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Abstract

The development of cyber-physical systems (CPS) has brought much attention of researchers to cyber-attack and
cyber-security. A sensor attacker targeting on supervised discrete event system can modify a set of sensor readings and
cause the closed-loop system to reach undesirable states. In this paper, we propose a new attack detection mechanism
under which the supervisor only needs to keep track of the last observable event received. Given a plant and a supervisor
enforcing a state specification, we define a sensor attacker threatening if it may cause the closed-loop system to enter
a forbidden state. Our goal is to verify whether there exists such a threatening sensor attacker for a given controlled
system. A new structure, called All Sensor Attack (ASA), is proposed to capture all possible sensor attacks launched by
the attacker. Based on the ASA automaton, a necessary and sufficient condition for the existence of a stealthy threatening
sensor attacker is presented. Finally, we show that the condition can be verified in polynomial time.
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I. INTRODUCTION

CYBER-PHYSICAL systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration
of computation and physical components. In this paper, we consider the CPS that has been modeled with a supervisory

controlled discrete event system (DES). Many works in recent years have been devoted to problems of cyber-security of discrete
event systems [1].

In [2], the problem of attack detection and controllability is addressed. Four types of attacks: actuator enablement attack
(AE-attack), actuator disablement attack (AD-attack), sensor erasure attack (SE-attack), and sensor insertion attack (SI-attack),
are considered in the controlled DES. Actuator attack can enable/disable events that are disabled/enabled by the supervisor
while sensor attack can change the observation of the supervisor by erasing or inserting the observation of some events. It
is shown that diagnoser can be constructed to detect attacks. Polynomial algorithms are developed to verify if the controlled
system can stay safe after attacks are detected. In [3], sensor attack is generalized to multiple attacks such that the observation
of the system is modified based on a set of static or dynamic attack dictionary, and a diagnoser is constructed to detect the
attack. Yin et al. [4] propose a new concept approximate opacity in systems with metrics output to quantitatively evaluate the
security level.

Rather than passively detecting the existence of attacks or verifying if the system is safe under attack, a majority of works
on cyber-security in DES focuses on synthesizing a resilient supervisor against attacks. In [5], given specific bounded sensor
attacks, a method of synthesizing a supremal controllable and normal resilient supervisor against the attack is proposed. In [6],
it is shown that the problems of testing the existence of resilient supervisor and synthesizing it can be solved using classical
supervisory control theory without expanding the state space of the original supervisory control problem. In the presence of
both actuator attack and sensor attack, algorithms for synthesizing a resilient supervisor are presented in [7]. In [8], without
imposing normality condition, a game theoretical approach is proposed to obtain a supervisor such that for any sensor attack
the supervisor is resilient.

Our perspective in this paper is different from the aforementioned works, as we aim at verifying whether there exists a
sensor attacker for a given plant and supervisor such that under its attack the supervisor fails to keep the plant within the
specification. Without considering supervisory controlled system, Zhang et al. [9] study the problem of state estimation of
plant under sensor attack. A structure called joint estimator is proposed to describe all possible attacks and the corresponding
state estimation. The joint estimator is applied to determining whether there exists a stealthy attacker that leads the plant to a
forbidden state. In [10], a game-like automaton called insertion-deletion attack structure is proposed, from which the existence
of stealthy attacker can be verified, and different stealthy attack strategies can also be extracted. The complexity of the methods
in [10], [9] is exponential with respect to the number of states of the system. Lin and Su [11] consider both actuator and sensor
attacker synthesis. They show that the attacker synthesis problem can be reduced to standard supervisor synthesis problem
using a method with exponential complexity.

