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Abstract

The primary motivation for this research is to show how Petri nets may be
efficiently used within the framework of Supervisory Control. In particular, the
paper discusses how Integer Programming techniques for Petri net models may be
used to validate supervisors for the control of discrete event systems.

We consider a class of Place/Transition nets, called Elementary Composed State
Machines. The reachability problem for this class can be solved by a modification
of classical incidence matrix analysis. In fact it is possible to derive a set of linear
inequalities that exactly defines the set of reachable markings. Finally, we show
how important properties of discrete event systems, such as the absence of blocking
states or controllability, may be analyzed by Integer Programming techniques.
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1 Introduction

This paper discusses how Integer Programming techniques for Petri net (PN) models may
be used to validate supervisors for the control of discrete event systems. We will con-
sider a class of Place/Transition (P/T) nets called Elementary Composed State Machines
(ECSM). The most interesting property of this class of nets is given by the fact that the
set of reachable markings is an (integer) convex set. The set of linear inequalities that
define the reachability set may be computed, following our approach, from the analysis
of the simple state machine modules that compose the net.

1.1 Motivation

The primary motivation for this research is to show how Petri nets may be efficiently used
within the framework of Supervisory Control, a control theory for discrete event systems
originated by the work of Ramadge and Wonham [21]. Although Supervisory Control
theory is well established, we still lack effective models for supervisory controllers capable
of coping with the state space explosion that is a characteristic of these complex systems.

Holloway and Krogh [13] have used controlled Petri nets (a model introduced in [14])
for the efficient solution of a class of control problems. The main characteristic of the
controlled PN approach to Supervisory Control, is the fact that no transition structure
for a controller is given. The control law is a function of the actual marking of the net,
but needs to be computed at each step.

The approach followed in this paper is different and is based on the design procedure given
by Wonham [22] where a transition structure is computed for a supervisor. Thus a closed-
loop model is constructed and analyzed to validate the desired properties. However while
in [22] the models used are finite state automata, in this paper Place/Transition (P/T)
nets are used. In [9] is discussed how conservative P/T nets constructed by concurrent
composition may be used to design supervisors. The advantages of Petri nets over state
machines are:

e Since the states of a PN are represented by the possible markings and not by the
places, they allow a compact description, i.e., the structure of the net may be
maintained small in size even if the number of the markings grows.

e They allow modular synthesis, i.e., the net can be considered as composed of inter-
related subnets, in the same way as a complex system can be regarded as composed
of interacting subsystems.



This paper shows how some of the PN analysis techniques, namely those based on the
structure of the net, may be used to validate the net for properties of interest without
resorting to the construction of the corresponding reachability tree. The properties of
interest in a Supervisory Control problem are the absence of blocking states and control-
lability.

In classic incidence matrix analysis, the set of reachable markings of a system (N, M),
denoted R(N, M), is approximated by the solutions of the state equation, i.e., by the set
PR(N,My) = {M € N"' | (3¢ € N"™h[M = M, + C - 5]}, where C is the incidence
matrix of the net. In another approach [5], a basis of P-semiflows B is used to approximate
the reachability set, defining the set PR®(N, My) = {M € N'*!'| BT - M = B" - M,}.
The first approximation is generally better, in the sense that R(N, My) C PR(N, M) C
PRP(N, My). However, the computation of PRZ(N, My) does not involve the firing count
vector &, and this feature has additional advantages that we will discuss in the following.

We propose an approach similar to the computation of PRB(N, M) where we use, along
with the equations derived from the P-semiflows, inequalities derived from the basic traps
of the net and we define PRA(N, My) = {M € NI/ | A- M > g} [10] where b is a vector
that depends on My. We show how A and gmay be computed for ECSM nets and we
prove that for this class of nets PRA(N, My) = R(N, My).

There are significant differences between our approach and the analysis based on the state
equation.

Firstly, propositions such as (VM € PR(N, M,)) [My € PR(N,M)] (i.e., My is a home-
state) cannot be verified with a linear algebraic formalism because the set PR(N, M) is
defined in terms of linear equations containing the variables M and &. This proposition
expresses the nonblocking property [21] of a discrete event system modeled by P/T nets.
If we define the set of reachable markings as the solution of a set of inequalities that do
not contain the firing count vector &, we will be able to write simple Integer Programming
problems to study nonblocking properties of systems [8].

Secondly, for the class of ECSM nets, the state equation gives only necessary but not
sufficient conditions for reachability, since it may contain spurious solutions (solutions
which do not correspond to reachable markings), i.e., in general PR(N, My) D R(N, M,).
However, for the same class of nets there exists a matrix A such that PRA(N, M) =
R(N, My), i.e., the reachability set of an ECSM may be exactly described by a set of
linear inequalities, without spurious solutions.

Thirdly, note that since the domain PR*(N, M) represents the integer solutions of a set
of linear inequalities, it is a convex set of integers. Thus, there exists a matrix A such
that PRA(N, My) = R(N, My) only if the reachability set of system (N, M) is a convex



set. If a net is such that the state equation does not contain spurious solutions, this does
not imply that its reachability set is a convex set. As an example, it has been proved that
the state equation of acyclic nets does not contain spurious solutions [15]. In [10] we gave
an example of a net that is acyclic but does not have a convex reachability set.

In our approach determining if a marking is reachable requires the use of Integer Pro-
gramming. Integer Programming problems may not be solved, in general, in polynomial
time. However, it is possible to relax the constraint that the solution be integer to obtain
a sufficient condition for the validation of the net. Thus we may use Linear Programming
techniques to prove that a given undesirable marking is not reachable.

1.2 Related Work

Incidence matrix and related analysis techniques have been used by several authors to
validate properties of Place/Transition nets.

