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Abstract

This note discusses the use of Petri net languages in Supervisory Control Theory.
First it is shown that the trimming of an unbounded Petri net is not always possible
and a new class of Petri net languages, that may be generated by nonblocking nets, is
defined. Secondly, necessary and sufficient conditions for the existence of a Petri net
supervisor, under the hypothesis that the system’s behavior and the legal behavior
are both Petri net languages, are derived. Finally, by means of an example, it
is shown that Petri net languages are not closed under the supremal controllable

sublanguage operator.
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I. Introduction

This note discusses the use of Petri net languages in Supervisory Control Theory (SCT).
We are interested in deriving necessary and sufficient conditions for the existence of a Petri
net supervisor under the hypothesis that the system’s behavior and the legal behavior are
both Petri net languages.

SCT has been developed by Ramadge, Wonham, et al. [12], as a control theory for discrete
event systems (DES). The mathematical framework of this approach is based on formal
languages. A DES is regarded as a formal language generator and its properties are
described in terms of language properties. The advantages of such an approach are clear:
it is possible to obtain theoretical results whose validity does not depend on the particular
model used to represent the DES.

The Supervisory Control Problem consists in designing a supervisor that restricts the
traces generated by a system within a legal behavior. If the legal behavior is a controllable
language [11] (and satisfies other closure properties) a supervisor exists. If the legal
behavior is not controllable, we have to further restrict the system’s behavior to the
supremal controllable sublanguage [18] for which a supervisor exists.

In the case of systems and specifications modeled by finite state machines, i.e., by gener-
ators of regular languages, Ramadge and Wonham [18] have proved that the supervisor
may also be modeled as a finite state machine. Ushio [16] has discussed under which
condition a finite state machine supervisor exists in the more general case in which the
system’s behavior and the legal behavior are not regular.

In this note we use Petri nets (PN) as discrete event models. Petri net models have been
used in the framework of SCT by Giua and DiCesare [1, 2], Holloway and Krogh [4],
Kumar and Holloway [7], Sreenivas [13], Sreenivas and Krogh [14], Ushio [15], Wang [17].
Li and Wonham [5, 9] have also discussed the use of vector addition systems, that are
equivalent to Petri nets, as discrete event models. The advantages of PN over simpler
models, such as state machines, is given by the fact that the net structure does not require
to enumerate explicitely all the states of the system and also by the fact that there often
exist analysis techniques that permit an efficient solution of the control problem based
solely on the net structure, without the need of an exhaustive enumeration of the state
space, as shown in [3, 4].

The PN models generally used in SCT are bounded PN, a subclass of place/transition
nets whose set of reachable markings is finite. Thus the class of languages generated by
these models is equivalent to the class of regular languages, and all the results for regular
languages may apply to them as well. Here we discuss the use of more general models with



a possibly infinite set of reachable markings. The class of languages generated by these
nets is a proper superset of regular languages [6, 8], thus they have a greater modeling
power. The objective is that of determining whether these models may be used in SCT.
Our approach is different from that of Sreenivas and Krogh [14] because we do not consider
Petri nets with inhibitor arcs for the reasons that will be discussed in Example 3.1. Also
in this note we do not consider the problem of strict concurrency, discussed by Li and
Wonham [9] and Wang [17].

We consider three problems.

e The first problem regards the trimming of the net, i.e., the modification of its
structure in order that no blocking state may be reached while preserving its marked
behavior. We prove that the trimming of a PN is not always possible and we define
a new class of PN languages that may be generated by nonblocking generators.

e The second problem regards the existence of a PN supervisor, i.e., a supervisor
whose control action is implicit in its net structure [1, 3, 5]. The advantage of such
a supervisor, as opposed to a supervisor given as a feedback function, is that a
closed loop model of the controlled system may be constructed and analyzed using
the same PN analysis techniques that are used to analyze the system. By suitable
modification of the results given by Ramadge and Wonham [11, 12] and reported
in Section II.C, we are able to derive necessary and sufficient conditions for the
existence of supervisors as nets.

e The final problem regards the closure of PN languages under extraction of the
supremal controllable sublanguage. In this case, by means of an example, we show
that PN languages are not closed under this operator.

