
Computation of Admissible Marking Sets in Weighted

Synchronization-Free Petri Nets by Dynamic Programming

Ziyue Ma, Guanghui Zhu, Zhiwu Li, Alessandro Giua

September 19, 2019

Abstract

We study the computation of admissible marking sets in generalized Petri nets. We first

show that the admissibility checking in generalized Petri net is NP-hard. Then we consider a

special subclass of generalized Petri nets called weighted-synchronization-free nets in which each

transition has at most one input place. For a net in this subclass, we propose a generating func-

tion to compute by dynamic programming the set of admissible markings for a given generalize

mutual exclusion constraint.

Published as:

[Z. Ma, G. Zhu, Z. Li, A. Giua, “Computation of Admissible Marking Sets in Weighted

Synchronization-Free Petri Nets by Dynamic Programming”, IEEE Transactions on Automatic

Control, 2020, 65(6): 2662-2669.]

DOI: 10.1109/TAC.2019.2942570

Ziyue Ma and Guanghui Zhu are with the School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (email: maziyue@gmail.com, zhuguanghui86@gmail.com).

Zhiwu Li is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China, and al-

so with the Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau (email:

zhwli@xidian.edu.cn, systemscontrol@gmail.com).

Alessandro Giua is with the Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari

09124, Italy (email: giua@diee.unica.it).

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61472295,

61703321, 61873342, Shaanxi Provincial Natural Science Foundation under Grant No. 2019JQ-022, the Fundamental

Research Funds for the Central Universities under Grant JB190407, the Science Technology Development Fund,

MSAR, under Grant No. 0012/2019/A3, and the Region Sardinia, FSC 2014 C 2020, project RASSR05871 - MOSIMA.

1

1 Introduction

Supervisory Control Theory [1] provides a unifying framework for modeling and control of discrete

event systems and has been widely applied to model various physical systems. Petri nets have been

proposed as SCT models since they can be used to compute an efficient solution to control problems,

e.g., deadlock prevention [2–5] , fault diagnosis [6–8], and marking avoidance [9–12] often without

requiring the enumeration of the state space. In Petri nets, a state specification consists in a set of

legal markings and the control objective consists in preventing the system from reaching a forbidden

marking. A widely-used class of state specifications in Petri nets is the generalized mutual exclusion

constraint (GMEC) [13] that defines a linear set of legal markings. In a partially controllable Petri

net, to enforce a GMEC one needs to find a control policy which enforces a subset of the legal

markings, called admissible markings, from which the system cannot uncontrollably reach an illegal

marking [9].

To solve the aforementioned problem, two types of methods, that we call respectively reachability-

based and admissibility-based, have been proposed. Reachability-based approaches require to enu-

merate the admissible markings among the reachability set. On the other hand, admissibility-based

approaches seek a solution by directly characterizing the set of admissible markings of a given GMEC

without enumerating the reachability space. In [14] a method was originally proposed to compute a

(possibly strict) subset of admissible markings, and several GMEC transformation algorithms that

ensure optimality were later proposed for some restrictive subclasses of ordinary Petri nets [15–18].

Although a generalized net can be converted to an equivalent ordinary net, the constraint trans-

formation methods such as [15–17] cannot be applied since in general the converted net does not

satisfy some restrictive structural requirements. To the best of our knowledge, there is no method

to compute the set of admissible markings in generalized Petri nets in the literature. The approach

in [14] can be applied to generalized nets but only determines a suboptimal solution, which restricts

the evolution of the plant to a subset of the admissible set.

This paper aims to present a methodology for computing the admissible markings set in gener-

alized Petri nets containing uncontrollable transitions. We first show that in generalized Petri nets

the problem of determining marking admissibility is NP-hard. Hence we consider a special subclass

of generalized Petri nets called weighted-synchronization-free nets (WSF nets). The class of WSF

nets is a relatively simple subclass of generalized Petri nets of practical interests, which can model

systems characterized by operations executed in batches. We propose a dynamic programming1 [19]

method to compute the admissible marking set of a given GMEC with nonnegative coefficients if

these assumptions are satisfied. Some preliminary results in this setting have been presented in [20],

where the GMEC to be enforced is assumed to be elementary and whose influencing subnet is as-

sumed to be a weighted-state-machine which is a subclass of WSF nets. In this paper, thanks to the

notion of implicit places, the two assumptions are partially relaxed and we generalize the approach

to a larger class of GMECs and nets.

The paper is organized in seven sections. Section II recalls the basic notions of Petri nets.

1Dynamic programming is a recursive procedure that breaks a complex problem into a collection of simpler sub-

problems. By exploiting the relationship among those subproblems and properly memorizing their solutions, each

subproblem is only solved once during the recursion, thus practically achieving efficiency.

2

Section III studies some properties of admissible marking sets in generalized Petri nets. Section IV

introduces weighted synchronization-free nets and elementary GMECs. Section V proposes a dynam-

ic programming method to compute the admissible marking set in a given WSF net. In Section VI

an example is presented, while Section VII draws the conclusions.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a set of m places represented by circles;

T is a set of n transitions represented by bars; Pre : P × T → N and Post : P × T → N are the

pre- and post-incidence functions that specify the arcs in the net and are represented as matrices in

Nm×n, where N = {0, 1, 2, . . .}. The incidence matrix of a net is defined by C = Post−Pre ∈ Zm×n,

where Z = {0,±1,±2, . . .}. A Petri net N is said to be ordinary if all arcs are unitary, otherwise N

is a generalized net.

For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t) > 0} and its set

of output places as t• = {p ∈ P | Post(p, t) > 0}. The set •p and p• are analogously defined.

A marking is a vector M : P → N that assigns to each place of a Petri net a non-negative integer

number of tokens. We denote by M(p) the marking of place p. A marked net 〈N,M0〉 is a net N

with an initial marking M0.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M ′ =

M0 + C(·, t). We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and

we write M [σ〉M ′ to denote that the firing of σ yields M ′. We denote by R(N,M0) the set of

all markings reachable from the initial one. We also use x1p1 + · · · + xnpn to denote the marking

(x1, . . . , xn)T for simplicity.

