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Abstract

This paper proposes a semi-structural approach to verify the nonblockingness of a Petri net. We construct a structure, called

minimal-maximal basis reachability graph (min-max-BRG): it provides an abstract description of the reachability set of a net while

preserving all information needed to test if the net is blocking. We prove that a bounded deadlock-free Petri net is nonblocking if

and only if its min-max-BRG is unobstructed, which can be verified by solving a set of integer constraints and then examining

the min-max-BRG. For Petri nets that are not deadlock-free, one needs to determine the set of dead markings. This can be done

with an approach based on the computation of maximal implicit firing sequences enabled by the markings in the min-max-BRG.

The approach we developed does not require the construction of the reachability graph and has wide applicability.
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I. INTRODUCTION

As discrete event models, Petri nets are commonly used in the framework of supervisory control theory (SCT) [1]–[4]. From

the point of view of computational efficiency, Petri nets have several advantages over simpler models such as automata [2],

[5], [6]: since states in Petri nets are not explicitly represented in the model in many cases, and structural analysis and linear

algebraic approaches can be used without exhaustively enumerating the state space of a system. Therefore, many important

problems such as liveness enforcement [7], [8] and performance optimization [9] in Petri nets can be efficiently solved using

structural-based approaches.

A suite of supervisory control approaches in discrete event systems focuses on an essential property, namely nonblockingness

[10]–[14]. As defined in [10], nonblockingness is a property prescribing that all reachable states should be co-reachable to a

set of final states representing the completions of pre-specified tasks. Verifying and ensuring the nonblockingness of a system

is a problem of primary importance in many applications and should be addressed with state-of-the-art techniques.

The nonblockingness verification (NB-V) problem in automata has been addressed with a variety of approaches. Lin and

Wonham [15] derived several sufficient conditions for nonblockingness; however, they are not very suitable for systems that

contain complex feedback paths. In [16], [17], a method called hierarchical interface-based supervisory control, which consists

in breaking up a plant into two subsystems and restricting the interaction between them, is developed to verify if a system

is nonblocking. To mitigate the state explosion problem, in the framework of compositional verification [18] an abstraction

approach is proposed in [19] to verify discrete event systems modelled by extended finite-state machines (EFSMs) and such a

verification approach is typically designed for large models consisting of several EFSMs that interact both via shared events

and variables. A detailed complexity analysis concerning nonblockingness in centralized and modular discrete event systems

can be found in [20].

Using Petri net models, the works in [5], [11] study NB-V from the aspect of Petri net languages; however, these methods

rely on the construction and analysis of the reachability graph, which is practically inefficient. Besides, some works [21]–[23]

about enforcing nonblockingness (i.e., designing a controller ensuring the nonblockingness of a Petri net) normally address

the NB-V in advance; however, they still require building the reachability graph as a prerequisite.

The difficulty of enforcing nonblockingness lies in the fact that the optimal nonblocking supervisory control problem is NP-

hard [24]. Moreover, the problem of efficiently verifying nonblockingness of a Petri net without constructing its reachability

graph remains open to date. By this motivation, in this paper, we aim to develop a method to cope with the NB-V problem

in Petri nets.

A state-space abstraction technique in Petri nets, called basis reachability graph (BRG) approaches, was recently proposed

in [25], [26]. In these approaches, only a subset of the reachable markings, called basis markings, are enumerated. This method

can be used to solve marking reachability [27], diagnosis [28], [29], opacity [30], detectability [31] and reconfiguration [32]

problems efficiently. Thanks to the BRG, the state explosion problem can be mitigated and the related control problems can

be solved efficiently. The BRG-based methods are semi-structural since only basis markings are explicitly enumerated in the

BRG while all other reachable markings are abstracted by linear algebraic equations.

On the other hand, in our previous work [33] we show that the standard BRG cannot be directly used to solve the NB-V

problem due to the possible presence of livelocks and deadlocks. In particular, livelocks describe an undesirable non-dead

repetitive behavior such that the system is bound to evolve along a particular subset of its reachability space. Thus, a Petri

net is blocking if a livelock that contains no final markings is reachable. However, the set of markings that form a livelock is

usually hard to characterize and is not encoded in the classical BRG of the system. As a countermeasure, preliminary results
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are presented in [33] to show how it is possible to tailor the BRG to detect livelocks. In more detail, a structure named

the expanded BRG is proposed, which expands the BRG so that all markings in R(N,M0) reached by firing a sequence of

transitions ending with an explicit transition are included. The set of markings in an expanded BRG is denoted as the expanded

basis marking set MBE . However, this approach presents two major drawbacks. First, it only applies to deadlock-free nets,

which is an undesirable restriction considering that dead non-final markings are one of the causes of blockingness. Second,

while the expanded BRG can abstract part of the reachability set, its size can still be very large and its practical efficiency

needs to be improved.

When a system is not deadlock-free, a dead marking in the state space characterizes a condition from which the system

cannot further advance [34]. If there exists a dead marking that is not final (we call such a state a non-final deadlock), the

system is blocking.

Inspired by the classical BRG-based methodology, in this paper, we develop a semi-structural approach to tackle the NB-V

problem. The contribution consists of three aspects:

− We propose a structure called minimal-maximal basis reachability graph (min-max-BRG). In min-max-BRGs, only part

of the state space, namely min-max basis markings, is encoded and all other markings can be characterized as the integer

solutions of a linear constraint set.

− Owing to properties of the min-max-BRG, when a bounded Petri net is known to be deadlock-free, we prove that it

is nonblocking if and only if its min-max-BRG consists of all nonblocking nodes (such a min-max-BRG is said to be

unobstructed), which can be verified by solving a set of integer constraints and then examining the min-max-BRG.

− We generalize the results to arbitrary bounded Petri nets (not necessarily be deadlock-free) and propose a necessary and

sufficient condition for NB-V. Numerical results demonstrate the proposed approach.

The rest of the paper is organized as follows. Some basic concepts and formalisms used in the paper are recalled in Section II.

Section III dissects the NB-V problem. Section IV introduces the min-max-BRG. Section V investigates how min-max-BRGs

can be applied to solving the NB-V problem. Numerical analyses are given in Section VI, while discussions are reported in

Section VII. Conclusions and future work are given in Section VIII.

II. PRELIMINARIES

A. Automata and Petri nets

An automaton [35] is a five-tuple A = (X,Σ, η, x0, Xm), where X is a set of states, Σ is an alphabet of events, η : X×Σ→

X is a state transition function, x0 ∈ X is an initial state and Xm ⊆ X is a set of final states (also called marker states in

[10]). η can be extended to a function η : X × Σ∗ → X .

A state x ∈ X is reachable if x = η(x0, s) for some s ∈ Σ∗; it is co-reachable if there exists s′ ∈ Σ∗ such that η(x, s′) ∈ Xm.

An automaton is said to be nonblocking if every reachable state is co-reachable.

