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Abstract

In this letter the average state estimation problem on a large-scale system with only few gateway nodes available for
measurements is solved as the design problem of a reduced-order sliding mode observer subjected to unmatched perturbations.
Necessary and sufficient conditions to guarantee the exact estimation are derived. Still, even in the case such conditions are not
fulfilled, the boundedness of the estimation error is proved. Finally, a criteria to minimize such bound, and a gain adaptation law
to trade-off that bound and its convergence rate are provided. Neither the observer complexity nor the estimation error depend
explicitly on the size of the system, thus making the approach scalable and computationally tractable. Simulations supporting the
effectiveness of the proposed strategy and a comparison with other existing strategies are also provided.
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I. INTRODUCTION

STATE ESTIMATION is a critical task on Large-Scale Systems (LSSs) since it requires a dense deployment of computational
resources and many sensing gateway devices [1]. Thus, to reduce the infrastructure’s costs while maintaining computa-

tionally tractable the complexity of the estimators, since decades, either decentralized [2], or clustered-oriented reduced-order
observers are under developments [3], [4].

Moreover, in many monitoring applications the full state information is neither necessary nor possible due to potential
observably deficiencies. Thus, the estimation of some aggregated quantities of the state is often sufficient. Here we focus on
the estimation of the average state of an LSS, which is of interest in different field, such as the monitoring of the mean traffic
density in some portion of a communication or a road network to prevent its congestion [5], the mean proportion of infected
people during the spreading of an epidemic [6], the mean circulation of leaders opinions over geographic areas [7], the mean
temperature in smart buildings through a sensor network [8] to mention a few.

Literature review The problem of estimating the average quantity of the states of an LSS has been outlined for first in [9],
as special case of [10]. Therein, it is proposed an observer reduction approach for the redesign of Luenberger-like functional
observers [11], by means of suitably chosen bi-orthogonal projection matrices. Projection matrices not only allows to reduce
the model dimension to be considered, but the play also a key role in the design of general functional observers [12]. As a
drawback, low-order projections introduce matched and unmatched unknown perturbations in the observers’ error dynamics
which need to be compensated. The use of projection strategies is also further motivated by the fact that LSSs are often not
observable due to the limited number of measurements nodes. In [13] conditions for the average observability on an LSS are
outlined. Then, in [14], reduced-order open-loop and the closed-loop linear average estimators are presented, and the needed
operating conditions on an LSS to achieve the task are discussed. Complementary results consisting in the identification of
clusters in LSSs enabling the average estimation [4], in the analysis of the subgraph induced by the unmeasured nodes in
negative uniform networks [6], presence of outliers [15], as well as other functionals estimation [16] are further available.

Contrarily to the mentioned researches, which share the fact to consider only linear strategies, and/or Luenberger-like
observers, here we aim at solving the average state estimation by means of Sliding-Mode Observers (SMOs). Our choice
comes from the consideration that SMOs are globally recognized as a privileged technique for the robust state estimation on
uncertain processes affected by unknown inputs. This is because of their inherent robustness against matched [17], [18] and
unmatched [19], [20] disturbances and uncertainties, their resilience to measurement noise similar to that offered by Kalman
filters, and finally, contrarily to control applications, the chattering phenomena in SMOs is considered a minor problem.
Moreover, by the analysis of the so-called equivalent injection signals useful estimations also on the unknown inputs introduced
by the mentioned low-order projections can be obtained and thus exploited to improve the performance of standard average
estimators.

Main contributions The paper’s contribution is threefold: 1) the average state estimation on an LSS is solved as the design
problem of a reduced-order SMO subjected to unknown inputs; 2) necessary and sufficient conditions for the exact average-
state estimation despite the presence of both matched and unmatched unknown inputs introduced by the used low-order model
projection are derived; 3) even when those conditions are not fulfilled, the estimation error boundedness is proved; then, a
criteria to minimize such bound, along with a gain adaptation criteria to trade-off that bound and its convergence rate are
derived.