Given a firing sequence σ ∈ T ∗, the vector yσ is the Parikh vector of σ, i.e., yσ(t) = k if transition

t occurs k times in σ.

Node vA ∈ P ∪ T is said to be in the upstream of node vB ∈ P ∪ T if there exists a sequence

vAv1v2 · · · vkvB where vi ∈ P ∪T such that vA ∈ •v1, vi ∈ •vi+1 for i ∈ {1, . . . , k− 1} and vk ∈ •vB .

In such a case node vB is said to be in the the downstream of node vA.

2.2 GMECs and Partially Controllable PNs

A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w, k) where w ∈ Zm and k ∈ Z. A

GMEC defines a set of legal markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}.

In this paper it is assumed that the set of legal markings of the plant net is defined by a GMEC

(w, k).

In a partially controllable Petri net, the set of transitions T can be partitioned into a set of

controllable transitions Tc and a set of uncontrollable transitions Tuc, i.e., T = Tc∪Tuc and Tc∩Tuc =

∅. The objective of a supervisor is to ensure that only legal markings are reached by preventing

3

transition firings that yield forbidden markings in the set F = Nm \ L(w,k). However, if net N

contains uncontrollable transitions Tuc, the supervisor needs to restrict the evolution of the system

within the set of admissible markings denoted by A(w,k):

A(w,k) = {M ∈ Nm | ∀σuc ∈ T ∗uc,M [σuc〉M ′ ∈ L(w,k)}.

In general we have A(w,k) ⊆ L(w,k).

The uncontrollable subnet of net N = (P, T, Pre, Post) where T = Tc ∪ Tuc is the net N ′ =

(P, Tc, P re
′, Post′) obtained from N removing all controllable transitions and their input and output

arcs.

In this paper, we assume that all source transitions, i.e., transitions t with |•t| = 0, are control-

lable. Since an uncontrollable source transition can generate infinite number of tokens in its output

places, such source uncontrollable transitions and their output places can be removed from the net

without affecting the control result.

3 Sets of Admissible Markings in Generalized Petri Nets

The sets of admissible markings play an important role in the supervisory control of DES using Petri

nets. A supervisor is maximally permissive if it disables only the firing of transitions that yield a

non-admissible marking, minimally restricting the legal behavior of the plant.

Definition 1 Given a Petri net N = (P, T, Pre, Post) where T = Tc ∪ Tuc, a marking M , and a

GMEC (w, k), a supervisor is maximally permissive if ∀M ∈ Nm, it holds:

((∀t ∈ Tc)M [t〉M ′ ∈ A(w,k))⇔ (t ∈ Ctrl(M))

where Ctrl(M) ⊆ Tc is the set of controllable transitions control-enabled at marking M . �

If all transitions are observable and the system satisfies the no concurrency (NC) assumption [21],

a suitable online feedback control policy (which is also maximally permissive) is stated as follows:

1. Let the current marking M = M0; let Ctrl = Tc;

2. For each t ∈ Tc enabled at M , determine if the firing of t yields a marking M ′ that is not

admissible, i.e., M [t〉M ′ /∈ A(w,k): if so, let Ctrl = Ctrl \ {t};

3. Execute Ctrl;

4. Wait until some transition t ∈ Ctrl ∪ Tuc fires, update the current marking Mnew such that

M [t〉Mnew; let M = Mnew and Ctrl = Tc, go to Step 2.

The key step of this control method is Step 2, which contributes the most to the online computa-

tional effort. By reachability analysis one can determine all admissible markings in the reachability

set (if bounded). However, solving a reachability problem is computationally expensive and in most

cases cannot be done in real-time. On the other hand, pre-computing the set A(w,k) during the

offline stage has several advantages. First, once A(w,k) is obtained offline, Step 2 can be verified

by testing the membership of a marking. Second, since that A(w,k) does not depend on the initial

4

pmax

W
pin

t1

w1
v1

v2

w2

wn
vn

t2

tn

Figure 1: The Petri net constructed in the proof of Theorem 1.

marking of the plant, the control logic does not need to be re-designed when the initial marking

changes. Moreover, to compute A(w,k) only the influencing subnet (which will be formally defined

in Definition 4 in Section IV) of the plant net needs to be treated, and hence the solution is robust

for structural changes of the non-influencing part of the net.

In the following we show that to determine if a marking is admissible in generalized Petri nets

is NP-hard by showing that the Knapsack Problem [22], which is known to be NP-complete, can be

reduced to the marking admissibility checking problem in generalized Petri nets.

Problem 1 (Knapsack Problem) Given a set of n types of unlimited number of items, each type

with a weight wi ∈ N and a value vi ∈ N, and given a knapsack with a maximal weight limit W ∈ N
and a total value V ∈ N, determine if a total value equal to or greater than V can be achieved without

exceeding the weight limit W . �

Theorem 1 Given a Petri net N = (P, T, Pre, Post) where T = Tc ∪ Tuc, a marking M , and a

GMEC (w, k), to determine if M ∈ A(w,k) is NP-hard.

Proof: Given an Knapsack Problem instance W,V,wi, vi ∈ N, i ∈ {1, . . . , n}, where n is the

number of type of items, we can construct a generalized Petri net N by the procedure described

below:

1. Create two places pin and pmax;

2. Create n transitions t1, . . . , tn satisfying Pre(pin, ti) = wi, Post(pmax, ti) = vi;

3. Create n places p1, . . . , pn satisfying Pre(pi, ti) = 1, Post(pi, ti) = 0;

4. Let Tuc = T = {t1, . . . , tn};

5. Create a GMEC (w, k) such that L(w,k) = {M ∈ Nm |M(pmax) ≤ V − 1}.

It is not difficult to understand that the Knapsack Problem has a positive answer (i.e., there is a

combination of items with total weight less or equal to W that has value V or more) if and only if

M = [W, 0,1]T /∈ A(w,k). This indicates that to determine if M ∈ A(w,k) is NP-hard. �

5

p2
p1

2

t1
2

3 3t2

M(p1)

M(p2)

2 4 6

2

4

6

8

80 10

10

(a)

(c)

(d)

(b)

p2
p1

2

t1

2

p2
p1

3 3t1

Figure 2: The nets and the illustration of the admissible markings set used in Example 1.

