
A Joint Diagnoser Approach for Diagnosability of Discrete Event
Systems Under Attack

Tenglong Kang, Carla Seatzu, Zhiwu Li, and Alessandro Giua

February 2025

Abstract

This paper investigates the problem of diagnosing the occurrence of a fault event in a discrete event system
(DES) subject to malicious attacks. We consider a DES monitored by an operator through the perceived sensor
observations. It is assumed that an attacker can tamper with the sensor observations, and the system operator is
not aware of the attacker’s presence at the beginning. We propose a stealthy joint diagnoser (SJD) that (i) describes
all possible stealthy attacks (i.e., undiscovered by the operator) in a given attack scenario; (ii) records the joint
diagnosis state, i.e., the diagnosis state of the attacker consistent with the original observation and the diagnosis
state of the operator consistent with the corrupted observation. The SJD is used for diagnosability verification
under attack. From the attacker’s point of view, we present two levels of stealthy attackers: one only temporarily
degrades the diagnosis state of the operator, and the other permanently causes damage to the diagnosis state of
the operator, thereby resulting in a violation of diagnosability. Finally, necessary and sufficient conditions for the
existence of the two levels of attackers are presented.

Published as:
Tenglong Kang, Carla Seatzu, Zhiwu Li, and Alessandro Giua. “A Joint Diagnoser Approach for Diagnosability of
Discrete Event Systems Under Attack”, Automatica, vol. 172, p.112004, February, 2025.
DOI: 10.1016/j.automatica.2024.112004

The material in this paper was partially presented at the 62nd IEEE Conference on Decision and Control, December 13–15,
2023, Singapore. This work was partially supported by the National Key R&D Program of China under Grant 2018YFB1700104, the
National Natural Science Foundation of China under Grant 61873342, the Science Technology Development Fund, MSAR under Grant
No. 0029/2023/RIA1, project SERICS (PE00000014) under the MUR National Recovery, and Resilience Plan funded by the European
Union - NextGenerationEU.

Tenglong Kang is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China, and also with the
Department of Electrical and Electronic Engineering, University of Cagliari, 09124 Cagliari, Italy. tlkang@stu.xidian.edu.cn.

Zhiwu Li (corresponding Author) is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China, and
also with the Institute of Systems Engineering, Macau University of Science and Technology, Macau, China. zhwli@xidian.edu.cn.

Carla Seatzu and Alessandro Giua are with the Department of Electrical and Electronic Engineering, University of Cagliari, 09124
Cagliari, Italy. {carla.seatzu, giua}@unica.it

1

1 Introduction

Fault diagnosis in discrete event systems (DESs) aims to determine whether some particular events, called faults,
have occurred according to the current observation. Diagnosability is a property that guarantees the detection of
any fault occurrence within a bounded delay. The verification can be done by using diagnosers [1, 2] or verifier [3].
It is well known that the diagnoser reported in [1, 2] has, in the worst case, exponential complexity in the size of
the plant state space, but it can be used for both online diagnosis and offline diagnosability verification, unlike the
verifier [3] which can only be used for diagnosability verification.

Over the past decade, there have been some works on robust fault diagnosis against sensor failures and com-
munication failures; see, e.g., [4]. Such disruptions are not necessarily caused by malicious attacks with the goal
of compromising the desired system properties. Indeed, the increasing number of networked components in sys-
tems possibly introduce vulnerabilities to cyber-attacks. In this paper, we consider a special class of cyber-attacks,
called sensor deception attacks, that may obtain access to and compromise the transmitted signals between sensors
attached to a system and an operator that monitors the system (see Fig. 2 for a sketch). Hence, the operator may
be misled to take incorrect actions based on the corrupted information, which is our considered attack mechanism.

Recent works have explored sensor attacks in the context of attack detection [5], state estimation [6, 7], and
supervisory control [8]. However, very few works have been devoted to diagnosability verification under attack.
Two recent contributions in this context are [9] and [10]. In these works, from defense viewpoint, the notion of
robust diagnosability against attacks is proposed, which requires that the system language can remain diagnosable
even in the case of attacks.

In this paper, we develop a novel framework for diagnosis and diagnosability verification under attack. We take
the perspective of the attacker. If an attacker may make a system no longer diagnosable, it is said to be strongly
harmful. This occurs when the attacker is certain of the fault occurrence, while due to the attack, the operator is
always not. In this context, we say that the attacker permanently conceals the fault occurrence to the operator. In
the relaxed case, if the attacker might temporarily conceal the fault occurrence at some points after attacks occur,
it is said to be weakly harmful. On the other hand, stealthiness is another crucial property of an attacker, ensuring
that its attacks remain undiscovered by the operator during system execution. To our knowledge, this work is
the first one that addresses the stealthiness of active attacks against fault diagnosis in the literature. To check
stealthiness, we establish an attack detection mechanism by determining whether the operator perceives abnormal
system observations.

From the attack viewpoint, we aim to verify the existence of attackers that can achieve harmfulness (including
strong and weak harmfulness) and stealthiness. To this end, a bipartite diagnoser called joint diagnoser (JD) is
constructed, which captures all possible attacks in a given attack scenario. We prove that the JD shows the joint
diagnosis state for both the attacker (based on the original observation) and the operator (based on the corrupted
observation). As a result, the JD provides a necessary and sufficient condition for the existence of a harmful attacker.
In particular, we show that in our approach, diagnosability under attack can be verified by studying certain cycles
in the JD, without the analysis of an indeterminate cycle as was the case for the classical diagnoser-based approach
in [2].

Note that the JD also allows to determine if an attacker may actively make stealthy choices in its attack
strategies. To capture stealthy attacks only, we present a refined JD, i.e., stealthy joint diagnoser (SJD) that
is used to check the existence of a stealthy and harmful attacker. This is a distinguishing feature of our work as
compared with prior works [9, 10]. In [9], the attacker’s stealthiness is not considered. In [10], attack detection relies
on the fault diagnosis technique by passively modeling an attack as a fault behavior under certain assumptions.

A preliminary version of this paper [11] introduced the diagnosis setting we adopt without providing proofs of
the results. Here, we provide formal proofs and detailed examples. Further, we also present a novel approach for
diagnosability verification under attack.

2 Preliminaries

In this paper, a plant is modeled as a deterministic finite state automaton (automaton for short) G = (X,E, δ, x0),
where X is a finite set of states, E is a finite set of events, δ : X × E → X is a partial transition function, and
x0 ∈ X is an initial state. We use E∗ to denote the Kleene closure of E, consisting of all words over E with finite
lengths (including the empty word ε). Given a word σ ∈ E∗, |σ| denotes the length of σ. The set of prefixes of

a word σ is denoted as σ = {u ∈ E∗ | (∃v ∈ E∗) [uv = σ]}. In G, a sequence x1
e1−→ x2

e2−→ · · · el−1−−−→ xl(l ≥ 2) of
transitions such that xh+1 = δ (xh, eh) for all h ∈ {1, 2, . . . , l − 1} is called a cycle if x1 = xl. A language L ⊆ E∗

2

is a subset of E∗. The language generated by G, denoted as L(G) or, simply, L, is defined as L(G) = {σ ∈ E∗ |
δ (x0, σ) is defined}. Given a word σ ∈ L, the post-language of L after σ is defined as L/σ = {t ∈ E∗ | σt ∈ L}. A
language L is said to be live if for all σ ∈ L, there exists an event e ∈ E such that σe ∈ L.