Structure of the paper The paper’s notation is introduced at the end of this section. The problem statement is outlined in
Section II. In Section III the proposed SMO design is presented, and all the main results discussed in detail. Simulations over
different test-cases are illustrated in Section IV. Finally, in Section V concluding remarks are outlined.

Notation The sets of natural, real and complex numbers are denoted by N, R and C. Let n and m ∈ N, then 0n×m,
and 1n×m, are n × m matrices with all 0, and 1, entries. If m = 1, it can be omitted and they reduce to column vectors,
whereas In is the identity matrix of dimension n. Vector x = {xi} ∈ Rn is intended to be column vectors, and its entries are
xi ∈ R, i = 1, . . . , n. The transpose of x is xT. The absolute value is denoted by |·| and a p-norm for vectors by ||·||p. Let
M ∈ Rn×m be a matrix with independent columns, its pseudo-inverse is M+ = (MTM)−1MT. If M is square, eig(M) is
its eigenvalue set, and rank(M) denotes its rank. The operator sign(x) is the set-valued sign-operator which outputs a vector
whose i-th entry is 1 if xi > 0, −1 if xi < 0, [−1, 1] otherwise.

II. PROBLEM FORMULATION

Consider an LSS composed of n ∈ N subsystems with commensurable states, assumed scalar for simplicity xi ∈ R. The
pattern of interconnection is described by A = {aij} ∈ Rn×n, where aij = 0 if the i-th node is not instantaneously influenced
by the j-th node. The LSS is influenced by m ∈ N external inputs u` ∈ R through B = {bi`} ∈ Rn×m. Thus, in accordance
with [9], each node satisfies

ẋi(t) =

n∑
j=1

aijxj(t) +

m∑
`=1

bi`u`(t). (1)
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This general description encompasses several well-known LSSs models, such as reaction-diffusion systems [21], compartmental
systems [22], multi-agent systems [23] to mention a few. Let us now consider only p over the n nodes equipped with higher-
level sensing and communication facilities. Without loss of generality, the LSS state vector x = [x1, . . . , xn]T ∈ Rn can be
partitioned as x = [xT

u ,y
T]T, where y ∈ Rp and xu ∈ Rk denotes the measured and unmeasured states, and k = n− p. The

state-space representation of the resulting LSS is as follows

[
ẋu(t)
ẏ(t)

]
=

A∈Rn×n[
A11 A12

A21 A22

] [
xu(t)
y(t)

]
+

B∈Rn×m[
B1

B2

]
u(t)

y(t) =
[
0p×k Ip

]
C∈Rp×n

[
xu(t)
y(t)

] (2)

where u = [u1, . . . , um]T ∈ Rm stacks the system inputs, y ∈ Rp the available measurements, and Aij and B` are matrices
with proper dimensions, with i, j, ` = 1, 2.

Problem 1 (Average state estimation) Consider the LSS in Eq. (2) whose states are partitioned into unmeasured xu ∈ Rk
and measured y ∈ Rp. Our aim is to design an observer that, by means of the available measurements on y ∈ Rp, and
u ∈ Rm, enables the estimation of the averaged profile of the unmeasured states, given by

a(t) =
1

k
1T
kxu(t). (3)

In general, in an LSS only few nodes make their measurements available at a higher-level for monitoring purposes, namely
p � n. In particular, the average estimation problem becomes more challenging in the case the LSS in Eq. (2) is neither
observable nor detectable, because this in turn implies the estimation of Eq. (3) cannot be solved by means of standard
full-state observers. It is also worth to remark such observability deficiency is guaranteed if p < n/2 [13].