Theorem 1 implies that in generalized Petri nets there does not exist an algorithm with polynomi-

al complexity (if P 6=NP) to enforce a given state specification. Moreover, GMEC-based closed-form

representation of A(w,k) can be very complex or may even not exist in some generalized nets. In fact,

an OR-AND GMEC that describes the admissible set A(w,k) of an arbitrary GMEC (even if w ≥ 0)

can be too complex to be used in reality, which was called the GMEC inflation [17]. On the other

hand, although in the literature some nonlinear specifications in Petri nets were also proposed [23],

they still cannot be used to model an admissible set even in some simple subclasses of generalized

Petri nets.

Example 1 Consider the net in Fig. 2(a) and a GMEC (w, k) defining the legal markings set

L(w,k) = {M | M(p2) ≤ 10}. The admissible markings set A(w,k), which is illustrated in Fig. 2(b),

can be defined by an OR-AND GMEC:

(M(p1) +M(p2) ≤ 10) ∨ ((M(p1) ≤ 1) ∧ (M(p2) ≤ 10)).

However, there is no efficient method (e.g., GMEC transformation) to obtain such a closed-form

representation from the initial GMEC M(p2) ≤ 10.

On the other hand, one may intuitively think that the marking admissibility can be verified by

checking admissibility in the subnets of the uncontrollable subnet. Unfortunately this conjecture is

false. Consider the two nets in Figs. 2(c) and 2(d) which are both subnets of the net in Fig. 2(a).

In these two cases the admissible markings set can be defined by the so-called stair-GMECs [23]:

2bM(p1)/2c+M(p2) ≤ 10 (1)

and

3bM(p1)/3c+M(p2) ≤ 10, (2)

respectively. However, the marking (11, 0) satisfies both Eqs. (1) and (2) but is not admissible. �

In the rest of paper, we aim to seek for an enumerative approach to pre-compute the admissible

marking set in generalized Petri nets. In the next section we propose our strategy and consider a

subclass of generalized Petri nets, in which computing the admissible markings is practically feasible.

6

4 Weighted Synchronization-Free nets and Their Properties

4.1 Weighted Synchronization-Free nets

Definition 2 A Petri net N = (P, T, Pre, Post) is a weighted synchronization-free net (WSF net)

if for all t ∈ T , |•t| = 1 holds. �

WSF nets is more general than the forward-synchronization-free nets [15] and weighted state

machines [20], and can model systems characterized by operations executed in batches, e.g., instead

of processing tasks one by one, it waits until a batch of k tasks are available and process them at the

same time, and the output of such operation is distributed. Such a primitive is common in many

real systems such as transportation, assembly and disassembly systems, etc. Now we introduce

the notions of elementary GMEC (such specification was called “element GMEC ” in [24]) and of

influencing subnet.

Definition 3 A GMEC (w, k) is said to be an elementary GMEC if there exists a place pw such

that w(pw) = 1 and w(p) = 0 for p 6= pw. �

Since an elementary GMEC restricts the token content of a unique place pw, in practice we can

ignore the places whose tokens will never flow to pw by firing uncontrollable transitions. This is

formalized in the next definition.

Definition 4 The influencing subnet of an elementary GMEC (w, k) in N , denoted as Nw =

(Pw, Tw, P rew, Postw), is the subnet of N obtained by removing all transitions t ∈ Tc followed by

removing all nodes x ∈ P ∪ T such that there does not exist a path from x to pw. The subnet Nw is

also called the influencing subnet of place pw. �

Now we can introduce the two assumptions that are used in this paper.

Assumption 1 The GMEC (w, k) to be implemented is elementary that restricts the token count

of a single place pw.

Assumption 1 is a technical assumption that does not restrict the modeling power of the problem

too much, since for arbitrary (w, k) with w ≥ 0 we can always introduce a so-called implicit place [25]

and define a new elementary GMEC (w′, k) on pw which is equivalent to the original one. Such a

procedure is shown in Algorithm 1.

Proposition 1 Given a Petri N = (P, T, Pre, Post) and a GMEC (w, k) with initial marking M0

and w ≥ 0, let the net N ′ = (P ′, T ′, P re′, Post′) with the initial marking M ′0, and the GMEC (w′, k)

be the output of Algorithm 1. For any firing sequence σ it holds:

M0[σ〉N ⇐⇒ M ′0[σ〉N ′

Proof: The “⇐=” immediately follows from the fact that (N,M0) is obtained from (N ′,M ′0)

by removing place pw, and thus all firing sequences in N ′ are also firable in N . Now we prove “=⇒”

by showing that N ′ simulates N .

7

Algorithm 1 Problem Refinement

Input: A Petri net N = (P, T, Pre, Post) with initial marking M0, a GMEC (w, k) with w ≥ 0

Output: A Petri net N ′ = (P ′, T ′, P re′, Post′) with initial marking M ′0, and an elementary GMEC

(w′, k)

1: Let P ′ = P ∪ {pw}, let T ′ = T ;

2: Let Pre′(p, t) = Pre(p, t) and Post′(p, t) = Post(p, t) for all (p, t) ∈ P × T ;

3: for all t ∈ T ′, do

4: Let Pre′(pw, t) = max{0,−wT · C(·, t)}; Let Post′(pw, t) = max{0,wT · C(·, t)};
5: end for

6: Let M ′0(pw) = wT ·M0 and M ′0(p) = M0(p) for p 6= pw;

7: Let w′ be: w′(pw) = 1, w′(p) = 0 for p 6= pw;

8: Output N ′ = (P ′, T ′, P re′, Post′), M ′0, and (w′, k).

