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Abstract

Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications

in the control and performance analysis of flexible manufacturing systems. Due to the existence

of multiplicities (i.e., weights) on edges, the performance analysis and resource optimization

of such graphs represent a challenging problem. In this paper, we develop an approach to

transform a timed weighted marked graph whose initial marking is not given, into an equivalent

parametric timed marked graph where the edges have unitary weights. In order to explore

an optimal resource allocation policy for a system, an analytical method is developed for the

resource optimization of timed weighted marked graphs by studying an equivalent net. Finally,

we apply the proposed method to a flexible manufacturing system and compare the results

with a previous heuristic approach. Simulation analysis shows that the developed approach is

superior to the heuristic approach.
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List of Symbols

P = {p1, p2, . . . , pn} Finite set of places.

T = {t1, t2, . . . , tm} Finite set of transitions.

Pre P × T → N is an output function, where N = {0, 1, 2, . . .}.
Post P × T → N is an input function.

C C = Post− Pre the incidence matrix.

N PN N = (P, T,Pre,Post).

δ = [δ1, δ2, . . . , δn]
T Firing delay vector.

M Marking of a Petri net (PN).

M(pi) Number of tokens in pi at marking M .

⟨N,M⟩ A Petri net system.

x = [x1, . . . , xm]T (minimal) T-semiflow of a PN.

y = [y1, . . . , yn]
T (minimal) P-semiflow of a PN.

tin(pi) Unique input transition of pi.

tout(pi) Unique output transition of pi.

v(pi) Weight of the output arc of pi.

w(pi) Weight of the input arc of pi.

gcdpi
Greatest common divisor of w(pi) and v(pi).

•p Set of input transitions of p.

p• Set of output transitions of p.
•t Set of input places of t.

t• Set of output places of t.

γ Elementary circuit in a PN.

Γ Set of elementary circuits.

yγ Minimal P-semiflow of γ.

χ(M) Cycle time of a PN system.

β = 1/χ(M) Throughput of a PN system.

b Upper bound of the cycle time.

N̂ti Equivalent subnet of ti.

M̂ti Equivalent submarking of ti.

N̂pi Equivalent subnet of pi.

M̂pi Equivalent submarking of pi.

N̂ Equivalent TMG.

M̂ Marking of an equivalent TMG.

⟨N̂ ,M̂⟩ Equivalent TMG system.

µ(psi ) Number of tokens in place psi .

ϕi = v(pi) · xout(pi) Period of pi.

G(M , N̂ ,M̂) Equivalent parametric TMG system.

Mki
pi

Marking set of pi.

ni Number of places of N̂pi .

n̂ Number of places of N̂ .

m̂ Number of transitions of N̂ .
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1 Introduction

Many artificial systems that consist of a limited quantity of resources shared by different tasks can

be classified as resource allocation systems [1]; among them include flexible manufacturing systems,

traffic transportation systems, and logistics systems [2–7]. Performance of flexible manufacturing

systems is usually affected by timing specifications and resource allocation. For the sake of improving

productivity and saving cost considerations, the resources of a flexible manufacturing system must be

well allocated. The resource optimization of manufacturing systems with operation delay, assembly,

disassembly, and batch processing, is a challenging problem for manufacturing engineers.

Timed Petri nets (TPNs) are a model of discrete event systems that are widely applied to

control, performance evaluation, and fault diagnosis in timed systems, e.g., flexible manufacturing

systems [8–11]. As an important subclass of TPNs, timed marked graphs (TMGs) are suitable to

model and analyze synchronization appearing in discrete event systems [12,13].

The performance of a system modeled with TMGs is usually characterized by the cycle time.

When the initial marking of a TMG is given, a linear programming is developed to estimate the cycle

time [14]. The properties of cyclic TMGs were explored in [15] and it was shown that the evolution

of cyclic TMGs is periodic. Therefore, it is possible to estimate the cycle time by analyzing its

periodical behaviors. In addition, the linear algebraic approaches can also be applied to model and

analyze the dynamic behavior of TMGs [16,17].

To make a trade-off between the throughput of manufacturing systems and the resource cost, two

main resource optimization problems were investigated in the literature: marking optimization [18]

and cycle time optimization [19,20]. The marking optimization problem finds a minimal cost marking

such that the system’s cycle time does not fall short of a predefined upper bound and the cycle time

optimization problem investigated in [20] explores a minimal cycle time marking such that the cost of

the machines/resources does not exceed an upper bound. Deadlock control of flexible manufacturing

systems is another important problem that has been extensively investigated in a class of PNs [21–23].

For modelling, analyzing, and controlling flexible manufacturing systems with batch processing,

a possible method is to use timed weighted marked graphs (TWMGs) [24]. TWMGs have been

proven to be adequate for performance evaluation and resource optimization of job-shops, kanban

systems, and flexible manufacturing systems that are decision free [14, 15]. In such nets, each

place has a unique output transition and a unique input transition but the weights on edges may

be greater than one, to represent multiple edges. The behaviors and properties of TWMGs were

investigated in [25]. Due to the existence of multiplicities (weights) on edges, the analysis of TWMGs

is a challenging problem. When the initial marking of a TWMG is given, its cycle time could be

analyzed by converting to an equivalent TMG [26, 27] using the well-known linear programming

approach in [14]. However, when the initial marking becomes a decision variable to be determined

for an optimization problem, the approaches developed in [26,27] cannot be directly used. Heuristic

methods were developed in [28, 29] for the marking optimization problem of TWMGs to obtain a

sub-optimal solution.