This prompts to seek functional observers, which enable by means of low-order projections the estimation of functions of
the system state. This is sufficient in a large number of applications and leads to more computationally tractable observers [10].
Following the related literature [14]-[9], a(t) in Eq. (3) is made explicit by means of the next projection

z(t) = Px(t), where P =

[
1
k1

T
k 0T

p

0p×k Ip

]
∈ R(p+1)×n, (4)

and z = [a,yT]T. Then, from Eqs. (2) and (4) one derives

[
ȧ(t)
ẏ(t)

]
=

E∈R(p+1)×(p+1)[
E11 E12

E21 E22

][
a(t)
y(t)

]
+

G∈R(p+1)×m[
G1

G2

]
u(t) +

F∈R(p+1)×k[
F 1

F 2

]
δ(t) (5)

where Eij , G`, F ` with i, j, ` = 1, 2 are matrices with proper dimension in accordance to the next partition

E=

[
1
k
1T
kA111k

1
k
1T
kA12

A211k A22

]
,G=

[
1
k
1T
kB1

B2

]
,F =

[
1
k
1T
kA11

A21

]
.

and δ(t) plays as an unmatched unknown input, such that

δ(t) =
(
Ik −

1

k
1k · 1T

k

)
xu(t) ∈ Rk. (6)

In particular, Fδ(t) in Eq. (5) accounts for what is missed due to the projection of the vector x ∈ Rn to the subspace z ∈ Rp+1

and vice-versa. From Eq. (6), one may further note that δ(t) represents the element-wise deviation of each entry of xu(t) to
the average profile a(t). Thus, it yields that

1T
kδ(t) = 0, ∀ t ∈ R. (7)

A. Working assumptions

The need to estimate a(t) in Eq. (5) leads to Assumption 1.

Assumption 1 The pair (E,CP+) is observable.

Although the projection in Eq. (4) makes explicit a(t) despite also potential observability deficiencies of the LSS in Eq. (2),
P ∈ R(p+1)×n is rectangular thus, differently from conventional state observation problems, @ P−1. Since the mapping of
a vector in Rn to a subspace in Rp+1 loss information, clearly that information cannot be also recovered by means of the
pseudo-inverse projection x = P+z. That amount of missed information, enclosed in the term Fδ(t) in Eq. (5), plays thus as
a state-dependent unknown input vector. Follows that every unstable trend of δ(t) (or equivalently of xu(t)) will destabilize
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the low-order dynamic in Eq. (5). Since δ(t) cannot be recovered from y, this makes also impossible the stabilization of
any low-order estimation error dynamic through y. This leads to Assumption 2, that is also required in the related works, cf.
[13]-[14], [9], [10].

Assumption 2 The LSS in Eq. (2) is stable and the inputs are bounded, namely one of the following holds:
• eig(A) ⊂ C≤0 and

∫∞
0
||u(t)||dt <∞,

• eig(A) ⊂ C<0 and ||u(t)|| <∞ for all t ∈ R

III. MAIN RESULT

We propose now a low-order SMO for the average-state estimation, as an application of the Utkin’s observer [24], with
additional Luenberger-type gains and subjected to an unknown input vector. Notice that, differently with the standard SMO
formulations, our design accounts also the presence of an unmatched perturbations, whose effect needs to be minimized,
cf. [19], [20] with [17], [18], [24].

Let ẑ = [â, ŷT]T be vector of stacking the estimation of z = [a,yT]T, the proposed “Average-State SMO” is

[
˙̂a
˙̂y

]
=

E[
E11 E12

E21 E22

][
â
ŷ

]
+

G[
G1

G2

]
u+

H∈R(p+1)×p[
H1

H2

]
ey +

[
L
−Ip

]
ν (8)

where Hi with i = 1, 2, and L are design matrices with proper dimensions, and

ea = â− a, ey = ŷ − y. (9)

denote the observer’s estimation errors and ν ∈ Rp is a discontinuous vector defined as

ν = ρ sign(ey), with ρ > 0. (10)

Theorem 1 Consider an LSS as in Eq. (2), its lower order projection in Eq. (5) and let Assumptions 1-2 be in force. Let the
design of the Average-State SMO in Eq. (8) be

