT) C [3]
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where z = [zL;25]T € X is the whole system state vector, ¢ and zp being
its continuous and discrete components respectively, u = [ug, ub)T € U is the
control state vector, uc and up being its continuous and discrete components
respectively, ¢[-] is a vector function, and 7 is the independent variable time.

In figure 3.1 the continuous subsystem dynamics is represented by means of
a HLHPN. The continuous transition t¢ fires with firing velocity v;. depending
on the marking xc of the continuous place po, and on the continuous input
uc. The firing of t¢ modifies the marking of pc by the arc a = (t¢, pc) with
inscription Z,. The vector function ¢ is therefore defined as ¢ = Z, - v4.. As
an example, 7, may be taken as the identity matrix of proper order, so that

Y = Ve

te [Vtc}uc

P, | (o)

Figure 1. Continuous evolution

3.2 Autonomous/Controlled switching

In case the hybrid dynamics involves the switching among different vector
functions ;[zc(7); uc(7); 7], depending both on the whole system state x(7)
and on the control u(7), the continuous state dynamics is represented by the
following

I .

where X; and U; are proper subset of the state and control space, respectively,
such that |J; X; = X and |J,U; = U.

If the switching between ¢; and ¢;, (i # j
to the state evolution (i.e., z(r;) € X;, z(r)) € X, z(7s) ¢ Xi(NX;, and

u(rs) € U;(U;j) it is defined “autonomous”. Analogously if it is due to the
effect of the control input, both continuous or discrete, it is defined “controlled”.

), at a time instant 7, is due

Switches can be easily represented with HLHPN. As an example, in fig-
ure 3.2 a controlled switching between the vector field pi[zc(t);uc(t);t] =
Toy * Vie, and @2[xc(t);t] = Za, - v, is represented. A discrete control up
makes the discrete transition tp firable after a delay §. Its firing, moves the
token from the discrete place pp,, which enables the continuous transition ¢, ,
to pp,, which enables the continuous transition ¢, .

Clearly if the firability of the discrete transition tp does not depend on a
discrete control, an autonomous switch will be represented.
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D,

Figure 2. Controlled switching

3.3 Autonomous/Controlled jump

Consider a piecewise continuous state vector such that zc (7, ) # zc (1)),
where 7, (h = 1,2,---) are the time instants at which a discontinuity occurs.
At any 7, the system state z¢ change instantaneously and we can write

tc(r) = plro(r); uc(7);t] + Bo{T'z(7); up(7)]} [5]

where B is a real matrix, and 4[] is a vector Dirac function whose elements J;
are defined as follows

0;(T;) =

0 I;#0
{ [6]

0. @) FiZO

Such a discontinuity can be represented by the enabling and firing of a discrete
transition which, by means of proper arc inscriptions, changes the marking of
the connected continuous places. In figure 3.3 an autonomous jump of the con-
tinuous state z¢ (1) from zc (7, ) = Za, to zc(r;7) = I,,, due to the enabling
and firing of the discrete transition tp as soon as x¢ € D(tp), is represented.
With reference to [[5]] and [[6]], we have B; jiz;) = 0, By; =
Iy =T[zc; D(tp)], (1,5 = 1,2,... ,c(pc))-

The jump will be called “controlled” if the enabling and firing of the discrete
transition depends on a discrete input.

as; - Ia4l- )
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pD®

A

to [vtc]uc
Ia1 Ia4 D(tp)
P, <XC> ,\/ tp
I515

Figure 4. The electrical circuit

4 Example: an electrical circuit

Let us consider two RL circuits coupled or uncoupled by means of an ex-
ternal action that switches the mutual inductance from M to 0 and vice versa.
One of the circuits is supplied by a voltage generator v(7) (figure 4). This
example shows how HLHPN can model switches in the dynamics.

Let i1(7) and i3(7) be the currents in the supplied and induced circuit
respectively. The dynamics of the system is given by

m —_ y : — R1L2i1 MRziz sz

ar g1(in,iz,0) = -7 7 g v -2y oy 7y v -l o gy v [7]
@ — (7/ 'L ’U) —_ + Mﬁlll _ tlﬁzlz _ Muv

ar 921,02, S TTL,-MZ ~ TiLo-MZ  TiL,—M?

When the mutual inductance is switched from M to 0 the system evolves as
two independent RL circuits according with the following relationships

diq _ . _ Ry 1
{ ar —Gl(ll,’lj) ——L—ll1+L—1’U

; . . 8
% = GQ(ZZ) = —%22 [ ]
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p1 W

P, Z

Figure 5. The electrical circuit net

In both [[7]] and [[8]] the voltage generator v is considered as an external con-
tinuous input.

