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Abstract

Optimal design of an active suspension system for road vehicles can be solved
using LQR techniques. Such a problem is equivalent, in the frequency domain, to
determine the state feedback gain matrix that minimizes the Hs norm of a suitable
transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable
state feedback law whose gains are function of the system parameters. This law, and
thus the characteristic elements of the passive suspension, can be determined as an
approximation of the Hy optimal solution. This methodology allows one to choose
the best controller from a constrained subset (i.e., all possible passive suspensions
of a particular form) of all possible controllers.
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1 Introduction

The design of active suspensions for road vehicles has received considerable attention in
the literature. The purpose of the design is that of optimizing the performances of the
vehicle with regard to comfort, road holding, and rideability.

In an active suspension there are no passive elements, such as dampers and springs.
The interaction between vehicle body and wheel is regulated by an actuator of variable
length. The actuator is usually hydraulically controlled and applies between the body and
wheel a force that represent the control action generally determined with an optimization
procedure that uses LQR techniques.

Active suspensions give better performances with respect to passive suspensions. However,
active suspension systems are rather complex, since they require several components such
as actuators, servovalves, high-pressure tanks for the control fluid, sensors for detecting
the system state, etc. The associated power, that must be provided by the vehicle engine,
may reach the order of several 10 kW [1] depending on the required performances and
vehicle weight. Furthermore, these suspension systems have a high cost.

As a viable alternative to a purely active suspension system, the use of an active suspension
in tandem with a suitably dimensioned passive suspension has been considered [2, 3].
Such a mixed suspension system is still capable of providing the optimal control law,
while sensibly reducing the power required by the active part but not its complexity.

Purely passive suspensions, however, remain the most valid engineering solutions when
they can reasonably approximate the performances offered by the optimal active control.
In fact they require no power consumption, they can be easily realized, and the resulting
suspension system is simpler and less costly.

Using parameter optimization techniques it is possible to minimize the difference between
the evolution of a passive and of an active system from a given initial condition, i.e., for
a given disturbance. However, it is often the case with such a design that for different
initial conditions the two evolutions are significantly far off.

In this paper, we present a design technique, based on the minimization of the Hy norm
of a particular transfer function. This design leads to good approximations of the active
control law for different initial conditions. We show that some properties of the active
suspension system are conserved when a passive suspension is used. Furthermore, we can
also give an upper bound on the error criterion used to characterize the performances of
the active and passive systems.

This paper is structured as follows. In section 2, following [4, 5], we recall how an optimal
control problem may be solved, in the frequency domain, by computing a feedback gain
matrix that minimizes the Hy, norm of a particular transfer matrix. In section 3 we



consider the case of a road vehicle and show how a passive suspension system may be
seen as a means of implementing a structured state feedback control law whose gains are
simple functions of the suspension parameters [2, 3]. In particular, the optimal values
of the parameters are chosen so as to better approximate the Hs norm of the optimal
system. In section 4 we consider an applicative example, namely the design of a quarter
car suspension, and we compare the performances of the passive and active suspension
systems.

2 Considerations on H, design

A standard approach to the control of linear time-invariant multiple input multiple output
systems considers a block diagram such as the one shown in Figure 1 [4, 5]. In this figure
P(s) is the transfer matrix of the generalized plant, while F'(s) is the transfer matrix of
the controller. The vector w represents all external inputs, such as disturbances, sensor
noise, and reference signals, while the vector y is a criterion signal (usually called error
signal in the literature). The vector v is the set of observed variables used by the controller
to compute the control input u. The closed loop transfer matrix between w and y is called
lower linear fractional transformation (LFT) of P and F and is denoted Fy(P, F).

Let us consider the linear model of a system to be controlled

+(t) = C(t) (1)

where x € IR" is the state vector, u € IR™ is the control vector, and z € IR? is the output
vector.

Classical LQR problem formulation requires to find the state feedback law wu(t) = Fz(t),
with F' € IR™*", such that the cost functional

J= /0 Oo[zT(t)Qz(t) + T (t) Ru(t)]dt, (2)

is minimized for any initial state 2(0) = z5. Here Q@ = QT > 0, R = RT > 0. The solution
to the LQR problem is:
F*=-R 'BTX, (3)

where X is the solution of the algebraic Riccati equation
XA+ ATX —XBR'BTX +CTQC =o. (4)

The closed loop poles are the eigenvalues of A + BF™.