Assuming that set E is divided into the observable event set Eo and the unobservable event set Euo, the natural
projection P : E∗ → E∗

o is defined as

P (ε) = ε andP (σe) =

{
P (σ)e, if e ∈ Eo;
P (σ), if e ∈ Euo.

The inverse projection P−1 : E∗
o → 2L(G) is defined as P−1(s) = {σ ∈ L(G) |P (σ) = s}, i.e., P−1(s) consists of all

words σ in L(G) whose observations are s. The observed language of G, denoted as P (L(G)) or, simply, P (L), is
defined as P (L(G)) = {s ∈ E∗

o | (∃σ ∈ L(G)) [s = P (σ)]}.
Let G1 = (X1, E1, δ1, x01) and G2 = (X2, E2, δ2, x02). The parallel composition of G1 and G2 is defined as

G1 ∥ G2 = Ac(X1 × X2, E1 ∪ E2, δ, (x01, x02)), where δ[(x1, x2), e] = (x′
1, x

′
2) if δ1(x1, e) = x′

1 and δ2(x2, e) = x′
2;

δ[(x1, x2), e] = (x′
1, x2) if δ1(x1, e) = x′

1 and e /∈ E2; δ[(x1, x2), e] = (x1, x
′
2) if δ2(x2, e) = x′

2 and e /∈ E1; undefined,
otherwise. In the definition of G1 ∥ G2, Ac(·) denotes the accessible (refer to [1]) part of an automaton.

2.1 Fault Diagnosis

Let Ef ⊆ Euo denote the set of fault events. In this paper, we consider a single class of fault for simplicity,
but all the proposed results can be extended in a straightforward way to the case of multiple fault classes. Let
Ψ(Ef) = {σf ∈ L | σ ∈ E∗, f ∈ Ef} denote the set of all finite words in L that end with a fault event f . With a
slight abuse of notation, write Ef ∈ σ to denote σ ∩ Ψ(Ef) ̸= ∅. A word σ is said to be faulty (resp., normal) if
Ef ∈ σ (resp., Ef /∈ σ). The language containing all normal words is denoted by LN ⊂ L.

In the rest of this paper, the following usual assumptions hold: A1) The language of G is live; A2) There
is no cycle of unobservable events in G. The fault diagnosis problem is to determine, based on the observation
s ∈ E∗

o , if a fault has already occurred or not. To solve this problem, one wishes to build a diagnosis function
γ : E∗

o → {N,F,U} associating to each observation a diagnosis state, such that

γ(s) =

 N, if ∀σ ∈ P−1(s), Ef /∈ σ;
F, if ∀σ ∈ P−1(s), Ef ∈ σ;
U, otherwise.

In other words, an observation s is called: normal if γ(s) = N since in this case no word producing s contains a
fault; faulty if γ(s) = F since in this case all words producing s contain a fault; ambiguous otherwise. A standard
approach to compute the diagnosis function is by using a diagnoser. The diagnoser of G is defined as

Diag(G) = (Xd, Eo, δd, xd,0). (1)

State xd ∈ Xd is in the form xd = {(x1, ℓ1), · · · , (xn, ℓn)}, where xi ∈ X and ℓi ∈ {N,F} for i = 1, · · · , n.
The diagnoser allows one to associate every state to a diagnosis value γ(xd) = γ(s), where xd = δd(xd,0, s). The
diagnoser state xd is negative if γ(xd) = N ; positive if γ(xd) = F ; uncertain if γ(xd) = U . Now we recall the notion
of language diagnosability proposed in [2].

Definition 1: A language L is diagnosable w.r.t. P : E∗ → E∗
o and Ef if

(∃n ∈ N)(∀σ ∈ Ψ(Ef))(∀t ∈ L/σ) [|t| ≥ n ⇒ CD]

where CD is the diagnosability condition, defined as

(∄σ′ ∈ LN) [P (σt) = P (σ′)] ,

with N denoting the set of non-negative integers. ⋄

In words, diagnosability guarantees that the occurrence of a fault event can be detected within a finite number of
transitions after its occurrence. It was shown in [2] that a necessary and sufficient condition for diagnosability is
the nonexistence of an indeterminate cycle in Diag(G). An indeterminate cycle is a cycle composed exclusively of
uncertain states in Diag(G), which corresponds to two cycles in G, one that includes only states with label F and
the other that includes only states with label N .

Example 1: Fig. 1(a) shows a plant G, where Eo = {a, b, d, e}, Euo = {c, f}, and Ef = {f}. Since there are no
cycles formed with uncertain states in the diagnoser shown in Fig. 1(b), which implies the absence of indeterminate
cycles, we conclude that L(G) is diagnosable. ⋄

3

c

e

d

0

5 6 7

b

1 2
ba

3

b

4

d

f

(a) G

d

b

e

a
0N

b b
d

1 ,2N F 3F

5 ,6N N 7N 4F

(b) Diag(G)

Figure 1: (a) A plant G and (b) its diagnoser Diag(G).

2.2 Sensor Attack

In this section, we consider an attacker that can compromise a subset of the sensor network channels [11, 8, 6, 7].
It may implement two types of sensor attacks:

• Sensor Erasure attack (SE-attack): erase some readings generated by the plant.

• Sensor Insertion attack (SI-attack): insert some fake readings that have not occurred in the plant.

Considering a system modeled as an automaton, we follow the notation in [6] and denote by Eera ⊆ Eo (resp.,
Eins ⊆ Eo) the set of events subject to SE-attacks (resp., SI-attacks), i.e., the occurrence of events in Eera (resp.,
Eins) can be erased (resp., inserted). To make the problem more general, no relation is imposed between the sets
Eera and Eins. We define Ecom = Eera ∪ Eins as the compromised event set. Fig. 2 illustrates the architecture
of a fault diagnosis system under attack, where the shadowed block denotes a sensor attacker that intervenes in
the communication channels between the sensor and the system operator. If a plant generates a word σ ∈ E∗, the
attacker observes an original observation s = P (σ) and then produces a corrupted observation, denoted as s′. The
operator monitors and diagnoses the system based on the received corrupted observation s′, i.e., the diagnosis state
γ(s′) is computed.

G


Operator
Attack

function

Operator

mask

s s

A sensor attacker

Corrupting function


w

*: (()) oP L G E →
Diagnosis

state

() { , , }s N F U  

P P̂

Figure 2: A fault diagnosis system under attack.

