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Distributed Fiedler Vector Estimation with Application to
Desynchronization of Harmonic Oscillator Networks

Diego Deplano, Mauro Franceschelli, Alessandro Giua, Luca Scardovi

Abstract—The Fiedler vector of a graph is the eigenvector
corresponding to the smallest non-trivial eigenvalue of the
corresponding Laplacian matrix, i.e, the algebraic connectivity.
We propose and prove the convergence properties of a novel
continuous-time distributed control protocol to drive the value
of the state variables of a network toward the Fiedler vector,
up to a scale factor, assuming known algebraic connectivity.
The proposed strategy is unbiased and robust with respect
to the initial network state. The proposed strategy does not
require initialization of state variables to particular values. By
exploiting the proposed control protocol we design a local state
feedback that achieves desynchronization on arbitrary undirected
connected networks of diffusively coupled harmonic oscillators.
We provide numerical simulations to corroborate the theoretical
results.

I. INTRODUCTION

The computation of eigenvectors of the graph Laplacian L is
a problem of fundamental importance for various applications
and it is the cornerstone of spectral graph theory [1]. Among
all eigenvectors, the Fiedler vector [2] plays a pivotal role:
it is the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix, also known as the alge-
braic connectivity. To name a few, Fiedler vector is useful in
graph partitioning [3], [4], [5] and in the control of algebraic
connectivity [6], [7], [8].

Power Iteration (PI) [9] is an established iterative method
to compute the leading eigenvalue(s) and associated eigen-
vector(s) of a matrix. In [6], [8], [10], [11], [12] the Fiedler
vector is computed by means of methods based on a distributed
implementation of PI. Main drawbacks of [6], which exploits
the algorithm proposed in [13], are the centralized initialization
step and the high number and size of the messages the nodes
need to exchange. In [8] and [11] the decentralization is
carried on at each agent by two consensus estimators, which
are required to run "fast enough" in order to expect the
resulting dynamics to converge: a formal proof is not provided.
Similar approaches are used to compute eigenvalues and the
algebraic connectivity [14]. Another class of algorithms forces
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the nodes to oscillate at eigenfrequencies and deduce spectral
information through Fast Forurier Transform (FFT). In [15]
the Fiedler vector is computed by running at every node the
wave equation and computing the eigenvector components
through an FFT. This algorithm is proved to be orders of
magnitude faster than PI-based algorithms. An FFT approach
for distributedly computing the eigenvalues is given in [16].

On one hand, the main limitation of PI-based approaches
consists on the distributed normalization of the vectors at
each step, which severely affects their convergence speed and
requires a centralized initialization step. On the other hand,
FFT-based approaches suffer from a rather poor accuracy and
robustness issues.

The first main contribution of this paper is to propose
and prove the convergence properties of a novel continuous-
time distributed control protocol to drive a MAS toward the
Fiedler vector of its graph Laplacian L. The proposed protocol
relies neither on a distributed PI nor a FFT approach, thus
guaranteeing robustness to initial conditions, high convergence
speed and accuracy. However, it requires the knowledge of
the algebraic connectivity, which is a reasonable assumption
for static networks (as in the case of our main application)
since various distributed algorithms have been proposed to
distributedly estimate all the eigenvalues of undirected graph
Laplacian [17], [16], [18], [19].

The second main contribution is to exploit the zero mean
property of the Fiedler vector, to employ the proposed protocol
as a local feedback law to desynchronize a network of coupled
harmonic oscillators by driving it toward a state proportional
to the Fiedler vector. While synchronization has been for-
mally and easily defined [20], [21], [22] as the condition
maximizing the order-parameter (magnitude of the centroid of
the oscillators), the opposite definition of desynchronization
is more ambiguous [23], [24], [25], [26]. In this work, we
define desynchronization as the condition zeroing the order-
parameter, which is dual to the classical definition of synchro-
nization given in [20].

The paper is structured as follows. After introducing nota-
tion and preliminaries in Section II, a novel local protocol in
continuous-time is proposed and employed in Section III to
distributedly estimate the Fiedler vector in single-integrator
MASs and in Section IV to achieve desynchronization in
networks of diffusively coupled harmonic oscillators. In Sec-
tion V numerical simulations corroborating the theoretical
results are provided. Concluding remarks are given in Sec-
tion VI.
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II. PRELIMINARIES

We adopt the following notation. The sets R and R+

denote, respectively, the reals and the nonnegative reals. The
set S1 denotes the unit circle, thus a point θ ∈ S1 is an
angle. Given n vectors x1, x2, . . . , xn ∈ Rm we indicate with
x = [xT1 , x

T
2 , . . . , x

T
n ]T ∈ Rnm the stacking of the vectors.

