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Abstract

This paper focuses on the problem of enforcing current-state opacity of a discrete event system via editing
functions. In more detail, the observation exposed to an intruder is modified, either erasing or inserting some
observations, so as to guarantee that the intruder is not able to discover the predefined secret. The notion of
concealability, which formalizes the possibility of maintaining the secret hidden, is introduced starting from
defining some illegal states on a particular structure called joint observer. An algorithm for the analysis of
concealability is proposed. Finally, an online procedure to make the system opaque is proposed by selecting an
editing function.
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1 Introduction
A rich variety of problems related to the security of discrete event systems (DESs) can be formulated in terms of
opacity. A system is said to be opaque with respect to some secret information if an unauthorized observer, called
intruder, can never infer the secret information by observing the system.

In a DES, secret information is normally described by a set of states or by a language. Accordingly, opacity
problems can be classfied into language-based opacity [1] and state-based opacity, where the two notions are
shown to be equivalent [22, 23]. The type of state opacity includes initial-state opacity [2], current-state opacity
[3], K-delayed-state opacity [4], and infinite-state opacity [5]. In this paper, we consider current-state opacity for
deterministic finite state automata (DFA).

For a DFA that is not current-state opaque, two main strategies have been proposed in the literature to enforce
opacity. The first one, reported in [7, 8, 9, 21], uses supervisory control to disable those evolutions that disclose
the secret. The second one, explores approaches based on editing output observations to mislead the intruder.

In [10, 11, 12], the output observations can only be edited by inserting fake events, while in [13, 14] and in our
work, observations can be modified through the insertion or erasure of events. A detailed comparison between the
developed results in this research and those in [13, 14] will be presented in this section.

Other related works touch upon opacity enforcement through editing functions with different focuses. In
[15] abstraction approaches are used to derive opacity equivalent reduced-complexity models. In [16] a modular
opacity enforcement which extends the results in [14] is proposed. The selection of dynamic masks for opacity
enforcing is addressed in [17, 18].

In our approach for opacity enforcement, we assume that an operator is capable of editing the observation
visible to the intruder. In particular, only the events in a given set Eins may be inserted in the intruder observation,
and only those events in a given set Eera may be erased.

In this work, a joint observer, which has been proposed to solve problems of state estimation under attack
[19, 20], is adopted to enumerate all admissible and feasible editing behavior. The parallel composition of two ap-
propriately modified observers, namely the operator observer and the intruder observer, is called a joint observer.

Concealability formalizes the ability of the operator to enforce opacity by editing output sequences. To analyze
concealability, we trim the joint observer recursively by removing illegal states. It is proved that a secret set is
concealable if and only if the corresponding trimmed joint observer is non-empty. Finally, we propose an online
procedure to compute an editing function to enforce opacity.

This research has a close connection with [13, 14], yet there are several significant differences in observation
editing. Unlike the studies in [13, 14], where the editing between two consecutive events depends on the past
string and the upcoming event, the insertion decision in our method depends only on the past string. Furthermore,
while the work in [13, 14] assumes that the intruder and operator have the same set of observable events, this paper
considers a more general case where the intruder’s observable event may be a subset of the operator’s. We also
assume that erasures and insertions are limited to specific observable events.

The proposed approach offers a computational advantage. Consider a plant with n states and m observable
events. In [13, 14], the All Edit Structure under Constraints is used. It has up to 4nm states and its construction
has time complexity of O(43n), while we use the Trimmed Joint Observer which contains up to 4n states with
time complexity of O(42n).

2 Preliminaries
An alphabet E is a set of symbols. The set of all finite strings over E is denoted as E∗ (including the empty
string ε ∈ E∗). The concatenation of two strings σ1 = e1,1e1,2 · · · e1,n and σ2 = e2,1e2,2 · · · e2,m is σ1σ2 =
e1,1e1,2 · · · e1,ne2,1e2,2 · · · e2,m. The definition of concatenation can be extended to two sets of strings L1,L2 ⊆
E∗ as L1L2 = {σ1σ2|σ1 ∈ L1 ∧ σ2 ∈ L2}. A string σ is called a prefix of a string σ′ if there exists a string σ′′

such that σσ′′ = σ′. The prefix set of a string σ ∈ E∗ is denoted as σ̄ = {σ1 ∈ E∗|(∃σ2 ∈ E∗)σ1σ2 = σ}. For a
subset of an alphabet E′ ⊆ E, a string σ ∈ E∗ and e ∈ E, the projection of σ under E′ is defined as PE′(ε) = ε,
PE′(σe) = PE′(σ)e if e ∈ E′ and PE′(σe) = PE′(σ), otherwise.

A deterministic finite automaton (DFA) is a four-tuple G = (Q,E, δ, q0), where Q is the set of states, E is the
set of events, δ : Q × E → Q is the partial transition function such that δ(q, e) = q′ means that the occurrence
of e leads G from state q to q′, and q0 is the initial state. Function δ can be extended to δ(q, ε) = q, δ(q, σe) =
δ(δ(q, σ), e), where σ ∈ E∗ and e ∈ E. The language generated by G is defined by L(G) = {σ ∈ E∗|δ(q0, σ)!},
where ! means “is defined”.

In order to make the presentation more intuitive, we may also denote δ ⊆ Q× E ×Q as (q, e, q′) ∈ δ if δ(q, e) = q′.
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In a partially observed DFA, Eo ⊆ E denotes the set of events whose occurrences are observable by an external
agent, while Euo = E\Eo denotes the set of unobservable events. The execution of a string σ ∈ L(G) ⊆ E∗

produces the observation PEo
(σ).