The equivalent frequency domain problem [5] is to find the state feedback matrix F* such
that the norm' ||Fy(P, F')||, is minimized, where the transfer matrix of the generalized
plant P(s) has the following expression in terms of state space data:

Tp WU
Al B ip A | I B
P(s)=C(sI —A)™'B+D = 7’? = QY2C| 0 0 . (5)
Yo 0 0 RY?
v I 0 O

The state equation of the generalized plant is Zp(t) = Axp(t) + Bu(t) + w(t), i.e., it is the
state equation of the system (1) with an additional disturbance input w(t). For a given
u(t), the evolution z(t) of the system under arbitrary initial conditions x(0) = z¢ is the
same of the evolution xp(t) of the generalized plant, initially at rest, when the external
input is w(t) = zy §(t).

The closed loop output vector of the generalized plant is

{ yi(t) } _ { Q'*Cp(t) }

y(t) = Yo (t) Rl/zu(t)

and from (2) it can be seen that whenever x(t) = zp(t)

lyll = 7. (7)

Since
y(s) = Fu(P, Flw(s), (8)

it is possible to prove [5] that the minimization of the norm ||F,(P, F)||, leads to a mini-
mization of (7) for any external input of the form w(t) = xy 0(¢).

Furthermore, let us recall another fundamental property of the Hy norm: if the input w is
a vector white noise process with covariance matrix E[w(t + 7)w? (t)] = I §(7), then the
root mean square value (RMSV) output power of y in equation (7) is ||Fy(P, F')||,. Thus
this design also leads to the minimization of the RMSV of the criterion signal in response
to white noise [5].

3 Design of a passive suspension

Let system (1) be the state space model of the quarter car active suspension system shown
in Figure 2.a, where the control force u is generated by an actuator.

!The definitions of norms are recalled in Appendix A.



Under the assumption of flat road surface, the deformation of the tyre and the position
of the unsuspended mass may be taken as identical. Thus we have the following state
variables.

x1(t) is the deformation of the suspension with respect to the static equilibrium configu-
ration, taken as positive when elongating.

xo(t) is the vertical absolute velocity of the suspended mass M.

x3(t) is the movement of the non suspended mass with respect to the static equilibrium
configuration, taken as positive upwards. Under the assumption of flat road surface,
this is also the deformation of the tyre.

x4(t) is the vertical absolute velocity of the non suspended mass M;. The tyre is repre-
sented as a purely elastic component of elastic constant. .

The matrices A, B, and C' are:

0 1 0o -1 0

|00 0 o , | 1My | ., [1000

A= 0 0 0 | PE 0 ’C_{0010}' (%)
00 —\/M; 0 —1/M,

The optimal control law will depend on the weight matrices () and R, to be chosen as a
function of the desired performances. Useful suggestions for the choice of the weights can
be found in the literature [6]. The control law will be in the form

ut) =Fa@)=[fi fo fi falloa(t) 22(t) @s(t) aa(t) " (10)

The implementation of this control law is quite complex, since it requires the knowledge
of the state vector, that can be reconstructed by an observer. Furthermore, the resulting
suspension system is rather complex, requiring not only suitable software but also a set
of components as discussed in the introduction. Its high cost and its limited reliability
have hindered its application to commercial road vehicles.

A passive suspension, shown in Figure 2.b, can be seen as a particular state feedback law
corresponding to a structured gain feedback matrix [2]

F=[-k —-f 0 f], (11)

where k£ > 0 is the spring elastic constant, and f > 0 is the characteristic coefficient of
the damper.

We set our goal to that of designing a passive suspension whose control law, generated by
a matrix F, is the best possible approximation of the control law (10), in the sense that
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the value of £* and f* are such to minimize the norm ||F;(P, F,)||,. Clearly we will have

that

-

1Ee(P ED) |, = 1Fe (P, E)l,s (12)
since the RHS of inequality (12) is a global minimum.

The performances given by the passive suspension so designed will in general be worse
than those given by the active suspension in terms of the performance index (2). However,
all those properties that depend on the Hs norm will still be valid.

In particular, if the external input w is white noise with covariance matrix Elw(t +
) wT (t)] = I (1), then the RMSV of the power associated to the output will be minimized
with respect to any other passive suspension.