A Petri net [6] is a four-tuple N = (P, T, Pre, Post), where P is a set of m places (graphically represented by circles) and

T is a set of n transitions (graphically represented by bars). Pre : P × T → N and Post : P × T → N (N = {0, 1, 2, · · · })

are the pre- and post- incidence functions that specify the arcs directed from places to transitions, and vice versa in the net,

respectively. The incidence matrix of N is defined by C = Post− Pre. A Petri net is acyclic if there are no directed cycles

in its underlying digraph.
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Given a Petri net N = (P, T, Pre, Post) and a set of transitions Tx ⊆ T , the Tx-induced sub-net of N is a net resulting by

removing all transitions in T \ Tx and corresponding arcs from N , denoted as Nx = (P, Tx, P rex, Postx) where Tx ⊆ T and

Prex (Postx) is the restriction of Pre (Post) to P and Tx. The incidence matrix of Nx is denoted by Cx = Postx − Prex.

A marking M of a Petri net N is a mapping: P → N that assigns to each place of a Petri net a non-negative integer number

of tokens. The number of tokens in a place p at a marking M is denoted by M(p). A Petri net N with an initial marking M0

is called a marked net, denoted by 〈N,M0〉.

For a place p ∈ P , the set of its input transitions is defined by •p = {t ∈ T | Post(p, t) > 0} and the set of its output

transitions is defined by p• = {t ∈ T | Pre(p, t) > 0}. The notions for •t and t• are analogously defined. A place p ∈ P

(resp., transition t ∈ T ) is said to be a source place (resp., source transition) if •p = ∅ (resp., •t = ∅).

A transition t ∈ T is enabled at a marking M if M ≥ Pre(·, t)1, denoted by M [t〉. If t is enabled at M , the firing of t

yields marking M ′ = M +C(·, t), which is denoted as M [t〉M ′. A marking M is dead (or is said to be a deadlock) if for all

t ∈ T , M � Pre(·, t) holds.

Marking M ′ is reachable from M1 if there exist a sequence of transitions σ = t1t2 · · · tn and markings M2, · · · ,Mn such

that M1[t1〉M2[t2〉 · · ·Mn[tn〉M ′ holds. When σ = ε, where ε denotes the empty sequence, then it holds that M [σ〉M . We

denote by T ∗ the set of all finite sequences of transitions over T . Given a transition sequence σ ∈ T ∗, ϕ : T ∗ → Nn is a

function that associates to σ a vector y = ϕ(σ) ∈ Nn, called the firing vector of σ, i.e., y(t) = k if transition t ∈ T appears

k times in σ. In particular, it holds that ϕ(ε) = 0. Let ϕ−1 : Nn → T ∗ be the inverse function of ϕ, namely for y ∈ Nn,

ϕ−1(y) := {σ ∈ T ∗ | ϕ(σ) = y}. We denote L(N,M0) = {σ ∈ T ∗ |M0[σ〉} as the set of all transition sequences of a marked

net 〈N,M0〉 that are enabled from M0.

The reachability set from a marking M is defined as R(N,M) = {M ′ | (∃σ ∈ T ∗) M [σ〉M ′}. In particular, the reachability

set of a marked net 〈N,M0〉 is the set R(N,M0), i.e., the reachability set from the initial marking. A marked net 〈N,M0〉 is

said to be bounded if there exists an integer k ∈ N such that for all M ∈ R(N,M0) and for all p ∈ P , M(p) ≤ k holds. A

marked net 〈N,M0〉 is deadlock-free if all markings in R(N,M0) are not dead.

Proposition 1: [6], [25] Given a marked net 〈N,M0〉 where N is acyclic, M ∈ R(N,M0), M ′ ∈ R(N,M0) and a firing

vector y ∈ Nn, the following holds:

M ′ = M + C · y ≥ 0⇔ (∃σ ∈ ϕ−1(y)) M [σ〉M ′. �

Proposition 1 shows that in acyclic nets, reachability can be characterized (necessary and sufficient condition) in simpler

algebraic terms.

Let G = (N,M0,MF ) denote a plant consisting of a marked net and a finite set of final markings MF ⊆ R(N,M0).

Normally, set MF can be given by explicitly listing all its elements. In practice, set MF in a plant is usually characterized

by one or a conjunction of linear constraints, e.g., generalized mutual exclusion constraints (GMECs) [36]. A GMEC is a pair

(w, k), where w ∈ Zm and k ∈ Z (Z is the set of integers), that defines a set of markings L(w,k) = {M ∈ Nm | wT ·M ≤ k}.

For simplicity, in this paper, we assume a single GMEC characterization, i.e., MF = L(w,k).

Given a plant G = (N,M0,MF ) and its reachability graph R, a maximal strongly connected component G in R is a

maximal subgraph of R such that for any two markings M1, M2 in G, M1 is reachable from M2. G is a livelock if for any

1We use A(·, x) (resp., A(x, ·)) to denote the column (resp., row) vector corresponding to the element x in matrix A. The ≥ operator on vectors is

defined componentwise, i.e., given two vectors a = [a(1), ..., a(m)]T ,b = [b(1), ..., b(m)]T , we denote by a ≥ b the fact that a(i) ≥ b(i) holds for all

i = 1, ...,m.
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marking M in G, both of the following conditions hold: (i) R(N,M) ∩MF = ∅; (ii) all markings M ′ ∈ R(N,M) are not

dead.

Definition 1: A marking M ∈ R(N,M0) of a plant G = (N,M0,MF ) is said to be blocking if no final marking is reachable

from it, i.e., R(N,M) ∩MF = ∅; otherwise M is said to be nonblocking. System G is nonblocking if no reachable marking

is blocking; otherwise G is blocking. �

B. Basis Reachability Graph (BRG) [25]–[27]

Definition 2: Given a Petri net N = (P, T, Pre, Post), transition set T can be partitioned into T = TE ∪ TI , where the

disjoint sets TE and TI are called the explicit transition set and the implicit transition set, respectively. A pair π = (TE , TI) is

called a basis partition of T if the TI -induced sub-net of N is acyclic. We denote |TE | = nE and |TI | = nI . Let CI be the

incidence matrix of the TI -induced sub-net of N . �

For any Petri net, a basis partition of T always exists (e.g., consider an extreme case π = (TE , TI) with TE = T and

TI = ∅). Note that in a BRG with respect to a basis partition (TE , TI), the firing information of explicit transitions in TE is

explicitly encoded in the BRG, while the firing information of implicit transitions in TI is abstracted as firing vectors. Also, the

selection of TE and TI does not related to the physical meaning of the transitions: the only restriction is that the TI -induced

sub-net is acyclic.

Definition 3: Given a Petri net N = (P, T, Pre, Post), a basis partition π = (TE , TI), a marking M , and a transition

t ∈ TE , we define

Σ(M, t) = {σ ∈ T ∗I |M [σ〉M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M , and we define

Y (M, t) = {ϕ(σ) ∈ NnI |σ ∈ Σ(M, t)}

as the set of explanation vectors; meanwhile we define

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : ϕ(σ′) � ϕ(σ)}

as the set of minimal explanations of t at M , and we define

Ymin(M, t) = {ϕ(σ) ∈ NnI |σ ∈ Σmin(M, t)}

as the corresponding set of minimal explanation vectors. �

Definition 4: Given a marked net (N,M0) and a basis partition π = (TE , TI), its basis marking set MB is the smallest

subset of reachable markings such that:

• M0 ∈MB;

• If M ∈MB, then for all t ∈ TE , for all y ∈ Ymin(M, t), M ′ = M + CI · y + C(·, t)⇒M ′ ∈MB. �

A marking M in MB is called a basis marking of (N,M0) with respect to π = (TE , TI).