In this paper, we consider only sensor attackers that can launch SE-attacks and SI-attacks but no actuator attacks. In particular,
the sets of events that can be inserted and erased by the attacker may be different while in [9], [10], [11] they are assumed
to be the same. Therefore, the sensor attack considered in this paper is more general. We assume that the supervisor does
not know the existence of the attacker at the beginning. However, if the supervisor receives an observable event that is not
enabled at its current state, the attack is detected. Under this new attack detection mechanism, there is no need to compute
the set of observations generated by the closed-loop system, which requires exponential complexity. If the attacker can cause
the closed-loop system reaching a forbidden state, we call the attacker threatening. We aim at verifying the existence of
threatening sensor attacker for a given closed-loop system. The proposed approach does not require the construction of the
observer of the plant nor of the closed-loop system, whose complexity is exponential in the cardinality of the system state
space. A deterministic model of the plant under attack is constructed and composed with the model of the supervisor under
attack to obtain a structure called All Sensor Attack (ASA) model, which captures the behavior of the controlled system under
all possible sensor attacks. The ASA model provides a necessary and sufficient condition for the existence of a threatening
sensor attacker, and the condition can be verified with polynomial complexity.

II. PRELIMINARIES
In this section, some basics on automata and supervisory control are recalled.

A. Finite State Automata
In this paper, a plant is modeled as a deterministic finite automaton (DFA) G = (X,E, f, x0), where X is the finite set

of states, E is the set of events, f : X × E → X is the (partial) transition function, and x0 ∈ X is the initial state. The
transition function can be extended to f : X ×E∗ → X recursively: for all x ∈ X , f(x, ε) = x and f(x, σe) = f(f(x, σ), e)
for σ ∈ E∗ and e ∈ E. We denote by f(x, σ)! the fact that σ is defined at x. The generated language of G is defined as
L(G) := {σ ∈ E∗|f(x0, σ)!}. The set of active events of G at state x is defined as ΓG(x) := {e ∈ E|f(x, e)!}}. A string
s ∈ E∗ is said to be a prefix of σ ∈ E∗ if there exists t ∈ E∗ such that st = σ. The set of all the prefix of s is denoted as s.
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Fig. 1. (a) Plant G, where Eo = {b, c}, Ec = {a, c} and Xf = {5}, and (b) supervisor S enforcing the specification, (c) the controlled system
S/G. Events subject to sensor attacks are Esi = {c} and Ese = {b}.

Given two DFA G1 = (X1, E1, f1, x01) and G2 = (X2, E2, f2, x02), the parallel composition of G1 and G2 is G1||G2 =
Ac(X,E, f, (x01, x02)), where X ⊆ X1 ×X2, E = E1 ∪ E2, the transition function f is defined as, for x = (x1, x2) ∈ X ,
e ∈ E,

f(x, e) =


(x′1, x

′
2), if e ∈ ΓG1(x1) ∩ ΓG2(x2),

(x′1, x2), if e ∈ ΓG1(x1) \ E2,
(x1, x

′
2), if e ∈ ΓG2(x2) \ E1,

Not defined, Otherwise,

with x′1 = f1(x1, e) and x′2 = f2(x2, e), and Ac(·) denotes the operation of taking the accessible part of an automaton.

B. Supervisory Control
A supervisor is a control agent that ensures that the plant under its control satisfies a given specification. In this paper, we

assume that the specification is given as a set of legal states, denoted as Xl ⊆ X , such that the controlled system should not
reach any state in Xf = X\Xl, which is called the set of forbidden states. We define Xw := {x ∈ X|∃σ ∈ E∗uc, f(x, σ) ∈ Xf}
be the set of weakly forbidden states.

Due to limited sensing capacity and controllability of the supervisor, the set of events is partitioned into two subsets
E = Eo ∪ Euo, where Eo is the set of observable events while Euo = E \ Eo is the set of unobservable events. From the
perspective of controllability, the set of events E can be partitioned into E = Ec ∪ Euc, where Ec is the set of controllable
events while Euc = E\Ec is the set of uncontrollable events. The natural projection Po : E∗ → E∗o is defined as i) Po(ε) := ε;
ii) for all sσ ∈ E∗ and e ∈ E, Po(σe) := Po(σ)e if e ∈ Eo, and Po(σe) := Po(σ), otherwise. We define w = Po(σ) the
observation of σ. The set of all the observations generated by G is Po(L(G)) :=

⋃
σ∈L(G) Po(σ). Note that no assumption on

the relation between Eo and Ec is made in this paper.
Formally, a supervisor with partial observation is a function ϕ : Po(L(G)) → 2E . In words, when observing a word

w ∈ Po(L(G)), the supervisor generates a corresponding control decision ϕ(w) ⊆ E with Euc ⊆ ϕ(w) such that only events
in ϕ are allowed to occur next. In this way, the closed-loop system is prevented from reaching any state in Xf .