To identify the insertion or erasure of an event, we define E+ = {e+ | e ∈ Eins} as the set of inserted events
and E− = {e− | e ∈ Eera} as the set of erased events. The occurrence of event e+ (resp., e−) denotes the fact that
the attacker inserts event e ∈ Eins that has not occurred in the plant (resp., event e ∈ Eera has been erased by the
attacker). Note that Eo, E+, and E− are disjoint sets. We also define Ea = Eo ∪ E+ ∪ E− as the attack alphabet.

Definition 2: Given a plant G with set Ecom = Eera ∪ Eins, an attack function ξ : P (L(G)) → E∗
a satisfies:

1) ξ(ε) ∈ E∗
+;

2) ∀se ∈ P (L(G)) with s ∈ E∗
o and e ∈ Eo:{

ξ(se) ∈ ξ(s){e}E∗
+, if e ∈ Eo\Eera;

ξ(se) ∈ ξ(s) {e−, e}E∗
+, if e ∈ Eera. ⋄

Statement 1) in Definition 2 implies that an arbitrary word t ∈ E∗
+ may be initially inserted. By Statement 2),

the attacker cannot erase e if e is outside of Eera, but can insert an arbitrary word t ∈ E∗
+ after e. If an event

e ∈ Eera occurs, the attacker may either erase e or leave it intact, and then insert any arbitrary word t ∈ E∗
+. Note

that the attack function ξ is deterministic. We define the set of all possible attack functions depending on sets Eera

and Eins as “Ξ (Eera, Eins)” (abbreviated as Ξ).

4

An attack function ξ determines an attack language, denoted as L(ξ,G) = {ξ(s) | s ∈ P (L(G))} (abbreviated as
L(ξ)). Let w ∈ L(ξ) be an attack word. Given an attack word w, to capture the corrupted observation s′ perceived

by the operator, an operator mask P̂ : E∗
a → E∗

o is defined as

P̂ (ε)=ε, P̂ (we′) =

{
P̂ (w)e, if e′=e ∈ Eo∨e′=e+ ∈E+;

P̂ (w), if e′ = e− ∈ E−.

The operator mask can be extended to the language L(ξ) by applying P̂ (w) to all words w ∈ L(ξ). We now
define two diagnosis functions on Ea as follows. The attacker diagnosis function γatt : E

∗
a → {N,F,U} is defined as

γatt(w) = γ(s), where w = ξ(s); the operator diagnosis function γopr : E∗
a → {N,F,U} is defined as γopr(w) = γ(s′),

where s′ = P̂ (w).

Definition 3: A corrupting function ϕ : P (L(G)) → E∗
o is defined as ϕ(s) = P̂ (ξ(s)), where ξ : P (L(G)) → E∗

a

and P̂ : E∗
a → E∗

o are the attack function and the operator mask, respectively. ⋄

In this paper, a sensor attacker is characterized by a corrupting function that takes an original observation s
as input and produces a corrupted observation s′ = ϕ(s) = P̂ (ξ(s)) as output, as shown in Fig. 2. We define

L(ϕ,G) = P̂ (L(ξ,G)), abbreviated as L(ϕ), as the corrupted language induced by function ϕ. We also define the
set of all possible corrupting functions that depend on Eera and Eins as “Φ(Eera, Eins)” abbreviated as Φ.

3 Active attacks on fault diagnosis

We start this section with a motivating example to show that, in the case of sensor attacks, the attacker may
actively degrade the estimation performance.

Example 2: Let us continue with Example 1. In the nominal setting, if word σ = afbdbk (k ∈ N) occurs, then
the diagnoser Diag(G) goes from the initial state {0N} to {4F}. Now assume that the sensors that record the
occurrence of a and b are subject to SE-attacks, and the sensor that records the occurrence of e is subject to
SI-attacks, i.e., Eera = {a, b} and Eins = {e}. We consider an attacker ϕ with the following attack function

ξ(s) =

{
ε, for s = ε;
a−b−e+db

k, for s = abdbk, k ∈ N.
In words, the attacker first erases event a and b, and then inserts event e while observing abdbk. Under such an
attack, the first event occurrence to be recognized by Diag(G) is the inserted event e, which takes the diagnoser
state to {5N, 6N}. When the next event of σ, i.e., event d occurs, the diagnoser moves to state {7N}, where it
stays as long as event b continues to occur, therefore displaying wrong information regarding the fault occurrence.
This false negative shows that the diagnosis state based on the original observation s = abdbk may not coincide
with the diagnosis state based on the corrupted observation s′ = P̂ (ξ(abdbk)) = edbk. ⋄

3.1 Problem statement

Before formalizing the above discussion, in addition to A1 and A2, we make the following assumption: A3) The
language of G is diagnosable in the nominal setting, i.e., when no attacks occur. Example 2 motivates the notion
of weakly harmful attackers (WH-attackers).

Definition 4: An attacker ϕ for a language L is said to be weakly harmful if there exists an observation s ∈ P (L)
with γ(s) = {F} which may be corrupted into another observation s′ = ϕ(s) and γ(s′) ∈ {N,U}. ⋄

As defined, a WH-attacker can degrade the diagnoser performance in such a way that a faulty observation s that
allows the detection of a fault is altered into a normal or ambiguous observation s′ received by the operator, which
corresponds to the absence of the fault or to the uncertain situation, respectively. Such an attacker introduces a
delay in the detection of the fault, i.e., it makes a fault temporarily hidden from the operator. Now we formalize
the WH-attacker Existence Problem.

Problem 1: Given a language L, determine whether there exists a WH-attacker for L. ⋄

5

Further, a WH-attacker may lead to a violation of diagnosability. We now give a language diagnosability
condition that takes into account a class of sensor attackers depending on Eera and Eins.

Definition 5: A language L is robustly diagnosable against Φ(Σera,Σins) w.r.t. P : E∗ → E∗
o and Ef if

(∃n ∈ N)(∀σ ∈ Ψ(Ef))(∀t ∈ L/σ) [|t| ≥ n ⇒ CAD]

where condition CAD is given as

(∀ϕ ∈ Φ(Eera, Eins))(∄σ′ ∈ LN) [ϕ(P (σt)) = P (σ′)] ⋄

This definition can be expressed as follows. Assume that the plant generates a word σ ∈ Ψ(Ef) and the evolution
continues. After a finite number of steps n (that depends on σ), any attacker ϕ ∈ Φ(Eins, Eera) observes P (σt)
with |t| ≥ n and produces the corrupted observation ϕ(P (σt)), which is a faulty observation consistent with no
normal word σ′ ∈ LN . With the above concepts, we introduce the following fault diagnosis problem.

Problem 2: (Diagnosability Under Attack) Given a language L, determine whether L is robustly diagnosable
against attacks. ⋄

This problem can be investigated by exploring the existence of strongly harmful attackers (SH-attackers). The
negation of Definition 5 involves the formal notion of SH-attackers as follows.