We denote with In and 1n the identity matrix and a vector of
ones of dimension n; subscripts are omitted if the dimension
is clear from the context. With A⊗B we denote the Kronecker
product of two matrices A and B of opportune dimensions.

A. Multi Agent Systems

Given a Multi-Agent System (MAS), the pattern of interac-
tions among the agents is encoded by an undirected graph. A
graph G = (V,E) consists of a set of nodes V = {1, . . . , n}
representing the agents, and a set of edges E ⊆ {V × V }.
An edge (i, j) ∈ E, with i 6= j, means that i and j can
communicate. To each agent i is associated a set of neighbors
Ni = {j ∈ V : (i, j) ∈ E}, representing the set of agents
communicating with agent i. Since the graph is undirected,
(i, j) ∈ E if and only if (j, i) ∈ E. An undirected graph is
said to be connected if between any pair of nodes i, j ∈ V
there exists a path, i.e., a finite sequence of adjacent edges that
connects node i to node j. The adjacency matrix A = {aij}
of a graph G is an n× n matrix with coefficients

aij :=

{
1 for (i, j) ∈ E
0 otherwise.

The degree of each node is defined as di =
∑n
i=1 aij . The

degree matrix is defined as D = diag(d), and the Laplacian
matrix of the graph is defined as L = D − A. Let λL,i
and vL,i be the eigenvalues and corresponding eigenvectors
of the Laplacian matrix L. The eigenvalues λL,i are real and
satisfy 0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n if and only if the graph
is connected. The algebraic connectivity is denoted as λL,2
and its associated eigenvector is known as the Fiedler vector
vL,2 and it satisfies 1T vL,2 = 0.

III. FIEDLER VECTOR ESTIMATION

Consider a network of n single integrator agents whose
topology is represented by an undirected graph G = (V,E).
Each agent is modeled as an autonomous continuous-time
system with scalar state yi ∈ R evolving according to

ẏi = ui, ∀i ∈ V. (1)

The goal of this section is to design the local control law
ui ∈ R such that each agent i estimates the i-th Fiedler vector
component of the Laplacian matrix L associated to the in their
pattern of interaction given by graph G.

A. Centralized solution

Given a square matrix M ∈ Rn×n with eigenvalue spectrum
satisfying 0 = λM,1 < λM,2 ≤ λM,3 ≤ · · · ≤ λM,n a system
according to ẏ = −My is marginally stable and it converges
to the eigenvector vM1

associated to the zero eigenvalue λM,1.
It is straightforward to notice that if one were able to design M

such that vM,1 = vL,2, i.e., the eigenvector associated to the
zero eigenvalue of M is exactly the Fiedler vector of the graph
Laplacian L, the problem would be solved. Such a matrix can
be designed as follows

M = L+ α11T − λL,2I, (2)

whose construction consists of two conceptual steps.
1) Matrix inflation: add a term α11T to the Laplacian L

with α > λL,2/n. The smallest eigenvalue of the resulting
matrix is λL,2 while the eigenvectors are not changed;

2) Eigenvalues shifting: subtract matrix λL,2I to the re-
sulting matrix to ensure that there is a single null eigenvalue
associated to the Fiedler vector vL,2.

The design of the control law ui such that the closed-loop
matrix satisfy the previous reasoning, thus ensuring the MAS
to converge to a scaled Fiedler vector, is given in next theorem.

Theorem 1. Consider a MAS with agents dynamics (1) driven
by the control law

ui =
∑
j∈Ni

aij (yj − yi)− α1T y + λL,2yi. (3)

If G is connected and α > λL,2/n then the MAS converges to
a scaled Fiedler vector of graph G.

Proof. Noticing that the closed-loop matrix given by the local
control law (3) is −M with matrix M given in (2), the
remaining of proof is straightforward and thus omitted.

B. Distributed solution

The control law (3) given in Theorem 1 is not distributed
as it relies on the global information 1T y, which represents
the actual average of the states. As previously proposed in
earlier work [27], [28], [29], this problem can be overcome by
employing a distributed estimator of this quantity. In particular,
we consider an integral dynamic consensus algorithm designed
as in (5), which differs from those presented in [27], [29].