A supervisor can be described by a DFA S = (Y,E, fS , y0) (cf. Section 3.7.2 in [12]) such that control decisions are
encoded in S. Suppose that a string σ ∈ L(G) occurs in the plant. The supervisor observes w ∈ Po(σ) and generates the
corresponding control decision ϕ(w) = ΓS(fS(y0, w)), i.e., the set of events allowed to occur after σ. Note that ∀y ∈ Y and
e ∈ Euo, if e is enabled by the supervisor (i.e., e ∈ ΓS(y)), then fS(y, e) := y.

Given a plant and a supervisor enforcing Xl, the controlled system is denoted as S/G, and can be obtained by the parallel
composition of G and S.

Example 1: Consider the plant G in Fig. 1(a), where Ec = {a, c}, Eo = {b, c}, and Xf = {5}. A supervisor S that
prevents G from reaching state 5 is shown in Fig. 1(b), which encodes the control function ϕ(c∗) = ΓS(0) = {a, b, c} and
ϕ(c∗b) = ΓS(1) = ∅. The controlled system S/G is shown in Fig. 1(c). �

III. PROBLEM FORMALIZATION
In this paper, we focus on sensor attacks and our goal is to synthesize a sensor attacker that causes the controlled system

violating the specification, and meanwhile remains stealthy.

A. Sensor Attacker
In an attack scenario, some sensors are deemed vulnerable and the attacker can change the sensor readings by either erasing

a genuine sensor event and/or inserting a fictitious one [2]. Thus, we consider a sensor attacker that can launch two types of
attacks:
• Sensor Erasure Attack (SE-attack): the attacker erases the last reading generated by the plant.
• Sensor Insertion Attack (SI-Attack): the attacker inserts false readings that have not occurred in the plant.
We denote Ese ⊆ Eo (resp. Esi ⊆ Eo) the set of events subject to SE-attacks (resp. SI-attacks), i.e., the occurrence of event

in Ese (resp. Esi) may be erased (resp. inserted) by the attacker. To make the problem more general, no relation is imposed
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Fig. 2. (a) A supervisory controlled system under sensor attacks, and (b) relations between the attack functions and projections.

between the sets Ese and Esi. After observing a new event, the sensor attacker can either insert a string of events in Esi, or
erase the last event (if it is in Ese), or do nothing. Fig. 2(a) illustrates a controlled system under sensor attacks, where the
red block denotes a sensor attacker. If the plant generates a word σ ∈ E∗, the attacker observes Po(σ) and then produces a
corrupted observation that is denoted as ŵ ∈ E∗o . The supervisor observes ŵ and generates the corresponding control decision
ϕ(ŵ).

We define E+ := {e+|∀e ∈ Esi} the set of inserted events, and E− := {e−|∀e ∈ Ese} the set of erased events. The
occurrence of event e+ (resp. e−) denotes the fact that the attacker inserts event e ∈ Esi that has not occurred in the plant
(resp. erases event e ∈ Ese generated by the plant). We denote

Ea := E ∪ E+ ∪ E−

the attack alphabet. The attacker’s action can be characterized in terms of a new word in E∗a [9].
Definition 1: A sensor attacker is a function ξ : Po(L(G))→ E∗a satisfying the following constraints:
• ξ(ε) ∈ E∗+,
• ∀we ∈ Po(L(G)) with e ∈ Eo, {

ξ(we) ∈ ξ(w){e−, e}E∗+, if e ∈ Ese,
ξ(we) ∈ ξ(w)eE∗+, otherwise. �

In the definition, a sensor attacker may insert a string w+ ∈ E∗+ at the initial state before any observable event is generated
by the system. If the latest observable event e belongs to Ese, the attacker may either erase it or not, and then insert w+.
Otherwise, the attacker may only insert w+ after e. Given w ∈ Po(L(G)), we call wa = ξ(w) the attack word corresponding
to w, which describes the action of the attacker on the sensor reading generated by the plant. The set of all possible sensor
attackers is denoted as Ξ.