Definition 6: A sensor attacker ϕ ∈ Φ(Eera, Eins) for a language L is said to be strongly harmful if

(∀n ∈ N)(∃σ ∈ Ψ(Ef))(∃t ∈ L/σ) [|t| ≥ n ∧ CNAD]

where condition CNAD is defined as

(∃σ′ ∈ LN) [ϕ(P (σt)) = P (σ′)] . ⋄

This definition implies that there exists a faulty word σ which can be extended with an arbitrarily long word
t in such a way that all observations P (σt) are corrupted by the attacker into a normal or ambiguous observation
ϕ(P (σt)), which is identical to the observation produced by a normal word σ′. The SH-attacker introduces an
infinite delay in the detection of the fault, i.e., permanently conceals the fault occurrence to the operator, thereby
resulting in a violation of diagnosability. Hence, Problem 2 is equivalent to the SH-attacker Existence Problem.

Example 3: Consider the attacker described in Example 2. We focus on the following words in L(G): σt = afbdbk,
and σ′ = ecdbk. For the faulty word afbdbk, the attacker ϕ observes s = abdbk and produces s′ = ϕ(abdbk) =

P̂ (ξ(abdbk)) = P̂ (a−b−e+db
k) = edbk, which is a normal observation consistent with σ′ = ecdbk. This implies that

condition CNAD in Definition 6 holds. Hence, ϕ is an SH-attacker. ⋄

3.2 Attacker’s stealthiness

Due to the effect of sensor attacks on the system diagnosability, another issue of interest is attack detection, in
particular, the detection of attacks that violate diagnosability. To this end, we introduce an attack detection
mechanism [8, 6]. It is assumed that the attacker and the operator have full knowledge of the plant, while the
operator does not realize the attacker’s presence at the beginning. If an attacker can always keep its attacks
undiscovered by the operator during system execution, it is said to be stealthy, defined as follows.

Definition 7: A sensor attacker ϕ for a language L is said to be stealthy if L(ϕ) = P̂ (L(ξ)) ⊆ P (L(G)). ⋄

The stealthiness of an attacker is guaranteed when any corrupted observation perceived by the operator is
contained in the observed language of G. Note that Definition 7 requires the attacker not only to be undiscovered
at the point when attacks occur but also to remain stealthy no matter how the system evolves in the future. Consider
the stealthiness of the attacker ϕ in Example 3. Since L(ϕ) ⊆ P (L(G)), we conclude that ϕ is stealthy.

We now define two sets of words w ∈ E∗
a as follows. Given a plant G, the set of stealthy words on Ea is defined

as Ws = {w ∈ E∗
a | P̂ (w) ∈ P (L(G))}, while the set of exposing words on Ea is defined as We = {wea ∈ E∗

a | w ∈
Ws, ea ∈ Ea, wea /∈ Ws}. A stealthy word w produces a corrupted observation s′ = P̂ (w) ∈ P (L(G)), which does
not reveal the attacker’s presence. On the contrary, an exposing word results in the exposure of the attacker at the
last step.

6

From an attacker’s viewpoint, the goals of affecting fault diagnosis and keeping stealthy are separated. In this
regard, attackers that can achieve both goals are: stealthy weakly harmful attackers (SWH-attackers) and stealthy
strongly harmful attackers (SSH-attackers).

Problem 3: Given a language L, determine whether there exists an SWH-attacker for L. ⋄

Problem 4: Given a language L, determine whether there exists an SSH-attacker for L. ⋄

4 Stealthy joint diagnoser

This section introduces an information structure called joint diagnoser which describes for all possible attack words,
the diagnosis state corresponding to the original observation, and the diagnosis state corresponding to the corrupted
observation.

4.1 Attacker diagnoser and operator diagnoser

To construct a joint diagnoser, we first briefly review the constructions of two augmented diagnosers: Attacker
Diagnoser and Operator Diagnoser, proposed in [11]. The former describes for all attack words w that can be
generated under attack which is the diagnosis state computed by the attacker. The latter describes for all words
w ∈ Ws ∪ We which is the diagnosis state computed by the operator. From a nominal diagnoser Diag(G) =
(Xd, Eo, δd, xd,0), we build:

• Attacker Diagnoser Diagatt(G) = (Xd, Ea, δatt, xd,0) by self-looping each state with all events in E+, and
then adding in parallel to each event e ∈ Eera the corresponding event e− ∈ E−.

• Operator Diagnoser Diagopr(G) = (Xd ∪ d∅, Ea, δopr,
xd,0) by self-looping each state with all events in E−, then adding in parallel to each event e ∈ Eins the
corresponding event e+ ∈ E+, and finally adding a dump state d∅ that is reached by all undefined transitions.

Example 4: Consider the plant G in Fig. 1(a). The corresponding Diagatt(G) and Diagopr(G) are shown in Fig.
3(a) and (b), respectively. At each state of Diagatt(G), all transitions labeled with the inserted event e+ are in
self-loop, since the attacker knows that the inserted event is fake. There exists a transition labeled with the erased
event a− from state {0N} to {1N, 2F} in Diagatt(G) since the attacker knows that the event a has occurred. At
each state of Diagopr(G), all transitions labeled with the erased events a− and b− are in self-loop, since the operator
cannot perceive their occurrences after erasure. There exists a transition labeled with the inserted event e+ from
state {0N} to {5N, 6N} in Diagopr(G) since the operator cannot distinguish between e+ and the corresponding
event e. ⋄

de

0N

d

1 ,2N F 3F

5 ,6N N 7N 4F

e+ e+e+

e+
e+

e+

,a a− ,b b−

,b b−,b b−

(a) Diagatt(G)

dba
0N

b

b

d

1 ,2N F 3F

5 ,6N N 7N

4F

,b d

, , ,a d e e+
,a b− −,a b− − ,a b− −,a b− −

,a b− − ,a b− −,e e+

, , ,a d e e+

, , ,a d e e+

, , ,a b e e+

,
,

,

a
d

e
e
+ d

(b) Diagopr(G)

Figure 3: (a) Diagatt(G) and (b) Diagopr(G) for G in Fig. 1(a).

7

Proposition 1: Given a nominal diagnoser Diag(G) = (Xd, Eo, δd, xd,0), let Diagatt(G) = (Xd, Ea, δatt, xd,0) be
the attacker diagnoser. It holds that

1) w ∈ L(Diagatt(G))
⇔ (∃ξ ∈ Ξ)(∃s ∈ L(Diag(G)) [w = ξ(s)];

2) (∀ξ ∈ Ξ)(∀s ∈ L(Diag(G)))[δatt(xd,0, ξ(s)) = δd(xd,0, s)]

Proof: The proof is carried out by recursively considering all possible attack functions. First, we focus on the
“null attack function” that produces no insertions or erasures. Clearly, given a word w ∈ E∗

o , the predicate
w ∈ L(Diag(G)) ⇔ w ∈ L(Diagatt(G)) holds with δatt(xd,0, w) = δd(xd,0, w). Now suppose that the statements
hold for a given attack function ξ. Consider an attack function ξ′ that contains just one more insertion action than ξ
after some observation s1. This means that there exists s1 ∈ L(Diag(G)) with ξ(s1) = w1 and e ∈ Eins such that for
all s = s1s2 ∈ L(Diag(G)), it holds that ξ(s) = w1w2 and ξ′(s) = w1e+w2, while for all other words s ∈ L(Diag(G)),
we have ξ(s) = ξ′(s). Hence, it comes that ξ′(s) ∈ L(Diagatt(G)) and δatt(xd,0, ξ

′(s)) = δatt(xd,0, ξ(s)) = δd(xd,0, s),
since all events e+ ∈ E+ are self-looped at each state of Diagatt(G).

