
Discrete Event Dynamic Systems: Theory and Applications, 7, 151–190 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Survey of Petri Net Methods for Controlled
Discrete Event Systems

L. E. HOLLOWAY holloway@engr.uky.edu
Center for Robotics and Manufacturing Systems and Department of Electrical Engineering,
University of Kentucky, Lexington, KY 40506-0108, USA

B. H. KROGH krogh@ece.cmu.edu
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA

A. GIUA giua@elettro1.unica.it
Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

Received January 27, 1995; Revised August 6, 1996; Accepted August 14, 1996

Abstract. This paper surveys recent research on the application of Petri net models to the analysis and synthesis
of controllers for discrete event systems. Petri nets have been used extensively in applications such as automated
manufacturing, and there exists a large body of tools for qualitative and quantitative analysis of Petri nets. The
goal of Petri net research in discrete event systems is to exploit the structural properties of Petri net models in
computationally efficient algorithms for computing controls. We present an overview of the various models and
problems formulated in the literature focusing on two particular models, the controlled Petri nets and the labeled
nets. We describe two basic approaches for controller synthesis, based on state feedback and event feedback.
We also discuss two efficient techniques for the on-line computation of the control law, namely the linear integer
programming approach which takes advantage of the linear structure of the Petri net state transition equation, and
path-based algorithms which take advantage of the graphical structure of Petri net models. Extensions to timed
models are briefly described. The paper concludes with a discussion of directions for future research.

Keywords: Petri nets, supervisory control, untimed models, logical control

1. Introduction

Models of discrete event systems (DESs) may be grouped into two main classes.Untimed
modelsare those models in which order of states or events is relevant in the control speci-
fication and design. The specific time instants when state transitions and events occur are
not considered.Timed modelsare intended for the study of properties explicitly dependent
on inter-event timing. Petri nets are effective for modeling both untimed and timed DESs,
particularly when there is a high degree of concurrency and synchronization. The purpose
of this survey is to provide an overview of recent research on the application of Petri net
models and methods to problems in the logical control of DESs focusing on untimed mod-
els. The theory and applications of timed Petri net models for simulation, performance
evaluation, and system optimization are outside the scope of this survey (see Baccelli et al.
(1992), Cohen et al. (1989) and references therein for recent research on Petri net models
for timed DESs). For general background on the theory and applications of Petri nets, the

152 HOLLOWAY, KROGH AND GIUA

reader is referred to the survey papers Murata (1977), Zurawski and Zhou (1994) and the
standard texts Peterson (1981), Reisig (1982).

Three main design approaches for the control of logical DES using Petri net models are
discussed in the literature.

Controlled Behavior approach

In this approach, which is the most common when using Petri net models for manufacturing
systems, the model describes the behavior of the closed loop system, i.e., the behavior of
the plant and controller joined together. When the desired controlled behavior is obtained,
it is necessary to extract the controller logic for implementation. This approach has some
advantages when a declarative model, rather than procedural model, is used. Bottom-up
or top-down design rules may be used to ensure that the final model enjoys properties
of interests (liveness, boundedness, etc.). Examples of this approach are found in Zhou,
DiCesare, Desrochers (1992), Jeng and DiCesare (1993), Zhou and DiCesare (1993), Suziki
and Murara (1983).

Logic controller approach

The second approach focuses on the direct design and implementation of a controller for the
plant. The objective is to define the input-output behavior for the controller to achieve the
desired controlled behavior for the closed-loop system. Generally the controller receives
commands from an external agent which it must translate into a sequence of operations to be
performed by the plant. This approach leads naturally to the physical implementation of the
control program, but simulation is required to validate the closed-loop behavior. Examples
of this approach in which Petri nets are used to define the control logic include Bruno and
Marchetto (1986), Valette (1983), Zhou, DiCesare and Rudolph (1992). David and Alla
(1992, 1993) discuss the relationships between Petri nets and the programming language
GRAFCET for specification of controller logic.

Control theoretic approach

This approach adopts the controller synthesis paradigm from control theory for continuous
systems. Given a model of the plant dynamics and a specification for the desired closed-
loop behavior, the objective is to synthesize a controller to achieve the specifications. In
this approach there is a clear distinction between the plant and the controller and the infor-
mation flow between the plant and controller is modeled explicitly. Different restrictions
on the information flow give rise to problems of controllability, observability, decentralized
control, etc. Examples of this approach to DESs are the classical Ramadge and Wonham
(1989) approach that will be discussed in this paper, that of Lewis et al. (1993) based on
the definition of task matrices, and that of Stiver and Antsaklis (1993) which extends the

PETRI NET METHODS FOR THE CONTROLLED DES 153

representation power of the Ramadge and Wonham approach to hybrid systems. This paper
focuses on the use of Petri nets in the control theoretic approach.

The seminal research by Ramadge and Wonham on the existence and synthesis of con-
trollers for DESs used controlled automata to model the plant (Ramadge and Wonham
1987a, 1987b). Controlled automata provide a general framework for establishing funda-
mental properties of DES control problems. They are not convenient or intuitive models for
practical systems, however, because of the large number of states that have to be introduced
to represent several interacting subsystems. Moreover, the lack of structure in controlled
automata models limits the possibilities for developing computationally efficient algorithms
for analysis and synthesis.

Petri nets have been proposed as an alternative modeling formalism for DES control to
exploit purported advantages Petri nets offer over automata models. Petri net models are
generally more compact and more powerful than automata models. Petri nets are already
used in application areas such as automated manufacturing, and there exists a large body
of tools for Petri net analysis and design. For control, Petri nets offer a structured model of
DES dynamics that can be exploited in developing more efficient algorithms for controller
synthesis.

In this paper we survey research on controller synthesis for plants modeled by Petri nets
focusing on two main approaches. Thestate feedback controlhas been mainly studied
by means of a particular model calledcontrolled Petri nets(CtlPNs). Theevent feedback
control has been mainly considered in a formal language setting and the corresponding
models are calledlabeled Petri nets. The following section presents the basic untimed
Petri net model, controlled Petri nets, and labeled nets. Section 3 describes state feedback
controllers for CtlPNs and the general conditions that must be satisfied for a state feedback
control policy to exist to prevent the CtlPN from reaching a given set of forbidden markings.
More general results on modular synthesis and restricted observations of the marking are
also described. In section 4, control of the event feedback behavior of labeled nets is
considered. We summarize a general design technique based on net operators, and discuss
some problems related to the existence and computability of controllers. We then present
two general approaches for the on-line computation of state feedback policies, namely,
techniques which rely on the linear-algebraic formulation of the net model (section 5),
and techniques which rely on the graphical structure of Petri nets (section 6). Section 7
presents an overview of supervisory control to avoid deadlocks and ensure liveness. Recent
extensions of logical controller synthesis methods for CtlPNs to timed Petri net models
are described in section 8. The paper concludes with a discussion of several directions for
further research in section 9.

2. Preliminaries

In section 2.1 we introduce basic definitions and notation for ordinary Petri nets. This basic
Petri net model has often been enhanced and modified to serve various purposes (see, e.g.
Jensen (1995)). In sections 2.2 and 2.3 we review two models that have been used for DES
control, namely,controlled Petri netsandlabeled Petri nets.

154 HOLLOWAY, KROGH AND GIUA

Figure 1. Examples of place/transition nets.

2.1. Ordinary Petri Nets

An ordinary Petri net structureis a triple,N = (P, T, E), where:

– P is a finite set ofplaces

– T is a finite set oftransitions;

– E ⊆ (P× T) ∪ (T × P) is theincidence relation, representing the set of directed arcs
connecting places to transitions and vice versa.

It is assumed thatP∩T = ∅ andP∪T 6= ∅. Graphically, places are represented by circles
and transitions are represented by bars, as illustrated in the nets in Fig. 1.

A net is said to bepure if it has no self-loops, i.e., if forp ∈ P, t ∈ T , [(p, t) ∈ E ⇒
(t, p) 6∈ E]. If a net is pure the incidence relation can be represented by a single matrix
E: P × T → {0, 1,−1}, called theincidence matrixof the net, defined as

E(p, t) =
 1 if (t, p) ∈ E
−1 if (p, t) ∈ E

0 otherwise
.

Thepresetandpostsetof a transitiont are defined respectively as
(p)

t = {p | (p, t) ∈ E},
andt

(p) = {p | (t, p) ∈ E}. Thepresetandpostsetof a placep are respectively
(t)

p = {t |
(t, p) ∈ E}, andp

(t) = {t | (p, t) ∈ E}.
A markingis a vectorm: P→ IN that assigns to each place of a Petri net a non-negative

integer number of tokens, represented by black dots as in Fig. 1, wherem(p) denotes the
number of tokens assigned by markingm to placep. The set of all markings defined on a

PETRI NET METHODS FOR THE CONTROLLED DES 155

net N = (P, T, E) isM = IN |P|. A net system〈N,m0〉 is a netN with an initial marking
m0.

A set of transitionsτ ⊆ T is enabledby a markingm if

∀p ∈ P,m(p) ≥ |p(t) ∩ τ | , (1)

that is, for each placep ∈ P, m(p) is greater than the number of transitions inτ for which
p is an input place.

There are two different assumptions commonly made regarding the number of transitions
that can fire at a given instant. Under theconcurrency assumptionmore than one transition
can fire at any instant. Thus, if a set of transitionsτ ⊆ T is enabled at markingm, thenτ
may fire yielding a new marking

m′(p) = m(p)+ | (t)p∩ τ | − |p(t) ∩ τ | . (2)

In words, firing an enabled set of transitionsτ ⊆ T causes one token to be removed from
each placep ∈ (p)

t , and one token to be added to eachp ∈ t
(p)

, for eacht ∈ τ . We write
m [τ 〉 to denote thatτ may fire atm, andm [τ 〉 m′ to denote thatτ may fire, resulting in
m′.

In much of the Petri net literature it is assumed that only a single transition can fire at
any instant. We refer to this case as theno concurrency (NC) assumption. Under the NC
assumption, the firing equation (2) holds withτ a singleton set.

A firing sequencefrom a markingm0 is a (possibly empty) sequence of transition sets
σ = τ1 . . . τk such thatm0 [τ1〉 m1 [τ2〉 m2 · · · [τk〉 mk. We also writem0 [σ 〉 to denote
that we may fire the sequenceσ at m0, andm0 [σ 〉 mk to denote that the firing ofσ yields
mk. Under the NC assumption, eachτi is a singleton set, andσ is a sequence of transitions.

A markingm isreachablein 〈N,m0〉 if there exists a firing sequenceσ such thatm0 [σ 〉 m.
Given a net system〈N,m0〉, the set of reachable markings (also called thereachability set
of the net) is denotedR(N,m0). A transitiont ∈ T is live if for any markingm ∈ R(N,m0)

there always exists a markingm′ ∈ R(N,m) such thatt is enabled bym′; a net system is
live if all of the transitions are live. A transitiont ∈ T is said to be indeadlockat a marking
m ∈ R(N,m0) if it cannot be enabled by any marking inR(N,m). A net system is in
deadlock at a marking if all of the transitions are in deadlock. In applications, deadlock in
a Petri net model often represents the classical circular wait condition: each activity in a set
of activities is holding a resource needed by one of the other activities the set, so none of the
activities can proceed (Coffman et al. 1971). A related notion islivelock, which describes
situations where it is possible to fire some set of transitions indefinitely without enabling
some other set of transitions (Sifikas 1980). In section 7 we consider control policies for
deadlock avoidance and liveness. The issue of livelock has not been addressed so far in the
literature on Petri net methods for controlled DESs.

A marked graphor event graphis a Petri net such that each place has exactly one input
arc and one output arc, i.e.,| (t)p| = |p(t) | = 1. Marked graph structures can model
synchronization of concurrent processes: tokens in places which share an output transition
must progress synchronously. However, marked graph structures cannot represent choice
in the plant model: there is only a single event that can remove a token from a given place,

156 HOLLOWAY, KROGH AND GIUA

namely, the firing of the unique output transition for the place. Thus, enabled transitions
arepersistentfor marked graphs, which means that once a transition is enabled, it remains
enabled only if it fires.

A state graphis a Petri net such that each transition has exactly one input arc and one
output arc, i.e.| (p)t | = |t (p) | = 1. A state graph structure with a single token is analogous
to a finite-state automaton: each place corresponds to a state of an automaton and the token
location indicates the current state. Since places can have multiple output transitions in a
state graph structure, these structures can represent choice in the plant dynamics. Transitions
are not necessarily persistent for state graphs. State graphs with multiple tokens may
represent a restricted kind of concurrency, since more than one transition may be enabled
at a given marking. A state graph is unable to represent synchronization of concurrent
processes, however, since each transition is enabled by the marking of at most one place.
Section 6 examines a family of control synthesis methods which exploit state graph and
marked graph structures to compute controls.

Figure 1 shows three nets: (a) a marked graph; (b) a state graph; and (c) an ordinary Petri
net which is neither a marked graph nor a state machine.

It is sometimes useful to write the firing equation (2) of a net as a linear matrix-vector
equation. Let markingm be reachable from markingm0 by firing a sequenceσ = τ1 . . . τk.
Then the followingstate transition equationis satisfied:

m= m0+ E · σ , (3)

whereσ : T → IN is a vector of non-negative integers, called thefiring count vectordefined
as:

σ(t) :=
k∑

i=1

|{t}
⋂
τi | .

That is,σ(t) represents the number of times transitiont appears inσ . The set of markings
such that there exists a vectorσ satisfying the state transition equation (3) is called the
potentially reachable setand is denotedP R(N,m0). Note that in generalP R(N,m0) ⊇
R(N,m0). However, foracyclic (also calledloop free) nets, i.e., nets where no directed
path forms a cycle,P R(N,m0) = R(N,m0) (Ichikawa and Hiraishi 1988, Lemma 4).