Theorem 2. Consider a MAS with agents dynamics (1) driven
by the control law

ui =
∑
j∈Ni

aij (yj − yi)− αvi + λL,2yi. (4)

where vi is a dynamic average estimation given by

v̇i = ẏi + β(yi − vi) +KI

∑
j∈Ni

aij (zj − zi) , (5)

żi = KIvi.

If G is connected and α > λL,2, β > 0, KI > 0, then the
state y(t) of the MAS converges to a scaled Fiedler vector of
graph G for almost any initial condition.

Proof. Let w =
[
y v z

]T ∈ R3n be the state of the MAS,
which under the action of the feedback (4)-(5) can be written

ẇ = Mw =

 λL,2I − L −αI 0
(λL,2 + β)I − L −(α+ β)I −KIL

0 KII 0

w.
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To compute the eigenvalues of matrix M , we proceed
by solving det{M − λI3n} = 0. Let us partition matrix
M − λI3n = [A B;C D] into blocks, which are given next

A =

[
(λL,2 − λ)I − L −αI
(λL,2 + β)I − L −(α+ β + λ)I

]
,

B =

[
0

−KIL

]
, C =

[
0 KII

]
, D = −λI.

By Shur-complement, the determinant of M−λI3n is equal to
det{D}·det{A−BD−1C}, where det{D} = λn and det{A−
BD−1C} = det{a1L2 + a2L+ a3I}, with

a1 =
K2
I

λ
, a2 = K2

I − λL,2
K2
I

λ
+ β + λ,

a3 = λα+ λβ + λ2 − λL,2β − λL,2λ+ αβ.

Finally, letting H = a1L+ a2I , we can write

det{M − λI3n} = λn · det{HL+ a3I} = 0. (6)

Matrix HL is a product of two commuting matrices, i.e.,
HL = LH , thus any eigenvalue of HL is a product of the
eigenvalues of H and L. Furthermore, H and L share the same
set of eigenvectors because matrix H = a1L+ a2I where a1
and a2 are real scalars. Thus, from (6) one can derive

λ(λL,iλH,i + a3) = 0, ∀i ∈ V,
where the eigenvalues λL,i are real and satisfy
0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n since the graph is assumed to
be connected. The eigenvalues of H are λH,i = a1λL,i + a2,
thus, substituting coefficients ai yields for any ∀i ∈ V

λ3+biλ
2+ciλ+di = 0,

bi = α+ β − λL,2 + λL,i
ci = (α− λL,2)β + (K2

I + β)λL,i
di = K2

IλL,i(λL,i − λL,2)
.

One can notice that M has three eigenvalues for each λL,i
with i ∈ V , which can be computed by the above equation.
We proceed by ensuring that all eigenvalues of matrix M have
negative real part using the Routh criteria.

For i = {1, 2} it holds di = 0 and, by the Routh criteria
specialized for second degree polynomials, all solutions are
strictly negative if and only if coefficients bi, ci are positive,
which is verified if the conditions of the theorem hold.

For i ∈ {3, . . . , n} it holds di > 0 and, by the Routh criteria
specialized for third degree polynomials, all solutions are
strictly negative if and only if in addition it holds bici−di > 0,

bici − di = β(λL,2 − λL,i)2 + (2αβ + β2)(λL,i − λL,2)+

+ (αβ +K2
IλL,i)(α+ β) > 0,

since λL,i ≥ λL,2 for i ∈ {3, . . . , n}. We conclude that,
under the conditions of the theorem, matrix M has two zero
eigenvalues because di = 0 for i ∈ {1, 2} while all other
eigenvalues have negative real part. Stability of the system
can be ensured by proving that the geometric multiplicity
of eigenvalue 0 is equal to its algebraic multiplicity, which
is two. We prove this fact by showing that two distinct
eigenvectors are associated to the zero eigenvalue. Recalling
that w =

[
y v z

]T ∈ R3n is the state of the overall system,

we compute ẇ = Mw = 0,
(λL,2I − L)y = 0

βy −KILz = 0

v = 0

,

There are two feasible choices for y. First choice is y = 0,
leading to Lz = 0, i.e., z = δvL,2, ∀δ ∈ R. Second choice is
y = δvL,2, leading to z = βδ

KIλL,2
vL,2 + σ1, ∀σ ∈ R. Thus,

the zero eigenvalue has the two distinct eigenvectors

e1 =

 0
0
vL,2

 , e2 =

 vL,2
0

β
KIλL,2

vL,2 + σ
δ 1

 .
Since two linearly independent eigenvectors are associated to
the null eigenvalue which has algebraic multiplicity equal to
two, it follows that the system is marginally stable, and

lim
t→∞

y(t) = αvL,2, α ∈ R.

