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Abstract

This paper proposes an efficient marking estimation method for a subclass of time labelled Petri nets

(TLPNs) in which each transition is associated with an infinite upper bound delay. The unobservable

subnet of the considered subclass of TLPNs is backward-conflict-free, and all the output transitions of each

conflict place are observable. The highlight of this method is that the markings set consistent with a given

observation can be determined by a linear algebraic system based on the so-called slow-bound marking

and fast-bound marking pairs. An algorithm to compute an online estimator is provided and an example

is given. By this method the exhaustive construction of the full state space including the state class graph

is avoided. This approach provides guidelines of sensor deployment in the design stage so that the online

marking estimation problem can be efficiently solved.
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1 Introduction

Labelled Petri nets (LPNs) have been proposed as a fundamental model for Discrete Event Systems in a wide

variety of applications and have been an asset to reduce the computational complexity involved in solving

control problems. An LPN contains unobservable and indistinguishable transitions, since an external agent

may not detect or distinguish some events. Hence in general it is not possible to determine the exact current

marking from a given observation but only a set of possible markings called consistent markings. The marking

estimation in LPNs plays an important role in Petri net theory since it is relevant to many problems, including

supervisory control [1, 2], observation [3, 4, 5], diagnosis [6, 7], and opacity [8].

When time factor is considered, a time labelled Petri nets (TLPN) is an LPN such that each transition is

associated with a timer, and an enabled transition can fire only if its timer belongs to a certain time window.

The state of a TLPN is a pair that consists of the logical marking and the timer vector of transitions. In

many practical problems, such as supervisory control, one is often interested in the markings rather than the

state of TLPNs. A general scenario in the literature to estimate markings in TLPNs is to first enumerate all

consistent states followed by extracting the marking information from them. A well-established framework

to analyze the state space of a TLPN is the state class graph (SCG) [9], by which the state space of a TLPN

is partitioned into a finite set of classes. Based on SCGs, a series of fruitful results on the state estimation in

TLPNs have been achieved [10, 11, 12, 13, 14, 15, 16, 17]. In [10, 11] an SCG is treated as a timed automaton

(TA), and hence the estimation techniques in TA models (e.g., [18, 19]) can be applied. In [12] several state

classes of an SCG are merged into one node in the estimator in an explicit form. In [13] a structure called the

fault diagnosis graph (FDG) is obtained by the reduction of the SCG. In [14] a structure called the modified

state class graph (MSCG) is proposed by using a different notion of classification for fault diagnosis in

TLPNs. Besides, in [15] a linear algebraic method is proposed to reconstruct the least/greatest sequence of

unobservable transitions in timed Petri nets based on the online observation. The work in [16, 17] considers a

different model called P-Time Petri nets (which are incomparable with TLPNs [20]). In [16, 17] the marking

estimation is first done in the underlying untimed LPN to obtain a set of consistent marking candidates,

and then a linear programming problem is formulated for each marking to check its schedulability so that

time-spurious ones are removed.

The aforementioned SCG-based methods1 provide a very general approach to perform the state and the

marking estimation in TLPNs, but they have two drawbacks. First, the computation of an SCG is impeded by

the state-space explosion, since it is well acknowledged that an SCG can be much larger than the reachability

graph of the underlying untimed LPN [10, 12, 13, 14]. Although in some cases the state classes can be

abstracted [21], they cannot be used for estimation since some timing information is not preserved. Second,

at each on-line step a series of integer linear programming problems (ILPPs) have to be solved to single-out

time-spurious state classes one-by-one, and in those ILPPs the number of inequalities continuously grows

with the elapsed time [13, 14], which is computationally quite expensive. This motivates us to develop new

methods to perform marking estimation in TLPNs without analyzing the full state space.

In this work we propose a marking estimation method for a subclass of TLPNs that satisfies the following

structural assumptions: (1) each transition has a known firing window with a finite lower bound and an infinite

upper bound; (2) the unobservable subnet is backward-conflict-free [22, 23]; (3) no transition in a structural

conflict is unobservable, i.e., labeled by the empty string. The first assumption indicates that the firing of

1In the sequel, the term “SCG” refers to both the state class graph and its derivatives/variants.
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each transition has a finite known delay but does not necessarily fire as soon as possible, while the remaining

two assumptions are made on the observation structure. The observation structure of a plant depends on the

deployment of sensors and can be modified by additional sensors [24, 25]. For example, in [26] and [27],

by associating a cost to each transition, the control problem and the diagnosability enforcement problem in

Petri nets are reformulated as optimization problems. Hence we propose a method to find an optimal sensor

selection that satisfies these assumptions. We show that the marking estimation in such a model can be done

in a very efficient way without computing the SCG which is the most burdensome part in state-space analysis

in TLPNs. As far as we know, there is no method to perform the marking estimation in TLPNs without

explicitly enumerating the full state space. Thus we believe that our approach also provides guidelines in the

design stage for choosing a suitable set of sensors that will allow the plant operator to efficiently solve the

marking estimation problem.

In this work we introduce the notions of slow-bound time-transition-sequences (slow-bound TSs)2 and

fast-bound time-transition-sequences (fast-bound TSs) with respect to an observation. In the aforementioned

subclass of TLPNs the consistent marking set is the union of a set of reachable hulls of slow-fast-marking-

pairs (SFM-pairs). We propose an algorithm to construct a marking estimator that keeps track of SFM-pairs

and updates them by the observation, based on which the consistent marking set can be described by a linear

algebraic system. The online computational load is much smaller than that of SCG-based methods, since the

consistent marking set is compactly represented by the union of several reachable hulls, and no ILPPs such

as those in [11, 12, 13, 14] need to be solved online, since this representation does not contain time-spurious

markings.

This paper is organized in seven sections. The basics of Petri nets are recalled in Section II. Section III

formulates the problem and introduces the used assumptions. Section IV presents several notions including

slow- and fast-bound TSs that will be used later to establish our method. Section V introduces a series

of useful results for computing the set of markings consistent with a given observation. In Section VI an

algorithm is proposed for marking estimation in TLPN, and an illustrative example is presented. Conclusions

are reached in Section VII.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a set of m places represented by circles; T is a

set of n transitions represented by bars; Pre : P × T → N and Post : P × T → N are respectively the pre-

and post-incidence functions that specify the arcs in the net and are represented as matrices in Nm×n. The

incidence matrix of a net is defined by C = Post− Pre ∈ Zm×n.3

For a transition t ∈ T we define the set of its input places as •t = {p ∈ P | Pre(p, t) > 0} and the set of

its output places as t• = {p ∈ P | Post(p, t) > 0}. The notions for •p and p• are analogously defined.