By transforming a TWMG whose initial marking is unknown into a finite number of equivalent

TMG classes, an optimal initial marking can be obtained by solving a mixed integer linear pro-

gramming problem for each equivalent TMG class [30, 31]. However, these approaches have high
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computational cost since the number of equivalent TMG classes increases exponentially w.r.t. the

number of places of the original TWMG. In practice it is inefficient to solve a resource optimization

problem by exploring all the equivalent TMGs1.

To this end, this paper proposes a method to convert a TWMG whose initial marking is unknown

to an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent

to the original TWMG. Using this transformation, a resource optimization problem for the original

TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which, as

shown later, can be solved more efficiently. Particularly, this approach is used to handle the marking

optimization of TWMGs by solving a mixed integer quadratically constrained programming problem

for the equivalent parametric TMG system. To the best of our knowledge, the existing results for

the marking optimization problem of TWMGs are all based on heuristic strategies.

The main contributions of this work are as follows:

• We develop an approach to transform a TWMG, whose initial marking is not given, into an

equivalent parametric TMG system that fully describes the finite family of TMGs equivalent

to the original TWMG.

• We propose a mixed integer quadratically constrained programming problem for the marking

optimization problem of TWMGs.

• We test the proposed approach on different cases and compare its performance with a previous

heuristic approach.

This paper is organized in six sections. The basics of PNs is given in Section 2. A method

developed in [26] to transform a TWMG whose initial marking is given into an equivalent TMG is

introduced in Section 3. In Section 4, an approach to transform a TWMG whose initial marking

is not given into an equivalent parametric TMG system is presented. In Section 5, an analytical

approach for the resource optimization problem is developed based on the equivalent parametric

TMG system. In Section 6, we give the conclusions.

2 Background

2.1 Petri nets

A Petri net (PN) is a four-tuple N = (P, T,Pre,Post), where P = {p1, . . . , pn} is a set of n places,

T = {t1, . . . , tm} is a set of m transitions with P ∪ T ̸= ∅ and P ∩ T = ∅, Pre : P × T → N and

Post : P × T → N are the pre- and post-incidence functions, specifying the arcs from places to

transitions and transitions to places, respectively, where N denotes the set of non-negative integers.

Specifically, for p ∈ P and t ∈ T , Pre(p, t) = k > 0 (resp., Post(p, t) = k) if there exists an arc

with weight k from p to t (resp., t to p), and is 0 otherwise. Pre (Post) can be tabulated in a

rectangular array and represented by an n×m matrix indexed by P and T . The incidence matrix

of N is defined as C = Post− Pre ∈ Zn×m, where Z denotes the set of integers.

1Although several techniques that may help to speed up the approaches in [30,31] are developed, these procedures

are still subject to high computational complexity.
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A vector x ∈ Nm (resp., y ∈ Nn) such that C · x = 0 (resp., yT ·C = 0) is a T-semiflow (resp.,

P-semiflow). The support of a T-semiflow (resp., P-semiflow) is defined by ∥x∥={ti ∈ T |xi > 0}
(resp., ∥y∥={pi ∈ P |yi > 0}). A P-semiflow (resp., T-semiflow) is said to be minimal if ∥y∥ (resp.,

∥x∥) is not a superset of the support of any other P-semiflow (T-semiflow), and its elements are

coprime.

A marking is a mapping M : P → N that assigns to each place of a PN a non-negative integer

of tokens. The marking of place p is denoted by M(p). A Petri net system ⟨N,M⟩ is a net N with

a marking M .

A PN is said to be ordinary if all the weights of its arcs are unitary. A marked graph (MG) is

an ordinary PN such that for all p ∈ P , |•p| = |p•| = 1 holds, where •p and p• denote the set of

input and output transitions of p, respectively. The notions for •t and t• are analogously defined.

A weighted marked graph (WMG) is a PN such that for all p ∈ P , |•p| = |p•| = 1 holds, while the

weights on arcs are integers.

Given a PN N , a path is a sequence of nodes o1o2 · · · ok where oi ∈ P ∪ T for all i ∈ {1, . . . , k}
such that oi+1 ∈ o•i holds for all i ∈ {1, . . . , k − 1}. A PN is cyclic if for any o, o′ ∈ P ∪ T , there

exists a path from o to o′. A path o1o2 · · · ok is a circuit if o1 = ok. A circuit o1o2 · · · oko1 is an

elementary circuit, denoted by γ, if for all i, j ∈ {1, . . . , k}, i ̸= j implies oi ̸= oj . We denote the set

of elementary circuits by Γ. In the sequel, cyclic WMGs will be considered.

Consider a WMG with a place as shown in Fig. 1. The weights of input arc and output arc of

pi are denoted by integers w(pi) and v(pi), respectively. In addition, we use gcdpi to represent the

greatest common divisor of w(pi) and v(pi).

i
p

iin p
t i

w p i
p

iout p
t

Figure 1: A place pi with an input transition tin(p) and an output transition tout(p).

