Decidability and Closure Properties of
Weak Petri Net Languages
in Supervisory Control

Alessandro Giua,
Dip. di Ingegneria Elettrica ed Elettronica, Universita di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
Phone: +39-070-675-5892 — Fax: +39-070-675-5900 — Email: giua@diee.unica.it

Frank DiCesare

Dept. of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute

Troy NY 12180-3590, USA — Email: dicesare@ecse.rpi.edu

Abstract

We extend the class of control problems that can be modeled by Petri nets
considering the notion of weak terminal behavior. Deterministic weak languages
represent closed-loop terminal behaviors that may be enforced by nonblocking Petri
net supervisors if controllable. The class of deterministic weak PN languages is not
closed under the supremal controllable sublanguage operator.

Published as:

A. Giua, F. DiCesare, “Decidability and Closure Properties of Weak Petri Net Languages
in Supervisory Control,” IEEFE Trans. on Automatic Control, Vol. 40, No. 5, pp. 906-910,
May, 1995.



1 Introduction

In this note we present a notion of terminal behaviors for Petri nets (PN) called weak
behaviors and study their use in Supervisory Control Theory (SCT) [10]. Weak behaviors
overcomes some of the problems due to the use of Petri net marked behaviors [2, 15, 13].

Since the weak behavior is specifically defined only for Petri nets, we will introduce it
with an example.

In Figure 1, we have shown a simple communication process where a sender S sends
messages to a receiver R through an infinite-capacity channel C. The initial state of
the system is shown in the figure. A token in S_on (S_off) means that the sender is
active (has disconnected). A token in R_on (R_off) means that the receiver is active
(has disconnected). The tokens in C represent messages sent on the channel but not yet
received.

We consider as final marking My, with M;(S_off) = M;(R.off) = 1 and M;(S-on) =
M¢(C) = Mg(R-on) = 0. We may consider as terminal behavior of the net its marked
language, i.e., the set of all firing sequences that reach the final marking M. Since
M (C) = 0, this means that in a terminal state there may not be tokens in C, i.e.,
all messages sent by S have been received by R. However, we may consider as terminal
behavior of the net its weak language, i.e., the set of all firing sequences that reach a
marking greater or equal to M. This means that we consider as terminal all those states
in which both sender and receiver have disconnected, i.e., M;(S_off) = M(R_off) =1,
regardless of the number of tokens contained in C.

The choice between weak and marked language as terminal behavior depends on the
physical problem. For the example we considered here, accepting the weak language as
terminal behavior means that we are not interested in ensuring that all messages sent are
received, or that we are not capable of enforcing this constraint. It may be interesting
to note that a Petri net is, in effect, a weak counter, in the sense that if a transition
firing may occur at a marking M then it may also occur at any marking M’ > M (see
Lemma 2.1). Thus it also make sense to assume that if a marking M is final then any
marking M’ > M is also final.

This note discusses the use of weak languages in supervisory control. In particular, since
deterministic weak PN languages have not been studied before, we also devoted some
time to the study of their properties. Our main results can be summarized as follows.
Firstly, the classes of weak and marked languages generated by deterministic nets are
incomparable. Thus, taking also into account the weak behavior of deterministic nets
(in addition to the marked behavior) we extend the class of control problems that can



be modeled by PN. Secondly, deterministic weak PN languages are DP-closed, i.e., they
represent closed-loop terminal behaviors that may be enforced by Petri net supervisors.
This is an important result, that does not hold for the class of deterministic marked
PN languages. Thirdly, the main properties of interest in supervisory control, such as
controllability and L-closure, are decidable when this class of languages is considered. It
is also decidable whether a system is weakly blocking. Finally, the class of deterministic
weak PN languages is not closed under the supremal controllable sublanguage operator.

2 Background

2.1 Petri Nets

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post) where: P is a set
of places; T is a set of transitions; Pre : P x T — IN specifies the arcs directed from
places to transitions; Post : P x T — IN specifies the arcs directed from transitions to
places. Here IN = {0,1,2,...}. See [7, 11] for a more complete definition of Petri nets.