H1 = −E12

H2 = Es
22 − E22 with eig(Es

22) ⊂ Cp<0

L =
(
α1T

k − F 1

)
F+

2 with α ∈ R

ρ > ||E21a(t)||∞ + ||F 2δ(t)||∞, ∀t ≥ 0

(11)

If and only there exists α ∈ R such that

rank
([
α1T

k − F 1

F 2

])
= rank(F 2) (12)

α < (F 1(F+
2 F 2 − Ik)1k)/(1T

kF
+
2 F 21k), (13)

then, for any initial condition, the estimation error on the average profile converges exponentially to zero with rate

β(α) = (F 1 − α1T
k )(Ik − F+

2 F 2)1T
k + kα. (14)

The first part of the proof will shows the design in Eq. (11) may allow the average-state estimation. Then, the second part
proves the necessity and sufficiency of Eqs. (12)-(13) for the exact asymptotic average-state estimation.
(Part 1) By differentiating Eq. (9), one obtains

ėa = E11ea − F 1δ +Lν (15)
ėy = E21ea +Es

22ey − F 2δ − ν. (16)

Since ėa is decoupled from ey , and the unknown input δ(t) is bounded by Assumption 2, and Es
22 can be arbitrarily designed

such that eig(Es
22) ⊂ Cp<0, then ey can be driven to zero, in a finite-time by means of the non-smooth control ν in Eq. (10). To

show this, let us consider the candidate Lyapunov function V = 1
2e

T
yey . By differentiating it along the trajectories of ey , one

obtains V̇ = eTy ėy < −ε
√
V < 0, with ε > 0, if and only if ρ ≥ ‖E21z1‖∞ + ‖F 2δ̄‖∞ + ε. This implies that an ideal sliding

motion on ėy = ey = 0p is guaranteed to take place in finite-time if Eq. (11) is satisfied. Thus, during the sliding-motion, it
further results the average-state error dynamic takes the form

ėa = E11ea − F 1δ +Lνeq 0 = E21ea − F 2δ − νeq.
Substituting for νeq yields

ėa = (E11 +LE21)ea − (F 1 +LF 2)δ. (17)
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By Assumption 1, and by means of the Popov-Belevitch-Hautus rank test [24], we conclude that E21 6= 0. The latter condition
confirms the possibility to estimate the average-state under certain conditions on Eq. (5) and on L in Eq. (11).
(Part 2) The average-state estimation error converges exponentially if and only if the next two condition hold true

(F 1 +LF 2)δ(t) = 0, ∀ t ∈ R (18)
E11 +LE21 < 0. (19)

Due to the structure of δ(t) and its property in Eq. (6), one has that Eq. (18) holds if and only if L ∈ Rp×1 is such that

F 1 +LF 2 = α1T
k , α ∈ R. (20)

By the Rouché–Capelli theorem, the above linear system is well-posed with respect to vector of parameters in L if and only
if the condition in Eq. (12) holds. In such case, the design of L given in Eq. (11) is the solution to the system of equations
and the error dynamics reduces to

ėa = (E11 +LE21)ea = β(α)ea, (21)

from which the condition in Eq. (13) and the expression of the convergence rate in Eq. (14) can be derived by substitution.
Summing up, the error ea can be made asymptotically stable if and only if Eqs. (18)-(19) hold true, which we have proved to
be equivalent to Eqs. (12)-(13).

The next result provides some additional requirements on the low-order projection of the LSS enabling the exact average
estimation at any arbitrary convergence rate.

Theorem 2 Consider an LSS as in Eq. (2), its lower order projection in Eq. (5) and let Assumptions 1-2 be in force. Let the
design of the Average-State SMO in Eq. (8) be the one in Eq. (11), and let condition in Eq. (12) be in force. If and only if the
next relation is satisfied

rank
([

1T
k

F 1

])
= 1, (22)

then the convergence rate of the average-state estimation given by Eq. (14) can be arbitrarily chosen through α.