The state equation (3) in matrix-vector form resembles the standard state transition equa-
tion for discrete-time linear systems, with the marking vector as the state vector, and the
firing vector as input vector. Lettingmk+1 denote the marking after the kth transition firing
and lettingσ k denote the kth firing vector, (3) becomes

mk+1 = mk + E · σ k, (4)

which is strongly reminiscent ofxk+1 = A · xk + B · uk from linear systems theory. This
suggests that existing results from linear system theory can be readily applied to the special
case of Petri net dynamics. This analogy was been explored by some authors (see, for
example, Murata (1989)), but there is a complication in the Petri net dynamics which
limits its usefulness: only nonnegative markings are allowed. Thus, when viewed as linear
systems, Petri nets have a state constraint which imposes a state-dependent constraint on

PETRI NET METHODS FOR THE CONTROLLED DES 157

Figure 2. A controlled Petri net.

the set of admissible inputs (i.e., enabled transitions) at any instant. Nevertheless, there
is some value in viewing the Petri net dynamics from a linear algebraic perspective and
this approach, know asstructural analysis, has been developed extensively in the literature
(Memmi and Roucairol 1980, Best 1987, Johnson and Murara 1985, Sifakis 1978, Colom
and Silva 1991). The linear algebraic approach to DES control is described in section 5.

2.2. Controlled Petri Nets

Controlled Petri nets (CtlPNs) are a class of Petri nets with external enabling conditions
called control placeswhich allow an external controller to influence the progression of
tokens in the net. CtlPNs were first introduced by Krogh (1987) and Ichikawa and Hiraishi
(1988).

Formally, a CtlPN is a triple,Nc = (N,C,B) where isN = (P, T, E) is an ordinary
Petri net structure and

– C is a finite set ofcontrol places, disjoint from P, T ,

– B ⊆ (C × T) is a set of directed arcs connecting control places to transitions.

In the CtlPN context, the elements ofP are referred to asstate places.
For a transitiont ∈ T we denote the set of input control places as

(c)
t := {c | (c, t) ∈ B},

and for a control placec ∈ C we denote the set of output transitions asc
(t)

:= {t | (c, t) ∈ B}.
A transitiont is said to be acontrolled transitionif its set of control inputs

(c)
t is nonempty.

The set of all controlled transitions is denoted byTc. Figure 2 illustrates a controlled Petri
net, where circles represent state places, bars represent transitions, and squares indicate
control places.

As with ordinary Petri nets, the state of a CtlPN is given by itsmarking, which is the
distribution oftokensin the state places. A set of transitionsτ ⊆ T is state enabledunder
a marking if equation (1) is satisfied.

158 HOLLOWAY, KROGH AND GIUA

A control for a CtlPN is a functionu: C −→ {0, 1} associating a binary value to each
control place. The set of all such controls is denoted byU . A set of transitionsτ ⊆ T is
said to becontrol enabledif for all t ∈ τ , u(c) = 1 for all c ∈ (c)

t . A controlu ∈ U is said
to beas permissive ascontrolu′ ∈ U if u(c) ≥ u′(c) for all c ∈ C. Controlu is said to be
more permissive thancontrolu′ if u is as permissive asu′ andu(c) > u′(c) for somec ∈ C.
The most permissive control isuone := 1, and the least permissive control isuzero := 0.

CtlPNs are generally used under the concurrency assumption. LettingTe(m, u) ⊆ 2T

denote the collection of sets of transitions that are both state enabled bym ∈M and control
enabled byu ∈ U , any set of transitionsτ ∈ Te(m, u) canfire, thereby changing the marking
of the net to the markingm′ as defined by equation (2).Note that firing a set of transitions
in a CtlPN has no effect on the control.

Given a markingm ∈M and controlu ∈ U , the set ofimmediately reachable markings,
R1(m, u), is given by

R1(m, u) = {m}
⋃
{m′ ∈M | m′ is given by (2) for someτ ∈ Te(m, u)}. (5)

The set ofreachable markingsunder an arbitrary number of transition firings from a given
markingm ∈M with a constant controlu ∈ U , denotedR∞(m, u), is defined by

1. m ∈ R∞(m, u);

2. if m′ ∈ R∞(m, u), thenR1(m′, u) ⊆ R∞(m, u); and

3. all m′ ∈ R∞(m, u) are defined by 1 and 2.

We conclude this section by noting that the controlled Petri net model defined by Ichikawa
and Hiraishi differs from the CtlPNs defined above. In the model proposed by Ichikawa and
Hiraishi (1988), the tokens in the control places (theexternal input placesin their model)
are consumed by the firing of controlled transitions. Thus, their control places are similar to
state places, and their control-place markings can be non-binary. They also define the state
transition equation (2) for only maximal sets (with respect to set containment) of enabled
transitions, and they consider onlydecision-freePetri nets, which are Petri nets for which
the maximal set of enabled transitions is unique for any reachable marking. In this context
Ichikawa and Hiraishi consider the problems of loading up the control places initially and
sequentially to achieve: (i) a given firing sequence; (ii) a given firing count (i.e., a given
firing vector); and (iii) a given final marking. In all of these problems, the control policies
are open-loop; feedback from the Petri net is not used to define a closed-loop system. In
this paper we focus exclusively on the synthesis offeedbackcontrol policies.

2.3. Labeled Petri Nets

In a labeled Petri net the firing of a transition corresponds to aneventin the usual DES
terminology and the set of all admissible event sequences (as defined by an acceptance
criterion) is called thePetri net language. In general, Petri net languages are defined in
terms of a separate set of event labels which can be assigned to some or all of the transitions.

PETRI NET METHODS FOR THE CONTROLLED DES 159

Figure 3. A labeled net.

The notion of the language of a net is useful for specifying and analyzing problems of
sequential control which are considered in section 4.

A labeled Petri net(or Petri net generator) (Jantzen 1987, Peterson 1981), is a 5-tuple
G = (N, 6, `,m0, F) where

– N = (P, T, E) is a Petri net structure;

– 6 is a finite set (alphabet) ofevents;

– `: T → 6 is a labeling function that assigns an event to each transition and can be
extended to a mappingT∗ → 6∗ in the usual way;

– m0 ∈M is an initial marking;

– F ⊂M is a finite set of final markings.

The labeling functioǹ , as defined above, is a so-calledλ-free labeling function (Peterson
1981), i.e., no transition is labeled with the empty stringλ and two (or more) transitions
may have the same label. Figure 3 shows a labeled Petri net. Each transition is labeled with
a symbol from an alphabet6 = {a, b}, and the set of final markings isF = {(001)T }.

The two languages usually associated withG are theP-type language(also called the
closed behaviorin the context of supervisory control) and theL-type language(also called
themarked behavior). The closed behavior represents all possible evolutions of the labeled
net, while the marked behavior is used to represent the terminal behavior, i.e., all evolutions
that reach a terminal state. It is also possible to define a different notion of terminal behavior
considering theG-type language(also calledweak behavior). These languages are defined
as follows (Peterson 1981).

160 HOLLOWAY, KROGH AND GIUA

Given a labeled netG = (N, 6, `,m0, F), theP-type languageof G is

L(G) = {`(σ) ∈ 6∗ | σ ∈ T∗,m0 [σ 〉};

theL-type languageof G is

Lm(G) = {`(σ) ∈ 6∗ | σ ∈ T∗,m0 [σ 〉 m,m ∈ F};

and theG-type languageof G is

Lw(G) = {`(σ) ∈ 6∗ | σ ∈ T∗,m0 [σ 〉 m,m≥ m′ for somem′ ∈ F}.

The classes of P-type, L-type, and G-type languages generated by labeled nets are denotedP,
L, andG respectively. These definitions of Petri net languages reflect the NC assumption:
only one event can occur at a time, resulting insequential languages. (In section 4 we
briefly discuss a class of Petri net languages in which strict concurrency is allowed.) As
an illustration of the different languages that can result from a given Petri net structure, the
languages associated to the labeled netG in Figure 3 areL(G) = {am | m≥ 0} ∪ {amban |
m ≥ n ≥ 0}, Lm(G) = {ambam | m ≥ 0}, Lw(G) = {amban | m ≥ n ≥ 0}. Note
that none of these languages is a regular language, that is, none of these languages can be
accepted by a finite state automaton.

If each transition is identified with a distinct event, the labeled net is a so-calledfree-
labeled Petri net in the theory of Petri net languages (Peterson 1981). Other useful
subclasses of languages that we consider in this paper, are those generated bydeter-
ministic Petri net generator (Jantzen 1987), i.e., nets such that the string of events gen-
erated from the initial marking uniquely determines the reached marking. Formally, a
labeled netG = (N, `,m0, F) is deterministic if∀t, t ′ ∈ T , with t 6= t ′ and ∀m ∈
R(N,m0), (m [σ ′〉m′) ∧ (m [σ ′′〉m′′) ∧ (`(σ ′) = `(σ ′′)) H⇒ m′ = m′′. We assume
the generators are deterministic throughout this paper. The classes of P-type, L-type and
G-type Petri net languages generated by deterministic Petri net generators are denoted,
respectively,Pd, Ld andGd.

For the classes ofλ-free Petri net languages the following strict inclusions hold:P ⊂
G ⊂ L (Peterson 1981). Hence, aλ-free Petri net language in the classP orG can always be
represented as the marked language for some labeled Petri net, i.e., a net can be constructed
so that the language is identified with the strings leading to final markings in the net as in the
definition of an L-type language. In the case of deterministic nets, however, it is possible
to prove that althoughPd ⊂ Gd classesLd andGd are incomparable (Giua and DiCesare
1995). Therefore, for deterministic nets one obtains more general results by considering
Gd∪Ld (weak behaviors in addition to marked behaviors), rather than simplyLd (Giua and
DiCesare 1995).

The classes ofλ-free Petri net languages are supersets of the corresponding classes of
deterministic languages. There is a very good reason, however, for restricting attention to
deterministic languages: the decidability of the inclusion problem. It is well known that
the inclusion problem: “IsL1 ⊆ L2?” is undecidable for withL1, L2 ∈ P (Peterson 1981).
For deterministic Petri net languages, however, the following lemma holds.

PETRI NET METHODS FOR THE CONTROLLED DES 161

LEMMA 1 (Giua and DiCesare 1995)The inclusion problem: “Is L1 ⊆ L2?” is decidable
if L 1 ∈ L and L2 ∈ Ld ∪ Gd.

This result follows from the fact that ifL2 ∈ Ld∪Gd, then its complement with respect to
6∗, denotedCL2, belongs to the classL (this is not always true ifL2 is not deterministic).
Hence checking for language inclusion can be reduced to checking for emptiness of the
L-type languageL1∩CL2, which is known to be decidable. This lemma is used extensively
in section 4.4 to prove the decidability of properties of interest for discrete event systems
modeled with deterministic labeled nets.

3. State Specifications and State Feedback

In this section we consider state specifications, i.e., specifications given as a set of legal
markings for the system to be controlled. In this setting the aim of the control is that
of restricting the behavior of a system so that only legal markings can be reached. The
corresponding control policy is calledstate feedback. We show here how it can be computed
for the CtlPN model presented in section 2.2.

A state feedback policy for a CtlPN is a functionU : M −→ 2U . In general, a state
feedback policy isnondeterministicbecause it identifies asetof possible controls. The
policy is deterministicif U (m) is a singleton for all markingsm ∈ M. We extend the
notation for immediately reachable markings from a markingm ∈M for a feedback policy
U by definingR1(m,U) =

⋃
u∈U (m) R1(m, u). Similarly, the set of reachable markings

from a markingm for a state feedback policyU , denotedR∞(m,U), is defined by

1. m ∈ R∞(m,U);

2. if m′ ∈ R∞(m,U), thenR1(m′,U) ⊆ R∞(m,U); and

3. all m′ ∈ R∞(m,U) are defined by 1 and 2.

Extending the concept of relative permissiveness of controls to state feedback policies,
we say state feedback policyU1 is as permissive as state feedback policyU2, denoted
by U1 ≥ U2, if for eachm ∈ M , U1(m) ⊇ U2(m). It follows that U1 ≥ U2 implies
R∞(m,U1) ⊇ R∞(m,U2) for any markingm ∈ M .

State feedback policies for CtlPNs have been investigated by a number of researchers
(Holloway and Krogh 1990, Li and Wonham 1993, Holloway and Hossain 1992, Banaszak
and Krogh 1990, Ushio 1990, Ushio and Matsumoto 1988, Haoxun and Baosheng 1993,
Holloway, Guan and Zhang 1996). In most cases the fundamental problem is to design
a state feedback policy that guarantees the system remains in a specified set of allowed
states, or, equivalently, that the marking of the CtlPN is never in a specified set offorbidden
markings. Taking the latter viewpoint, for a given CtlPNNc with initial markingm0, let
MF denote the set of forbidden markings. The objective is to find a state feedback policy
UF : M −→ 2U for which:

1. R∞(m0,UF)
⋂
MF = ∅; and

2. for any policyU ′ such thatU ′ ≥ UF , if U ′ satisfies 1 above, thenU ′ = UF .

162 HOLLOWAY, KROGH AND GIUA

We call a state feedback policy satisfying 1 and 2 above amaximally permissive state
feedback policyfor the given forbidden state specificationMF .

A necessary and sufficient condition for the existence of a maximally permissive state
feedback policy is determined by an analysis of the CtlPN behavior under the controluzero.
Specifically, define the set ofadmissible markingsfor a CtlPNNc with respect to a set of
forbidden markingsMF as

A(MF) = {m ∈M | R∞(m, uzero)
⋂
MF = ∅}. (6)

Necessary and sufficient conditions for the existence of a state feedback control policy that
keeps a CtlPN out of a given set of forbidden markings are then given by the following
theorem.

THEOREM2 (Krogh and Holloway 1991)Given a CtlPN Nc with initial marking m0 and a
forbidden marking specificationMF , a unique maximally permissive state feedback policy
exists if and only if m0 ∈ A(MF).

The uniquemaximally permissive state feedback policy in Th. 2 isnondeterministic
because the firing rule 2 allows multiple transitions in the CtlPN to fire simultaneously. In
general, there will not be a uniquedeterministicmaximally permissive policy because the
set of controlsUF (m) does not have necessarily a unique maximal element (Holloway and
Krogh 1990, Krogh 1987). Takai et al. obtained necessary and sufficient conditions under
which a unique maximal element exists forUF (m), which means the maximally permissive
policy can be implemented deterministically even though concurrent transitions can occur
(Takai, Ushio and Kodama 1994). On the other hand, under the NC assumption where the
firing rule (2) is restricted to singleton sets, a uniquedeterministicmaximally permissive
state feedback policy exists. This is the case considered by Li and Wonham (1993). Li and
Wonham consider the ramifications of relaxing the NC assumption with respect to achieving
maximal reachability with a nondeterministic control policy in (Li and Wonham 1995).