A marking is a vector M : P — IN. IN'"! will denote the set of all possible markings
that may be defined on the net. A P/T system or net system (N, My) is a net N with an
initial marking M,. We will expand sometimes the definition of marking to a function:
M : P — IN,, with IN, = INU {w}. w is a new element such that for alln € IV : n < w,
and forallne N, :w+n=n+w=w—-—n=uw.

When a marking M’ can be reached from marking M by executing a firing sequence of
transitions o = t;...t; we write M [o) M'. We write M [0) to denote that o may be
executed from M. The set of markings reachable on a net N from a marking M is called
the reachability set of M and is denoted as R(N, M).

A labeled Petri net (or Petri net generator) [4] is a 4-tuple G = (N, ¢, My, F') where:
N = (P,T, Pre, Post) is a Petri net structure; ¢ : T — X is a labeling function that
assigns to each transition a label from the alphabet of events ¥ and will be extended to
a mapping 7% — ¥* in the usual way; M, is an initial marking; F' is a finite set of final

markings. The finiteness of F' is essential in the definition of labeled nets. We also define
the covering set of F as Cp = {M € IN!"l'| @M’ € F) [M > M'"]}.

We will represent a discrete event system (DES) as a labeled Petri net. Given a DES
G = (N, {, My, F), the L-type language of G (called marked behavior in the framework of
SCT) is L,,(G) = {l(o) € £ | 0 € T*, My [0) M, M € F}; the G-type language of G
(that we will call weak behavior) is L,(G) = {{(0) € ¥* | 0 € T*, My [0) M, M € Cr};



the P-type language of G (called closed behavior in the framework of SCT) is L(G) =
{l(c) eX* | o €eT* My [o)}.

Note that in our definition of labeled net we are assuming that ¢ is a A-free labeling
function, i.e., no transition is labeled with the empty string A and two (or more) transitions
may have the same label. The classes of L-type, G-type, and P-type languages generated
by A-free labeled nets are denoted £, G, and P respectively.

A deterministic PN generator [4] is such that the string of events generated from the initial
marking uniquely determines the marking reached. Formally, a DES G is deterministic
iff for all t,¢' € T, with t # t', and for all M € R(N,My): M [ty AN M [t') = [((t) #
()] V [Post(-,t) — Pre(-,t) = Post(-,t') — Pre(-,t')]. Note that we are slightly extending
the definition of determinism used by [4, 13]. In fact, we accept as deterministic a system
in which two transitions with the same label may be simultaneously enabled at a marking
M, provided that the two markings reached from M by firing ¢ and ¢’ are the same (it
is a kind of parallelism of transitions). Our definition will preserve the properties of
deterministic nets, such as the fundamental Lemma 2.2 in the following.

Systems of interest in SCT are deterministic, hence we will always assume that the gen-
erators considered here are deterministic. The classes of L-type, G-type, and P-type PN
languages generated by deterministic PN generators are denoted L4, G4, and P,;. We also
define [2] the class of deterministic prefiz closed (DP-closed for short) PN languages as
Lpp={LeL]|LecP,.

We also recall the closure properties for the class G;. Proofs of these properties can be
found in [3].

Definition 2.1. Given a language L C ¥*, its complement language is CL = ¥* \ L.
Given a class of languages A, we denote co-A = {CL | L € A} the class of all the
complements of languages in A.

Proposition 2.1. (a) The class co-G, is included in L. (b) The class co-G4 is not included
in Gq. (c) The class Gq is closed under intersection. (d) The class G4 is not closed under
union.

2.2 Languages and Control

Let L be a language on alphabet . Its prefiz closure is the set of all prefixes of strings
inL: L={0ce€X*|3re€¥*>0r e L} Alanguage L is said to be closed if L = L. If
K, L C ¥* are languages, K is said to be L-closed if KN L =K N L.

Let in the following G' be a DES with alphabet of events Y. G is nonblocking if any
string that belongs to its closed behavior may be completed to a string that belongs to

4



its marked behavior. A deterministic G is nonblocking iff L(G) = L,,(G).