Colom [5] has developed a methodology for the verification of assertions on P/T nets in
terms of markings and firing count vectors. This approach is extremely general, i.e., can
be applied to any P/T net, but unfortunately can only guarantee necessary or sufficient
conditions. There exist assertions, such as determining if a marking is a home state, for
which neither a necessary nor a sufficient condition may be given.

In the work of Colom [5] other approaches to describe the set of reachable markings are
also discussed. Berthomieu [3] uses the set of linear equations given by the P-semiflows
to represent the space of reachable markings. In this case, only properties that depend
on the markings may be proved. However, the author also shows that it is possible to
prove some properties that depend on the firing count vector by adding new places in
the net, whose marking indicates the number of times a given transition has fired. (The
computation of the firing bounds, introduced in Section 4.2 of this paper, has the same
purpose.) Johnen [17] uses an hybrid approach, based partly on incidence matrix analysis
and partly on the analysis of the state space, to verify that a given marking is a home
state. (Note that the problem of determining a home state is essentially equivalent to that
of determining if a supervisor is blocking, that is discussed in Section 5.1 of this paper.)

Ichikawa and Hiraishi have studied under which conditions a firing count vector &, sat-
isfying the state equation of a Petri net, yields a firing sequence. In [15], as reported
by Murata [20], they proved that in acyclic nets, & always yields a firing sequence, i.e.,
for this class of nets R(N, My) = PR(N, M,). In [14, 20] other classes of nets, such as
trap-circuit nets, trap-containing-circuit nets, etc., are considered. For these classes, there
exists necessary and sufficient conditions, based on the analysis of the firing subnet, to



determine if & gives a firing sequence.

The composition of nets by common transitions has also been extensively investigated
and is discussed by Berthelot [2]. Best and Ferndndez [4] define S-net a net in which
each transition has at most one input place and one output place. An S-decomposition is
a partition of a net into S-net components. Hack [12] has defined state machine decom-
posable net a net constructed by composition of strongly connected state machines; the
liveness properties for this class of nets are discussed by Jantzen and Valk [16]. The class
of nets obtained by composition of state machine modules has been named Superposed
Automata Nets by De Cindio, et al. [6].

Avrunin et al. [1] have used a formalism similar to Petri net incidence matrix analysis for
verifying properties of concurrent systems described as finite state automata.

Li and Wonham [18, 19] have discussed the use of vector addition systems, that are
equivalent to Petri nets, as discrete event models. There several differences between
their approach and ours. Firstly, in Li and Wonham’s approach Integer Programming is
used to compute the optimal control law and only the open loop system is modeled as a
vector addition system. In this paper, instead, we first construct a candidate monolithic
supervisor by concurrent composition and then use Integer Programming to validate it.
Secondly, while in [18] the set PR(N, My) is used to represent the reachability set, we
use the set PRA(N, My). This was done to study nonblocking properties that cannot
be studied with the state equation. Finally, there are different restrictions in the two
approaches. In [18] the uncontrollable transitions of the system must not form cycles (so
that the state equation analysis gives necessary and sufficient conditions for reachability
as shown in [15]); furthermore, the class of control specifications is restricted to mutual
exclusion constraints', that limit the weighted sum of tokens contained in the places of a
Petri net. In this paper the restriction is that the monolithic supervisor be an ECSM.

1.3 The Model

The model considered in this paper is based on state machine Place/Transition nets with
multiple tokens. State machines may model choice, since a place may have more that one
outgoing arc, but strongly limit the possibility of modeling concurrency, since the only
concurrent behavior is given by the presence of multiple tokens in the net. To describe con-
current, systems, the model is extended by composing the state machine modules through
concurrent composition, an operator that requires the merging of common transitions.

IThis class of specifications for Petri nets has also been considered by [11, 13] in the framework of
Supervisory Control.



In this approach it is necessary to restrict the type of compositions considered, in order
to guarantee some important properties. The final model, called Elementary Composed
State Machines (ECSM nets) [10], can model both choice and concurrent behavior, and
at the same time has the property that the space of reachable markings is a linear integer
convex set, i.e., it is given by the integer solutions of a set of linear inequalities.

In particular there is an algorithm to determine this set of inequalities that defines the
set, of reachable markings. The inequalities are derived from the computation of the basic
traps of the state machine modules and from the computation of the firing bounds of the
merged transitions.

The paper is structured in six sections. In Section 2 is given the basic notation on Petri
nets. Section 3 deals with state machines and shows how it is possible to derive the set of
linear inequalities that defines the space of reachable markings. In Section 4 is defined the
class of Elementary Composed State Machine nets and the results derived in Section 3
are extended to this class. Section 5 shows how this approach may be applied to the
validation of supervisors for the control of discrete event systems. A discussion of the
results is presented in Section 6.

2 Background

The basic notation on Petri nets is introduced in this section, following [4, 20].

2.1 Basic Terminology

A Place/Transition net (P/T net) is a structure N = (P,T,1,0) where: P is a set of
places represented by circles, || P ||= n; T is a set of transitions represented by bars,
| T ||=m; I:PxT — IN is the input function that specifies the arcs directed from
places to transitions; O : PXT — IN is the output function that specifies the arcs directed
from transitions to places.

The preset and postset of a transition t are respectively: *t = {p € P | I(p,t) > 0}
and t* = {p € P | O(p,t) > 0}. The preset and postset of a place p are respectively:
‘p={teT|O(p,t) >0} and p*={t €T | I(p,t) > 0}.

A marking is a vector M : P — IN that assigns to each place of a P/T net a non
negative integer number of tokens, represented by black dots. M(p) indicates the number
of tokens assigned by marking M to place p. A marked net (N, M) is a net N with an
initial marking M.



A transition ¢ € T is enabled by a marking M if (Vp € P) [M(p) > I(p,t)]. The firing of
transition ¢ generates a new marking M’ with: M'(p) = M(p) + O(p,t) — I(p,t). When
a marking M’ can be reached from marking M by executing a (possibly empty) firing
sequence of transitions o = ty...t; we write M [0) M'. The set of markings reachable
on a net N from a marking M is called reachability set of N and M and is denoted as

R(N, M).