Deterministically, we can say that if the generalized plant is excited with n different
disturbances w;(t) = e;0(t), where e; is the i-th canonical basis vector, and () is the
impulse, and we call y;(¢) the corresponding criterion signal, then

> llwill, = I1E(P E)l,. (13)
=1

Since the ||y;||5 can be considered as the value .J,; of the performance index (2) when
the passive system starts from the initial condition z(0) = e;, the minimization of the
| F¢(P, F,)]|, leads to the minimization of the » " | .J)7 among all possible passive sus-
pensions.

The passive suspension does not enjoy the fundamental property of optimal control,
namely that of minimizing the performance index (2) for any arbitrary initial state xy. It
is possible, however, to find upper bounds for the value J, taken by (2) when the feedback
matrix is F;. Let y(s) and y,(s) be the outputs of the generalized plant with the optimal
active and passive suspensions when the input is w(s) = xy. Then

y(s) = Fy(P, F*) xy,

yp(s) = Fy(P, F}) . (14)

It is possible to prove, as we show in Appendix B, that the performance of the optimal
active suspension is bounded by

T =yl < 1F(PF)l5 llzolls- (15)
while the performance of the passive suspension is bounded by
Tp = llwplls < 1E(P B llzolls- (16)

Note that in the previous equations the norm ||z¢]|, is the euclidean norm of a vector,
while the norm [[Fy(P, F;)|, is a transfer function norm. These equations have a nice
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physical interpretation. They show that the value of the Hs norm is an upper bound
for the value of the performance index under arbitrary initial conditions on the unitary
sphere.

When the numerical values of ||Fy(P, F*)||, and ||Fy(P, F;))||, are close, we may conclude
that for any arbitrary initial conditions the performance indexes .J and .J, have close upper
bounds.

4 Applicative example

The proposed design has been applied to the quarter suspension shown in Figure 2,
with system matrices given by (9) and values of the parameters [6]: M; = 28.58 kg,
M, = 288.90 kg, A = 155900 N/m.

The matrices ) and R, taken from [6], are

1 0

- - R=0.8-10"° .
Q {010],1% 0.8-10

These weights, realizing a trade off between road holding and comfort, lead to good
performances.

The optimal state feedback gain matrix for active control is
F* = —35355 —4827 21879 1386 |,

and gives a || Fy(P, F*)||> = 0.450 that is the minimum value achievable.
To determine the optimal parameters of the passive suspension, we need to find the

min|F(P. F}) (17)

We used the software tools available in Matlab: fmins is the minimization procedure, and
normh2 computes the Hy norm. The optimal values of k and f are k* = 14,345 N/m and
f*=1,918 N-s/m. The corresponding state feedback gain matrix is

Fy=[—14345 —1918 0 1918 |,

and gives a || Fy(P, F;)H; = 0.522. Note that finding the optimal passive suspension is a
problem of constrained controller optimization. As such, it is almost certainly not a con-
vex optimization problem and there may be multiple solutions that locally minimize the
|Fo(P, F,)||>. However, in the case at hand starting from different inital values of F}, corre-
sponding to physically meaningful passive suspension, we observed that the minimization
procedure always converges to the same value FJ.
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Figures 3-6 shows the results of two different simulations under the assumption of flat
road surface.

In the first simulation a unitary initial disturbance was applied to the suspension defor-
mation, i.e., the initial state was zp =[ —1 0 0 0 ]T. This corresponds to an abrupt
compression of the suspension by an external force applied to the suspended mass, as
during a sudden braking or a sharp cornering of the car.

In the second simulation a unitary initial disturbance was applied to the non suspended
mass, i.e., the initial state was zp = [0 0 —1 0 ]7. This corresponds, losely, to an
abrupt compression of the tyre, that can be due to a sharp discontinuity in the road
profile.

The results of simulation show an acceptable loss in performance when the passive sus-
pension is compared with the active one.

It is often the case that a passive suspension is dimensioned so that it well approximates
the active suspension behavior for a given type of disturbance. This is done solving a prob-
lem of parameter identification whose solution highly depends on the chosen initial state
of the system, i.e., on the type of perturbation. The behavior is usually not satisfactory
when a different perturbation is considered.