We define the projection P̂o : E∗a → E∗o as ∀wa ∈ E∗a , e′ ∈ Ea, i) P̂o(ε) = ε; ii) P̂o(wae′) = P̂o(wa)e, if e′ = e ∈ Eo
or e′ = e+ ∈ E+; iii) P̂o(wae′) = P̂o(wa), if e′ ∈ Euo or e′ = e− ∈ E−. The projection describes the observation of
the supervisor after a string is corrupted. Namely, given an attack word wa ∈ E∗a , the corresponding string observed by the
supervisor is ŵ = P̂o(wa) ∈ E∗o , which is called corrupted observation. The internal structure of the attacker is visualized in
Fig. 2(a).

It is assumed in this paper that the attacker has full knowledge of the plant G and the supervisor S, while the supervisor
does not know the existence of the attacker at the beginning. Given w ∈ Po(L(G)), if the corrupted observation satisfies
P̂o(ξ(w)) ∈ Po(L(S)), the attack on w is said to be stealthy. Namely, the attack is not detected by the supervisor. Given an
attacker ξ, if ∀w ∈ Po(L(G)), the attack on w is stealthy, we say the attacker ξ is stealthy.

Note that the attack detection mechanism in this paper is different from the one in [10], where the attacker is discovered
when a word not in Po(L(S/G)) is observed by the supervisor.

In general, Po(L(S/G)) ⊆ Po(L(S)). Therefore, the detection mechanism in this paper is less sensitive. However, it is
more efficient since to determine if an observed word belongs to Po(L(S/G)) the supervisor needs in general to construct the
observer of the controlled system, which has exponential complexity. On the other hand, to check whether the observed word
belongs to Po(L(S)), it is sufficient for the supervisor to compare the new received observable event with the expected ones
(i.e., checking if the received observable event is defined at the current state of the supervisor), which has linear complexity.

As soon as a word not in Po(L(S)) is observed, the supervisor detects the presence of an attacker, and it disables all
controllable events thereafter. The main reason why the supervisor chooses such a prevention mechanism is the following. If
the current state of the plant belongs to Xw, such a control action guarantees that the specification will not be violated, while
in the opposite case no suitable control action exists.

An example is provided to illustrate how sensor attacker affects the behavior of the controlled system S/G.
Example 2: Consider again the controlled system in Fig. 1. Assume that the sets of events subject to SE-attacks and SI-attacks

are Esi = {c} and Ese = {b}, respectively. Suppose that the sensor attacker is

ξ(w) =

{
ε, for w = ε;
cn1b−c

n2 , for w = cn1bcn2 , with n1, n2 ∈ N.



In words, the attacker erases event b after observing it. Suppose that σ = acb occurs in L(S/G). The plant reaches state
4. The attacker observes Po(acb) = cb and erases b (i.e., P̂o(ξ(cb)) = c). As a result, the supervisor observes c and reaches
state 0, where event c is enabled. Therefore, the plant reaches the forbidden state 5 from state 4 with the occurrence of c.
Since cc ∈ Po(L(S)), the attack on acbc is stealthy. Analogously, we can construct the controlled system under the attack of
ξ, which is identical to G. �

Due to limited space, we refer the readers to [10] for the formalization of the intricate interaction between plant, supervisor
and attacker. The controlled system under the action of the sensor attacker ξ is denoted as Sξ/G.