The incidence matriz of a net N = (P,T,1,0) is a (n x m) matrix of integers defined
as: C ={c¢; | cij = O(pi, t;) — I(pi, t;)}. If marking M’ is reachable from marking M by
firing a sequence of transitions o, the following state equation is satisfied: M' = M +C'-&,
where & : T — IN is a vector of non-negative integers, called the firing count vector. &(t)
represents the number of times transition ¢ has fired during the execution of o.

A trap is a set of places 7 C P such that: UpeTp' C UpeT *p. A trap is minimal if it is
not the superset of any other trap. A trap is basic if it is not the disjoint union of other
traps.

A P-semiflow is a vector Y : P — IN such that Y > 0 and Y7 -C =0 (7 is the transpose
operator). The support of Yis: || Y ||[={p € P | Y(p) > 0}. The support of a P-semiflow
is both a trap and a siphon.

The reversal of a net N = (P,T,I,0) is the net N® = (P,T,0,I), i.e., a new net where
the direction of all arcs of N is reversed.

2.2 State Machines and Simple Paths

A state machine is a P/T net such that each transition has exactly one input arc and one
output arc. A state machine is connected if the underlying graph (i.e., the graph having
as nodes places and transitions, and as edges the arcs) is connected; strongly connected if
for any two nodes there exists a directed path from each one to the other; acyclic if no
directed path forms a cycle.

A simple path of a net N is a sequence of transitions and places 6 = topity ... p.t, con-
taining no place or transition more than once and such that: (Vi =1,...,7) [I[(p;,t;) =
Opirtiz1) = LA I(pit) = 0if ¢ # t; AO(pi,t) = 0 if ¢ # t;4 AI(p,t;) = 0 if
p # pi NO(p,t;i_1) = 0 if p # p;]. Note that a single transition may be considered
as a simple path with no places.

Given a net N, and k simple paths 6; =t,o...t;,, (i=1,...,k), the k paths are looped
in Nif: (Ip € P) (Vi =1,....k) I(p,tig) = O(p,tip,) = LA (VP # p) I(p,tip) =
O(p,tiy;,) = 0]. In simple words, the k& paths are looped if the input (and output)



transitions of all paths input from (and output to) the same place p with a single arc.

2.3 Composition, Projection and Modularity

Definition 2.1. Given two nets Ny = (P, T1,11,01) and Ny = (P3, Ty, I5,05), with
initial markings My, and Moo, assume that © = {0y,...,0} is a set of simple paths
present in both nets. We assume that: Py P\ {p | (30 € O)[p € 0]} = 0, and
TiNTL\{t | (30 € ©O)[t € 0]} = 0. We also assume that (Vp € PiNPy) [My1(p) = Mo2(p)].
The concurrent composition of Ny and Ny is the net N = (P, T, I, O) with initial marking
My where: P =P, UP,, T =T, UT,, I(p,t) = Ii(p,t) if (Fi € {1,2}) [p € P, At € T}
else I(p,t) = 0; O(p,t) = O;(p,t) if (Fi € {1,2}) [p € PNt € T;] else O(p,t) = 0;
My(p) = My(p) if p € P, else My(p) = Moo(p). The composed net N is denoted
N = N; || Ns.

Definition 2.2. Let N be a composed net N = Ny || ... || N, and let M be a marking,
a be a firing count vector, and o a firing sequence defined on it. The projection of M
over N;, denoted P;(M), is the vector obtained from M by removing all the components
associated to places not present in N;. The projection of & over N;, denoted P;(d), is
the vector obtained by & removing all the components associated to transitions not present
in N;. The projection of o over N;, denoted P;(c), is the firing sequence obtained by o
removing all the transitions not present in N;.

From this definition, it follows that while N generates the string o sequencing from M,
to M, N; generates P;(0) sequencing from P; (M) to P;(M).

3 Defining the Set of Reachable Markings on State
Machines

In this section we discuss how the reachability set of a state machine may be described
by a set of equations that do not involve the firing count vector.

State machines represent a very simple PN model that has been extensively investigated.
For instance, Murata [20] reports several results on the liveness and reachability char-
acterization of this class of nets. However, the focus is generally on live state machines
(i.e., strongly connected state machines). In the framework of Supervisory Control, the
requirement that the model be live is not important, while it is required that the sys-
tem be non-blocking, i.e., that from any reachable marking it may be possible to reach
a final marking. This motivates the attention given in this paper to state machines not



necessarily live.

Theorem 3.1. Let (N, My) be a marked state machine. The set of reachable markings
R(N, My) is an integer linear convex set, i.e., can be defined as the integer solutions of a
set of linear inequalities.

Proof: Follows from the constructive Algorithm 3.1 presented in the following. o

To determine the set of linear inequalities that the set of reachable markings of a state
machine must satisfy, the following algorithm may be used. Note first that for a connected
(not necessarily strongly connected) state machine a basis of P-semiflows contains only
one vector whose support contains all the places.

Algorithm 3.1. Let (N, M) be a state machine, and 7* a trap of N. Let d@; : P x {0,1}
be such that @;(p) = 1 if p € T* else d@;(p) = 0.

1. Consider all basic traps of the net along with the support of the P-semiflow 7.
2. For T° write the equality: 17 - M = 17 - Mj.

3. For each trap T* write the inequality: al - M > al - M,.

4. If @' - My = 0, the inequality for 7 (i # 0) can be removed.

5. 1T CT7(j #0)and @ - My = @, - My, the inequality for 77 can be removed,
since it is implied by the inequality for 7.

6. The remaining set of inequalities plus the inequalities: M > 0, gives the set of
markings reachable from the initial marking. These inequalities will be indicated as

A(N).