When the initial marking for a CtlPN satisfies the conditionm0 ∈ A(MF) in Th. 2, the
maximally permissive state feedback policy can be described simply as the policy which
does not allow any state transitions to markings outsideA(MF) (Holloway and Krogh
1990). Since the control set is updated at each state transition, only the immediately
reachable markings need to be considered in determining the set of admissible controls
from a given marking. This reasoning leads to the following theorem which, like Th. 2, is
an extension of the Ramadge and Wonham supervisory control for automata to the case of
CtlPNs with strict simultaneity.

THEOREM3 (Holloway and Krogh 1990, Krogh and Holloway 1991)Given a CtlPN Nc

with a forbidden marking specificationMF and an initial condition m0 ∈ A(MF), if
m ∈ R∞(m0,UF), then

UF (m) = {u ∈ U | R1(m, u)−A(MF) = ∅}.

Li and Wonham present results similar to Theorems 2 and 3 in terms of predicates on
the state space (markings) under the NC assumption (Li and Wonham 1993). In their

PETRI NET METHODS FOR THE CONTROLLED DES 163

terminology, the set of admissible markingsA(MF) corresponds to the maximalcontrol
invariant set (predicate) inM −MF . They add the notion ofreachability to define
controllable predicates.

Having characterized maximally permissive state feedback policies for forbidden state
specifications in general, the issue is how to compute the set of admissible controls for
a given marking. One approach is to simply create the equivalent controlled automaton
for the CtlPN, which is a matter of generating thereachability graphfor the Petri net
structure with the associated control information, and then apply standard algorithms from
the Ramadge and Wonham theory to compute the control. Note that the controlled transitions
in the CtlPN lead to non-standard control sets for the equivalent controlled automaton
(hence the lack of a unique maximally permissive control), so the generalization of the
standard theory for controlled automata to the case of arbitrary control sets would have to be
applied (Golaszewski and Ramadge 1988a). The standard Ramadge and Wonham controlled
automaton is obtained from the CtlPN reachability graph under the NC assumption when
each transition inTc is controlled independently; that is, when there is a distinct, unique
control place connected to each controlled transition. This is the case considered in Li and
Wonham (1993).

Since the reachability graph can grow exponentially with respect to the size of the CtlPN
model (Krogh, Magott, and Holloway 1991, Watson and Derochers 1994), alternative
methods are desirable for computing feedback policies. This is the primary motivation for
considering CtlPN models as an alternative to unstructured automata. Sections 5 and 6
present two approaches that have been developed to use the structure of the CtlPN model
directly, thereby avoiding the generation of the equivalent controlled automata.

Li and Wonham (1993) develop relationships between predicates on the state space for a
CtlPN (i.e., sets of allowable markings) and the language of the CtlPN (sequences of tran-
sitions) under state feedback control. In particular, they introduce the concept ofbalanced
controllerswhich are state feedback policies that allow all transitions to fire from a given
marking which lead to admissible markings. Thus, balanced controllers are maximally
permissive controllers, and the language generated under such a control policy is the largest
language (with respect to set containment) possible corresponding to the set of reachable
markings from the given initial marking.

We conclude this section with a brief summary of various extensions and generaliza-
tions of state feedback policies considered in the literature. Limited state observability is
the situation where the controller is unable to distinguish between certain markings. An
example is the case where a controller is only able to observe the number of tokens in a
subset of places, and thus does not have full knowledge of the current net marking (Haoxun
and Baosheng 1991, Li and Wonham 1993). Limited state observability is modeled in our
framework by considering a functionO: M −→ {o1, o2, . . .on} mapping the set of all
markings onto a set of observability classeso1, . . . ,on. The controller is unable to distin-
guish between markings in the same observability class, so a control law operating under
partial state observation must produce the same controls for any two markings which are
observationally equivalent; that is,U (m) = U (m′) for any two markingsm,m′ for which
O(m) = O(m′). Baosheng and Haoxun (1991) consider partial observability in the context
of distributed state feedback control systems, and Li and Wonham (1993) consider partial

164 HOLLOWAY, KROGH AND GIUA

observability for centralized controllers. In the problem of distributed control of CtlPNs
formulated by Haoxun and Baosheng, control capability is distributed among several prede-
fined controllers, and each controller has only limited observations of the net marking. The
distributed control synthesis problem for forbidden state avoidance is solved by augmenting
the system net withcoordination placesand then applying the approach of Holloway and
Krogh (1990) for enforcing the forbidden state avoidance specification. The coordination
places act as a type of semaphore which are used by the individual controllers to coordinate
the individual control actions.

Li and Wonham (1993) define a notion of observability for predicates and prove a max-
imally permissive state feedback policy exists if and only if the given predicate (set of
admissible states) is both controllable and observable. Li and Wonham also considered
so-calledmodular state feedbackpolicies where the overall specification for the admissible
states for the closed-loop system is given as the conjunction (intersection) of a collection
of subspecifications.

Holloway and Hossain (1992) extended state feedback to a class of dynamic specifications
for which the objective is to mark the state places in a given sequence. The controller
contains an internal representation of the specified place-marking sequences, and has an
internal state to indicate where the system is with respect to the sequence specifications.
The control law changes according to this internal state, such that over time different
markings of the system are avoided while others are permitted. This is implemented by
associating different forbidden conditions (see section 6) with each internal state of the
controller.

State targeting is another problem that has been addressed using state feedback. Mc-
Carragher and Asada (1995) consider the problem of determining control inputs to steer
a system such that a desired place in its plant model becomes marked. They address the
problem using dynamic programming to evaluate the optimal path in the controlled Petri
net to reach the target marking. They apply the technique to a robotic assembly prob-
lem.

4. Sequential Specifications and Event Feedback

In the previous section we considered state specifications, i.e., specifications given as a set
of legal markings for the system to be controlled. In supervisory control a specification can
also be given as aspecification language, i.e., as alegal sequential behavior. The aim of the
control is that of restricting the behavior of a system within the limits of the legal behavior.
The corresponding control policy is calledevent feedbackand the agent that implements it
is called asupervisor.

To discuss event feedback, we use the labeled Petri net model presented in section 2.3. In
the section 4.1, following Ramadge and Wonham (1989), some basic notions of supervisory
control are recalled. In section 4.2 we compare Petri net state feedback with event feedback
and present a general procedure to design a supervisor. In section 4.3 we discuss when a
supervisor can be represented as a Petri net. In section 4.4 we discuss some issues related
to the decidability of properties of interest for Petri net models.

PETRI NET METHODS FOR THE CONTROLLED DES 165

4.1. Supervisory control

Let L be a language on alphabet6. Its prefix closure, denotedL, is the set of all prefixes
of strings inL; i.e., L = {ω ∈ 6∗ | ∃τ ∈ 6∗ 3 ωτ ∈ L}. A languageL is said to be
prefix-closedif L = L.

A DES can be viewed as a language generator on alphabet6. Here we assume that a DES
is a labeled Petri netG = (N, 6, `,m0, F). G is nonblockingif any string that belongs
to its closed behavior may be completed to a string that belongs to its marked behavior. A
deterministicG is nonblocking ifL(G) = Lm(G). If the DES behavior is modeled by the
weak language (G-type language),G is (weakly) nonblocking ifL(G) = Lw(G) (Giua and
DiCesare 1995).

The alphabet of events6 is partitioned into two disjoint subsets:6c, the set ofcontrollable
events, and6u, the set ofuncontrollable events. The controllable events may be disabled
by a controlling agent in order to restrict the behavior of the system, while uncontrollable
events may never be disabled.

We define acontrol inputas a subsetγ ⊆ 6 satisfying6u ⊆ γ (i.e., all the uncontrollable
events are present in the control input). The control input specifies which events are
permitted to occur. If0 ⊆ 26 is the set of all the possible control inputs, under the NC
assumption (which is assumed throughout this section) an event feedback policy consists
in switching the control input through a sequence of elementsγ1, γ2, . . . ∈ 0, in response
to the observed string of previously generated events. Thus, we may say that an event
feedback policy is a mapping:

f : L(G) −→ 0. (7)

Using notation similar to the notation introduced for state feedback policies, the behaviors
of the systemG under an event feedback policyf are: theclosed behavior L(f | G), that is
the set of strings generated under control, and thecontrolled behavior Lm(f | G) = L(f |
G) ∩ Lm(G) (or theweakly controlled behavior Lw(f | G) = L(f | G) ∩ Lw(G)). Note
that we are assuming that the supervisor does not mark strings, i.e., the marked strings of
the system under control are precisely the marked strings of the uncontrolled system that
survive under control.

The basic supervisory control problem is the following:Given a net G and a specification
language K ⊆ L(G), is it possible to find an event feedback policy f such that: (a)
L(f | G) = K, and (b) f is nonblocking, i.e., L(f | G) = Lm(f | G) (or L(f | G) =
Lw(f | G))?

The solution to this problem is based on the notion of controllable and nonconflicting
languages (Wonham and Ramadge 1987). A languageK ⊂ 6∗ is said to becontrollable
(with respect toL(G) and6u) if K6u∩ L(G) ⊆ K . In words, a languageK is controllable
if whenever a prefix of one of its strings is generated, the occurrence of an uncontrollable
event (that cannot be prevented) does not lead to a string that is not a prefix of a string of
K any more.

Two languagesL1 andL2 are said to benonconflictingif L1 ∩ L2 = L1∩L2. This means
that any string that is in the closure of each language, can be completed into a string that
belongs to both languages.

166 HOLLOWAY, KROGH AND GIUA

Ramadge and Wonham (1989) showed that given a nonblocking DEGG and a nonempty
closed languageK ⊆ L(G) there exists an event feedback policyf such thatL(f | G) = K
if and only if K is controllable. Furthermoref is nonblocking if and only ifK andLm(G)
(or Lw(G)) are nonconflicting.

If a languageK ⊂ 6∗ is not controllable with respect toL(G) one can compute its
supremal controllable sublanguage(Wonham and Ramadge 1987) denoted byK ↑, which
is the largest subset of strings inK which is controllable with respect toL(G). Thus, given
a noncontrollable specification languageK there exists an event feedback policyf that
ensures that the behavior of the controlled system isK ↑ ⊂ K , a subset of the specification
language. This event policy is minimally restrictive.

Similarly, if K is a prefix-closed language conflicting withLm(G), one can consider the
sublanguageK ′ = K ∩ Lm(G), that is thesupremal nonconflicting sublanguage.

Most research on supervisory control of labeled Petri nets has been developed in the
context of the NC assumption. If transitions are allowed to fire simultaneously in a labeled
Petri net, the Petri net language must be defined in general overbagsof events (Peterson
1981). Given a set of events6, a bag of events is a collection of events from6 in
which distinct events can occur more than one time. Bags are required to handle the
simultaneous occurrence of transitions with the same event label. Languages that admit
strict concurrency have been calledtrace languagesin Wang (1993) (although the term
“trace” does not necessarily imply strict concurrency in the DES literature, cf. Smedinga
(1988)). Wang considered supervisory control of Petri nets without the NC assumption
where the specification language is defined over bags of events, and control can be enforced
by a simple (i.e., nonconcurrent) event feedback policy as given by equation (7) (Wang
1992). Ushio also used bags to represent concurrent transition firing in CtlPNs and derived
necessary and sufficient conditions for the existence of supervisors to (i) achieve given firing
sequences and (ii) drive the CtlPN to a specified target marking (Ushio 1989).

4.2. Supervisor Design

The supervisory control scheme described in the previous section is based on the notion of
event feedback, i.e., the control pattern computed at each step by the supervisor is a function
of the string of events generated by the plant.

Consider the Petri net in Figure 4 where6u = {a}. Assume that the specification is
given by the legal language:K = {ωbω′c | ω,ω′ ∈ {a}∗}. Clearly K can be enforced by
event feedback; one possible choice off is the following: f (ω) = {a, b} if b 6∈ ω else
f (ω) = {a, c}. We also note that this specification cannot be enforced by state feedback,
since the control applied by the supervisor when the state marking ism= [0 1 0]T depends
on whether the plant has generated the eventb before reachingm.

If the plant〈N,m0〉 is deterministic, it is possible to reconstruct its state from the string
of events generated. That is, there exists a functiong: 6∗ → R(N,m0) that associates to
each string generated by the plant a marking. Hence if we are given a state feedback policy
f ′: R(N,m0)→ 0 we can always construct an equivalent event feedbackf : f ′ ◦g. In this
sense, we can say that, for deterministic plants, event feedback can also be used to enforce
state specifications and is more general than state feedback.

PETRI NET METHODS FOR THE CONTROLLED DES 167

Figure 4. A Petri net to be controlled with event feedback.

On the other hand, sequential specifications for a given model may be converted into state
specifications for anaugmentedmodel in which the dynamics of the plant are augmented
with an additional automaton or Petri net that “encodes” the desired sequential behavior of
the system in the augmented states. One can then apply state feedback to the augmented
system to achieve the desired sequential behavior. This approach has been developed by Li
and Wonham (1993), using an automaton called amemoryto augment the plant dynamics;
and by Giua and DiCesare (1991, 1994) and Kumar and Holloway (1996) using a Petri net
to augment the plant dynamics. In all cases it is shown that the maximally permissive state
feedback control for avoiding an appropriately defined predicate or set of forbidden states
on the augmented state space results in the supremal controllable sublanguageK ↑ for a
given sequential specificationK .

This technique as developed in Giua and DiCesare (1991) is briefly described here.
Consider a DES represented by a Petri net generatorG on alphabet6. The specifications to
be enforced on its behavior is represented by a labeled Petri netH on alphabet6′ ⊆ 6whose
closed behavior isL(H). The desired legal behavior is the languageK ⊆ L(G) such that
the projection ofK on6′ is K |6′ = L(H). The supervisorE is computed by theconcurrent
composition, E = G ‖ H . The concurrent composition of two nets can be constructed by
fusing the transitions with the same labels on both nets. ThusL(E) = L(G) ‖ L(H) = K ,
i.e., its behavior is given by all the strings ofG that are also legal. The controlled behavior
of E is Lm(E) = Lm(G) ‖ L(H) = Lm(G) ∩ K (and the weak controlled behavior is
Lw(E) = Lw(G) ‖ L(H) = Lw(G) ∩ K).

