
Diagnosability Enforcement in Labeled Petri Nets Using

Supervisory Control

Yihui Hu, Ziyue Ma, Zhiwu Li∗, Alessandro Giua

July 7, 2021

Abstract

In this article, we deal with the active diagnosis problem in labeled Petri nets by developing a supervisor

for a plant such that the closed-loop system is diagnosable. Since control actions may introduce deadlocks

even if an original plant is deadlock-free, we first generalize the classical notion of diagnosability in labeled

Petri nets to the nets that may contain potential deadlocks. To avoid enumerating all reachable markings of a

plant, we develop a structure called quiescent basis reachability graph, and accordingly propose a structure

named Q-diagnoser to verify the diagnosability of a net. We prove that a plant is diagnosable if and only

if there does not exist any indeterminate cycle in its Q-diagnoser. Finally, for an undiagnosable plant, we

introduce a diagnosability enforcing supervisor to enforce the diagnosability by trimming a Q-diagnoser.

Moreover, our approach guarantees that the closed-loop system cannot reach a dead marking unless a fault

transition has fired.

Published as:

[Y. Hu, Z. Ma, Z. Li, A. Giua, “Diagnosability Enforcement in Labeled Petri Nets Using Supervisory

Control”, Automatica, 2021, 131, Article 109776.]

DOI: 10.1016/j.automatica.2021.109776

∗Corresponding Author

Yihui Hu is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China, and also with Department

of Electrical and Electronic Engineering, University of Cagliari, 09124 Cagliari, Italy (e-mail: huyihui@stu.xidian.edu.cn).

Ziyue Ma is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China (e-mail:

maziyue@xidian.edu.cn).

Zhiwu Li is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China, and also with Institute of

Systems Engineering, Macau University of Science and Technology, Taipa, Macau, China (e-mail: zhwli@xidian.edu.cn).

Alessandro Giua is with Department of Electrical and Electronic Engineering, University of Cagliari, 09124 Cagliari, Italy (e-mail:

giua@unica.it)

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61703321, 61873342, the

National Key R&D Program of China under Grant No. 2018YFB1700104, the National Natural Science Foundation of Shaanxi Province

under Grant Nos. 2019JQ-022, 2019JM-049, the Fundamental Research Funds for the Central Universities under Grant Nos. JB210413,

JB190407 and the Science and Technology Development Fund, MSAR, under Grant No. 0012/2019/A1.

1

1 Introduction

Fault diagnosis for discrete event systems (DESs) [11] has been extensively studied in recent years. The aim

of diagnosis [8, 14, 25, 39, 44] is to infer if some faults have occurred in a plant by observing the events it

generates. A plant is said to be diagnosable [41] if the occurrence of faults in it can be detected within a finite

number of steps. For the sake of safety and reliability, a plant should necessarily be diagnosable to ensure that

any fault can be detected and repaired in time. For a diagnosable plant, a diagnostic agent can be designed to

perform online diagnosis. On the other hand, when a plant is not diagnosable, some corrective action should

be taken: this is usually called diagnosability enforcement.

In the literature, there are many results on the verification of diagnosability in the framework of automata.

Sampath et al. [41] verify diagnosability using a structure called diagnoser, and show that a plant is diagnosable

if and only if there does not exist any indeterminate cycle in its diagnoser. Since the complexity of a diagnoser

is exponential with respect to the number of states in the corresponding plant, some researchers develop a

new structure called verifier [23, 31, 45, 48] to test diagnosability in polynomial time. On the other hand,

Petri nets are a mathematical tool in which structural analysis and abstraction techniques can be used to

reduce the computation complexity of analysis and control [8, 37, 38]. As a result, many researchers focus

on the diagnosability verification by using Petri nets [1, 6, 9, 24, 34, 33, 47]. Basile et al. [1] present

a necessary and sufficient condition for diagnosability by solving an integer linear programming problem

(ILPP). In [9], Cabasino et al. introduce modified basis reachability graph and basis reachability diagnoser

to verify diagnosability of a net without enumerating all reachable markings. Similarly, Jiroveanu et al. [24]

propose an automaton called ROF-automaton, which provides a compact representation of the state space.

Cabasino et al. [6] show that the diagnosability of an unbounded Petri net can be determined by analyzing

the coverability graph of the so-called verifier net. Recently, Ran et al. [36] also explore diagnosability

verification in decentralized Petri net models. A different model is considered by Ramı́rez-Treviño et al. in

[34, 33], where the diagnosability problem in interpreted Petri nets (IPNs) is studied. In their framework,

the considered plant net has an output function that associates an output vector to each marking. In [34], the

authors introduce a notion called input-output diagnosability and provide sufficient structural conditions to

verify it on the premise that any T-semiflow must contain all risky transitions. This work is further extended

in [33] where a concept called relative distance is used to present a new characterization providing sufficient

conditions for diagnosability, and polynomial algorithms are proposed to determine the diagnosability.

For a plant that is not diagnosable, there are mainly two types of approaches in the literature to enforce

diagnosability. The first type of approaches assumes that it may be possible to change the observation

structure of a plant. In the framework of automata, Cassez et al. [12] present a dynamic strategy for

sensor activation to guarantee diagnosability. Moreover, Wang et al. [43] propose a sensor activation

policy to enforce diagnosability with a minimal cost. For Petri nets, Basile et al. [2] develop an integer

linear programming to find a minimal set of sensors that makes a net system k-diagnosable. Cabasino et al.

[10] introduce a new labeling function making a system diagnosable using verifier net. To circumvent the

state explosion problem that the method in [10] may potentially encounter, Ran et al. [35] develop a new

structure called the unfolded verifier, and determine a new labeling function to enforce the diagnosability

with a minimal cost.

Nevertheless, enforcing diagnosability by modifying the observation structure usually requires to implement

additional sensors into a plant. This may not always be possible, since the new sensors may be too expensive

2

or technically unfeasible. Therefore, in such a case the second type of approaches, called active diagnosis,

is preferable [5, 13, 15, 20, 22, 40, 46]. In an active diagnosis scheme, a supervisor is designed to forbid

all undiagnosable evolutions of a plant, thus ensuring that the closed-loop system remains diagnosable.

In the literature, active diagnosis has been widely studied in automata where faults are defined on events

[5, 13, 22, 40, 42, 46] and states [15]. However, there are few works that deal with active diagnosis in Petri

nets as far as we know. Based on a notion called a regulation circuit controller, an approach is presented in

[19] to enforce diagnosability in interpreted Petri nets. Moreover, the nets considered in [19] are live, binary

and event-detectable. Differently from the framework in [19], this paper studies the active diagnosis problem

in labeled Petri nets (LPNs).

The active diagnosis problem in LPNs can be solved by computing the reachability graph of a plant and

using the graph to design a supervisor by means of the automaton-based algorithms, e.g., [40]. However,

such a method is rather inefficient since it requires a full enumeration of the reachability space of a net.

An alternative approach consists in adopting state abstraction techniques such as the basis reachability

graph (BRG) that has been successfully applied to fault diagnosis [8, 29, 36], prognosis [28], and marking

estimation [30]. Since the supervisor designed for active diagnosis may induce deadlocks in a plant and the

corresponding BRG does not explicitly characterize this phenomenon, the active diagnosis problem in LPNs

cannot be solved by simply applying the automaton-based method in [40] to the BRG of a plant net.

In this paper, we propose a new BRG-based structure that contains the information required to analyze the

presence of deadlocks in a plant. Differently from the method in [40] where all dead states are enumerated,

we do not explicitly enumerate all dead markings of the plant. Instead, for each basis marking, at most one

virtual basis marking is introduced to represent all dead markings. Moreover, the supervisor designed in

this work guarantees that the closed-loop system is deadlock-free when no fault occurs, while the supervisor

designed in [40] is not. The main contributions of this paper are summarized as follows.

• First, we generalize the notion of diagnosability to LPNs that are not necessarily deadlock-free. This is

necessary because control actions enforcing active diagnosis may induce deadlocks even if an original

net is deadlock-free. Moreover, we assume that a deadlock occurring in a plant can be indirectly

“observed” by a modeling primitive called quiescence in [40] (and time-out in [18]). In plain words, if

no firing of transitions is observed for a sufficient long time, then one can infer that a plant is blocked

(due to either a deadlock or a control-induced deadlock). This inference can be modeled by a particular

quiescent event in a logical framework.

• The conventional BRG developed in [8] does not contain sufficient information to characterize deadlocks

and quiescent behavior of a plant. Thus, we develop a new BRG-like structure called the quiescent

basis reachability graph (QBRG), in which the quiescent behavior is encoded. Analogously to a BRG,

a QBRG models the quiescent behavior of an LPN without explicitly listing all reachable markings. To

compute a QBRG, an integer linear programming technique is proposed to characterize the quiescent

behavior of a plant net. Then a structure called a Q-diagnoser is developed based on a QBRG to verify

the diagnosability of a plant.