2.2 Cycle time of TWMGs

There mainly exist three ways of introducing the timing parameters in PN models, i.e., a delay can

be associated with transitions, places, or arcs [32]. In this paper, we consider TPNs, in which each

transition is associated with a deterministic firing delay. A timed PN is a pair (N, δ), where N

is a PN, and δ : T → N is a firing delay function that assigns to each transition a non-negative

integer [30]. The single server semantic is considered in this paper, which means that at each time

an enabled transition cannot fire more than once. More details can be found in [32].

For a TWMG system ⟨N,M⟩, the cycle time is defined as the average period to fire one time

the minimal T-semiflow as soon as possible, denoted by χ(M). In [14], a linear programming was

developed to obtain a cycle time lower bound as follows:

max β

s.t.

C · α− Pre · δ · β +M ≥ 0

(1)
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where β ∈ R+ is the throughput (inverse of the cycle time, i.e., β = 1/χ(M)) and α ∈ Rm are the

decision variables. Note that LPP (1) provides an exact value for the cycle time of a TMG system

⟨N,M⟩. In addition, by simulating the dynamic behavior of a TWMG system [29], the cycle time

can also be obtained.

3 Transformation of a TWMG system

For a TWMG system, an analytical approach to evaluate the cycle time is to transform it into

an equivalent TMG system that has the same cycle time. In [26], Munier proposed a method to

convert a TWMG system ⟨N,M⟩ (with n places and m transitions) to an equivalent TMG system

⟨N̂ ,M̂⟩ (with n̂ places and m̂ transitions) whose cycle time is identical. This procedure is shown in

Algorithm 1.

As discussed in [30], for a TWMG system the structure of its equivalent TMG depends on the

initial marking. In addition, the number of equivalent TMG systems of a TWMG, whose initial

marking is not given, increases exponentially with the size of place set, which makes the resource

optimization problem where the initial marking is unknown quite difficult to solve2.

Example 1. Consider a TWMG N in Fig. 2 whose minimal T-semiflow is x=(2, 1)T . We

assume that the initial marking is M = (2, 0)T . According to Algorithm 1, an equivalent TMG

system ⟨N̂ ,M̂⟩ is obtained as follows.

p1

p2

t1 t2

Figure 2: A TWMG N considered in Examples 1, 2 and 3.

First, for each transition ti ∈ T we compute its equivalent subsystem ⟨N̂ti ,M̂ti⟩ as shown in

Fig. 3, where 
N̂t1 = {Pre(q11 , t

2
1) = 1, Post(q11 , t

1
1) = 1,

P re(q21 , t
1
1) = 1, Post(q11 , t

2
1) = 1},

M̂t1 = [M̂(q11), M̂(q21)]
T = [0, 1]T .N̂t2 = {Pre(q12 , t2) = 1, Post(q12 , t2) = 1},

M̂t2 = [M̂(q12)]
T = [1]T ,

and the equivalent subsystem ⟨N̂t,M̂t⟩ of transitions can be obtained by the union of each equivalent

2The solutions developed in [30] and [31] for the cycle time optimization have high computational cost since they

require one to solve a mixed integer linear programming for each possible equivalent TMG system.
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Algorithm 1 [26] Transformation of a TWMG system into an equivalent TMG system under single

server semantics

Input: A TWMG system ⟨N,M⟩ with a minimal T-semiflow x = (x1, . . . , xm)T

Output: An equivalent TMG system ⟨N̂ ,M̂⟩ whose cycle time is identical to ⟨N,M⟩
1: (Equivalent subsystem ⟨N̂t,M̂t⟩ of transitions). Replace each transition ti ∈ T by xi transitions,

t1i , t
2
i , . . ., t

xi
i , with delay time

δ̂(tji ) = δ(ti), j = 1, . . . , xi. (2)

Add xi places q1i , . . ., q
xi
i , where qai (a = 1, . . . , xi − 1) is a place connecting tai to ta+1

i with

unitary weights and qxi
i is a place connecting txi

i to t1i with unitary weights.M̂(qai ) = 0, i = 1, . . . ,m, a = 1, . . . , xi − 1,

M̂(qxi
i ) = 1,

(3)

2: (Equivalent subsystem ⟨N̂p,M̂p⟩ of places: case 1). Replace each place pi ∈ P such that w(pi) >

v(pi) by ni = xin(pi) places p
s
i , where for s = 1, . . . , ni:

as · xout(pi) + bs =
⌊
M(pi)+w(pi)·(s−1)

v(pi)

⌋
+ 1,

bs ∈ {1, . . . , xout(pi)},

as ∈ N.

(4)

Place psi connects transition tsin(pi)
to transition tbsout(pi)

and contains as tokens, i.e.,
tin(ps

i )
= tsin(pi)

, or equivalently Post(psi , t
s
in(pi)

) = 1,

tout(ps
i )

= tbsout(pi)
, or equivalently Pre(psi , t

bs
out(pi)

) = 1,

µ(psi ) = M̂(psi ) = as.