It is possible to represent the dynamics of this system with the high-level
hybrid Petri nets in figure 4.

p1 is a discrete place that is marked when the two circuits are coupled.
po is a discrete place that is marked when the two circuits are not, coupled.

ps is a 1-dimensional continuous place whose marking (denoted by the
token (i1)) represents the actual value of i; € R.

ps is a 1-dimensional continuous place whose marking (denoted by the
token (i2)) represents the actual value of i € R.

upy is a discrete external input: when up; = 0 the two circuits are
uncoupled while when up; = 1 they are coupled.
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e uc1 is an external continuous input corresponding to the ideal voltage
generator in figure 4, i.e. uci (1) = v(7).

t; is a discrete transition that, as soon as it is enabled, fires immediately,
i.e., its firing delay is {0}, when the discrete external input has a value
up1 = 0 (the circuits are decoupled).

t, is a discrete transition that, as soon as it is enabled, fires immediately,
i.e., its firing delay is {0}, when the discrete external input has a value
up; = 1 (the circuits are coupled).

t3 is a continuous transition that defines the coupled dynamics of
the variables i; and i by means of the ”firing velocity” {w,} =
{[g1(i1,ia,uct), g2(i1,i2,uc1)]T}; when t3 is enabled, i.e., when p; is
marked, it fires continuously and changes the marking of the places ps3
and py4 according to

while the firing of transition ¢3 does not change the marking of the discrete
place p;.

e t, and t; are continuous transition that defines the uncoupled dynamics
of the variables i; and i» (respectively) by means of the ”firing velocity”
{vt,} = {[G1(i1,uc1)]} and {v,} = {[G2(i2)]}; when t4 and t5 are en-
abled, i.e., when py is marked, they fire continuously and changes the
marking of the place p3 and ps (respectively) according to

il(T) = 11(7') + fT[I]Vt4 (T’)dT'
Z +f7- 1 I I

.
M
—~~
\1
||

while the firing of transition ¢4 and t5 does not change the marking of
the discrete place ps.

The complete structure of the HLHPN in figure 4 can be exactly defined as
follows.

e Pp = {p1,p2}, mp = 2, Po = {p3,pa}, mc = 2, ¢(p3) = c(ps) = 1
D(p1) = D(p2) = {e } D(p ) D(ps) = K
2)

o M(p1) =w, M(p M (p3) = i1, M(ps) = ia;

[ ] TD = {tl,t2}, np = 2 TC = {tg,t4,t5}, ng = 3, C(tg) = 2, C(t4)
e(ts) = 1, D(t1) = D(t2) = {(w,2)lw € D(p1),z € D(p2)}, Dlts)
{wlw € D(p1)}, D(t) = D(t5) = {z|z € D(p2)};

® Up = [U’Dl] € {07 1}7 uc = [UCI] € ]R,

[ 6t1 (M,U,Dl) =0 ifU,Dl =0 else 5t1(M,UD1)
Ot, (M,up1) =0if up; = 1 else §p, (M, up1)

= 00,
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o v, = [g1 (i1, 02, uct), 92 (i1, i, uc1)] T, vy, = [Gi(in,uct)], vis = [Ga(i2)];

* I(phtl): p(pl,tl)(d7 d’) =1Vde D(tl)ad’ € D(pl);
I(m,ts): p(p17t3)(d, d’) =1Vde D(t3),d’ S D(pl),
I(t17p2): p(t1,p2)(d7 d’) =1Vde D(tl)ad’ € D(pz),
I(Pziz): p(;l)zytz)(d’ dl) =1Vde D(t2)7dl € D(pg),
I(P27t4): p(;l)zytz;)(d’ dl) =1Vde D(t4)7dl € D(pg),
I(pz,ts): p(p2’t5)(d, dl) =1Vde D(t5),dl S D(pg),
Lty pr)- p(tzym)(dv d') =1 Vd € D(tz),d" € D(p1),
I(tBypl) = I(phta)’ I(t47p2) = I(;D2,t4)’ I(ts,l)z) = I(;D2,t5)’
Lts,ps)* Attsps) = [10] it pa) Acts pa) = [0,1],
Litaps) Attaps) = [Us Litspa): Atts.pa) = [1]-

The incidence matrix is the following

—1®e +l®e| ¢ ¢ ¢
o ¢

C = +1lQe —1Re )
[0l [0] ‘ [L,o] 1] [0]
[0] 0] 0,1 [o] [1]

The terms of type 1 ® e in the upper-left part represent the constant multirela-
tion such that p[d] = 1 ® e, Vd. The symbol ¢ in the upper-right part denotes
the empty multirelation. The elements [0] in the lower-left part denote the zero
1-dimensional vector function, i.e., the function f(d) = 0 Vd. The elements in
the lower-right part are constant matrices.