• Finally, based on the notion of Q-diagnoser, we propose an algorithm to design a diagnosability

enforcing supervisor for a given plant. The supervisor is obtained by recursively removing all indeterminate

cycles in the Q-diagnoser, which circumvents the need of a complete marking enumeration. Moreover,

the supervisor designed by our approach guarantees that the closed-loop system is deadlock-free if no

3

fault occurs.

Some preliminary results related to this approach have been presented in a conference paper [21], in

which the observable transitions are assumed to be free-labeled. In this paper, the active diagnosis problem is

studied in the more general framework of labeled Petri nets. In [21], we did not address the deadlock issue.

In comparison, a supervisor designed in this paper does not incur faultless deadlocks: a deadlock may only

occur when one or more fault transitions have fired. Such a property is also useful in practice: once the plant

reaches a deadlock after the occurrence of faults, the operator may examine the plant and initiate a recovery

process if needed. Furthermore, proofs of the mains results that were just sketched in [21] are fully developed

in this paper.

The remainder of this paper is organized as follows. In Section 2, we recall the basics of labeled Petri

nets and notions of diagnosability. In Section 3, the active diagnosis problem is formulated, and the notion

of diagnosability is generalized to LPNs that are not necessarily deadlock-free. In Section 4, the notion of

QBRG is introduced and a structure called a Q-diagnoser is developed to verify the diagnosability of an LPN.

In Section 5, an algorithm is developed to compute a supervisor for active diagnosis. Finally, conclusions are

drawn in Section 6.

2 Preliminary

2.1 Petri net

A Petri net is a four-tuple PN = (P, T, Pre, Post), where P is a set of m places represented by circles and

T is a set of n transitions represented by bars; Pre : P × T → N and Post : P × T → N are the pre-

and post- incidence matrices which specify the arcs from places to transitions and from transitions to places,

respectively. Here, N is the set of non-negative integers. C = Post− Pre ∈ Nm×n is the incidence matrix

of the net. For a transition t ∈ T , the preset of t is defined as •t = {p ∈ P | Pre(p, t) > 0}, while the

postset of t is defined as t• = {p ∈ P | Post(p, t) > 0}.
A marking of a Petri net is a function M : P → N, which assigns to each place a non-negative integer

number of tokens, represented by black dots. A Petri net with an initial marking M0 is called a marked net

and is denoted by 〈PN,M0〉.
A transition t is enabled at a markingM ifM ≥ Pre(·, t) holds, which is denoted byM [t〉. At a marking

M , an enabled transition tmay fire reaching a new markingM ′ = M+C(·, t), which is denoted byM [t〉M ′.
We use t ∈ σ to denote that transition t appears at least once in a sequence σ ∈ T ∗. We write M [σ〉M ′ with

σ = t1 · · · tk to denote that at marking M transitions t1, · · · , tk can fire sequentially, which eventually yields

marking M ′. We say that marking M ′ is reachable from marking M if there exists a firing sequence σ ∈ T ∗

such that M [σ〉M ′. We use L(PN,M0) to represent the set of all sequences that are enabled at the initial

marking M0, i.e., L(PN,M0) = {σ ∈ T ∗ |M0[σ〉}.
The set of all markings that are reachable from M0 is the reachability set, denoted by R(PN,M0). A

marked net 〈PN,M0〉 is bounded if there exists a number k ∈ N such that for all M ∈ R(PN,M0), and all

p ∈ P,M(p) ≤ k holds.

A markingM is said to be dead if no transition is enabled atM . A sequence σ ∈ L(PN,M0) is terminal

if the firing of σ reaches a dead marking M . A marked net 〈PN,M0〉 is said to be deadlock-free if for all

4

M ∈ R(PN,M0), M is not dead. The following result immediately follows from the definition of dead

marking.

Fact 1 Given a Petri net PN = (P, T, Pre, Post), a marking M ∈ R(PN,M0) is dead if and only if the

following constraint set, denoted by ρ(M), is feasible:

ρ(M) :
∧
t∈T

(
∨
p∈•t

M(p) ≤ Pre(p, t)− 1) (1)

Fact 1 shows that the set of dead markings can be described by a set of linear equalities that characterize

the enabling conditions of transitions. The logical OR condition in the constraint set ρ(M) in Eq. (1) can be

converted to its equivalent conjunctive normal form by the method in [7].

For a sequence σ ∈ T ∗, we use σ↑T ′ with T ′ ⊆ T to denote the projection of sequence σ onto the

transition set T ′, and we write yσ to denote the firing vector of σ, i.e., yσ(t) = k if transition t appears k

times in σ.

A Petri net is acyclic if it does not contain any cycle. For an acyclic net, the following result holds.

Proposition 1 [32] Given an acyclic Petri net, a marking M is reachable from M0 if and only if there exists

a vector y ∈ Nn satisfying the state equation M = M0 + C · y. �

2.2 Labeled Petri net

A labeled Petri net (LPN) is a structure G = (PN,M0, E, `), where PN is a Petri net, M0 is the initial

marking, E is the set of observable events and ` : T → E ∪ {ε} is the labeling function that assigns to each

transition t ∈ T either a symbol from the given event set E or the empty string ε. The set of transitions T is

partitioned into two disjoint sets as follows: T = To∪Tuo, where To = {t ∈ T | `(t) ∈ E} is the observable

transition set and Tuo = {t ∈ T | `(t) = ε} is the unobservable transition set. The labeling function is also

naturally extended to firing sequences ` : T ∗ → E∗.

In an LPN, the observation of a sequence σ ∈ T ∗ is denoted as w = `(σ) ∈ E∗. The language of an

LPN G is defined as L(G) = {w ∈ E∗ | ∃σ ∈ L(PN,M0) : `(σ) = w}. Given an observation w ∈ E∗, we

define `−1(w) = {σ ∈ L(PN,M0) | `(σ) = w} as the set of firing sequences consistent with w.

2.3 Basis reachability graph

The study in [8, 27] develops a semi-structural approach to represent the reachability set of a bounded Petri

net.

Definition 1 [27] Given a Petri netPN = (P, T, Pre, Post), a pair π = (TE , TI) is called a basis partition1

of T if (1) TI ⊆ T , TE = T \ TI ; and (2) the TI -induced subnet is acyclic. The sets TE and TI are called

the set of explicit transitions and the set of implicit transitions, respectively. �

Definition 2 [27] Given a Petri net PN = (P, T, Pre, Post), a basis partition π = (TE , TI), a marking

M , and a transition t ∈ TE , we define:

1In general, there may exist multiple valid basis partitions for a given plant net. The selection of explicit and implicit transitions is

not necessarily associated with physical meanings. However, for certain problems some particular basis partitions are useful.

5

• Σ(M, t) = {σ ∈ T ∗I |M [σ〉M ′,M ′ ≥ Pre(·, t)} as the set of explanations of transition t at marking

M ;

• Y (M, t) = {yσ ∈ N|T | | σ ∈ Σ(M, t)} as the set of explanation vectors of transition t at marking M ;

• Ymin(M, t) denotes the set of all minimal elements of Y (M, t), i.e., the minimal explanation vectors.

�

The set of basis markingsM is recursively defined as follows:

• M0 ∈M;

• If M ∈M, then for all t ∈ TE , for all y ∈ Ymin(M, t),

(M ′ = M + CI · y + C(·, t))⇒ (M ′ ∈M).

Given a partition π = (TE , TI), the corresponding basis reachability graph (BRG) is a deterministic finite

state automaton (DFA) defined in [27]. In short, a BRG B is a quadruple (M, T r,∆,M0), where:

• the state setM is the set of basis markings;

• the event set Tr is the set of pairs (t,y) ∈ TE × N|TI |;

• the transition function ∆ is:

∆ = {(M1, (t,y),M2) | t ∈ TE ,y ∈ Ymin(M1, t),

M2 = M1 + CI · y + C(·, t)}

• the initial state is the initial marking M0.