If the languageK is controllable and nonconflicting, the netE will have the following
properties:trimness, the netE does not admit blocking markings, i.e., reachable markings
from which a final marking cannot not be reached; andcontrollability, it is not possible
to reach “uncontrollable markings”, i.e., markings from which a transition labeled by an
uncontrollable event is enabled inG but is not enabled inE. If E enjoys these two properties
it is called amonolithic supervisor, being at the same time a proper supervisor and a closed-
loop model of the system under control. The netE can be used to compute the event
feedback policy in this fashion:E runs in parallel with the systemG, i.e., whenever an
event occurs inG the same event will be executed onE. The events enabled at a given
instant onE determine the control input.

168 HOLLOWAY, KROGH AND GIUA

Figure 5. Control scheme for event feedback.

If E is not trim and controllable as defined above, it is necessary to refine this net, further
restricting its behavior to avoid reaching all blocking and uncontrollable markings. This
operation is the counterpart of computing the supremal controllable and nonconflicting
sublanguage. A possible way of implementing this refinement is through an additional
state feedback lawu that preventsE from reaching the undesirable markings, as illustrated
in Figure 5. In this control scheme the control inputγ is the intersection of the two control
inputs computed byE andu.

An efficient algorithm for the computation of the set of undesirable markings has been
derived by Barroso, Lima and Perkusich (1996).

Additionally, it may be possible to compile this state feedback law into a net structure,
i.e., to construct a new netE′, obtained fromE adding additional structure (arcs, places, or
transitions) to avoid reaching the undesirable markings. The control input computed byE′

is the same as that computed byE andu together.
One advantage of representing the supervisor as a Petri net is that the computation of the

control action is faster, since it does not require separate computation of the control. An
additional advantage is that a closed-loop model of the system under control can be built
and analyzed for properties of interest using Petri net techniques.

In another interesting approach, presented by Makungu, Barbeau, and St-Denis (1994),
supervisory design has been applied to systems represented by colored Petri nets. Colored
Petri nets with a finite color set do not extend the modeling power of ordinary place/transition
nets, but they offer a more compact representation of large systems consisting of many
similar interacting components (Jensen 1995). In Makungu, Barbeau and St-Denis (1994)
a forbidden state avoidance problem is considered but since the controller action is based on
event feedback this approach may possibly be extended to enforce specification languages.
Another interesting feature of this approach, is the fact that by partitioning the reachability
set intoequivalence classesit is possible to solve the forbidden state problem by exploring
a set of markings significantly smaller than the overall state set.

PETRI NET METHODS FOR THE CONTROLLED DES 169

In addition to these design techniques, there have been other approaches in which for
given classes of control problems a Petri net supervisor has been found in “closed form
solution” by enforcing linear constraints on the reachable marking set and of finding the
corresponding control structure. Giua et al. have solved this problem for plants represented
by controlled safe marked graphs (Giua, DiCesare and Silva 1992, 1993), while Li and
Wonham (1994) have discussed the case of plants where the uncontrollable subnets have
a tree-like structure. These supervisors are usually less complex than the controllers ob-
tained through the construction of the monolithic supervisor described above because they
represent only controller states, rather than all the states of the closed-loop system. In this
case the control structure is simpler and a closed-loop model of the system under control
can still be built with standard Petri net composition operators.

4.3. Computability of Event Feedback Net Supervisors

In the case of systems and specifications modeled by finite state machines, it is well known
the supervisor can be modeled as a finite state machine and constructed with a finite number
of steps, polynomial in the number of states in the system and specification models (Wonham
and Ramadge 1987). All properties of interest are also trivially decidable in this case, as they
can be checked by searching a finite state space. For supervisors modeled as deterministic
Petri nets, which admits the possibility of nonregular specification languages that cannot
be modeled by finite state automata, Giua and DiCesare (1994a, 1995), have obtained
the following results (in the followingE denotes the Petri net obtained by concurrent
composition as described in the previous section).

– E can always be constructed efficiently using the concurrent composition operator
because the operator is applied to the net structure, which is always finite even when
the reachability set is not. For deterministic Petri nets it is always possible to check if
E is weakly nonblocking and controllable, as we discuss in the next section.

– If E is blocking, we need to modify the structure of the net so that no blocking marking
may be reached. For the marked language, however, the trimming of the net may not be
possible because there exist languages inLd whose prefix closure is not a P-type Petri
net language. A good class of languages is the class ofdeterministic P-closedPetri net
languages, defined as:

LDP = {L ∈ L | L ∈ Pd},

i.e., as the set of all L-type Petri net (not necessarily deterministic) languages whose
prefix closure can be generated by a deterministic nonblocking Petri net generator (Giua
and DiCesare 1994a). It is the case thatGd ∈ LDP, which means it is always possible
to trim a weakly blocking net.

– If L(E) is not controllable, it may not always be possible to construct a netE′ such that
L(E′) = L(E)↑. In fact, the classesPd,Ld, andGd, are not closed under the supremal
controllable sublanguage operator.

170 HOLLOWAY, KROGH AND GIUA

These results show that a Petri net supervisor does not always exist for control problems
where plant and specifications are nonregular. Nevertheless, supervisors for nonregular
Petri net languages can often be constructed by intuition. Supervisory design for infinite
state plants with regular specifications using Petri nets is considered in Sreenivas and Krogh
(1992).

4.4. Decidability Properties of Petri Net Languages

Although Petri nets have a greater modeling power than finite state machines, computability
theory shows that the increase of modeling power often leads to an increase in computation
required to solve problems. As an example, all properties of interest of finite state machines
are decidable since they may be checked with a finite procedure. On the other end, if we
consider very powerful models, such as Turing machines, even simple problems, such as
the halting problem, are undecidable. In this section we discuss some issues related to
the decidability properties of Petri nets obtained by studying the corresponding languages
and show that Petri nets represent a good trade-off between modeling power and analysis
capabilities.

We first clarify which class of Petri net languages we are considering. In section 2.1 we
presented the ordinary Petri net model that will be considered in this section. A common
extension to that model is the so called “Petri net with inhibitory arcs” (PNIA) (Peterson
1981). An inhibitory arc is an arc from placep to transitiont that prevents the firing oft when
p is marked. Sreenivas and Krogh (1992) have pointed out that since PNIA are linguistically
equivalent to Turing machines, most properties of interest, such as controllability, are not
decidable. Thus, we will not consider PNIA in this paper.

Another possible extension of the Petri net model presented is to allow weights on the arcs
to consume and generate multiple tokens in the firing rule. These are calledgeneralPetri
nets as opposed toordinary Petri nets. Lafortune and Yoo have shown that pure ordinary
Petri nets have the same descriptive power of (possibly not pure) general Petri nets, in the
sense that they generate the same class of L-type languages (Lafortune and Yoo 1991). This
justifies the choice of ordinary nets as basic models in this paper.

When defining the various classes of Petri net languages in section 2.3, we distinguished
arbitrary languages from deterministic languages. There are clear advantages to restricting
attention to the study of deterministic languages from the standpoint of decidability prop-
erties. To decide controllability of a languageK with respect to a generatorG we need to
check for the subset inclusionK6u ∩ L(G) ⊆ K . Sreenivas showed that this inclusion is
decidable ifK is a closed free-labeled language andG is a free-labeled Petri net generator
(Sreenivas 1993). The proof is based on two steps. First, since free-labeled languages
are closed under intersection it is possible to construct two nets generating the languages
K6u ∩ L(G) andK . Second, a net construction is given that reduces the subset inclusion
to checking the reachability of a finite set of markings, and the reachability problem for
Petri nets is known to be decidable (Kosaraju 1982, Mayr 1984). This proof may also be
extended to deterministic closed languages.

To generalize these results one may use Lemma 1, which applies to deterministic Petri
net languages, to prove the following theorems.

PETRI NET METHODS FOR THE CONTROLLED DES 171

THEOREM4 (Giua and DiCesare 1995)It is possible to decide if a deterministic Petri net
generator G is blocking with respect to a terminal language inLDP.

Note that this theorem holds for all weak languages, but only for some marked languages.
In fact, we have seen that there are marked languages that are not inLDP.

THEOREM5 (Giua and DiCesare 1995)It is possible to decide if a language K∈ LDP is
controllable with respect to a Petri net generator G.

Sreenivas has also discussed two different notions of controllability (Sreenivas 1993). The
strongest notion of controllability requires that we may also test for the inclusion:K ⊆ L.
In this case it is necessary thatG be a deterministic generator, as in the next proposition.

THEOREM6 (Giua and DiCesare 1995)It is possible to decide if a language K∈ LDP is:
(1) controllable with respect to a deterministic Petri net generator G; and (2) contained in
L(G).

To illustrate the complexity of these decision procedures, suppose we have two netsG1

and G2 whose closed (or marked or weak) behaviors are the languagesL1 and L2. As
we suggested when presenting Lemma 1, to check whetherL1 ⊆ L2 we may follow these
steps:

1. construct a Petri netG′2 generating the complement ofL2, i.e., the languageCL2 (this
is possible ifG2 is deterministic);

2. construct the netG as the intersection of the netsG1 andG′2;

3. check whether the language generated byG is empty.

The first step may be carried out with the construction in Pelz (1987), whose complexity
has not been computed. The second step may be done efficiently. We expect the last step
to have the same complexity of checking the reachability of a given marking, which is
at best decidable in exponential space (Jones, Landweber and Lien 1977, Jantzen 1987).
Reutenauer (1990) has noted that the proof of decidability of the reachability problem due
to Kosaraju (1982) and Mayr (1984) does not provide efficient algorithms for verifying
whether a marking is reachable or not. Therefore, although many important properties are
decidable in the Petri net framework, in general the computational complexity makes it
impractical to solve all but the simplest problems algorithmically.

5. Linear Algebraic Approach

In this section we describe approaches relying on the linear algebraic representation of the
Petri net model of the plant. We first consider an approach proposed by Li (1993) and Li and
Wonham (1993, 1994) for computing state feedback policies based on the matrix-vector
representation of the Petri net state transition equation (3). Under the NC assumption,
which applies throughout this section, Li and Wonham consider the synthesis of maximally

172 HOLLOWAY, KROGH AND GIUA

permissive feedback policies when the allowable states are specified by alinear predicate
P of the form

P = {m ∈M | aT ·m≤ b} (8)

wherea is an n-vector andb is a scalar. The control objective is to guarantee the linear
constraint is satisfied for all markings reachable under the control.

Li and Wonham assume a particular case of the CtlPN model in which the set of Petri net
transitions,T , is decomposed into sets of controllable transitions,Tc, and uncontrollable
transitionsTu. The set of admissible markings corresponding to a predicateP of the form
(8), denoted as [P] by Li and Wonham, is given by

[P] = {m ∈M | (∀σ ∈ T∗u ,m[σ 〉m′) aT ·m′ ≤ b}, (9)

In words, an allowable marking is admissible if and only if all markings reachable by firing
uncontrollable transitions satisfy (8).

The unique maximally permissive control input for a givenm ∈ [P], can be computed
by an on-line controller as follows: for each controllable transitiont state enabled in the
plant, if m[t〉m′ with m′ ∈ [P] then t will also be enabled by the controller, elset will be
disabled. That is, the controller enables each controllable transition which, if fired, leads
to an admissible marking. Note that without the NC assumption, markings reached by
simultaneous firings of transitions would have to be considered and a unique maximally
permissive control may not exist for some markings.

It is evident that computing the control input becomes a matter of determining if a marking
is in [P]. Li and Wonham show this problem can be reduced to solving a linear integer
program provided the Petri net satisfies a particular structural condition, namely, the uncon-
trollable subnetNu, i.e., the net obtained fromN by removing all controllable transitions,
must beloop free.

Using the state equation (3), let us rewrite equation (9) as follows:

[P] = {m ∈M | (∀σ ∈ Tu,m[σ 〉)aT · (m+ E · σ) ≤ b}
= {m ∈M | aT ·m+ aT · E · σ ∗) ≤ b}, (10)

whereσ ∗ is the solution to the following optimization problem

max
σ∈Tu,m[σ 〉

aT · E · σ . (11)

The reduction of the optimization problem (11) to alinear integer programis based on
the fact that, as we discussed in section 2.1, if the uncontrollable subnetNu is loop free
then equation (3) gives necessary and sufficient conditions for reachability under firing
sequencesσ containing only uncontrollable transitions. That is, ifNu is loop free, then
σ ∈ Tu can be fired fromm if and only if m+ E · σ ≥ 0. Thus the optimization problem
(11), becomes thelinear integer program:

max
σ

aT · E · σ (12)

s.t. m+ E · σ ≥ 0

σ(t) = 0 for t /∈ Tu

σ ≥ 0

PETRI NET METHODS FOR THE CONTROLLED DES 173

Li and Wonham develop this basic approach in several ways, including the generalization
to multiple linear predicates (modular synthesis) and developing a closed-form expression
for the maximally permissive control under further structural assumptions. They also
consider sequential specifications in the form of linear predicates on the firing vector which
they call linear dynamic specifications. For sequential specifications, they convert the
problem to a state feedback problem using amemoryas described in the previous section.
In summary, the attraction of the general linear integer programming approach to Petri nets
is that the synthesis of state feedback control policies is reduced to the solution of a standard
optimization problem, thereby eliminating the need to compute the reachability graph for
the Petri net.

A linear programming approach has also been used by Giua and DiCesare (1994) where
elementary composed state machines(ECSM), a class of Petri nets with a convex reacha-
bility set, are defined. If the netE obtained by the monolithic supervisory design belongs
to this class, then integer programming techniques may be used to validate properties of the
closed loop system such as blocking and controllability.