(5)

3: (Equivalent subsystem ⟨N̂p,M̂p⟩ of places: case 2). Replace each place pi ∈ P such that w(pi) ≤
v(pi) by ni = xout(pi) places p

s
i , where for s = 1, . . . , ni:
cs · xin(pi) + ds =

⌈
s·v(pi)−M(pi)

w(pi)

⌉
,

ds ∈ {1, . . . , xin(pi)},

cs ∈ Z≤0.

(6)

Place psi connects transition tds

in(pi)
to transition tsout(pi)

and contains −cs tokens, i.e.,
tin(ps

i )
= tds

in(pi)
or equivalently Post(psi , t

ds

in(pi)
) = 1,

tout(ps
i )

= tsout(pi)
or equivalently Pre(psi , t

s
out(pi)

) = 1,

µ(psi ) = M̂(psi ) = −cs.

(7)

4: (Equivalent TMG system ⟨N̂ ,M̂⟩). The TMG system is equivalent to the union of the subsys-

tems of transitions and places, i.e.,

⟨N̂ ,M̂⟩ = ⟨N̂t,M̂t⟩ ∪ ⟨N̂p,M̂p⟩. (8)
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subsystem ⟨N̂ti ,M̂ti⟩, i.e.,

⟨N̂t,M̂t⟩ = ⟨N̂t1 ,M̂t1⟩ ∪ ⟨N̂t2 ,M̂t2⟩,

N̂t = N̂t1 ∪ N̂t2 = {Pre(q11 , t
2
1) = 1, Post(q11 , t

1
1) = 1,

P re(q21 , t
1
1) = 1, Post(q11 , t

2
1) = 1, P re(q12 , t2) = 1,

Post(q12 , t2) = 1}

M̂t = M̂t1 ∪ M̂t2 = [M̂(q11), M̂(q21), M̂(q12)]
T

According to the transformation rule, structures N̂t1 and N̂t2 and their corresponding markings

M̂t1 and M̂t2 depend on the net structure N of the TWMG.

t

q q

t

t

q

t t
N M

Figure 3: The equivalent subsystem ⟨N̂t,M̂t⟩ of transitions.

Secondly, for each place pj ∈ P , we compute its equivalent subsystem ⟨N̂pj ,M̂pj ⟩ according to

Eqs. (4)–(7) as shown in Fig. 4, whereN̂p1 = {Pre(p11, t
1
2) = 1, Post(p11, t

2
1) = 1},

M̂p1 = [M̂(p11)]
T = [1]T .N̂p2

= {Pre(p12, t
1
1) = 1, Post(p12, t

1
2) = 1},

M̂p2
= [M̂(p12)]

T = [0]T ,

and the equivalent subsystem ⟨N̂p,M̂p⟩ of places can be obtained by the union of each equivalent

subsystem ⟨N̂pj ,M̂pj ⟩, i.e.,

⟨N̂p,M̂p⟩ = ⟨N̂p1 ,M̂p1⟩ ∪ ⟨N̂p2 ,M̂p2⟩,

N̂p = N̂p1 ∪ N̂p2 = {Pre(p11, t
1
2) = 1, Post(p11, t

2
1) = 1,

P re(p12, t
1
1) = 1, Post(p12, t

1
2) = 1},

M̂p = M̂p1 ∪ M̂p2 = [M̂(p11), M̂(p12)]
T = [1, 0]T .

Finally, we obtain the equivalent TMG system ⟨N̂ ,M̂⟩ by combining the equivalent subsystems

of transitions and places as shown in Fig. 5. �
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t p t tpt

p p
N M

Figure 4: The equivalent subsystem ⟨N̂p,M̂p⟩ of places.

p

q

t

q q

t

t

p

Figure 5: The equivalent TMG system of the TWMG N depicted in Fig. 2 with M = [2, 0]T .

4 Parametric transformation of TWMGs

Since the equivalent structure of the TMG depends on the initial marking of the TWMG, the

number of equivalent TMG systems of a TWMG whose initial marking is unknown could increase

exponentially with the size of place set. Therefore, it is practically inefficient to solve a resource

optimization problem by exploring all the equivalent TMG systems. This section proposes a method

to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system.

First, we discuss the logic constraints of the possible equivalent subsystems in Section 4.1. Then,

some techniques are introduced to convert a TWMG to an equivalent parametric TMG in Section

4.2.

4.1 Logic constraints of the equivalent subsystems

In [30], the authors prove that the equivalent subsystem ⟨N̂t,M̂t⟩ of transitions is fixed regardless

of the initial marking, while the equivalent subsystem ⟨N̂pi ,M̂pi⟩ of any place pi is periodic w.r.t.

M(pi) with a period ϕi, where

ϕi = v(pi) · xout(pi). (9)

The marking space of pi is divided into ϕi

gcdpi
subsets:

Mki
pi

= {ki · gcdpi
+ ξi · ϕi|ξi ∈ N, ki = 0, . . . ,

ϕi

gcdpi

− 1}. (10)
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Thus, for each partition Mki
pi

we can compute its corresponding equivalent subsystem ⟨N̂ki
pi
,M̂ki

pi
⟩

by Eqs. (4)–(7) and the logic constraints of all the equivalent subsystems are shown as follows:

⟨N̂pi ,M̂pi⟩ =

ϕi
gcdpi

−1∨
ki=0

⟨N̂ki
pi
,M̂ki

pi
⟩, (11)

where
∨

denotes the logical or operator.