II. Background

A. Petri Nets

A Place/Transition net (P/T net) [10] is a structure N = (P, T, 1,0) where: P is a set of
places represented by circles; T is a set of transitions represented by bars; I : P xT — IN
is the input function that specifies the arcs directed from places to transitions; O : PxT —

IN is the output function that specifies the arcs directed from transitions to places. Here
IN ={0,1,2,...} and it is also assumed that PNT =0 and PUT # 0.

A marking is a vector M : P — IN that assigns to each place of a P/T net a non



negative integer number of tokens, represented by black dots. M (p) indicates the number
of tokens assigned by marking M to place p. A transition ¢ € T is enabled by a marking
M if (Vp € P) [M(p) > I(p,t)]. The firing of transition ¢ generates a new marking M’
with: M'(p) = M(p)+O(p,t) —I(p,t). When a marking M’ can be reached from marking
M by executing a firing sequence of transitions o = t; ...ty we write M [o) M'. We write
M [o) to denote that o may be executed from M. The set of markings reachable on a
net N from a marking M is called reachability set of M and is denoted as R(N, M).

A P/T net N with initial marking My is bounded if 3k such that for all p € P and for all
M € R(N, M,), M(p) < k.

A labeled Petri net (or Petri net generator) [6] is a 4-tuple G = (N, ¢, My, F') where:
N = (P,T,1,0) is a Petri net structure; £ : T — ¥ is a labeling function that assigns to
each transition a label from the alphabet of events > and will be extended to a mapping
T* — ¥* in the usual way; M, is an initial marking; F' is a finite set of final markings.

The two languages associated with G are the L-language (called marked behavior in the
framework of SCT) and the P-language (or closed behavior) defined in the following [6].

Given a DES G = (N, {, My, F), the L-type language of G is
Ln(G)={llo) e X" |oeT* My o) M,M € F},
and the P-type language of G is
L(G)={llo)e X" |o €T, My [0)}.

Note that in this definition of labeled net we are assuming that ¢ is a A-free labeling
function, i.e., no transition is labeled with the empty string A and two (or more) transitions
may have the same label. The classes of L-type and P-type languages generated by labeled
nets is denoted £ and P respectively.

A deterministic PN generator [6] is such that the string of events generated from the
initial marking uniquely determines the sequence of transitions fired. Formally, a DES
G = (N, ¢, My, F) is deterministic iff V¢, ¢ € T, with ¢t # ' and VM € R(N, M), M [t) A
M [t')y = £(t) # £(t'). Systems of interest in SCT are deterministic, hence we will always
assume that the generators considered here are deterministic. The classes of L-type and
P-type PN languages generated by deterministic PN generators are denoted, respectively,
Ed and Pd.

Proposition 2.1 ([6]). The following properties hold.

1. ’PdC’P;;CdC;C;’PdZEd;'PC,C.

2. Py, Ly, P, L are closed under intersection.



B. Languages and Controllability

Let L be a language on alphabet X. Its prefiz closure is the set of all prefixes of strings
inL: L={0c€X*|3r €Y 307 € L}. Alanguage L is said to be closed if L = L.
Two languages L; and Ly are said to be non-conflicting [19] if Ly N\ Ly = Ly N Ls.

Let in the following G be a DES with alphabet of events X.

G is nonblocking if any string that belongs to its closed behavior may be completed to a
string that belongs to the marked behavior. This implies: L(G) = L,,(G).

A language K C ¥* is said to be L, (G)-closed if K N L,(G) = K N Ly,(G). In the
case that K C L,,(G), this definition is reduced to the usual definition of L,,(G)-closed:
K =KnL,(G)[12].

The alphabet of events ¥ is partitioned into two disjoint subsets: X, the set of controllable
events, and X, the set of uncontrollable events. The controllable events may be disabled
by a controlling agent in order to restrict the behavior of the system within a legal
behavior, while uncontrollable events may never be disabled.

A language K C ¥* is said to be controllable with respect to L(G) [11]if K¥,NL(G) C K.
The set of all languages controllable wrt L(G) is denoted C(G).

If a language L C ¥* is not controllable with respect to L(G) we may compute its supremal
controllable sublanguage [18] defined as: LT =sup{K C L | K € C(G)}.