Consider an attack function ξ′ that contains just one more erasure action than ξ. This means that there
exists s1 ∈ L(Diag(G)) with ξ(s1) = w1 and e ∈ Eera such that for all s = s1es2 ∈ L(Diag(G)), it holds that
ξ(s) = w1ew2 and ξ′(s) = w1e−w2, while for all other words s ∈ L(Diag(G)), we have ξ(s) = ξ′(s). Clearly, it
comes that ξ′(s) ∈ L(Diagopr(G)) and δopr(xd,0, ξ

′(s)) = δopr(xd,0, ξ(s)) = δd(xd,0, s), since for all events e ∈ Eera

in Diagopr(G), there exists a parallel event e ∈ E−. As this inductive procedure generates the set Ξ of all attack
functions, the result follows. □

By Statement 1) in Proposition 1, the language of the attacker diagnoser consists of all possible attack words
w, which may correspond to an original observation s produced by G (also perceived by the attacker). According
to Statement 2), the diagnosis state estimation of Diagatt(G) based on w coincides with that of Diag(G) based on
s, where w = ξ(s).

Proposition 2: Given a nominal diagnoser Diag(G) = (Xd, Eo, δd, xd,0), let Diagopr(G) = (Xd∪d∅, Ea, δopr, xd,0)
be the operator diagnoser. It holds that

1) L(Diagopr(G)) = Ws ∪We;
2) w ∈ Ws ⊆ L(Diagopr(G))

⇒ (∃s′ ∈ L(Diag(G)))[s′ = P̂ (w)];

3) ∀w ∈ L(Diagopr(G)) : if w ∈ Ws, δopr(xd,0, w) = δd(xd,0, P̂ (w)); if w ∈ We, δopr(xd,0, w) = d∅.

Proof: Statement 1). By construction, Diagopr(G) includes all words in Ws ∪We. We need to prove that all the
words w ∈ L(Diagopr(G)) either belong to Ws or We. Consider a word w ∈ L(Diagopr(G)) that reaches a state
xd ∈ Xd and only contains the events in Eo, implying that no attack has been performed. At each state all events
e− are in self-loop, which corresponds to the generation of w. By the definition of P̂ , it holds that P̂ (w) ∈ P (L(G)),
i.e., w ∈ Ws. If the word w is generated by executing a transition δopr(x

′
d, e+) = x′′

d with e ∈ Eins, it is also possible

to execute the “parallel” transition δatt(x
′
d, e) = x′′

d and thus P̂ (w) ∈ P (L(G)), i.e., w ∈ Ws. Then, if the word w

yields the dump state d∅, then P̂ (w) /∈ P (L(G)), i.e., w ∈ We, which completes the proof of Statement 1). Similar
to Proposition 1, Statements 2) and 3) can be proved by induction. □

By Statement 1) in Proposition 2, all words in Ws and We can be generated by Diagopr(G). By Statement 2),
a word in Ws generated by Diagopr(G) is perceived by the operator as a corrupted observation s′ ∈ P (L(G)).
Statement 3) implies that: (i) the diagnosis state estimation of Diagopr(G) based on a stealthy word w ∈ Ws

coincides with that of Diag(G) based on s′, where s′ = P̂ (w); (ii) all exposing words w ∈ We yield d∅.

4.2 Joint diagnoser and refining process

Definition 8: A joint diagnoser (JD for short) J-Diag(G) is defined as J-Diag(G) = (R,Ea, δa, r0) = Diagatt(G)
∥Diagopr(G). ⋄

8

As defined, each state of J-Diag(G) is a pair r = (xd, x̄d). We define the set of exposing states as Re =
{(xd, x̄d) ∈ R | x̄d = d∅} reached by exposing words (those in We), and the set of stealthy states as Rs = R\Re

reached by stealthy words (those in Ws). An attacker that aims to remain stealthy should never produce an attack
word w ∈ We yielding an exposing state in Re in J-Diag(G). However, there may exist stealthy states in Rs from
which, following some future evolution of the plant G, an exposing state will necessarily be reached regardless of
all future attacker’s attempts (including insertions and erasures) to remain stealthy. This leads to the notion of
weakly exposing region, denoted as Rwe ⊇ Re, which can be computed iteratively by a procedure in [7]. In the first
iteration,

Rwe := {r ∈ R | (∃e ∈ Eo)[δa(r, e) ∈ Re ⇒
e /∈ Eera ∧ (∀e′ ∈ Eins)[δa(r, e

′) ∈ Re]]}. (2)

The remaining iterations are executed similar to Eq. (2). We do not present the complete procedure here for the
sake of brevity but illustrate it via Example 5. Dually, we define the strongly stealthy region as Rss = R\Rwe ⊆ Rs.

Example 5: Continue Example 4. The joint diagnoser for G is shown in Fig. 4, where the exposing states in
Rwe are highlighted in gray, while the stealthy states in Rwe are highlighted in brown. For instance, a stealthy
state ({3F}, {1N, 2F}) is in Rwe, since by Eq. (2) from this state, there exists an unerased event d /∈ Eera

yielding an exposing state ({4F}, {xd,∅}), and meanwhile the inserted event e ∈ Eins also reaches an exposing state
({3F}, {xd,∅}). In plain words, once such a stealthy state is reached, all attempts of an attacker to prevent it from
reaching a subsequent exposing state will fail. ⋄

b

d
d

b

a

d

d

a−

b−

e+

b−

a−

b−

e+

e+

e+

e+

e+

e+

e+

e+

b

e+

4 ,F d

3 ,F d

3 ,F d 5 6 ,N N d

4 ,F d

0 ,N d

4 ,F d 3 ,F d

1 2 ,N F d

e+

e

,b b−

3 ,0F N 3 ,5 6F N N 4 ,7F N

1 2 ,0N F N 1 2 ,5 6N F N N

0 ,0N N 0 ,5 6N N N

1 2 ,1 2N F N F 3 ,1 2F N F

4 ,4F F3 ,3F F

a

Figure 4: J-Diag(G) in Example 5.

To characterize the set of all possible stealthy attackers, we can refine J-Diag(G) to ensure that no attack word
reaching a state in Rwe is produced.

