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Abstract

In this paper, we study the problem of non-blockingness verification by tapping into the basis reachability graph (BRG). Non-

blockingness is a property that ensures that all pre-specified tasks can be completed, which is a mandatory requirement during the

system design stage. We develop a condition of transition partition of a given net such that the corresponding conflict-increase

BRG contains sufficient information on verifying non-blockingness of its corresponding Petri net. Thanks to the compactness

of the BRG, our approach possesses practical efficiency since the exhaustive enumeration of the state space can be avoided. In

particular, our method does not require that the net is deadlock-free.
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I. INTRODUCTION

Discrete event systems (DESs) [9] are event-driven systems whose state space can be described as a discrete set. As a

mathematical characterization for studying, modelling, and analyzing DES, Petri nets [2], [10] offer various vantages over

automata. For instance, states in Petri nets can be represented as vectors, namely markings; ergo, techniques such as linear

algebra [1] can be applied. On the other hand, structural-based approaches can be adopted to avert exhaustively enumerating

the state space, therefore mitigating the state explosion problem.

In DESs, non-blockingness [17] is a property that ensures that all pre-specified tasks can be completed, which is a mandatory

requirement during the system design stage. Given its importance, efficient techniques are desired to verify if a given system

is non-blocking. Past works [4], [16] propose several methods to verify the non-blockingness of a given Petri net: these

methods are based on the reachability graph (RG) and theory of regions. On the other hand, [8] propose methods to synthesize

non-blocking enforcing supervisors in some subclasses of Petri nets.

Recently, a semi-structural analysis technique in Petri nets, called the basis reachability analysis, was proposed [3]. In the

basis reachability analysis, only a subset of the reachable markings called basis markings is enumerated and an automaton-like

structure called basis reachability graph (BRG) is constructed. Initially created for diagnosis problems [3], basis reachability

analysis has been gradually developed and adopted on solving other issues such as marking reachability and opacity problems,

etc.

Although the BRG-based techniques have been proved to be operative and efficient, it is showed that a conventional BRG

is, in general, not applicable to tackle the non-blockingness verification problem [6]. The reason is that in a BRG there may

exist livelocks among a set of non-basis markings. In such a case, the blocking behavior of the plant net cannot be detected by

inspecting the structure of the BRG. To overcome such a problem, in [6], an augmented version of BRGs called minimax-BRG

is developed. Although the minimax-BRG exhibits practical efficiency in solving the non-blockingness verification problem,

unlike the basis-marking-based approach [14], currently, there are no analysis methods for addressing with minimax-BRGs on

state estimation and supervisory control problems, in which non-blockingness analysis plays a key role. This motivated us to

develop an alternative non-blocking verification method based on the conventional types of BRGs whose analysis methods are

relatively mature.

In this paper we introduce a particular type of BRGs called conflict-increase BRGs (CI-BRGs) that encode sufficient non-

blockingness-related information by referring to a particular partition of the transition set. Differently from the minimax-BRG

[6] whose construction has a higher complexity than that of a BRG with the same transition partition, a CI-BRG is identical in

essence with BRG. We characterize the main properties of basis markings in CI-BRGs and prove that the non-blockingness of

a system can be verified by checking if all basis markings in its corresponding CI-BRG are non-blocking. Although there exist

restrictions on obtaining of CI-BRGs, which depend on the system structure and the parameters of the linear constraint that

describes the final markings set, thanks to the compactness of BRGs, our approach still achieves practical efficiency compared

with the RG-based analysis, according to numerical results.

II. PRELIMINARIES

A. Petri Nets

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places and T is a set of n transitions. Pre : P×T →N

and Post : P×T → N (N = {0,1,2, · · ·}) are the pre- and post- incidence functions that specify the arcs in the net and are



represented as matrices in Nm×n. The incidence matrix of N is defined by C = Post−Pre. A Petri net is acyclic if there are

no directed cycles in its underlying digraph.

Given a Petri net N = (P,T,Pre,Post) and a set of transitions Tx ⊆ T , the Tx-induced sub-net of N is a net resulting by

removing all transitions in T \Tx and corresponding arcs from N, denoted as Nx = (P,Tx,Prex,Postx) where Tx ⊆ T and Prex

(Postx) is the restriction of Pre (Post) to P and Tx.