B. Problem Statement
Example 2 shows that since the control decision is made by the supervisor based on observation of the corrupted observation,

it may happen that under attack the controlled system no longer satisfies the specification.
Definition 2: Given a plant G = (X,E, f, x0), a supervisor S enforcing a state specification Xl ⊆ X , a sensor attacker ξ

is said to be threatening for S/G, if there exist σ ∈ L(Sξ/G) and σuc ∈ E∗uc such that
1) f(x0, σσuc) ∈ Xf , and
2) ∀σ′ ∈ σ \ {σ}, P̂o(ξ(w′)) ∈ Po(L(S)), where w′ = Po(σ

′). �
Condition 1) implies that when σ occurs the plant reaches a weakly forbidden state. Condition 2) implies that before the

plant reaches the weakly forbidden state, the attacks remain stealthy. Once the plant reaches a weakly forbidden state, the
attacker needs not be stealthy, i.e., P̂o(ξ(Po(σ))) may not belong to Po(L(S)).

Finally, the problem addressed in this paper is formalized.
Attacker Existence Problem: given a plant G, a supervisor S enforcing specification Xl, and the sets Esi and Ese of events
subject to sensor attacks, determine whether there exists a threatening sensor attacker for S/G.

IV. VERIFICATION OF ATTACKER EXISTENCE
A. Modeling of Plant and Supervisor under Attack

In this section, the effects of sensor attacks on the behavior of G and S are separately considered.
We first take the perspective of the plant. Given a plant G, a DFA Ĝ = (X,Ea, f̂ , x0) is proposed to capture all possible

sensor attacks on strings generated by G.
Definition 3: Given a plant G = (X,E, f, x0) with sets Esi and Ese, a DFA Ĝ = (X,Ea, f̂ , x0) is 4-tuple, where the

transition function f̂ is defined as, ∀x ∈ X
f̂(x, e) := f(x, e), ∀e ∈ E;

f̂(x, e+) := x, ∀e ∈ Esi;
f̂(x, e−) := f(x, e), ∀e ∈ Ese ∩ ΓG(x).

�
DFA Ĝ has the same set of states with G. An event e ∈ E corresponds to an event generated by the plant that is not

corrupted by the attacker. Therefore, ∀x ∈ X , e ∈ E, f̂(x, e) = f(x, e). The attacker can insert any string in E∗si between the
occurrence of two events in G. The attacker can also erase the observation of an observable event e ∈ Ese after it occurs in
G, and the occurrence of event e and its erasure are represented by event e−.

To characterize the properties of Ĝ, one may extend functions ξ : Po(L(G)) → E∗a and Po : E∗ → E∗o to new functions:
ξ′ : L(G)→ E∗a and P ′o : E∗a → E∗a . A string attack function ξ′ satisfies Definition 1 assuming Eo = E; we denote Ξ′ the set
of all these functions. Projection P ′o removes from a string in E∗a all events in Euo.

The relation among these functions is shown in Fig. 2(b), where the part in black corresponds to the scheme in Fig. 2(a)
while the part in red is related to the newly defined functions. String σa = ξ′(σ) is the attack string, which describes the action
of the attacker on the word generated by the plant. Given a generated string σ it holds that wa = ξ(Po(σ)) = P ′o(ξ

′(σ)). We
have the following properties of Ĝ.

Proposition 1: Let Ĝ be the DFA defined in Definition 3. It holds that
1) σa ∈ L(Ĝ)⇔ (∃ξ′ ∈ Ξ′,∃σ ∈ L(G))σa = ξ′(σ);
2) for all ξ′ ∈ Ξ′, σ ∈ L(G): f̂(y0, ξ

′(σ)) = f(y0, σ).
Proof: Statement 1). (proof of ⇒) Consider a word σa ∈ L(Ĝ) that reaches a state x and only contains events in E: it

represents an original evolution that has not been attacked. At each state all events e+ are in selfloop: this means that σa can
be corrupted inserting at each step a string of fake events in Esi. In addition if the string σa is generated executing a transition
f̂(x′, e) = x′′ with e ∈ Ese, it is also possible to execute the “parallel” transition f̂(x′, e−) = x′′ corresponding to an attack
that erases e. Therefore, there exist ξ′ ∈ Ξ′, σ ∈ L(G) such that ξ′(σ) = σa.