The unobservable reach of state q ∈ Q is defined as UREo
(q) = {q′ ∈ Q|(∃σ ∈ E∗

uo)δ(q, σ) = q′}. The
unobservable reach of a set of states Q′ ⊆ Q is denoted by UREo(Q

′) =
⋃

q∈Q′ UREo(q).
The observer [6] of a DFA G = (Q,E, δ, q0) with a set of observable events Eo, is a DFA O(G,Eo) =

(C,Eo, δobs, c0) with a set of states C ⊆ 2Q, transition function δobs : C × E∗
o → C such that δobs(c, ω) = c′

with c′ = {q′ ∈ Q|(∃q ∈ c)(∃σ ∈ E∗)δ(q, σ) = q′ ∧ PEo
(σ) = ω}, and initial state c0 = UREo

(q0) coinciding
with the unobservable reach of the initial state. Note that L(O(G,Eo)) = PEo

(L(G)), i.e., the observer generates
the observed language of G. Furthermore, given an observation ω ∈ PEo(L(G)), the possible states at which the
system could be, called consistent states, is S(ω) = δobs(c0, ω).

For two automata G1 = (Q1, E1, δ1, q01) and G2 = (Q2, E2, δ2, q02), the parallel composition of G1 and G2

is G12 = G1||G2 = (Q1 ×Q2, E1 ∪ E2, δ12, (q01, q02)), where a state of G12 is a pair (q1, q2) ∈ Q1 ×Q2 with
q1 ∈ Q1 and q2 ∈ Q2. The transition function δ12 satisfies

δ12((q1, q2), e) =


(δ1(q1, e), δ2(q2, e)) if e ∈ E1 ∩ E2

(δ1(q1, e), q2) if e ∈ E1\E2

(q1, δ2(q2, e)) if e ∈ E2\E1

undefined otherwise

3 Problem Statement
We consider a plant represented by a DFA with alphabet E. Let Eint ⊆ E be the set of events observed by an
intruder. For the current-state opacity, the secret information is represented by a subset of states, namely a secret
set QS ⊆ Q. We define the non-secret set as QNS = Q\QS .

Definition 1 (Current-state opacity) Let G = (Q,E, δ, q0) be a DFA, Eint ⊆ E be the set of events that can
be observed by an intruder, and QS ⊆ Q be a secret set. G is said to be current-state opaque with respect to
QS if for all sequences σ ∈ L(G) with δ(q0, σ) = q ∈ QS , there exists another sequence σ′ ∈ L(G) such that
δ(q0, σ

′) = q′ /∈ QS and PEint
(σ) = PEint

(σ′).

In plain words, a DFA G is current-state opaque with respect to a secret set QS if for all sequences that
lead to a secret state, there exists an observation equivalent sequence that leads to a non-secret state. In such a
case, an intruder that observes the evolution of the system can never establish if G is in a secret state. It has
been remarked in [3] that G is current-state opaque with respect to QS if and only if the observer O(G,Eint) =
(Cint, Eint, δint, c0,int) verifies the predicate (∀c ∈ Cint)c ̸⊆ QS , since this means that for all observations
ω ∈ PEint

(L(G)), the set of consistent states satisfies S(ω) ̸⊆ QS . For a plant G that violates the definition
of current-state opacity, we define the language that reveals the secret as Ll(G) = {ω ∈ PEint

(L(G))|(∀σ ∈
L(G))PEint

(σ) = ω ⇒ δ(q0, σ) ∈ QS}.

3.1 Problem setting and editing function
Given a plant that is not current-state opaque, we assume that an operator can edit the observation it generates,
thus misleading the intruder so as to enforce opacity. This setting is summarized in Fig. 1, where Eope ⊆ E
is a set of observable events by the operator, Eera ⊆ Eint (resp. Eins ⊆ Eint) is a set of events that can be
erased (resp. inserted), and Ee = Eope ∪ E+ ∪ E− be the editing alphabet with E+ = {e+|e ∈ Eins} and
E− = {e−|e ∈ Eera}. Typically, we assume that Eint ⊆ Eope.

G PEope
: E∗ → E∗

ope φ : E∗
ope → E∗

e µ : E∗
e → E∗

int
Generated

σ ∈ E∗

Operator

ω ∈ E∗
ope

Edited

ωe ∈ E∗
e

Intruder

ω′ ∈ E∗
int

Operator

Plant Projection Editing function Intruder mask

observation string observation
(edited)

string

Figure 1: Description of the proposed setting for opacity enforcement via editing function.

Note that the presented approach can also be applied to non-deterministic finite automata since the construction of the current-state
observer for a DFA and an NFA follows the same procedure.
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q0 q1 q2 q3
a b a

c c

Figure 2: A DFA model of a simple manufacturing system.

Given a string ω ∈ PEope
(L(G)) ⊆ E∗

ope produced by the plant, the operator can edit it to obtain a string
ωe ∈ E∗

e by inserting in ω an arbitrary number of events in E+ and by arbitrarily changing any event e ∈ Eera

with the corresponding event e− ∈ E−.