A marking M of a Petri net N is a mapping: P→N that assigns to each place of a Petri net a non-negative integer number of

tokens. The number of tokens in a place p at a marking M is denote by M(p). A Petri net N with an initial marking M0 is called

a marked net, denoted by 〈N,M0〉. For a place p ∈ P, the set of its input transitions is defined by •p = {t ∈ T | Post(p, t)> 0}

and the set of its output transitions is defined by p• = {t ∈ T | Pre(p, t)> 0}. The notions for •t and t• are analogously defined.

A Petri net N = (P,T,Pre,Post) is conflict-free if for all p ∈ P, |p•| ≤ 1.

A transition t ∈ T is enabled at a marking M if M ≥ Pre(·, t), denoted by M[t〉; otherwise it is said to be disabled at M,

denoted as ¬M[t〉. If t is enabled at M, the firing of t yields marking M′ = M+C(·, t), which is denoted as M[t〉M′. A marking

M is dead if for all t ∈ T , M � Pre(·, t).

Marking M′ is reachable from M1 if there exist a firing sequence of transitions σ = t1t2 · · · tn and markings M2, · · · ,Mn such

that M1[t1〉M2[t2〉 · · ·Mn[tn〉M′ holds. We denote by T ∗ the set of all finite sequences of transitions over T . Given a transition

sequence σ ∈ T ∗, ϕ : T ∗→ Nn is a function that associates to σ a vector y = ϕ(σ) ∈ Nn, called the firing vector of σ . Let

ϕ−1 :Nn→ T ∗ be the inverse function of ϕ , namely for y ∈Nn, ϕ−1(y) := {σ ∈ T ∗|ϕ(σ) = y}. The set of markings reachable

from M0 is called the reachability set of 〈N,M0〉, denoted by R(N,M0). A marked net 〈N,M0〉 is said to be bounded if there

exists an integer k ∈ N such that for all M ∈ R(N,M0) and for all p ∈ P, M(p)≤ k holds.

Proposition 1: [13] Given an acyclic net N, markings M,M′ ∈ Nm, and a firing vector y ∈ Nn, the following holds:

M′ = M+C ·y≥ 0⇔ (∃σ ∈ ϕ−1(y)) M[σ〉M′. �

Let G = (N,M0,F ) denote a plant consisting of a marked net and a finite set of final markings F ⊆ R(N,M0). Instead of

explicitly listing all the elements in F , as a general form, in this paper, we characterize set F as a linear constraints namely

generalized mutual exclusion constraints (GMECs) [5]. A GMEC is a pair (w,k), where w ∈ Zm and k ∈ Z (Z is the set of

integers), that defines a set of markings L(w,k) = {M ∈ Nm|wT ·M ≤ k}.

Definition 1: A marking M ∈ R(N,M0) of a plant G = (N,M0,F ) is blocking if R(N,M)∩F = /0; otherwise M is non-

blocking. Plant G is non-blocking if all reachable markings are non-blocking; otherwise G is blocking. ♦

B. Basis Marking and Basis Reachability Graph

Given a Petri net N = (P,T,Pre,Post), transition set T can be partitioned into T = TE ∪TI where the sets TE and TI are

called the explicit transition set and the implicit transition set, respectively.

A pair π = (TE ,TI) is called a basis partition [12] of T if (i) TE ∪TI = T , TE ∩TI = /0; (ii) the TI-induced subnet is acyclic.

We denote |TE |= nE , |TI |= nI , and CI be the incidence matrix of the TI-induced subnet. Note that in a BRG with basis partition

(TE ,TI), the firing of explicit transitions in TE is explicitly represented in the BRG, while the firing of implicit transitions in

TI is abstracted. Note that no physical meaning needs to be associated with implicit transitions: the set TI can be arbitrarily

selected, provided that the TI-induced subnet is acyclic.