The integer programming approach used by Li and Wonham exploits the structural prop-
erties of Petri nets. Linear specifications on the marking set of the form (8) wherea and
b are non-negative have also been considered by other authors and studied using structural
Petri net analysis. Giua, DiCesare, and Silva (1992, 1993) have called these specifica-
tions generalized mutual exclusion constraints. Constraints of this kind can be enforced
by monitor places on nets where all transitions are controllable. As an example, in Fig-
ure 6.a, the monitor placep0 with its dotted arcs has been added to enforce the specification:
m(p1) + m(p2) ≤ 2. When some of the transitions are not controllable, and thus cannot
be disabled by monitor places, a monitor based solution may not exist or may require an
exceedingly high number of monitors.

Moody et al. (1994) and Yamalidou et al. (1996) have considered both linear specifications
of the form (8) and linear specifications on the firing vector. They use a monitor based
solution that they callplace invariant, because the effect of the monitor place is that of
creating an invariant on the net. As an example, in Figure 6.a, the addition of placep0

creates the invariant:m(p0)+m(p1)+m(p2) = 2. To determine the invariants that must
be added to the net, the linear constraints on the marking or transition firings are framed in
terms of a linear matrix inequality. This linear inequality is then converted into an equality
through the addition of slack variables which represent the controller places. In Moody
and Antsaklis (1995) and Moody, Antsaklis and Lemmon (1996), the method is extended
to explicitly consider uncontrollable and unobservable transitions.

It is interesting to note that the use of monitors is not restricted to the case of nonnegative
coefficientsa andb. Basically the same construction may be used in the general case with
negative coefficients. As an example, the monitor in Figure 6.b enforces the specification:
m(p1) − m(p2) ≤ 2. The sign of the inequalities may also be reversed. As an example,
the monitor in Figure 6.c enforces the specification:m(p1)+m(p2) ≥ 2.

Finally, we remark that there is a fundamental difference between the approach of Li and
Wonham, and Giua et al., and the approach of Moody et al. In fact, in the first two approaches
special PN structures are considered, for which the maximally permissible control policy
can be easily computed and implemented. In the latter approach, the requirement that

174 HOLLOWAY, KROGH AND GIUA

Figure 6. Examples of monitor places.

the control policy be maximally permissible is given up, and one is willing to accept a
more restrictive control policy that can however be easily computed and implemented with
monitor places.

6. Path-Based Algorithms

Path-based algorithmsapproach the forbidden state control problem by controlling the flow
of tokens within directed paths within the CtlPN. Path control policies use the structure of
the CtlPN to determine how the flow of tokens will lead to forbidden markings. Path control
has been used to address a variety of control specifications, including state control (Hol-
loway and Krogh 1990, Krogh and Holloway 1991, Boel, Ben-Naoum and Van Breusegem
1995), sequence control (Holloway and Hossain 1992), and distributed control (Haoxun
and Baosheng 1991). For some classes of CtlPNs it has been shown that this exploitation of

PETRI NET METHODS FOR THE CONTROLLED DES 175

the net structure can lead to significant gains in computational efficiency for on-line control
synthesis (Krogh, Magott and Holloway 1991).

Path control for forbidden state problems assumes the set of forbidden states is expressed
in a special form, calledforbidden conditions, which are specifications of sets of forbidden
markings based on linear inequalities on the marking vectors. The most general forbidden
condition, introduced by Boel, Ben-Naoum, and Van Breusegem (1995), is represented by
the triple(F, v, k), whereF ⊆ P is a subset of places,v: F −→ N is a weighting function
over the places inF , andk is the thresholdof the forbidden condition. The forbidden
condition specifies a set of forbidden markings as

M(F,v,k) := {m ∈M |
∑
p∈F

m(p)v(p) > k}. (13)

A marking is forbidden according to the condition(F, v, k) if the weighted sum of tokens
is greater than the thresholdk. Given a collectionF of forbidden conditions, the set of
forbidden markings forF is

MF := {m ∈ M(F,v,k) | (F, v, k) ∈ F}. (14)

Note that the linear inequality in the definition ofM(F,v,k) defines a set of minimal markings
in M(F,v,k), where any other marking which covers (in the Petri net sense) any of these
minimal markings is also inM(F,v,k). In the general case, some arbitrary forbidden marking
sets may not be representable as a forbidden condition, and it becomes necessary instead
to consider a superset or subset of the forbidden markings. However, for the special case
of live and safe cyclic controlled marked graphs, it has been shown that any subset of live
and safe markings can be defined by a setF of forbidden set conditions (Holloway 1988).

Given a set of forbidden conditions, to prevent the reachability of a markingm ∈MF the
controller must control the number of tokens in the places in setF such that the inequality in
(13) is not satisfied for each(F, v, k) ∈ F . Path control methods avoid direct construction
of the reachability graph by characterizing the reachability of forbidden conditions in terms
of the markings of paths in the CtlPN.

6.1. Characterizing Uncontrollable Reachability

A path is an alternating sequence of transitions and places along a directed path in the
CtlPN. We exclusively consider paths which begin with a transition and end with a state
place. For a given pathπ = (t0 p0 . . . tn pn), the starting transitiont0 is denotedtπ . We
define set operations on paths to be over the sets of places and transitions in the path. Thus,
π ∩ P is the set of places in the path, andπ ∩ T is the set of transitions in the path. We
extend the marking notation such thatm(π) is the sum ofm(p) over all p ∈ π .

The set5c(p) indicates the set of allprecedence pathsfor a place p, whereπ =
(t0 p0 . . . tn pn) ∈ 5c(p) implies that: (1) pathπ ends at placep; (2) tπ is a controlled
transition or has

(p)
tπ ∩ π 6= ∅; (3) all other transitionst in the path are uncontrolled transi-

tions; and (4) a path does not include a cycle except possibly at the initial transitiontπ . A
path set5c(p) is said to be a marked graph structure if for any state placep′ ∈ π and any
π ∈ 5c(p), p′ has at most one input transition and at most one output transition among all

176 HOLLOWAY, KROGH AND GIUA

paths in5c(p). The path set5c(p) is said to be a state graph structure if for any transition
t ∈ π and anyπ ∈ 5c(p), t has at most one input state place and one output state place
among all paths in5c(p).

The number of tokens that can uncontrollably mark a placep from a current markingm
depends upon the number of tokens in the paths5c(p) under the current marking. This is
seen by considering the question: For a given markingm, does there exist an uncontrollably
reachable marking,m′ ∈ R∞(m, uzero), for whichm′(p) ≥ k? This problem is referred to
as theuncontrollable k-coverability problem. The role of precedence paths in determining
the uncontrollable k-coverability problem is most easily illustrated by considering the case
wherek = 1. For a markingm and a precedence pathπ , define the predicate

3m(π) :=
{

1 if m(p) ≥ 1 for somep ∈ π
0 else

(15)

This then leads to the following complementary results.

THEOREM7 (Holloway and Krogh 1990)Given a CtlPN Nc and place p such that5c(p) =
{π1, π2, . . . πn} is a marked graph structure, for a marking m there exists an uncontrollably
reachable marking m′ ∈ R∞(m, uzero) with m′(p) ≥ 1 if and only if

3m(π1)¯3m(π2)¯ · · ·3m(πn) = 1 (16)

where¯ indicates the BooleanAND (conjunction) operator.

THEOREM8 (follows from both Boel, Ben-Naoum and Van Breusegem (1993) and Hol-
loway, Guan and Zhang (1996)) Given a CtlPN Nc and place p such that5c(p) =
{π1, π2, . . . πn} is a state graph structure, for a marking m there exists an uncontrollably
reachable marking m′ ∈ R∞(m, uzero) with m′(p) ≥ 1 if and only if

3m(π1)⊕3m(π2)⊕ · · ·3m(πn) = 1 (17)

where⊕ indicates the BooleanOR (disjunction) operator.

The above theorems show that the marked graph structure and state graph structure lead
to the complementary characterizations of the uncontrolled 1-coverability of a place. For
the marked graph case, the coverability is characterized by a Boolean conjunction of path
predicates. For the state graph structure, the coverability is characterized by a Boolean
disjunction of the path predicates. These notions are generalized by Holloway, Guan, and
Zhang (1996) for a general class of CtlPNs, where the uncontrolled region of the net leading
to a given place may have a very general mixture of both marked graph structures and state
graph structures. An algebra is defined containing forms of both disjunctive and conjunctive
operations to characterize uncontrolled 1-coverability as an expression with a Boolean
evaluation. A related method of characterizing uncontrolled reachability is proposed by
Hanisch et al. for a class of systems modeled by interacting Petri nets (condition-event nets)
under partial observation (Hanisch, Luder and Rausch 1996). Uncontrolled 1-converability
for colored controlled Petri nets is considered in Ashley and Holloway (1994). Xing et al.
present a dynamic programming method for characterizing uncontrollable reachability for
a general class of Petri nets (Xing, Li and Hu 1996).

PETRI NET METHODS FOR THE CONTROLLED DES 177

Uncontrolled k-coverability does not have the same convenient Boolean characterization
as the uncontrolled 1-coverability problem has. The complementary nature of state graph
structures and marked graph structures is still evident, however, in the following results.

THEOREM9 Consider a CtlPN Nc and place p such that5c(p) is a marked graph structure
with tπ ∈ Tc for all π ∈ 5c(p). For a marking m there exists an uncontrollably reachable
marking m′ ∈ R∞(m, uzero) with m′(p) ≥ k if and only if m(π) ≥ k for all π ∈ 5c(p).

THEOREM10 (Boel, Ben-Naoum and Van Breusegem 1993)Given a CtlPN Nc and place
p such that5c(p) is a state graph structure with tπ ∈ Tc for all π ∈ 5c(p), for a marking
m there exists an uncontrollably reachable marking m′ ∈ R∞(m, uzero) with m′(p) ≥ k if
and only if∑

p′∈π,π∈5c(p)

m(p′) ≥ k

The proof of theorem 9 is similar to the proof of theorem 7 from (Holloway and Krogh
1990). As shown by both of the above theorems, for given net structures we can char-
acterize the uncontrolled k-coverability of a given place in terms of the current marking
of its precedence paths. Defining the predicate3m(p, k) to represent the uncontrolled k-
coverability of a placep under a markingm, i.e. 3m(p, k) = 1 if and only if there exists
somem′ ∈ R∞(m, uzero)with m′(p) ≥ k, for a given markingm, the value of the predicate
3m(p, k) can be directly computed from the Theorems 7 through 10 for marked graph
and state graph precedence path structures. For more general net structures, the predicate
3m(p, 1) can be computed directly from the markings of the precedence paths in a similar
manner (Holloway, Guan and Zhang 1996).

6.2. Determining Control using path Predicates

Characterizing uncontrollable reachability as done in the previous section is the first step
towards determining a control for avoiding forbidden states. When the uncontrollable
reachability problem is broken into conditions on the number of tokens in precedence
paths, the state avoidance control becomes a problem of regulating the entry of tokens into
these paths.

We illustrate the basic approach of path-based control with the method of Holloway and
Krogh (1990) and Krogh and Holloway (1991) for controlled marked graphs with safe
(binary) markings. The reader is referred to Boel, Ben-Naoum and Van Breusegem (1993)
and Holloway, Guan and Zhang (1996) for control laws for other net structures. LetF
be a set of forbidden conditions of the form(F, v, k), wherev(p) = 1 for all p ∈ F and
1≤ k < |F | . For a forbidden condition(F, v, k) ∈ F and markingm, defineL F (m) as the
set of places inG such that3m(π) = 1 for all π ∈ 5c(p). L F (m) is thus the set of places
which already can be uncontrollably marked. Control must ensure that|L F (m)| ≤ k for
all reachable markings. LetBF (m) be the set of places not inL F (m) such that for each
π ∈ 5c(p), either3m(π) = 1 or elsetπ is state enabled.BF (m) is thus the set of places
which could join setL F (m) in a next marking unless the appropriate controls are disabled.

178 HOLLOWAY, KROGH AND GIUA

For any placep ∈ BF (m), we can preventp from becoming uncontrollably reachable by
disabling any controlled transitiontπ , π ∈ 5c(p), for which3m(π) = 0. Let DF (m, u) ⊆
BF (m)be the set of places for whichu disables such a transition. It can then be shown Krogh
and Holloway (1991) under the appropriate assumptions that for any markingm ∈ A(MF),
the maximally permissive control policyUF (m) is the set of controls for which

|L F (m)| + |BF (m)| − |DF (m, u)| ≤ k (18)

The control synthesis procedure for determining control policyUF is divided into an
off-line algorithm and an on-line algorithm (Krogh and Holloway 1991). In the off-line
algorithm, the precedence paths for placesp ∈ F for (F, v, k) ∈ F are identified. The
on-line computations for determining a controlu ∈ UF (m) for a markingm ∈ A(MF)
then use condition (18) (Krogh and Holloway 1991).

The complexity of a the path-based control described above method for marked graphs
is examined in (Krogh, Magott and Holloway 1991) where it is shown that the algorithm is
polynomial in the number of the transitions in the Petri net and in the number of forbidden set
conditions. The maximally permissive elements of the control setUF (m) can be identified
using the results of Holloway and Krogh (1990).

7. Feedback Control for Liveness and Deadlock Avoidance

Another class of specifications for closed-loop behavior pertain to ensuring liveness or
avoiding deadlocks in a system. Feedback control for avoiding deadlocks is related to the
notion of closed-loop control for state avoidance, presented in section 3. It is not sufficient
for the controller to simply avoid the known deadlock states of the uncontrolled system,
however, since in doing so the controller may impose new deadlock states in the closed loop
system. The notion of avoiding deadlocks can also be related to the concept of nonblocking,
given in section 4.1. A control is defined to be nonblocking if a final marking is reachable
from every reachable marking. Nonblocking implies an activity can always proceed to
completion, and thus will not encounter a deadlock before reaching a final state. The final
state may be a deadlock state, however, so the resulting closed-loop system may not be live.
Alternatively, a system may be live, but a final state may not be reachable. In this section,
we focus only on controllers to ensure liveness or absence of deadlocks. Much research
has been done on conditions to verify liveness in uncontrolled Petri nets (Murata 1989), but
only recently has the problem avoiding deadlocks through external control policies been
considered.