A marking is a function M : P → N that assigns to each place of a Petri net a non-negative integer

2All the notions that appear in this section are formally defined in the rest of this paper.
3Here we use N = {0, 1, . . . , } and Z = {0,±1, . . .} to denote the sets of natural numbers and integer numbers, respectively.

We use R to denote the set of real numbers, R+
0 = {x ∈ R | x ≥ 0} to denote the set of nonnegative real numbers, and R+∞

0 =

R+
0 ∪ {+∞}.
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number of tokens, graphically represented by black dots and can also be algebraically represented as an m-

component vector. We denote by M(p) the marking of place p. A marked net 〈N,M0〉 is a net N with an

initial marking M0.

A transition t is said to be enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M ′ =

M0 + C(·, t). We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and we write

M [σ〉M ′ to denote that the firing of σ at M yields M ′. We use yσ to denote the Parikh vector of σ ∈ T ∗,
i.e., yσ(t) = k if transition t appears k times in σ.

We denote by R(N,M0) the set of all markings reachable from the initial one. A Petri net 〈N,M0〉 is

said to be bounded if there exists an integer k ∈ N such that for all M ∈ R(N,M0), M(p) ≤ k holds for all

p ∈ P .

Given a net N = (P, T, Pre, Post) we say that N̂ = (P̂ , T̂ , P̂ re, P̂ ost) is a subnet of N if P̂ ⊆ P ,

T̂ ⊆ T and P̂ re (resp., P̂ ost) is the restriction of Pre (resp., Post) to P̂ × T̂ . In particular, N̂ is called the

T̂ -induced subnet if N̂ = (P, T̂ , P̂ re, P̂ ost).

Given a net N = (P, T, Pre, Post), a cycle is a sequence x1x2 · · ·xkx1 where xi ∈ P ∪ T and xi ∈
•xi+1, i ∈ {1, . . . , k − 1}, and xk ∈ •x1. A cycle is said to be elementary if it does not contain other cycles.

The set of all elementary cycles in a Petri net is denoted asO. A net is said to be acyclic if it does not contain

any cycles, i.e., O = ∅.

Proposition 2.1 [28] Given a Petri netN = (P, T , Pre, Post) that is acyclic and two markingsM andM ′,

if there exists y ∈ Nn,y ≥ 0 such that M + C · y = M ′ ≥ 0, then there exists a sequence σ ∈ T ∗ whose

firing vector is y such that M [σ〉M ′.

2.2 Time Labelled Petri Nets

A labelled Petri net (LPN) is a 4-tuple G = (N,M0, E, `), where 〈N,M0〉 is a marked net, E is the alphabet

(a set of labels), and ` : T → E ∪ {ε} is the labeling function that assigns to each transition t ∈ T

either a symbol from E or the empty word ε. Therefore, the set of transitions can be partitioned into two

disjoint sets T = To ∪ Tuo, where To = {t ∈ T | `(t) ∈ E} is the set of observable transitions and

Tuo = T \ To = {t ∈ T | `(t) = ε} is the set of unobservable transitions. The labeling function can be

extended to sequences ` : T ∗ → E∗, i.e., `(σt) = `(σ)`(t) with σ ∈ T ∗ and t ∈ T and `(λ) = ε.4 We

denote w ∈ E∗ the word that is observed when the sequence σ ∈ T ∗ fires, i.e., w = `(σ). We use M1[w〉M2

to denote that there exists a sequence σ ∈ T ∗ such that `(σ) = w and the firing of σ at M1 yields M2.

A time labelled Petri net (TLPN) is a 6-tuple GT = (N,M0, E, `,Q,Θ0) where (N,M0, E, `) is an

LPN and Q : T → R+
0 × R

+∞
0 assigns each transition t a real5 time window, i.e., Q(t) = [lt, ut] where

lt ≤ ut. The timer vector Θ = [θt1 , . . . , θtm ]T ∈ Rm0+ associates with each transition t a timer θt. The

timer θt of transition t is initialized as zero and has a piecewise continuous evolution. When t is enabled,

its timer increases with a unitary rate, i.e., it measures the passage of time. When t is not enabled, its timer

remains constant. The timer θt is reset to zero whenever transition t fires or is disabled by the firing of another

transition. Transition t can fire only if it is enabled and its timer belongs to its time window, i.e., θt ∈ [lt, ut].

4In this paper we use “λ” to denote an empty sequence, while we use “ε” to denote the silent label that is assigned to unobservable

transitions.
5Most works dealing with TLPNs assume that the variable time takes rational values, to guarantee a finite state class graph. In our

approach we do not need to compute such a graph and assume that time takes real values.
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The LPN G = (N,M0, E, `) is said to be the underlying LPN of the TLPN GT . We consider a single-server

semantics, i.e., an enabled transition has a unique timer regardless of its enabling degree.

A state of a TLPN is presented as a pair (M,Θ) where M is a marking and Θ is a timer vector. We write

“(M0,Θ0)[(ψ, τend)〉(M,Θ)” with ψ = (t1, τ1) · · · (tk, τk) and τk ≤ τend to denote that: (1) the TLPN is

initialized at (M0,Θ0) with the absolute time τ0 = 0; (2) each ti fires at time τi; (3) after τ = τk no more

transition fires, and when τ = τend the plant is at state (M,Θ).

Given a TLPN GT , a timed sequence (TS) is a sequence ψ = (tj1 , τ1)(tj2 , τ2) · · · , (tjk , τk), where tji is

the i-th transition occurring in the TS and τi ∈ R+
0 is the time at which tji is fired. We use τ to denote the

absolute time determined by a global clock. The set of all TSs is denoted as Ψ.

An observation in a TLPN is a timed observation (TO) φ = (e1, τ1)(e2, τ2) · · · (ek, τk) where each ei ∈
E, i = 1, . . . , k, is an observable event and τi ∈ R+

0 denotes the time at which ei is observed. The set of

all TOs is denoted as Φ. The time labeling operator Po : Ψ → Φ, which associates a timed sequence to its

corresponding timed observation, is defined as:

• Po(λ) = λ;

• Po((t, τt)) = (e, τt) if `(t) = e;

• Po((t, τt)) = ε if `(t) = ε;

• Po(ψ(t, τt)) = Po(ψ)Po((t, τt)).