In the design we have discussed, as expressed in equation (17), the passive approximation
of the active system does not depend on a particular initial condition of the state zy and
thus has a global validity, as shown in equations (15) and (16).

To show the influence of the choice of weights () and R on the passive suspension design,
we have computed F for different values of the control input weight R while keeping
constant (). These results are shown in Figures 7-9. From Figure 7 we can see that the
ratio of ||Fy(P, F;)H;/“FZ(R F*)||2 is less than 1.2 for all values of R. Hence the active
and passive design have performance upper bounds that are close for all values of R. In
Figure 8 we can read the value of the optimal spring elastic constant k£* as a function of
R. In Figure 9 we can read the value of the optimal damper characteristic coefficient f*
as a function of R.

5 Conclusions

We presented a design technique for a passive suspension system of road vehicles. The
design technique is based on the approximation of an optimal control law corresponding
to a reference active suspension.

A passive suspension system can be seen, from a control point of view, as a state feedback
law with a structured gain matrix whose elements are simple functions of the suspension



parameters. The optimal value of the structured gain matrix — and thus of the suspen-

sion parameters — is such that a suitable H, norm is as close as possible to the norm

corresponding to optimal solution.

This design leads to passive suspensions with the following properties:

e [f the external disturbances can be represented as white noise with covariance matrix
I §(7), then the root mean square value of the power associated to a dummy output,
chosen to characterize the disturbance effect, will be minimized with respect to any
other passive suspension.

e The passive suspension does not enjoy the fundamental property of optimal control,
namely that of minimizing the chosen performance index for any arbitrary initial
state xyg. However, it has good performances for different types of disturbances,
such as those corresponding to irregularities of the road or corresponding to forces
acting on the suspended mass.

It was also possible to give an upper bound on the error criterion used to characterize the

performances of the active and passive systems.
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Appendix

A - Definition of norms

Let € IR" be a vector. The 2-norm (euclidean norm) of z is :

Jall, = (Z x> R

i=1
Let V be a positive semi-definite matrix in IR"*". Then:

2TV x < trace{V} ||z|)3

Let y(t) : IR — IR" be a signal vector and y(s) its Laplace transform. The Hy norm of y

lyll, = (/_Z yT(t) y(t) dt)é - (% /_‘: o (70) i) dw)%

where ¥ denotes the conjugate transpose.

is:

Let ¢(t) : IR — IR™" be a signal matrix and g¢(s) its Laplace transform. The Hy norm of
g is:

= (et sty )= (3 et i )

B - Proof of bound (15)

Let y(t) be the output of the generalized plant for an input w(t) = x¢d(¢), i.e., y(s) =
F,(P,F*) xy. As discussed in the paper, the Value of the cost functional J for the closed
loop system starting from initial conditions x(0) = zg is:

1 o0 . % *
= lyl2 = — / Y () y(jw) dw = — / H(P,F*) - Fy(P, F*) 7o duw

P
=zl V xo

1 o0
where V = (2—/ FJ (P, F*) F)(P, F*) dw) is positive semi-definite.
™ —00

Hence we can write:

1 oo
J < trace{V} ||lzolls = <§/ trace{ F/1 (P, F*) F,(P, F*)} dw) l|ol|5

= [|E(P, F*)Il5 llzoll;
A similar reasoning can be used to prove bound (16).
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Figure 1: Linear fractional transformation scheme.
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Figure 2: Model of a quarter car active (a) and passive (b) suspension.
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Figure 3: x(¢) for initial state 2o = [~1000]", using active (—) and passive (- - -)
suspensions.
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Figure 4: x3(t) for initial state o = [—1 000]", using active (—) and passive (- - -)
suspensions.

xp[m] 04

0.8 1
t[s

Figure 5: 2 (t) for initial state o = [00 — 1 0]", using active (—) and passive (- - -)
suspensions.
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Figure 6: x3(t) for initial state o = [00 — 1 0]", using active (—) and passive (- - -)
suspensions.
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Figure 7: Ratio of ||Fy(P, F;)H;/“Fg(P, F*)||2 for different values of the control input
weight R.
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Figure 8: Value of the spring elastic constant £* in N/m for different values of the control
input weight R.
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Figure 9: Value of the damper characteristic coefficient f* in Ns/m for different values of
the control input weight R.
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