Definition 2: Given a Petri net N = (P,T,Pre,Post), a basis partition π = (TE ,TI), a marking M, and a transition t ∈ TE , we

define Σ(M, t) = {σ ∈ T ∗I |M[σ〉M′,M′ ≥ Pre(·, t)} as the set of explanations of t at M, and Y (M, t) = {ϕ(σ)∈NnI |σ ∈ Σ(M, t)}

as the set of explanation vectors; meanwhile we define Σmin(M, t) = {σ ∈ Σ(M, t)|@σ ′ ∈ Σ(M, t) : ϕ(σ ′)� ϕ(σ)} as the set of



minimal explanations of t at M, and Ymin(M, t) = {ϕ(σ)∈NnI |σ ∈ Σmin(M, t)} as the corresponding set of minimal explanation

vectors. ♦

Definition 3: Given a bounded marked net 〈N,M0〉 with a basis partition π = (TE ,TI), its basis reachability graph (BRG) is a

deterministic automaton B output by Algorithm 2 in [12]. The BRG B is a quadruple (MB,Tr,∆,M0), where the state set MB

is the set of basis markings, the event set Tr is the set of pairs (t,y) ∈ TE×NnI , the transition relation ∆ = {(M1,(t,y),M2)|t ∈

TE ,y ∈ Ymin(M1, t),M2 = M1 +CI · y+C(·, t)}, and the initial state is the initial marking M0. ♦

The set Ymin(M, t) and the BRG can be computed using Algorithms 1 and 2 in [12], respectively. We extend the definition

of transition relation to consider sequence of pairs σ ∈ Tr∗ and write M1
σ−→M2 to denote that from M1 sequence σ yields M2.

Note that the upper bound of states in a BRG is the size of the reachability space of a net. However, many BRG-related

work [3], [12] have shown that in practical cases a BRG can be much smaller than the corresponding reachability space, i.e.,

|MB| � |R(N,M0)| holds. Besides, in some cases, a BRG may grow much slower than the reachability space of a net. For

instance, [15] shows an example in which the number of states in a Petri net grows cubically (i.e., O(k3)) when the initial

marking increases, while the corresponding BRG growth linearly (i.e., O(k)). Therefore, the construction of the BRG achieves

practical efficiency.

Definition 4: Given a marked net 〈N,M0〉, a basis partition π = (TE ,TI), and a basis marking Mb ∈MB , we define RI(Mb)

the implicit reach of Mb as:

RI(Mb) = {M ∈ Nm|(∃σ ∈ T ∗I ) Mb[σ〉M}. ♦

Since the TI-induced subnet is acyclic, we have:

RI(Mb) = {M ∈ Nm|(yI ∈ NnI ) M = Mb +CI · yI}.

Proposition 2: [12] Given a marked net 〈N,M0〉 with a basis partition π = (TE ,TI), the set of basis markings of the system is

MB . Consider a marking M ∈Nm. M ∈ R(N,M0) if and only if there exists a basis marking Mb ∈MB such that M ∈ RI(Mb).�

III. NON-BLOCKINGNESS VERIFICATION USING CONFLICT-INCREASE BRGS

Given a plant net, in general there exist several valid basis partitions, each of which leads to a different BRG. According

to Example 1 presented in [6], a BRG constructed with a randomly selected basis partition may not encode all information

needed to test if a plant is non-blocking. The reason lies in the fact that in a BRG there may exist some livelocks among a set

of non-basis markings; thus, the blocking behavior of the plant net cannot be detected by checking the structure of the BRG.

A. Conflict-Increase BRGs

In this part, we show how a BRG corresponding to a suitable basis partition may allow one to verify non-blockingness. For

a given plant, we first introduce the notion of conflict-increase BRGs (CI-BRGs).

Definition 5: Consider a plant G = (N,M0,F ) with N = (P,T,Pre,Post) and F = L(w,k). A transition set T ′ ⊆ T is said to

be non-conflicting if T ′ ⊆ T \Tcon f , where

Tcon f = {t ∈ T | (∃p ∈ P)t ∈ p•, |p•| ≥ 2}; (1)

it is said to be non-increasing if T ′ ⊆ T \Tinc, where

Tinc = {t ∈ T | wT ·C(·, t)> 0}. (2)

According to Definition 5, a transition set is non-conflicting and non-increasing if it does not contain two types of transitions:
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Fig. 1: A plant G = (N,M0,F ).
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Fig. 2: The CI-BRG B with respect to TE = {t3, t4, t6}. For readability, explanation vectors are not shown.