We use LOG(ψ) ∈ T ∗ to denote the logical firing sequence tj1tj2 · · · tjk associated to a TS ψ, and we

use LOG(φ) ∈ E∗ to denote the logical observed word e1e2 · · · ek′ associated to TO φ. Given a TS ψ, we

denote yψ the Parikh vector of its logical firing sequence, i.e., yLOG(ψ).

Definition 2.1 Given a TLPN GT = (N,M0, E, `,Q,Θ0) in which T = To ∪ Tuo, the unobservable

sub-TLPN of GT is the TLPN GTuo = (Nuo,M0,uo, E, `,Quo,Θ0,uo) where (Nuo,M0,uo, E, `) is the Tuo-

induced subnet of G, and Quo and Θ0,uo are Q and Θ0 restricted to Tuo, respectively. M

The TLPNs considered in this paper satisfy the divergent-free property, i.e., for any (M,Θ) and any time

τ there does not exist an infinite long TS ψ such that (M,Θ)[(ψ, τ)〉. This also means that the maximal

number of transitions that can fire during a finite period of time must be finite.

3 Marking Estimation Problem Formulation in TLPNs

3.1 Estimation in TLPNs

In our setting, we assume that the initial marking M0 is given and the initial timer vector is Θ0 = 0, i.e., the

initial state (M0,0) is known. Let us now characterize the relationship between a given timed observation

and the trajectories that may have produced it.

Definition 3.1 Given a TLPN GT = (N,M0, E, `,Q,Θ0), a TS ψ is said to be consistent with a TO φ at

time τ if (M0,Θ0)[(ψ, τ)〉 and Po(ψ) = φ. M

We write “(M0,Θ0)[(φ, τend)〉(M,Θ)” to denote that there exists a consistentψ such that (M0,Θ0)[(ψ, τend)〉(M,Θ).
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Definition 3.2 Given a TLPN GT = (N,M0, E, `,Q,Θ0), a TO φ = (e1, τ1) · · · (ek, τk) and an absolute

time τ > τk, the consistent state set (CSS) of (φ, τ) is:

S(φ, τ) = {(M,Θ) | (M0,Θ0)[(φ, τ)〉(M,Θ)}.

The consistent marking set (CMS) of (φ, τ) is:

C(φ, τ) = {M | (∃Θ)(M,Θ) ∈ S(φ, τ)}.

M

In plain words, given a TO φ and an absolute time τ , the consistent state set S(φ, τ) (resp., the consistent

marking set C(φ, τ)) contains all states (resp., markings) that can be reached from the initial state (M0,Θ0)

(resp., the initial marking M0) by firing some TS consistent with ψ. Hence there are two estimation problems

in TLPNs stated as follows.

Problem 1 (State Estimation in TLPN) Given a TLPNGT = (N,M0, E, `,Q,Θ0), a TO φ = (e1, τ1) · · · (ek, τk)

and an absolute time τ > τk, determine S(φ, τ). M

Problem 2 (Marking Estimation in TLPN) Given a TLPNGT = (N,M0, E, `,Q,Θ0), a TO φ = (e1, τ1) · · · (ek, τk)

and an absolute time τ > τk, determine C(φ, τ). M

In the literature, the usual approach to compute the set of consistent markings C(φ, τ) is first to obtain the

set of consistent states S(φ, τ) from the corresponding state class graph followed by extracting the marking

information from it. However, as we have mentioned in Section I, to compute consistent states is computa-

tionally expensive since in practice [10, 12, 13, 14] the state class graph is much larger than the reachability

set of the underlying untimed LPN, which is also illustrated by the example depicted at the end of Section VI.

Moreover, there is no efficient method to single-out those state classes that are time-spurious [10, 12, 13, 14].

Since in many practical cases what we are really concerned with is the set of consistent markings C, we

propose a different scenario to estimate this set, which does not require to compute the consistent states.

3.2 Assumptions

The marking estimation approach to be presented in Section V is applicable to nets that satisfy the following

assumptions.

Assumption 1 For all transitions t ∈ T , ut = +∞ holds, i.e., Q(t) = [lt,+∞).

The infinite upper bound in Assumption 1 models cases where events can occur but cannot be forced. In

other words, each operation t takes a minimal time lt to occur, but may be indefinitely delayed, and such a

delay cannot be pre-estimated. Note that when ut = +∞ for all transitions, the reachability space of GT is

identical to that of its underlying untimed net G. In addition, if a TLPN satisfies both lt = 0 and ut = +∞
for all t ∈ T , then the marking estimation problem is reduced to the standard marking estimation in the

underlying untimed net [29]. In such a case one can use other methods (such as basis markings [3]) that

pertain to untimed nets.
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Assumption 2 The Tuo-induced subnet of G is backward-conflict-free, i.e., each place has at most one input

transition.

Assumptions 2 means that each event occurrence can be explained by a single causal path, which is

widely used in the context of control [22, 23]. In addition, the backward-conflict-free assumption also plays a

very important role in establishing our marking estimation method in TLPNs, as discussed at the end of next

section.

To simplify the content of this paper, the following assumption is considered.

Assumption 3 The Tuo-induced subnet of N is acyclic and does not contain sink transitions, i.e., for all

t ∈ Tuo, t• 6= ∅.

This assumption is purely technical and may be relaxed if needed. In fact, a net with sink transition ts
can be modified by adding a dummy place pd with Pre(pd, ts) = 0, Post(pd, ts) = 1 and for all t 6= ts,

Pre(pd, t) = Post(pd, t) = 0, without affecting the behavior of the net. On the other hand, the acyclicity

assumption can be lifted as shown in [30] by introducing the so-called pseudo-observable transitions.

Finally we consider the last assumption on the observation structure.

Assumption 4 The underlying LPN G satisfies

|p•| > 1 ⇒ p• ⊆ To,

i.e., if a place has more than one output transition, then all its output transitions are observable.

Assumption 4 indicates that no transitions in a structural conflict are unobservable, i.e., labeled by the

empty string. Note that it does not require that transitions in a conflict should have different labels. Moreover,

Assumptions 2 and 4 jointly imply that the topology of the unobservable subnet is a marked graph.

3.3 Sensor Selection

In a control system, the observation structure depends on the sensors that a plant has been equipped with,

and as such it may often be suitably designed or modified if needed [24, 25, 26, 27]. In this subsection

we propose a method to find an optimal sensor selection that satisfies the structural requirements in the

assumptions mentioned above.