Definition 3 [27] Given a net PN = (P, T, Pre, Post), a basis partition π = (TE , TI), and a basis

marking Mb, the implicit reach of Mb is defined as RI(Mb) = {M ∈ Nm | (∃σ ∈ T ∗I)Mb[σ〉M}. �

Theorem 1 [27] Given a Petri net PN = (P, T, Pre, Post), a basis partition π = (TE , TI), and a marking

M ′, the following condition holds:

(∃σ ∈ T ∗)σ↑TE
= σE ∧M0[σ〉M ′

⇔ (∃Mb ∈M)(M0, σE ,Mb) ∈ ∆∗ ∧M ′ ∈ RI(Mb)

where (M0, σE ,Mb) ∈ ∆∗ denotes that, in the BRG, there exists a path fromM0 toMb labeled by (t1,y1), · · · , (t2,y2)

such that t1 · · · tk = σE . �

3 Active diagnosis problem formulation in labeled Petri nets

Given an LPN G = (PN,M0, E, `), its unobservable transition set Tuo is partitioned into the set of regular

unobservable transitions Treg and the set of fault transitions Tf . The latter can be further partitioned into

different fault classes T if (i = 1, 2, ..., r) that model different types of faults affecting the plant, i.e., Tf =
r⋃
i=1

T if . For the sake of simplicity, in this work we consider an LPN with a single fault class, i.e., Tf = T 1
f .

However, our approach can be extended to the active diagnosis of nets with multiple fault classes with a slight

modification of the methodology proposed in [41] for this purpose.

6

Supervisor

Labeled Petri
Net G

Labeling
Function

Diagnostic
Agent

N,F,U
= ()w σ

 ξ(z)

z(w)

Figure 1: The active diagnosis scheme.

In [9], the notion of diagnosability for deadlock-free nets is presented. In simple words, given a deadlock-free

LPN G = (PN,M0, E, `), let σ ∈ L(PN,M0) be a sequence that ends with a fault transition and let σ′ be a

sufficiently long continuation of σ. PlantG is diagnosable if any firing sequence having the same observation

as σσ′ contains at least one fault transition. According to its definition, diagnosability is a behavioral property,

i.e., it depends on the language generated by a plant. Assume that we are given an undiagnosable plant

represented by a labeled Petri net. We consider here a problem of active diagnosis: it consists in modifying

the plants behavior by supervisory control, thus ensuring that the closed-loop system is diagnosable.

The set-up of supervisory control in LPNs is proposed in [16]. Given an LPN G = (PN,M0, E, `),

the set of events E is partitioned into the set of controllable events Ec and the set of uncontrollable events

Euc, i.e., E = Ec ∪ Euc. In this paper, we aim to design a control policy based on the current diagnostic

state. The scheme of active diagnosis is depicted in Figure 1. Specifically, when a plant net generates

a sequence σ, through the labeling function, a diagnostic agent observes w = `(σ) and computes the

corresponding diagnostic state z(w) that contains information of both the current set of markings and possible

fault occurrences.

Definition 4 A diagnostic state is a set of pairs z(w) = {(M1, γ1), (M2, γ1), . . . , (Mn, γn)}, where each

pair (Mi, γi) denotes that the plant may be currently at marking Mi having previously fired a fault transition

(γi = F) or not (γi = N). A diagnostic state z(w) can be classified into three cases:

• Normal (no fault transition has fired so far): if for all (Mi, γi) ∈ z(w), γi = N ;

• Faulty (a fault transition has fired): if for all (Mi, γi) ∈ z(w), γi = F ;

• Uncertain (a fault transition may have fired): if there exist (Mi, γi), (Mj , γj) ∈ z(w), such that γi =

N , γj = F . �

When receiving a current diagnostic state z(w), a supervisor makes a control decision that specifies

a subset of controllable events ξ(z) ⊆ Ec to execute, while all other controllable events in Ec\ξ(z) are

disabled. Note that: (i) a supervisor cannot disable any transitions with uncontrollable labels, and (ii) if a

supervisor disables an event e ∈ Ec, all transitions labeled e are disabled. Here, we use (G, ξ) to denote the

closed-loop system. The problem investigated in this paper is formulated as follows.

Problem 1 (Active diagnosis) Given an undiagnosable plant modeled by an LPN G, we want to determine

a control policy ξ for G such that the closed-loop system (G, ξ) is diagnosable. �

Since in this paper we will apply the BRG approach to represent the reachability space of a net, the LPN

G considered satisfies the following assumptions:

7

A1) G is bounded;

A2) The Tuo-induced subnet is acyclic.

Assumption A1 guarantees that the BRG of a plant net is always finite. Assumption A2 allows to use the

state equation to characterize the implicit reach of a basis marking.

Remark 1 Note that in the literature, an ILPP technique [1, 3, 4] is used to characterize the reachability

set of a bounded net system, which does not rely on Assumption A2. However, in this paper the proposed

supervisor is computed based on the BRG approach. Assumption A2 ensures that a BRG contains a correct

abstract representation of a net reachability set. �

3.1 Diagnosability of LPNs with deadlocks

In the literature, it is commonly assumed that a plant net to be diagnosed is deadlock-free [6, 9, 24, 36].

However, the action of a supervisor for active diagnosis may create deadlocks in the closed-loop system.

This happens when the closed-loop system reaches a marking while receiving a control decision that disables

all plant-enabled transitions: this situation is called a control-induced deadlock. Therefore, to perform active

diagnosis, the notion of diagnosability in LPNs needs to be generalized. In the sequel we use ψ(Tf) to

denote the set of all sequences in L(PN,M0) that ends with a fault transition in Tf , i.e., ψ(Tf) = {σtf ∈
L(PN,M0) : tf ∈ Tf}.

Definition 5 An LPN G = (PN,M0, E, `) is diagnosable with respect to a set of fault transitions Tf if for

all σ′ ∈ ψ(Tf), there exists a non-negative integer k ∈ N such that for all σ′σ′′ ∈ L(PN,M0), the following

two conditions hold:

• if |σ′′| ≤ k and sequence σ′σ′′ is terminal, then:

σ ∈ `−1(`(σ′σ′′)) ∧ (@t ∈ T)σt ∈ L(PN,M0)

⇒ (∃tf ∈ Tf)tf ∈ σ;

• if |σ′′| ≥ k, then:

(∀σ ∈ `−1(`(σ′σ′′)))(∃tf ∈ Tf)tf ∈ σ. �

The second condition in Definition 5 is the classical notion of diagnosability for deadlock-free LPNs. On

the other hand, the first condition means that if a plant reaches a dead marking after a fault transition has

fired, then all consistent sequences that have the same observation and yield dead markings contain a fault.

By generalizing the definition of diagnosability, we do not require the assumption that the original net is

deadlock-free, i.e., our approach can be applied to LPNs containing deadlocks.

3.2 Quiescent behavior and quiescent event

When a plant reaches a marking M that is either a dead marking or a control-induced deadlock, the system

halts and no observation is produced in the future. Since in many practical cases the time needed to fire a

transition has an upper bound that can be assumed to be known, if the plant does not produce any observation

for a sufficiently long time, one can infer that the plant must be deadlocked at some marking2. To this end,
2Note that a divergent plant [17] may similarly renounce to engage in any further communication with the environment even if not

deadlocked. However, the models that we consider satisfy Assumptions A1 and A2, and thus they are necessarily divergence-free.

8

p1 p2t1(a) t2p0

p3

p5

t4

t3(b)

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

t1 t2

t6
t3

t4

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

M5=p4 q

q

t5

t5

(a)

p1 p2t1(a) t2p0

p3

p5

t4

t3(b)

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

t1 t2

t6
t3

t4

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

M5=p4

q

t5

t5

q

(b)

Figure 2: (a) The LPN used in Example 1, and (b) its reachability graph after adding the quiescent event q.

deadlocks can be indirectly “observed”. Such a time-out behavior is called the quiescent behavior, which can

be encoded into the model by the following mechanism:

• Once the plant is deadlocked, it will repetitively generate a particular event q called the quiescent event.

Event q is observable and uncontrollable;

• Event q is generated only when the plant is deadlocked, i.e., the plant does not generate event q if any

transition is enabled.

Note that event q is not an event associated to a sensor signal: it is a logical event that represents the condition

that a plant does not produce any observation for a sufficient long time. We use the following example to

illustrate this.

Example 1 Consider the LPN in Figure 2(a) in which the set of observable transitions is To = {t1, t3}. By

firing sequence σ1 = t1t2t4, the plant reaches a dead marking M4 at which the plant generates the quiescent

event q. Besides, the plant may also reach dead markingsM2,M5 and then generate event q. This mechanism

can be illustrated by adding a self-loop labeled by q at dead markings in the reachability graph shown in

Figure 2(b). �

4 Basis reachability graph with quiescence and Q-diagnosers

4.1 Diagnosability of deadlock-free LPNs and basis diagnosers

Given a bounded LPN, one can construct its reachability graph (RG) and use the automata approaches

presented in [40] for active diagnosis. Nevertheless, the construction of the RG needs to explicitly enumerate

9

all reachable markings of a net. In this paper, we use the notion of basis reachability graph that is a compact

representation of the reachability space of a net.

In [9], the authors use a basis reachability graph (BRG) with respect to a particular partition to study the

diagnosability verification problem in LPNs. Such a BRG is called a diagnostic BRG.