Definition 5: Given a bounded marked net 〈N,M0〉 and a basis partition π = (TE , TI), its basis reachability graph is a

deterministic finite state automaton B = (MB,Tr,∆,M0), where the state set MB is the set of basis markings, the event set

Tr is the finite set of pairs (t, y) ∈ TE ×NnI , ∆ :MB ×Tr→MB is a transition function, and the initial state is the initial

marking M0. �

We extend in the usual way the definition of transition function to consider a sequence of pairs σ ∈ Tr∗ and write

∆(M1, σ) = M2 to denote that from M1 sequence σ yields M2.
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Figure 1: A parameterized plant G with TE = {t2} marked with shadow (left) and its BRG B (right).
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Figure 2: Reachability graph of G in Fig. 1 with α = 1 (left) and α = 2 (right).

Definition 6: Given a marked net 〈N,M0〉, a basis partition π = (TE , TI), and a basis marking Mb ∈ MB, we define

RI(Mb) = {M ∈ Nm | (∃σ ∈ T ∗I ) Mb[σ〉M} as the implicit reach of Mb. �

The implicit reach of a basis marking Mb is the set of all markings that can be reached from Mb by firing only implicit

transitions. Since the TI -induced sub-net is acyclic, by Proposition 1, it holds that:

RI(Mb) = {M ∈ Nm | (∃yI ∈ NnI ) M = Mb + CI · yI}.

III. BRG AND NONBLOCKINGNESS VERIFICATION

To efficiently solve the NB-V problem in Petri nets without constructing the reachability graph, we attempted to use the

BRG-based approach in [33]. However, as observed in [33], the classical BRG does not necessarily encode all information

needed to test nonblockingness. To help clarify, an example is provided in the following.

Example 1: Consider a parameterized plant G = (N,M0,MF ) in Fig. 1 with M0 = [2 0 1]T andMF = {M0}. In this net,

Pre(p2, t3) = α is set to be a parameter (α ∈ N). Assuming TE = {t2}, the BRG of this net (regardless of the value of α)

is also shown in the same figure, where Mb0 = M0 and Ymin(Mb0, t2) = {[1 0]T}, which implies that the firing of sequence

σ = t1 is the prerequisite (the minimal one) of the firing of explicit transition t2 at marking Mb0. The reachability graphs for

α = 1 and α = 2 are shown respectively in Fig. 2.

By inspection of the two reachability graphs, one can verify that G is deadlock-free if α = 1 and not deadlock-free if α = 2.

When α = 1, G is blocking due to the livelock composed by two markings [1 0 0]T and [0 1 0]T. When α = 2, G is also

blocking because of the non-final deadlock [0 0 0]T. However, these blocking conditions are not captured in the BRG which,

in both cases, consists of a unique node Mb0 = M0 which is also final. On the other hand, note that markings [1 0 0]T , [0 1 0]T

and [0 0 0]T in Fig. 2 are not co-reachable to the only basis marking [2 0 1]T in B. �

Example 1 shows that when all basis markings in the BRG are nonblocking, this does not necessarily imply that all reachable

markings in the corresponding plant are nonblocking. Specifically, as we mentioned in Section I, two types of blocking markings

should be analyzed, i.e., those are dead but non-final, and those are included in livelocks.

Notice that when tackling the NB-V problem by using the basis marking approach, there may exist some (i) dead and

non-final markings, and/or (ii) markings contained in a livelock that are not basis marking. Since such markings do not belong

to set MB, they are not shown in the corresponding BRG. Therefore, the classical structure of BRGs needs to be revised
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to encode additional information for checking nonblockingness. To this end, in the following, we propose a structure namely

min-max-BRG and show how it can be leveraged on solving the NB-V problem.

IV. MIN-MAX BASIS MARKINGS AND MIN-MAX-BRGS

A. Min-Max Basis Markings

To define the min-max-BRG, we first introduce the set of min-max basis markings. As two prerequisite concepts, we define

maximal explanations and maximal explanation vectors as follows.

Definition 7: Given a Petri net N = (P, T, Pre, Post), a basis partition π = (TE , TI), a marking M , and a transition

t ∈ TE , we define

Σmax(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : ϕ(σ′) 
 ϕ(σ)}

as the set of maximal explanations of t at M , and

Ymax(M, t) = {ϕ(σ) ∈ NnI |σ ∈ Σmax(M, t)}

as the corresponding set of maximal explanation vectors. �

From the standpoint of partial order set (poset), the set of maximal explanation vectors Ymax(M, t) is the set of maximal

elements in the corresponding poset Y (M, t). Note that, as is the case for the set of minimal explanation vectors Ymin(M, t)

[25]–[27], Ymax(M, t) may not be a singleton. In fact, there may exist multiple maximal firing sequences σI ∈ T ∗I that enable

an explicit transition t. Next, we define min-max basis markings in an iterative way as follows.

Definition 8: Given a marked net 〈N,M0〉 with a basis partition π = (TE , TI), its min-max basis marking set MBM is

recursively defined as follows

(a) M0 ∈MBM ;

(b) M ∈MBM , t ∈ TE , y ∈ Ymin(M, t) ∪ Ymax(M, t), M ′ = M + CI · y + C(·, t)⇒M ′ ∈MBM .

A marking in MBM is called a min-max basis marking of the marked net with π = (TE , TI). �

In practice, the set of min-max basis markings is a smaller subset of reachable markings that contains the initial marking and

is closed by reachability through a sequence that contains an explicit transition and one of its maximal or minimal explanations.

Meanwhile, note that for a bounded marked net, MB ⊆MBM holds. To compute Ymin(M, t), one may refer to Algorithm 1

in [27]. We introduce in Algorithm 1 how to calculate Ymax(M, t) for a given marking M and an explicit transition t. The

basic idea is first to iteratively enumerate all explanation vectors in Y (M, t) (not necessarily stored), and then collect the set

of maximal elements in Y (M, t).

The computation as to Y (M, t) is presented through lines 1−16. To put it simply, as a breadth-first-search technique, all

possible firing vectors y ∈ NnI such that σ ∈ ϕ−1(y) is an explanation of t at M (i.e., M [σ〉M ′[t〉) are iteratively searched

and enumerated. A detailed description is shown as follows.

Initially, at line 1, the row A = (M − Pre(·, t))T is either nonnegative or contains at least a negative element. The

former implies that t is sufficiently enabled at M (thus 0nI
∈ Y (M, t)). The latter suggests that the number of tokens in the

corresponding place(s) as to M is insufficient. Then, at line 2, we call a subroutine that consists of lines 2−12 in Algorithm

1 of [27] to process the matrix Γ. Precisely, this procedure enumerates part of the explanation vectors (not all) by iteratively

updating Γ, i.e., adding selected rows in
[
CT

I InI×nI

]
to rows in

[
A B

]
that contain negative elements to neutralize

them eventually. As a result, if Y (M, t) 6= ∅, the corresponding explanation vectors are stored individually in the form of row

vectors in sub-matrix B.
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Algorithm 1 Calculation of Ymax(M, t)

Input: A bounded marked net 〈N,M0〉, a basis partition π = (TE , TI), a marking M ∈ R(N,M0), and t ∈ TE
Output: Ymax(M, t)

1: Γ :=

 CT
I InI×nI

A B

 where A := (M − Pre(·, t))T and B := 0TnI
;

2: Subroutine: update Γ through lines 2−12 in Algorithm 1 of [27];

3: α := row size(Γ), αold := 0, and α′old := nI ;

4: while αold − α 6= 0 do

5: αold := α;

6: for k = 1 : nI , do

7: for l = (α′old + 1) : αold, do

8: R := [Γ(l, ·) + Γ(k, ·)];

9: if R ≥ 0 and @Γ(i, ·) = R where i ∈ {(nI + 1), · · · , αold}, then

10: Γnew :=

 Γ

R

 ;

11: end if

12: end for

13: end for

14: α := row size(Γnew), α′old := αold, and Γ := Γnew;

15: end while

16: Let Y (M, t) be the set of row vectors in the updated sub-matrix B = Γ((nI + 1) : α, (m+ 1) : (m+ nI));

17: Let Ymax(M, t) be the set of maximal elements in Y (M, t).