Definition 2 (Editing function) An editing function is a mapping φ : E∗
ope → E∗

e such that for ω ∈ E∗
ope and

e ∈ Eope:
φ(ε) ∈ E∗

+

φ(ωe) ∈
{

φ(ω)eE∗
+ if e /∈ Eera;

φ(ω){e, e−}E∗
+ if e ∈ Eera.

Note that an edited string is differently perceived by the operator and the intruder. Based on the fact that the
operator knows that string ωe = φ(ω) ∈ E∗

e corresponds to observation ω = φ−1(ωe), we define the operator
mask as follows.

Definition 3 (Operator mask) An operator mask µope : E
∗
e → E∗

ope is recursively defined as follows: µope(ε) =
ε and for ωe ∈ E∗

e , e′ ∈ Ee,

µope(ωee
′) =

{
µope(ωe)e, if e′ = e ∈ Eope ∨ e′ = e− ∈ E−;
µope(ωe), if e′ ∈ E+.

The intruder perceives a string ωe ∈ E∗
e as if all the events in E+ correspond to those generated by the plant

while it ignores the events in (Eope\Eint)∪E−. Hence, ωe corresponds to an edited string through the following
mask.

Definition 4 (Intruder mask) An intruder mask µint : E
∗
e → E∗

int is recursively defined as follows: µint(ε) = ε
and for ωe ∈ E∗

e , e′ ∈ Ee,

µint(ωee
′) =

{
µint(ωe)e, if e′ = e ∈ Eint ∨ e′ = e+ ∈ E+;
µint(ωe), if e′ ∈ E− ∪ (Eope\Eint).

Note that the edited intruder observation may be ω′ = µint(ωe) /∈ PEint(L(G)), i.e., it corresponds to none
of the possible observations of the intruder. In such a case the editing function is not stealthy, i.e., the intruder is
aware that the observation has been edited.

Example 1 A manufacturing system can be modeled as the DFA shown in Fig. 2, where QS = {q3} (in grey),
Eope = {a, b, c}, and Eint = {a, c}. It consists of a buffer with two slots. In state q0 the buffer is empty, in state
qi (for i = 1, 2) only slot i is occupied, and in state q3 the buffer is full. Items enter the system from slot 1 (event
a) and leave the system from slot 2 (event c). An item in slot 1 can be moved to slot 2 (event b).

As an example, if sequence σ = abacbc occurs, the observations of the operator and the intruder are
PEope(σ) = abacbc and PEint(σ) = aacc, respectively.

Now, assume that Eins = Eera = {c} and φ(abacbc) = abc+acbc−. This means that the operator edits the
observation by inserting a fake c after the occurrence of ab and erasing the observation produced by the second
occurrence of c. The observation of the intruder will be µint(abc+acbc−) = acac.
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3.2 Joint observer
To better clarify the set of consistent states computed by an operator and an intruder for a given edited word ωe,
we use two observers on the editing alphabet Ee, i.e., the edited operator observer and the edited intruder observer.

Definition 5 (Edited operator observer) Let O(G,Eope) = (Cope, Eope, δ̂ope, c0,ope) be the observer of the
operator. The edited operator observer is Ωope(G) = (Cope, Ee, δope, c0,ope) where the transition function
δope : Cope × E∗

e → Cope satisfies: for c ∈ Cope and e′ ∈ Ee,

δope(c, e
′) =


δ̂ope(c, e), if (e′ = e ∈ Eope ∨ e′ = e− ∈ E−)

∧δ̂ope(c, e)!;
c, if e′ = e+ ∈ E+;

undefined, otherwise.

The edited operator observer can be computed by Algorithm 1. For the current-state observer of the operator,
line 2 adds self-loops labelled by all inserted events e+ at each state, and line 4 adds an event e− in parallel with
each e.

Algorithm 1: Computation of the edited operator observer
Input: A DFA G = (Q,E, δ, q0) and the current-state observer of an operator

O(G,Eope) = (Cope, Eope, δ̂ope, c0,ope).
Output: The edited operator observer Ωope(G) = (Cope, Ee, δope, c0,ope).

1 Initialization: δope ← δ̂ope.
2 δope ← δope ∪ {(c, e+, c)|c ∈ Cope ∧ e+ ∈ E+}.
3 foreach (c, e, c′) ∈ δ̂ope with e ∈ Eera do
4 δope ← δope ∪ {(c, e−, c′)}.
5 Output Ωope(G) = (Cope, Ee, δope, c0,ope).

Proposition 1 Given an edited operator observer Ωope(G) = (Cope, Ee, δope, c0,ope),

(a) there exists an observation ω ∈ PEope
(L(G)) generated by the plant and an editing function φ such that

φ(ω) = ωe if and only if ωe ∈ L(Ωope(G));

(b) for all strings ωe ∈ L(Ωope(G)), the current-state estimation of the operator with the observation ω =
µope(ωe) is Sope(ω) = δope(c0,ope, ωe).

Proposition 1, as well as Propositions 2 and 3 in the following, are proved in the Appendix.
In simple words, the language of the edited operator observer consists of all words that can be obtained by

editing a system observation ω. In this observer, φ(ω) yields the sequence consistent with ω.