Definition 6 A diagnostic BRG is a basis reachability graph with respect to a partition where TE = To ∪Tf
and TI = T \ TE . �

In a diagnostic BRG, each state is a basis marking and each arc is labeled with a pair (t,y), where

t ∈ To ∪ Tf and y is a minimal explanation vector to enable t. Based on the diagnostic BRG, an automaton

called a basis reachability diagnoser (BRD) [9] is computed and used to verify the diagnosability of the net.

To compute a BRD, a series of ILPPs need to be solved to flag the occurrence of faults. In this paper, we will

also use the diagnostic BRG structure and will develop a simplified BRD structure to verify the diagnosability

of an LPN. In our case, no ILPP has to be solved and the simplified diagnoser structure will be later used to

design a supervisor.

Definition 7 Given an LPNG = (PN,M0, E, `) and its diagnostic BRGB = (M, T r,∆,M0), the underlying

automaton of B is a nondeterministic finite state automaton Gl = (M, E ∪ {εf},∆l,M0), where:

• M is the set of states;

• E ∪ {εf} is the event set, where εf denotes a fault event that is unobservable.

• ∆l ⊆ M× (E ∪ {εf})×M is the transition relation defined as follows: for any M1,M2 ∈ M and

(t,y) ∈ Tr,

(M1, (t,y),M2) ∈ ∆ ∧ `(t) ∈ E ⇒ (M1, `(t),M2) ∈ ∆l,

(M1, (t,y),M2) ∈ ∆ ∧ t ∈ Tf ⇒ (M1, εf ,M2) ∈ ∆l;

• M0 is the initial state. �

In other words, the underlying automaton of a diagnostic BRG B, denoted by Gl, can be obtained by

changing the label of each arc in B from (t,y) to `(t) (if t ∈ To) or εf (if t ∈ Tf). Now we show that the

diagnosability of a deadlock-free LPN implies the diagnosability of the corresponding automaton Gl, and

vice versa.

Theorem 2 Given a deadlock-free LPN G = (PN,M0, E, `), let Gl = (M, E ∪ {εf}, δl,M0) be the

underlying automaton of its diagnostic BRG B. The net G is diagnosable if and only if Gl is diagnosable

with respect to fault εf .

Proof. (If) Assume that Gl is diagnosable with respect to fault εf . For any sequence σ1εf ∈ L(Gl),

there exists k ∈ N such that by observing subsequent k events, the occurrence of the fault can be detected.

According to Theorem 1, in net G for any sequence σ′1 ∈ ψ(Tf), and all sequences σ′1σ
′
2 ∈ L(PN,M0)

such that |`(σ′2)| ≥ k, all sequences in `−1(`(σ′1σ
′
2)) contain a fault in Tf . Since the unobservable subnet is

acyclic, the length of σ′2 is bounded, which indicates that G is diagnosable.

(Only If) If net G is not diagnosable, there exists two arbitrary long sequence σ1, σ2 ∈ L(PN,M0), such

that `(σ1) = `(σ2) and σ1 contains a fault while σ2 does not. By Theorem 1 and the definition of Gl, it is

obvious that there exist two arbitrary long sequence σ′1, σ
′
2 ∈ L(Gl) such that Po(σ′1) = Po(σ

′
2) and one

contains fault εf while the other does not. Therefore, Gl is not diagnosable.

10

Table 1: The basis markings of the BRG in Figure 3(b).

M0 [1 0 0 0 0 0 0 0 0 1 0]T

M1 [0 0 1 0 0 0 0 0 0 1 0]T

M2 [0 0 0 2 0 0 0 0 0 1 0]T

M3 [0 0 0 1 0 0 0 1 0 1 0]T

M4 [0 0 0 1 0 0 0 0 0 0 1]T

M5 [0 0 0 0 0 0 0 2 0 1 0]T

M6 [0 0 0 0 0 0 0 1 0 0 1]T

M7 [0 0 0 0 1 0 0 0 0 1 0]T

M8 [0 0 0 0 0 1 0 0 0 1 0]T

M9 [0 0 0 0 0 0 1 0 0 1 0]T

In [41], a structure called diagnoser are used to verify the diagnosability of an automaton. The diagnoser

of an automaton can be constructed by a standard procedure [11, 41]: we do not present it here for the sake

of brevity but illustrate it via Example 2. An important notion related to diagnosability is the indeterminate

cycle [41]. An indeterminate cycle in a diagnoser is a cycle composed exclusively of uncertain diagnostic

states for which there exist: (i) a corresponding cycle in the plant automaton involving only states tagged “N”

in the cycle of diagnoser; and (ii) a corresponding cycle in the plant automaton involving only states tagged

“F ” in the cycle of diagnoser. Sampath et. al [41] show that a plant automaton is diagnosable if and only if

its diagnoser does not contain any indeterminate cycle. Therefore, by Theorem 2, we immediately have the

following corollary.

Corollary 1 Given an LPNG that is deadlock-free, letGl be the underlying automaton of its diagnostic BRG

B. The net G is diagnosable if and only if the diagnoser of Gl does not contain any indeterminate cycle. �

Example 2 Consider the LPN in Figure 3(a), where To = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, Tuo = {t11,

t12, t13, t14, t15}, and Tf = {t14, t15}. The labeling function is defined as follows: `(t1) = a, `(t2) =

`(t3) = `(t8) = b, `(t4) = `(t5) = `(t10) = c, and `(t6) = `(t7) = `(t9) = d. The diagnostic BRG of this

net is shown in Figure 3(b), where y1 = [1, 0, 0]T , y2 = [0, 1, 0]T , and y3 = [0, 0, 1]T . The basis markings

are listed in Table 1. According to Definition 7, the underlying automaton Gl can be easily computed based

on the diagnostic BRG. The diagnoser of Gl is shown in Figure 3(c). There exist two indeterminate cycles in

the diagnoser, i.e., z3
c−→ z3 and z6

d−→ z6. According to Corollary 1, the plant net is not diagnosable. �

4.2 Quiescent basis reachability graph and Q-diagnoser

As mentioned in the previous section, a diagnostic BRG can be used to characterize the behavior of a

deadlock-free LPN and to verify its diagnosability without explicitly computing the reachability graph. Since

a diagnostic BRG is an abstract model of the plant LPN and does not preserve the information needed to

characterize deadlocks, the automaton-based approach [40] for active diagnosis cannot be directly applied to

a diagnostic BRG. In fact, a basis marking that has an outgoing arc in a diagnostic BRG does not necessarily

imply that all markings reachable from it by firing regular unobservable transitions are not dead. Therefore,

11

p0

p1

p2 p3

p4

p5

p6

p7
p8

p9

p10t1(a)

t2(b)
t5(c)

t3(b)

t6(d)

t7(d)

t10(c)

t4(c)

t8(b)

t9(d)

t11
t14

t15

t12

t13

2

2

(a)

M0 M1 M2

M7 M8

M9

M3

M4

M5

M6

(t1,y1)

(t2,0)
(t5,0)

(t6,y2)

(t15,0)

(t6,0)

(t7,0)

(t8,0)

(t3,0)

(t4,0)

(t9,0)
(t9,0)

(t9,0)

(t10,y3)

(t14,0)

(t10,y3)

(t14,0)

(t10,y3)

(b)

M0,N M1,N M2,N
M4,F

a

b

b

c

M7,N
M9,F

c

M8,N
M9,F

d d

M9,F

b

b

M3,N
M6,F

M5,N

d

c

c

d

M9,F b

b

z0 z1 z2 z3

z4z5 z6

z7 z8

(c)

Figure 3: (a) The LPN for Example 2, (b) its diagnostic BRG, and (c) the diagnoser of Gl.

12

for the purpose of active diagnosis in LPNs with deadlocks, the structure of conventional diagnostic BRGs

needs to be augmented to encode the information of deadlocks.

Fact 1 in Section 2 provides us a way to verify if the regular unobservable reach of a (basis) marking

contains dead markings, which is stated by the following proposition. Here we denote Rreg(M) = {M ′ |
M [σreg〉M ′, σreg ∈ T ∗reg}.

Proposition 2 Given an LPN G = (PN,M0, E, `) and a marking M , there exists at least one dead marking

in Rreg(M) if and only if the following linear integer constraint D(M) is feasible:

D(M) =



Md = M + Cuo · y ≥ 0,

y ∈ N|Tuo|,∑
tf∈Tf

y(tf) = 0

ρ(Md).

(2)

Proof. (Only If) Suppose that there exists a dead marking Md ∈ Rreg(M), i.e., there exists a firing vector

y ∈ N|Tuo| such that M +Cuo ·y = Md ≥ 0 and y(tf) = 0 for all tf ∈ Tf . By Fact 1, marking Md satisfies

ρ(Md). Therefore, ILPP (2) is feasible.