The convergence rate of the average-state error β(α) in Eq. (21) results to be a function of α. Thus, it could be chosen
arbitrarily if and only if α can be chosen arbitrarily as well. Moreover, notice that α can be chosen arbitrarily if and only if
condition in Eq. (22) holds true. Indeed, since in this case α does not appear anymore in Eq. (12), that rank condition reduces
to

rank
([
F 1

F 2

])
= rank(F 2),

which concludes this proof.
Notice that, in real applications it is likely that an LSS as in Eq. (2) does not satisfy the condition in Eq. (12), thus preventing

the achievement of the exact average-state estimation. Such condition becomes even less realistic as the size of the system
becomes larger, since it implicitly it requires that every unmeasured node is connected to at least one output node, that goes
instead in contrast with the reality where only a limited number of measurement node is available. Thus motivated, in the
next theorem, we show that even if Eq. (12) is not fulfilled, the same observer design still provides a good estimation of the
average-state by ensuring a bounded steady-state error.

Theorem 3 Consider an LSS as in Eq. (2), its lower order projection in Eq. (5) and let Assumptions 1-2 be in force. Let the
design of the Average-State SMO in Eq. (8) be the one in Eq. (11) and assume condition in Eq. (12) does not hold. Then, the
estimation error on the average-state converges asymptotically within a boundary layer whose size is ēa, i.e.,

lim sup
t→∞

‖ea(t)‖ ≤ ēa.

We recall that the dynamics of the average-state error are governed by Eq. (17),

ėa = β(α)ea − (F 1 +LF 2)δ, (23)

where β(α) is as in Eq. (14). Since condition in Eq. (12) is no more fulfilled, the effect of the unmatched unknown inputs,
due to δ(t), can not be completely rejected. Nevertheless, the average error trajectory ea(t) satisfies

|ez(t)| ≤
∣∣∣eβ(α)tez(0)∣∣∣+ ∣∣∣∣∫ t

0

eβ(α)(t−τ)(F 1 +LF 2)δ(τ)dτ

∣∣∣∣ .
Due to Eq. (13), the term β(α) is strictly negative, and thus limt→∞ |eβ(α)t| = 0. Thus, one derives that

lim sup
t→∞

|ea(t)| ≤ lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣ dτ.

Since the two functions argument of the above integral are non-negative by definition, it holds that (see [25, Sect. 23])
lim sup
t→∞

∣∣∣ea(t)∣∣∣ ≤ max
τ≥0

∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣ lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣ dτ.
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Finally, by a change of variable and solving the definite integral we can compute
lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣dτ =

∫ ∞
0

∣∣∣eβ(α)(τ)∣∣∣dτ =
1

|β(α)|

Then, by letting ϕ(α,L) = F 1 +LF 2 − α1T
k , we can further find an upper-bound to the average-state error as

lim sup
t→∞

|ea(t)| ≤ 1

|β(α)| max
τ≥0

∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣

≤ 1

|β(α)| max
τ≥0

∣∣∣ (α1T
k +ϕ(α,L)

)
δ(τ)

∣∣∣
≤ ‖ϕ(α,L)‖

|β(α)| max
τ≥0
||δ(τ)|| = ēa (24)

where in the last step we have exploited the property in Eq. (7), and the proof is complete by considering that δ(t) is bounded
due to Assumption 2. In the next corollary is proved that the estimation provided by the proposed Average-State SMO is
optimal in the sense that it minimizes the effect of the unmatched unknown inputs.

Proposition 1 Consider an LSS as in Eq. (2), its lower order projection in Eq. (5) and let Assumptions 1-2 be in force. Let
the design of the Average-State SMO in Eq. (8) be the one in Eq. (11). Then, the bound on the average estimation error ēa is
minimized by the design of L given in Eq. (11).

We write ēa in Eq. (24) as a function L,

ēa =
‖F 1 +LF 2 − α1T

k‖
|β(α)| max

t≥0
||δ(t)||.

