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Abstract

The intersection of the class of deterministic weak and the class of deterministic
marked Petri net languages is the class of regular languages. We prove this result
using a lemma that characterizes regular deterministic Petri net languages.
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1 Introduction

The extension of the supervisory control theory to Discrete Event Systems modeled by
Petri nets (PN) leads to non trivial decision problems for PN languages [2, 5]. For instance,
checking the controllability of a PN specification with respect to a PN behavior requires
more or less testing the inclusion of PN languages, a well known undecidable problem for
general PN languages. This naturally leads to the investigation of appropriate subclasses
of PN specifications and behaviors in which these basic problems become decidable. To
this end, the subclass L4 of deterministic marked Petri net languages and the subclass
Ga of deterministic weak Petri net (PN) languages were used in [2]. It is known that the
set of regular languages R satisfies R C G, N L4. Moreover, the class £, is incomparable
with G4. It was conjectured in [2] that R = £, N G4. We prove here that this is the case.
Thus, L4 and G, provide proper and distinct extensions of regular languages.

Let us first recall some notation (the reader is refered to [2] for more details). Let X
denote a finite alphabet. A Y-labeled PN is a 4-uple G = (N, ¢, My, F), where: N is a PN
(whose sets of transitions and places are denoted respectively by 7" and P); ¢ is a labeling
function T — ¥; M, € N denotes the initial marking; F C N” is a finite set of final
markings. The labelling function 7 is extended to a morphism 7" — ¥* in the canonical
way. The marked behavior L,,(G) is the f-image of the set of firing sequences leading to
a final marking, namely:

L,(G
The weak behavior L, (G
L,(G)={l(o)| o €T* Mylo)M, with M € Cr}

)={l(o) | o €T, Mylo)M, with M € F} .
)

is defined by taking as accepting set the covering set Cp, i.e.:

where

Cp ¥ (M eN | IM" e F, M > M"} . (1)

In more general terms given a (possibly infinite) set of accepting markings F, we set
L(G,M,F)={l(o)| o €T, M[o)yM', with M' € F}. We note that L,,(G) is obtained
from L(G, My, F) by the specialization F = F', while L,,(G) is obtained from L(G, M, F)
by the specialization F = C as defined by (1). The set of reachable markings starting
from a marking M will be denoted by R(N,M). We say that G is deterministic if the

marking reached after firing a sequence is uniquely defined from the sequence label, i.e.,
if My[o)M, Mylo"YM', and ¢(c) = ¢(o') implies M = M'.

2 Characterization of regular Petri net languages

We begin with a lemma of general interest which characterizes all classes of regular de-
terministic PN languages. This extends a result of Ginzburg and Yoeli ([1], Theorem 1)
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for free-labeled closed PN languages. The regularity of Petri net languages has also been
discussed by Valk and Vidal [6]. This lemma should be seen as the transcription in terms
of reachable markings of the well known Myhill-Nerode characterization of a regular lan-
guage by the finiteness of its set of residuals [3]. Given a language L and a string w € X,
the residual of L with respect to w is the language w™'L = {z | wz € L}. The lan-
guage L is regular iff the set of its residuals as w ranges over X is finite, i.e., iff the set
{w™'L | w e X*} is finite.

Lemma 1. Let F denote an arbitary set of accepting markings. If {L(G,M,F)| M €
R(N, My)} is finite, then L(G, My, F) is regular. The converse holds when G is deter-
manistic.

Proof. The proof is based on the following obvious observation:

Yw € X, w'L(G, My, F) = U L(G, M, F) . (2)

oeT*, l(o)=w, Molo)M

If there are only finitely many L(G, M, F) for M € R(N, M), we get readily from (2) that
there are finitely many w™'L(G, My, F) for all w € ¥* (since (2) writes w™'L(G, My, F)
as a finite union of distinct subsets). Thus L(G, My, F) is regular. Conversely, let M €
R(N, My), with My[o)M. Obviously,

L(G,M,F) C {(o)"'L(G, My, F) (3)

We prove that the converse inclusion holds for deterministic nets. Indeed, let w €
((o)'L(G, My, F). Then, there exist o’,0” € T* such that £(c') = ((0), (c") = w
and My[o")M'[c")M" € F. Since G is deterministic, M = M', hence M[o")M" € F, and
thus w = ((0") € L(G, M, F). This shows the equality in (3), and implies that there are
finitely many L(G, M,F) as M € R(N, M,). O

We show how the converse of the lemma depends on the determinism of G with an
example.

Example 1. Let G be the nondeterministic labeled net in Figure 1, with initial marking
My = (0) and set of final markings F = {(0)}. The set of reachable markings of this
net is R(N, My) = N. The language accepted starting from M; = (i) is L(G, M;, F) =
{a"*% | j > 0}. Hence the set {L(G,M,F) | M € R(N,M,)} is infinite, while the
language L(G, My, F) = (a?®)* is regular.

3 Main result

We can then state the main result of this note.
Theorem 1. R =G, N L,.



a a
Figure 1: Non deterministic labeled net in Example 1.

Proof. The other inclusion being known [2], we prove that £;NG; C R, by contradiction.

Let Gy = (Ny, 4y, My, Fy) and Gy = (Ng, by, My 2, F>) be two deterministic labeled nets
such that L, (G1) = L,,(G2) and assume that L, (G1) is not regular. By Lemma 1, there
must exist an infinite set of markings M C R(Ny, M) such that for all M, M' € M,
M # M' = L(G,M,Cp) # L(G1,M',Cp,). From this infinite set we can extract
a (strictly) increasing infinite sequence Mj, My, ... (see, e.g., [4, Theorem 2.5]). Hence
L(Gy, M;,Cr) € L(G1, M;41,Cp,), for all i.

For each marking M;, let o; be a firing sequence such that M [o;)M;, and let 7 be a firing
sequence such that M;[T)M; € Cp,. Now, let us consider the net Gy. There exists a firing
sequence o} firable from M 5 and such that ly(0}) = ¢,(0;) for all i. Let M} € R(Ny, M)
be such that Mo[ol)M,. It follows from the equality in (3) for deterministic nets that
L(G2, M}, Fy) = L(G1, M;,Cr,), hence M] # M; for i # j. There must exist a firing
sequence o ; with ly(0”; ;) = £1(7) such that Mj[o’ ;) M}, and M}, € F;, for all i. Since (;
is non erasing, the length of o ; is fixed. Thus, there are finitely many such o’ ;, and M},
differs from M from a bounded quantity. Hence, being the set of all M/ infinite, the set
of all M}; must be infinite as well. This contradicts the hypothesis that the set of final
markings Fy of G4 be finite. O
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