(If) Suppose that ILPP (2) is feasible. By Assumption 2, the Tuo-induced subnet is acyclic. If there exists

a firing vector y ∈ N|Tuo| such that M + Cuo · y = Md ≥ 0 and y(tf) = 0 for all tf ∈ Tf , then there

necessarily exists a firing sequence σ ∈ T ∗reg such that M [σ〉Md whose firing vector is y. Since Md satisfies

ρ(Md), by Fact 1, Md is a dead marking.

Note that the dead markings in Rreg(Mi) may not be unique. However, we will shortly see that for the

purpose of active diagnosis, it is sufficient to use a single virtual markingMi,d to denote the existence of some

dead markings in Rreg(Mi) without explicitly enumerating them. In the following, we introduce a structure

called a quiescent-BRG (QBRG) that is an augmented basis reachability graph in which the information of

the quiescent behavior of a plant net is encoded.

Definition 8 Given an LPN G = (PN,M0, E, `), let Gl = (M, E ∪ {εf},∆l,M0) be the underlying

automaton of its diagnostic BRG. The quiescent-BRG (QBRG) ofG is a nondeterministic finite state automaton

Gq = (Mq, Eq,∆q,M0), where:

• the state setMq =M∪ {Mi,d |Mi ∈M, D(Mi) is feasible};

• Eq = E ∪ {εf , q} is the event set;

• the transition relation ∆q is defined as follows:

∆q = ∆l ∪ {(Mi, q,Mi,d) |Mi ∈M, D(Mi) is feasible}

∪ {(Mi,d, q,Mi,d) |Mi,d ∈Mq \M}

• M0 is the initial state. �

Given an LPN, Algorithm 1 can be used to compute its QBRG. The difference between the QBRG and

the diagnostic BRG of an LPN can be explained as follows. For each basis marking Mi in a diagnostic

BRG, if constraint D(Mi) is feasible, then virtual basis marking Mi,d is added with arcs Mi
q−→ Mi,d and

Mi,d
q−→ Mi,d. Again, we note that Mi,d is not a real marking of a Petri net: it is just a modeling primitive

13

to denote the existence of some dead markings in Rreg(Mi). However, for simplicity, we also call Mi,d a

“basis marking” by omitting the term “virtual”, since there will be no confusion. If an LPN is deadlock-free,

then its QBRG is identical to the underlying automaton of its diagnostic BRG.

Algorithm 1: Computation of QBRG Gq .

Input: An LPN G = (PN,M0, E, `)

Output: Gq = (Mq, E ∪ {εf , q},∆q,M0)

1 compute the diagnostic BRG B of the LPN G;

2 compute the underlying automaton Gl = (M, E ∪ {εf},∆l,M0) of B;

3 letMq =M, ∆q = ∆l;

4 for each basis marking Mi ∈M do
5 if D(Mi) is feasible then
6 letMq =Mq ∪ {Mi,d};
7 let ∆q = ∆q ∪ {(Mi, q,Mi,d)} ∪ {(Mi,d, q,Mi,d)};

8 output Gq = (Mq, E ∪ {εf , q},∆q,M0);

In the following, we introduce a new projection function P ′ : T ∗ → (E ∪ {εf})∗, defined as follows:

P ′(t) = e if t ∈ To, `(t) = e;

P ′(t) = ε if t ∈ Treg;

P ′(t) = εf if t ∈ Tf ;

P ′(σt) = P ′(σ)P ′(t) if σ ∈ T ∗, t ∈ T.

Theorem 3 Consider an LPN G = (PN,M0, E, `) and its QBRG Gq = (Mq, Eq,∆q,M0). There exists a

sequence σ ∈ L(PN,M0) satisfying P ′(σ) = w and M0[σ〉M where M is a dead marking if and only if in

the QBRG Gq there exists a path: M0
w−→Mi

q−→Mi,d such that M ∈ Rreg(Mi).

Proof. (Only If) Assume that there exists a sequence σ ∈ L(PN,M0) reaching to a dead marking M . Let

Gl be the underlying automaton of the diagnostic BRG. By Theorem 1, in Gl there exists a path labeled by

w = P ′(σ) leading to a basis marking Mi and M ∈ Rreg(Mi). By the definition of Gq , there exists a path

M0
w−→Mi

q−→Mi,d in Gq such that M ∈ Rreg(Mi).

(If) Assume that there exits a path M0
w−→ Mi

q−→ Mi,d in Gq . We can infer that in Gl there exists a

path M0
w−→ Mi and D(Mi) is feasible, which implies that there exists a dead marking M ∈ Rreg(Mi). By

Theorem 1, there exists a sequence σ ∈ L(PN,M0) such that M0[σ〉M and P ′(σ) = w.

Example 3 Consider the LPN in Figure 2(a), where To = {t1, t3} and Tf = {t6}. The underlying

automaton Gl of its diagnostic BRG is shown in Figure 4(a). By applying Algorithm 1, its QBRG is depicted

in Figure 4(b). �

Given a QBRGGq , letGdiag = (Z,E∪{q}, δd, z0) be the diagnoser ofGq . Gdiag is called a Q-diagnoser

that can be computed by the standard diagnoser construction [41, 11]. The following theorem provides us a

way to verify the diagnosability of an LPN that contains deadlocks by using its Q-diagnoser Gdiag .

14

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

(a)

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

(b)

Figure 4: (a) The structure Gl for Example 3, and (b) the corresponding QBRG Gq .

Theorem 4 Given an LPN G = (PN,M0, E, `) and its Q-diagnoser Gdiag = (Z,E ∪ {q}, δd, z0), G is

diagnosable if and only if Gdiag does not contain any indeterminate cycle.

Proof. By Corollary 1, there does not exist an undiagnosable non-terminal sequence if and only if in the

Q-diagnoser Gdiag there does not exist an indeterminate cycle labeled by w ∈ E∗. Now we prove that there

does not exist an undiagnosable terminal sequence if and only if in the Q-diagnoserGdiag there does not exist

an indeterminate cycle labeled by event q.

(Only If) Let σ be a faulty sequence in L(PN,M0) that leads to a dead marking M . If σ does not

meet the first condition in Definition 5, then there exists another non-faulty sequence σ′ that yields a dead

marking M ′ such that `(σ) = `(σ′) = w. This indicates that by observing wq the corresponding diagnostic

state z = δ∗d(z0, wq) necessarily contains two pairs (M ′d, N) and (Md, F). Since by the construction of the

Q-diagnoser, δd(z, q) = z holds, there exists an indeterminate cycle at diagnostic state z labeled by q, i.e.,

z
q−→ z.

(If) Suppose that the Q-diagnoser contains an indeterminate cycle z
q−→ z such that z contains two pairs

(Md, F) and (M ′d, N). It means that there necessarily exist two dead markingsM andM ′ that can be reached

form the initial marking M0 by firing a faulty sequence σ and a non-faulty sequence σ′, respectively. Since

sequences σ and σ′ have the same observation, the first condition in Definition 5 is not satisfied. Therefore,

the statement holds.

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

M1,N q
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

Figure 5: The Q-diagnoser Gdiag of the plant in Figure 2(a).

Example 4 Consider the net in Figure 2(a), where To = {t1, t3} and Tf = {t6}. Its QBRG Gq is visualized

in Figure 4(b). Thanks to Gq , its Q-diagnoser Gdiag is shown in Figure 5. Since in Gdiag there exists an

indeterminate cycle z2
q−→ z2, by Theorem 4, the plant is not diagnosable. In fact, the plant can fire normal

sequence σ1 = t1t2t4 and faulty sequence σ2 = t1t2t6 that are both dead and have the same observation,

which violates the first condition in Definition 5. �

15

5 Diagnosability enforcing supervisor

In this section, we develop a method to design a supervisor for the active diagnosis of a plant LPN. By

Theorem 4, a plant LPN is undiagnosable if and only if its Q-diagnoser contains indeterminate cycles.

Therefore, to enforce diagnosability, a supervisor must forbid all behaviors of the plant that may evolve

along those indeterminate cycles in the Q-diagnoser. Given a Q-diagnoser, indeterminate cycles are classified

into two types by the controllability of events in them:

• for an indeterminate cycle that contains controllable events, at least one of these controllable events

has to be disabled to prevent the plant circulating in this cycle for infinite times;

• for an indeterminate cycle that does not contain any controllable event, all diagnostic states in it (and

all diagnostic states that may uncontrollably reach it) must be forbidden.