We define a cost function c : T → N∪{+∞} that assigns to each transition t a nonnegative integer value,

which represents the cost of making t observable (e.g., by deploying sensors accordingly). Transitions that

cannot be made observable are assigned an infinite cost: the set of such transitions is Td = {t | c(t) = +∞}.
The following proposition provides a method to obtain a sensor selection that satisfies Assumptions 2, 3, and

4.

Proposition 3.1 Given a TLPN GT = (N,M0, E, `,Q, Θ0) with no sink transitions and a cost function c,

the following procedure determines a sensor-selection vector z ∈ N|T | satisfying Assumptions 2, 3, and 4

with a minimum cost.

1. Compute the set of all elementary cycles O in GT ;
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Figure 1: The Petri net used in Example 3.1.

2. Solve the following ILPP:

min
∑
t∈T\Td c(t) · z(t)

s.t. Σt∈•pz(t) ≥ |•p| − 1(∀p ∈ P )

z(t) = 1,∀t ∈ p•(∀p such that |p•| ≥ 2)

Σt∈Oz(t) ≥ 1,∀O ∈ O

z(t) = 0,∀t ∈ Td

z(t) ∈ {0, 1}

(1)

Proof: In the sensor-selection vector z, z(t) = 1 means that a sensor is deployed for transition t to

make it observable. In Eq. (1), the first condition implies that there does not exist a place with more than

one unobservable input transitions, which enforces Assumption 2. The second condition means that for each

conflict place all its output transitions are observable, which enforces Assumption 4. The third condition

ensures that the unobservable subnet is acyclic, which enforces Assumption 3. The fourth condition means

that all transitions that cannot be made observable are not selected. Finally, the objective function guarantees

that the total cost of such a sensor deployment is minimum. �

Tarjan’s algorithm [31] can be used to find all elementary cycles in a digraph. Although the number of

elementary cycles may grow exponentially with the size of the net in the worse case, in practice the number

of cycles is typically quite reasonable. Moreover, if the plant is too complex such that its elementary cycles

cannot be enumerated, a near-optimal selection can be obtained heuristically.

Example 3.1 Consider the net in Figure 1 with cost function c(ti) = 5, 3, 2, 6, 5, 2, 7, 5, 4, 3, 5, 7 for i =

1, . . . , 12, rspectively. We want to find a sensor deployment satisfying Assumptions 2, 3, and 4. There
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are five cycles inO: p1t1p2t2p6t7p10t11p12t12p1, p1t1p2t3p7t8p10t11p12t12p1, p1t1p3t4p8t9p11t11p12t12p1,

p1t1p4t5p8t9p11t11p12t12p1, and p1t1p5t6p9t10p12t12p1. By solving ILPP (1) we have a sensor deployment

strategy To = {t2, t3, t5, t7, t9, t10} (grayed) with a minimal cost 20. Note that there is also another solution

To = {t2, t3, t5, t6, t7, t11} with the same cost. �

If Td = ∅, i.e., all transitions can be made observable, ILPP (1) always admits a solution since the

constraint set is feasible (z = 1 is a feasible solution). On the other hand, if Td is not empty, a solution can

be found if and only if the net induced by Td satisfies Assumptions 2 and 3, and Td ∩ p• = ∅ holds for all p

such that |p•| ≥ 2.

4 Slow- and Fast-bound Markings in TLPNs

4.1 Notions

In this section we introduce the key notions of slow-bound markings and fast-bound markings, and derive

some of their properties.

Definition 4.1 A TS ψ′ = (tj′1 , τ
′
1) · · · (tj′k , τ

′
k′) is said to be faster than a TS ψ′′ = (tj′′1 , τ

′′
1 ) · · · (tj′′k , τ

′′
k′′),

denoted as ψ′ ≺ ψ′′, if there exists a complete injective function6 α : {1, . . . , k′′} → {1, . . . , k′} such that

the following two conditions hold:

• tj′
α(i)

= tj′′i and τ ′α(i) ≤ τ
′′
i ;

• at least one of the following conditions is satisfied: (1) there exists i ∈ {1, . . . , k′′} such that τ ′α(i) < τ ′′i

holds, or (2) k′ > k′′.

M

In plain words, a TS ψ′ is said to be faster than a TS ψ′′ if ψ′ fires each transition in ψ′′ at a time no later

than that in ψ′′, and (1) at least one firing is earlier than the corresponding one in ψ′′, or (2) ψ′ fires some

additional transitions with respect to ψ′′. Note that ψ′ ≺ ψ′′ does not require that in ψ′ and ψ′′ transitions

should be in the same firing order. The following example illustrates Definition 4.1.

Example 4.1 Consider the following three TS’s: ψ1 = (t1, 1)(t1, 4)(t2, 5), ψ2 = (t1, 1)(t2, 2)(t1, 3), and

ψ3 = (t1, 1)(t3, 2)(t1, 4)(t2, 5). By Definition 4.1, ψ2 ≺ ψ1 and ψ3 ≺ ψ1 hold, while ψ2 and ψ3 are

incomparable. M

Definition 4.2 Given a TLPN GT = (N,M0, E, `,Q,Θ0) and a TO φ, we define:

• A fast-bound TS of the TO φ is a TS ψf = (tj1 , τ1) · · · (tjk , τk) such that: (1) ψf is consistent with φ,

and (2) there does not exist another consistent TS ψ′ 6= ψf such that ψ′ ≺ ψf . The state (Mf ,Θf )

reached by firing ψf from (M0,Θ0) is called the fast-bound state of ψf and the marking Mf
τ is called

the fast-bound marking of ψf .

6An injective function γ from set X to set Y is that for all x1, x2 ∈ X , x1 6= x2 implies γ(x1) 6= γ(x2). In other words, each

element in X is uniquely mapped to a unique element in Y .
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Figure 2: The time labelled Petri net used in Example 4.2.

• A slow-bound TS of the TO φ is a TS ψl = (e1, τ1) · · · (ek, τk) such that: (1) ψl is consistent with

φ, and (2) there does not exist another consistent TS ψ′ 6= ψl such that ψl ≺ ψ′. The state (M l,Θl)

reached by firing ψl from (M0,Θ0) is called the slow-bound state of ψl and the marking M l
τ is called

the slow-bound marking of ψl.

• A slow-fast-sequence-pair (SFS-pair) (ψl, ψf ) of the TO φ is a pair of slow-bound TS ψl and fast-

bound TS ψf such that LOG(Po(ψ
l)) = LOG(Po(ψ

f )). The corresponding slow-fast-marking-pair

(SFM-pair) is (M l,Mf ) where M l and Mf are the corresponding slow- and fast-bound markings of

ψl and ψf , respectively.