Definition 6 (Edited intruder observer) Let O(G,Eint) = (Cint, Eint, δ̂int, c0,int) be the observer of an in-
truder. The edited intruder observer is Ωint(G) = (Cint ∪ {cd}, Ee, δint, c0,int), where the transition function is
δint : Cint × E∗

e → Cint ∪ {cd} such that for c ∈ Cint and e′ ∈ Ee:

δint(c, e
′) =



δ̂int(c, e), if (e′ = e ∈ Eint ∨ e′ = e+ ∈ E+)

∧δ̂int(c, e)!;
cd, if (e′ = e ∈ Eint ∨ e′ = e+ ∈ E+)

∧δ̂int(c, e) is not defined
c, if e′ ∈ E−;

undefined, otherwise.

while δint(cd, e
′) is undefined for all e′ ∈ Ee.

An edited intruder observer can be computed by Algorithm 2. For the current-state observer of the intruder,
line 2 adds self-loops labelled by all erased events e−, and line 4 adds an event e+ in parallel with event e. For
an event e that is not enabled at a state c, line 7 adds an arc from c to cd labelled by e. If e ∈ Eins, line 9 adds
an arc with the same direction labelled by e+. As mentioned, the intruder mask µint maps an edited sequence to
an observation of the intruder. For an edited sequence σe ∈ E∗

e , if µint(σe) /∈ PEint(L(G)), the intruder realizes
that this observation has been corrupted, and ωe leads the edited intruder observer to cd.
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Algorithm 2: Computation of the edited intruder observer
Input: A DFA G = (Q,E, δ, q0) and the current-state observer of an intruder

O(G,Eint) = (Cint, Eint, δ̂int, c0,int).
Output: The edited intruder observer Ωint(G) = (Cint ∪ {cd}, Ee, δint, c0,int).

1 Initialization: δint ← δ̂int.
2 δint ← δint ∪ {(c, e−, c)|c ∈ Cint ∧ e− ∈ E−}.
3 foreach (c, e, c′) ∈ δ̂int with e ∈ Eins do
4 δint ← δint ∪ {(c, e+, c′)}.
5 foreach c ∈ Cint and e ∈ Eint do
6 if δ̂int(c, e) is not defined then
7 δint ← δint ∪ {(c, e, cd)}.
8 if e ∈ Eins then
9 δint ← δint ∪ {(c, e+, cd)}.

10 Output Ωint(G) = (Cint, Ee, δint, c0,int).

cope,0

{q0}

cope,1

{q1}

cope,2

{q2}

cope,3

{q3}
a b a

c, c− c, c−

c+ c+ c+ c+

(a)

cint,0

{q0}

cint,1

{q1, q2}

cint,2

{q3}
cd

∅

a a

a
c, c+ c, c+

c− c− c−

c, c+

(b)

Figure 3: (a) Edited operator observer and (b) edited intruder observer of the DFA shown in Fig. 2.

Proposition 2 Given an edited intruder observer Ωint(G) = (Cint ∪ {cd}, Ee, δint, c0,int),

(a) its generated language L(Ωint(G)) is {ωe ∈ E∗
e |µint(ωe) ∈ PEint(L(G))}({ε} ∪ Ee) ;

(b) for all strings ωe ∈ L(Ωint(G)) and ω = µint(ωe):

i) if ω ∈ PEint
(L(G)), the current-state estimation of the intruder with the observation ω = µint(ωe) is

Sint(ω) = δint(c0,int, ωe);

ii) if ω /∈ PEint(L(G)), then δint(c0,int, ωe) = cd.

In simple words, the edited intruder observer provides the state estimation of the intruder for all possible edited
words.

Example 2 Consider the DFA G in Fig. 2, where QS = {q3}, Eope = {a, b, c}, Eint = {a, c}, and Eera =
Eins = {c}. The edited operator observer Ωope(G) and the edited intruder observer Ωint(G) are visualized in
Figs. 3(a) and (b), respectively. A state of the two observers is represented as a rectangle with two entries. The
first indicates the name of the state and the second stands for the set of states of G corresponding to the current
state of the observer. States cope,3 and cint,2, representing that the observer estimation is contained in the secret
set, are highlighted in grey. State cd of the edited intruder observer is highlighted in orange.
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Definition 7 (Joint observer) Let G = (Q,E, δ, q0) be a DFA, Ωope(G) = (Cope, Ee, δope, c0,ope) be its edited
operator observer, and Ωint(G) = (Cint ∪ {cd}, Ee, δint, c0,int) be its edited intruder observer. A joint observer
of G is defined as Ωjoi(G) = Ωope(G)||Ωint(G) = (X,Ee, δjoi, x0), where X ⊆ Cope × (Cint ∪ {cd}) and
x0 = (c0,ope, c0,int).

Proposition 3 Given a joint observer Ωjoi(G) = (X,Ee, δjoi, x0), an observation ω ∈ PEope
(L(G)) by the

operator, and an editing function φ such that φ(ω) = ωe and ω′ = µint(ωe), it holds:

δjoi(x0, ωe) =

{
(Sope(ω),Sint(ω′)), if ω′ ∈ PEint

(L(G));
(Sope(ω), cd), otherwise.

4 Concealability analysis and opacity enforcement
In this section, we introduce the notion of concealability of a secret set. Then, given a DFA and a concealable
secret set, an online procedure to enforce opacity is proposed.

4.1 Concealability and admissible editing function
Definition 8 (Concealability) Let G = (Q,E, δ, q0) be a DFA, QS ⊆ Q be a set of secret states, Eope and Eint

be sets of events observable by an operator and an intruder, respectively. QS is said to be concealable if there
exists an editing function φ such that for all sequences generated by the original plant σ ∈ L(G), it holds,

µint(φ(PEope(σ))) ∈ PEint(L(G)), (1)

PEint(σ) ∈ Ll(G)⇒ µint(φ(PEope(σ))) /∈ Ll(G). (2)

Eq. (1) means that the intruder always observes a sequence that belongs to the language of the original plant.
Eq. (2) implies that each sequence that can expose the secret can be edited into a sequence that does not expose
the secret. In plain words, a secret set is said to be concealable if the observation can be stealthily edited to prevent
the secret from being revealed.