In the following example, the logic constraints of the equivalent subsystems corresponding to

different marking partitions are discussed.

Example 2. Let us consider the TWMG depicted in Fig. 2. According to Eqs. (9) and (10),

the marking space of place p1 (resp., p2) can be partitioned into two (resp., two) subsets (due to

ϕ1 = 2, ϕ2 = 2, gcdp1 = 1, and gcdp2 = 1):M0
p1

= {2ξ1}, M1
p2

= {1 + 2ξ1}, ξ1 ∈ N,

M0
p2

= {2ξ2}, M2
p2

= {1 + 2ξ2}, ξ2 ∈ N.

When computing the equivalent subsystem ⟨N̂p1 ,M̂p1⟩ of place p1, we have the following situations:

(1) If M(p1) = 2ξ1, i.e., M(p1) ∈ M0
p1
, thenN̂0

p1
= {Pre(p11, t

1
2) = 1, Post(p11, t

2
1) = 1},

M̂0
p1

= [M̂(p11)]
T = [ξ1]

T .

(2) If M(p1) = 1 + 2ξ1, i.e., M(p1) ∈ M1
p1
, thenN̂1

p1
= {Pre(p11, t

1
2) = 1, Post(p11, t

1
1) = 1},

M̂0
p1

= [M̂(p11)]
T = [ξ1]

T .

Therefore, the subsystem ⟨N̂p1 ,M̂p1⟩ of place p1 can be represented as follows:

⟨N̂p1 ,M̂p1⟩ =
1∨

k1=0

⟨N̂k1
p1
,M̂k1

p1
⟩

Analogously, the equivalent subsystem ⟨N̂p2 , M̂p2⟩ of place p2 belongs to one of the following

situations:

(3) If M(p2) = 2ξ2, i.e., M(p2) ∈ M0
p2
, thenN̂0

p2
= {Pre(p12, t

1
1) = 1, Post(p12, t

1
2) = 1},

M̂0
p2

= [M̂(p12)]
T = [ξ2]

T .

(4) If M(p2) = 1 + 2ξ2, i.e., M(p2) ∈ M1
p2
, thenN̂1

p2
= {Pre(p12, t

2
1) = 1, Post(p12, t

1
2) = 1},

M̂1
p2

= [M̂(p12)]
T = [ξ2]

T .

Therefore, the equivalent subsystem ⟨N̂p2
,M̂p2⟩ of place p2 can be represented as follows:

⟨N̂p2 ,M̂p2⟩ =
1∨

k2=0

⟨N̂k2
p2
,M̂k2

p2
⟩. �
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In conclusion, we can represent a TWMG N by an equivalent TMG system ⟨N̂ ,M̂⟩ as follows:

⟨N̂ ,M̂⟩ = ⟨N̂t,M̂t⟩ ∪ ⟨N̂p,M̂p⟩ = ⟨N̂t1 ,M̂t1⟩ ∪ . . .

∪ ⟨N̂tm ,M̂(tm)⟩ ∪ (
∨
⟨N̂k1

p1
,M̂k1

p1
⟩) ∪ . . .

∪ (
∨
⟨N̂kn

pn
,M̂kn

pn
⟩) where

ki = 0, . . . , ϕi

gcdpi
− 1.

(12)

4.2 Parametric transformation

For each place p ∈ P , the logic constraints of its possible equivalent subsystems are logic or con-

straints. In particular, all the constraints are equality constraints. In this subsection, some trans-

formation rules to convert logic or constraints into linear constraints are adopted to synthesize all

equivalent subsystems into one.

Consider the following equality constraints:

s∨
i=1

v⃗i = u⃗i, v⃗i, u⃗i ∈ Rn. (13)

The work in [33–35] showed that the above equality constraints can be transformed into following

linear constraints: 

v⃗1 − u⃗1 ≤ z1 · h⃗,

v⃗1 − u⃗1 ≥ −z1 · h⃗,
...

v⃗s − u⃗s ≤ zs · h⃗,

v⃗s − u⃗s ≥ −zs · h⃗,
s∑

i=1

zi = s− 1,

zi ∈ {0, 1}, i = 1, . . . , s

(14)

where h⃗ ∈ Rn is a constant vector satisfying

hj > max |vi(j)− ui(j)|, j = {1, . . . , n}. (15)

If zj = 0, then v⃗j = u⃗j holds, which implies that the j-th constraint is active. On the contrary, if

zj = 1, the j-th constraint is redundant. The condition
s∑

i=1

zi = s− 1 implies that one and only one

constraint is active and all others are redundant.

Combining the results in Eqs. (14) and (15), a method to transform a TWMG N whose initial

marking is unknown into an equivalent parametric TMG system, is developed as follows.