The semiflow equation may be rewritten as two inequalities: 17 - M > 1T . M, and
—1T .M > —17 . M,. Hence, according to this algorithm the reachability set of a state
machine (N, M) can be represent by a set PRA(N, My) = {M € NI | A- M > b},
where b= A - M.

Here is an example of application for the algorithm.
Example 3.1. Consider the net in Figure 1. Here the support of the P-semiflow and the



basic traps are:
7-0 = {p17p27p37p47p57p6};

= {p2};
T = {ps};
T = {ps};

T = {p1,p2,5};

T = {p3,ps, 16 };

T° = {ps, P4, s, 06 };
T = {p1,p2,p3,p5,p6}-

Note, e.qg., that the trap {ps,ps} is not considered, since it is given by the union of the
disjoint sets T' and T?. The corresponding set of linear inequalities is:

M (p1) + M(pz) + M(ps) + M(ps) + M(ps) + M(ps) = 4;
M(p2) > 0;

M (ps) > 0;

M(ps) > 1;

M(p1) + M(p2) + M(ps) > 2;

M (p3) + M(ps) + M(ps) > 2;

M(p3) + M(psa) + M(ps) + M(ps) > 2;

M(p1) + M(pa) + M(ps) + M(ps) + M(ps) > 4.

The second and third inequality will be removed in step 4 of the algorithm; the the seventh
inequality will be removed in step 5 as it is implied by the sixth one. Finally the set of
markings reachable from the initial marking is given by:

M(p1) + M(p2) + M(ps) + M(ps) + M(ps) + M(ps) = 4;
M(ps) > 1;

M (p1) + M(p2) + M(ps) > 2;

M(p3) + M(ps) + M(ps) > 2;

M(py) + M(p2) + M(ps) + M(ps) + M(ps) = 4;

M >0

Finally, it is necessary to discuss the correctness of the algorithm, i.e., the fact that the
set of markings that satisfy the linear inequalities required by Algorithm 3.1 is exactly the
reachability set. The idea is to show that a description of a state machine in term of traps
captures the behavior of the net. This will be proven through the following propositions.
Proposition 3.1. Let T be a trap of a state machine. The number of tokens in T is non
decreasing.

Proof: Trivially follows from the definition of state machine. o

10



Proposition 3.2. Let T be a minimal trap of a state machine, i.e., it is not a superset
of any other trap. Then a token in T can move to any place in T .

Proof: For state machines, it is sufficient to prove that all places in 7 are strongly
connected, i.e., there is a path from any place to all others. This is trivially true if T
consist of a single place. Assume 7 consists of k£ places. Consider a place p; € 7. There
must be a transition from p; to some place py, otherwise {p;} is a trap; also py € T.
Consider {p;,p>}. With the same reasoning it is possible to infer that there must be a
transition leading from {p;,po} to a place p3 € T. This reasoning can be carried out
until {p1,pq,...px} = T is reached. Hence p; is connected to all places in 7. Since this
reasoning can be applied to any place p; € T, the proof is complete. o
Proposition 3.3. Let T be a trap, and let T' = {UT" | T* C T,T" is a trap }. Then a
token in T \ T can move to any place in T .

Proof: Similar to the proof of Proposition 3.2. o

The soundness of the algorithm is then proved by the following reasoning. The marking
of the trap is strictly non decreasing (Proposition 3.1). The tokens initially present in
a minimal trap may freely move to any place of the trap (Proposition 3.2). The token
initially present in a trap that is not minimal are free to move to any place of the trap
provided they also satisfy the constraints enforced by the traps contained in the non
minimal trap (Proposition 3.3). These are the only constraints that the set of reachable
markings must satisfy and these constraints are captured by Algorithm 3.1.

We point out that for a general Petri net the number of basic traps may be exponential
in the number of places. However, the next proposition holds for state machines.
Proposition 3.4. The number of basic traps in a state machine is at most equal to the
number of places.

Proof: Consider a state machine with n places and no transitions; clearly there are n
basic traps each one containing a single place. Now assume we have a state machine with
its set of basic traps, and assume we add a new transition from place p to place p’. Then
all the basic traps that do not contain p or that contain p' are still basic traps. All the
basic traps that contain p and do not contain p' will not be traps in the new net and
we need to add to each of them the minimal trap containing p’ (there is only one such
minimal trap) to obtain new basic traps. After the new traps are computed, it may well
be the case that two of them are identical, that is the number of basic traps may only
decrease when we add a transition. Since any state machine may be obtained by this
construction, the result follows. o

The construction we used in the proof of Proposition 3.4 may be used to compute the set
of basic traps.

11



4 Composition of State Machines Modules

The section discusses how the properties studied in Section 3 for state machines are
preserved by concurrent composition.

4.1 Elementary Composed State Machines

Let N =N || ... || N, be a composed net and let & be the firing count vector solution
off M = My+ C - &, where C is the incidence matrix of N. Assume that on each
module N; (Vi = 1,...,n), the firing count vector P;(&) yields a firable sequence o, i.e.,

Pi(My) [0;) Pi(M), (i=1,...,n). This does not imply, however, that for the composed
net (Jo) [My [o) M].

There exist particular compositions, however, such that the reachability of a marking of
the overall net may be determined simply by the analysis of the modules that compose it.
These compositions, called elementary, are used to define the following class of P/T nets.
Definition 4.1. Elementary Composed State Machine (ECSM) nets are the minimal
class of P/T nets that is a superset of the class of state machines and is closed under the
following compositions:

1. Composition of two nets sharing a single transition (or a simple path).

2. Composition of two nets through a set Ty of k transitions (or a set © of k simple
paths) when the transitions (or simple paths) are looped in one of the nets.

Although the two compositions we used to define ECSM may appear exceedingly simple,
they permit the modular synthesis of realistic systems. As an example, the first kind of
compositions may be used to construct the model of several systems acyclically connected
through buffers or channels. The second kind of composition may be used to represent
shared resources.