To analyze the concealability, we partition the states of the joint observer. Consider a plant G = (Q,E, δ, q0),
a secret set QS ⊆ Q, and the joint observer Ωjoi(G) = (X,Ee, δjoi, x0). The set of states of the joint observer is
partitioned as X = Xnst ∪Xexp ∪Xpex ∪Xfex ∪Xreg , where

1. Xnst = {(cope, cint) ∈ X|cint = cd} is the set of states reached in Ωjoi(G) via a non-stealthy edited string
ωe. In such a case the intruder becomes aware that her/his observation has been corrupted.

2. Xexp = {(cope, cint) ∈ X|cope ⊆ QS ∧ cint ⊆ QS} is the set of states reached in Ωjoi(G) via an exposing
edited string ωe which violates opacity. In such a case the intruder infers the secret.

3. Xpex = {(cope, cint) ∈ X|cope ∩ QS ̸= ∅ ∧ cint ⊆ QS} is the set of states reached in Ωjoi(G) via
a potentially exposing edited string ωe. In such a case the intruder believes that a secret state has been
reached while the operator is uncertain: in his opinion the state could either be a secret state or a non-secret
state.

4. Xfex = {(cope, cint) ∈ X|cope ∩ QS = ∅ ∧ cint ⊆ QS} is the set of states reached in Ωjoi(G) via a
falsely exposing string ωe. In such a case the intruder is certain that a secret state has been reached while
the operator is aware that the system is in a non-secret state.

5. Xreg = X\(Xnst ∪Xexp ∪Xpex ∪Xfex) is the set of all other states called regular states.

The objective of the operator is to enforce opacity while remaining stealthy. In such a case, the edited string ωe

should never be exposing or non-stealthy, i.e., a good editing function ensures that the states in Xexp and Xnst are
never reached. We point out, however, that also potentially exposable states are dangerous since the belief of the
intruder that the plant is in a secret state—albeit based on false information, namely, the edited observation—may
in reality be correct. Based on this fact, it is interesting to explore editing functions that will never reach a set of
illegal states defined as Xil = Xnst ∪Xexp ∪Xpex. Correspondingly, the set of legal states is Xl = X\Xil. To
prevent illegal states being reached, we define the admissibility of an editing function.
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Definition 9 (Admissibility) Let G = (Q,E, δ, q0) be a DFA, QS ⊆ Q be the set of secret states, Ωjoi(G) =
(X,Ee, δjoi, x0) be its joint observer, and Xl ⊆ X be a set of legal states (the corresponding set of illegal states
is Xil = X\Xl). An editing function φ is said to be admissible if for any possible observation of the operator
ω ∈ PEope

(L(G)), the corresponding edited sequence φ(ω) satisfies δjoi(x0, φ(ω)) = x ∈ Xl.

In plain words, an editing function is admissible if it does not reveal the secret or the fact that the output has
been edited.

Proposition 4 Let G = (Q,E, δ, q0) be a DFA, QS ⊆ Q be a secret set, Eope and Eint be sets of events
observable by the operator and the intruder, respectively, and Ωjoi(G) be the corresponding joint observer. QS is
concealable if and only if there exists an admissible editing function.

Proof: (only if) According to Definition 8, if QS is concealable, there exists an editing function φ such
that Eqs. (1) and (2) hold. For a sequence generated by the original plant σ ∈ L(G), the observation of the
operator is PEope(σ) and the editing decision is φ(PEope(σ)). According to Proposition 2, if µint(φ(PEope(σ))) ∈
PEint

(L(G)), then δint(c0,int, φ(PEope
(σ))) ̸= cd, implying δjoi(x0, φ(PEope

(σ))) /∈ Xnst.
If PEint

(σ) ∈ Ll(G), then for all sequences σ′ ∈ L(G), PEint
(σ) = PEint

(σ′) implies δ(q0, σ′) = q′ ∈ QS ,
and further δ(q0, σ) = q ∈ QS . Therefore, the set of states consistent with the observation PEope

(σ) accord-
ing to the operator satisfies Sope(PEope(σ)) ∩ QS ̸= ∅ due to q ∈ Sope(PEope(σ)). By Eq. (2), the edit-
ing decision φ(PEope(G)) satisfies µint(φ(PEope(σ))) /∈ Ll(G) and δint(c0,int, φ(PEope(σ))) ⊈ QS holds.
For each σ ∈ L(G), the corresponding editing decision φ(PEope

(σ)) with δjoi(x0, φ(PEope
(σ))) = (Sope(

φ(PEope
(σ))),Sint(φ(PEope

(σ)))) makes the fact that Sope(φ(PEope
(σ)))∩QS ̸= ∅ implies Sint(φ(PEope

(σ))) ⊈
QS , indicating δjoi(x0, φ(PEope

(σ))) /∈ Xexp ∪Xpex. In other words, the editing function satisfies the predicate
(∀σ ∈ L(G))δjoi(x0, φ(PEope(σ))) = x ∈ Xl, i.e., φ is admissible.