(1) Tcon f — all transitions that are in structural conflicts (depends only on the structure of the net);

(2) Tinc — all transitions whose influence on (w,k) are positive (depends only on the corresponding GMEC), i.e., at a marking

M, by firing a transition t ∈ Tinc, the token count of the obtained marking M′ = M+C(·, t) will be increased in terms of

the corresponding GMEC since wT ·C(·, t)> 0.

Definition 6: Consider a plant G= (N,M0,F ) with N = (P,T,Pre,Post) and F =L(w,k). The BRG corresponding to partition

π = (TE ,TI) is called a conflict-increase BRG (CI-BRG) if TI is non-conflicting and non-increasing. ♦

Note that to construct a CI-BRG, the corresponding implicit transition set TI in π = (TE ,TI) should be both non-conflicting

and non-increasing. In addition to that, some other transitions (if necessary) may also need to be eliminated in TI to ensure the

acyclicity of the TI-induced subnet of G. For a bounded plant, there always exists a CI-BRG (e.g., the BRG with respect to

TE = T and TI = /0). Since CI-BRG is a particular type of BRG, it can be computed by Algorithm 2 in [12] and the complexity

analysis of the BRG (described in Section II-B) also applies to the CI-BRG.

On the other hand, in the previous works [3], [12], it is often preferred to choose a basis partition π with a TI that is maximal

(in the sense of set containment) since the size of its corresponding BRG is relatively small. Here, a non-conflicting and non-

increasing TI may not be maximal, therefore the corresponding CI-BRG may not be minimal as well. However, as a trade-off,

we show hereinafter that necessary information regarding non-blockingness will be appropriately encoded in CI-BRGs and

the non-blockingness verification procedure can be therefore facilitated. Moreover, as shown by simulations in Section IV, a

CI-BRG is still significantly smaller than the corresponding RG in size.

Example 1: Consider a plant G = (N,M0,F ) in Fig. 1. Let F = L(w,k) where w = [0 0 0 1 1 1]T and k = 0. In this plant,

Tcon f = {t3, t4, t6} and Tinc = {t3, t6}; thus, Tcon f ∪Tinc = {t3, t4, t6}. Notice that the subnet induced by T \{t3, t4, t6}= {t1, t2, t5, t7}

is acyclic. Ergo, to construct a CI-BRG, we can choose the set of implicit transitions TI = {t1, t2, t5, t7} that is non-conflicting

and non-increasing, which leads to TE = {t3, t4, t6}. According to Definition 4 in [12], Mb0 = M0 is a basis marking. Next,

we compute the minimal explanation vectors of all explicit transitions (i.e., t3, t4, and t6) at Mb0 and derive the other basis

markings. For instance, for t3, ymin = [0 1 0 0]T . Since Mb1 = Mb0 +CI · ymin +C(·, t3) = [1 0 0 1 0 0]T 6= Mb0, let Mb1 be

another basis marking. Analogously, the corresponding CI-BRG B can be constructed and is shown in Fig. 2. Meanwhile, the

basis markings that are also final (i.e., Mb0 and Mb2) in B are boxed with red dashed lines. ♦



B. Properties of CI-BRGs

In this subsection we prove a series of results on the properties of CI-BRGs. These results will be eventually used to establish

our non-blocking verification algorithm. Before delving into the mathematical details, we note that here we do not assume that

the net is deadlock-free: the results presented in this subsection hold for both deadlock-free nets and nets with deadlocks. The

cases of non-deadlock-free nets will be further discussed in the next subsection.

First, the following proposition shows that for any basis marking Mb, if an explicit transition t is enabled by firing a minimal

explanation from Mb, then t remains enabled when any other implicit transitions fires.

Proposition 3: Given a plant G = (N,M0,F ) with F = L(w,k), let B be its CI-BRG with respect to π = (TE ,TI). Let

ymin ∈ Ymin(Mb, t) be a minimal explanation vector of explicit transition t at Mb. For any implicit firing vector y ≥ ymin,

Mb +CI ·y = M ≥ 0 implies M[t〉.

Proof : According to Proposition 1, there exists σmin ∈ T ∗I such that Mb[σmin〉Mmin ≥ 0 where ϕ(σmin) = ymin. Since ymin ≤ y,

the trajectory Mb[σmin〉Mmin[σ
′〉M is feasible, where ϕ(σ ′) = y−ymin. By Eq. (1), in G no implicit transition shares any input

place with transition t. Hence, once t is enabled at Mmin, it remains enabled regardless other implicit transitions fire, which

implies M[t〉. �

Next, we define the concept of maximal implicit firing vector and i-maximal marking as follows.