To complete Y (M, t), analogously, from lines 6−12, we add each of the rows in
[
CT

I InI×nI

]
to rows in

[
A B

]
in the updated Γ. If the obtained new row, e.g., R = [CT

I (i∗, ·) + A(j∗, ·) | InI×nI
(i∗, ·) + B(j∗, ·)], is nonnegative and

does not equal to any of the rows in
[
A B

]
, it is then recorded in

[
A B

]
as a new extended row and matrix Γ will

be updated. This act implies that M + CI · (InI×nI
(i∗, ·) + B(j∗, ·))T − Pre(·, t) ≥ 0. Thus, it is deduced that the vector

(InI×nI
(i∗, ·) +B(j∗, ·))T is another explanation vector of t at M and it will be recorded in the sub-matrix B.

Iteratively, represented in the sub-matrix B of the updated matrix Γnew, all explanations of M at t can be collected. The

computation of Y (M, t) ends when the sub-matrix
[
A B

]
of Γnew reaches a fixed point. Finally, at line 17, the set of

maximal explanations is obtained by collecting all the maximal rows in Y (M, t). By the following Proposition, we show that

Algorithm 1 eventually halts, since Ymax(M, t) is not infinite.

Proposition 2: The set of all transition sequences L(N,M0) = {σ ∈ T ∗ | M0[σ〉} of a bounded acyclic net 〈N,M0〉 is

finite.

Proof : See Appendix in detail. �

Proposition 2 indicates the finiteness of firing vectors (corresponds to the set of firing sequences) of a bounded acyclic net

〈N,M0〉. Moreover, it is inferred that Ymax(M, t) is finite for any M ∈ R(N,M0) and t ∈ TE of a given bounded marked

net 〈N,M0〉 with π = (TE , TI), since Ymax(M, t) ⊆ Y (M, t) holds while Y (M, t) is finite based on Proposition 2.
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We analyze the complexity of Algorithm 1, which depends on the complexity of the subroutine at lines 4−15. First, the

outer loop (the while loop) executes at most |Y (M, t)| times. In such a case, the new row R will be added one by one with

each loop, until reach the fixed point and thus we derive Y (M, t). Then, the first-layer inner loop (lines 6−13) executes nI

times with each while loop. For the second-layer inner loop (lines 7−12), since in total there will be |Y (M, t)| rows in [A | B]

and the worst case of the while loop executes |Y (M, t)| times, we infer that the second-layer inner loop executes only one

time with each first-layer inner loop. In other words, in each execution of the while loop, there is(are) only nI · 1 vector(s)

computed at line 8. Moreover, to determine whether a non-negative vector R has been visited in Γ at lines 9−11, one can

apply a hash set data structure to complete it in constant time O(1). In summary, the overall computational complexity of

Algorithm 1 is O(|Y (M, t)| · nI).

B. Min-Max Basis Reachability Graph

Definition 9: Given a bounded marked net 〈N,M0〉 and a basis partition π = (TE , TI), its min-max-BRG is a deterministic

finite state automaton BM = (MBM ,TrM,∆M,M0), where MBM is the set of min-max basis markings, TrM is a finite set

of pairs (t, y) ∈ TE × NnI , ∆M is the transition relation {(M1, (t, y),M2) | t ∈ TE ; y ∈ (Ymin(M1, t) ∪ Ymax(M1, t)),M2 =

M1 + CI · y + C(·, t)} and M0 is the initial marking. �

We extend the definition of transition relation ∆M for sequences of pairs σ+ = (t1, y1), (t2, y2), · · · , (tk, yk) ∈ Tr∗M and

write (M1, σ
+,M2) ∈ ∆M to denote that from M1 sequence σ+ yields M2 in BM.

According to Definitions 8 and 9, to build a min-max-BRG, one may refer to the construction procedure of a BRG (e.g.,

see Algorithm 2 in [27]). The difference is that the construction of min-max-BRGs requires taking both minimal and maximal

explanation vectors into consideration. On the other hand, comparing with the expanded BRGs in [33] (in which all explanation

vectors need to be computed at each node in the expanded BRG), a min-max-BRG can often be more compact (i.e., include

fewer nodes and arcs) than an expanded BRG when adopting the same basis partition.

We briefly explain the construction procedure as follows. First, the set MBM is initialized as {M0}. Then, for all untested

markings M ∈ MBM and for all explicit transitions t ∈ TE , it is required to check whether there exist explanation vectors

y ∈ Ymin(M, t)∪Ymax(M, t): if exist, the corresponding min-max basis marking (i.e., M ′ = M +CI ·y+C(·, t)) is computed

and stored in MBM (on the condition that M ′ is not included in the set MBM before). Moreover, the set of pairs (t, y) and

transition relations between M and M ′ are stored in TrM and ∆M, respectively. Iteratively, the min-max-BRG BM can be

constructed. We exemplify this procedure in Example 2.

As for the complexity of constructing the min-max-BRG, in common with the BRG, the upper bound of states in a min-

max-BRG is the size of the reachability space of a net (consider TE = T and TI = ∅). Nonetheless, first, the building of a

min-max-BRG does not require constructing the reachability graph. Then, our numerical results (e.g., see Section VI and [37])

show that the min-max-BRG can often be more compact in size than that of the reachability graph in the considered cases.

Remark 1: Similar to the BRG, note that the selection of the basis partition may change the computational efficiency of

constructing the min-max-BRG. Indeed, there may exist multiple feasible basis partitions that yield BRGs with different sizes.

However, in general there is no indicators to evaluate a partition in terms of the size of the corresponding BRG. On the other

hand, the work in [27] proved that the size of BRG is nondecreasing (and possibly increasing) when the set TE increases. In

other words, a larger set (in the sense of set containment) TE implies a larger BRG. Hence, in practice, one may use Algorithm

3 in [27] to obtain a minimal TE (in the sense of set containment) which is a locally optimal solution. �
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[2 0 1]T [1 0 0]T
(t2 , [2 1]T )

Mb0

(t2 , [1 0]T )

Mb1

(t2 , [1 0]T )

Figure 3: The min-max-BRG BM with TE = {t2}.

Example 2: Consider again the parameterized plant G = (N,M0,MF ) in Fig. 1 (left) with α = 1 and TE = {t2}. We

briefly introduce how to construct its min-max-BRG BM. According to Definition 8, Mb0 = M0 is a min-max basis marking.