(Proof of ⇐) By the definition of f̂ , all possible attacks have been included in Ĝ. Therefore, given a word σ ∈ L(G) and
ξ′ ∈ Ξ′, there exists a corresponding σa ∈ L(Ĝ) such that σa = ξ′(σ).

Statement 2). Note that the original string and all the corrupted ones reach the same state x, and the result follows statement 1).
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Fig. 3. (a) Model Ĝ of the plant under attack, and (b) model Ŝ of the supervisor under attack.

According to statement 1), the language generated by Ĝ consists of all possible attack strings corresponding to evolutions
of the plant. By statement 2), the state reached in the plant by an evolution σ and the state reached in Ĝ with an attack string
σa = ξ′(σ) coincide.

Now let us take the perspective of the supervisor. Given a supervisor S = (Y,E, fS , y0), a DFA Ŝ is proposed to describe
the control decisions generated by the supervisor under all possible sensor attacks.

Definition 4: Given a supervisor S = (Y,E, fS , y0) with sets Esi and Ese, a DFA Ŝ = (Y ∪ {yd}, Ea, f̂S , y0) is a 4-tuple,
where the transition function f̂S is defined as,
• for all y ∈ Y , 

f̂S(y, e) := fS(y, e), ∀e ∈ E ∩ ΓS(y); (1)

f̂S(y, e) := y, ∀e ∈ Euc ∩ Euo \ ΓS(y); (2)

f̂S(y, e) := yd, ∀e ∈ Euc ∩ Eo \ ΓS(y); (3)

f̂S(y, e+) := fS(y, e), ∀e ∈ Esi ∩ ΓS(y); (4)

f̂S(y, e+) := yd, ∀e ∈ Esi \ ΓS(y); (5)

f̂S(y, e−) := y, ∀e ∈ Ese ∩ (ΓS(y) ∪ Euc). (6)

• for y = yd,


f̂S(yd, e) := yd, ∀e ∈ Euc; (7)

f̂S(yd, e−) := yd, ∀e ∈ Euc ∩ Ese; (8)

f̂S(yd, e+) := yd, ∀e ∈ Esi. (9)
�

For the uncorrupted observations, Ŝ and S have the same control decisions (Eq. (1)). The new state yd is added in Ŝ,
and it is reachable when a corrupted observation ŵ /∈ Po(L(S)) is observed by the supervisor (Eqs. (3) and (5)). If the
corrupted observation belongs to Po(L(S)), the supervisor cannot detect the attack and update the control decision (Eq. (4)).
If the attacker erases the observation of an event e ∈ Ese that is enabled by the supervisor, the supervisor cannot observe the
occurrence of e and thus f̂S(y, e−) = y (Eq. (6)). After attacks are detected, only uncontrollable events are enabled (Eq. (7)).
Then the attacker may erase their occurrence, if possible (Eq. (8)), or insert any other events in Esi (Eq. (9)).

Based on the construction of Ŝ, we have the following properties of Ŝ.
Proposition 2: Let ξ be a sensor attacker. Let w ∈ Po(L(G)) be an observation of the attacker, and ŵ = P̂o(ξ(w)) the

corrupted observation received by the supervisor S.
1) The control decision corresponding to ŵ is ϕ(ŵ) = ΓŜ(y) ∩ E, where y = f̂S(y0, ξ(w));
2) f̂S(y0, ξ(w)) = yd iff ŵ /∈ Po(L(S)).

Proof: Follows from the definition of the transition function f̂S . From Eqs. (1) to (6), one can verify that state yd is
reachable from a state y ∈ Y if and only if an observable event e 6∈ ΓS(y) occurs.

The definition of f̂S guarantees that, if ŵ ∈ Po(L(S)), fS(y0, ŵ) = f̂S(y0, ŵ) = y. Thus, ϕ(ŵ) = ΓS(y) = ΓŜ(y) ∩ E.
By statement 2), if ŵ /∈ Po(L(S)), f̂S(y0, ŵ) = yd, which corresponds to the control decision ϕ(ŵ) = Euc = ΓŜ(yd) ∩ E.
Therefore, statement 1) holds.