Definition 7: Given a plant G = (N,M0,F ) with F =L(w,k), let B be its CI-BRG with π = (TE ,TI). At a basis marking Mb

in B, an implicit firing vector (IFV) y ∈ NnI is said to be maximal if there exists a firing sequence σ ∈ T ∗I ,σ ∈ ϕ−1(y) such

that Mb[σ〉 and there does not exist any other σ ′ ∈ T ∗I ,ϕ(σ) y such that Mb[σ〉M. A marking Mmax is said to be i-maximal

at Mb if there exists a maximal IFV y such that Mb +CI ·y = Mmax. ♦

Further, we show in Proposition 4 that, in a CI-BRG, for any basis marking there exists a unique maximal IFV and a unique

i-maximal marking.

Proposition 4: Given a marked net 〈N,M0〉, let B be its BRG with respect to π = (TE ,TI) where the TI-induced subnet of

N is acyclic and conflict-free. At any basis marking Mb in B, there exists a unique maximal IFV y.

Proof : By contradiction, suppose that at Mb there exist two different maximal IFVs y1,y2. Since the TI-induced subnet is

acyclic, there exist two firing sequences σ1 = tk1
i1
· · · tkn

in ,σ2 = tk′1
i1
· · · tk′n

in corresponding to y1,y2, respectively, in which ti j ’s are

sorted from upstream to downstream of the TI-induced subnet. Since y1 6= y2, there exists a minimal j such that k j 6= k′j and

for all j′ < j, k j = k′j′ . Without loss of generality, suppose that k j < k′j. Consider σ̄1 = tk1
i1
· · · tk j−1

i j−1
t
k j
i j

that is a prefix of σ1. Since

tk1
i1
· · · tk j−1

i j−1
t
k′j
i j

is a prefix of σ2, transition ti j can fire at least once after σ̄1. Moreover, since the transitions in σ1 appear from

upstream to downstream and the TI-induced subnet is conflict-free, the firing of ti j after σ̄1 does not affect the firing of the

rest of transitions in σ1, which implies that sequence tk1
i1
· · · tk j+1

i j
· · · tkn

in is firable at Mb. This means that y1 is not a maximal

IFV. �

According to Proposition 4, in a CI-BRG each basis marking has a unique i-maximal marking. In the sequel, for each

basis marking Mb we denote its i-maximal marking as Mb,max. From Propositions 3 and 4 we immediately have the following

Proposition.

Proposition 5: Given a marked net 〈N,M0〉 with N = (P,T,Pre,Post), let B be its BRG with respect to π = (TE ,TI) where

TI is non-conflicting. For any basis marking Mb in B, it holds that

Mb[σmint〉 ⇒Mb,max[t〉,

where t ∈ TE , σmin ∈ Σmin(Mb, t), and Mb,max is an i-maximal marking at Mb.



Proof : Since TI is non-conflicting, any transition t ∈ TE is not in conflict with transitions in TI . Also, the fact that Mb,max is an

i-maximal marking at Mb implies that there exists a maximal IFV y ∈ NnI at Mb such that Mb +CI ·y = Mb,max holds. Thus,

this statement follows Proposition 3, since y≥ ϕ(σmin) by Definition 7. �

Next, we show in Proposition 6 that in a CI-BRG, for any marking M in the implicit reach of Mb, there necessarily exists

a firing sequence consisting of implicit transitions σ in T ∗I such that M[σ〉Mb,max.

Proposition 6: Given a plant G = (N,M0,F ) with N = (P,T,Pre,Post) and F = L(w,k), let B be its CI-BRG with respect

to π = (TE ,TI). Given a basis marking Mb and its i-maximal marking Mb,max ∈ RI(Mb), the following holds:

(∀M ∈ RI(Mb),∃σ ∈ T ∗I ) M[σ〉Mb,max.