• The set of all SFM-pairs is denoted as SFM(φ).

M

Given a TO φ, a fast-bound TS is a consistent TS ψf in which each unobservable transition fires as early

as possible, and the slow-bound TS is a consistent TS ψl in which each unobservable transition fires as late

as possible. A fast-bound (resp. slow-bound) state/marking is a state/marking reached by a fast-bound (resp.

slow-bound) TS. A SFS-pair of TO ψ consists of a slow-bound TS and a fast-bound TS whose observable

transitions are identical, i.e., for each event e in TO φ, both ψl and ψf agree that e is generated by firing the

same transition t with label e.

Example 4.2 Consider the TLPN in Figure 2 with an initial marking M0 = [2, 0, 0, 2, 0]T . For better read-

ability, a transition t with label e and time interval [lt,+∞) is denoted as t(e)[lt], while for `(t) = ε its label

is omitted, i.e., t(ε)[lt] is denoted as t[lt].

As a first example, assume that time τ = 4 is reached with a null observation. There exists a slow-

bound TS ψl = λ with the corresponding slow-bound marking M l = M0 and a fast-bound TS ψf =

(t1, 1)(t1, 2)(t2, 3) with fast-bound markingMf = [0, 1, 1, 0, 2]. Hence there is a unique SFM-pair (M l,Mf )

at τ = 4 with ψl↑To = ψf↑To = λ.

As a second example, assume that after having observed event a at time τ = 4 (i.e., φ = (a, 4)), the

absolute time reaches τ = 5. In such a case, there exist two slow-bound TSs ψl1 = (t1, 3)(t4, 4) with

M l
1 = [1, 1, 0, 1, 0]T and ψl2 = (t1, 1)(t2, 3)(t3, 4) with M l

2 = [1, 0, 0, 1, 1]T and two fast-bound TSs ψf1 =

(t1, 1)(t1, 2)(t2, 3)(t4, 4)(t2, 5) with Mf
1 = [0, 0, 2, 0, 1]T and ψf2 = (t1, 1)(t1, 2)(t2, 3)(t3, 4)(t2, 5) with

Mf
2 = [0, 0, 1, 0, 2]. Hence in this case there are two SFM-pairs at τ = 5: (M l

1,M
f
1 ) with ψl1↑To = ψf1↑To =

t4 and (M l
2,M

f
2 ) with ψl2↑To = ψf2↑To = t3. M

Example 4.2 shows that, given a TO and an absolute time, the SFS-pair is in general not unique. However,

if the unobservable subnet satisfies Assumption 4, then each SFS-pair at τ uniquely determines an SFS-pair

10



at τ + ∆, in case that the time period between τ and τ + ∆ is a silence period. An open period of time

between absolute time τ and τ + ∆, denoted as (τ, τ + ∆), is called a silence period if no event is observed

between absolute time τ and τ + ∆.

Proposition 4.1 Given a TLPN GT = (N , M0, E, `, Q, Θ0) satisfying Assumption 4, then for each fast-

bound state (Mf
τ ,Θ

f
τ ) (resp. slow-bound state (M l

τ ,Θ
l
τ )) at time τ , there exists a unique fast-bound state

(Mf
τ+∆,Θ

f
τ+∆) (resp. unique slow-bound state (M l

τ+∆,Θ
l
τ+∆)) at time τ + ∆.

Proof: For the fast-bound state, let us simulate the net GT from state (Mf
τ ,Θ

f
τ ) at time τ . If a unique

transition t is enabled and its timer reaches θt = lt, we let it fire immediately such that the new-yielded state is

unique. Now consider the case that at some time instance two or more transitions tj1 , . . . , tjk simultaneously

satisfy θji = lji . since the unobservable subnet is conflict-free, each place has at most one output transition,

and hence the firing of any tji does not reset the timer of any other tji′ with i′ 6= i. This indicates that

tj1 , . . . , tjk can fire in an arbitrary order in an infinitesimal period of time. Hence the new-yielded state by

firing all tji ’s is also unique. As a result, the fast-bound state (Mf
τ+∆,Θ

f
τ+∆) is uniquely determined at time

τ + ∆. By a similar reasoning the slow-bound state (M l
τ+∆,Θ

l
τ+∆) is also unique. �

To simplify the notation, in the sequel we write “ψτ” and “Mτ” to denote a TS and marking at time τ ,

respectively. If a net satisfies ut = +∞ for all t ∈ T , the following property holds.

Proposition 4.2 Given a TLPN GT = (N , M0, E, `, Q, Θ0) satisfying Assumption 1, if M l
τ is a slow-bound

marking at time τ and (τ, τ + ∆) is a silent period, then M l
τ is slow-bound marking at time τ + ∆, i.e.,

M l
τ+∆ = M l

τ (2)

Proof: Suppose that (M l
τ ,Θ

l
τ ) is a slow-bound state reached by a slow-bound TS ψl. Since ut = +∞

holds for all t ∈ T , clearly ψl is a slow-bound TS at τ + ∆. �

Proposition 4.2 indicates that a slow-bound marking always remains unchanged during a silent period.

On the other hand, a fast-bound state (Mf
τ ,Θ

f
τ ) for a silence period can be updated by simulating the net

from state (Mf
τ ,Θ

f
τ ) by firing every unobservable transition as soon as possible (i.e., t fires immediately

when θt = lt), which we call it the asap-firing rule. However, once an event is observed, then fast- and the

slow-bound TS may not be unique. The computation of fast- and slow-bound states for such a case can be

done by Theorem 5.3 in the next section.

We can now introduce the notion of reachable hull of two markings.

Definition 4.3 Given a netN and two markingsM1,M2, the reachable hull of a pair of markings (M1,M2),

denoted as Rh(M1,M2), is the set of markings that are both reachable from M1 and co-reachable to M2,

i.e.:

Rh(M1,M2) = {M ∈ Nm | (∃σ′, σ′′ ∈ T ∗)M1[σ′〉M [σ′′〉M2}.

M

We use Rh,uo(M1,M2) to denote the unobservable reachable hull of a pair of markings (M1,M2) in

the unobservable subnet Nuo. If the unobservable subnet is acyclic, Rh,uo(M1,M2) can be described by the

following equation:
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Figure 3: The counterexample used in Example 4.3.