The alphabet of events ¥ is partitioned into two disjoint subsets: Y., the set of controllable
events, and X,, the set of uncontrollable events. A language K C X* is said to be
controllable with respect to L(G) [10] if KX, N L(G) € K. The set of all languages
controllable with respect to L(G) is denoted C(G).

If a language L C X* is not controllable with respect to L(G) we may compute its supremal
controllable sublanguage [10] defined as: LT =sup{K C L | K € C(G)}.

2.3 Known results on PN

We present here some lemmas that will be used in the following.

Lemma 2.1 ([11], Lemma 5.2c). Let (N, My) be a marked Petri net, My, My be mark-
ings of N with My < Ms, and o be a sequence of transitions. Then Mi[o)M] implies
Ms[o) M} and M{ < M.

Lemma 2.2 ([9], P1). Let G = (N,{, My, F) be a deterministic PN generator and
w € L(G). There exists one and only one marking M such that (o) [My[o)M, (o) = w).
Lemma 2.3 (Lemma of Dickson, [16]). Let A C IN* k > 1, be an infinite set of
vectors of length k and B C A the set of minimal vectors for the ordering < defined by:
a <ad (with a,a’ € A) iff a(i) < d'(i) for alli=1,...,k. Then B is finite.

3 Deterministic Languages

In this section we study the relationships among different classes of deterministic PN
languages.

For the classes of A\-free PN languages the following strict inclusions hold: P € G C L
[4]. Hence if we consider as terminal language of a net its marked behavior, we can also
model all other kinds of A-free PN languages as terminal languages.

In the case of deterministic nets, however, it is possible to prove that G; and L; are
incommensurable.

Proposition 3.1. (a) The class Py is strictly included in Gq. (b) The class L4 is not
included in Gq. (c) The class Py is not included in Ly. (d) The class of reqular languages
R is included in Gg N Ly.

Proof:



(a) It is a well known result, since the P-type language of a generator G is also a G-type
language for the same net with set of final markings F' = {0}. The inclusion is strict,
since all languages in P, are prefix closed, while languages in G; need not be.

(b) In [8] it was shown that the language L = {a™b™ | m > 0} (that is clearly in L) is
not a weak PN language.

(c) Consider the language L = {a™b™ | m > n > 0} (that is clearly in Py). We will
prove that L is not in L.

Assume that L is the marked behavior of the generator G = (N, ¢, My, F). Let M;
be the unique marking (by Lemma 2.2) such that My[o;)M; with ((o;) = a'. We
prove that M; # M, if j # j'. In fact, assume M; = M; with j > j'. Since
a’l/ € L, then there exist o such that ((c}) = b/, M;[o})M' and M’ € F. However,
since My = M, My[o;)M" and M' € F, i.e., o'V € L(Q), clearly a contradiction.
This shows that there are infinitely many markings M;. But all these markings must
be final markings, since a’ € L for all . This contradicts the hypothesis that F is
a finite set.

(d) Tt is a well known result, since for any finite state automaton there exists an equiv-
alent (i.e., generating the same languages) state machine Petri net whose initial
marking consists of a single token in the place corresponding to the initial state.
Note, furthermore, that the marked and weak languages of such a net are the same.
We conjecture that the reverse inclusion holds, i.e., we conjecture that R = GgN Ly
[1]. o

A Venn diagram of deterministic PN languages is shown in Figure 2. The shaded area
contains (possibly is identical to) the class of regular languages.

The previous proposition shows that both classes £; and G, are a strict superset of regular
languages, and that they represent incomparable classes of languages. Thus, taking into
account the weak behavior (in addition to the marked behavior) of deterministic nets we
extend the class of control problems that can be modeled by PN.

If our conjecture that R = G;N L, is correct, we may see the marked and weak languages
of Petri nets as two inherently different ways of extending the power of regular languages.
In the case of marked languages, we extend to encompass the languages generated by
deterministic PN generators with an infinite state space but an always finite set of final
markings. In the case of weak languages, we extend to encompass the languages generated
by deterministic PN generators with an infinite state space and an always infinite set of
final markings.