Definition 9: Let J-Diag(G) = (R,Ea, δa, r0) be a joint diagnoser. The stealthy joint diagnoser (SJD, for short)
is defined as SJ-Diag(G) = Ac(Rss, Ea, δsa, r0), where Rss = R\Rwe and δsa = δa|Rss×Ea→Rss

. ⋄

The resulting SJD is obtained by removing all states in Rwe from a JD and taking its accessible part.

Theorem 1: Given a plant G, let Diag(G) = (Xd, Eo, δd,
xd,0) be the nominal diagnoser and SJ-Diag(G) = (Rss, Ea, δsa, r0) be the SJD. It holds that:

(∀ξ ∈ Ξ)(∀s ∈ L(Diag(G)))

[δsa(r0, ξ(s)) = (xd, x̄d) ⇔ xd = δd(xd,0, s)∧

x̄d = δd(xd,0, P̂ (ξ(s))) ̸= d∅]

9

Proof: (⇐) Assume that δd(xd,0, s) = xd and δd(xd,0, P̂ (ξ(s))) = x̄d. By Propositions 1 and 2, and by x̄d ̸= d∅,

it holds that δd(xd,0, s) = δatt(xd,0, ξ(s)) and δd(xd,0, P̂ (ξ(s))) = δopr(xd,0, ξ(s)), i.e., δatt(xd,0, ξ(s)) = xd and
δopr(xd,0, ξ(s)) = x̄d. By J-Diag(G) = Diagatt(G) ∥Diagopr(G), and by the construction of SJ-Diag(G), it is
δsa(r0, ξ(s)) = (xd, x̄d). (⇒) Assume that δsa(r0, ξ(s)) = (xd, x̄d). By J-Diag(G) = Diagatt(G) ∥Diagopr(G),
and by the construction of SJ-Diag(G), it holds that δatt(xd,0, ξ(s)) = xd and δopr(xd,0, ξ(s)) = x̄d ̸= d∅. By

Propositions 1 and 2, it is δd(xd,0, s) = δatt(xd,0, ξ(s)) and δd(xd,0, P̂ (ξ(s))) = δopr(xd,0, ξ(s)), i.e., δd(xd,0, s) = xd

and δd(xd,0, P̂ (ξ(s))) = x̄d. □

Hence, a state pair rss = (xd, x̄d) in the SJD reached by an attack word w = ξ(s) describes the joint diagnosis
state estimate, where xd represents the correct diagnosis state estimate of the attacker for the original observation
s, and x̄d represents the corrupted diagnosis state estimate of the operator based on the corrupted observation
s′ = P̂ (w).

Finally, we conclude this section by the complexity analysis of the proposed approach. Let Diag(G) be a nominal
diagnoser with |Xd| states. By construction, the attacker diagnoser Diagatt(G) shares the same set of states of
Diag(G); so does the operator diagnoser Diagopr(G) except for the dump state d∅. Since the JD J-Diag(G) is the
parallel composition of Diagatt(G) and Diagatt(G), its maximum number of states is |Xd| × |Xd + 1|. Moreover,
determining if a state of J-Diag(G) is in the strongly stealthy region has linear complexity in the size of J-Diag(G).
Hence, the complexity of building an SJD is O(|Xd|2), which is polynomial in the number of states of the nominal
diagnoser. However, it is well known that the construction of the diagnoser is worst-case exponential with respect
to the number of states in the system. As a result, the overall computational complexity of an SJD is exponential
with respect to the number of states of G.

5 Diagnosability analysis under attack

We show that the proposed JD (resp., the SJD) leads to the solution of Problems 1 and 2 (resp., Problems 3 and
4). The following definition is first required.

Definition 10: Given an attack word w, a diagnosis pair function d : E∗
a → {N,F,U} × {N,F,U} associating

to w ∈ E∗
a a diagnosis state pair is defined as d(w) = (γatt(w), γopr(w)), where γatt and γopr are the attacker and

operator diagnosis functions, respectively. ⋄

From the definitions of γatt and γopr, it holds that d(w) = (γatt(w), γopr(w)) = (γ(s), γ(s′)), where w = ξ(s) and

s′ = P̂ (w). For any ξ, the diagnosis pair function can be computed by using the SJD. Let rss = (xd, x̄d) = δsa(r0, w).
By Theorem 1, the SJD allows one to associate every state to a diagnosis state pair d(rss) = d(w), i.e., γ(xd) = γ(s)
and γ(x̄d) = γ(s′) are the diagnosis state of the attacker and operator, respectively.

The set of all diagnosis state pairs is defined as D = {N,F,U} × {N,F,U}, which can be partitioned into
D = Dc ∪ Dw ∪ Dh, where Dc = {(N,N), (U,U), (F, F)}, Dw = {(N,U), (N,F), (U,N), (U,F)}, and Dh =
{(F,N), (F,U)}. The motivation for this partition will be clear later.

Definition 11: Let SJ-Diag(G) be an SJD. A state rss is correct if d(rss) ∈ Dc; wrong non-harmful if d(rss) ∈ Dw;
harmful if d(rss) ∈ Dh. Denote the set of correct states, the set of wrong non-harmful states, and the set of harmful
states by Rsc, Rsw, and Rsh, respectively. ⋄

When the SJD is in a correct state, the operator correctly computes the diagnosis state regardless of the fact
that an attack has occurred. When the SJD reaches a wrong non-harmful state, the operator computes a wrong
diagnosis state based on the corrupted observation due to an attack, which is inconsistent with the diagnosis state
based on the original observation. Note that, in such a case, the fault diagnosis is manipulated due to the attack
but does not pose a real danger.

Finally, harmful states of the SJD correspond to the detection of the fault based on the original observation,
and no detection based on corrupted observation. Its physical interpretation is that the attacker itself has already
confirmed that the fault has occurred, but it induces the operator to be unable to claim the fault occurrence.
Intuitively, the presence of a harmful state is related to Problem 3.

Theorem 2: Given a plant G, there exists an SWH-attacker if and only if the SJD SJ-Diag(G) contains a harmful
state, i.e., Rsh ̸= ∅.

10

Proof: (If) Assume that there exists a harmful state rss in SJ-Diag(G) such that d(rss) ∈ Dh, where rss =
δsa(r0, w). By Theorem 1, associated with rss is an attack word w such that d(w) = d(rss) ∈ Dh. Hence, there
exists a sensor attacker ϕ that alters the observation s into s′ such that (γ(s), γ(s′)) = (γatt(w), γopr(w)) = d(w),
i.e., (γ(s), γ(s′)) ∈ {(F,N), (F,U)}. By Definition 4, the sensor attacker ϕ is weakly harmful. By the construction
of SJ-Diag(G), ϕ is also stealthy.