Assume that M0[t〉NM1 in the original net, then M0 ≥ Pre(·, t) holds. Since w ≥ 0, it also

holds:
M ′0(pw) = wT ·M0

≥ wT · Pre(·, t)

≥ wT ·max{0,−C(·, t)}

= max{0,−wT · C(·, t)} = Pre′(pw, t),

which means that M ′0[t〉N ′M ′1.

In addition, we observe that M ′1(pw) = wT ·M0 +C ′(pw, t) = wT ·M0 + wT ·C(·, t) = wT ·M1.

By letting markings M1 and M ′1 be two new initial markings, the reasoning above can be repeatedly

applied to any firing sequence σ, which concludes the proof. �

By the following theorem we show that the original control problem can be refined to an equivalent

problem in which the GMEC to be enforced is elementary.

Theorem 2 Given a Petri N = (P, T, Pre, Post) and a GMEC (w, k) with initial marking M0 and

w ≥ 0, let the net N ′ = (P ′, T ′, P re′, Post′) with the initial marking M ′0, and the GMEC (w′, k) be

the output of Algorithm 1. For any firing sequence σ it holds:

M0[σ〉NM ∈ L(w,k) ⇐⇒ M ′0[σ〉N ′M ′ ∈ L(w′,k)

Proof: By the proof of Proposition 1, for any firing sequence σ such that M0[σ〉NM and

M ′0[σ〉N ′M ′, M ′(pw) = wT ·M holds. Since w′T ·M ′ = M ′(pw) holds (Step 7 in Algorithm 1), it is

clear that:
M ∈ L(w,k) ⇔ wT ·M ≤ k

⇔ M ′(pw) ≤ k ⇔ M ′ ∈ L(w′,k).

�

The second assumption concerns the influencing subnet of the elementary GMEC to be enforced.

Assumption 2 The influencing subnet of the elementary GMEC (w, k) is WSF and acyclic.

8

p1

t6

2 2

t1

t5 t7

t9

t4

t11

3

4

2

2

2

4 2

2

3
2

3

3

2

2p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

t2

t3

t10

t12

t8

t14

t15

pwt3

t7
t8

3

2

t12

2

t13p12

2 2

Figure 3: The Petri net used in Example 2.

We believe Assumption 2 is not too restrictive. As we have mentioned in the beginning of this

section, many batch-operations in practice such as automatic transportation routine can be modeled

by WSF nets. Moreover, these operations are in general loop-free. However, for an arbitrary GMEC,

the property of being WSF and acyclic of the original uncontrollable subnet does not guarantee that

the net N ′ and the GMEC (w′, k) obtained by Algorithm 1 satisfy Assumptions 1 and 2. On the

other hand, the following proposition provides a way to verify Assumption 2.

Proposition 2 Given a net N in which the uncontrollable subnet is acyclic and WSF, and given

a GMEC (w, k), the refined control problem obtained by Algorithm 1 satisfies Assumption 2 if and

only if for all t, t̂ in the uncontrollable subnet, it holds:

wT · C(·, t) < 0 ⇒ wT · C(·, t̂) ≤ 0,∀t̂ in the dowstream of t (3)

Proof: (Acyclicity) Since the uncontrollable subnet in N is acyclic, the only possibility of

introducing cycles by adding place pw is that there exist two transitions t, t̂ in the uncontrollable

subnet such that (1) t̂ is in the dowstream of t, and (2) there exists an arc from pw to t (i.e.,

wT · C ′(·, t) < 0) and an arc from t̂ to pw (i.e., wT · C ′(·, t̂) > 0) (by Steps 4 to 8 in Algorithm 1),

which is excluded by Eq. (3). Hence the influencing subnet of pw is acyclic.

(WSF property) Since the original uncontrollable subnet in N is WSF, in N ′ for any transition

t that is not synchronization-free, there must exist an arc from pw to t (i.e., wT ·C ′(·, t) < 0). Since

the uncontrollable subnet in N ′ is acyclic, we can conclude that t is in the downstream of pw and

hence does not belong to the influencing subnet of pw. Hence the influencing subnet of pw is WSF.

�

It is worth noticing that if Eq. (3) is not satisfied, the reduction method cannot be applied even

if the uncontrollable subnet is a weighted state machine (as was the case studied in [20]). Hence the

dynamic programming approach which will be proposed in Section V can be applied to any GMEC

if (a) it satisfies Eq. (3) in Proposition 2 and (b) the uncontrollable subnet is a WSF net.

9

Example 2 The net in Fig. 3 without place pw models an AGV-transportation system, where each

ti, 1 ≤ i ≤ 8, represents an AGV automatically moving parts from its input place to its output

places. Hence the set of uncontrollable transitions is Tuc = {t1 − t8}. We want to implement a

control demand requiring that the number of tokens in p4 and p8 should not exceed 2, i.e., the legal

marking set is L(w0,k) = {M |M(p4) +M(p8) ≤ 2}. The uncontrollable subnet in this case consists

of places p1 − p12 and transitions t1 − t8 as well as related arcs.

Since the uncontrollable subnet satisfy Eq. (3), by applying Algorithm 1 one will add a place pw

initially unmarked as shown in the figure. For a new elementary GMEC defining the legal markings

L(w′,k) = {M | M(pw) ≤ 2}, it is not difficult to understand that in the original net the firing of

a sequence σ yields a marking that violates L(w,k) if and only if in the modified net the firing of σ

yields a marking that violates L(w′,k). The influencing subnet of (w′, k), which consists of places

p1, p2, p3, p5, p6, p7, pw and transitions t1 − t7, is acyclic and WSF. �

4.2 Admissible Bounds in WSF nets

Proposition 3 Given an elementary GMEC (w, k) bounding place pw and satisfying Assumption 2,

for any place p ∈ Nw there exists an integer bound B(p) ∈ N such that (1) for any marking M such

that M(p) ≥ B(p) + 1, M /∈ A(w,k) holds; (2) B(p) is minimal.