An important property of ECSM is given by the following theorem, proven in [10].
Theorem 4.1. Let (N, My) be a marked ECSM net where N = Ny || --- || N, and
N;, (i=1,...n), is a state machine. A firing count vector for N yields a firable sequence
if and only if on each module N; the projection of the firing count vector yields a firable
sequence.

12



4.2 Defining the Set of Reachable Markings on ECSM

This subsection will show how it is possible to derive the set of linear inequalities that
defines the set of reachable markings in ECSM nets. First, the case of two state machines,
composed through a single transition or a set of looped transitions, is discussed. Then
the results will be extended to the composition of ECSM through simple paths.
Definition 4.2. Let (N, My) be a marked state machine where My assigns all the tokens
to a place py, and let M, be a marking that assigns a single token to place p and no token
elsewhere. Given a transition t, it is possible to define the following two sets of places
on the net: P, = {p € P | (Jo) [d(t) > 0, M,, [0) My)}; P, ={p € P | (Jo) [F(t) =
0, My, [0) M)},

Similarly, given a set of transitions Ty, it is possible to define the following two sets of
places on the net: Pr, = {p € P | (do) (3t € T}) [¢(t) > 0, My, [0) M,|}; Pr. ={p€ P |
(Fo) (Vt € T;) [(t) =0, My, [o) Myl}.

In simple words, the set P, contains the places that may be marked firing t at least once
by a token contained in the initial place py, while the set P} contains the places than may
be marked without firing t by a token contained in the initial place py. Note that same
places may belong to P, N P; and that the places in P, \ P; must be marked firing t at
least once by a token contained in the initial place py.

Proposition 4.1. (Firing Bounds) Let (N, My) be a marked state machine where M,
assigns all the tokens to a place py. Now given a marking M € R(N, M), the number
of times t has fired to reach M may vary and can assume any integer value in the range
[Pmin (M, 1), pmax (M, t)], where:

pePt\P?

( ZM(p) if there is no cycle containing t

PEP:

0 if there is a cycle containing t

Pmax(M, 1) = 4 and Y p M(p) =0
pEP; p)=

00 if there is a cycle containing t

\ and > cp, M(p) >0

We call pmin(M,t) and pmax(M,t) the firing bounds of ¢ for marking M.

Proof: For each token in a place of P, \ P; transition ¢ must have fired at least once,
while for each token in a place of P, transition ¢ may have fired once if there is no cycle
containing ¢ or an arbitrary large number of times if there is a cycle containing ¢. o
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Note that puin(M,t) < >° p Mo(p). Also, when there is a cycle containing ¢ a good
approximated bound — that will be used in the following — for pyax(M,t) is pl .. (M, t) =
h) pep, M(P) < pmax(M, t), where h is a sufficiently large integer.

Proposition 4.1 is restricted to the case of an initial marking that assigns all tokens to
a single place. This requirement is fair, in the sense that in the application cases of
interest here, such as manufacturing systems, etc., the presence of multiple tokens in a
state machine module indicates a multiplicity of identical resources, such as buffer spaces
or identical machines. Hence the multiple tokens should initially be assigned to the same
place. A more detailed discussion on this point is presented in [8].

When two nets N; (i = 1,2) are composed through a single transition ¢, the marking
of the overall net will be a subset of the cartesian product of the markings of the two
modules. Given a reachable marking M; on the net N;, the marking M = [M] M]]"
will be reachable on the composed net only if (on ECSM nets “if and only if” because of
Theorem 4.1) there is a sequence o; reaching M; on the net NV; and: &(t) = &2(¢). This
requires that:

[prlnin(Mlv t)a prlnax(Mlv t)] ﬂ[p?nin(M% t)a p?nax(MQv t)] # 0

where the exponent i in p; (M;, t) and p’ . (M;,t) denotes that the firing bound is
computed on the net N,. Clearly the two intervals will have a nonempty intersection if
and only if: pl. (M, t) < p?, (M, t), and p2. (Mo, t) < pl. (M, t). Thus we have the
following theorem whose proof is given in [10].

Theorem 4.2. When two state machines Ny and Ny are composed through a single tran-
sitton t the set of markings reachable from the initial marking My for the composed net
N = Ny || Ny is given by the following set of linear inequalities A(N):

A(N)

A(No)

> M(p)<hy Y Ml(p)

pEP}\P} peP?
> M(p)<hy Y M(p)
pEPP\P? peP}

where: A(N;) (Vi = 1,2), is the set of inequalities for the net N; (as derived with Algo-
rithm 3.1); the set of places P} and P} belongs to N; (Vi =1,2), and are determined as
in Definition 4.2; hy = 1 (hy = 1), if there is no cycle containing t in Ny (N3), else hy
(h2) is equal to the number of tokens contained in the net Ny (N7). As noted before, we
are using an approzimated linear bound for p' , (M;,t).
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Example 4.1. Consider the composed system of Figure 2. The set of places of interest

are: P = {ps}; P! = {p1}; P? = {ps, 05, p6,p7; P> = {p3,ps,p7}. Also there is no cycle
containing t tn N1, hence hy = 1, while, since there is a cycle containing t in Ny, hy = 3.
The linear inequalities that define the space of reachable markings on Ny 1s:

M(p1) + M(p2) =3

M(p1), M(p2) >0

and on Ny:
M (ps) + M(ps) + M(ps) + M(ps) + M (p7) = 2

M(p3), M(p4), M(p5), M(p6)7 M(p7) Z 0

Hence the set of reachable markings on the composed system is defined by:
M(p1) + M(p2) =3

M (p3) + M(pa) + M(ps) + M(ps) + M(p7) = 2
M (p2) < 3(M(pa) + M(ps) + M(ps) + M(p7))
M(ps) + M(ps) < M(p2)

M>0

Note 4.1. The inequalities derived in Theorem 4.2 may not always be necessary. Suppose
that on one of the modules, say Ny, one of the following conditions holds:

1. P'\ P! = (). Hence:
0= Y M(p)<hy ) M)

PEP\P} PEP?
15 always verified.