Let S ⊂ R3n be the space orthogonal to the Fiedler vector
vL,2. Coefficient α is null if and only if w(0) ∈ S, which is
a set of measure zero, thus completing the proof.

IV. DESYNCHRONIZATION IN
HARMONIC OSCILLATOR NETWORKS

In this section we define and study the desynchronization
problem in networks of n coupled identical harmonic oscil-
lators with natural frequency ω ∈ R. A harmonic oscillator
is a second-order linear system modeling both amplitude
M(t) and phase θ(t) of an oscillator as opposed to the
popular Kuramoto model, which models only the phase of
an oscillator as a first-order non-linear system. The position
pi(t) = Mi(t) cos(ωt + θi(t)) ∈ R of the i-th oscillators has
the following dynamics, see [21], [22]

p̈i + ω2pi = uci + udi , (7)

where uci ∈ R is the local control feedback to be designed,
and udi ∈ R accounts for the diffusive coupling between the
oscillators and it is defined as

udi =
∑
j∈Ni

aij (ṗj − ṗi) , (8)

where aij ∈ {0, 1} are the entries of the adjacency matrix of
the undirected graph G describing both the coupling network
and the communication network: aij = 1 if oscillator i is
coupled and can communicate with oscillator j, and aij = 0
otherwise. Introducing the state vector xi = [pi ṗi]

T ∈ R2, the
state-space representation of a network of oscillators (7) is

ẋi = Axi +B(uci + udi ), i ∈ V, (9)
yi = Cxi,

where the state matrices are given by

A =

[
0 −ω
ω 0

]
, C = BT =

[
0 1

]
.

The steady state output of each oscillator i is given by

yssi (t) = Mi cos(ωt+ θi) = <
{
Mie

jθi · ejωt
}
,



4

where Mi ∈ R+, θi ∈ S1 are the steady state magnitude and
the phase of oscillator i, j denotes the imaginary unit and
<{·} denotes the real part of a complex number. Thus, the
collective steady-state output dynamics

1T yss(t) =

n∑
i=1

yssi (t) = <
{

n∑
i=1

Mie
jθi · ejωt

}
(10)

is encoded in the centroid1

Rejφ =
1∑n

i=1Mi

n∑
i=1

Mie
jθi ,

n∑
i=1

Mi > 0, (11)

where R ∈ R+ represents the phase-coherence of the popu-
lation of oscillators and φ ∈ S1 indicates the average phase.
The goal is to prove that the employment of the local protocol
proposed in the previous section, allows to achieve desyn-
chronization in a network of diffusively coupled harmonic
oscillators in the sense shown next.

Definition 1 (Desynchronization measure). Consider a net-
work of n identical oscillators (9). The network is said to
achieve desynchronization if

R = 0⇔ 1T yss(t) = 0, (12)

i.e., the collective steady-state output dynamics (10) is non-
null with zero mean or, equivalently, the centroid (11) is at
the origin of the Complex Plane. �

In the light of the above definition, consider a simple yet
illustrative example of a network of three oscillators. Fig. 1
depicts the following configurations: (a) all phase differences
are null, then oscillators are not desynchronized, regardless
of their amplitude; (b) amplitudes are equal and the phase
differences are θ1 − θ2 = 2π

3 , θ2 − θ3 = 2π
3 , then the

oscillators are desynchronized, this configuration is referred
in the literature as a splay state; (c) if M1 = 2M2 = 2M3

and θ2 = θ3 = θ1 + π, then the oscillators are not in a splay
state but they are desynchronized.

A. Main Result

It is known [30], [31] that a network of identical harmonic
oscillators (9) under the diffusive coupling (8) achieves syn-
chronization if the interconnection graph is symmetric. The

1If all oscillators have the same fixed amplitude (such is the case for
Kuramoto oscillators) the centroid reduces to Rejφ = 1

n

∑n
i=1 e

jθi and
R is known as the order parameter.

1

2

×

θj − θi = 0

(a)

×

1

1 1

γγ

γ

(b)
1

2

×

d/2

d

(c)

× Centroid of oscillators i Number i of oscillators

Figure 1: Steady-state configurations of a network of three oscil-
lators: (a) not desynchronization, (b) desynchronization with same
amplitudes, (c) desynchronization with different amplitudes.

control feedback provided in the next theorem is able to
cancel out the synchronization effect of the diffusive coupling
while asymptotically steering the network to a non-trivial
desynchronized state, according to Definition 1.