Holloway and Krogh (1992) consider liveness of controlled marked graphs operating
under the forbidden state avoidance control policy described in section 6. Requirements
on the forbidden conditions were determined and the forbidden state control synthesis
algorithm was extended to ensure that the Petri net is live under the maximally permissive
control policy.

Viswanadham, Narahari, and Johnson (1990) propose a deadlock avoidance policy based
on a state lookahead. They consider systems modeled by Generalized Stochastic Petri
Nets (GSPNs). Given a current marking, the controller determines all markings reachable
within a given number of transition firings. By identifying deadlocks in this set of markings,

PETRI NET METHODS FOR THE CONTROLLED DES 179

the controller can disable transition firings which lead to these deadlocks. It is possible,
however, that the lookahead horizon will not be long enough to identify deadlock states
before they become inevitable. In such cases, a deadlock can occur, and some recovery
action must be initiated.

Banaszak and Krogh (1990) present a deadlock avoidance algorithm (DAA) for pre-
vention of deadlocks in a class of models for automated manufacturing systems. In the
manufacturing systems considered, deadlock must be prevented by avoiding jobs entering
into circular waits for resources. The Petri net models used are composed of resource places
andproduction sequences, sequences of places and transitions corresponding to steps that a
job must undergo. It is assumed that each step in a production sequence is associated with
exactly one resource, and every transition may be externally disabled.

Each production sequence is divided intozonesconsisting of a sequence of steps requiring
resources that are shared with other production sequences, followed by a sequence of steps
requiring resources that are not shared with other production sequences. The DAA avoids
deadlock by enforcing two conditions. First, the total number of tokens in a zone must
not exceed the total number of unshared resources associated with the zone. Second, a job
can only claim a shared resource if all subsequent shared resources in the zone are also
available. The DAA enforces these conditions by disabling transitions associated with the
entry to a zone or with the start of each job step requiring a shared resource. Banaszak and
Krogh prove that the resulting closed-loop behavior will not have deadlocks.

The deadlock avoidance algorithm (DAC) of Hsieh and Chang (1994) applies to a slightly
more general class of models than the method of Banaszak and Krogh because it allows a
jobs to claim more than one resource at a time. The class of models,Controlled Production
Petri Nets(CPPN), is again motivated by manufacturing systems. The models consist of job
subnets, resource places, and control places. Like the production sequences of Banaszak
and Krogh (1990), each job subnet is a sequence of places and transitions representing the
sequence of activities necessary to complete a job. Arcs between the job subnets and a
resource place indicate the resource is used in a job sequence. Arcs from control places to
the job subnet indicate which transition firings can be disabled by the external control.

The CPPN can be decomposed and analyzed to determine a minimal number of resources
necessary to complete any job. This defines a minimal marking which must always be
coverable from any subsequent marking. Liveness can be guaranteed if the current control
always ensures that this minimal marking is coverable from all next possible markings.
Since determining coverability is not computationally feasible except for small nets, a
sufficiency test is established that determines if this coverability condition is satisfied under
a particularjob-clearance transition firing rule. This test is sufficient to determine if a
control under consideration ensures coverability of the minimal marking, and thus will
maintain liveness. A dispatching policy proposes an initial control to evaluate based on the
current marking. If the proposed control does not pass the liveness sufficiency test, then a
sequence of more restrictive controls are evaluated until one is found that satisfies the test.

Hsieh and Chang emphasize that the DAC guarantees liveness, which is stronger than
guaranteeing deadlock avoidance. The algorithm is shown to have polynomial complexity.
The algorithm is shown to be strictly more permissive than the DAA of Banaszak and Krogh
(1990), as well as apply to a somewhat larger class of models.

180 HOLLOWAY, KROGH AND GIUA

Ezpeleta, Colom, and Martinez generalize the production models of Hsieh and Chang
(1994) and Banaszak and Krogh (1990) by allowing choice in the job subnets, indicating
alternative job routings or resource utilizations (Ezpeleta, Colom and Martinez 1995). Their
control policy depends on the notion of asiphon, a set of placesP such that

(t)
P ⊆ P

(t)
.

Once all places in a siphon become unmarked, the places will remain unmarked and the
transitions inP

(t)
will never again be enabled. For the class of models considered, liveness

of the system can be ensured by preventing any siphon from becoming unmarked.
The control policy of Ezpeleta et al. is implemented by creating a Petri net supervisor

which is run in synchrony with the plant. The supervisor consists of the model of the plant
with additional places and arcs to modify the net operation. One place is added for each
siphon in the uncontrolled net, and its initial marking is set at one less token than the initial
number of tokens in the siphon. Jobs that might remove a token from the siphon require
a token from this place before they can start, in effect reserving the future use of a token
from the siphon. The token is returned to the place after the job has used a token from the
siphon or after an alternative routing is taken. This reserving of tokens before a job starts
ensures that the siphon will never become entirely unmarked.

The deadlock prevention control of Ezpeleta et al. requires an off-line determination
of all minimal siphons in the net. The number of minimal siphons can be at worst case
exponential, so such computations may be lengthy or infeasible for some systems. Once
the minimal siphons have been determined, however, the on-line control is very rapid and
simple. The on-line control only requires a check of the number of tokens in the controller
places to determine which transitions at the start of jobs are enabled.

Recently, Xing, Hu, and Chen (1996) considered deadlock avoidance policies in a class
of models similar to those considered in Banaszak and Krogh (1990), where the model
consists of resource places and production sequences. A deadlock structure (DS) is a set
of transitions (excluding production sequence initiation transitions) for which the set of
resources used in the output places of the transition set is equal to the set of resources used
in the input places of the transition set. It is shown that if the number of resources used by
the deadlock structure equals the capacity of the resource, the system will be in deadlock.
The control policy then ensures that for each involved resource, the deadlock structure
always has less than that resource’s capacity. One claimed advantage of the method is
that it can be easily enforced by creating a p-invariant that ensures that the number of
a resource involved in a deadlock structure will be strictly less than the capacity of the
resource.

Sreenivas (1996) considers deadlock avoidance for Petri nets with no restrictions except
that all transitions are individually controllable. Sreenivas’s deadlock avoidance algorithm
relies on the fact that liveness can be assured from a markingm1 if the following con-
dition is met: there exists firing sequencesσ1, σ2, and markingsm2, m3 such that: (1)
m1[σ1 > m2[σ2 > m3; (2) m3(p) ≥ m2(p) for all p; and (3)σ2 includes the firing of
every transition at least once. Sreenivas’ on-line control for a given marking considers each
enabled transition and the marking that would result. If the resultant marking satisfies the
above condition, then the control enables that transition. It is proved that the closed loop
system under this control policy will be live if and only if the initial marking also satisfies
the condition.

PETRI NET METHODS FOR THE CONTROLLED DES 181

Sreenivas gives a procedure to verify the above condition. The procedure relies on the
coverability graph (Peterson 1981), and consists of three steps. First, the coverability graph
from the considered next marking is constructed. Second, for any two nodes (markings)m2

andm3 in the graph such thatm3(p) ≥ m2(p) for all p, a finite state automaton is created
from the subgraph betweenm2 andm3. Finally, the language of this automata is tested
for nonempty intersection with the languageL ′m = {τ ∈ T∗ | all transitions fire inτ }.
The condition is decidable since there are known algorithms for each step. The required
construction of the coverability graph for testing each potential marking is computationally
expensive, however, and would not be reasonable for on-line computation except for very
simple Petri nets. If the Petri net has a finite number of markings, then the coverability
graph could be evaluated off-line, and the appropriate control for each marking could be
determined in advance and stored in a table.

8. Extensions to Timed Petri Nets

Recently a number of researchers have been interested in developing methods for ex-
tending methods for synthesizing feedback control policies for untimed (logical) models
of DESs to models and specifications which include explicit representations of real time
(Brave and Heymann 1988, Ostroff and Wonham 1990, Wong-Toi and Hoffman 1991,
Brandin and Wonham 1992, Sathaye and Krogh 1993, Takae et al. 1996). Petri nets of-
fer an attractive framework for developing these extensions for controlled DESs because
there are established methods for introducing and analyzing timing in uncontrolled Petri
net models (Murata 1989). In this section we briefly describe two investigations of feed-
back control policies forcontrolled time Petri nets(CtlTPNs), an extension of untimed
CtlPN models that includes real-time constraints on the firing times for enabled transitions.
We first introduce the CtlTPN model for timed DES plant dynamics. We then discuss
two approaches for control of CtlPN’s with marked graph structures: the work of Brave
and Krogh (1993) on extensions of the path-based approach for forbidden marking spec-
ifications, and the work of Cofer and Garg (1995, 1996) applying the max-plus algebra
approach.

A CtlTPN Nc
T is a CtlPN Nc with a firing interval associated with each uncontrolled

transition. Assuming the set ofn transitions inNc is indexed asT = {t1, . . . , tnu, . . . , tn},
wherenu ≤ n is the number of uncontrolled transitions given by the setTu = {t1, . . . , tmu},
the firing intervalIk associated with transitiontk fork ∈ {1, . . . ,mu} is a closed interval in the
extended nonnegative real numbers,<+⋃{∞}. LetminIk andmax Ik denote the lower and
upper bounds on the intervalIk, i.e., Ik = [minIk,max Ik] with 0 ≤ minIk ≤ max Ik ≤ ∞.
The firing intervals define constraints on the firing times for the uncontrolled transitions as
follows. If transitiontk ∈ Tu becomes enabled at timeτ = τ0, thentk cannot fire before time
τ = τ0+minIk, providedtk has remained enabled throughout the interval [τ0, τ0+minIk]
(i.e., assumingtk does not become disabled by the firing of some other transition with which
it shares an input place). On the other hand, if transitiontk ∈ Tu becomes enabled at time
τ = τ0 and remains enabled, thentk mustfire before or at timeτ = τ0+max Ik.

To define the evolution of the marking and transition firings in real time for a CtlTPN,
clocksare introduced for the uncontrolled transitions. Specifically,lk ∈ {−1}⋃<+ denotes

182 HOLLOWAY, KROGH AND GIUA

the clock for transitiontk ∈ Tu, where for a markingm ∈M valid values forlk are:

lk

{ = −1 if tk is not state-enabled bym
∈ [0,max Ik) if tk is state-enabled bym

(19)

Thestateof a CtlTPN at any instant is given by an ordered pairx = (m, l) wherem is the
marking andl = (l1, . . . , lmu)

T is the vector of clock values for the uncontrolled transitions.
As a function of time,x(τ) = (m(τ), l (τ)) evolves according to the firing rule described
above for uncontrolled transitions and the control influence on the controlled transitions as
described in the following paragraph. For a complete formal development of the transition
firing rules based on firing intervals, which were first introduced by Merlin who defined the
class of uncontrolled Petri nets calledtime Petri nets, the reader is referred to Sathaye and
Krogh (1993), Brave and Krogh (1993).

A primary difference between CtlPNs and CtlTPNs is the influence of control inputs.
For CtlPNs, the controls are only inhibiting in nature, that is, the control input can prohibit
controlled transitions from firing, but it cannot force a transition to fire at a particular instant.
In the case of CtlTPNs as defined in Sathaye and Krogh (1993), Brave and Krogh (1993),
control inputs areforcing inputs. It is assumed the controlled transitions are controlled
independently, so acontrolv is defined simply in terms of the controlled transitions which
are to be forced for fire, i.e.,v ⊆ Tc. Letting v(τ) denote the control input at timeτ , a
controlled transitiont ∈ v(τ) mustfire if t is state-enabled by the markingm(τ−), unless
another transition fires at timeτ which disables transitiont . Note that since the firing
of a transition at timeτ changes the marking, the firing condition is defined in terms of
m(τ−) and the state trajectory (marking and clocks) is defined to be right continuous with
respect to time. Sathaye and Krogh (1993) develop an approach to event-based sequential
control of CtlTPNs under the NC assumption and allows only singleton control inputs, i.e.,
|v(τ)| ≤ 1 for all τ ∈ <+. Brave and Krogh (1993) allow concurrent firing of transitions in
the development of state feedback policies for forbidden marking specifications for CtlTPNs
and admit arbitrary subsets of controlled transitions as control inputs. Holloway (1996)
considers the timing relationships between portions of a net model to determine whether
control objectives can be met, and gives a simple example where the control objectives can
only be met by considering the time delays within the system.

Brave and Krogh considered the forbidden state problem for controlled time marked
graphs (CtlTMGs), which are CtlTPNs with marked graph structure. In their problem for-
mulation the forbidden markings are specified by a collection of forbidden sets as described
in Section 6 and the state feedback policyV is a mapping from the complete state space
(markings and clocks) into subsets of controlled transitions; that is,V : X −→ 2Tc. Since
the controller is monitoring the system state rather than events, the sampling times must
be generated by some external clock. Brave and Krogh consider feedback policies that are
robust with respect to the sampling time sequence in the sense that the state feedback policy
does not assume knowledge of when the future samples will be available. Moreover, the
controller is not allowed to schedule future events; specifically, the controller can generate
inputs which force state-enabled controlled transitions to fire only at the (unknown) sam-
pling instants generated by an external clock. Given this control scenario described above,

PETRI NET METHODS FOR THE CONTROLLED DES 183

the feedback policy must guarantee that no forbidden markings can occur any time in the
future when no controlled inputs are fired.

Computation of the maximally permissive feedback policy for a given forbidden marking
specification is based on the notion of thesojourn timesfor tokens in the critical places that
make up the forbidden set conditions. Brave and Krogh show that with assumptions very
similar to those made for the untimed case, the maximally permissive feedback policy can be
stated and implemented with computations that are polynomial in the number of transitions
in the CtlTMG model and the number of forbidden set conditions. The computations
basically require the solution of a set of elementary minimal path problems that determine
the sojourn times. The maximally permissive state feedback policy fires a maximal number
of controlled transitions for which the forbidden set conditions will not be violated. Details
can be found in Brave and Krogh (1993) which includes an illustration of how the use of
the CtlTMG model can lead to less conservative control policies when compared to the
maximally permissive policy for the untimed marked graph model. Takae et al. present
a general condition for the existence of maximally permissive controllers for CtlTPNs in
Takae et al. (1996).