Proof : Consider trajectories Mb[σI〉M and Mb[σmax〉Mb,max, where ϕ(σmax) = ymax ∈NnI is the unique maximal IFV at Mb and

ϕ(σI) = yI ∈NnI . Since M = Mb +CI ·yI ≥ 0 and Mb,max = Mb +CI ·ymax ≥ 0, it holds that Mb,max = M+CI · (ymax−yI). Since

ymax ≥ yI (according to Definition 7), based on Proposition 1, there must exists a firing sequence σ ∈ T ∗I such that M[σ〉Mb,max

where ϕ(σ) = ymax−yI . �

The next proposition shows that in a CI-BRG, the implicit reach of any basis marking Mb contains at least one final marking

(i.e., RI(Mb)∩F 6= /0) if and only if the i-maximal marking of Mb is a final marking (i.e., Mb,max ∈F ).

Proposition 7: Given a plant G = (N,M0,F ) with N = (P,T,Pre,Post) and F =L(w,k), let B be its CI-BRG with respect to

π = (TE ,TI). For any basis marking Mb and its i-maximal marking Mb,max ∈ RI(Mb), RI(Mb)∩F 6= /0 if and only if Mb,max ∈F .

Proof : (if) This part holds since Mb,max ∈ RI(Mb)∩F .

(only if) Suppose that Mb,max /∈ F , i.e., wT ·Mb,max > k. Notice that Mb,max = Mb +CI · ymax where ymax ∈ NnI is the

maximal IFV at Mb. Since by Eq. (2), wT ·C(·, t)≤ 0 holds for all t ∈ TI , we can conclude that for any M ∈ RI(Mb) such that

M = Mb +CI ·y, y≤ ymax holds. Therefore we have:

wT ·M = wT ·Mb +wT ·CI ·y≥ wT ·Mb +wT ·CI ·ymax

= wT ·Mb,max > k.

Therefore RI(Mb)∩F = /0. �

Intuitively speaking, since the firing of TI does not increase (and possibly decreases) the token count of (w,k), the token

count at any marking in RI(Mb) is not less than that of Mb,max (which is reached by firing the maximal number of TI transitions

from Mb). Hence, if the token count of (w,k) at Mb,max exceeds k, then the token count at any other marking in RI(Mb) also

exceeds k.

Finally, we are ready to present the main result of this work. The following theorem provides a necessary and sufficient

condition for the non-blockingness verification.

Theorem 1: Given a plant G = (N,M0,F ) with N = (P,T,Pre,Post) and F = L(w,k), let B be its CI-BRG with respect

to π = (TE ,TI). System G is non-blocking if and only if for any basis marking Mb in B, there exists a basis marking M′b

accessible from Mb and RI(M′b)∩F 6= /0.

Proof : (only if) Suppose that G is non-blocking. For any basis marking Mb in B, there exists a sequence σ such that

Mb[σ〉M ∈F . We write σ = σ1ti1 · · ·σntinσn+1 where all σi ∈ T ∗I , ti j ∈ TE , j = 1, . . . ,n. Following the procedure in the proof

of Theorem 3.8 in [3], we can repeatedly move transitions in each σ j ( j ∈ {1, . . . ,n}) to somewhere after ti j to obtain a new

sequence σmin,1ti1σmin,2ti2 · · ·σmin,ntinσ ′n+1 such that

Mb[σmin,1ti1〉Mb,1[σmin,2ti2〉 · · · [σmin,ntin〉Mb,n[σ
′
n+1〉M



where each σmin, j is a minimal explanation of ti j at Mb, j for j = 1, . . .n. Hence, basis marking M′b is accessible from Mb, and

M ∈ RI(M′b) holds.

(if) Let Mb,0 be an arbitrary basis marking and M be an arbitrary marking in RI(Mb,0). Suppose that in B there exists a

basis marking Mb,n accessible from Mb,0, i.e.,

Mb,0
(ti1 ,ymin,1)−−−−−−→Mb,1

(ti2 ,ymin,2)−−−−−−→Mb,2 · · ·
(tin ,ymin,n)−−−−−−→Mb,n,

where RI(Mb,n)∩F 6= /0. By Proposition 6, M j,max[ti j〉 holds where M j,max is the i-maximal marking at Mb, j ( j ∈ {1,2, . . . ,n}).

Now we prove that from M there exists a firing sequence that reaches Mn,max. We use M→ M′ to denote that there exists

sequence σ such that M[σ〉M′.