From the point of view of supervisory control, no great changes are required to take into
account weak behaviors. We just need to extend the notion of nonblockingness and of
controlled behavior to weak languages.

A DES G is weakly nonblocking if any string that belongs to its closed behavior may be
completed to a string that belongs to its weak behavior. A deterministic G is weakly
nonblocking iff L(G) = L,(G).

Assume we use Petri nets to represent both a nonmarking supervisor S and a system
G to control. The closed behavior and the controlled behavior of the closed-loop system
have been defined as [10]: L(S/G) = L(G) N L(S), and L,,(S/G) = L,,(G) N L(S/G) =
L, (G)NL(S). We may now define the controlled weak behavior of the closed-loop system
as: L,(S/G) = L,(G)NL(S/G) = L,(G)NL(S). The supervisor S is weakly nonblocking

if L(S/G) = L,(S/G).

4 Supervisors for Weak Languages

The class Lpp of DP-closed PN languages was defined in [2]. DP-closed languages rep-
resent closed-loop terminal behaviors that may be enforced by nonblocking Petri net
supervisors as the next theorem [2] implies.

Theorem 4.1. Let G be a nonblocking PN and let L C L,,(G) be a nonempty language.
There ezists a nonblocking PN supervisor S such that L,,(S/G) = L iff L € Lpp, L is
controllable, and L is L,,(G)—closed.

When the weak behavior of a net is used as terminal behavior we have a similar result.
Theorem 4.2. Let G be a weakly nonblocking PN and let L C L,(G) be a nonempty
language. There exists a weakly nonblocking PN supervisor S such that L,,(S/G) = L iff
L € Lpp, L is controllable, and L is L, (G)— closed.

Proof: The proof is substantially identical that of the previous theorem as given in [2]. ¢

In [2] was also shown that L4 € Lpp, i.e., not all deterministic marked languages represent
closed-loop terminal behaviors that may be enforced by nonblocking Petri net supervisors.
The next theorem proves that all deterministic weak languages are DP-closed.
Theorem 4.3. The class G4 s included in Lpp.

Proof: We will prove a slightly stronger property, namely that given a weakly blocking
deterministic PN generator G = (N, ¢, My, F) there exists a finite procedure to construct

a new deterministic PN generator G’ such that L, (G") = L, (G) and L(G") = L,,(G").



For all transitions ¢ of GG, we define two disjoint sets:
M. ={M e NP | M[t)M', R(N, M') N Cr # B};

ML ={M e NP'| MtyM', R(N, M") N C = B}.

ML is the set of all markings of N from which the firing of ¢ does not lead to a blocking
marking. M is the set of all markings of N from which the firing of ¢ leads to a blocking
marking. Generally, both sets may be infinite.

Let M! C M! be the set of minimal markings of M? for the ordering <. This set is finite
by the Lemma of Dickson (Lemma 2.3), and we will show later that it can be computed
with a finite procedure. Using the monotonicity property of PN, as in Lemma 2.1, it is
easy to prove that for all M, € M’ and for all My € MY, My # M,, i.e., no marking in M},
may be greater or equal to a marking in M%. Let M! = {M,,..., M;}. We may remove
transition ¢ from the net, adding a set of new transitions 7; = {t1, ..., }, such that for all
t; € Ty: L(t;) = L(t), Pre(-,t;) = M;, Post(-,t;) = M;— Pre(-,t)+ Post(-,t). No transition
in T; may fire from a marking M, € MY, since for all t; € T;, My # M; = Pre(-,t;). Hence,
all firings of ¢ leading to a blocking marking are now prevented. However, there exists a
t; € T, firable from any marking M, € M!, since by definition of minimal marking set
there exist a marking M; € Mfz such that M, > M; = Pre(-,t;). Once the construction is
repeated for transitions ¢t € T', we have a new PN generator G’ such that L, (G") = L, (G)
and L(G") = L,(G").