Next, we compute the minimal and maximal explanation vectors of the explicit transition t2 at Mb0 respectively and derive

the other potential min-max basis markings. For instance, for t2, the only minimal explanation vector ymin = [1 0]T while the

only maximal explanation vector ymax = [2 1]T . Since Mb0 + CI · ymin + C(·, t2) = [2 0 1]T = Mb0, no new min-max basis

marking is generated. However, the pair (t2, [1 0]T ) is stored in TrM while the transition relation (Mb0, (t2, [1 0]T ),Mb0) is

stored in ∆M. On the other hand, since Mb1 = Mb0 + CI · ymax + C(·, t2) = [1 0 0]T 6= Mb0, let Mb1 be another min-max

basis marking. Corresponding pair and transition relation are also collected. Analogously, BM can be constructed which is

graphically shown in Fig. 3. �

In the following, we show that the min-max-BRG preserves the reachability information and other non-min-max-basis

markings can be algebraically characterized by linear equations.

Proposition 3: Given a marked net 〈N,M0〉 with a basis partition π = (TE , TI) and a marking M ∈ Nm, M ∈ R(N,M0)

if and only if there exists a min-max basis marking Mb ∈ MBM such that M ∈ RI(Mb), where MBM is the set of the

min-max basis markings in min-max-BRG of 〈N,M0〉.

Proof : (only if) This part of the proof follows from Corollary 1 in [27].

(if) Since M ∈ RI(Mb), according to Definition 6, there exists a firing sequence σ ∈ T ∗I such that Mb[σ〉M . On the other

hand, there exists another firing sequence σ′ ∈ T ∗ such that M0[σ′〉Mb, which implies that M0[σ′σ〉M and concludes the

proof. �

In summary, a marking M is reachable from M0 if and only if it belongs to the implicit reach of a min-max basis marking

Mb and thus M can be characterized by a linear equation, i.e., M = Mb +CI ·yI , where yI = ϕ(σI), σI ∈ T ∗I and Mb[σI〉M .

V. VERIFYING NONBLOCKINGNESS OF BOUNDED PLANTS USING MIN-MAX-BRGS

In this section, we investigate how min-max-BRGs can be applied to solving the NB-V problem.

A. Unobstructiveness of Min-Max-BRGs

This subsection generalizes the notion of unobstructiveness that is given in [33] for a BRG to a min-max-BRG. Such a

property is essential to establish our method since it is strongly related to the nonblockingness of a Petri net. First, we define

the set of i-coreachable min-max basis markings, denoted by Mico , from which at least one of the final markings in MF is

reachable by firing implicit transitions only.

Definition 10: Consider a bounded plant G = (N,M0,MF ) with the set of min-max basis markingsMBM in its min-max-

BRG. The set of i-coreachable min-max basis markings of MBM is defined as Mico = {Mb ∈MBM |RI(Mb)∩MF 6= ∅}.�

Proposition 4: Given a set of final markings defined by a single GMEC L(w,k) and a min-max basis marking Mb, Mb

belongs to Mico if and only if the following set of integer constraints is feasible.
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

Mb + CI · yI = M ;

wT ·M ≤ k;

yI ∈ NnI ;

M ∈ Nm.

(1)

Proof : (only if) Since Mb ∈Mico , according to Definition 10, RI(Mb)∩MF 6= ∅. Therefore, integer constraints (1) meets

feasible solution yI .

(if) The state equation Mb + CI · yI = M provides necessary and sufficient conditions for reachability since the implicit

sub-net is acyclic (see Proposition 1). Moreover, M ∈ L(w,k) is a final marking. Therefore, the statement holds. �

Remark 2: For simplicity, up to now, we assume a single GMEC characterization (L(w,k)) for the final marking set; however,

our approach can be further generalized to:

(a) MF defined by the conjunction of r GMECs (namely an AND-GMEC), i.e., LAND = {M ∈ Nm | WT ·M ≤ k} =⋂
(wi,ki)∈(W,k) L(wi,ki), where W = [w1 w2 · · ·wr] ∈ Zm×r and k = [k1 k2 · · · kr]T ∈ Nr, where (wi, ki) ∈ (W,k)

implies that (wi, ki) = (W(i, ·),k(i, ·)) and i ∈ {1, 2, · · · , r}. In such a case, the set Mico can be computed in the same

way by revising the constraint wT ·M ≤ k in constraints (1) as WT ·M ≤ k;

(b) MF defined by the union of s GMECs (namely an OR-GMEC), i.e., LOR =
⋃

i∈{1,2,...,s} L(wi,ki) where wi ∈ Nm and

ki ∈ N. Then, the set Mico can be settled by revising the constraint wT ·M ≤ k in constraints (1) as a disjunctive form

of constraints, which can be transformed into its equivalent conjunctive form. �

The notion of unobstructiveness in a min-max-BRG is given in Definition 11. In the following, we show how the

unobstructiveness of a min-max-BRG is related to the nonblockingness of the corresponding Petri net.

Definition 11: Given a min-max-BRG BM = (MBM ,

TrM,∆M,M0) and a set of i-coreachable min-max basis markings Mico ⊆MBM , BM is said to be unobstructed if for all

Mb ∈ MBM there exist a marking M ′b ∈ Mico in BM and a firing sequence σ+ ∈ Tr∗M such that (Mb, σ
+,Mb

′) ∈ ∆M.

Otherwise it is obstructed. �

To determine the unobstructiveness of min-max-BRG BM, it is only required to check if all min-max basis markings are

co-reachable to some i-coreachable min-max basis markings in BM. This can be done by using some search algorithm (e.g.,

Dijkstra) in the underlying digraph of the min-max-BRG, whose complexity is polynomial in the size of BM. An example is

illustrated in the following to help clarify.

Example 3: Consider again the parameterized plant (N,M0,MF ) in Fig. 1 (left) with α = 1, TE = {t2} andMF = L(w,k)

where w = [1 1 0 0]T and k = 1. We explain how to verify the unobstructiveness of its min-max-BRG BM shown in Fig. 3.

By solving the linear constraint (1) in Proposition 4, we conclude thatMico = {[2 0 1]T}. Since there is no directed path from

Mb1 to Mb0, Mb1 is not co-reachable to the only marking in Mico . Thus, the min-max-BRG BM in Fig. 3 is obstructed. �

Proposition 5: Given a plant G = (N,M0,MF ), its min-max-BRG BM is unobstructed if and only if all min-max basis

markings are nonblocking.

Proof : (only if) By Definition 11, for all Mb ∈MBM , there exist a marking M ′b ∈Mico and a sequence of pairs σ+ such

that (Mb, σ
+,Mb

′) ∈ ∆M. By Definition 10, M ′b is co-reachable to a final marking Mf ∈ MF ; thus, in the reachability

space, Mb is also co-reachable to Mf , implying that Mb is nonblocking.