C. Supervisor

A supervisor [11] is an agent that disables the controllable transitions of a system in
order to restrict its behavior within a legal behavior. Let us define a control input as
a subset v C X satisfying 3, C 7 (i.e., all the uncontrollable events are present in the
control input). If a € 7, the event a is enabled by 7 (permitted to occur), otherwise a is
disabled by v (prohibited from occurring); the uncontrollable events are always enabled.
Let I' C 2% denote the set of all the possible control inputs. Formally a supervisor is a
map: f: L(G) — T, specifying for each possible string of events w € L(G) generated by
the system G the control input v = f(w) to be applied at that point. The supervisor may
also be represented as another discrete event system, called S.

The objective is to design a supervisor that selects control inputs in such a way that the
controlled system’s behavior satisfies various constraints. The behaviors of the system
under control are denoted: L(S/G) (closed behavior) and L,,(S/G) = L(S/G) N L,,(G)



(controlled behavior). Note that we are assuming that the supervisor does not mark
strings, i.e., the marked strings of the system under control are all and only the marked
strings of the uncontrolled system that survive under control.

The following two theorems, due to Ramadge and Wonham [11, 12], give necessary and
sufficient conditions for the existence of a supervisor.

Theorem 2.1. For nonempty L C L(G) there exists a supervisor S such that L(S/G) = L
iff L is prefix closed and controllable.

Theorem 2.2. For nonempty L C L,,(G) there exists a nonblocking supervisor S such
that L,,(S/G) = L iff L is L,,(G)-closed and controllable.

We consider the case in which both the system G and the supervisor S are given as nets.
In this case S and G are supposed to run in parallel, i.e., whenever on GG a transition fires,
a transition with the same label is concurrently fired on S. The control input at a given
moment is represented by the transitions that are enabled in S. Thus the function f is
implicit in the transition structure of S. The closed behavior of the controlled system is
now L(S/G) = L(S)NL(G) and the controlled behavior is L,,(S/G) = L(S/G)N L, (G) =
L(S) N L, (G).

If the supervisor is a net, it is possible to construct a PN model of the system under
control, denoted G, using the net counterpart of the intersection operator on languages
[1]. If S and G are deterministic generators (as we always assume) G, is deterministic as
well.

ITII. Petri nets and blocking

A first issue when using Petri nets as discrete events models for supervisory control regards
the trimming of blocking nets. The problem is the following: given a PN generator G

with languages L,,(G) and L(G) D L,,(G) we want to modify the structure of the net to
obtain a new generator G’ such that L,,(G') = L,,(G) and L(G") = L,,(G") = L,(G).

On a simple model such as a state machine this may be done, trivially, by removing all
states that are reachable but not coreachable (i.e., no final state may be reached from
them) and all their input and output transitions.

On Petri net models the trimming may be more complex. If the Petri net is bounded, we
have discussed in [1] how the trimming may be done without major changes of the net
structure, in the sense that we have to add new arcs and eventually duplicate transitions
without introducing new places.



Unbounded Petri net models may require more extensive changes of the net structure, as
shown in [2]. There are some cases, furthermore, in which the trimming of the net is not
possible. The reason for this is given by the following theorem.

Theorem 3.1. There exist L-type Petri net languages whose prefix closure is not a P-type
Petri net language, i.e., 3L € £ such that L ¢ P.

Proof: See Proposition 3.1. o
Example 3.1. Let G be the PN generator in Figure 1.(a), with My = (1000)” and set of
final markings F' = {(0001)7}. The behaviors of this net are: L,,(G) = {a™ba™b | m > 0}
and L(G) = {a™ba"b | m > n > 0}. From the reachability tree of this net, shown in
Figure 1.(b), it is clear that the system is blocking. To avoid reaching a blocking state we
require that p, be empty before firing the transition inputting into p,. However, since ps
is unbounded this may not be done with a simple place/transition structure. It is possible
to introduce an inhibitor arc from p, to the transition inputting into ps. Inhibitor arcs
increase the modeling power, and the analysis complexity, of Petri nets to that of a Turing
machine [14], thus we cannot properly consider these models as P/T nets.

We may formally prove that the prefix closure of the marked language of the net discussed
in Example 3.1 is not a P-type Petri net language. The proof is based on the pumping
lemma for P-type PN languages, given in [6].