Finally, we will prove that G’ is deterministic. The only nondeterminism may arise from
the fact that we have introduced (at each step) a set of transitions T; with the same label,
and there may exist a reachable marking M, € M! such that there exists two enabled
transitions t;,¢; € T}, with ¢ # j. However, by construction Post(:,t;) — Pre(-,t;) =
Post(-,t;) — Pre(-,t;) hence determinism is preserved. o

The construction presented in the previous theorem is similar to the one presented in [16]
(Construction 4.1). We will use a result of [16] to prove that the set M can effectively
be computed. First we give two definitions.

Definition 4.1. A set M C IN* is a right-closed set if {M € IN* | (3M' € M) [M >
M} C M.

Definition 4.2. A set M C IN* has the property RES if for all M, € 17\75, it 1s decidable
whether {M € IN* | M < M,} N M # .

Using these definitions we can state the next lemma.
Lemma 4.1. Let M C IN* be a right-closed set. Then the set M of minimal markings
of M for the ordering < can be effectively constructed iff M has property RES.

The proof of the lemma is given in [16] by showing an algorithm to compute the set M.

8



Proposition 4.1. Given a net system (N, My), with N = (P, T, Pre, Post), for allt € T
the set Mt = {M e NIl | M[t)M', R(N, M") N Cp # O} is right-closed and has property
RES.

Proof: Using Lemma 2.1 it is immediate to prove that M is right-closed. We prove that
this set has also property RES. Fix a M, € lN(‘fl. We may decide if M, € M! , = {M ¢
NPV MtYM', R(N, M") N C # B} In fact: 1) Clearly it is decidable if M, > Pre(-,t).
2) Let M/ be the marking such that M,[t)M]; by the analysis of the coverability graph
[11] of (N, M) we may decide if R(N, M) N Cpr # () (we need to verify that there exists
a node in the coverability graph labeled by a marking covering some marking in F).

Finally, there exists a finite marking M < M, with M € M?, if and only if M, € M!

e,w?
since Pre(-,t) and the markings in F' are finite vectors. o

From the previous lemma and proposition, it follows that the set M, defined in Theo-
rem 4.3, can be effectively computed as shown in [16].

5 Decidability

In this section we discuss the decidability of some properties of discrete event systems
studying the corresponding languages.

It is well known [12] that the inclusion problem: “Is L; C Ly?”, with Li,Ly € P, is
undecidable. However, the emptiness problem: “Is L = (07", with L € L, is decidable
since it may be reduced to the reachability problem, shown to be decidable [5, 6, 12].

For deterministic PN languages the following lemma holds.
Lemma 5.1. For Ly € £ and Ly € LU Gy it is possible to decide if Ly C Lo.

Proof: Pelz [9] noted that if CLy € L the inclusion problem may be reduced to the
emptiness problem for the language L = Ly N CLy € L. She also proved that co-L; C L.
By Proposition 2.1.a we know that co-G; C L. o

Using this lemma, we now show that three important properties, weakly blockingness,
L-closure, and controllability are decidable for deterministic systems.

Proposition 5.1. It is possible to decide if a deterministic Petri net generator G is weakly
blocking.

Proof: 'We need to prove that it is possible to decide if L(G) = L, (G). Since L(G) 2
L,(G), we just need to show that L(G) C L, (G) is decidable. By Theorem 4.3, L,,(G) €
Ps C G4 and the result follows from Lemma 5.1. o




We cannot use the same reasoning to prove that it is possible to decide if G is blocking.
In fact, in [2] we showed that L,,(G) is not necessarily a PN language.
Proposition 5.2. It is possible to decide if a language K € Lpp is controllable with

respect to a Petri net generator G.

Proof: We need to prove that it is possible to decide if KX, N L(G) € K. Since K €
Lpp, then K € Py C Gy. Also KX, N L(G) € L (L is closed under concatenation and
intersection). Hence the result follows from Lemma 5.1. o

Proposition 5.2 extends a result presented by Sreenivas [13]. Sreenivas showed that the
controllability of a closed free-labeled language K with respect to a free-labeled PN gen-
erator G is decidable. His proof, however, applies to deterministic closed languages as
well.