(if) If there exists an admissible editing function φ, then for all operator observations ω ∈ PEope(L(G)) with
δjoi(x0, φ(ω)) = x = (cope, cint) ∈ Xl, both cint ̸= cd and cope ∩ QS ̸= ∅ ⇒ cint ⊈ QS hold. According to
Propositions 2 and 3, if cint ̸= cd, then µint(φ(ω)) ∈ PEint

(L(G)) holds, implying that Eq. (1) is satisfied.
If cope ∩ QS ̸= ∅, there exists a sequence generated by the original plant σ ∈ L(G) such that PEope

(σ) = ω
and δ(q0, σ) ∈ QS . According to Propositions 2 and 3, if cint ⊈ QS , then there exists at least one sequence
generated by the original plant σ ∈ L(G) with PEint(σ) = µint(φ(ω)), δint(q0, σ) /∈ QS holds, which implies
µint(φ(ω)) /∈ Ll(G). Thus, Eq. (2) is satisfied.

Our objective is to describe all admissible editing functions. In addition, we want to provide an algorithm to
choose one of such admissible editing functions when the above set is not empty, which is the case when the secret
is concealable. To this aim, we define a trimmed joint observer.

Definition 10 (Trimmed joint observer) Let G = (Q,E, δ, q0) be a DFA and Ωjoi(G) = (X,Ee, δjoi, x0) be
its joint observer. A trimmed joint observer with respect to a set of illegal states Xil ⊆ X is defined as Ωtj(G) =
(X ′, Ee, δtj , x0), where X ′ contains all states, from which, by a suitable editing action, the operator can prevent
reaching an illegal state, and δtj is the transition relation satisfying

(∀x, x′ ∈ X ′)(∀e ∈ Ee)δjoi(x, e) = x′ ⇒ δtj(x, e) = x′.

A trimmed joint observer can be computed by deleting all illegal states and all states from which an illegal
state can be reached inevitably. Thus, the edited behavior computed in accordance with Ωtj(G) can prevent any
illegal state from being reached. It should be noted that a trimmed joint observer may contain a particular class of
states, called pre-emptive states, which are defined as follows.

Definition 11 (Pre-emptive state) Let G = (Q,E, δ, q0) be a DFA, Ωjoi(G) = (X,Ee, δjoi, x0) be the joint
observer, and Ωtj(G) = (X ′, Ee, δtj , x0) be its trimmed joint observer. A state x ∈ X ′ is said to be pre-emptive
if

(∃e ∈ Eint)δjoi(x, e) /∈ X ′ ∧ (e /∈ Eera ∨ δjoi(x, e−) /∈ X ′)

holds. The set of pre-emptive states is denoted as Xp.

A state of the trimmed joint observer x ∈ X ′ is pre-emptive if there exists an event whose occurrence at
x (even if erased) leads the joint observer outside of X ′. To guarantee that the evolution continues in X ′, an
appropriate event should be inserted pre-emptively at x.

The trimmed joint observer can be computed according to Algorithm 3, which can be intuitively explained as
follows. A state set X0 contains all legal states and the transition relation δtj is equal to δjoi. Line 6 deletes all
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Algorithm 3: Computation of a trimmed joint observer
Input: A DFA G = (Q,E, δ, q0), its joint observer Ωjoi(G) = (X,Ee, δjoi, x0), and a set of illegal

states Xil ⊆ X .
Output: The trimmed joint observer Ωtj(G) = (X ′, Ee, δtj , x0).

1 Initialization: X0 ← X\Xil and δtj ← δjoi.
2 i← 0.
3 repeat
4 i← i+ 1.
5 Xi ← Xi−1

6 δtj ← δtj ∩ (Xi × Ee ×Xi).
7 foreach x ∈ Xi do
8 foreach e ∈ Eope do
9 if δjoi(x, e) /∈ Xi ∧ (e /∈ Eera ∨ δjoi(x, e−) /∈ Xi) then

10 δtj ← δtj\({x} × (Eope ∪ E−)×Xi).
11 if (∀x′ ∈ Xi)(∄ω ∈ E∗

+)δtj(x, ω) = x′ ∧ ((∀e ∈ Eope)δ(x
′, e) ∈ Xi ∨ δ(x′, e−) ∈ Xi)

then
12 Xi ← Xi\{x}.

13 until Xi = Xi−1;
14 X ′ ← Xi\{x ∈ Xi|(̸ ∃ωe ∈ E∗

e )δtj(x0, ωe) = x}.
15 if X ′ = ∅ then
16 Output Ωtj(G) is empty.

17 else
18 δtj ← δtj ∩ (X ′ × Ee ×X ′).
19 Output Ωtj = (X ′, Ee, δtj , x0).

the arcs involving at least one state that does not belong to Xi. If the firing of an unerasable event e ∈ Eope\Eera

leads to a state not in Xi, or both the firing of e ∈ Eera and e− can lead to a state beyond Xi, then an event should
be inserted immediately to prevent the joint observer from reaching a state beyond Xi. Line 10 is used to delete
all the arcs labeled with such events or the corresponding erased events at x. If x cannot reach a non-pre-emptive
state by inserting events, it should be deleted by line 12. If all states are deleted, we have no way to enforce the
current-state opacity of G. Lines 3–13 update the desired state set recursively until no state in Xi can reach an
undesired state by firing an unerasable event. Finally, line 17 removes from Xi all the states that are not reachable
and obtains X ′. The trimmed joint observer Ωtj(G) is finally obtained, with set of states being X ′.