Cofer and Garg (1995, 1996) consider the problem of controlling the timed behaviors of
Petri nets using a max-plus algebra approach. The dynamics of a timed event graph can be
analyzed as a linear system in a max-plus algebra, where maximization and addition replace
the conventional operations of addition and multiplication, respectively. (An introduction
to the max-plus algebra approach to the modeling and analysis of systems can be found in
Bacelli et al. (1992), Cohen, et al. (1989). Cofer and Garg consider two control problems:
the first problem is to maximize the delay in the system while ensuring that a minimal
schedule is met (Cofer and Garg 1996), and the second problem is to enforce a minimal
delay within the system to ensure that specific events always have a minimum separation
time between occurrences (Cofer and Garg 1995, Cofer 1995).

The systems considered by Cofer and Garg are controlled timed event graphs, defined
by a pair(T, A) whereT is an indexed set of transitions andA is adelay matrix. If there
exists a place between transitionsti and tj , the elementAi j is of the formaγm, wherea
is the delay associated with that place andγ is an index backshift function. The element
Ai j = aγm is to be interpreted (in the max plus algebra) that thekth firing of transitiontj

will involve a token from thek−m firing of ti , and this token must reside in the place for
a time units before it can participate in the firing of transitiontj . If no place connects the
transitions, thenAi j = −∞, which is the null element under the maximization operation.
A specified subsetTc of the transitions can be externally controlled to delay their firing.

Thekth firing time of each transitionti is denotedxi [k]. The sequence of vectors of these
firing times satisfies the recursive equation

x = Ax⊕ v ⊕ u

wherex is the sequence of vectors of firing times, the multiplication operation represents
addition, the⊕operation represents maximization,v represents an initial condition on token
times, andu is the sequence of externally imposed delays.

In (Cofer and Garg 1996), the control goal is to restrict the behavior of the system so
that all firing time vector sequencesx satisfyx ≤ y, for a given schedule represented by a

184 HOLLOWAY, KROGH AND GIUA

maximal firing time vector sequencey. It is shown that such a specification is achievable
if and only if

A∗(Icy⊕ v) ≤ y

where A∗ = ⊕∞
i=0 Ai and Ic is the matrix with identity on the diagonal elements cor-

responding to controllable transitions (Cofer and Garg 1996). If the specification is not
achievable, then an algorithm can be used to determine a supremal achievable specification
y′ < y. This means that the control will give maximum delays within the system without
exceeding the given upper limit delay specificationy.

The complementary control problem is considered in Cofer and Garg (1995), Cofer
(1995): control the system such that a setSof minimal event separation time specifications
is met. The optimal control for this case is to impose the minimum delays on the system
while meeting the specified minimal event separation times. The solution proposed for
this approach is implemented as the synchronous composition of a controller timed event
graph with the timed event graph model of the plant. Max-plus algebra analysis is used to
help determine the necessary delays on the places in the controller, and to determine which
controlled transitions will be inputs and or outputs of the places.

Boissel and Kantor (1995) address the control synthesis problem for timed controlled
Petri nets using simulated annealing. Given a Petri net model of the plant with transitions
which may be uncontrollable or unobservable, the problem is to determine a controller,
also represented as a Petri net, such that the closed loop system avoids forbidden states,
is live, and minimizes certain delays. The method begins by considering a controller as a
set of places with connections to plant transitions according to the observability and con-
trollability constraints. Simulated annealing techniques are used to perturb the connections
between places within the controller and the connections between the controller and the
plant. An objective function is used to evaluate the effectiveness of the resultant controller,
and eventually the investigation of new controller designs ceases when new designs cease
to offer improved effectiveness.

9. Directions for Future Research

This paper surveys research on feedback control policies for discrete event systems using
Petri net models. The primary objective in this research is to develop modeling, analysis
and synthesis procedures that take advantage of the structural properties of Petri nets to
reduce computational complexity. Toward this end there are several open directions for
further research.

A complete formal comparison of the computational complexity of Petri net methods ver-
sus unstructured automata-based approaches has not been conducted to date. A comparison
of the complexity for one class of problems is presented in Krogh, Magott and Holloway
(1991) where it is shown that the computational complexity of computing maximally per-
missive state feedback problems for forbidden state problems for DESs that can be modeled
as controlled marked graphs (CtlMGs) is polynomial in the number of transitions and the
number of set conditions in the forbidden state specifications. This compares favorably to

PETRI NET METHODS FOR THE CONTROLLED DES 185

the equivalent problem using an unstructured automaton model of the plant dynamics since
the number of states in this case is exponential with respect to the number of transitions
in the CtlMG model, and the automata-based computations are polynomial in the number
of states in the automaton model. There are efficient methods for solving classes of prob-
lems using automata models of independent concurrent systems (Ramadge 1989), but it
has been shown that forbidden state problems for synchronized concurrent systems are in
general computationally intractable (Golaszewski and Ramadge 1988b). CtlMGs fall in
between these two classes of automata-based problems. The boundary between tractable
and intractable problems needs to be explored more deeply.

Various classes of Petri net models have been studied thoroughly in the literature, both
with respect to modeling power and computational complexity for various problems of
analysis. Among these classes we have discussed acyclic Petri nets, marked graphs and
state machines. Interesting extensions of marked graphs that have been object of research
are the classes offorward conflict-free nets, i.e., nets such that|p(t) | = 1, andbackward
conflict-free nets, i.e., nets such that| (t)p| = 1 (Haoxun 1994).

An interesting extension of state machines that may be worth considering in the context of
supervisory control are the classes offork-free nets, i.e., nets such that|t (p) | = 1, andjoint-
free nets, i.e., nets such that| (p)t | = 1. An even richer class is that offree-choice nets, i.e.,
nets such that each arc is either the only input arc of a transition or the only output arc of a
place. Jones, Landweber and Lien (1977) showed that the reachability problem for general
nets, i.e., deciding if a given marking is reachable, can be reduced to the reachability
problem for free-choice nets. Since the former problem is known to be DSPACE (exp)
hard, then the latter problem is of exponential complexity as well. However, the liveness
problem for free-choice nets, i.e., deciding if a net is live, is NTIME (poly) complete, while
the liveness problem for general nets has the same complexity of the reachability problem
(Jones, Landweber and Lien 1977). In effect, therank theorem(Desel 1992) shows that
structural liveness for this class can be decided by computing the rank of the incidence
matrix. This suggests that free-choice nets offer computational advantages when studying
control problems that can be expressed as liveness problems (Sreenivas 1996).

Another interesting Petri net analysis technique worth exploring is calledanalysis by
transformation(Berthelot 1987). A netN1 is transformed, according to particular rules, into
a netN2 while maintaining the properties of interest. The analysis of the netN2 is assumed
to be simpler than the analysis of the netN1. Properties usually considered in the Petri net
literature are conservativeness, proper termination, existence of home states and liveness.
Properties of interest in supervisory control, such as controllability, nonblockingness, etc.,
could be considered as well.

We have discussed in this paper interesting work that presented Ramadge-Wonham control
concepts in colored Petri net context (Makungu, Barbeau and St-Denis 1994). Colored
Petri nets offer a more compact and readable representation of large systems consisting of
numerous similar interacting components. Only forbidden state avoidance problems have
been considered so far. Interesting classes of specification language problems may also be
solved with colored nets.

Finally, control of timed discrete event systems has just begun to receive attention in the
literature and the work described in the previous section on controlled time Petri net models

186 HOLLOWAY, KROGH AND GIUA

represents a small portion of the problems that can be formulated. Perhaps a more thorough
understanding of the needs for practical applications of the theory should be a guide to the
types of problems that should be studied in depth. If this is the case, there is clearly a need
for more research into tools for the actual implementation and application of control DES
theory in general.

References

Ashley, Jr., J., and Holloway, L. E. 1994. Characterizing uncontrollable reachability for colored controlled petri
nets. Proceedings of 1994 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio,
Texas.

Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J. P. 1992.Synchronization and Linearity: An Algebra for
Discrete Event Systems. Wiley.

Banaszak, Z. A., and Krogh, B. H. 1990. Deadlock avoidance in flexible manufacturing systems with concurrently
competing process flows.IEEE Trans. on Robotics and Automation6(6): 724–734.

Barroso, G. C., Lima, A. M. N., and Perkusich, A. 1996. Supervision of discrete event systems using Petri nets
and Supervisory Control theory.Proc. of 1st Int. Workshop on Manufacturing and Petri Nets, 17th Int. Conf. on
Application and Theory of Petri Nets, Osaka, Japan, pp. 77–96.

Berthelot, G. 1987. Transformations and decompositions of nets.Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, (Brauer, W., Reisig, W., and Rosenberg, G. eds.)Lecture Notes in Computer
Science, vol. 254-I, New York: Springer Verlag, pp. 359–376.

Best, E. 1987. Structural theory of Petri nets: the free choice haitus.Lecture Notes in Computer Science, vol. 254,
New York: Springer Verlag, pp. 168–206.

Boel, R. K., Ben-Naoum, L., and Van Breusegem, V. 1993. On forbidden state problems for controlled closed
controlled state machines.Preprints of the 12th IFAC World Congress, Vol. 4, Sidney, Australia, pp. 161–164.

Boel, R. K., Ben-Naoum, L., and Van Breusegem, V. 1995. On forbidden state problems for a class of colored
Petri nets.IEEE Trans. on Automatic Control40(1): 1717–1731.

Boissel, O. R., and Kantor, J. C. 1995. Optimal feedback control design for discrete-event systems using simulated
annealing.Computers in Chemical Engineering19(3): 253–266.

Brandin, B. A., and Wonham, W. M. 1992. Supervisory control of timed discrete-event systems.Proc. 31st IEEE
Conf. on Decision and Control, Tuscon, Arizona, pp. 3357–3362.

Brave, Y., and Heymann, M. 1988. Formulation and control of real-time discrete event processes.Proc. 27th
IEEE Conf. on Decision and Control, Austin, Texas, pp. 1131–1132.

Brave, Y., and Krogh, B. H. 1993. Maximally permissive policies for controlled time marked graphs.Proc. 12th
IFAC World Congress, Sydney, Australia, pp. I:263–266.

Bruno, G., and Marchetto, G. 1986. Process-translatable Petri nets for the rapid prototyping of process control
systems.IEEE Trans. on Software Engineering12(2): 346–357.

Cofer, D. 1995.Control and Analysis of Real-Time Discrete Event Systems. PhD thesis, Dept. of ECE, University
of Texas at Austin.

Cofer, D., and Garg, V. K. 1995. Control of event separation times in discrete event systems.Proceedings of the
34th Conference on Decision and Control, New Orleans, LA, pp. 2005–2010.

Cofer, D., and Garg, V. K. 1996. Supervisory control of real-time discrete event systems using lattice theory.
IEEE Transactions on Automatic Control41(2): 199–109.

Cohen, G., Moller, P., Quadrat, J.-P., and Voit, M. 1989. Algebraic tools for the performance evaluation of discrete
event systems.Proceedings of the IEEE77(1): 39–58.

Colom, J. M., and Silva, M. 1991. Improving the linearly based characterization of P/T nets.Advances in Petri
Nets 1990, (Rozenberg, G. ed.),Lecture Notes in Computer Science, vol. 483, New York: Springer Verlag,
pp. 113–145.

David, R. 1993. Petri nets & Grafcet for specification of logic controllers.Proc. 12th IFAC World Congress,
Sydney, Australia, pp. III:335–340.

David, R., and Alla, H. 1992.Petri Nets and Grafcet. New York: Prentice Hall.
Desel, J. 1992. A proof of the rank theorem for extended free choice nets.Application and Theory of Petri Net

1992, (Jensen, K., ed.),Lecture Notes in Computer Science, vol. 616, New York: Springer Verlag, pp. 134–154.

PETRI NET METHODS FOR THE CONTROLLED DES 187

Coffman, E. G., et al. 1971. System deadlocks.Computing Surveys3(2): 67–78.
Ezpeleta, J., Colom, J. M., and Martinez, J. 1995. A Petri net based deadlock prevention policy for flexible

manufacturing systems.IEEE Transactions on Robotics and Automation11(2): 173–184.
Giua, A., and DiCesare, F. 1991. Supervisory design using Petri nets.Proc. 30th IEEE Conf. on Decision and

Control, Brighton, UK, pp. 92–97.
Giua, A., and DiCesare, F. 1994a. Blocking and controllability of Petri nets in supervisory control.IEEE Trans.

on Automatic Control39(4): 818–823.
Giua, A., and DiCesare, F. 1994b. Petri net structural analysis for supervisory control.IEEE Trans. on Robotics

and Automation10(2): 185–195.
Giua, A., and DiCesare, F. 1995. Decidability and closure properties of weak Petri net languages in supervisory

control. IEEE Trans. on Automatic Control40(5): 906–910.
Giua, A., DiCesare, F., and Silva, M. 1992. Generalized mutual exclusion constraints on nets with uncontrollable

transitions.Proc. 1992 IEEE Int. Conf. on Systems, Man, and Cybernetics, Chicago, Illinois, pp. 974–979.
Giua, A., DiCesare, F., and Silva, M. 1993. Petri net supervisors for generalized mutual exclusion constraints.

Proc. 12th IFAC World Congress, Sidney, Australia, pp. I:267–270.
Golaszewski, C. H., and Ramadge, P. J. 1988a. Discrete event processes wtih arbitrary controls.Advanced

Computing Concepts and Techniques in Control Engineering, (Denham, M. J., and Laub, A. J., eds.), New York:
Springer Verlag, pp. 459–469.

Golassewaski, C. H., and Ramadge, P. J. 1988b. Mutual exclusion problems for discrete event systems with shared
events.Proc. 27th IEEE Conf. on Decision and Control, Austin, Texas, pp. 234–239.

Hanisch, H.-M., Luder, A., and Rausch, M. 1996. Controller synthesis for net condition/event systems with
incomplete state observation.Proceedings of Computer Integrated Manufacturing and Automation Technology
(CIMAT’96) Conference, Grenoble, France.

Haoxun, C. 1994. Synthesis of feedback control logic for controlled Petri nets with forward and backward
conflict-free uncontrolled subnet. InProc. 33rd IEEE Trans. on Decision and Control, Lake Buena Vista, FL,
pp. 3098–3103.