Proposition 1 Let N be a TWMG with minimal T-semiflow x = (x1, . . . , xm)T , and assume its

initial marking M is unknown. The net N can be converted to an equivalent parametric TMG

11



system G(M , N̂ ,M̂) whose cycle time is identical as follows:

G(M , N̂ ,M̂) =

M̂(qar ) = 0, δ̂(tar) = δ(tr),

M̂(qxr
r ) = 1, δ̂(txr

r ) = δ(tr),

ˆPre(qar , t
a+1
r ) = 1, ˆPre(qxr

r , t1r) = 1,

ˆPost(qar , t
a
r) = 1, ˆPost(qxr

r , txr
r ) = 1,

r = 1, . . . ,m,

a = 1, . . . , xr − 1,


(16a)

M(pi)− ki · gcdpi − ξi · ϕi ≤ zi,ki · h,
M(pi)− ki · gcdpi − ξi · ϕi ≥ −zi,ki · h,
M̂(psi )− ξi − µ(psi ) ≤ zi,ki · h,
M̂(psi )− ξi − µ(psi ) ≥ −zi,ki · h,
ˆPre(psi , tout(psi ))− 1 ≤ zi,ki · h,
ˆPre(psi , tout(psi ))− 1 ≥ −zi,ki · h,
ˆPost(psi , tin(psi )

)− 1 ≤ zi,ki · h,
ˆPost(psi , tin(psi )

)− 1 ≥ −zi,ki · h,
s = 1, . . . , ni,

i = 1, . . . , n,

ki = 0, . . . , ϕi
gcdpi

− 1,



(16b)

ϕi
gcdpi

−1∑
ki=0

zi,ki =
ϕi

gcdpi
− 1,

zi,ki ∈ {0, 1},
ξi ∈ N,


(16c)

(16)

where ni, tout(pj
i )
, and tin(ps

i )
, obtained according to Algorithm 1, denote the number of equivalent

places of pi, the unique output transition of equivalent place pji , and the unique input transition of

equivalent place psi , respectively. Parameter h ∈ R is a constant satisfying

h > max{|M(pi)− ki · gcdpi − ξi · ϕi|, |M̂(psi )− ξi−
µ(psi )|, | ˆPre(psi , tout(ps

i )
)− 1|, | ˆPost(psi , tin(ps

i )
)− 1|}.

(17)

Proof : Constraint (16a) enforces Eqs. (2) and (3) in Algorithm 1 that specify the transition equiv-

alence between the TWMG N and the system G(M , N̂ ,M̂). Combining the results in Eqs. (5), (7),

and (14), constraint (16b) enforces the correctness of the place equivalence between the TWMG N

and the system G(M , N̂ ,M̂). Although the initial marking M is unknown, the marking of each

place can be partitioned into finite sets as shown in Eq. (10). Therefore, constraint (16c) guarantees

that all marking partitions of TWMG N are included in system G(M , N̂ ,M̂), which indicates that

all the possible equivalent TMG systems can be represented by system G(M , N̂ ,M̂). �
Note that constraint set (16) has a solution only if a suitable constant h exists. This problem

will be discussed later.

Example 3. Consider again the TWMG in Fig. 2. According to Proposition 1, it can be

converted into an equivalent parametric system G(M , N̂ ,M̂) as shown in Eq. (18), where h is

a large enough number. Constraints (18a), (18b), and (18c) represent the equivalent subsystem

corresponding to transitions, place p1, and place p2, respectively. �
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G(M , N̂ ,M̂) =

M̂(q11) = 0, δ̂(t11) = 2, M̂(q21) = 1,

δ̂(t21) = 2, M̂(q12) = 1, δ̂(t12) = 5,

ˆPre(q11 , t
2
1) = 1, ˆPost(q11 , t

1
1) = 1, ˆPre(q21 , t

1
1) = 1,

ˆPost(q21 , t
2
1) = 1, ˆPre(q12 , t

1
2) = 1, ˆPost(q12 , t

1
2) = 1,

 (18a)

M(p1)− 2ξ1 ≤ z1,0 · h,M(p1)− 2ξ1 ≥ −z1,0 · h,
ˆPre(p11, t

1
2)− 1 ≤ z1,0 · h,

ˆPre(p11, t
1
2)− 1 ≥ −z1,0 · h,

ˆPost(p11, t
2
1)− 1 ≤ z1,0 · h,

ˆPost(p11, t
2
1)− 1 ≥ −z1,0 · h,

M̂(p11)− ξ1 ≤ z1,0 · h, M̂(p11)− ξ1 ≥ −z1,0 · h,
M(p1)− 1− 2ξ1 ≤ z1,1 · h,
M(p1)− 1− 2ξ1 ≥ −z1,1 · h,
ˆPre(p11, t

1
2)− 1 ≤ z1,1 · h,

ˆPre(p11, t
1
2)− 1 ≥ −z1,1 · h,

ˆPost(p11, t
1
1)− 1 ≤ z1,1 · h,

ˆPost(p11, t
1
1)− 1 ≥ −z1,1 · h,

M̂(p11)− ξ1 ≤ z1,1 · h, M̂(p11)− ξ1 ≥ −z1,1 · h,
z1,0 + z1,1 = 1, z1,0, z1,1 ∈ {0, 1}, ξ1 ∈ N,



(18b)