The evolution graph of this hybrid net is shown in figure 5. At the initial
time instant 7 = 0 the two circuits are coupled, ¢.e., place p; is marked and
upy; = 1, and no current is present, i.e., iy = iz = 0. Due to the effect of
the voltage generator, the system evolves according to [[7]], i.e., vy, = Vi,
vy, = v, = 0. At an arbitrary time instant 74 an external action decouples
the two circuits, i.e., the discrete input changes its value from up; = 1 to
up; = 0, then the discrete transition ¢; fires and the token passes from p; to
po; from now on the system evolves as two distinct and independent circuits
according to [[8]], i.e., vy, = 0, vy, = vy, and vy, = vy, with initial marking
M(ps) = i1(r1) and M (ps) = iz(71).

5 Example: a bouncing ball

Consider the problem of modeling the motion of an elastic ball bouncing on
an horizontal plane with infinite stiffness and subjected only to the gravitational
force (figure 5).

This example shows how HLHPN can model jumps in the state space.

The continuous-time state vector of the system is zc = [z1, 22]T where z; is
the distance of the ball from the horizontal plane surface and z- is the velocity
of the ball, assumed positive in the upwards direction. The horizontal plane
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©=0 o(0) =[0,0000  M(0) =[e,00] T
Up()=1 o(m=[0,0,{ v, 00] "
0 ° €
go € €
9 M@0 200 =1 o 1| ofi@ i,
0

[ oli, @) i, @)
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Figure 6. The electrical system net evolution graph

Figure 7. The bouncing ball
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] T
{x,=0;x,>0}

[OJX 2

Figure 8. The bouncing ball hybrid net

constrains the state space to the half-plane in which z; > 0. The dynamics of
the system is represented by the following

j?l = T2
{ By =—g—2x 0(z1) i
where §(-) is the Dirac function.

It is possible to represent the dynamics of this system by means of the
HLHPN in figure 5. where:

e p; is a discrete place that is marked when the ball is on air.
e p- is a discrete place that is marked when the ball is on the plane.

e p3 is a 2—dimensional continuous place whose marking (denoted by the
token ([z1,72]T)) represents the actual value of the system state vector
X = [371, HZQ]T

e uc is an external continuous input corresponding to the constant gravity
acceleration, i.e. ucy(7) = —g.
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e {1 is a discrete transition that, as soon as it is enabled, fires immediately,
e., its firing delay is {0}, when the ball is on the plane and with a
positive (upwards) velocity, i.e. 1 = 0 and 2 > 0 as shown in the pre
arc between p3 and ¢;. This transition does not change the marking of
the continuous place.

e i is a discrete transition that, as soon as it is enabled, fires immediately,
i.e., its firing delay is {0}, when the ball reaches the plane surface with non
positive velocity, i.e. ;1 = 0 and x5 < 0 as shown in the pre arc between
ps and tp. This transition changes the marking of the continuous place
p3 from x to —x by removing the token ([0, z2]7) and adding the token

([Ov _mQ]T>-
e t3 is a continuous transition that defines the continuous dynamics of the
state vector X by means of the "firing velocity” {vy,} = {[z2,—g]"}.

When t3 is enabled, i.e. p; is marked, it fires continuously and changes
the marking of the place ps according with the following relationship

x(1) = x(1) + /T

i

1 0
[ 0 1 } v(r")dr'
The transition ¢3 does not change the marking of the discrete place p;.

It is worth noting that when the ball reaches the surface plane with downwards
velocity, say at time instant 7%, the transitions t» and ¢; fire subsequently at
the same time instant 7*.