Lemma 3.1. (Pumping lemma). Let L € P. Then there exist numbers k,[ such that
any string w € L, with | w |> k, has a decomposition w = zyz with 1 <| y |< [ such that
xy'z € L,Vi > 1.

The pumping lemma for P-type PN languages is similar to the pumping lemma for regular
languages. The difference is that in latter it is required that xy’z € L,Vi > 0. As an
example, given the P-type PN language L = {a™b™ | m > n > 0} it is easy to prove that
chlc

the string a"b" does not satisfy the pumping lemma for regular languages.

Proposition 3.1. L = {a™ba™b | m > 0} is not a P-type Petri net language.

Proof. Given k and [ according to the pumping lemma, let w = a*ba*b. Consider a
partition w = zyz, with 1 <| y |< [. Clearly b & y, since in this case zy’z ¢ L for i # 1.
ifw= a" a? alba” = if w = a*ba™ a? af =
However if w = a"  _a? a%ba”b, (n+p+q=k),orifw =a"ba" _a? a%b, (n+p+q=k),
T y 2 T Y Z

then zy’z ¢ L for i # 1. Hence L is not a P-type Petri net language. o

Theorem 3.1 is the source of major difficulties using PN in supervisory control when
one considers marking and blocking (see Example 4.1). We conclude this section with
the definition of a new class of L-type Petri net languages whose prefix closure can be
generated by a deterministic nonblocking Petri net generator. This class will play an
important role in characterizing the existence of Petri net supervisors, as we will discuss
in Section IV.



Definition 3.1. A language L € L (not necessarily deterministic) is said to be determin-
istic P-closed (DP-closed for short) iff its prefix closure is a deterministic P-type Petri
net language, i.e., L € P;. The class of DP-closed Petri net languages is denoted Lpp.

As a side note, we point out that the class Lpp that we have defined does not coincide
with any of the classes of PN languages generally considered in literature [6]. The proof
follows from the fact that £Lpp is not closed under intersection, as we show in Example 4.3,
while all previously defined classes of PN languages are closed under intersection.

IV. Existence of Petri net supervisors

In this section we present some theorems that give necessary and sufficient conditions for
the existence of PN supervisors.

The first two theorems regard the case in which we want to restrict the closed behavior
of G within the limits of a legal behavior L.

Theorem 4.1. Let G be a PN and let L C L(G) be a non empty language. There exists
a PN supervisor S such that L(S/G) = L iff L € P;NC(G).

Proof. (If) Since L € Py then there exists a PN S such that L(S) = L. S is the desired
supervisor. In fact, since L € C(G) then S, running in parallel with G, will never block
an uncontrollable transition of G and L(S/G) = L(S) N L(G) = L. (Only if) Since
L(S/G) = L then L is a P-type language for the PN representing the closed loop system
and L € P;. Also L is controllable by Theorem 2.1. o

It may be interesting to consider the case in which the legal behavior L is not a subset
of L(G). In this case we are interested in restricting the system’s behavior to L N L(G),
and we simply need to check whether L N L(G) satisfies the conditions of the previous
theorem. It may well be the case that L ¢ P; N C(G) but LN L(G) € PaNC(G), ie., a
PN supervisor for this problem may exist even if L is not a PN language or if L is not
closed and controllable. However if L € P; we have the following theorem.

Theorem 4.2. Let G be a PN and let L C ¥*, with L(G) N L # 0, and L € P,. There
exists a PN supervisor S such that L(S/G) = LN L(G) iff L € C(G).

Proof. (If) The sets P, and C(G) are closed under intersection, as proved, respectively, in
[6, 11]. Hence LN L(G) € P;NC(G) and by Theorem 4.1 there exists a PN supervisor S
such that L(S/G) = LN L(G). (Only if) Since L(S/G) = LN L(G) then LN L(G) € Py.
Also L N L(@G) is controllable by Theorem 2.1, i.e., [L N L(G)|X, N L(G) C LN L(G) C
L = [LNL(®)]Z.NL(G) C L (since languages in Py are prefix closed) = LY, NL(G) C
L,— LY, NL(G) C L (since L € P,), hence L € C(G). o



Let us consider now the case in which we want to restrict the marked behavior of G’ within
the limits of a legal behavior L. In this case, unfortunately, the necessary requirements
that L be controllable and L,,(G)—closed (by Theorem 2.2) are not sufficient to insure
the existence of a nonblocking PN supervisor even if L € L;. The following example
discusses this case.