As mentioned in Section 3, the supervisor makes control decisions from the knowledge of the consistent

diagnostic state obtained by the Q-diagnoser. More precisely, for an observation w ∈ (E ∪ {q})∗ whose

consistent diagnostic state is zi, the control decision at state zi is ξ(zi) = Ec \ Ed,i where Ed,i is the set of

disabled events at diagnostic state zi. Given a setEd,i, we use Td,i to denote the corresponding set of disabled

transitions, i.e., Td,i = {t ∈ T | `(t) ∈ Ed,i}.
In automata, the two control specifications mentioned above can be easily enforced by inspecting the

plant automaton [40]. However, a Q-diagnoser is an abstract model of the plant LPN, in which the firing

of implicit transitions is omitted. Hence, a control decision at a diagnostic state z may result in deadlocks

that are not explicitly represented in the Q-diagnoser. Therefore, the method to trim a diagnoser in automata

in [40] cannot be applied to trim a Q-diagnoser. To detect if there exists a control-induced deadlock at a

diagnostic state z, we rewrite Eqs. (1) and (2) as the following Eqs. (3) and (4), respectively.

ρ′(M) :
∧

t∈T\Td,i

(
∨
p∈•t

M(p) ≤ Pre(p, t)− 1) (3)

D′(M) =



Md = M + Cuo · y ≥ 0,

y ∈ N|Tuo|,∑
tf∈Tf

y(tf) = 0,

ρ′(Md).

(4)

Comparing with Eq. (1), in Eq. (3) the token-disabling constraints for control-disabled transitions (i.e.,

transition in Td,i) are removed. On the other hand, Eq. (4) is analogous to Eq. (2) while the constraint

ρ from Eq. (1) is replaced by ρ′ from Eq. (3). Hence, if Eq. (4) is feasible for a marking M , by firing

regular unobservable transitions, some marking Md is reached from M such that all transitions are either

control-disabled or lack of tokens to fire, and vice versa.

Proposition 3 Given an LPN G = (PN,M0, E, `) with E = Ec ∪ Euc and its Q-diagnoser Gdiag =

(Z,E ∪ {q}, δd, z0), suppose that the control decision at diagnostic state zi is ξ(zi) = Ec \Ed,i. For a basis

marking M such that (M,γ) ∈ zi, there exists at least one marking Md ∈ Rreg(M) at which no transition

can fire if and only if constraint D′(M) in Eq. (4) is feasible.

16

Proof. (Only If) Suppose that after disablement of transitions in Td,i, there exists a dead marking Md ∈
Rreg(M), i.e., there exists a firing vector y ∈ N|Tuo| such that M + Cuo · y = Md ≥ 0 and y(tf) = 0 for

all tf ∈ Tf . Moreover, marking Md satisfies ρ′(Md). Therefore, ILPP (4) is feasible.

(If) Suppose that ILPP (4) is feasible. By Assumption 2, the Tuo-induced subnet is acyclic. If there exists

a firing vector y ∈ N|Tuo| such thatM +Cuo ·y = Md ≥ 0 and y(tf) = 0 for all tf ∈ Tf , then there exists a

firing sequence σ ∈ T ∗ref such that M [σ〉Md whose firing vector is y. Since Md satisfies ρ′(Md), at marking

Md all transitions are either control-induced or lack of tokens to fire. Therefore, Md is a dead marking.

Example 5 Consider the plant in Figure 3(a), where Ec = {c, d}. Its Q-diagnoser is shown in Figure 3(c).

Suppose that a supervisor disables event c at diagnostic state z3, i.e., the disabled transition set Td,3 =

{t4, t5, t10}. Since there are two pairs (M3, N) and (M6, F) in state z3, according to Proposition 3 markings

M3 and M6 need to be considered. For marking M3, constraint D′(M3) is not feasible, which means

that if the plant is at a marking in the regular unobservable reach of M3, by disabling event c, there is no

control-induced deadlock. On the other hand, constraint D′(M6) is feasible, which means that if the plant is

at a marking in the regular unobservable reach of M6, by disabling event c, the plant can reach some dead

marking in Rreg(M6). �

In reality, a plant is expected to be deadlock-free, since an unexpected deadlock may greatly reduce the

rate of productivity (e.g., long down-time and low use of some critical and expensive resources) or even

cause severe consequence [26]. On the other hand, if a fault has occurred, then a deadlock, i.e., a “planned

shutdown”, is usually harmless and acceptable, since the operator of a plant may examine the plant when it

is offline and initiate a recovering process to repair the fault. Therefore, in this section we aim to design a

supervisor for active diagnosis which meets the two criteria:

1. the closed-loop system is diagnosable, i.e., the firing of fault transitions can be detected in finite future

steps;

2. the closed-loop system is not deadlocked when no fault transition has fired.

To prevent the plant from reaching unfaulty deadlocks, in the following we introduce a notion called a

q-normal cycle.

Definition 9 Let Gdiag = (Z,E ∪ {q}, δd, z0) be the Q-diagnoser of an LPN G. A cycle C: z
q−→ z in Gdiag

is called a q-normal cycle if for all (Mi, γi) ∈ z, γi = N holds. �

In other words, a cycle C : z
q−→ z is q-normal if at diagnostic state z no fault transition has fired. As we

have discussed at the beginning of this section, to guarantee diagnosability a supervisor should prevent the

plant from circulating in any indeterminate cycle. Besides, to guarantee that the plant is not deadlocked when

no fault transition has fired, a supervisor should also prevent the closed-loop system reaching any q-normal

cycle.

In the following, we propose Algorithm 2 to design a supervisor for a given labeled Petri net plant

such that the closed-loop system is diagnosable and cannot reach deadlock if no fault occurs. Algorithm 2

recursively trims the Q-diagnoser by eliminating all indeterminate cycles and q-normal cycles in it. In

Algorithm 2, we use EC to denote the set of events in a cycle C in Gdiag and use set Zdis to denote the

set of diagnostic states at which the supervisor makes disablement actions.

17

Algorithm 2: Computation of an active diagnosis supervisor
Input: A labeled Petri net G = (PN,M0, E, `), where E = Ec ∪ Euc
Output: Diagnosability enforcing supervisor Gs.

1 compute the QBRG Gq using Algorithm 1;

2 compute the Q-diagnoser Gdiag = (Z,E ∪ {q}, δd, z0) that is the diagnoser of Gq;

3 let D = ∅, Zdis = ∅;
4 while there exists an indeterminate cycle or a q-normal cycle C in Gdiag do
5 if EC ∩ Ec = ∅ ∧ (∃σ ∈ E∗uc)δd(z0, σ) = z′ ∈ C then
6 output: No solution, END;

7 if EC ∩ Ec 6= ∅ then
8 select e ∈ EC ∩ Ec such that δd(zi, e) = z′, zi, z

′ ∈ C;

9 let D = D ∪ {(zi, e)}, Zdis = {zi};
10 remove δd(zi, e) from δd;

11 else
12 for each zi ∈ Z, e ∈ Ec, such that δd(zi, e) = z′ and ∃σ ∈ E∗uc such that δd(z′, σ) = z′′ ∈ C

do
13 let D = D ∪ {(zi, e)}, Zdis = Zdis ∪ {zi};
14 remove δd(zi, e) from δd;

15 remove all unreachable states from Z;

16 remove (z, e) from D if z /∈ Z ;

17 for each zi ∈ Zdis do
18 let Ed,i = {e | ∃(zi, e) ∈ D};
19 compute the disabled transitions set Td,i;

20 for each (Mj , γj) ∈ zi do
21 if D′(Mj) is feasible then
22 if ∃z ∈ Z, such that δd(zi, q) = z then
23 let z = z ∪ {(Mj,d, γj)}
24 else
25 let z = {(Mj,d, γj)}, Z = Z ∪ {z};
26 let δd(zi, q) = z, δd(z, q) = z;

27 let Zdis = ∅

28 output Gs = (Z,E ∪ {q}, δd, z0).

18

We explain how Algorithm 2 works step-by-step. Steps 1 and 2 compute the QBRG and the Q-diagnoser

Gdiag , respectively. If there exists an indeterminate cycle or a q-normal cycle C that contains only uncontrollable

events and can be reached from the initial diagnostic state z0 by executing a sequence of uncontrollable events,

then there does not exist a supervisor that meets the two criteria. In such a case, the algorithm terminates.

The main body of Algorithm 2 consists of two parts. In the first part (Steps 4 to 16) an indeterminate

cycle or a q-normal cycle C is found and treated. If C contains at least one arc labeled by a controllable event

e ∈ Ec, by Steps 7 to 10 one of such arcs, denoted by (zi, e), is put into set D, meaning that event e is

disabled at diagnostic state zi. On the other hand, if C contains no controllable events, then in Steps 12 to

14 all controllable arcs leading to some states that may uncontrollably reach C are put in D. Steps 15 and 16

remove the unreachable states and the corresponding arcs in D which are no longer necessary.