2. py € P!. Here p}, is the place initially marked in Ny. In this case there is a cycle
containing t and p}, and t may fire infinitely often in Ny for each reachable marking.

Hence:
> M(p) <hy Y Mp)
pEPtz\sz peEP}

15 always verified.

Once the redundant inequalities in Theorem 4.2 are removed, as suggested by the previous
note, the remaining inequalities may be rewritten in the form A-M > b. The same applies
to the following Theorems 4.3, 4.4 and 4.5.
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Let us consider the composition of two state machines N; and N, through a set T, of
transitions that are all looped in one of the nets, say N,. Given the special structure of
Ns, any reachable marking M, of Ny, may be reached without firing any transition in 7.
Hence it is never possible, as suggested by the previous note, that a firing sequence on
N> may require the firing of more transitions in 7T than a firing sequence on N;. Also,
if a marking M. of Ny may be reached by firing a transition in 7T}, then any sequence of
transitions in Ty may also be fired. Hence the only constraint imposed by the composition
of the two modules is that for any marking M = [M] MJ]", if reaching M, requires the
firing of one or more transition in T, M, may be also be reached by firing a transition in
T,. Thus the next theorem holds (see also [10]).

Theorem 4.3. When two state machines N1 and Ny are composed through a set Ty of
transitions and these transitions are looped in one of the nets, say Na, the set of markings
reachable from the initial marking My for the composed net N = Ny || Ny is given by the
following set of linear inequalities A(N):

A(N1)
A(N2)
Y Mp)<h > Mp)
PEP], \P%S PEP,

where: A(N;) (Vi = 1,2), is the set of inequalities for the net N; (as derived with Algo-
rithm 3.1); the sets of places P}, and P% (Vi = 1,2), belongs to N;, and are determined
as in Definition 4.2; h is equal to the number of tokens contained in Nj.

The following two theorems generalize Theorem 4.2 and Theorem 4.3 to the composition
of two ECSM (not only state machines) along simple paths (not only single transitions).
These theorems will be given without proof.

When two ECSM nets are composed along a simple path it is necessary to consider the
possibility that the path may belong to more than one state machine module on each
net. Also the places determined in Definition 4.2 are computed with respect to the first
transition of the path.

Theorem 4.4. Let Ny and Ny be two ECSM nets, i.e., Ny = N;y || ... || Nin, (i =1,2),
where N;; is a state machine. Assume Ny and Ny are to be composed through a simple
path of transitions 0 = topity .. .pyt, that belongs to modules Ny 4 (q € J1) and to modules
Ny (s < Jy). The set of markings reachable from the initial marking My for the composed
net N = Ny | Ny is given by the following set of linear inequalities A(N):

16



Y Mp)<hi® Y Mp) (g€ i, s€ D)

PEPT\P, peP.®
S Mp) <Y M(p) (¢€ i, s€ D)
PEP\P* PEP’

where: A(N;) is the set of inequalities for the net Nj; the sets of places P,f’j and P;’j
(Vi = 1,2; Yj € J;), belongs to N, ;, and are determined as in Definition 4.2; h{® =1
(h3® = 1) if there not exists a cycle containing the path 6 in the net Ny, (Noys), else h{*
(h3?) is equal to the number of tokens contained in the net Nog (Ni,).

When two ECSM nets are composed along k£ simple paths, the paths are looped in one of
the net, hence they belong to only one state machine module of the looped net. However,
it is necessary to consider the possibility that each path may belong to more than one
state machine module on the net that is not looped.

Theorem 4.5. Let Ny and Ny be two ECSM nets, i.e., Ny = N;y || ... || Nin, (i =1,2),
where N; ; is a state machine. Assume Ny and Ny are to be composed through a k simple
path of transitions 0; = thp|tl .. .t{j (j=1,...,k), and let Ty = {t},... tk}. Assume
furthermore that path 0; belongs to modules Ny, (¢ € J;) and that all paths are looped
in the module Noy. The set of markings reachable from the initial marking M, for the
composed net N = Nj || Ny is given by the following set of linear inequalities A(N):

A(Ny)
A(N2)
> M(p) <h> M(p)

where: A(N;) is the set of inequalities for the net Nj;
k
#-U U ()
j=1 geJ;
1s the set of places in Ny that may be marked only by firing a transition t € Ty;
py=Ppr

s the set of places in Ny that may be marked firing a transition t € Ty; h is equal to the
sum of the tokens contained in the nets N1, (¢ € J;) (j=1,...,k).

We conclude this section pointing out that when state machines modules are composed
to form an ECSM, the number of inequalities of that defines the reachability set grows, in
the worst case, more than linearly. In the case of Theorem 4.4 we have to add 2 x |.J;| x |.J5|
inequalities.
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5 Supervisor Validation

In this section the results developed so far are applied to the validation of supervisors
for the control of discrete event systems (DES). We briefly review the basic notions of
Supervisory Control theory that have some interest in the present exposition. For more
details see [21].

In the Supervisory Control theory, originated by the work of Ramadge and Wonham [21],
a discrete event system is simply a generator of a formal language, defined on an alphabet
Y. Two languages are associated with a DES: the closed behavior L(= L C X*) is a
prefix-closed language that represents the possible evolutions of the system?; the marked
behavior L,,(C L), that represents the evolutions corresponding to the completion of
certain tasks.

Petri nets may be used as language generators in this framework. Given a marked net
(N, My), the alphabet X is represented by the set of transitions 7. The closed behavior is
given by the language L(N, M) = {o € T* | (IM) [M, [0) M]}. Given a set of final mark-
ings M, the marked behavior is defined as L,,(N, My) = {o | (3M € My) [M, [0) M]}.