(if) For any min-max basis marking Mb in BM, there exists a firing sequence σ ∈ T ∗ and a final marking Mf ∈MF such that

Mb[σ〉Mf . We write σ = σ1ti1 · · ·σktikσk+1 where all σi ∈ T ∗I , tij ∈ TE , j = 1, . . . , k. Following the procedure in the proof
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of Theorem 3.8 in [25], we can repeatedly move transitions in each σj (j ∈ {1, . . . , k}) to somewhere after tij to obtain

a new sequence σmin,1ti1σmin,2ti2 · · ·σmin,ktikσ
′
k+1 such that Mb[σmin,1ti1〉Mb,1[σmin,2ti2〉 · · · [σmin,ktik〉Mb,k[σ′k+1〉Mf ,

where each σmin,j ∈ T ∗I is a minimal explanation of tij at Mb,j ∈ MBM for j = 1, . . . k and σ′k+1 ∈ T ∗I . Thus, we

have Mb,k ∈Mico , which implies BM is unobstructed. �

By Proposition 5, we can relate the property of unobstructiveness to the property of the min-max basis markings of being

nonblocking. In the following subsections, we show how to use the min-max-BRG to also verify if there exist non-basis

markings that are blocking. Section V-B initially proposes a solution to NB-V problem regarding deadlock-free plants, since

there exist classes of Petri nets for which the test of deadlock-freeness can be excluded for reachability graph construction

[38]. As a generalization, in Section V-C, we show that the min-max-BRG-based technique can also be applied (with minor

changes) for NB-V of plants that are not deadlock-free.

B. Verifying Nonblockingness of Deadlock-Free Plants

In this subsection, we focus on deadlock-free plants. An intermediate result is shown in Proposition 6.

Proposition 6: Given a bounded marked net 〈N,M0〉 with basis partition π = (TE , TI), for all M ∈ R(N,M0), for all

t ∈ TE , for all σ ∈ Σ(M, t) with M [σt〉M , the following implication holds:

(∀σ′ ∈ Σ(M, t)) ϕ(σ)− ϕ(σ′) = ỹ ≥ 0⇒

(∃σ′′ ∈ϕ−1(ỹ)) M [σ′tσ′′〉M
(2)

Proof : Let M ′ ∈ Nm such that M [σ′t〉M ′. Then it holds that: M = M + CI · ϕ(σ) + C(·, t)

M ′ = M + CI · ϕ(σ′) + C(·, t)
(3)

From Equation (3) we conclude that M −M ′ = CI(ϕ(σ) − ϕ(σ′)), which implies M = M ′ + CI · ỹ and ỹ ∈ Nn. This

indicates:

∃σ′′ ∈ ϕ−1(ỹ) : M ′[σ′′〉M (4)

and thus M [σ′t〉M ′[σ′′〉M that concludes the proof. �

By Proposition 6, if markings M and M are both reachable from a marking M by firing an explicit transition t but the

explanation vector to reach M is smaller than that of to reach M , then M is also reachable from M . As a consequence, if

M ′ is nonblocking, then M ′′ is nonblocking as well, since there exists a firing sequence σ′′ ∈ ϕ−1(ỹ) such that M ′′[σ′′〉M ′.

According to this proposition, we next show that the unobstructiveness of the min-max-BRG is a necessary and sufficient

condition for nonblockingness of a net in the considered class.

Lemma 1: Consider a bounded deadlock-free marked net 〈N,M0〉 with a basis partition π = (TE , TI). For all markings

M ∈ R(N,M0), there exists a firing sequence σt, where σ ∈ T ∗I and t ∈ TE , such that M [σt〉 holds.

Proof : We prove this statement by contradiction. Assume the system is deadlock-free and there exists a marking M from

which no explicit transition can eventually fire. Since the implicit sub-net of the system is bounded and acyclic, by Proposition

2, the maximal length of sequences enabled at M and composed by only implicit transitions is finite. Hence, from M , after

the firing of such maximal sequences of implicit transitions, the net reaches a deadlock, which is a contradiction. �

The result in Lemma 1 can be applied to both BRG and min-max-BRG. However, it does not imply that the marking reached

after the firing of the explicit transition is a basis marking, as we have shown in Example 1. Hence, it does not rule out the

presence of livelocks in the BRG.
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Lemma 2: Consider a bounded deadlock-free marked net 〈N,M0〉 with a basis partition π = (TE , TI). For all markings

M ∈ R(N,M0), for all explicit transition t ∈ TE , the following holds:

σ ∈ Σ(M, t)⇒ (∃σ′ ∈ Σmax(M, t)) ϕ(σ′) ≥ ϕ(σ).

Proof : If σ /∈ Σmax(M, t), according to Definition 7, there exists an explanation σ′ ∈ Σmax(M, t)) such that ϕ(σ′) > ϕ(σ);

otherwise ϕ(σ′) = ϕ(σ), hence the result holds. �

Lemma 3: Consider a bounded deadlock-free marked net 〈N,M0〉 with a basis partition π = (TE , TI) and its min-max-BRG

BM. For all markings M ∈ R(N,M0), there exists Mb ∈MBM such that Mb ∈ R(N,M).

Proof : Due to Lemma 1, there exists a firing sequence σt, where σ ∈ T ∗I and t ∈ TE , such that M [σt〉, which implies that

σ ∈ Σ(M, t). By Lemma 2, there exists a maximal explanation σ′ ∈ Σmax(M, t) such that ϕ(σ′) ≥ ϕ(σ). Let ϕ(σ′)−ϕ(σ) = y

and M [σ′t〉M ′. By Definition 8, we have M ′ ∈MBM . According to Proposition 6, there exists a firing sequence σ′′ ∈ ϕ−1(y)

such that M [σtσ′′〉M ′, which implies that M ′ ∈ R(N,M). �

We point out that Lemma 3 holds for min-max-BRGs but not for BRGs (e.g., see Example 1). In other words, when a net

is deadlock-free, for any (non-)basis marking in a min-max-BRG there always exists a maximal explanation that leads to a

min-max basis marking. However, in a conventional BRG, not any reachable marking is guaranteed to be co-reachable to a

basis marking. Based on Lemma 3, in the following, we show how the min-max-BRG can be leveraged for NB-V.

Theorem 1: A bounded deadlock-free plant G = (N,M0,MF ) is nonblocking if and only if its min-max-BRG BM is

unobstructed.

Proof : (only if) Since the net is nonblocking, all reachable markings, including all min-max basis markings, are nonblocking.

By Proposition 5, its min-max-BRG BM is unobstructed.

(if) Consider an arbitrary marking M ∈ R(N,M0). By Lemma 3, there exists a min-max basis marking Mb ∈ MBM

such that Mb ∈ R(N,M), i.e., there exists a firing sequence σ ∈ T ∗ such that M [σ〉Mb. Since the min-max-BRG BM
is unobstructed, according to Proposition 5, all min-max basis markings including Mb are nonblocking, which implies that

marking M is co-reachable to a nonblocking marking. Hence, G is nonblocking. �

By Theorem 1, for a deadlock-free net, one can use an arbitrary basis partition to construct the min-max-BRG to verify

its nonblockingness. Since the existence of a livelock that contains all blocking markings implies the existence of at least a

blocking min-max basis marking Mb in BM, the potential livelock problem mentioned in Section III is avoided.

C. Verifying Nonblockingness of Plants with Deadlocks

In this subsection, we generalize the results in Section V-B to systems that are not deadlock-free. Notice that a dead marking

M ∈ R(N,M0) can either be non-final (i.e., M /∈MF ) or final (i.e., M ∈MF ).

Theorem 2: A bounded plant G = (N,M0,MF ) is nonblocking if and only if its min-max-BRG BM is unobstructed and

all its dead markings are final.