(Only if) Assume that there exists a SWH-attacker ϕ. By Definition 4, there exists an observation s such that
s is corrupted into s′ satisfying (γ(s), γ(s′)) ∈ {(F,N), (F,U)}. By Theorem 1, there necessarily exists a state
rss in SJ-Diag(G) by executing word w such that d(rss) = (γ(xd), γ(x̄d)) = (γ(s), γ(s′)) ∈ {(F,N), (F,U)}, i.e.,
d(rss) ∈ Dh. Hence, Rsh ̸= ∅. □

In many practical cases, the attacker may only be interested in the impact of fault diagnosis, while it is willing
to accept the risk of being discovered. Based on this consideration, we give the following result to solve Problem 1
(that is a relaxation of Problem 3).

Corollary 1: Given a plant G, there exists a WH-attacker if and only if the JD J-Diag(G) contains a harmful
state.

This corollary can be considered as a relaxation of Theorem 2; its proof is similar to that of Theorem 2. An
example is provided to illustrate the above results.

Example 6: The corresponding SJD is omitted since it is part of the JD in Fig. 4 without states in Rwe. Let
w1 = a−e+ be an attack word that yields the wrong non-harmful state ({1N, 2F}, {5N, 6N}). This implies that
the diagnosis state of the attacker based on s = a is “U”, while the diagnosis state of the operator based on s′ = e
is “N”. At this point, the attacker has doubted if the fault has occurred or not; however, the operator is certain
that the fault has not occurred.

Let the evolution continue. Another word w2 = a−e+b−d yields the harmful state ({4F}, {7N}). At this point,
the attacker is certain that the fault has occurred based on s = abd; however, the operator persists in its opinion
that the fault has not occurred based on the corrupted observation s′ = ed. By Theorem 2, there exists an SWH-
attacker. It produces the attack word a−e+b−d by first erasing the occurrence of event a, then inserting e+, and
finally erasing event b while observing abd.

By contrast, let us focus on w = ab− that yields another harmful state ({3F}, {1N, 2F}). By Corollary 1, there
exists a WH-attacker that produces the attack word w = ab−. However, the attack word w = ab− yields a state
{3F, 1N2F} ∈ Rwe as discussed in Example 5. Therefore, the WH-attacker is not stealthy. This conclusion can
also be reached in terms of language by ϕ(abd) = ad /∈ P (L(G)). ⋄

As discussed before, when the SJD of G reaches a harmful state, the attacker currently conceals to the operator
the fact that a fault has occurred in G. If it further remains indefinitely in a cycle formed with harmful states, it
is possible that the attacker may permanently conceal the fault occurrence to the operator. In addition, the cycle
should not be exclusively caused by the inserted events. The reason is that by Definition 6, the existence of an
SH-attacker implies a sufficiently long faulty word, but along the cycle exclusively formed with the inserted events,
the number of events generated after the fault does not increase. Motivated by this, we provide the following result
to solve Problem 4.

Theorem 3: Given a plant G, there exists an SSH-attacker if and only if there exists a reachable cycle

cl = rss,1
e1−→ rss,2

e2−→ · · · el−1−−−→ rss,l
e1−→ rss,1

in the SJD SJ-Diag(G), satisfying condition:

(∃ j ∈ {1, 2, . . . , l}) [rss,j ∈ Rsh ∧ ej ∈ Eo ∪ E−] . (3)

Proof: (If) Assume that in SJ-Diag(G) there exists a cycle rss,1
e1−→ rss,2

e2−→ · · · el−1−−−→ rss,l
e1−→ rss,1 satisfying

condition (3). Let δsa(rss,0, w) = rss,1. Since rss,j = (xd,j , x̄d,j) ∈ Rsh for some j ∈ {1, 2, . . . , l}, from the
construction of SJ-Diag(G), it can be seen that rss,j ∈ Rsh for all j ∈ {1, 2, . . . , l}.

11

The cycle cl may correspond to a cycle xd,1
e′1−→ xd,2

e′2−→ · · ·
e′l−1−−−→ xd,l

e′1−→ xd,1 inDiagatt(G), where xd,j = (xj , F)
for all j ∈ {1, 2, . . . , l}. Let δatt(xd,0, w

′) = xd,1. By Proposition 1, it is we1e2 · · · el = ξ(w′e′1e
′
2 · · · e′l). By the

assumption that there exists an event ej ∈ Eo ∪ E− in cl, associated with w′e′1e
′
2 · · · e′l is an arbitrarily long faulty

word σY = σt ∈ L(G), where |t| ≥ n for all n ∈ N, such that P (σ) = w′ and P (t) = e′1e
′
2 · · · e′l.

The cycle cl may also correspond to a cycle x̄d,1
e′′1−→ x̄d,2

e′′2−→ · · ·
e′′l−1−−−→ x̄d,l

e′′1−→ x̄d,1 in Diagopr(G). The following
two cases could have occurred:

Case i): x̄d,1 = x̄d,2 = · · · = x̄d,l. This means that ej ∈ E− for all j ∈ {1, 2, . . . , l}, since the occurrence
of event e− ∈ E− does not update state x̄d,j . Let δopr(x̄d,0, w

′′) = x̄d,1. By Proposition 2, it holds that w′′ =

P̂ (we1e2 · · · el). Associated with w′′ is a bounded normal word σN,1 ∈ L(G) such that P (σN,1) = w′′. Hence, it is

P (σN,1) = w′′ = P̂ (we1e2 · · · el) = P̂ (ξ(w′e′1e
′
2 · · · e′l)) = P̂ (ξ(P (σt))) = ϕ(P (σY)). By Definition 6, there exists an

SH-attacker for G.
Case ii): In states x̄d,1, x̄d,2, · · · , x̄d,l, there exist n,m ∈ {1, · · · , l} such that x̄d,n ̸= x̄d,m. This means that

ej ∈ Eo ∪ E+ for some j ∈ {1, 2, . . . , l}. Let δopr(xd,0, w
′′) = x̄d,1. By Proposition 2, it holds that w′′e′′1e

′′
2 · · · e′′l =

P̂ (we1e2 · · · el). If x̄d,j = (xj , N) for all j ∈ {1, 2, . . . , l}, i.e., x̄d,j are negative states, there exists an unbounded
normal word σN,2 ∈ L(G) such that P (σN,2) = w′′e′′1e

′′
2 · · · e′′l . Similar to Case i), it holds that P (σN,2) = ϕ(P (σY)).