Statement 1) implies that the DFA Ŝ describes the control decisions for all corrupted observations under all possible sensor
attacks. Statement 2) implies that if the attack word ξ(w) leads to the state yd, the attack on w is not stealthy.

Example 3: Consider again the plant and the supervisor in Figs. 1(a) and 1(b). Their corresponding Ĝ and Ŝ are shown
in Fig. 3. To make the construction more illustrative, additional transitions of events in E+, E−, and Euc are colored in red,
blue, and green respectively. �
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Fig. 4. The ASA model H of Ĝ and Ŝ in Fig. 3.

ା

0 1 2

3 4 5
0 1 0 1

0 1 2

3 4 5

ା ା ା

ା

ା

ି

ା

ି

0 1
ା ି

DT

0 1

ି

DT

ା

ା0 1

3 4

1. Plant 2. Supervisor 𝟏 3. Supervisor 𝟐

4. 𝟏 5. 𝒂 7. 𝟐𝒂6. 𝟏𝒂

(a)

0 1 2

3 4 5
0 1 0 1

0 1 2

3 4 5

ା

ି
0 1

𝑦ௗ

0 1

0 1

3 4

1. Plant 2. Supervisor 𝟏 3. Supervisor 𝟐

4. 𝟏 5. 𝒂 7. 𝟐𝒂6. 𝟏𝒂

𝑦ௗ

ା ା

ା

ା

ା

ି

ି

ି

ା

ା

ା ି

ି
ି

ା
ା

ା

ି

(b)

Fig. 5. (a) Another supervisor S enforcing the specification on G in Example 1, and (b) the corresponding model Ŝ of the supervisor under attack.

B. All Sensor Attack Automaton
Definition 5: Given G = (X,E, f, x0), S = (Y,E, fS , y0), and sets Esi and Ese, let Ĝ and Ŝ be their corresponding

automata constructed by Definitions 3 and 4. The All Sensor Attack (ASA) model (for G, S, Esi and Ese) is a DFA H =
(Q,Ea, fH , q0) := Ĝ||Ŝ. �

Each state of H is a pair (x, y) ∈ X × Y , where x and y are respectively the state reached in the plant and the state of the
supervisor reached through the observation of a corrupt or an original string.

Proposition 3: Let H = (Q,Ea, fH , q0) be the ASA of G and S. It holds that:
σa ∈ L(H)⇔ (∃ξ′ ∈ Ξ′,∃σ ∈ L(Sξ′/G))σa = ξ′(σ),

where Sξ′/G is the controlled system under the attack of ξ′ (cf. Section III-A).
Proof: By Proposition 1, Ĝ includes all event insertion and erasure attacks on string σ ∈ L(G). By Proposition 2, Ŝ

describes the control decisions corresponding to all possible corrupted observations. Thus, H = Ĝ||Ŝ describes the behavior
of the controlled system under all possible sensor attacks.

After an ASA model is constructed, two sets of states in H are defined:
• Qd := {(x, y) ∈ Q|y = yd}, the set of states whose second element equals yd, and
• Qf := {(x, y) ∈ Q|x ∈ Xf}, the set of states whose first element is a state in Xf .
Example 4: [continuation of Example 3]
The ASA model H = Ĝ||Ŝ is shown in Fig. 4. We have Qd = {q2, q9} (in grey), and Qf = {q7} (in red). �
Theorem 4: Given G = (X,E, f, x0), S = (Y,E, fS , y0), and sets Esi and Ese, let H = (Q,Ea, fH , q0) be the ASA

model. There exists a threatening sensor attacker for S/G iff Qf 6= ∅.
Proof: (If) Let q = (x, y) ∈ Qf with fH(q0, σa) = q. By Proposition 3, there exists ξ′ ∈ Ξ′ and σ ∈ L(G) such that

σa = ξ′(σ). By statement 2) in Proposition 1, f(x0, σ) = x ∈ Xf . If y = yd, there exists σ′a ∈ σa such that fH(y0, σ
′
a) =

(x′, yd) ∈ Qd and ∀σ′′a ∈ σ′a\{σ′a}, fH(y0, σ
′′
a) /∈ Qd. By statement 2) of Proposition 2, the attack is detected by the supervisor

with observing P̂o(σ′a). Since after the attacker is detected, only uncontrollable events can occur in the controlled system, there
exists σuc ∈ E∗uc such that f(x′, σuc) = x ∈ Xf . It implies that although the supervisor detects the attack, it cannot prevent
the plant from reaching a state in Xf . By Definition 1, the attacker is threatening. On the other hand, if y 6= yd, the attack on
Po(σ) is stealthy. Therefore, the attacker is threatening.