Proof : (only if) When all reachable markings are nonblocking, all dead markings (if any exists) and all min-max basis

markings are also nonblocking. Hence, all dead markings are final and by Proposition 5, the min-max-BRG BM is unobstructed.

(if) If the min-max-BRG BM is unobstructed, all min-max basis markings are nonblocking, by Proposition 5. Consider an

arbitrary marking M ∈ R(N,M0). By Proposition 3, there exist a min-max basis marking Mb ∈MBM in the min-max-BRG

of the system and an implicit firing sequence σI ∈ T ∗I such that Mb[σI〉M .

We prove that marking M is nonblocking by contradiction. In fact, if we assume that M is blocking, since all dead markings

are final, M is neither dead nor co-reachable to a deadlock in the system. Suppose that from M no explicit transition can
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eventually fire: following the argument of the proof of Lemma 1, a dead marking will be reached, leading to a contradiction.

Therefore, there exist σ′I ∈ T ∗I and t ∈ TE such that M [σ′It〉 and thus Mb[σIσ
′
It〉. Also, there exists a maximal explanation

σ′ ∈ Σmax(Mb, t) such that ϕ(σ′) ≥ ϕ(σIσ
′
I). According to Proposition 6, it follows that M is co-reachable to a min-max

basis marking, which implies that M is nonblocking, another contradiction, which concludes the proof. �

According to Theorem 2, determining the nonblockingness of a plant G can be addressed by two steps: (1) determine if

there exists a reachable non-final dead marking; if not, then (2) determine the unobstructiveness of a min-max-BRG of it.

Since step (2) has already been discussed in the previous section, we only need to study step (1). Next, we show how to

determine the existence of non-final dead markings by using the min-max-BRG. Denote the set of non-final dead markings as

Dnf . Then, we define the set of maximal implicit firing sequences and the corresponding set of vectors as follows.

Definition 12: Given a bounded marked net 〈N,M0〉 with basis partition π = (TE , TI) and a marking M ∈ R(N,M0), we

define

ΣI,max(M) = {σ ∈ T ∗I |(M [σ〉) ∧ (@σ′ ∈ T ∗I : M [σ′〉, ϕ(σ′) 	 ϕ(σ))}

as the set of maximal implicit firing sequences at M , and

YI,max(M) = {ϕ(σ) ∈ NnI |σ ∈ ΣI,max(M)}

as the corresponding set of maximal implicit firing vectors. �

Proposition 7: Given a bounded marked net 〈N,M0〉 with basis partition π = (TE , TI), let MBM be its min-max basis

marking set. Marking M ∈ R(N,M0) is dead if and only if there exist Mb ∈ MBM and σ ∈ ΣI,max(Mb) such that for all

t ∈ TE , σ /∈ Σmax(Mb, t) and Mb[σ〉M.

Proof : (if) Since σ ∈ ΣI,max(Mb), there does not exist an implicit transition tI ∈ TI such that M [tI〉. On the other hand,

since for all t ∈ TE , σ /∈ Σmax(Mb, t), i.e., there does not exist an explicit transition t′ ∈ TE such that M [t′〉, which implies

that M is dead.

(only if) Since M is dead, there does not exist t ∈ T such that M [t〉. Therefore, there exists σ ∈ ΣI,max(Mb) such that for

all t ∈ TE , σ /∈ Σmax(Mb, t) and Mb[σ〉M . �

Proposition 7 shows the relation between dead markings and min-max basis markings in a bounded system, i.e., all reachable

dead markings can be obtained by firing a maximal implicit firing sequence σ from a min-max basis marking Mb where for all

t ∈ TE , σ is not a maximal explanation of t. Next, we introduce Algorithm 2 to verify if there exist non-final dead markings

in a plant.

In Algorithm 2, first, from lines 1−4, we add an explicit transition t0 to N with Pre(·, t0) = Post(·, t0) = 0 and derive

a new plant (N ′,M0,MF ). Obviously, t0 is enabled from any reachable marking and, since its firing does not modify the

marking, it holds that R(N,M0) = R(N ′,M0). Hence, for all Mb ∈ MBM , we conclude that YI,max(Mb) = Ymax(Mb, t0),

i.e., the set of maximal implicit firing vectors at Mb can be determined by computing maximal explanation of t0 at Mb based

on Algorithm 1.

Then, we determine if, for all t ∈ TE , the obtained firing vector y ∈ YI,max(Mb) is not an explanation of t at Mb.

Implemented in lines 5−16, this consists in checking if, for all t ∈ TE , t is disabled at marking M ′ = Mb + CI · y: since

no implicit transition can fire at M ′, the only transitions that can possibly fire are those explicit ones. If no explicit transition

is enabled at M ′, according to Proposition 7, marking M ′ is dead. Further, M ′ will be added into the set Dnf if it is dead

and not final. Note that Algorithm 2 also tests if a min-max basis marking M ′b ∈ MBM is dead. Since Ymax(M ′b, t0) = {0}

and for all t ∈ (T ′E \ {t0}), Ymax(M ′b, t) = ∅, M ′b will be added to Dnf if it is not final. When the algorithm terminates, if
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Algorithm 2 Verification of Dnf

Input: A bounded plant (N,M0,MF ) with π = (TE , TI) and its min-max basis marking set MBM

Output: “Dnf = ∅”/ “Dnf 6= ∅”

1: Dnf := ∅, T ′ := T ∪ {t0} and T ′E := TE ∪ {t0};

2: Pre′ := [0;Pre] and Post′ := [0;Post];

3: N ′ := (P, T ′, P re′, Post′) and π′ := (T ′E , TI);

4: Construct a bounded plant (N ′,M0,MF ) with basis partition π′;

5: for all M ∈MBM , do

6: for all y ∈ Ymax(M, t0), do

7: M ′ := M + CI · y;

8: if M ′ is dead and M ′ /∈MF , then

9: Dnf := Dnf ∪ {M ′};

10: Output “Dnf 6= ∅” and Return;

11: end if

12: end for

13: end for

14: if Dnf = ∅, then

15: Output “Dnf = ∅” and Return.

16: end if

Table I: Analysis of the reachability graph, expanded BRG from [33] and min-max-BRG for the plant in Fig. 4 with

TE = {t3, t6, t11, t13}.

Run λ µ |R(N,M0)| Time (s) |MBE | Time (s) |MBM | Time (s) Dnf = ∅? Time (s) Unobstructed? Time (s) NB? |MBM |/|MBE | |MBM |/|R(N,M0)|

1 5 1 102 < 1 31 0.2 11 0.04 Yes 0.03 Yes 1.9 Yes 35.5% 10.8%

2 5 2 384 1 191 0.7 37 0.2 Yes 0.1 Yes 6 Yes 19.3% 9.6%

3 5 3 688 2 405 1 68 0.4 Yes 0.4 Yes 12 Yes 16.8% 9.9%

4 6 1 840 4 449 2 81 0.5 Yes 0.5 Yes 15 Yes 18.0% 9.6%

5 6 2 12066 431 9117 302 1171 23 Yes 16 No 251 No 12.8% 9.7%

6 6 3 88681 24354 75378 20944 9985 833 No 58 - - No 13.2% 11.3%

7 6 4 - o.t. - o.t. 22095 4517 Yes 1099 Yes 3502 Yes - -

8 6 5 - o.t. - o.t. 31147 10082 No 955 - - No - -

9 6 6 - o.t. - o.t. 41817 18295 No 1618 - - No - -

10 6 7 - o.t. - o.t. 45458 21229 No 1754 - - No - -

* The computing time is denoted by overtime (o.t.) if the program does not terminate within 28,800 seconds (8 hours).