Note also that Sreenivas has discussed two different notions of controllability [14]. The
strongest notion of controllability requires that we may also test for the inclusion: K C L.
In this case it is necessary that GG be a deterministic generator, as in the next proposition.
Proposition 5.3. It is possible to decide if a language K € Lpp is controllable with
respect to a deterministic Petri net generator G and is contained in L(G).

Proof: Proposition 5.2 implies that controllability is decidable. The containment K C
L(G) is also decidable (by Lemma 5.1) since L(G) € Py C G. o

Our final result regards the decidability of L-closure.
Proposition 5.4. For all L € L, it is possible to decide if a language K € GgU(LsNLpp)
15 L-closed.

Proof: We need to prove that it is possible to decide if KNL = KNL. Since KNL O KNL,
we just need to show that K N L C K is decidable. Since K € G4 U (L4N Lpp) then
KNLe L, and the result follows from Lemma 5.1. o

A remark on the complexity of these decision procedures. Assume we have two nets Gy
and Gy whose closed (or marked or weak) behaviors are the languages L; and L,. As
suggested by the proof of Lemma 5.1, to check whether L; C Ly, we may follow these
steps:

1. construct a PN G}, generating CL (this is possible if G5 is deterministic);
2. construct the net G as the intersection of the nets G, and GY;

3. check whether the language generated by G is empty.

The first step may be carried out with the construction shown in [9], whose complexity
has not been computed. The second step may be done efficiently. We expect the last

10



step to have the same complexity of checking the reachability of a given marking, that is
at best decidable in exponential space [4]. Reutenauer [12] has noted that the proof of
decidability of the reachability problem due to Mayr [6] and Kosaraju [5] does not provide
efficient algorithms for verifying whether a marking is reachable or not.

6 Supremal Controllable Sublanguage for Weak Lan-
guages

Gy is not closed under the supremal controllable sublanguage operator as next example
shows.

Example 6.1. Let G be the PN generator in Figure 3, with X, = {a}, M, = (1000)7,
and set of final markings F' = {(0001)T}. Now consider the net E in Figure 4 with set of
final markings F' = {(0001)7}. The language L, (E) € G4 is not controllable. In Figure 5
we have shown the reachability tree of the two nets; since F refines GG, we have represented
the arcs that belong to the reachability tree of both nets with continuous lines, while the
arcs that only belong to the reachability tree of G have been represented by dotted lines.
L,(F) is not controllable because of the presence of the dotted arcs associated to the
uncontrollable transition a. Applying the T operator, we obtain the supremal controllable
sublanguages L, (FE)" = {a™ba™(bc)*b | m > 0}, that is the marked behavior of the
generator in Figure 6. L,,(E)" & Lpp, as shown in [2], hence L, (E)" & G,.

Note 6.1. Whenever the language L' is not a weak PN language, we may be tempted to
consider the supremal element of the class: C,(L) = {K | K C L, K is controllable, K €
Ga}. Note, however, that this supremal element does not always exist. In fact, the
existence and uniqueness of the supremal controllable sublanguage in [10] follows from
the fact that the class of controllable languages is closed under arbitrary union, while
the class of weak languages is not closed under union (see Proposition 2.1.d). In the
previous example, for instance, for all ¢ € IN the language K; = {a"ba"(bc)*b | n < i} is
in Cy(Ly(F)) and K; C K;y;. As we have seen in the example, K, = L,,(E)" is not in
Ga-

7 Conclusions

We have studied a class of terminal behaviors of place/transition nets, called weak behav-
1078.

The classes of weak and marked languages generated by deterministic nets are incompa-

11



rable. Thus, taking also into account the weak behavior of deterministic nets (in addition

to the marked behavior) we extend the class of control problems that can be modeled by
PN.