The complete structure of the HLHPN presented in figure 5 can be exactly
defined as follows:

e Pp = {p1,p2}, mp = 2, Pc = {ps}, mc = 1, c(ps) = 2, D(p1) =
D(p2) = {e}, D(p3) = R?;

o M(p1) =w, M(p2) =2, M(p3) = [331,332]T;

OTD:{ t2} np = 2, Tc—{t3} ne =1, ¢(ts) = 2,
D(ty) = {(w z,x1,22)|w € D(p1),z € D(p2),x1 = 0,22 > 0},
D(t2) = {(wazaﬂfl,l‘zﬂw € D(p1),z € D(p2), 71 = 0,332 <0},
D(ts3) = {wlw € D(p1)};

* uc = [uci] = —g;

o 4y, (M) = 64, (M) = 0;

1 Vd € D(t), (p1)
1 Vd € D(ts), (p1)
1 Vde D(tl) d S D(pl),
1 (t2) (P2)
1 (t1), (P2)

Lipst2)* Pprta) (s d)
I(Phts): p(P17t3)(d d)
I(tl,pl): p(tl,m)(d: d’)
7 )(d d")
7 )(d d")

(t2,p2)* P(t2,p2
(p2.t1)* P(p2,t1

Vd € D(t;
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(ps,t2)* f(PSJz) (d) = [Ov x2]T Vd € D(t2)v
(t2,ps)* f(tzypa) (d) = [Ov _mQ]T Vd € D(tQ)a
(ps,t1)* f(PSJl)(d) = [07x2]T Vd € D(tl)v

(t3,p1) — I(pl,ts)’ I(thp%) = Z(me)’
(t37P3):A(t37P3) = [[170] )[0) 1] ]

NN NN

The incidence matrix is the following

~1Re +lxe ¢

RIBRESIE

The terms in the upper part represent multirelations. The elements in the
lower-left part denote vector functions, i.e., [0,0]7 represent the constant func-
tion f(d) = [0,0]1Vd and [0, —2z5]" represent the function f(d) = [0, —2z5]T
Vd = (w, z.x¢1,x2). The element in the lower-right part is a constant matrix.

+1l®e —-1®e ‘ )

The evolution graph of this hybrid net is shown in figure 5. At the initial
time instant 7 = 0 the ball is at a distance z;, from the ground with no
velocity, i.e., z1 = x1,, r2 = 0, and the discrete place p; is marked. The
ball falls down subjected to the gravity force according to [[9]]. At time instant

= ({“%)1/ 2 the ball reaches the ground with downwards velocity, i.e. 1 = 0,

xo = —g71- Then the discrete transition ¢, fires immediately, the token is
moved from p; to py and the marking of the continuous place ps changes from
x(177) to x(1;7) = —x(r77). Transition #; fires immediately because z; = 0,
o = g11 > 0, po is marked, and the system evolves as before subjected to the
gravity force according to [[9]]. It is worth noting that during the infinitesimal
time period in which the discrete place p, is marked, say from time instant 7,

to time instant 7'1+ the continuous transition ¢z is not enabled, i.e. vy, = 0.

6 Conclusions

A hybrid model based on Petri nets that merges the concepts of high—level
nets with continuous nets has been presented. A High Level Hybrid Petri Net
can represent the dynamics of hybrid systems that can be characterized by
jumps in the state space and switching in the dynamics, both autonomous and
controlled by means of arbitrary external inputs. The evolution of the contin-
uous dynamics, i.e. the rate of change of the marking of the continuous places,
is influenced by the marking of the discrete places, that enable or disable the
continuous transitions, and could be controlled by means of external continuous
input.

The HLHPN herein presented constitutes a useful model that provides a
simple graphical representation of hybrid systems and take advantage of the
modular structure of Petri nets in giving a compact description of systems
composed of interacting subsystems, both time-continuous and discrete-event.



Modeling hybrid systems by high-level Petri nets 1229

©=0 o(0) =[0,0,01" M(0) —f®.€ X15.0] '

o(t)=[0, 0,[01\/‘3] T

0 [ ] €
XOZ € €
g M@=MO) +C=0() = |y, | +| g5q+
0 -gT
y =1 o )00, [¥) T M) e e0 g
80 ———f———
G(Tﬁf% ):[1,0, [01{43] T M(T(ll)+ ):[ £,0 '0 Y Tl] !
S e o 10 Y] T Mt ){e.0 0,97
S HLL [Y)T M) e e0,g Tl
(o=, [ v, ]
0 * i
x0 i )
2 = ° =
y M@=MO +C=ol) =| |+ 455 (r-3t(t—1)
} 9T -9 (-1 )
\
\
\
v

Figure 9. The bouncing ball evolution graph



1230  APII—JESA. Volume 32 — n° 9-10/1998

The used formalism seems to be able to encompass large classes of hybrid
systems and allows us to extend some of the standard structural concepts of
Petri nets. This fact suggests that other Petri nets analysis and control tech-
niques may be generalized within this framework as well. Further investigations
on the analogies and correspondences between this model and the other pre-
sented in the literature could be profitable.
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