If x̄d,j = (xj , U) for all j ∈ {1, 2, . . . , l}, i.e., x̄d,j are uncertain states, as proved in [2], there also exists an unbounded
normal word σN,3 such that P (σN,3) = w′′e′′1e

′′
2 · · · e′′l . In addition, it holds that ϕ(P (σY)) = P (σN,3). Otherwise,

the set x̄d,j contains both normal and uncertain states, there also exists an unbounded normal word σN,4 such that
ϕ(P (σY)) = P (σN,4) = w′′e′′1e

′′
2 · · · e′′l . By Definition 6, the existence of σY and σN,2 or σN,3 or σN,4 indicates the

existence of an SH-attacker.
For both Cases i) and ii), since the SJD contains only stealthy attacks, the SH-attacker is also stealthy.
(Only if) Assuming in fact that there exists an SSH-attacker, the following situation must occur: (a) G can

generate a word σ that ends with a fault event; there exists a normal word σ′ satisfying ϕ(P (σ)) = P (σ′); (b) the
word σ can be extended indefinitely to a word σk = σe1e2 · · · ek (for k ≥ 1); there also exists a normal word σ′

k ∈ LN

such that ϕ(P (σk)) = P (σ′
k) (for k ≥ 1). Let the attack word w = ξ(P (σ)) reach a state rss,1 in SJ-Diag(G). The

following two cases could have occurred:
Case i): rss,1 is a harmful state with d(rss,1) ∈ {(F,N), (F,U)}). Starting from rss,1, as k grows, by Assumption

A2, the attack word wk = ξ(P (σk)) (for k ≥ 1) also has an unbounded length and leads to a harmful state. Since
the number of states of the SJD is finite, this is only possible if there exists a cycle of harmful states. Since
σk = ufe1e2 · · · ek is of unbounded length, at least one event e in Eo ∪ E− is contained along the harmful cycle.

Case ii): rss,1 is a non-harmful state with d(rss,1) ∈ {(U,N), (U,U)}): Starting from rss,1, as k grows,
by Assumption A2, the attack word wk = ξ(P (σk)) (for k ≥ 1) of unbounded length is generated. However,
according to Assumption A3 that Diag(G) does not contain indeterminate cycles, every uncertain state will reach
a positive state in Diag(G) following sk = P (σk); correspondingly, the SJD will reach a harmful state by executing
wk = ξ(P (σk)) (for k ≥ 1). Thus, the proof of Case ii) reduces to the case of i).

For both Cases i) and ii), the presence of an SSH-attacker implies that the SJD must contain cycles satisfying
condition (3), which completes the proof. □

Different from the classical diagnosability verification by searching indeterminate cycles in a nominal diagnoser,
the test of cycles in the SJD is self-contained. Namely, it does not require the examination of corresponding plant
cycles. The reason is that once a harmful state is reached, a fault has certainly occurred previously (i.e., the
diagnosis state of the attacker is “F”). As one continues along the cycle satisfying condition (3), the number of
events generated after the fault increases indefinitely.

Finally, ignoring the attacker’s stealthiness, the following result only guarantees its strong harmfulness, i.e., the
impact on diagnosability, and serves as a solution to Problem 2 (that is a relaxation of Problem 4), whose proof is
similar to that of Theorem 3 and thus omitted.

Corollary 2: Given a plant G, there exists an SH-attacker if and only if the JD J-Diag(G) contains a cycle
satisfying condition (3).

Example 7: Let us revisit the SJD of G in Fig. 1(a). Since SJ-Diag(G) has a reachable cycle (4F, 7N)
b−→ (4F, 7N)

satisfying condition (3) (highlighted by red lines), by Theorem 3, there exists an SSH-attacker for G. From SJ-
Diag(G), associated with the above cycle is an attack word w = a−b−e+db

k, which is exactly produced by the

12

SSH-attacker ϕ described in Example 3. In addition, an inspection of SJ-Diag(G) implies the attack actions of the
attacker ϕ: first erasing event a and b and then inserting event e while observing abdbk.

An SSH-attacker does not always exist. We consider a new plant H which is a copy of G in Fig. 1(a) but
state 4 has a self-loop transition labeled with g. It can be verified that the JD J-Diag(H) has a reachable cycle

(4F, 7N)
b−→ (4F, 7N) satisfying condition (3). By Corollary 2, there exists an SH-attacker ϕ for H. Again consider

the attack word w = a−b−e+db
k. In J-Diag(H), it leads to state (4F, 7N). Using Eq. (2), we have (4F, 7N) ∈ Rwe.

Hence, the SH-attacker ϕ that produces a−b−e+db
k is no longer stealthy for H. In essence, if H infinitely generates

the unerased event g ∈ Eo\Eera at state 4, it comes that ϕ(abdg) = edg ∈ L(ϕ,H), but /∈ P (L(H)). Finally, there
is no SSH-attacker for H. ⋄

6 Conclusions and future work

In this paper, we have investigated the fault diagnosis in the case of attacks that corrupt sensor readings by
inserting or erasing event observations. We formally formulate the problem of diagnosability under attack. From
the attacker’s point of view, not only its impact on the diagnosability but also its stealthiness should be taken into
account. To this end, we propose a stealthy joint diagnoser (SJD), from which necessary and sufficient conditions
for the existence of certain attackers related to diagnosability are presented.

Note that the proposed approach allows the integration with other common event-based techniques (e.g. super-
visory control). To move forward, we further consider diagnosability enforcement if a system is no longer diagnosable
due to the attack. Second, it is interesting to explore the use of verifier automata [3] or a polynomial diagnoser [12]
for diagnosis and diagnosability verification under attack.

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. 2nd ed. New York, NY, USA:
Springer, 2008.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-
event systems,” IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[3] T. S. Yoo and S. Lafortune, “Polynomial-time verification of diagnosability of partially observed discrete-event
systems,” IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1491–1495, Sep. 2002.

[4] S. Takai, “A general framework for diagnosis of discrete event systems subject to sensor failures,” Automatica,
vol. 129, p. 109669, Jul. 2021.

[5] L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection and mitigation of classes of attacks in
supervisory control systems,” Automatica, vol. 97, pp. 121–133, Nov. 2018.

[6] Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Joint state estimation under attack of discrete event systems,” IEEE
Access, vol. 9, pp. 168 068–168 079, Dec. 2021.

[7] ——, “Selection of a stealthy and harmful attack function in discrete event systems,” Sci. Rep., vol. 12, no. 1,
p. 16302, Sep. 2022.

[8] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis of sensor deception attacks at the super-
visory layer of Cyber-Physical Systems,” Automatica, vol. 121, p. 109669, Nov. 2020.

[9] Y. Li, C. N. Hadjicostis, and N. Wu, “Tamper-tolerant diagnosability under bounded or unbounded attacks.”
in Proc. 16th Int. Workshop Discrete Event Syst., 2022, pp. 52–57.

[10] F. Lin, S. Lafortune, and C. Wang, “Diagnosability of discrete event systems under sensor attacks,” in Proc.
22th IFAC World Congr., 2023, pp. 32–38.

[11] T. Kang, C. Seatzu, Z. Li, and A. Giua, “Fault diagnosis of discrete event systems under attack,” in Proc.
IEEE 62nd Conf. Decis. Control (CDC), 2023, pp. 7923–7929.

[12] F. G. Cabral, M. V. Moreira, O. Diene, and J. C. Basilio, “A Petri net diagnoser for discrete event systems
modeled by finite state automata,” IEEE Trans. Autom. Control, vol. 60, no. 1, pp. 59–71, Jan. 2015.

13