The bound on the error can be minimized by the choice of L by solving the following least square problem

L∗ = argmin
L∈R1×p

‖F 1 +LF 2 − α1T
k‖. (25)

Then, according to the Projection’s Theorem [26, p. 51], or similarly with [20, Proposition 2], the optimal L∗ is L∗ =
(α1T

k − F 1)F+
2 , which corresponds to that in Eq. (11).

From the constructing proofs and results of the previous theorem and proposition, it is straightforward notice that not only
the average-state error is bounded by ēa in Eq. (24), but that bound depends by α, which is a design parameter. Therefore, in
the next corollary we discuss how to make α optimal to minimize the steady-state error bound.

Corollary 1 Consider an LSS as in Eq. (2), its lower order projection in Eq. (5) and let Assumptions 1-2 be in force. Let the
design of the Averare-State SMO in Eq. (8) be the one in Eq. (11). The bound on the average estimation error is minimized
if α = α∗, where α∗ is the solution of

argmin
α

||ϕ(α)||
|β(α)| (26)

subj. to β(α) < 0

where β(α) =

ϕ(α)

(F 1 − α1T
k )(I − F+

2 F 2)1T
k + kα. �

Notice that although α∗ minimize the steady-state error upper-bound ēa, it influences also β(α). Thus, the optimal choice
α = α∗ may have adverse effects on the convergence rate of ea in accordance with Eq. (23). Thus, with aim to trade-off those
two performance metrics, the following gain adaptation law is proposed

α̇(t) =

{
λ if ||ey(t)|| < ε and α(t) ≥ α∗
0 otherwise

, (27)

where λ < 0, and 0 < ε < ||ey(0)||, and α∗ < α(0), such that Eq. (13) holds true. Intuitively, Eq. (27) adapts α dynamically in
order to guarantee, a faster convergence rate equal to β(α(0)) during the transient regime, while preserving the same optimal
steady-state accuracy. In fact, as soon as ||ey(t)|| < ε is verified, α starts to decrease with rate λ until α∗ is reached. Let us
further note that, in accordance with the Proof of Theorem 1, ||ey(t)|| ≡ 2V (t) is a monotonically decreasing function.

Nonetheless, notice that although ν in Eq. (10) ideally switches with infinite frequency, in practice due its digital imple-
mentation only a finite switching frequency can be achieved. This leads to a small numerical chattering on ey(t), whose size
is of the same order of the SMO sampling time Ts. Thus, particular attention should be paid in choosing ε at least one order
bigger than Ts, to avoid a too slow convergence of α(t) to α∗. Alternately, and the price to reduce the observer robustness,
the mentioned chattering could be completely removed by replacing the sign-operator in Eq. (10) by means of its sigmoid
approximation [24].
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IV. NUMERICAL SIMULATIONS

The effectiveness of the proposed Average-State SMO is confirmed through simulation on two test cases, a compartmental
system and a reaction-diffusion process. Simulations were performed on the MATLABr/SIMULINK environment, with the Euler
fixed-step solver and Ts = 10−4 seconds.

Example 1 Consider the compartmental system of n = 11 compartments in [27], whose interconnections are as in
Fig. 1a, and whose associated Laplacian Matrix is L ∈ Rn×n. Let xi(t) be the state of compartment i, and assumed only
the grey nodes are available for measurements. This leads the system in the standard form in Eq. (2) where A = −L,
B = CT = [03×8, I3], xi(0) ∈ [0, 3] and i = 1, 2, . . . , 11, whereas the LSS’s inputs are u`(t) = 10 sin((`− 1)10t) and
` = 1, 2, 3. By partitioning A as in Eq. (2), it can be noticed that the necessary and sufficient condition in Eq. (12) of
Theorem 1 holds, since 1T

8A11 = 1T
8A21 = 1T

8 , thus enabling the exact average estimation. In accordance with Theorem 1, the
following valid tuning for the proposed SMO is derived, namely, LT = −0.251T

8 , ρ = 5, Es
22 = −10I3, whereas α − 0.375

is chosen in accordance with Eq. (13), and such that an arbitrarily convergence rate β = −3 was achieved.
The results of the simulation are shown in Fig. 2. In particular, in Fig. 2a is shown the temporal profile of the true average-

state a(t) and that of its estimation â(t), through the proposed SMO. The profile of the resulting average-state error is instead
depicted in Fig. 2b. As expected, after a finite-time ey is element-wise zero, then the average estimation error approaches zero
with the desired exponential rate.