Deterministic weak PN languages are DP-closed, i.e., they represent closed-loop terminal
behaviors that may be enforced by nonblocking Petri net supervisors. This is an important
result that does not hold for the class of deterministic marked PN languages. The main
properties of interest in supervisory control, such as controllability and L-closure, are
decidable when this class of languages is considered. It is also decidable whether a system
is weakly blocking. The complexity of these decision procedures has to be further studied.
The class of deterministic weak PN languages is not closed under the supremal controllable
sublanguage operator.

References

[1] A. Giua, F. DiCesare, “Weak Petri Net Languages for Supervisory Control,” Proc.
32nd IEEE Conf. on Decision and Control (San Antonio, Texas), pp. 229-234, De-
cember, 1993.

2] A. Giua, F. DiCesare, “Blocking and Controllability of Petri Nets in Supervisory
Control,” IEEE Trans. on Automatic Control, Vol. 39, No. 4, pp. 818-823, April,
1994.

3] A. Giua, “On the Closure Properties of Deterministic Weak Petri Net Languages,”
Technical Report No. 59, Istituto di Elettrotecnica, University of Cagliari (Italy),
February, 1994.

[4] M. Jantzen, “Language Theory of Petri Nets,” and “Complexity of Place/Transition
Nets,” Advances in Petri Nets 1986, LNCS No. 254-1, pp. 397-412, Springer-Verlag,
1987.

[5] S.R. Kosaraju, “Decidability of Reachability in Vector Addition Systems,” Proc. 1/th
Ann. ACM Symp. on Theory of Computing (San Francisco, California), pp. 267281,
May, 1982.

6] E.W. Mayr, “An Algorithm for the General Petri Net Reachability Problem,” SIAM
J. of Computing, Vol. 13, No. 3, pp. 441-460, August, 1984.

[7] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings IEEE,
Vol. 77, No. 4, pp. 541-580, April, 1989.

12



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Parigot, E. Pelz, “A Logical Formalism for the Study of Finite Behaviour of Petri
Nets,” Advances in Petri Nets 1985, LNCS No. 222, pp. 346-361, Springer-Verlag,
1986.

E. Pelz, “Closure Properties of Deterministic Petri Net Languages,” Proc. STACS
1987, LNCS No. 247, pp. 373-382, Springer-Verlag, 1987.

P.J. Ramadge, W.M. Wonham, “The Control of Discrete Event Systems,” Proceedings
IEFEE, Vol. 77, No. 1, pp. 81-98, January, 1989.

W. Reisig, “Petri Nets: An Introduction,” Springer-Verlag, 1985.

C. Reutenauer, “The Mathematics of Petri Nets,” Masson and Prentice-Hall Intern.,
1990.

R.S. Sreenivas, “A Note on Deciding the Controllability of a Language K with respect
to a Language L,” IEEE Trans. on Automatic Control, Vol. 38, No. 4, pp. 658662,
April, 1993.

R.S. Sreenivas, “On a Weaker Notion of Controllability of a Language K with respect
to a Language L,” IEEFE Trans. on Automatic Control, Vol. 38, No. 9, pp. 1446-1447,
September, 1993.

R.S. Sreenivas, B.H. Krogh, “On Petri Net Models of Infinite State Supervisors,”
IEEFE Trans. on Automatic Control, Vol. 37, No. 2, pp. 274-277, February, 1992.

R. Valk, M. Jantzen, “The Residue of Vector Sets with Applications to Decidability
Problems in Petri Nets,” Acta Informatica, No. 21, pp. 643-674, Springer-Verlag,
1985.

13



S on R _on

) send receive
disconnect_S C

S off Q Q R off

Figure 1: A sender-receiver process.

disconnect_R

- J

Figure 2: Venn diagram of deterministic Petri net languages.

Figure 3: Generator G in Example 6.1.

14



xXO -
b

Y a

b C

Y a

Figure 5: Reachability tree of G and E in Example 6.1.

a a

50O a o a a -
b b b b b
Y

2 La? Sa? Ha? gl

Figure 6: Generator of L, (E)" in Example 6.1.

15