Rh,uo(M1,M2) = {M ∈ Nm | (∃y1,y2 ∈ Nn)

M = M1 + Cuo · y1,M2 = M + C ·uo y2}.
(3)

According to Propositions 4.1 and 4.2, if the unobservable subnet is forward-conflict-free, during a silent

period each SFM-pair (M l
τ ,M

f
τ ) can be easily and uniquely determined from its precursor. This may lead

one to conjecture that, if Assumptions 1 and 4 are satisfied, at time τ the unobservable reachable hull of

(M l
τ ,M

f
τ ) is the set of consistent markings. Unfortunately this conjecture is false.

Fact 1 In a TLPN GT = (N , M0, E, `, Q, Θ0) that satisfies Assumptions 1 and 4, after a silent pe-

riod (0, τ) elapses the unobservable reachable hull of (M l
τ ,M

f
τ ) may contain non-consistent markings, i.e.,

Rh,uo(M
l
τ ,M

f
τ ) \ C(λ, τ) 6= ∅.

The statement in Fact 1 can be verified by Example 4.3.

Example 4.3 Consider the TLPN in Figure 3 in which all transitions are unobservable. Clearly this TLPN

satisfies Assumptions 1 and 4. On the right is a part of its logical reachability graph. Since the set of markings

reachable in the underlying P/T net in this case coincides with the set of markings reachable in the time net,

we denote each node of this graph as “M(τ)” where τ denotes the minimal global time to reach marking M .

By passing a silent period (0, 4), the SFM-pair at τ = 4 is M l = [1, 1, 0, 0]T and Mf = [0, 0, 1, 1]T , and

the unobservable reachable hull consists of all seven markings in the graph. However, notice that marking

M = [1, 0, 0, 1]T belongs to the reachable hull of M l = [1, 1, 0, 0]T and Mf = [0, 0, 1, 1]T , but is not

reachable at time τ = 4 but only at time τ ≥ 5. �

Example 4.3 shows the existence of time-spurious markings in Rh,uo(M l
τ ,M

f
τ ), i.e., an intermediate

marking in the unobservable reachable hull of an SFM-pair at time τ is not necessarily reachable at time τ .

The problem here is that for the fast-bound marking Mf = [0, 0, 1, 1]T , the token in p4 must be the one

from p1 and the token in p3 must be the one from p2, but this information is not maintained in Eq. (3), and

there is no efficient method to distinguish the time-spurious markings like [1, 0, 0, 1]T from the unobservable

reachable hull: to keep track of each individual token requires an exhaustive analysis. Another possible

solution is to test the markings in Rh,uo(M l,Mf ) by an ILPP that consists of a series of time-transition

constraints. However, the scale of such a type of ILPP grows continually with the increase of the length of

the firing sequences. On the other hand, the backward-conflict-free assumption, i.e., Assumption 2, eliminates

such time-spurious solutions, which will be shown in the next section.
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5 Computation of CMS in a Subclass of TLPNs

In this section we present a series of results to establish our online estimation algorithm. Before delving into

the details we first provide a short roadmap of this section. First, when the plant is initialized (i.e., at τ = 0

with empty observation), we show that the consistent marking set C(λ, 0) is the unobservable reachable hull

of an SFM-pair (Section V-A). Second, if at time τ the consistent marking set can be described by a set of

SFM-pairs, then after a silent period (τ, τ + ∆) has elapsed (Section V-B) or an event e has been observed

(Section V-C), the new consistent marking set can also be described by a new set of SFM-pairs that can be

determined from the former, respectively. Combining all these results provides us an iterative way to compute

the consistent marking set without computing the consistent states.

5.1 Initialization of CMS

First, we propose a theorem showing that the initial consistent marking set is the unobservable reachable

hull of an SFM-pair. To prove the theorem we first give the following lemma that will be used here and in

Section V-B. The proof of this lemma can be found in the Appendix.

Lemma 5.1 Consider a Petri net G = (N,M0, E, `) that is backward-conflict-free, acyclic, and does not

contain sink transitions. Assume M1[σ〉M2 and letM ∈ Rh(M1,M2) be a marking in the convex hull of M1

and M2. Then yσ the Parikh vector associated to σ is the unique firing vector such that M1 +C · yσ = M2,

and for all σ′, σ′′ ∈ T ∗ such that M1[σ′〉M [σ′′〉M2, it holds yσ′ ,yσ′′ ≤ yσ .

Proof: See Appendix. �

Theorem 5.1 Given a TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, the initial

set of consistent markings is

C(λ, 0) = Rh,uo(M
l
0,M

f
0 )

where (M l
0,M

f
0 ) is the SFM-pair corresponding to the empty observation λ at time τ = 0, i.e.: (1) the

slow-bound marking is M l
0 = M0, (2) the fast-bound marking Mf

0 is the unique marking reached from M0

by firing a fast-bound TS composed only of transitions with lt = 0.

Proof: The set C(λ, 0) corresponds to an empty TO φ = λ at a global time τ = 0. Since by Assump-

tion 1 and Proposition 4.2, the slow-bound marking M l is M0 (i.e., no transition has to fire at τ = 0), the set

C(λ, 0) coincides with the set of markings reachable in the untimed LPN with initial marking M0 induced

by the set of unobservable transitions with lt = 0. Moreover, since the net is divergent-free, similar to the

reasoning in Proposition 4.1, the fast-bound marking Mf
0 obtained by the asap-firing-rule is unique. Thus, it

is sufficient to prove this theorem by proving that in the untimed LPN induced by Tuo,0 = {t ∈ Tuo | lt = 0},
C(λ) = Rh,uo,0(M l

0,M
f
0 ) holds.

Since in untimed acyclic nets, C(λ) = {M | ∃y : M = M0 + C · y} holds, and hence C(λ) ⊇
Rh,uo,0(M l

0,M
f
0 ) is true. On the other hand, by Lemma 5.1 for all M reachable from M l

0 by firing σ′,

yσ′ ≤ yσ holds. This indicates that Mf
0 is reachable from M , and hence C(λ) ⊆ Rh,uo,0(M l

0,M
f
0 ) holds.

�

Theorem 5.1 shows that when the plant TLPN is initialized at M0, in zero time and with null observation

the set of consistent markings is the reachable hull of an SFM-pair.
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5.2 Updating the CMS after a Silent Period

Now we prove that if the set of consistent markings is the reachable hull Rh,uo(M l
τ ,M

f
τ ) of an SFM-pair

(M l
τ ,M

f
τ ) at time τ , then after a silent period (τ, τ + ∆), the new set of consistent markings is the reachable

hull Rh,uo(M l
τ+∆,M

f
τ+∆) of the SFM-pair (M l

τ ,M
f
τ ) at time τ + ∆.