Once the control policy is updated, the second part of the algorithm (Steps 17 to 26) updates the information

of control-induced deadlock accordingly. For each diagnostic state zi ∈ Zdis, Steps 18 and 19 compute the

disabled event set Ed,i and the disabled transitions set Td,i at state zi, respectively. By Step 20, for each pair

(Mj , γj) ∈ zi, ILPP (4) is solved to test if the disablement of transitions in Td,i will block the plant at some

marking in Rreg(Mj). In Steps 22 to 26 a new diagnostic state is added to Z that contains all (Mj,d, γj)

from all (Mj , γj) in zi such that ILPP (4) is feasible. The above procedures (Steps 4 to 27) are iteratively

done until all indeterminate cycles and q-normal cycles have been removed. In Algorithm 2, we separate the

function that updates the Q-diagnoser (Steps 17 to 26, which adds q-cycles) and the function that trims the

Q-diagnoser (Steps 7 to 14). The reason for this is to modularize the algorithm and improve its readability.

Finally, we discuss the complexity of the proposed approach. Consider an LPN G = (PN,M0, E, `)

whose diagnostic BRG is B = (M, T r,∆,M0) with the QBRG Gq . Since in QBRG Gq each basis marking

is associated with at most one virtual basis marking, there are at most 2|M| states in Gq , i.e., the structural

complexity ofGq isO(2|M|). On the other hand, both Q-diagnoserGdiag and active diagnosis supervisorGs
contain two types of nodes: (1) basis marking nodes, i.e., z = {(M1, γ1), (M2, γ2), . . . , (Mn, γn)}, where

Mi ∈ M; and (2) virtual basis marking nodes, i.e., z′ = {(M1,d, γ1), (M2,d, γ2), . . . , (Mn,d, γn)}. Since

the number of each type of nodes is at most 22|M|, both Gdiag and Gs contain at most 2 · 22|M| states, i.e.,

their structural complexity is O(22|M|). Such exponential complexity of |M| seems unavoidable due to the

construction of the diagnoser of QBRG. However, it has been acknowledged that in practice the number of

basis markings is usually much smaller than the markings in the reachability graph [9, 27]. Thus, our method

is practically more efficient than automaton-based methods (such as [40]).

Example 6 Consider again the LPN in Figure 3(a) where To = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10} and

Tf = {t14, t15}. The controllable event set Ec = {c, d}. Its Q-diagnoser is shown in Figure 3(d). In

the Q-diagnoser there exist two indeterminate cycles: z3
c−→ z3 and z6

d−→ z6.

In the first iteration, indeterminate cycle z3
c−→ z3 is picked. Since event c is controllable, by Step 9 event

c is disabled at z3, i.e., D = {(z3, c)} and Zdis = {z3}. For state z3, the disabled event set Ed,3 = {c} and

the disabled transition set is Td,3 = {t4, t5, t10}. There are two pairs (M3, N) and (M6, F) in state z3. For

marking M6, constraint D′(M6) is feasible, and according to Step 25, a new state z9 = (M6,d, F) is added

to the state set. By Step 26, an arc labeled event q from state z3 to z9 and a self-loop labeled event q at state

z9 are also added.

In the second iteration, indeterminate cycle z6
d−→ z6 is picked. Since event d is controllable, we have

D = {(z3, c), (z6, d)} and Zdis = {z6}. By Steps 17 to 26, diagnostic state z6 = {(M8, N), (M9, F)} is

19

M0,N M1,N
M2,N
M4,F

a

b

b

c

M7,N
M9,F

c

M8,N
M9,F

d

M9,F

b

b

M3,N
M6,F

M5,N

d

c

d

M6,d,F
q

q

M9,F b

M8,d,N
q

b q

z0 z1 z2 z3

z4z6z5

z7 z8

z9

z10

(a)

M0,N M1,N
M2,N
M4,F

a

b

b

c

M3,N
M6,F

M5,N

d

c

d

M6,d,F
q

q
z0 z1 z2 z3

z4

z9

(b)

Figure 6: (a) The trimmed structure G′diag in Example 6, (b) the diagnosability enforcing supervisor Gs.

examined to update the quiescent behavior after disabling event d at it. The trimmed Q-diagnoser G′diag is

shown in Figure 6(a).

Since the structure G′diag contains a new q-normal cycle, i.e., z10
q−→ z10, it is then trimmed in the third

iteration. Since event q is uncontrollable, event d at state z5 is disabled. Steps 17 to 26 update the quiescent

behavior at state z5. For a marking M7 in z5, constraint D′(M7) is feasible. According to Steps 25, a new

state z = {(M7,d, N)} is added to state set. By Step 26, an arc labeled event q from z5 to z and a self-loop

labeled event q at state z are also added, which is a new q-normal cycle.

In the forth iteration, to eliminate the q-normal cycle z
q−→ z, the event c at state z1 is disabled. After

updating the quiescent behavior at state z1, the final result is shown in Figure 6(b). Since there does not exist

any indeterminate cycle and q-normal cycle in the current structure, Algorithm 2 terminates and outputs the

final structure in Figure 6(b). �

Once Gs = (Z,E ∪ {q}, δs, z0) is obtained, the corresponding control policy is given as follows. Given

an observation w whose consistent diagnostic state in diagnosability enforcing supervisor is z, the control

decision ξ(z) is to permit all controllable events that are defined at z, i.e.,

ξ(z) = {e ∈ Ec | δs(z, e) is defined}. (5)

For example, for the net in Example 2, for an observation w = abd whose consistent diagnostic state is z3,

according to the diagnosability enforcing supervisor in Figure 6(c), the control decision is ξ(z3) = {d}, i.e.,

event c is disabled.

20

Remark 2 It is worth noting that the observable quiescent event q provides us extra information about the

current marking and the fault status of the system. Consider, for instance, the Q-diagnoser in Figure 6(a) in

which the supervisor disables event d at diagnostic state z6. When observing event sequence acd, one can

infer that the plant may be at some marking either in the regular unobservable reach of M8 while no fault

transition has fired, or in the regular unobservable reach ofM9 while a fault transition has fired. However, by

further observing quiescent event q and inspecting the new consistent diagnostic state z10, one can infer that

the system must be blocked at some marking in the regular unobservable reach ofM8 while no fault transition

has fired, i.e., the firing a fault transition is excluded. In such a case, the supervisor may re-enable event d,

which may lead to a more permissive control result. However, to re-enable events, all subsequent diagnostic

states from z10 and the control decisions at those states need to be further explored, since the subsequence

diagnostic states may not be already in Gdiag and may contain new indeterminate cycles. To keep this paper

focused, we do not address this issue and simply disable the precursor event that leads to unfaulty deadlocks.

�

Theorem 5 Given an LPN G = (PN,M0, E, `) with E = Ec ∪ Euc and a set of fault transitions Tf ,

the closed-loop system (G, ξ) is diagnosable and free of unfaulty deadlocks, where ξ is the control policy

designed by Algorithm 2 and Eq. (5).

Proof. Algorithm 2 ensures that the diagnosability enforcing supervisor does not contain any indeterminate

cycle and q-normal cycle. Since the diagnosability enforcing supervisor represents the behavior of the

closed-loop system, the closed-loop system is diagnosable and does not have unfaulty deadlocks.

Remark 3 Note that in general there exist multiple ways to break an indeterminate cycle with controllable

events in a Q-diagnoser. It may happen that the control action prunes some crucial arcs such that the

state space is greatly reduced or the normal functionality is greatly affected. As a result, some additional

information can be embedded into Algorithm 2 to avoid removing these crucial arcs. To explore this will be

part of our future work. �

6 Conclusion

This paper deals with the active diagnosis problem in the framework of LPNs. We generalize the notion of

diagnosability to LPNs with deadlocks and control-induced deadlocks. A structure called quiescent basis

reachability graph (QBRG) is proposed to characterize the behavior of a net containing deadlocks without

enumerating all its reachable markings. An integer linear programming technique is developed to characterize

the deadlocks. We present a QBRG-based method to design a diagnosability enforcing supervisor using a

Q-diagnoser. Our supervisor guarantees that the closed-loop system is diagnosable and does not contain

unfaulty deadlocks.

References

[1] F. Basile, P. Chiacchio, and G. D. Tommasi. On K-diagnosability of Petri nets via integer linear

programming. Automatica, 48(9):2047–2058, 2012.

21

[2] F. Basile, G. D. Tommasi, and C. Sterle. Sensors selection for K-diagnosability of Petri nets via integer

linear programming. In Proc. 23rd Mediterranean Conference on Control and Automation (MED),

pages 168–175, Torremolinos, Spain, 2015.