Example 2 Consider the reaction-diffusion process studied in [28] and accounting n = 100 substances. The diffusion of
substances is modelled as undirected graph whose topology is shown in Fig. 1b, and where the state of the i-th node is xi(t).
As for Example 1, only the states of the grey nodes are assumed to be available for measurement, thus leading the system in the
standard form in Eq. (2) with A = −QL−R, C = [096×4, I4], xi(0) ∈ [0, 3], with i = 1, 2, . . . , 100, whereas R = 0.2I100,
and Q = I100, account for the diffusion, and reaction phenomenon. Finally, the system’s inputs are selected, time-varying, as
follows

u1(t) = sin(0.1t) applied to nodes 97 and 98,

u2(t) = sin(t) applied to nodes 99 and 100,

u3(t) = 1 applied to the other boundary nodes.

By partitioning A as in Eq. (2), results that A11 and A21 do not satisfy Eq. (12) of Theorem 1, thus preventing the exact
estimation task. We thus consider the proposed gain adaptation law in Eq. (27), with λ = −0.1, ε = 0.01 and α(0) = −0.005
which guarantees an higher convergence rate at the transient-regime than that with α∗ = −2.1×10−3, that is β(α(0)) ≈ −2.7.
Then, α(t) will asymptotically approach α∗ thus minimizing the average-state steady-state error upper-bound. Finally, the
remaining observer parameters are were ρ = 5 and Es

22 = −10I4. In Fig. 3a, and Fig. 3b, for comparison’s sake, the average-
state estimation â(t) and the resulting error profile ea(t) obtained by means of the proposed Average-State SMO are finally
compared with those obtained by means of the linear observer proposed in [14, Proposition IV.3], which has been also optimally
tuned in accordance with [14, Proposition V.2]. It is evident how the parameter α trade-off the estimation convergence time and
the expected error upper-bound, as discussed at the end of Section III. Moreover, thanks to the proposed gain adaptation law
in Eq. (26) the estimation convergence rate has been strongly speedup while maintaining the optimal its steady-state accuracy.

V. CONCLUSIONS

This letter solves the average-state estimation problem on an LSS with many unmeasurable nodes as the design of a reduced-
order SMO with matched and unmatched perturbations. Conditions on the LSS to guarantee the exact estimation are derived.
Then, in the case these were not met, the error boundedness is proved. Then, a gain adaptation strategy to optimally minimize
the steady-state error upper-bound while trading-off its convergence rate is also devised. It is also worth mentioning the

1 2

3 4

5 6

7 8

9

10

11

(a) Compartmental system

99

97 98

100

(b) Reaction-diffusion process

Fig. 1: Topologies of the LSSs considered in the simulations.
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Fig. 2: Example 1: (a) True average-state profile (solid line) and its estimation (dashed line); (b) Average estimation error.
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Fig. 3: Example 2: (a) Average state (solid line) and their estimation (dashed lines); (b) Average-state error. Red dashed lines correspond to
the Average-State SMO, while the blue dashed lines to observer proposed in [14].

complexity of the proposed observer is independent to the number of unavailable nodes, thus keeping the design scalable and
computationally treatable even if the system size is large. Decentralized versions of the proposed design are currently under
study. Moreover, extensions of the proposed strategy towards LSSs consisting of nonlinear, and possibly high-order nodes as
in [29] also appear promising and worthy of further investigation.
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