Theorem 5.2 Given a TLPNGT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, let C(φ, τ) =

Rh,uo(M
l
τ ,M

f
τ ) where (M l

τ ,M
f
τ ) is an SFM-pair at time τ . If (τ, τ+∆) is a silent period, then the consistent

marking set at the end of this period is

C(φ, τ + ∆) = Rh,uo(M
l
τ+∆,M

f
τ+∆)

where (M l
τ+∆,M

f
τ+∆) is the new SFM-pair at time τ + ∆ derived from (M l

τ ,M
f
τ ).

Proof: We prove both ⊇ and ⊆.

(⊇) Let ψf be the fast-bound TS such that

(M0,Θ0)[(ψf , τ + ∆)〉(Mf
τ+∆,Θ

f
τ+∆),

i.e., Mf
τ+∆ is reached at time τ + ∆ by firing a fast-bound TS ψf = (tj1 , τ1)(tj2 , τ2) · · · (tjk , τk). Since the

net satisfies Assumptions 2 and 3, by Lemma 5.1, there exists a unique Parikh vector yσ such that Mf
τ+∆ =

M l
τ+∆ + Cuo · yσ , and for any marking M ∈ Rh,uo(M l

0,M
f
0 ) such that M l

τ+∆[σ′〉M [σ′′〉Mf
τ+∆, it holds

yσ′ ≤ yσ . We will prove that for all such markings M and corresponding vector yσ′ there exists a TS ψ′

whose Parikh vector is yσ′ such that (M0,Θ0)[(ψ′, τ + ∆)〉, which implies M ∈ C(φ, τ + ∆).

Without loss of generality, we assume that the transitions in the unobservable subnet are numbered from

upstream to downstream, i.e., (transition tj is in the upstream of transition tj′ )⇒ (j < j′). Now from the

fast-bound TS ψf we construct a new TS ψ′ by the following procedure:

1. let ψ′ = ψf ;

2. if yψ′ = yσ′ then End;

3. find the maximal subscript ̄ such that ̄ = max{j | yψ′(tj) > yσ′(tj)};

4. in ψ′ find a pair (tjı̄ , τı̄) such that ı̄ = max{i | tjı̄ = t̄}, (i.e., the last (t̄, ·) that appears in ψ′);

5. delete (tjı̄ , τı̄) from ψ′ and goto Step 2;

This procedure terminates in a finite number of steps determining a TS ψ′ whose Parikh vector is yσ′ .

Now we prove that at each iteration of the above procedure (M0,Θ0)[(ψ′, τ+∆)〉 holds by contradiction.

Suppose that during an iteration the new intermediate TS ψ′ determined in Step 5 is not firable. This indicates

that by deleting (tjı̄ , τı̄), some (t, τ) inψ′ with τ > τı̄ cannot fire. Let (tjk , τk) be such a pair with the smallest

index k (note that k > ı̄). By deleting (tjı̄ , τı̄) at least one of the input places of tjk , say p, does not receive

sufficient tokens in advance so that tjk cannot fire at τk. Since by Assumption 2 place p can only receive

tokens from the firing of tjı̄ , it implies that one of the future firings of transition t = tjk is in fact permanently

disabled, i.e., M l
τ (p) + Cuo(p, ·) · y′ < 0 and M l

τ + Cuo · y′ � 0, where y′ is the Parikh of ψ′. Since the

transitions in the unobservable subnet are numbered from upstream to downstream, and by Step 4 (tjı̄ , τı̄)

is the pair with the largest index jı̄, all other (tji , τi) with ji ≥ jı̄ deleted in further iterations are not in the
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Figure 4: The evolution of the reachable hullRh,uo(M l
τ ,M

f
τ ) toRh,uo(M l

τ+∆,M
f
τ+∆) from time τ to τ+∆.

downstream of tjı̄ nor tjk , leading to p /∈ •tji . This will eventually lead to the fact that M l
τ + Cuo · yσ′ � 0

necessarily holds, which contradicts the fact that marking M is logically reachable from M l
τ+∆. Hence

M ∈ C(φ, τ + ∆) necessarily holds.

(⊆) We prove that for any marking M /∈ Rh,uo(M l
τ+∆,M

f
τ+∆), there does not exist a TS ψ′ such that

LOG(ψ′) = φ and (M0,Θ0)[(ψ′, τ + ∆)〉(M,Θ). By contradiction, suppose that there exists such a TS ψ′

whose firing yields a consistent marking M that does not belong to Rh,uo(M l
τ+∆,M

f
τ+∆). Clearly yψ′ � y

holds, where y satisfiesMf
τ+∆ = M l

τ+∆+Cuo ·y. It indicates that some transition, say t, in the unobservable

subnet fires some more times in ψ′ than that in the fast-bound TS ψfτ+∆ that yieldsMf
τ+∆. However, since by

Assumption 4 the firing of one transition neither disables other transitions nor affects their timers, it indicates

that at marking Mf
τ+∆ transition t can fire some times more. This contradicts the fact that Mf

τ+∆ is the

marking reached by firing a fast-bound TS. �

From Theorem 5.2, if the set of consistent markings is the reachable hull of the fast- and slow-bound

markings inNuo at time τ , then after a period of time ∆ without any observation, the new consistent marking

is also the reachable hull of the new fast- and slow-bound markings. Thus we have the following corollary.

Corollary 5.1 Given a TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, if C(φ, τ) =⋃
iRh,uo(M

l
τ,i,M

f
τ,i) where each pair (M l

τ,i,M
f
τ,i) is an SFM-pair at time τ , then after ∆τ without any

observation, the consistent marking set at the end of this period is

C(φ, τ + ∆) =
⋃
i

Rh,uo(M
l
τ+∆,i,M

f
τ+∆,i)

where each pair (M l
τ+∆,i,M

f
τ+∆,i) is the new SFM-pair at time τ + ∆ derived from (M l

τ,i,M
f
τ,i).