By Proposition 6, it holds that M→M0,max. By Proposition 3, M0,max[ti1〉M1 where M1 ∈ RI(Mb,1). By regarding Mb,1 and

M1 as the original Mb,0 and M, respectively, the above reasoning can be repeatedly applied. Hence, the following trajectory is

feasible:

M→M0,max→M1→M1,max→ ··· →Mn→Mn,max

where M j ∈ RI(Mb, j) ( j ∈ {1,2, . . . ,n}). By Proposition 7, Mn,max ∈F holds. Therefore, G is non-blocking. �

Theorem 1 indicates that the non-blockingness of a plant G can be verified by checking if all basis markings in the CI-BRG

are accessible to some basis markings whose implicit reach contains final markings. By Proposition 7, to check RI(Mb)∩F 6= /0

it suffices to test if the i-maximal marking Mb,max is final. This can be done by solving the following integer linear programming

problem (ILPP) for all Mb in B: 

max 1T ·yI

s.t. Mb +CI ·yI = Mb,max

wT ·Mb,max ≤ k

Mb,max ∈ Nm

yI ∈ NnI

(3)

Note that the final marking set F can be further generalized to the conjunction of a finite number of GMECs (namely an

AND-GMEC) or the union of a finite number of GMECs (namely an OR-GMEC). See Discussion 1 in [7] for details.

C. Non-blockingness Verification in Non-deadlock-free Nets

As we mentioned, Theorem 1 does not require G to be deadlock-free. In this subsection, we discuss the reason behind it.

The following result shows that if G is not deadlock-free, all dead markings are exactly the i-maximal markings of some basis

markings in the CI-BRG. We denote by D the set of dead markings in R(N,M0), i.e., D = {M ∈ R(N,M0) | (∀t ∈ T )¬M[t〉}.

Proposition 8: Given a plant G = (N,M0,F ) with F = L(w,k), let B be its CI-BRG with respect to π = (TE ,TI). For any

basis marking Mb in B such that RI(Mb)∩D 6= /0, RI(Mb)∩D = {Mb,max} holds.

Proof : The “if” trivially holds. For the “only if” part, suppose that RI(Mb)∩D 6= /0. By Proposition 4, all markings M ∈ RI(Mb)

are coreachable to Mb,max, which indicates that all M ∈ RI(Mb)\{Mb,max} are not dead. Therefore, the only dead marking in

RI(Mb)∩D 6= /0 is Mb,max. �

Notice that R(N,M0) =
⋂

Mb∈B RI(Mb). Proposition 8 indicates that all dead markings in R(N,M0) are Mb,max. Note that we

do not need to explicitly compute all the i-maximal markings thanks to the following proposition.

Proposition 9: Given a plant G = (N,M0,F ) with F = L(w,k), let B be its CI-BRG with respect to π = (TE ,TI). For any

basis marking Mb in B, RI(Mb)∩D 6= /0 if and only if Mb does not have any outbound arc in B.



Proof : (only if) By contrapositive. Suppose that Mb has an outbound arc labeled by (t,y). It indicates that there exists a

sequence σ whose firing vector is ϕ(σ) = y such that Mb[σ〉M[t〉. By Propositions 3 and 4, Mb[σ〉M[σ ′〉Mb,max[t〉 holds, which

means that t is enabled at the i-maximal marking Mb,max, i.e., Mb,max is not dead. By Proposition 8, RI(Mb)∩D = /0 holds.

(if) Suppose that Mb does not have any outbound arc. This implies that from Mb no explicit transition can fire any more.

Since the TI-induced subnet is acyclic, the number of implicit transitions firable from Mb is bounded, which implies that

Mb,max ∈ RI(Mb) is dead. �

Corollary 1: In a CI-BRG, if the i-maximal marking Mb,max of a basis marking Mb is dead and not final, then Mb is not

accessible to any M′b such that RI(M′b)∩F 6= /0.

Proof : This corollary holds since Mb has no outbound arc (Proposition 9) and RI(Mb)∩F = /0 (Proposition 7). �

One can see that the case in Corollary 1 is included in Theorem 1. Thus, the non-blockingness can be verified by Theorem 1

regardless of the deadlock-freeness of G.