A DES is said to be non-blocking when L,, = L, i.e., any string ¢ € L can be completed
into a string o7 € L,,.

The transitions in 7" are partitioned into two disjoint subsets: the set T, of controllable
transitions (that can be disabled if desired), and the set T, of uncontrollable transitions
(that cannot be disabled by an external agent). Let us assume, now, that the behavior
of the system is to be restricted within the limits of a specification language by choosing
controllable transitions to disable, i.e., to prevent from firing.

The agent which specifies which events are to be enabled and disabled when the system
is in a given state, is called a supervisor. Standard techniques may be used to design a
supervisor for a given control problem. Consider m discrete event systems, represented
by the state machines Ny,..., N,,, working concurrently. It is generally assumed that
the set of transitions of all these systems are disjoint. The specifications to be enforced
on the concurrent behavior of these systems are represented by n different state machines
H,, ..., H,, whose transitions are a subset of all the transitions of the N’s. The procedure
for determining a monolithic supervisor [9, 22] requires the construction, by concurrent
composition, of the net: £ = Ny || ... || Ny || H1 || ... || Hn. Note that there exists a set
of final markings associated to the N’s and H’s. The set of final markings for £ will be
given by the cartesian product of the final markings of the modules, in the same way in
which the initial marking for a composed net is computed in Definition 2.1.

2Here the bar represents the prefix-closure operator, i.e., L is the set of all prefixes of strings in L.
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FE and the nets NV; (i = 1,...,n) will run in parallel, i.e., whenever a transition fires on one
of the nets N, it is also fired in E. Furthermore, the transitions enabled in E at a given
marking represent the transitions that are allowed to fire in the the nets N;, while all other
transitions are disabled. The net E will represent a proper supervisor, if the following
two properties are ensured. Trimness: the net E does not admit blocking markings, i.e.,
reachable markings from which a final marking cannot not be reached. Controllability:
it is not possible to reach a marking from which an uncontrollable transition, belonging
to the net NV;, is enabled in N; but is not enabled in E. If E enjoys these properties
it is called a monolithic supervisor, being at the same time a proper supervisor and a
closed-loop model of the system under control.

In the following subsection it is discussed how these properties may be verified by Integer
Programming techniques in the case that E is an ECSM net. Clearly these restrictions
are heavily limiting the class of control problems that can be solved by our approach.
However, it is possible to check for these properties in more efficient ways than by brute
force state space search. Additionally, as will be also shown, it may be the case that the
model may be validated by simple Linear Programming.

5.1 Blocking

Let (N, M) be a marked net, and M/ be a final marking associated to it. For the sake
of simplicity assume that My is the only final marking of the net. The net N will be
blocking iff

(3M) [M € R(N, My), My & R(N, M)]

Now the set R(N, M) of a ECSM net can be given as a convex linear set, as shown in
Section 4. Similarly the coreachability set of My, i.e., the set {M | M; € R(N, M)}, can
be given in this form. In fact, given a marking M; of N = (P, T, I,O), the coreachability
set of M is identical to the reachability set from M; in the reversed net N® = (P, T, 0, I),
that is {M | M; € R(N, M)} = R(N® M;).Thus, it is possible to check for the existence
of blocking markings as follows.

Proposition 5.1. Let (N, M) be a marked ECSM net and let My be the final marking
associated to it. Assume the reachability set of My is given by the set of inequalities:
Ag- M > Eg, and the coreachability set of My is given by the inequalities: Ay - M > l;f,

where:
T
Af1

Ap =

T
ay k

Then there exist a blocking marking M if and only if one or more of the following Con-
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straint Sets admit an integer feasible solution (Vi =1,...,k):

AO'MZBO CSL

Proof: M is a blocking marking <= M € R(N MU) A Mf ¢ R(N,M) <= [Ay- M >
[_{0] A[Ap - M 2 b) = [Ao - M 2 bo] AV @ - M < bp(0)] <= (3)[(4 - M >
bo) A (@, - M < bp(i) = 1)). o

Note that each constraint afl M < bf( ) has been rewritten in the equivalent form
af,z' M < bf( ) —

It is possible to relax the constraint that the vector M be integer and obtain a sufficient
condition for the validation of the net. In fact, if no real vector M satisfies the previous
systems of inequalities no blocking marking may be reached.

5.2 Controllability

Consider the net E constructed by concurrent composition of all the systems and speci-
fication modules. Let ¢, € T,, be an uncontrollable transition and assume that ¢, belongs
to the system net N;. (By the hypothesis that all the systems have disjoint transitions,
a transition may belong to only one net NN, although it may belong to more than one
specification net H.) Let the preset of ¢, be: *t, = {p), ... ,pl,;q}, where pj is a place of N;
and p/ (j > 0) is a place of some specification net H.

E is not controllable if and only if it is possible to reach a marking M such that an
uncontrollable transition ¢, is enabled by P;(M) in NV;, but it is not enabled by M in E.
In other words, E' is not controllable iff

(3, € T,) (30M) [M € R(E, Mo) A M) > 1A (\/ M(p3) < 0)

j=1

Proposition 5.2. Assume the reachability set of the marked ECSM net (E, My) is given
by the set of inequalities: Ag - M > 50. Then E will not be controllable if and only if
one or more of following Constraint Sets admit an integer feasible solution Vt, € T, and
Vpj € *ty (j > 0)

Ay - M > by CS2,,

M(py) > 1

M(pj) <0
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Proof: E is not controllable <= (3t, € T,) (3M) [M € R(E,My) A M(p)) > 1 A
(Vje M(p) < 0)] <= (3, € T,) 3M) (3j) [Ao- M > by A M(p)) > 1A M(pl) < 0. o

If the constraint that M be integer is relaxed, we may use Linear Programming to derive
a sufficient condition for E to be controllable.