Proof: Being WSF indicates that each transition has exactly one input place. Thus for any

p ∈ Nw, we can always find a sufficiently large integer K such that from M(p) = K we can fire

those transitions on the path from p to pw for sufficient times so that pw eventually gets more than

k tokens, and hence M /∈ A(w,k) when M(p) = K. Noticing that the maximal number of tokens

that place pw may receive by firing unobservable transitions is non-decreasing with the increase of

the tokens in p, if we increase M(p) from zero one-by-one, we can always reach a minimal integer

B(p) satisfying the condition in the statement. �

We call B(p) the admissible bound of place p, i.e., any marking M with M(p) > B(p) is not

admissible. From Proposition 3 we have the following corollary.

Corollary 1 Given an elementary GMEC (w, k) bounding place pw and satisfying Assumption 2,

A(w,k) ⊆ B(w,k) holds where B(w,k) = {M ∈ N|Pw| | M(p) ≤ B(p)} is the subspace bounded by the

admissible bounds.

By Corollary 1, to compute the set of admissible markings A(w,k) in an enumerative way it is

sufficient to test the markings in the bounded orthogonal integer space B(w,k), even if the plant net

is unbounded (as is the case of the net in Fig. 3). Since the influencing subnet of pw is acyclic, the

admissible bound B(pi) of each place pi can be determined by solving the following ILPP based on

the state equation:

10

min B(p) = M(p)− 1

s.t. wT · (M + C · y) ≥ k + 1

M + C · y ≥ 0

M(p′) = 0 for p′ 6= p

y(i) ≥ 0 for ti ∈ Tuc

y(i) = 0 for ti ∈ Tc

(4)

However, testing whether all markings in B(w,k) are admissible is rather inefficient, because the

cardinality of this set, given by |B(w,k)| =
∏
pi∈Nw

(B(pi) + 1), may be quite large. On the other

hand, in the next subsection we propose a dynamic programming method to compute the admissible

set, which is proved to be more efficient.

4.3 Generating Function for Dynamic Programming

Consider an elementary GMEC (w, k) bounding place pw with influencing subnetNw = (Pw, Tw, P rew, Postw).

We denote a marking M ∈ N|Pw| of this subnet as: M = (M̄,M(pw)) where M̄ ∈ N|P̄w| is the re-

striction of M to the places in P̄w = Pw \ {pw}.
A function U : M → N maps each marking M = (M̄,M(pw)) ∈ N|Pw| to an integer representing

the maximal number of tokens that place pw may get from M in net Nw. In other words, the

maximal number of tokens that place pw can get in 〈Nw,M〉 is denoted as U(M). We extend the

domain of U to arbitrary integer vectors by assuming U(M) = undef (“not defined”) if M � 0

(this cannot happen in a Petri net evolution, but some M � 0 may be encountered in our algorithm

during intermediate computation steps). Obviously in an acyclic WSF U(0) = U(0, 0) = 0 holds.

Now we describe the generating function of U(M̄,M(pw)) which consists of two parts, respectively

handling the cases M(pw) = 0 and M(pw) > 0. Here we use ei ∈ N|P̄w| to denote a submarking that

has a unique token in place pi, i.e., ei(i) = 1 and ei(j) = 0 for j 6= i.

Case 1: Markings Satisfying M(pw) = 0

Proposition 4 Given an influencing subnet Nw that is an acyclic WSF net, for arbitrary marking

M = (M̄, 0) the following equation holds:

U(M̄, 0) = max{ max
pi∈P̄w

U(M̄ − ei, 0),

max
t∈Tw

(Post(pw, t) + U(M̄ + C̄(·, t), 0))}.
(5)

where C̄ is the incidence matrix of the subnet of Nw by removing place pw.

Proof: The condition on the right-hand side of Eq. (5) can be partitioned in two parts: (1)

maxi∈{1,...,|P |−1} U(M̄ − ei, 0); (2) maxt∈Tuc
(Post(pw, t) + U(M̄ + C̄(·, t)), 0). Now we prove ≥ and

≤ for Eq. (5).

(≥) For part (1), it is not difficult to understand that the maximal number of tokens that pw

may get at (M̄, 0) in the worst case is not less than that at (M̄ −ei, 0), a marking such that a token

is removed from M̄ .

11

Now consider part (2). Let (M̄ ′, Post(pw, t)) be a marking such that (M̄, 0)[t〉(M̄ ′, Post(pw, t))
where t ∈ Tw. It is obvious that if pw can get U(M̄ ′, 0) tokens by firing a sequence σ at (M̄ ′, 0),

then pw can also get Post(pw, t) + U(M̄ ′, 0) tokens by firing the sequence tσ at (M̄, 0).

(≤) By contradiction, suppose that Eq. (5) fails at some (M̄, 0), i.e., place pw can get r tokens

at some marking (M̄, 0) where:

r > max{ max
pi∈P̄w

U(M̄ − ei, 0),

max
t∈Tw

(Post(pw, t) + U(M̄ + C̄(·, t), 0))}.

by firing a sequence σ = t1t2 · · · tz. Now we write such trajectory as

(M̄, 0)[t1〉(M̄1, r1)[t2〉(M̄2, r2) · · · [tz〉(M̄z, rz)

where ri =
∑
j=1,...,i Post(pw, tj). It is clear that rz =

∑
i=1,...,z Post(pw, ti) = r holds.

By part (2) of the condition in Eq. (5) we have r > Post(pw, t1) + U(M̄ + C̄(·, t1), 0) =

Post(pw, t1) + U(M̄1, 0), i.e.:

r > U(M̄1, 0) + Post(pw, t1).