Now we prove that such an attacker exists. By Definition 4, for any σ′ ∈ L(G) with Po(σ
′) = Po(σ) = w, the possible

attack actions are the same (i.e., ΓŜ(f̂S(y0, w)). For any other σ′, the attacker can take the same attack actions as σ. For other
strings that have different observation from Po(σ), the attacker just takes no action. Namely, from ξ′ we can obtain one ξ, and
thus the attacker exists.

(Only if) Assume that there exists a threatening sensor attacker ξ. The controlled system under its attack is Sξ/G. By
Definition 2, there exists σ ∈ L(Sξ/G) with f(x0, σ) = x such that ∃σuc ∈ E∗uc, f(x, σuc) ∈ Xf , and the attack of ξ
on w \ {w} is stealthy, where w = Po(σ). By Proposition 3, H contains all the possible sensor attacks. Therefore, there
exists σa ∈ L(H) such that ξ′(σ) = σa. Let fH(q0, σa) = q. By the construction of H and statement 2) in Proposition 1,
q = (x, ·) ∈ Qf , where the dot means that the second element is not specified. Therefore, Qf 6= ∅.
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Fig. 6. The ASA model H of Ĝ in Fig. 3(a) and Ŝ in Fig. 5(b).

Example 5: [continuation of Example 4]
Since Qf = {q7}, by Theorem 4, for G and S in Fig. 1, Esi = {c} and Ese = {b}, there exists a threatening sensor

attacker. Indeed, the string ab−c, for instance, leading to q7 implies that for σ = ab (i.e., after observing b), the attack erasing
b misleads the supervisor to enabling c and causes the plant reaching 5. The string captures one attack action of the attacker
ξ in Example 2.

The threatening attacker does not always exist. Suppose that the supervisor is replaced with the one in Fig. 5(a). To check
whether there exists a stealthy threatening attacker, first we construct its corresponding Ŝ (as shown Fig. 5(b)), and then the
ASA model H in Fig. 6. We have Qd = {q3, q5} and Qf = ∅. By Theorem 4, there is no threatening sensor attacker with
capability of Esi = {c} and Ese = {b} that can cause damage to the controlled system S/G. �

C. Complexity Analysis
Finally, we analyze the complexity of the proposed approach. According to Definition 3, the worst-case time complexity of

constructing Ĝ is O(|X||E|). According to Definition 4, the worst-case time complexity of constructing Ŝ is O(|Y ||E|). Model
H contains at most |X|(|Y | + 1) states. Thus, the worst-case time complexity of constructing H = Ĝ||Ŝ is O(|E||X||Y |),
and the complexity of verifying the conditions in Theorem 4 is polynomial with respect to the size of the plant, the supervisor
and the set of events.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the stealthy sensor attacker existence problem in cyber-physical discrete event systems. It is

assumed that every time when receiving an observation, the attacker can either erase the last event (if it belongs to set Ese)
or not and then insert or not a string of events in set Esi. A new attack detection mechanism was proposed. The notion of
threatening attacker was defined. Construction of the plant and the supervisor under attack are presented. Then we proposed
a structure, called All Sensor Attack (ASA) automaton, to capture all the behavior of the controlled system under all possible
sensor attacks. Based on the ASA, a necessary and sufficient condition for the existence of a threatening attacker was derived.
It is shown that the attacker existence problem can be solved in polynomial complexity. Our future work will focus on the
synthesis of a threatening sensor attacker using the ASA model.
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