M(p2)− 2ξ2 ≤ z2,0 · h,M(p2)− 2ξ2 ≥ −z2,0 · h,
ˆPre(p12, t

1
1)− 1 ≤ z2,0 · h,

ˆPre(p12, t
1
1)− 1 ≥ −z2,0 · h,

ˆPost(p12, t
1
2)− 1 ≤ z2,0 · h,

ˆPost(p12, t
1
2)− 1 ≥ −z2,0 · h,

M̂(p12)− ξ2 ≤ z2,0 · h, M̂(p12)− ξ2 ≥ −z2,0 · h,
M(p2)− 1− 2ξ2 ≤ z2,1 · h,
M(p2)− 1− 2ξ2 ≥ −z2,1 · h,
ˆPre(p12, t

2
1)− 1 ≤ z2,1 · h,

ˆPre(p12, t
2
1)− 1 ≥ −z2,1 · h,

ˆPost(p12, t
1
2)− 1 ≤ z2,1 · h,

ˆPost(p12, t
1
2)− 1 ≥ −z2,1 · h,

M̂(p12)− ξ2 ≤ z2,1 · h, M̂(p12)− ξ2 ≥ −z2,1 · h,
z2,0 + z2,1 = 1, z2,0, z2,1 ∈ {0, 1}, ξ2 ∈ N.



(18c)

(18)

5 Application to the resource optimization problem

5.1 An optimal solution for marking optimization

This section demonstrates that the transformation approach discussed in Section 4 can be further

used to handle the marking optimization of TWMGs [28, 29]. Then, an optimal solution based on

mixed integer quadratically constrained programming is developed.

The mathematical model of the marking optimization of a TWMG can be summarized as follows
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[29]:

min yT ·M
s.t.

χ(M) ≤ b,

(19)

where b is a predefined positive real number that denotes the upper bound of the cycle time, yγ

represents the minimal P-semiflow corresponding to circuit γ, and y =
∑

γ∈Γ yγ is a P-semiflow that

is equal to the sum of all minimal P-semiflows. It has been proven in [28] that problem (19) has a

solution iff b ≥ max{xi ·δi, ti ∈ T}, where xi is the component of minimal T-semiflow corresponding

to transition ti and δi is the fixed firing delay of transition ti.

As mentioned in Section 3, for a TWMG system ⟨N,M⟩ its cycle time χ(M) can be analytically

solved by converting it to an equivalent TMG. Nevertheless, according to Algorithm 1, to obtain

an equivalent TMG system ⟨N̂ ,M̂⟩, it is necessary to know the initial marking M . Based on

the equivalent parametric TMG system obtained by Proposition 1, we will show how to transform

problem (19) into a programming problem.

Proposition 2 Let (β∗,M∗,M̂∗, ˆPre∗, Ĉ∗,α∗) be the optimal solution of the following mixed in-

teger quadratically constrained programming problem:

min yT ·M
s.t.
Ĉ ·α− ˆPre · δ̂ · β + M̂ ≥ 0, (20a)

β ≥ 1/b, (20b)

G(M , N̂ ,M̂), (20c)

(20)

with variables β ∈ R≥0, ˆPre, Ĉ ∈ Zn̂×m̂, M ∈ Nn, M̂ ∈ Nn̂, and α ∈ Rm̂. Then, M∗ is an optimal

marking for problem (19).

Proof : The objective function guarantees that the cost of resources is minimized. Constraint (20c)

ensures that the parametric TMG system has the same cycle time with the TWMG N . With

constraints (20a) and (20b), the cycle time of the equivalent TMG system is not greater than a given

upper bound b. It follows that the cycle time of the TWMG system with marking M∗ is not greater

than a given upper bound b, namely, χ(M∗) ≤ b. �

Remark 1 Note that constraint set (20c) has a solution only if a suitable constant h in Eq. (17) ex-

ists. Since the equivalent parametric TMG system is an ordinary net, it is obvious that ˆPre, ˆPost ∈
{0, 1}n̂×m̂ holds. In [28], it has been proven that a marking Mf that contains adequate tokens is

feasible for problem (19), where Mf (p) = Pre(p, p•) · xp• , ∀p ∈ P . Thus, this marking is an upper

bound of M∗ (i.e., M∗ ≤ Mf ) and can be used to compute h in Eq. (17).

Remark 2 Although an optimal solution of problem (20) (β∗,M∗,M̂∗, ˆPre∗, Ĉ∗,α∗) provides an

optimal initial marking M∗, the quantity 1/β∗ may not be the actual cycle time of the TWMG

system. Among all the minimal cost markings that ensure β ≥ b, it is interesting to find one that

also maximizes the throughput. This can be done by solving Eq. (20) replacing the objective function

with “max β” and constraint (20b) with yT ·M = yT ·M∗.
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Computational Complexity. Although a mixed integer quadratically constrained program-

ming problem belongs to the NP-hard complexity class [36], in practice it can often be efficiently

solved by using programming tools such as CPLEX and LINGO. The computational burden of a

mixed integer quadratically constrained programming problem is characterized by the numbers of

constraints and variables. Problem (20) has (2 × m̂ × n̂ + 2 × n + m̂ + n̂ +
n∑

i=1

ϕi

gcdpi
) variables at

most and (
n∑

i=1

ϕi

gcdpi
× (6 × ni + 2) + n̂ + 1 + 4 × m̂) constraints in total, where ni represents the

number of equivalent places of place pi. It has been proven in [27] that the size of the equivalent

TMG is O(|x|1), where |x|1 denotes the 1-norm of the minimal T-semiflow x. More precisely, we

have n̂ ≤ 2|x|1 and m̂ = |x|1. Therefore, the number of variables and constraints of problem (20)

depends on the numbers of places n and transitions m and the minimal T-semiflow x of the TWMG.