Since U(M̄1, 0) ≥ Post(pw, t2) + U(M̄1 + C̄(·, t2), 0) = Post(pw, t2) + U(M̄2, 0), we have

r > U(M̄2, 0) + Post(pw, t1) + Post(pw, t2).

This reasoning can be repeatedly applied and finally we have

r > U(M̄z, 0) +
∑

i=1,...,z

Post(pw, ti),

which contradicts the fact that
∑
i=1,...,z Post(pw, ti) = r. �

Case 2: Markings Satisfying M(pw) > 0

Proposition 5 Given an influencing subnet Nw that is an acyclic WSF net, for arbitrary marking

M = (M̄,M(pw)) the following equation holds:

U(M̄,M(pw)) = M(pw) + U(M̄, 0). (6)

Proof: Since the influencing subnet Nw is acyclic, once a token reaches pw, then it will never

be removed from pw by the firings of any transitions in Nw. Hence all tokens that pw can receive

by firing uncontrollable transitions are those in the upstream places of pw (i.e., U(M̄, 0)) plus those

tokens already in pw (i.e., M(pw)). �

Example 3 (Ex. 2 cont.) Consider again the net in Fig. 3 where the influencing subnet of place

pw consists of places p1, p2, p3, p5, p6, p7, pw and transitions t1 − t7. Let us first consider a marking

M = (0, 0, 4, 0, 0, 4, 0), i.e., M = 4 · p3 + 4 · p7. On one hand, U(M), the maximal number of tokens

that pw may get, is necessarily at least the same as U(M ′) and U(M ′′) where M ′ = (0, 0, 3, 0, 0, 4, 0)

and M ′′ = (0, 0, 4, 0, 0, 4, 0), since M ′ and M ′′ are markings such that a token is removed from

M . On the other hand, since the firings of t3 and t7 yield marking M ′ = (0, 0, 1, 0, 0, 4, 3) and

marking M ′′ = (0, 0, 4, 0, 0, 1, 2), respectively, place pw can get at least U(0, 0, 1, 0, 0, 4, 0) + 3 or

U(0, 0, 4, 0, 0, 1, 0) + 2 tokens by firing some sequences from M ′ and M ′′, respectively. �

12

5 Computation of Admissible Marking Set in WSF Nets by

Dynamic Programming

In the following we propose a dynamic programming algorithm to compute the admissible mark-

ing set of an elementary GMEC satisfying Assumptions 1 and 2. In the algorithm we use a

|Pw|-dimensional integer array to store the intermediate result of U . The array is denoted as

U [x1, x2, . . . , xn] and each of its element U [x̂1, x̂2, . . . , x̂n] stores the value of U(M) where M =

(x̂1, x̂2, . . . , x̂n). We use a particular integer NA(NA > k) to denote a sufficient large integer: if

U [M] 6= NA then M is admissible. We also use a particular negative integer (e.g., −1) to mark an

element that is unknown, i.e., it is not computed yet.

Algorithm 2 Computation of the Admissible Marking Set

Input: An elementary GMEC (w, k) bounding place pw whose influencing subnet Nw is an acyclic

WSF net

Output: The admissible marking set A(w,k)

1: Create array U [x1, . . . , x|Pw|] of size [B(p1) + 2, . . . , B(p|Pw|) + 2]. Initialize all elements as

unknown;

2: Let U [0, 0] = 0;

3: while unknown in U [M̄, 0] exists, do

4: select an unknown element U [M̄, 0] such that:∀pi ∈ Pw \ {pw},U [M̄ − ei, 0] is not unknown,

∀t ∈ Tw,U [M̄ + C̄(·, t), 0] is not unknown

5: Compute U [M̄, 0] according to Eq. (5);

6: If U [M̄, 0] = NA, then let U [M̄ ′, 0] = NA for all M ′ ≥M ;

7: end while

8: for all unknown in U [M̄,M(pw)] where M(pw) > 0 do

9: let U [M̄,M(pw)] = M(pw) + U [M̄, 0];

10: if U [M̄,M(pw)] > k, let U [M̄,M(pw)] = NA;

11: end for

12: Output A(w,k) = {M ∈ U | U [M] 6= NA} that is the admissible marking set.

By Algorithm 2, a |Pw|-dimensional array U is first created where all elements are initialized as

unknown. Then the algorithm fills the subarray U [M̄, 0] starting from [0, 0]. In each iteration an

unknown element is computed according to Eq. (5). We note that the max{} operator ignores any

undef entry, i.e., undef does not participate in the computation while it returns NA if any of its

entries has a value NA and/or if any of its entries has a subscript i > B(pi).

Once all U [M̄, 0] elements are computed, it continues to fill the full array U according to Eq. (6).

Step 6 ensures that once an element U [M̄, 0] is determined to be not admissible, then all elements

U [M̄ ′, 0] beyond U [M̄, 0] are also marked as NA. When all elements of U are computed, it outputs

the set of admissible markings A(w,k). The following theorem guarantees that Step 4 necessarily

terminates in a finite number of steps to find a selectable element.

13

Theorem 3 In Step 4 of Algorithm 2, the following procedure always halt in a finite number of

steps and outputs a selectable element.

1. Choose an arbitrary unknown element (M1, 0).

2. If (Mi, 0) is not selectable due to some unknown elements in Eq. (5), arbitrarily choose an

unknown element (Mi+1, 0) from them. This procedure is repeated until a selectable element

(Mr, 0) is reached.

Proof: First, let us add |Pw| transitions t′1, . . . , t
′
|Pw| to net Nw such that each transition t′i

removes a single token from place pi (i.e., Pre(pi, t
′
i) = 1), yielding a net N ′′ that is still acyclic.

Now we prove that the procedure above will eventually terminate. Suppose, by contradiction,

that the procedure does not terminate. Since U is finite, among all unknown elements there exists

a cyclic sequence:

(M̄1, 0)→ (M̄2, 0)→ . . .→ (M̄x, 0)→ (M̄1, 0).