Example 4.1. Let G be the PN generator in Figure 2, with ¥, = 0, M, = (100)7,
and set of final markings F' = {(001)”}. The marked behavior of this net is: L,,(G) =
{a™ba™ | m > 0,n > 0}. Assume now that we want to restrict the marked behavior of
G to L = {a™ba™b | m > 0} that is clearly controllable and L,,(G)—closed. However
since L € Lpp there exists no PN whose P-type language is L. L is the L-type language
of the net E in Figure 1.(a) with set of final marking F' = {(0001)”}, that however does
not qualify as a supervisor for this problem, since L,,(E/G) = L(E) N L,,(G) D L. As
an example, abb is in L(E) N L,,(G), but it is not in L = L,,(E).

The example shows the need of introducing the further requirement that the legal behavior
L be DP-closed for insuring the existence of a PN supervisor.

Theorem 4.3. Let G be a nonblocking PN and let L C L,,(G) be a nonempty language.
There exists a nonblocking PN supervisor S such that L,,(S/G) =L iff L € Lpp NC(G)
and L is L,,(G)—closed.

Proof. (If) Since L € Lpp then there exists a PN S such that L(S) = L C L(G).
S is the desired supervisor. In fact: since L € C(G), then clearly L € C(G); since L is
L (G)—closed, then L,,(S/G) = L(S)NL,,(G) = LNL,,(G) = L; S is nonblocking, since
L(S/G) = L(S)NL(G) = LN L(G) = L = L,,(S/G). (Only if) Since S is a nonblocking
supervisor, then L € C(G) and L is L,,(G)—closed, by Theorem 2.2. We need to prove
that L € Lpp. First note that L = L,,(S/G) = L(S) N L,,(G). Since L(S) € Py, hence
L(S) € L D P D Py [6]. (Note that L(S) although a deterministic P-type language
may be a nondeterministic L-type language.) Since L is closed under intersection, then
L € L. Also L = L(S/G) by the non blocking hypothesis, hence L € P, (since it is the

deterministic P-type language closed loop PN generator). It follows that L € Lpp. o

Theorem 4.3 does not require L to be deterministic. In fact we want to restrict the marked
behavior of G to L by means of a non marking deterministic supervisor, that effectively
constrains solely the closed behavior of G. Hence it is sufficient that L be a deterministic
P-type language in order to construct a deterministic supervisor. The following example
may clarify this point.

Example 4.2. Let G be the PN generator in Figure 3, with 3, = {b}, M, = (10)7,
and set of final markings F = {(01)”}. The marked behavior of this net is: L,,(G) =
{a™ba™ | m > 0;n > 0}. Assume now that we want to restrict the marked behavior of G
to L = {a™ba" | m > n > 0}. Lis a L-type PN language and it can be proved that it is



not deterministic, i.e., it cannot be accepted by a deterministic generator with a finite set
of final states F. However L € Lpp, since L is the deterministic P-type language of the
net S in Figure 4. Since L is controllable and L,,(G)—closed, S is a proper supervisor
and is such that L,,(S/G) = L.

We would like to extend Theorem 4.3 to the case in which the legal behavior L is not
a subset of L,,(G). Unfortunately in this case the hypotheses of Theorem 4.3 are not
sufficient to insure the existence of a PN supervisor. In fact it may be possible that,
although L € Lpp, LN L, (G) & Lpp.

Proposition 4.1. The class of DP-closed PN languages Lpp is not closed under inter-
section.

The proof of the proposition follows from the following example.

Example 4.3. Let G be the PN generator in Figure 2, M, = (100)”, and set of final
markings F' = {(001)"}. The marked behavior of this net is: L,,(G) = {a™ba"b | m >
0;n >0} € Lpp. Consider the language L = {a™b(bc)™ (a(bc)?)™b | m > 0;n > 0;p > 0}.
Clearly L € Lpp since it is the marked behavior of the nonblocking generator E in
Figure 5, with set of final markings F' = {(0001)”}. Unfortunately LNL,,(G) = {a™ba™b |
m >0} € Lpp, as we have shown in Section III.