Theorem 3 (Desynchronization of harmonic oscillators). Con-
sider a network of n identical harmonic oscillators (9) coupled
with the diffusive coupling (8) and driven by the control law

ui = −βvi + λL,2yi. (13)

where vi is a dynamic average estimation given in (5). If G is
connected and

α > max

{
λL,2,

ω2

2λL,2

}
, KI =

√
2α2 + ω2

2λL,2
, (14)

then the network achieves desynchronization as in Definition
1 for almost all initial conditions.

Proof. Let wi =
[
xi vi zi

]T ∈ R4. The network of cou-
pled harmonic oscillators (9) subject to the diffusive coupling
(8) and the feedback control (4) can be written in compact
form as

ẇ =

M︷ ︸︸ ︷[
(I ⊗A∗)− (L⊗B∗)

]
w (15)

y = (I ⊗ C∗)w, (16)

where the operator ⊗ denotes the Kronecker product and

A∗ =

 A+ λL,2BC −αB 0
C(A+ (λL,2 + α)I2) −2α 0

0 KI 0

 ,
B∗ =

BC 0 0
C 0 KI

0 0 0

 , C∗ =
[
C 0 0

]
.

Since L is symmetric, there exists an orthogonal matrix P such
that Λ = PTLP is a diagonal matrix. Consider the coordinate
change

w̃ =
[
P ⊗ I4

]
︸ ︷︷ ︸

P̃

w → ˙̃w =
[
P̃TMP̃

]
︸ ︷︷ ︸

M̃

w̃. (17)

where, by exploiting the properties of the Kronecker product,

M̃ =
[
(I ⊗A∗)− (Λ⊗B∗)

]
.

Matrices M and M̃ share the same spectrum. Matrix M̃ is a
block diagonal matrix with blocks M̃i given by

M̃i = A∗ − λL,iB∗ ∀i ∈ V,
where the eigenvalues λL,i of L are real and satisfy
0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n since the graph is assumed to
be connected. It is known that the eigenvalues of the block
diagonal matrix M̃ are the eigenvalues of the blocks M̃i.

By means of the Routh criterion, it can be shown (we
omitted the steps due to space constraints) that under condition
(14) all the eigenvalues of blocks M̃i are strictly inside the
left half of the Gauss plane, except for block M̃1, which has a
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zero eigenvalue, and block M̃2, which has a pair of imaginary
conjugate eigenvalues. Exploiting the change of variable (17),
one can write the state evolution of the system as

w(t) = eMtw(0) = eP̃ M̃P̃T tw(0) = P̃ eM̃tP̃Tw(0).

and so the output

y(t) = (In ⊗ C∗)w(t) = (In ⊗ C∗)P̃ eM̃tP̃Tw(0).

As t → ∞, all blocks eM̃it for i = 3, . . . , n tend to zero
because of the negative real part of their eigenvalues. Thus,
since the columns of P are the eigenvectors of matrix L it
follows

lim
t→∞

y(t) = (In ⊗ C∗)
[
vL,1v

T
L,1 ⊗ eM̃1t + vL,2v

T
L,2 ⊗ eM̃2t

]
w(0)

=
[
(vL,1v

T
L,1 ⊗ C∗eM̃1t) + (vL,2v

T
L,2 ⊗ C∗eM̃2t)

]
w(0).

Matrix M̃1 has only one null eigenvalue (the others have
negative real part) with eigenvector 15 ⊗ [0 0 0 1]T , thus

lim
t→∞

eM̃1t ∝
[
0 0
0 1

]
.

Since limt→∞ C∗eM̃1t = 0 it follows

lim
t→∞

y(t) =
[
vL,2v

T
L,2 ⊗ C∗eM̃2t

]
w(0).

The collective steady-state output dynamics results in

1T yss(t) = lim
t→∞

1T y(t) = 1T
[
vL,2v

T
L,2 ⊗ C∗eM̃2t

]
w(0)

=
[
0⊗ C∗eM̃2t

]
w(0) = 0

We proved that the network reaches a steady-state with a
zero mean state output dynamics, in which each oscillator
has a non-trivial oscillatory behaviour due to the pair of
imaginary conjugate eigenvalues of block M̃2, and so of M .
This completes the proof.

V. NUMERICAL RESULTS

Simulations have been carried out by exploiting the 4-th
Order Runge–Kutta Method.