This indicates that there exists a T-invariant of the net N ′′ such that (M̄1, 0)[σ〉(M̄1, 0), which

contradicts the fact that N ′′ is acyclic and does not contain any source transitions. As a result, the

procedure in the statement terminates. �

Corollary 2 Algorithm 2 is correct and terminates in a finite number of steps.

Proof: The correctness of Algorithm 2 is guaranteed by Propositions 4 and 5. For termination,

since Step 4 terminates normally by Theorem 3 and in each iteration at least one unknown element

is computed, Algorithm 2 halts in at most
∏
pi∈Pw

(B(pi) + 2)) iterations. �

Here we briefly discuss the complexity of Algorithm 2. By Corollary 2 the number of elements

to be computed is O(
∏
pi∈Pw

(B(pi))) = O(|B(w,k)|). Although Algorithm 2 computes U(M) for all

admissible markings in an enumerative way, simulation results in Section VI shows that it can be

done efficiently in practice, mainly due to the fact that only scalar comparisons and additions are

performed.

Remark 1 Once A(w,k) is obtained from Algorithm 2, a straightforward online control algorithm is

to check if the firing of each controllable transition t leads to some marking not in A(w,k). However,

the online computation load could be high since the size of A(w,k) may be very large. On the other

hand, we can collect its maximum element to form a maximal admissible marking set ↑A(w,k), i.e.:

↑A(w,k) = {M ∈ A(w,k) | @M ′ ∈ A(w,k),M
′ M}. (7)

The computation of ↑A(w,k) can be done by traversing the array U (the explicit presentation of

A(w,k)) only once while collecting M such that

(U [M] 6= NA) ∧ (∀i ∈ {1, . . . , |Pw|},U [M + ei] = NA),

a procedure that can be embedded in Algorithm 2. The control decision at marking M is: transition

t is permitted if there exists M ′ ∈ ↑A(w,k) such that M [t〉M ′′ ≤M ′. �

14

Remark 2 Note that the results on the generating function (Propositions 4 and 5) holds for all

generalized nets. Furthermore, under some conditions this method can also be extended to arbitrary

generalized Petri nets containing cycles and/or synchronizations (i.e., some transitions may have

multiple input places) after some modifications.

If the influencing subnet contains cycles, Theorem 3 no longer holds since there may exist a

cyclic sequence of elements in U such that none of them can be selected by Step 4 in Algorithm 2.

This problem can be overcome by randomly picking a marking among them followed by a reachability

analysis in the uncontrollable subnet (which is in general much smaller than the whole net) to break

such a cycle.

On the other hand, if the influencing subnet contains synchronizations, i.e., |•t| > 1, the admis-

sible bounds for B(w,k) do not exist, and hence Algorithm 2 cannot be applied. However, if in the

reachability set all places pi in the influencing subnet are bounded by a finite integer K(pi), we can

use K(pi) instead of B(pi) such that the proposed dynamic programming method can still be applied.

�

Remark 3 Finally, we note that this method can also be extended to the case where multiple G-

MECs (also called AND-GMECs [10]) are to be enforced. Given l GMECs (wi, ki), 1 ≤ i ≤ l, we

can compute the set of admissible markings A(wi,ki) for each of them by using Algorithm 2. The

intersection of these sets, i.e.,
⋂l
i=1A(wi,ki), is the admissible marking set of the multiple GMECs.

�

6 Performance Analysis

Still consider the Petri net in Example 3 in Fig. 3 with place pw, where the influencing subnet of

place pw consists of places p1, p2, p3, p5, p6, p7, pw and transitions t1 − t7. By Eqs. (5) and (6) the

generating function is:

U(0, 0) = 0;

U(M, 0) = max

U(M − e1, 0),U(M − e2, 0),

U(M − e3, 0),U(M − e5, 0),

U(M − e6, 0),U(M − e7, 0),

U(M + C(·, t1), 0),U(M + C(·, t2), 0)

3 + U(M + C(·, t3), 0),

U(M + C(·, t4), 0),

U(M + C(·, t5), 0),U(M + C(·, t6), 0)

2 + U(M + C(·, t7), 0)

U(M,M(pw)) = M(pw) + U(M, 0).

(8)

We consider a parameterized legal marking set L(w,k) = {M | M(pw) ≤ k}. The computation

for different values of k is carried out on a laptop computer with Intel i5-4200M 2.5 GHz processor

and 8 GB DDR3 1600Hz RAM, and the results are summarized in Table 1. With the increase of k

15

k
B(w,k) = [B(p1), B(p2), B(p3),

|B(w,k)| |A(w,k)| |↑A(w,k)| Time [s] ILPP Time [s]
B(p5), B(p6), B(p7), B(pw)]

2 [7, 11, 6, 8, 2, 5, 2] 73920 11840 53 3.5 1389

3 [7, 11, 7, 8, 5, 5, 3] 323400 22800 79 9.5 3099

4 [7, 15, 7, 14, 5, 8, 4] 1646400 44488 145 53 8988

5 [11, 15, 11, 14, 5, 8, 5] 5082000 80592 217 172 18331

6 [11, 15, 11, 17, 8, 11, 6] 16291440 134816 325 590 o.t.

7 [11, 19, 11, 17, 8, 11, 7] 24075128 227568 519 1236 o.t.

8 [11, 19, 11, 23, 8, 14, 8] 47377792 356464 705 2818 o.t.

Table 1: The performance of the dynamic programming method and the method based on ILPP for

Example 2.

from 2 to 8, the cardinality of the potential admissible set B(w,k) grows from 73,290 to 47,377,792.

For k = 8 with the largest space B(w,k), our method terminates in 2,818 sec (about 45 min) and

output the 705 maximal admissible markings in A(w,k).