The problem in the previous example is that L and L,,(G) are conflicting, i.e., LNL,,(G) D
LN L, (G). Hence, while L N L,,(G) € Py (since P, is closed under intersection) it may
be the case that L N L,,(G) € Py. If however the two languages are not conflicting, we
have that L N L,,,(G) = LN L,(G) € Py.

Theorem 4.4. Let G be a nonblocking PN and let L C ¥*, with L,,(G) N L # (). There
exists a nonblocking PN supervisor S such that L,,,(S/G) = LNL,,(G) if L € LppNC(G),

L is L,,(G)—closed, L and L,,(G) are not conflicting.

Proof. The class £ and the set C(G) are closed under intersection [6, 12]. Also, by the
non-conflicting hypothesis, L N L,,(G) € Py. Hence L N L,,(G) € Lpp NC(G). Finally
since L is also L,,(G)—closed we can write: L N L,,(G)N L, (G) = LN Ly (G)N Ly (G) =
LNL,(G)=LNL,(G),ie., LNL,(G)is L,(G)—closed. By Theorem 4.3 there exists
a nonblocking supervisor S such that L,,(S/G) = LN L, (G). o

The last theorem gives a sufficient, but not necessary, condition for the existence of a
PN supervisor. In fact while: L € C(G) = L N L,,(G) € C(G) and L is L,,(G)—closed
— LN L,(G) is L, (G)—closed, the converse is not true. A necessary and sufficient
condition for the existence of a PN supervisor in the case the legal behavior L is not

a subset of L,,(G) may be given, as a trivial corollary of Theorem 4.3, requiring that
LNL,(G) € LppNC(G) and that L N L,,(G) be L,,(G)—closed.
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V. Supremal controllable sublanguage

Our final result regards the closure of PN languages under the supremal controllable
sublanguage operator T [18].

Proposition 5.1. The classes P; and Lpp of PN languages are not closed under the T
operator.

The proof of this proposition will be given by means of the following example.

Example 5.1. Let G be the PN generator in Figure 6, with X, = {a}, M, = (1000)7,
and set of final markings F' = {(0001)T}. Consider now the net E in Figure 5 with set
of final markings F' = {(0001)T}. The two languages L(E) € Py and L,,(E) € Lpp are
not controllable. To show this we have drawn, in Figure 7, the reachability tree of the
two nets; since F refines G, we have represented the arcs that belong to the reachability
tree of both nets with continuous lines, while the arcs that only belong to the reachability
tree of G have been represented by dotted lines. L(FE) and L,,(FE) are not controllable
because of the presence of the dotted arcs associated to the uncontrollable transition a.
If we apply the T operator, all the states from which a dotted arc is outputting will be
removed. Thus we obtain the generator in Figure 8, whose closed and marked behavior
are the two supremal controllable sublanguages: L(E)" = {a™ba™ (bc)"b | m > 0;n > 0}
and L,,(E)" = {a™ba™(bc)"b | m > 0;n > 0}. L(E)" € Py, as can be proved using the
pumping lemma in the same way we have done in Section IIT (the string w = a*ba*b may be

used to prove that no pumping is possible). L,,(E)" & Lpp, since L,,,(E)t = L(E)" & P,.

VI. Conclusion

The results of this note show that although unbounded PN do not have all desirable
properties from the point of view of supervisory control, there are cases in which PN
supervisors may be constructed, as discussed in Section IV.

The main difficulties when using Petri nets as discrete event models for supervisory control
stems out from the fact that not all L-type PN languages are DP-closed and from the
fact that the class Lpp of DP-closed languages is not closed under intersection. Another
undesirable property is given by the fact that the classes P; and Lpp are not closed under
the T operator. It may be possible to give a characterization of the subclasses of P; and
Lpp that are closed under the T operator, and this will be the object of further research.
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Figure 1: Blocking net in Example 3.1.
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Figure 2: System net G in Example 4.1 and Example 4.3.
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Figure 3: System net G in Example 4.2.
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Figure 6: Generator G in Example 5.1.
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Figure 7: Reachability tree of G and E in Example 5.1.

Figure 8: Generator of L(E)" and L,,(F)" in Example 5.1.
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