Dnf 6= ∅, we conclude that the plant is blocking; otherwise, the unobstructiveness verification procedure (mentioned in Section

V-A) of the min-max-BRG should be further executed.

The complexity of Algorithm 2 depends on the two for loops (lines 5−13). First, there are |MBM | and |Ymax(M, t0)|

iterations in lines 5 and 6, respectively. In line 8, to verify M ′ is dead, one may need to test if M ′ � Pre′(·, t) for all t ∈ TE
(no need to test transitions in TI since no implicit transition is enabled at M ′), which requires |TE | iterations. In summary,

the worst-case time complexity of Algorithm 2 is O(|MBM | · |Ymax(M, t0)| · |TE |).
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Figure 4: A parameterized manufacturing example.

VI. CASE STUDY

We use a parameterized plant (chosen from [27]) depicted in Fig. 4 to test the efficacy and efficiency of our method in this

section. Let M0 = [λ 0 0 0 0 0 0 µ µ λ 0 0 0 0 0 0 µ λ µ µ µ µ]T. Consider TE = {t3, t6, t11, t13} (marked as shadow

bars). Also, we set MF = L(w,k) = {M ∈ Nm | wT ·M ≤ k}, where w = [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0]T

and k = 3 (for run 4) or k = 4 (for runs 8−10) or k = 5 (for runs 1−3) or k = 7 (for runs 5−6) or k = 15 (for run 7), to

test nonblockingness of this plant for all cases.

We run several simulations on a laptop with Intel i7-5500U 2.40 GHz processor and 8 GB RAM. Table I shows, for different

values of the parameters λ and µ, the sizes of the reachability graph |R(N,M0)|, of the expanded BRG |MBE | [33] and of

min-max-BRG |MBM | as well as the time required to compute them. We also show the ratios of |MBM | to |MBE | and

|MBM | to |R(N,M0)|. It can be verified that |MBM | � |MBE | and |MBM | � |R(N,M0)| in all cases. Note that the size

of min-max-BRG depends on the net structure, initial resource distribution and choice of basis partition π = (TE , TI). Also in

Table I, we show the simulation results of determining if there exist non-final dead markings based on Algorithm 2 (columns

10−11), and verifying unobstructiveness (the set of i-coreachable markings Mico of a min-max-BRG can be obtained by

using two free MATLAB integer linear programming problems solver toolboxes namely YALMIP [39] and lpsolve [40]) for

all cases if necessary (columns 12−13). Moreover, the nonblockingness of the system for all cases are listed in column 14.

The test cases show that min-max-BRG-based technique achieves practical efficiency when coping with the NB-V problem in

this considered case. Additional case studies are also considered in [37], which consists of three Petri net benchmarks taken

from the literature.

VII. DISCUSSIONS

We propose the min-max-BRG to ensure that the essential features of a system, from which a blocking condition may

originate, are captured in the abstracted model. As a non-trivial task, it is necessary to formally characterize and validate the

proposed approach with a series of theoretical results. When tackling the NB-V problem, the min-max-BRG-based approach is

general and can be directly applied to arbitrary bounded plants (the only restriction is that the TI -induced sub-net is acyclic).
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This is a major practical advantage with respect to other abstraction approaches that are based on particular structures or

symmetries, and require significant analysis of the model in a preliminary stage before they can be applied.

On the other hand, we briefly compare the min-max-BRG-based approach and the reachability-graph-based ones. With

the conventional reachability-graph-based method, the NB-V requires first constructing the reachability graph (enumerating

and storing all reachable markings), i.e., a digraph with |R(N,M0)| nodes, for further examination. Our approach needs to

build the min-max-BRG BM, which requires computing the maximal explanation vectors. Although by Algorithm 1 such

computation needs computing all explanation vectors, which is equivalent to compute all reachable markings, only markings

computed through minimal/maximal explanation vectors are stored. As a result, a digraph with |MBM | nodes is built for further

checking. Since the simulation results (i.e., Section VI and [28]) indicate that |MBM | � |R(N,M0)| in some considered cases,

the developed approach shows practical efficiency compared with the reachability-graph-based ones.

Further, as a potential advantage, when it comes to a related problem of NB-V, i.e., nonblocking enforcement, which consists

of designing a supervisor (an online control agent) to ensure that the controlled plant does not reach a blocking marking, a

supervisor designed based on the min-max-BRG can also be more compact than that of a reachability-graph-based one.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of nonblockingness verification of a plant. A semi-structural method using min-max-

BRG is developed, which can be used to determine the nonblockingness of a system modelled by bounded Petri nets by first

determining the existence of non-final deadlocks and later checking the unobstructiveness of the corresponding min-max-BRG.

The proposed approach does not require the construction of the reachability graph and has wide applicability. As for future

work, we will investigate necessary and sufficient conditions for verifying nonblockingness in unbounded nets. As a final

comment, we point out that the proposed approach may be adapted to address other problems of interest for Petri net models,

e.g., the synthesis of a min-max-BRG-based supervisor to enforce that the closed-loop system is nonblocking.

APPENDIX

Proof of Proposition 2:

First we observe that a bounded net cannot have source transitions. Thus, following [41] the graph of an acyclic bounded

net with diameter2 d can be topologically sorted as follows:

P0 ≺ T1 ≺ P1 ≺ T2 ≺ · · · ≺ Tk ≺ Pk

where k = dd/2e and

P0 = {p ∈ P | •p = ∅}

Ti = {t ∈ T \ ∪i−1j=1Tj | •t ∩ Pi−1 6= ∅} (i = 1, . . . k)

Pi = {p ∈ P \ ∪i−1j=1Pj | •p ∩ Ti 6= ∅} (i = 1, . . . k)

In other words, P0 is the set of source places, Ti is the set of transitions whose minimal distance from a source place is 2i− 1

and Pi is the set of places whose minimal distance from a source place is 2i. Note that when d is odd all maximal paths end

with a transition and Pk is empty: all other sets are always not empty.

2The distance between two nodes of a graph is the length of shortest path between them. The diameter of graph is the maximal distance between pairs of

nodes.
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We now consider a net N ′ obtained from N removing all pre-arcs except those going from places in tier Pi−1 to transitions

in tier Ti. This net is still acyclic and has no source transitions hence it is bounded. Since we have only removed pre-arcs,

which constrain the firing of transitions, the language of the original net is contained in the language of 〈N ′,M0〉, i.e.,

L(N,M0) ⊆ L(N ′,M0).

We are left to prove that the latter set is finite. We observe that in net N ′ for any firing sequence σ there exists an ordered

firing sequence σord = σ1σ2 · · ·σk where σi ∈ T ∗i (for i = 1, . . . , k) and ϕ(σord) = ϕ(σ) because the firing of a transition

in tier Tj cannot disable transitions in tier Ti for i < j. Obviously in an ordered sequence the length of any substring σi

(for i = 1, . . . , k) is bounded since each transition firing decreases the token content of set Pi−1 and thus the set of ordered

sequences is finite. Since L(N ′,M0) contains only permutations of ordered sequences, this set is also finite.
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