Note also that a semidecision procedure (only sufficiency) for controllability may be given
for a larger class of nets than ECSM in terms of the set PR(N, My). We will state this
in the next proposition.

Proposition 5.3. Let (E, My) be a net constructed as concurrent composition of state
machines (E needs not be an ECSM). Then E will be controllable if no one of the following
Constraint Sets admits an integer feasible solution Vt, € T,, and Vpg €°t, (j >0)

M=My+C-é& €S2/,

where C' is the incidence matriz of E.

6 Discussion

6.1 Complexity Issues

The complexity of the decision procedure for supervisor validation has been discussed in
[21]. Tt was shown that if both plant and specification are regular, then controllability
is polynomially decidable in the number of states. However, it was also observed that in
general the number of states grows exponentially in the number of constituent systems.
This means that state space search is computationally unfeasible.

Petri net models give a compact description of concurrent systems, in the sense that the
structure of a net grows linearly with the number of constituent systems. We have also seen
that in our approach the size of the constraint set describing the set of reachable markings
of a ECSM net grows in the worst case quadratically with the number of constituent
systems.

The complexity of Integer Programming techniques, however, is an open problem. It is
doubtful that these problems have polynomial complexity in the size of the constraint set.
However, as suggested by other authors [18], their tractability and efficiency have been
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demonstrated in practice. Thus this approach is to be preferred to state space search
methods.

There also are two potential advantages in our approach.

e Linear Programming may be sufficient to validate the model. In this case, we may
simply use the simplex method whose complexity is almost linear in the size of the
constraint set,.

In fact, we suggest that at first a possibly non-integer solution should be computed.
Subsequently, should the constraint set admit a non-integer solution, an integer one
should be searched, using the cutting plane method, for instance.

e The method can be extended to systems with infinite state space, as we will discuss
in the next section. These systems are obviously not tractable with brute state
space search.

6.2 Model Extension

Unfortunately we have no results yet on the “number” of supervisors that can be modeled
with our approach. Clearly not all possible supervisors of interest fall into the class of
ECSM. We can only say that the two types of compositions used to define ECSM nets
are the primitives to model one point rendezvous and shared resources.

Although we realize that our approach can be used with other nets than ECSM, we
have not yet been able to formally define a superset of ECSM for which there exists an
algorithm to compute the constraints defining the reachability set.

We will discuss here, with two examples, possible ways of generalization. Firstly, it should
be possible to consider the composition of nets other than state machines. Secondly, it
should be possible to consider types of compositions other than those used to define
ECSM.

Example 6.1. The net in Figure 3 has an infinite reachability set, that can be described
by the equations:

M(p1) + M(ps) =1
M >0

Additionally, the firing bounds are the following: pumin(M,t1) = M(p2); pmax(M,t1) =
M(p2) if M(p3) = 0 else pmax(M,t1) = 00; pmin(M,t2) = M(p3); pmax(M,t2) = M(ps);
Pmin (M, t3) = 0; pmax (M, t3) = 0 if M(p3) = 0 else pmax(M, t3) = oc.
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The results of Theorem 4.2 and Theorem 4.3 apply to any net, such as the one of the
previous example, that can be completely characterized in terms of reachability set and

firing bounds. Thus, the example shows that even unbounded nets, i.e., nets with an
infinite state space, may be composed following the approach presented in this paper.
Example 6.2. The net shown in Figure 4.(a) has been composed by concurrent composi-

tion of three modules: Ny = ({ps,ps}, {t2, ts}, I1,01); No = ({p1, 02, D3, pa}, {t1, L2, t3, L4}, I3, O3);
No = ({p2,pa, 05}, {t1, to, ts, t4}, I, O3). This net is not an ECSM. In fact, the composi-

tion of the first and third net is not one of the two types of compositions used in Defini-

tion 4.1. However, the state space of the composed net may still be represents by a set
linear inequalities. We just have to add to the inequalities of each component net:

M(ps) + M(ps) =1

M(py) + M(p2) + M(ps) + M(ps) = 2
M (py) 4+ M (ps) + M(ps) = 1
M>0

a new inequality:
M(p2) + M(ps) + M(ps) > 1

Note that {p2,ps,ps} is a new trap created by the composition of the three nets. The
reachability graph of the composed net is shown in Figure 4.(b).

This example highlights the possibility of generalizing this approach to some compositions
of nets sharing any two transitions.

Other types of compositions are also possible. As an example, one may refine a transition
or a place along a shared simple path, substituting it with a more complex structure such
as a macrotransition or macroplace net, as defined in [7]. This is equivalent to consider
the sharing of complex subsystems between nets, rather than simple paths.

7 Conclusions

A class of P/T net, called Elementary Composed State Machine nets has been defined.
The reachability problem for this class can be solved by deriving a set of linear inequalities
that exactly define the set of reachable markings. Important properties of the net, such as
the absence of blocking states or controllability, may be studied by Integer Programming
techniques. This approach may be used to the validation of supervisors for the control of
discrete event systems.
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The main drawbacks of the approach presented in this paper may be summarized as
follow:

e Integer Programming problems, although more tractable than methods based on
brute state space search, may not always be solved in polynomial time. However,
the paper also shows that it is possible to use Linear Programming techniques to
derive sufficient conditions for supervisory validation.

e The modelis limited, in the sense that there exist monolithic supervisors that cannot
be modeled as ECSM nets. We have discussed possible ways of generalization.

e Although a procedure to validate a supervisor is given in this paper, the control
problem is not directly solved, in the sense that if the model does not have the
desired properties the approach does not directly lead to the construction of a proper
SuUpervisor.
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Figure 2: ECSM net in Example 4.1.

Figure 3: Unbounded net in Example 6.1.
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Figure 4: Composed net and its reachability graph in Example 6.2.
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