A. Fiedler vector estimation

We compare our protocol with the one in [8] because of
their similar structure. We keep our notation for any common

0 100 200 300
10−15

10−11

10−7

10−3

101

t

||x
(t
)
−
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Figure 2: Fiedler vector estima-
tion error in a network of 5
agents.
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Figure 3: Convergence time of
Fiedler vector estimation in line
networks.

−1 1

−1

1

R

I

R(0)ejφ(0)

R(15)ejφ(15)

R(t)ejφ(t)

R(t)ejφ(t)

−1

1

5 15 35

t

1T y(0)

1T y(15)

1T y(t) for t ∈ [0, 15)

1T y(t) for t ∈ [15, 35]

y(t)

Figure 4: Evolution of 5 coupled harmonic oscillators. The diffusive
coupling (8) is activated at t = 5, while the desynchronizing local
feedback (13)-(5) is activated at t = 15.

variable (i.e., α, β and KI ) while we use the notation in [8]
for the remaining variables (i.e., k2, k3 and KP ).

In the first simulation, a MAS with n = 5 agents (1),
random topology and local control law (4) is considered.
Accordingly with conditions of Theorem 2, we choose the
gains for the integral dynamic average consensus estimator as
β = 25, KI = 10, and the gain for the eigenvector estimator
as α = 6. The additional gains for the algorithm in [8] are
chosen as k2 = 1, k3 = 20 and KP = 50. Network topology
and free parameters are the same of Example 1 in [8], common
variables are initialized to the same values while the others are
chosen to nullify the initial error estimation.

In the second simulation, we consider a MAS with increas-
ing number n of agents, line topology and local control law
(4). With the choice of the line topology we are considering
the worst case scenario for the dynamic average estimator.
According to conditions of Theorem 2, the gains for the inte-
gral dynamic average consensus estimator are chosen β = 10,
KI = 15, the gain for the eigenvector estimator is α = 2λL,2.
The additional gains for the algorithm in [8] are chosen as
k2 = 1, k3 = 2λL,2 and KP = 25.

The Figures 2-3 show the results of the two simula-
tions just described. First, Fig 2 shows the error evolution
e(t) = ||x(t)− ṽL,2||, ṽL,2 = limt→∞ ||x(t)||vL,2. Second,
Fig. 3 shows, for different values of n, the time required by
the two algorithms to reach an error of the order of 10−6.
Both simulations reveal that, in the face of the assumption
on the knowledge of the algebraic connectivity, the proposed
algorithm has a faster convergence rate, making it more
scalable with the number of the agents in the network.

B. Desynchronization of harmonic oscillators

Synchronization of networked mechanical oscillator systems
have been subject of interest [21], [22], [32], [33]. Here we
give a physical example of application of Theorem 3.

Consider the networked mechanical systems consisting of
n train wagons of identical mass m with linear dumper
b interaction [33] and a mass-spring-damper modeling the
interaction with the ground. Assuming a (ideally) null damping
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in order to guarantee the best comfort to the passengers, and
denoting the spring coefficient with k, the model becomes the
one in (7)-(8) with natural frequency ω =

√
k/m = 0.1 and

dumping coefficient b = 1. The feedback control (13) models
the active suspensions between wagons and desynchronization
corresponds to the minimum stress on the rails.

Simulation of a line-topology network with n = 5 nodes
is shown in Fig. 4 with α = 1.88 and KI = 2, according to
Theorem 3. The oscillators start evolving without any coupling
until at t = 5 the diffusive coupling is enabled and synchro-
nization is achieved. Let us denote with R(t)ejφ(t) the centroid
as defined in (10)-(11) given x(t) as the initial condition of
the network x(t); it is clear that limt→∞R(t) = R. Thus,
as can be seen in Fig. 4, the collective output dynamics has
constant module R(t) = 0.6 for t ∈ [0, 15). At t = 15 the
proposed control feedback is activated and the network is
shown to reach desynchronization in the sense of Definition 1,
i.e., R = limt→∞R(t) = limt→∞ 1

n1
T y(t) = 1T yss(t) = 0.

VI. CONCLUSIONS

In this work we proposed a protocol for solving the problem
of distributed Fiedler vector estimation in networks of single-
integrator agents. Exploiting the zero mean property of the
Fiedler vector, we employed the proposed protocol as a local
feedback to achieve desynchronization in a network of diffu-
sively coupled harmonic oscillators. The main advantages of
the proposed protocol are its robustness to re-initialization and
a fast convergence rate. Future works will focus on relaxing
the condition on the knowledge of the algebraic connectivity,
thus paving the way to address time-varying topologies.
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