Haoxun, C., and Baosheng, H. 1991. Distributed control of discrete event systems described by a class of controlled
Petri nets.Preprints of IFAC Int. Symp. on Distributed Intelligence Systems, Arlington, Virginia.

Haoxun, C., and Baosheng, H. 1993. Control of discrete event systems with their dynamics and legal behavior
specified by Petri nets.Proc. 32nd IEEE Trans. on Decision and Control, San Antonio, TX, pp. 239–240.

Holloway, L. E. 1988. Feedback control synthesis for a class of discrete event systems using distributed state
models. Laboratory for Automated Systems and Information Processing, Dept. of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA. Technical Report LASIP-88-17.

Holloway, L. E. 1996. Time measures and state maintainability for a class of composed systems.Proceedings of
the 1996 International Workshop on Discrete Event Systems (WODES96), Edinburgh, UK.

Holloway, L. E., and Krogh, B. H. 1990. Synthesis of feedback control logic for a class of controlled Petri
nets. IEEE Trans. on Automatic Control35(5): 514–523. Also appears inDiscrete Event Dynamic Systems:
Analyzing Complexity and Performance in the Modern World, (Ho., Y. C., ed.), New York: IEEE Press, 1992.

Holloway, L. E., and Krogh, B. H. 1992. On closed-loop liveness of discrete event systems under maximally
permissive control.IEEE Trans. on Automatic Control37(5): 692–697.

Holloway, L. E., Guan, X., and Zhang, L. 1996. A generalization of state avoidance policies for controlled Petri
nets.IEEE Trans. on Automatic Control41(6): 804–816.

Holloway, L. E., and Hossain, F. 1992. Feedback control for sequencing specifications in controlled Petri nets.
Proc. Third Int. Conf. on Computer Integrated Manufacturing, Troy, New York, pp. 242–250.

Hsieh, F.-S., and Chang, S.-C. 1994. Dispatching-driven deadlock avoidance controller synthesis for flexible
manufacturing systems.IEEE Transactions on Robotics and Automation10(2): 196–209.

Ichikawa, A., and Hiraishi, K. 1988. Analysis and control of discrete event systems represented by Petri nets.
Discrete Event Systems: Models and Applications, (Varaiya, P., and Kurzhanski, A. B., eds.),Lecture Notes in
Control and Information Sciences, vol. 103, New York: Springer Verlag, pp. 115–134.

Jantzen, M. 1987a. Complexity of place/transition nets.Petri Nets: Control Models and Their Properties,
Advances in Petri Nets 1986, (Reisig, W., Brauer, W., and Rozenberg, G., eds.),Lecture Notes in Computer
Sciences, vol. 254-I, New York: Springer Verlag, pp. 413–434.

Jantzen, M. 1987b. Language theory of Petri nets.Petri Nets: Control Models and Their Properties, Advances
in Petri Nets 1986, (Reisig, W., Brauer, W., and Rosenberg, G., eds.), Lecture Notes in Computer Sciences,
Vol. 254-I, Springer Verlag, New York, pp. 397–412.

188 HOLLOWAY, KROGH AND GIUA

Jeng. M. D., and DiCesare, F. 1993. A review of synthesis techniques for petri nets with applications to automated
manufacturing systems.IEEE Trans. on Systems, Man, and Cybernetics23(1): 301–312.

Jensen, K. 1995.Coloured Petri Nets. Vol. 1 & 2, Springer.
Johnson, J. L., and Murara, T. 1985. Structure mmatrices for Petri nets.Journal of the Franklin Institute319(3):

299–309.
Jones, N. D., Landweber, L. H., and Lien, Y. E. 1977. Complexity of some problems in Petri nets.Theoretical

Computer Science4: 277–299.
Kosaraju, S. R. 1982. Decidability of reachability in vector addition systems.Proc. 14th Ann. ACM Symp. on

Theory of Computing, San Francisco, California, pp. 267–281.
Krogh, B. H. 1987. Controlled Petri nets and maximally permissive feedback logic.Proc. 25th Annual Allerton

Conference, University of Illinois, Urbana, pp. 317–326.
Krogh, B. H., and Holloway, L. E. 1991. Synthesis of feedback control logic for discrete manufacturing systems.

Automatica27(4): 641–651.
Krogh, B. H., Magott, J., and Holloway, L. E. 1991. On the complexity of forbidden state problems for controlled

marked graphs.Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, pp. 85–91.
Kumar, R., and Holloway, L. D. 1996. Supervisory control of deterministic Petri nets with regular specification

languages.IEEE Trans. on Automatic Control41(2): 245–249.
Lafortune, S., and Yoo, H. 1991. Some results on Petri net languages.IEEE Trans. on Automatic Control35(4):

482–485.
Lewis, F. L., Pastravanu, O. C., and Huang, H.-H. 1993. Controller design and conflict resolution in discrete

event manufacturing systems.Proc. 32nd IEEE Conf. on Decision and Control, IEEE Control Systems Society,
pp. 3288–3293.

Li, Y., 1991. Control of Vector Discrete-Event Systems. PhD thesis, Systems and Control Group, Department of
Electrical Engineering, University of Toronto, Toronto, Ontario.

Li, Y., and Wonham, W. M. 1993. Control of vector discrete-event systesm I—the base model.IEEE Trans. on
Automatic Control38(8): 1214–1227.

Li, Y., and Wonham, W. M. 1994. Control of vector discrete-event systesm II—controller synthesis.IEEE Trans.
on Automatic Control39(3): 512–531.

Li, Y., and Wonham, W. M. 1995. Concurrent vector discrete-event systems.IEEE Trans. on Automatic Control
40(4): 628–638.

Makungu, M., Barbeau, M., and St-Denis, R. 1994. Synthesis of controllers with colored Petri nets.Proc. 32nd
Annual Allerton Conference, University of Illinois, Urbana, pp. 709–718.

Mayr, E. W. 1984. An algorithm for the general Petri net reachability problem.SIAM J. of Computing13(3):
441–460.

McCarragher, B. J., and Asada, H. 1995. The discrete event modeling and trajectory planning of robitic assembly
tasks.Transactions of the ASME—Journal of Dynamic Systems, Measurement, and Control117(3): 394–400.

Memmi, G., and Roucairol, G. 1980. Linear algebra in net theory.Lecture Notes in Computer Science, vol. 84,
Springer, pp. 213–223.

Moody, J. O., and Antsaklis, P. J. 1995. Petri net supervisors for des in the presence of uncontrollable and
unobservable transitions.Proceedings of 33rd Annual Allerton Conference on Communications, Control, and
Computing, Monticello, IL.

Moody, J. O., Yamalidou, K., Lemmon, M. D., and Antsaklis, P. J. 1994. Feedback control of Petri nets based on
place invariants.Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, Florida, pp. 3104–3109.

Moody, J. O., Antsaklis, P. J., and Lemmon, M. D. 1996. Petri net feedback controller design for a manufacturing
system.Proceedings of IFAC World Congress 1996, vol. B, San Francisco: Pergamon/Elsvier Science Limited,
pp. 67–72.

Murata, T. 1977. State equation, controllability and maximal matching of Petri nets.IEEE Trans. on Automatic
Control AC-22(3): 412–415.

Murata, T. 1989. Petri nets: Propeties, analysis and applications.Proceedings of the IEEE77(4): 541–580.
Ostroff, J. S., and Wonham, W. M. 1990. A framework for real-time discrete event control.IEEE Trans. on

Automatic Control35(4): 386–397.
Pelz, E. 1987. Closure properties of deterministic Petri net languages.Proc. STACS 1987, Lecture Notes in

Computer Sciences, vol. 247, New York: Springer Verlag, pp. 373–382.
Peterson, J. L. 1981.Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ: Prentice-Hall.
Ramadge, P. J. 1989. Some tractable supervisory control problems for discrete-event systems modeled by buchi

automata.IEEE Trans. on Automatic Control34(1): 10–19.

PETRI NET METHODS FOR THE CONTROLLED DES 189

Ramadge, P. J., and Wonham, W. M. 1987a. Modular feedback logic for discrete-event systems.SIAM J. of
Control and Optimization25(5): 1202–1218.

Ramadge, P. J., and Wonham, W. M. 1987b. Supervisory control of a class of discrete-event processes.SIAM J.
of Control and Optimization25(1): 206–230.

Ramadge, P. J., and Wonham, W. M. 1989. The control of discrete event systems.Proceedings of IEEE77(1):
81–98.

Reisig, W. 1982. Petri nets.Monographs on Theoretical Computer Science. New York: Springer Verlag.
Reutenauer, C. 1990.The Mathematics of Petri Nets. Masson and Prentice-Hall.
Sathaye, A. S., and Krogh, B. H. Synthesis of real-time supervisors for controlled time Petri nets.Proc. 32nd

IEEE Conf. on Decision and Control, vol. 1, San Antonio, pp. 235–238.
Sifakas, J. 1980. Deadlocks and livelocks in transition systems.Mathematical Foundations of Computer Science

88: 587–600.
Sifakis, J. 1978. Structural properties of Petri nets.Mathematical Foundations of Computer Science, (Winkowski,

J., ed.), Springer, pp. 474–483.
Smedinga, R. 1988. Using trace theory to model discrete event systems.Discrete Event Systems: Models and

Applications, (Varaiya, P., and Kurzhanski, A. B., eds.),Lecture Notes in Control and Information Sciences,
New York: Springer Verlag, pp. 81–99.

Sreenivas, R. S. 1993a. A note on deciding the controllability of a language K with respect to a language L.IEEE
Trans. on Automatic Control38(4): 658–662.

Sreenivas, R. S. 1993b. On a weaker notion of controllability of a language K with respect to language L.IEEE
Trans. on Automatic Control38(9): 1446–1447.

Sreenivas, R. S. 1996. Enforcing liveness via supervisors control in discrete event dynamic systems modeled by
completely controlled petri nets.IEEE Transactions on Automatic Control, submitted.

Sreenivas, R. S., and Krogh, B. H. 1992. On Petri net models of infinite state supervisory.IEEE Trans. on
Automatic Control37(2): 274–277.

Stiver, J. A., and Antsaklis, P. J. 1993. On the controllability of hybrid control systems.Proc. 32nd IEEE Conf.
on Decision and Control, IEEE Control Systems Society, pp. 294–299.

Suziki, I., and Murara, T. 1983. A method for stepwise refinement and abstraction of Petri nets.Journal of
Computer and System Sciences27(1): 51–76.

Takae, A., Takai, S., Ushio, T., Kumagai, S., and Kodama, S. 1996. Maximally permissive controllers for controlled
time Petri nets.Proceedings 33rd Conf. on Decision and Control, Lake Buena Vista, FL, pp. 1058–1059.

Takai, S., Ushio, T., and Kodama, S. 1994. Concurrency and maximally permissive feedback in Petri nets with
external input places.International Journal of Control60(4): 617–629.

Ushio, T. 1989. On the controllability of controlled Petri nets.Control-Theory and Advanced Technology5(3):
265–275.

Ushio, T. 1990. Maximally permissive feedback and modular control synthesis in Petri nets with external input
places.IEEE Trans. on Automatic Control35(7): 844–848.

Ushio, T., and Matsumoto, R. 1988. State feedback and modular control synthesis in controlled Petri nets.Proc.
27th IEEE Conf. on Decision and Control, Austin, Texas, pp. 1502–1507.

Valette, R. 1983. A petri net based programmable logic controller.Computer Applications in Production and
Engineering (CAPE ’83), (Warman, E. A., ed.), North-Holland Publishing, pp. 103–116.

Viswanadham, N., Narahari, Y., and Johnson, T. L. 1990. Deadlock prevention and deadlock avoidance in flexible
manufacturing systems using petri net models.IEEE Trans. on Robotics and Automation6(6): 713–722.

Wang, F. Y. 1992. Supervisory control for concurrent discrete event dynamic systems based on Petri nets.Proc.
31st IEEE Conf. on Decision and Control, Tuscon, Arizona, pp. 1196–1197.

Wang, H. 1993. Trace model for concurrent DEDS.Proc. 12th IFAC World Congress, Sidney, Australia, pp. V:1–4.
Watson, J. F., and Derochers, A. A. 1994. State-spae size estimation of Petri nets: a bottom-up perspective.IEEE

Trans. on Robotics and Automation10(4): 555–561.
Wong-Toi, H., and Hoffmann, G. 1991. The control of dense real-time discrete event systems.Proc. 30th IEEE

Conf. on Decision and Control, Brighton, UK, pp. 1527–1528.
Wonham, W. M, and Ramadge, P. J. 1987. On the supremal controllable sublanguage of a given language.SIAM

J. on Control and Optimization25(3): 637–659.
Xing, K.-Y., Hu, B.-S., and Chen, H.-X. 1996. Deadlock avoidance policy for Petri-net modeling of flexible

manufacturing systems wih shared resources.IEEE Transactions on Automatic Control41(2): 289–295.
Xing, K.-Y., Li, J. M., Hu, B. S. 1996. A new method for synthexizing state avoidance policies for controlled petri

nets. Proceedings of IFAC World Congress 1996, vol. J, San Francisco: Pergamon/Elsevier Science Limited,

190 HOLLOWAY, KROGH AND GIUA

pp. 377–382.
Yamalidou, K., Moody, J., Lemmon, M., and Antsaklis, P. 1996. Feedback control of petri nets based on place

invariants.Automatica32(1): 15–28.
Zhou, M. C., and DiCesare, F. 1993.Petri Net Synthesis for Discrete Event Control of Manufacturing Systems.

Kluwer.
Zhou, M. C., DiCesare, F., and Desrochers, A. 1992. Hybrid methodology for the synthesis of Petri nets models

for manufacturing systems.IEEE Trans. on Robotics and Automation8(3): 350–361.
Zhou, M. C., DiCesare, F., and Rudolph, D. L. 1992. Design and implementation of a petri net based supervisor

for a flexible manufacturing system.Automatica28(6): 1199–1208.
Zurawski, R., and Zhou, M. 1994. Petri nets and industrial applications: a tutorial.IEEE Trans. on Industrial

Electronics41(6): 576–583.