It is worth mentioning that a mixed integer quadratically constrained programming is a non-

convex optimization problem and thus a local optimal solution, which is easy to find, cannot guar-

antee global optimality [36].

This subsection is concluded with some discussion on its application to the cycle time optimiza-

tion of TWMGs. Optimal approaches have been developed for TWMGs [30, 31]. However, theses

approaches rely on solving mixed integer linear programming for a finite family of equivalent TMGs

whose number could increase exponentially w.r.t. that of places. The transformation method pro-

posed in this paper could also be used to the cycle time optimization of TWMGs with a similar

technique as Proposition 2.

5.2 Illustrative examples

This section applies the proposed approach to the marking optimization of a flexible manufacturing

system (FMS) and the obtained results are compared with a previous approach in [29] that is based

on the heuristic strategy.

Consider the TWMG of an FMS [28] depicted in Fig. 6. It consists of three machines U1, U2

and U3 and can manufacture two products, namely R1 and R2. The production ratio for R1 and

R2 is 60% and 40%, respectively. The manufacturing processes are as follows: R1 : U1, U2, U3

(denoted by transitions t1, t2, and t3, respectively) and R2 : U2, U1 (denoted by transitions t4

and t5, respectively). Transitions t6, t7, t8, and t9 are used to represent the cyclic manufacturing

process.

We assume that y =
∑

γ∈Γ yγ = [3, 3, 3, 4, 4, 4, 6, 6, 4, 4, 6, 6, 4]T and b = 11. The TWMG N is

transformed into an equivalent parametric TMG system ⟨N̂ ,M̂⟩ according to Proposition 1. Then,

the marking optimization problem is formulated according to Proposition 2 and is solved by using

Lingo [37].

In Table I, the proposed approach is compared with the heuristic approach developed in [29]

that is implemented by the PN tool HYPENS [38]. All cases run on a computer running Windows

10 with CPU Intel Core i7 at 3.60GHz and 8GB RAM. Case 1 is the flexible manufacturing system

discussed above, Case 2 is an example taken from Fig. 6 in [29], Case 3 is a flexible manufacturing

system studied in [27], and Case 4 is a real assembly line studied in [39] that consists of 41 places

and 25 transitions. For each case, the tested approach, the upper bound on the cycle time, the

15



p3

p2p1

p10

p11

p5

p4

p7
p8

p9 p6

t7 t6

t8
t9

t1(1) t2(3) t3(2)

p13

p12

t4(1)

t5(2)

Figure 6: The TWMG model of a flexible manufacturing system.

objective function, and the CPU time are shown. Note that the first proposed approach is tested

by using LINGO without the global optimal solver option which means that the obtained solution

cannot guarantee the optimality, and the second proposed approach is tested by using LINGO with

the global optimal solver option. In Table I, “o.o.t” (out of time) means that the solution cannot

be found within 12 hours.

Table 1: Simulations results of the approach in [29] and the proposed approach.

Objective CPU

b function time

Case 1

Proposed approach (Loc. Opt.)

11

38 1.7s

Proposed approach (Glob. Opt.) 38 38.7s

Approach in [29] 38 45.9s

Case 2

Proposed approach (Loc. Opt.)

21

28 0.8s

Proposed approach (Glob. Opt.) 28 4.4s

Approach in [29] 28 10.5s

Case 3

Proposed approach (Loc. Opt.)

84

315 29.7s

Proposed approach (Glob. Opt.) 307 5048s

Approach in [29] 307 329s

Case 4

Proposed approach (Loc. Opt.)

336

40 172.8s

Proposed approach (Glob. Opt.) o.o.t o.o.t

Approach in [29] o.o.t o.o.t

The results in Table I show that the locally optimal solutions obtained by the proposed approach

(Loc. Opt.) and the heuristic approach in [29] for Cases 1 and 2 are also global optimal. The

16



solution obtained by the heuristic approach in [29] is better than the locally optimal solution for

Case 3, while only a locally optimal solution is found for Case 4. It should be noticed that the

computational cost for finding an optimal solution is very high with the increase of the net size.

Therefore, a locally optimal solution is also useful.

6 Conclusion

This work aims to present an approach to transform a TWMG whose initial marking is not given

into an equivalent parametric TMG system where the arcs have unitary weights. Using this transfor-

mation, a resource optimization problem for the original TWMG can be reduced to an optimization

problem for the equivalent parametric TMG, which can be solved more efficiently. Particularly,

this approach is used to handle the marking optimization problem of TWMGs and a mixed integer

quadratically constrained programming method is developed for the equivalent parametric TMG

system. To the best of our knowledge, the existing results for the marking optimization problem of

TWMGs are all based on heuristic strategies. Future work aims to extend the developed approach

to a general model where shared resources (i.e., conflicts) exist.
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