The last column is the time to compute A(w,k) by testing all markings in B(w,k) by ILPP 4, using

an efficient commercial ILPP solver GUROBI (academic license). In the ILPP-based method we also

utilize the property that is: if a marking is found inadmissible then no ILPP is solved for all greater

markings. It is clear that the dynamic programming method proposed in this work is much more

efficient than the ILPP-based one. For instance, for k = 4 to analyze B(w,k) consisting of 5,082,000

markings, our dynamic programming method terminates in 3 minutes while the ILPP-based program

takes about 5 hours (∼ 1 : 100), producing the same result.

7 Conclusion

In this paper we propose a method based on dynamic programming to efficiently compute the

admissible marking set of a given GMEC in generalized Petri nets, whose influencing subnet is

acyclic and WSF. The set of admissible markings computed by our approach can be further used

for the design of liveness-enforcing supervisors. The problem of designing a maximally permissive

supervisor in an arbitrary generalized Petri net remains open: this will be the objective of our further

research.

References

[1] P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proceedings of

IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] Z. W. Li and M. C. Zhou, “Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems,” IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol. 34, no. 1, pp. 38–51, 2004.

16

[3] Z. W. Li, N. Q. Wu, and M. C. Zhou, “Deadlock control of automated manufacturing sys-

tems based on Petri nets – A literature review,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C, vol. 42, no. 4, pp. 437–462, 2012.

[4] A. Nazeem and S. Reveliotis, “Maximally permissive deadlock avoidance for resource allocation

systems with r/w-locks,” Discrete Event Dynamic Systems, vol. 25, no. 1, pp. 31–63, 2015.

[5] S. Reveliotis and Z. Fei, “Robust deadlock avoidance for sequential resource allocation systems

with resource outages,” IEEE Transactions on Automation Science and Engineering, vol. 14,

no. 4, pp. 1695–1711, 2017.

[6] M. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event systems using Petri

nets with unobservable transitions,” Automatica, vol. 46, no. 9, pp. 1531–1539, 2010.

[7] M. P. Cabasino, A. Giua, C. N. Hadjicostis, and C. Seatzu, “Fault model identification and

synthesis in Petri nets,” Discrete Event Dynamic Systems, vol. 25, no. 13, pp. 419–440, 2015.

[8] F. Basile, M. P. Cabasino, and C. Seatzu, “State estimation and fault diagnosis of labeled time

Petri net systems with unobservable transitions,” IEEE Transactions on Automatic Control,

vol. 60, no. 4, pp. 997–1009, 2015.

[9] M. V. Iordache and P. J. Antsaklis, “Supervision based on place invariants: A survey,” Discrete

Event Dynamic Systems, vol. 16, no. 4, pp. 4451–4492, 2006.

[10] Z. Y. Ma, Z. W. Li, and A. Giua, “Design of optimal Petri net controllers for disjunctive

generalized mutual exclusion constraints,” IEEE Transactions on Automatic Control, vol. 60,

pp. 1774–1785, 2015.

[11] F. Basile, R. Cordone, and L. Piroddi, “A branch and bound approach for the design of decen-

tralized supervisors in Petri net models,” Automatica, vol. 52, pp. 322–333, 2015.

[12] J. L. Luo, H. J. Ni, W. M. Wu, S. G. Wang, and M. C. Zhou, “Simultaneous reduction of Petri

nets and linear constraints for efficient supervisor synthesis,” IEEE Transactions on Automatic

Control, vol. 60, no. 1, pp. 88–103, 2015.

[13] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion constraints for Petri nets

with uncontrollable transitions,” in Proceedings of the IEEE Int. Conf. on Systems, Man, and

Cybernetics, Chicago, USA, 1992, pp. 947–949.

[14] J. Moody and P. Antsaklis, “Petri net supervisors for DES with uncontrollable and unobservable

transitions,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 462–476, 2000.

[15] J. L. Luo, W. M. Wu, H. Y. Su, and J. Chu, “Supervisor synthesis for enforcing a class of

generalized mutual exclusion constraints on Petri nets,” IEEE Transactions on Systems, Man,

and Cybernetics, Part A, vol. 39, no. 6, pp. 1237–1246, 2009.

[16] S. G. Wang, C. Y. Wang, and M. C. Zhou, “Design of optimal monitor-based supervisors for a

class of Petri nets with uncontrollable transitions,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 43, no. 5, pp. 1248–1255, 2013.

17

[17] Z. Y. Ma, Z. W. Li, and A. Giua, “Characterization of admissible marking sets in Petri nets

with conflicts and synchronizations,” IEEE Transactions on Automatic Control, vol. 62, no. 3,

pp. 1329–1341, 2017.

[18] J. Luo and M. Zhou, “Petri-net controller synthesis for partially controllable and observable

discrete event systems,” IEEE Transactions on Automatic Control, vol. 62, pp. 1301–1313, 2017.

[19] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University Press, 1957.

[20] Z. Ma, Z. Li, and A. Giua, “Computation of admissible marking sets in weighted state ma-

chines by dynamic programming,” in Proceedings of the 56th IEEE Conference on Decision and

Control, Melbourn, Australia, 2017, pp. 4847–4852.

[21] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of Petri net methods for controlled discrete

event systems,” Discrete Event Dynamic Systems: Theory and Applications, vol. 7, no. 2, pp.

151–190, 1997.

[22] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. New

York, NY, USA: John Wiley & Sons, Inc., 1990.

[23] Z. Y. Ma, Z. W. Li, and A. Giua, “Petri net controllers for generalized mutual exclusion

constraints with floor operators,” Automatica, vol. 74, pp. 238–246, 2016.

[24] J. Luo, F. Jin, and C. Huang, “Combined supervisor synthesis based on constraint transfor-

mation,” in Proceedings of the 2007 IEEE International Conference on Integration Technology,

Shenzhen, China, 2007, pp. 87–92.

[25] J. M. Colom and M. Silva, “Improving the linearly based characterization of p/t nets,” in Ad-

vances in Petri Nets 1990, G. Rozenberg, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

1991, pp. 113–145.

18