D. Algorithm

Algorithm 1 Non-blockingness Verification Using CI-BRG
Require: A bounded plant G = (N,M0,F )

Ensure: “G is non-blocking” / “G is blocking”

1: Find a basis partition π = (TE ,TI) where TI is non-conflicting and non-increasing;

2: Construct the CI-BRG B = (MB,Tr,∆,M0) of G;

3: M̂B := /0;

4: for all Mb ∈MB , do

5: if ILPP (3) has a feasible solution, then

6: M̂B := M̂B ∪{Mb};

7: end if

8: end for

9: for all M′b ∈MB \M̂B , do

10: if @M̂b ∈ M̂B , @σ ∈ Tr∗ s.t. M′b
σ−→ M̂b, then

11: Output “G is blocking” and Exit;

12: else

13: Continue;

14: end if

15: end for

16: Output “G is non-blocking” and Exit.

Based on the results we have obtained so far, in this subsection we develop a method to verify non-blockingness of a plant

using CI-BRG. In brief, Algorithm 1 consists of two stages:

• Stage (i), steps 1–8: construct the CI-BRG and determine for each basis marking Mb if RI(Mb)∩F 6= /0. The latter done

by solving ILPP 3 for all basis markings;



TABLE I: Benchmark for the plant in Fig. 3 in [7].

Run |R(N,M0)| |MBM
| Time (s) |MB| Time (s) NB?

1 1966 284 2 604 1.7 Yes

2 12577 1341 15 2145 11 Yes

3 76808 5961 179 7718 105 No

4 -a 14990 1028 16438 470 No

5 - 26716 3126 26648 1248 Yes

6 - 38551 6697 37118 2492 Yes

7 - 67728 22018 59315 6449 No

8 - - - 101420 19491 No

aSymbol “-” denotes “no result” since the program does not terminate in 10 hours.

• Stage (ii), steps 9–16: check if any basis marking in B is co-reachable to at least a basis marking that is coreachable to

some final markings, which can be done by applying a search algorithm (e.g., Dijkstra) in the underlying digraph of the

CI-BRG, whose complexity is polynomial in the size of B.

Proposition 10: Algorithm 1 is correct.

Proof : The set M̂B in Algorithm 1 records all basis markings whose i-maximal marking is final. By Theorem 1, the net is

blocking if and only if there exists a basis marking inaccessible to any basis marking in M̂B . This coincide with Algorithm 1

who outputs BLOCKING if and only if such a basis marking is detected in step 10. �

Example 2: [Ex. 1 cont.] Consider again the plant G = (N,M0,F ) with F = L(w,k), w = [0 0 0 1 1 1]T , k = 0 that is

described in Example 1. Its CI-BRG B with respect to TE = {t3, t4, t6} is shown in Fig. 2. By Algorithm 1, we verify if G

is non-blocking. First, by solving ILPP (3) for all Mb in B, we conclude that M̂B = {Mb0,Mb1,Mb2,Mb4,Mb5}. Then, by

analyzing B, it shows that Mb3 is not co-reachable to any of the basis marking in M̂B; thus, the system is blocking. ♦

IV. SIMULATION RESULTS

We use the parameterized Petri net in Fig. 5 in [2] (which consists of 46 places and 39 transitions) to test the efficiency

of our approach. Due to the limit of space, the net is not graphically depicted here. For different values of parameters, the

size of the RG (|R(N,M0)|), minimax-BRG (|MBM
|) [6], and CI-BRG (|MB|), as well as their computing times are reported

in Table I in col. 2−6. Also, the non-blockingness of each case is reported in col. 7. A detailed analysis of this benchmark

can be found in [7]. The results of these benchmark indicates that the CI-BRG-based approach outperforms that of the RG-

and minimax-BRG based method in all cases for the plant in [7]. Moreover, in [7], a real-world Hospital Emergency Service

System model [11] is additionally tested to show the verification procedure in detail.

V. CONCLUSION

We have developed a novel method for non-blockingness verification in Petri nets. By adopting a basis partition with

transition set TI being non-conflicting and non-increasing, we have proposed a particular type of BRGs called the CI-BRGs.

Based on CI-BRGs, we have proposed a necessary and sufficient condition for verifying the non-blockingness of a plant. Our

method can be applied to both deadlock-free nets and non-deadlock-free ones. Simulation shows that our approach achieves

practical efficiency.
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