Lemma 1 If Ωtj(G) is not empty, µope(L(Ωtj(G)) = PEope
(L(G)) holds.

Proof: First we observe that, regardless of the fact that Ωtj(G) is empty or not, µope(L(Ωtj(G))) ⊆ PEope
(L(G)).

By Ωjoi(G) = Ωope(G)||Ωint(G), we haveL(Ωjoi(G)) ⊆ L(Ωope(G)). According to Definition 10,L(Ωtj(G)) ⊆
L(Ωjoi(G)) ⊆ L(Ωope(G)). Thanks to Definition 3, we have µope(L(Ωtj(G))) ⊆ µope(L(Ωope(G))) =
PEope(L(G)).

We are left to prove that, if µope(L(Ωtj(G))) ̸= PEope(L(G)), then Ωtj(G) must be empty. Consider a
sequence ω that belongs to PEope

(L(G)) \ µope(L(Ωtj(G))). We show that there does not exist a prefix ω′ ∈ ω̄
such that ω′ ∈ µope(PEope

(L(G))). In fact, let ω′ be the longest among such prefixes. Since ω′ cannot be
continued, any continuation ω′e ∈ PEope

(L(G)) would lead to a condition that reaches an illegal state inevitably.
Hence the state reached in Ωjoi(G) via ω′ should also be forbidden. Since this holds for all prefixes, including the
empty word ε, then µope(L(Ωtj(G))) = ∅, which implies that Ωtj(G) is empty.

Theorem 1 Let G = (Q,E, δ, q0) be a DFA, QS ⊆ Q be a secret set, and Ωtj(G) be its corresponding trimmed
joint observer. QS is concealable if and only if Ωtj(G) is not empty.

Proof: (only if) By contrapositive, suppose that Ωtj(G) is empty. It is clear that there is no legal edited
behavior and G cannot be edited to be current-state opaque.

(if) According to Lemma 1, if Ωtj(G) is not empty, µope(L(Ωtj(G))) = PEope
(L(G)) holds. In other words,

for any sequence that is observed by an operator, there is always at least one edited sequence that can lead to a state
in Ωtj(G). As mentioned in the last section, reaching a falsely exposing state or a regular state does not reveal
neither the secret nor the fact that the observation is being edited. Therefore, G can be edited to be current-state
opaque.
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Example 3 Consider the DFA G in Fig. 2. The joint observer is shown in Fig. 4(a). A state of the joint observer
is represented as a rectangle, where the first entry denotes the name of the state. The second entry (a state set)
is the estimation of the edited operator observer and the third (a state set) is the estimation of the edited intruder
observer. The states in Xnst (Xexp) are highlighted in orange (grey). Now we illustrate the computation of the
trimmed joint observer, as shown in Fig. 4(b).

Initially, it is X0 = X\{x2, x5, x8, x11, x14}. The firing of unerasable event a at x3, x12 and x15 leads to x5,
x14, and x8, respectively. By Lines 9–10, the arcs with label Eope ∪ Ee at x3, x12 and x15 are all deleted. After
deleting these arcs, all states have at least one enabled transition. Therefore, no state is removed, i.e., X1 = X0,
and the recursive process is ended. Finally, the four unreachable states x6, x9, x12 and x15 are removed, i.e.,
X ′ = {x0, x1, x3, x4, x7, x10, x13}, and the pre-emptive state x3, represented by a double rectangle, has only one
output arc corresponding to δtj(x3, c+) = x7. Since Ωtj(G) is not empty, QS is concealable.
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{q1, q2}
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c
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{q0}
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{q2}
{q0}

x3

{q2}
{q1, q2}

x1

{q1}
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{q3}
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x13

{q3}
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c c+
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(b)

Figure 4: (a) The joint observer and (b) the trimmed joint observer of the DFA in Fig. 2, where a double box
denotes a pre-emptive state.

4.2 Complexity Analysis
Now we discuss the computational complexity of our approach. For a partially observable DFA with n states, the
number of states of the current-state observer (for both operator and intruder) is at most 2n and the computational
complexity of the two observers is both in cases O(2n). The number of states in the joint observer is at most
4n and the computational complexity is O(4n) since it is the parallel composition of the two observers. The
trimmed joint observer is always smaller than the joint observer, i.e., it has at most 4n states. By Algorithm 3,
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when computing a trimmed joint observer, we recursively delete the states that can reach illegal states inevitably.
Since at least one state is removed at each execution of the repeat-until loop at line 3, both the repeat-until loop
at line 3 and the foreach loop at line 7 are executed at most 4n times. Therefore, the computational complexity of
constructing a trimmed joint observer is thus O(42n).

4.3 Online Opacity Enforcement via Editing Function
We now propose an online procedure to edit a sequence to prevent the intruder from inferring the secret. Let
G = (Q,E, δ, q0) be a DFA and Ωtj(G) = (X ′, Ee, δtj , x0) be its trimmed joint observer. It has been discussed
in the above section that the language of Ωtj(G) is the legal edited behavior. To enforce G to be current-state
opaque, an editing function φ can be decided by Ωtj(G). The online edited behavior can follow φ, as illustrated
in Procedure 1.
Procedure 1 Online procedure for opacity enforcement

1. Initialization: ω ← ε. /* output sequence */

2. Initialization: ωe ← ε. /* edited sequence */

3. Initialization: xc ← x0. /* current state */

4. Select an inserted event sequence ω+ ∈ E∗
+ such that δtj(xc, ω+) = x /∈ Xp.

5. xc ← x.