[3] F. Basile, G. D. Tommasi, and C. Sterle. Non-interference enforcement in bounded Petri nets. In Proc.

2018 IEEE Conference on Decision and Control, pages 4827–4832, Miami Beach, USA, 2018.

[4] F. Basile, G. D. Tommasi, and C. Sterle. Non-interference enforcement via supervisory control in

bounded Petri nets. IEEE Transactions on Automatic Control, 2020, DOI: 10.1109/TAC.2020.3024274.

[5] N. Bertrand, É. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabilistic systems. In

Proc. International Conference on Foundations of Software Science and Computation Structures, pages

29–42, Grenoble, France, 2014.

[6] M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. A new approach for diagnosability analysis of

Petri nets using verifier nets. IEEE Transactions on Automatic Control, 57(12):3104–3117, 2012.

[7] M. P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri nets from knowledge of their language.

Discrete Event Dynamic Systems, 17(4):447–474, 2007.

[8] M. P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event systems using Petri nets with

unobservable transitions. Automatica, 46(9):1531–1539, 2010.

[9] M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of discrete-event systems using labeled Petri

nets. IEEE Transactions on Automation Science and Engineering, 11(1):144–153, 2014.

[10] M. P. Cabasino, S. Lafortune, and C. Seatzu. Optimal sensor selection for ensuring diagnosability in

labeled Petri nets. Automatica, 49(8):2373–2383, 2013.

[11] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Springer Science & Business

Media, 2009.

[12] F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta Informaticae,

88(4):497–540, 2008.

[13] E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-event systems. In Proc. 7th

IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pages 1545–1550,

Barcelona, Spain, 2009.

[14] J. Chen and R. Kumar. Failure detection framework for stochastic discrete event systems with

guaranteed error bounds. IEEE Transactions on Automatic Control, 60(6):1542–1553, 2015.

[15] Z. Chen, F. Lin, C. Wang, L. Y. Wang, and M. Xu. Active diagnosability of discrete event systems

and its application to battery fault diagnosis. IEEE Transactions on Control Syetems Technology,

22(5):1892–1898, 2014.

[16] A. Giua. Supervisory control of Petri nets with language specifications. In C. Seatzu, M. Silva, and

J. van Schuppen, editors, Control of Discrete-Event Systems, volume 433, pages 235–255. Springer,

London, U.K., 2013.

22

[17] A. Giua, S. Lafortune, and C. Seatzu. Divergence properties of labeled Petri nets and their relevance for

diagnosability analysis. IEEE Transactions on Automatic Control, 65(7):3092–3097, 2020.

[18] A. Giua, C. Seatzu, and F. Basile. Observer-based state-feedback control of timed Petri nets with

deadlock recovery. IEEE Transactions on Automatic Control, 49(1):17–29, 2004.

[19] K. Hernández-Rueda, M. E. Meda-Campaña, and J. Arámburo-Lizárraga. Enforcing diagnosability in

interpreted Petri nets. IFAC-PapersOnline, 48(7):56–63, 2015.

[20] K. Hernández-Rueda, M. E. Meda-Campaña, and B. Haro-Martı́nez. Detección activa de faltas en

sistemas de eventos discretos. Pistas Educativas, 39(128):730–748, 2018.

[21] Y. Hu, Z. Ma, and Z. Li. Active diagnosis of Petri nets using Q-diagnoser. In Proc. 15th IEEE

Conference on Automation Science and Engineering, pages 203–208, Vancouver, Canada, 2019.

[22] Y. Hu, Z. Ma, and Z. Li. Design of supervisors for active diagnosis in discrete event systems. IEEE

Transactions on Automatic Control, 65(12):5159–5172, 2020.

[23] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing diagnosability of

discrete-event systems. IEEE Transactions on Automatic Control, 46(8):1318–1321, 2001.

[24] G. Jiroveanu and R. K. Boel. The diagnosability of Petri net models using minimal explanations. IEEE

Transactions on Automatic Control, 55(7):1663–1668, 2010.

[25] D. Lefebvre and C. Delherm. Diagnosis of des with Petri net models. IEEE Transactions on Automation

Science and Engineering, 4(1):114–118, 2007.

[26] Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri net-based deadlock prevention policies

for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 38(2):173–188, 2008.

[27] Z. Ma, Y. Tong, Z. Li, and A. Giua. Basis marking representation of Petri net reachability spaces and

its application to the reachability problem. IEEE Transactions on Automatic Control, 62(3):1078–1093,

2017.

[28] Z. Ma, X. Yin, and Z. Li. Marking predictability and prediction in labeled Petri nets. IEEE Transactions

on Automatic Control, 2020, DOI: 10.1109/TAC.2020.3024270.

[29] Z. Ma, X. Yin, and Z. Li. Marking diagnosability verification in labeled Petri nets. Automatica, 2021,

in press.

[30] Z. Ma, G. Zhu, and Z. Li. Marking estimation in Petri nets using hierarchical basis reachability graphs.

IEEE Transactions on Automatic Control, 66(2):810–817, 2020.

[31] M. V. Moreira, T. C. Jesus, and J. C. Basilio. Polynomial time verification of decentralized

diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 56(7):1679–1684,

2011.

[32] G. T. Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580,

1989.

23

[33] A. Ramı́rez-Treviño, E. Ruiz-Beltrán, J. Arámburo-Lizárraga, and E. López-Mellado. Structural

diagnosability of DES and design of reduced Petri net diagnosers. IEEE Transactions on Systems,

Man, and Cybernetics, Part A: Syetems and Humans, 42(2):416–429, 2012.

[34] A. Ramı́rez-Treviño, E. Ruiz-Beltrán, I. Rivera-Rangel, and E. López-Mellado. Online fault diagnosis

of discrete event systems. a Petri net-based approach. IEEE Transactions on Automation Science and

Engineering, 4(1):31–39, 2007.

[35] N. Ran, A. Giua, and C. Seatzu. Enforcement of diagnosability in labeled Petri nets via optimal sensor

selection. IEEE Transactions on Automatic Control, 64(7):2997–3004, 2019.

[36] N. Ran, H. Su, A. Giua, and C. Seatzu. Codiagnosability analysis of bounded Petri nets. IEEE

Transactions on Automatic Control, 63(4):1192–1199, 2018.

[37] Y. Ru, M. P. Cabasino, A. Giua, and C. N. Hadjicostis. Supervisor synthesis for discrete event systems

with arbitrary forbidden state specifications. In Proc. 47th IEEE Conference on Decision and Control,

pages 1048–1053, Cancun, Mexico, 2008.

[38] Y. Ru, M. P. Cabasino, A. Giua, and C. N. Hadjicostis. Supervisor synthesis for discrete event systems

under partial observation and arbitrary forbidden state specifications. Discrete Event Dynamic Systems,

24(3):275–307, 2014.

[39] E. Ruiz-Beltrán, A. Ramı́rez-Treviño, and J. L. Orozco-Mora. Fault diagnosis in Petri nets. In

J. Campos, C. Seatzu, and Xiaolan Xie, editors, Formal Methods in Manufacturing, chapter 22, pages

627–651. CRC Press, Boca Raton, 2014.

[40] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems. IEEE

Transactions on Automatic Control, 43(7):908–929, 1998.

[41] M. Sampath, R. Sengupta, S. Lafortune, and K. Sinnamohideen. Diagnosability of discrete-event

system. IEEE Transactions on Automatic Control, 40(9):1555–1575, 1995.

[42] M. Schmidt and J. Lunze. Active diagnosis of deterministic I/O automata. In Proc. 4th IFAC Workshop

on Dependable Control of Discrete Systems, pages 79–84, York, UK, 2013.

[43] W. Wang, S. Lafortune, A. R. Girard, and F. Lin. Optimal sensor activation for diagnosing discrete

event systems. Automatica, 46(7):1165–1175, 2010.

[44] Y. Wu and C. N. Hadjicostis. Algebraic approaches for fault identification in discrete-event systems.

IEEE Transactions on Automatic Control, 50(12):2048–2055, 2005.

[45] X. Yin, J. Chen, Z. Li, and S. Li. Robust fault diagnosis of stochastic discrete event systems. IEEE

Transactions on Automatic Control, 64(10):4237–4244, 2019.

[46] X. Yin and S. Lafortune. A uniform approach for synthesizing property-enforcing supervisors for

partially-observed discrete-event systems. IEEE Transactions on Automatic Control, 61(8):2140–2154,

2016.

24

[47] X. Yin and S. Lafortune. On the decidebility and complexity of diagnosability for labeled Petri nets.

IEEE Transactions on Automatic Control, 62(11):5931–5938, 2017.

[48] T-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partially observed

discrete-event systems. IEEE Transactions on Automatic Control, 47(9):1491–1495, 2002.

25