6. ωe ← ωeω+. /* φ(ω) = ωe */

7. Wait for an output e.

8. ω ← ωe.

9. Select e′ ∈ {e, e−} such that δtj(xc, e
′)! and let ωe ← ωee

′.

10. xc ← δtj(xc, e
′).

11. Go to step 4.

Initially, both the output sequence ω and the edited sequence ωe are ε and the current state xc is x0. The
operator needs to insert a (possibly empty) sequence of events in E+ to reach a non-pre-emptive state. At a non-
pre-emptive state, the operator waits for an observable event e to be generated by the plant and decides whether it
should be erased or not. These steps are cyclicly repeated.

Example 4 Consider the DFA G in Fig. 2 and its trimmed joint observer Ωtc(G) in Fig. 4(b). If sequence ab is
observed by the operator, the joint observer reaches the pre-emptive state x3, at which only c+ is enabled. Thus,
the operator must insert a fake event c and non-preemptive state x7 is reached. The operator waits for a new event
to be generated: if such an event is c, then it must be erased since c is not enabled at x7 and the observer moves to
state x0.

5 Conclusions and Future Work
This paper proposes a joint observer-based approach to enforce a DFA to be current-state opaque by editing the
output. A joint observer is the parallel composition of the edited operator observer and the edited intruder observer,
which is used to enumerate all feasible edited behaviors. The illegal edit behavior is formalized by the illegal states
of the joint observer, which reveal the secret or violate stealthiness. The generated language of the trimmed joint
observer is the set of all edited words produced by admissible editing functions. Thus, it allows one to perform the
verification of concealability. Finally, we use an online procedure to enforce a DFA to be current-state opaque.

Future work includes extending the proposed approach to the enforcement of initial state opacity. In addition,
it is interesting to consider distributed or decentralized approaches to deal with large-scale systems.
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6 Appendix

6.1 Proof of Proposition 1
(a) By construction, one can readily verify that all observations produced by the plant are strings in the language
of the edited operator observer since PEope

(L(G)) = L(O(G,Eope)) ⊆ L(Ωope(G)): these strings correspond to
a null editing function that does not insert or erase any event. The language of the edited operator observer also
contains additional strings since after each observation it may be possible to insert arbitrary strings of the events
in E+ (which are selflooped at each state) and the occurrence of an event e ∈ Eera can be replaced by an erased
event e− ∈ E− (the two events are always in parallel). These actions exactly define the class of editing functions
as described in Definition 2.

(b) Follows from the fact that Sope(ω) = δ̂ope(c0,ope, ω) = δope(c0,ope, ω), i.e., the set of states consistent
with observation ω can be determined from both observers (nominal and edited ones). An erased event satisfies
µope(e−) = e, and e− is parallel with e. An inserted event satisfies µope(e+) = ε, and e+ is in a self-loop. Thus,
δ̂ope(c0,ope, ω) = δope(c0,ope, ωe).

6.2 Proof of Proposition 2
(a) By Definitions 4 and 6, we have ε ∈ L(Ωint(G)). For an edited sequence ωe ∈ E∗

e , if δint(c0,int, ωe) =
c ̸= cd, then µint(ωe) ∈ PEint(L(G)) and for all edited events e ∈ Ee, δint(c, e)! holds. If δint(c0,int, ωe) = cd,
then µint(ωe) /∈ PEint

(L(G)) and (∄e ∈ Ee)δint(cd, e)!. Therefore, L(Ωint(G)) = {ωe ∈ E∗
e |µint(ωe) ∈

PEint
(L(G))}({ε} ∪ Ee) holds..

(b) i) Follows from the fact that Sint(ω) = δ̂int(c0,int, ω) = δint(c0,int, ω), i.e., the set of states consistent
with observation ω can be determined from both observers (nominal and edited ones). An erased event satisfies
µint(e−) = ε, and e− is in a self-loop. An inserted event satisfies µint(e+) = e, and e+ is parallel with e.
Therefore, it holds δ̂int(c0,int, ω) = δ̂int(c0,int, µint(ωe)) = δint(c0,int, ωe).

ii) As mentioned in (a), for an edited sequence ωe ∈ L(Ωint(G)) with µint(ωe) ∈ PEint(L(G)) and an editing
event e ∈ Ee such that µint(ωee) /∈ PEint

(L(G)), if δ̂int(c0,int, µint(ωe)) = c, then we have δint(c0,int, ωee) =
δint(δint(c0,int, ωe), e) = δint(c, e) = cd.

6.3 Proof of Proposition 3
According to Propositions 1 and 2, for an observation ω ∈ PEobs

(L(G)) and an editing function φ such
that φ(ω) = ωe and ω′ = µint(ωe) ∈ PEint

(L(G)), we have Sope(ω) = δope(c0,ope, ωe) and Sint(ω) =
δint(c0,int, ωe). By Definition 7, δjoi((c0,ope, c0,int), ωe) = (δope(c0,ope, ωe), δint(c0,int, ωe)) = (Sope(ω),Sint(ω′)).
On the other hand, if ω′ /∈ PEint(L(G)), by Proposition 2, δint(c0,int, ω′) = cd holds. In this case, we have
δjoi((c0,ope, c0,int), ωe) = (Sobs(ω), cd).
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