Example 5.1 Consider the TLPN in Figure 2. Initially M l
0 = Mf

0 = M0 holds at time τ = 0, which

indicates that Rh,uo(M l
0,M

f
0 ) = {M0}, i.e., the only possible marking in C(λ, 0) is M0. Suppose that

the time elapses to τ = 3 and no event is observed. At τ = 3, the slow-bound marking M l
3 = M l

0 =

M0, while the fast-bound marking Mf
3 = [0, 1, 1, 0, 2]T by the fast-bound TS (t1, 1)(t1, 2)(t2, 3), i.e.,

(M0, 0)[(t1, 1)(t1, 2)(t2, 3)〉(Mf
3 , 3). By Theorem 5.2, the consistent marking set C(λ, 3) = Rh,uo(M

l
3,M

f
3 ) =

Rh,uo(M0,M
f
3 ) that consists of five markings, i.e.,:

Rh,uo(M0,M
f
3 ) = {[2, 0, 0, 2, 0]T , [1, 1, 0, 1, 1]T ,

[0, 2, 0, 0, 2]T , [1, 0, 1, 1, 1]T , [0, 1, 1, 0, 2]T }.
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M

Figure 4 illustrates the evolution of C(φ, τ) when time passes. Suppose that the set of consistent markings

at time τ is the reachable hull of an SFM-pair (M l
τ ,M

f
τ ). When passing a silent time period (τ, τ + ∆), Mf

τ

evolves to Mf
τ+∆ while M l

τ remains unchanged (i.e., M l
τ+∆ = M l

τ ), and the new set of consistent markings

is the reachable hull of the new SFM-pair (M l
τ+∆,M

f
τ+∆).

Theorem 5.2 characterizes the evolution of the consistent marking set when a silent period of time passes.

Before we proceed, we briefly introduce the notion of minimal explanation vector [7] in labelled Petri nets.

Given a marking M and an observable transition t ∈ To, a minimal explanation of t at M is an unobservable

sequence σ ∈ T ∗uo such that M [σ〉[t〉, and there does not exist another sequence σ′ ∈ T ∗uo, σ′ 6= σ such that

M [σ′〉[t〉 and yσ′ � yσ . For a minimal explanation σ, yσ is called a minimal explanation vector. Since

the net considered in this paper satisfies Assumption 2, by a result in [3], the minimal explanation vector at

a marking M to enable an observable transition t, if exists, is unique and will be denoted as y(M,t) in the

sequel.

5.3 Updating the CMS after an Event is Observed

Suppose that the current absolute time is τ and the set of consistent markings is a reachable hull of SFM-

pair, i.e., C(φ, τ) = Rh,uo(M
l
τ ,M

f
τ ). Now let us consider the case that at this moment an event e ∈ Eo is

observed. We show that the new set of consistent markings C(φ(e, τ), τ) is the union of several reachable

hulls, each of which is associated to the firing of a transition whose label is e. To prove this result, we first

propose the following proposition showing that if an observable transition to ∈ To can fire at the fast-bound

state (Mf
τ ,Θ

f
τ ), then for any marking M belonging to the reachable hull Rh,uo(M l

τ ,M
f
τ ) and is reached

from M l
τ by a logical firing vector equal to or greater than the minimal explanation vector of t, there exists a

consistent state (M,Θ) such that to can fire at it.

Proposition 5.1 Given a TLPN GT = (N , M0, E, `, Q, Θ0) satisfying Assumptions 1, 2, 3, and 4,

if C(φ, τ) = Rh,uo(M
l
τ ,M

f
τ ), and (M0,Θ0)[ψf 〉(Mf

τ ,Θ
f
τ )[(to, τ)〉 where to ∈ To, then for any M ∈

Rh,uo(M̄
l
τ ,M

f
τ ) where

M̄ l
τ = M l

τ + Cuo · y(M l
τ ,t)

,

there exists a TS ψ such that Po(ψ) = Po(ψ
f ) and (M0,Θ0)[(ψ, τ)〉(M,Θ)[(to, τ)〉.

Proof: This proof is analogous to the proof of Theorem 5.1. Suppose that Mf
τ is reached by firing ψf .

We use the procedure described in the proof of Theorem 5.1 to iteratively remove unobservable (tji , τi)’s

from ψf by keeping (M0, 0)[(ψ′, τ)〉(M ′, τ)[(to, τ)〉, where ψ′ is the modified TS in each iteration. Similar

to the reasoning in Theorem 5.1, this procedure will eventually determine a new consistent TS ψ is obtained

such that (M0,Θ0)[(ψ, τ)〉(M,Θτ )[(to, τ)〉 holds. �

Now we show that if the current consistent marking set is Rh,uo(M l
τ ,M

f
τ ), then by observing event e,

the new set of consistent markings is the union of several reachable hulls, each of which is a new SFM-pair

derived from (M l
τ ,M

f
τ ) by firing some transition whose label is e.

Theorem 5.3 Given a TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, if the consis-

tent marking set C(φ, τ) = Rh,uo(M
l
τ ,M

f
τ ) at time τ , then C(φ(e, τ), τ) which is the new consistent marking
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Figure 5: The update of Rh,uo(M l
τ ,M

f
τ ) by observing event e at time τ , where `(t1) = `(t2) = e.

set by observing e at time τ is:

C(φ(e, τ), τ) =
⋃

`(ti)=e

Rh,uo(M
l
τ,ti ,M

f
τ,ti) (4)

where:

M l
τ,ti = M l

τ + Cuo · y(M l
τ ,ti)

+ C(·, ti) (5)

and

Mf
τ,ti = Mf

τ + C(·, ti). (6)

Proof: First we claim that if the event e is generated by firing an arbitrary transition ti such that

`(ti) = e, then Rh,uo(M l
τ,ti ,M

f
τ,ti) is a subset of C(φ(e, τ), τ) due to the following reason. If ti can fire at

the fast-bound state (Mf
τ ,Θ

f
τ ), then by Proposition 5.1 for any marking M ∈ Rh,uo(M̄ l

τ ,M
f
τ ) there exists

a corresponding state at which transition ti is enabled. Hence the markings that are logically reachable from

Rh,uo(M
l
τ ,M

f
τ ) by firing ti is Rh,uo(M̄ l

τ + C(·, to),Mf
τ + C(·, to)). Hence by firing ti the new set of

consistent markings is Rh,uo(M l
τ,i,M

f
τ,i). Therefore, the statement is true by taking all transitions ti with

`(ti) = e into account. �

Example 5.2 Let us consider again the TLPN in Figure 2. Initially C(λ, 0) = {M0}. If until time τ = 4 no

event is observed, the fast-bound state is (Mf
4 ,Θ

f
4 ) where Mf

4 = [0, 1, 1, 0, 2]T and M l
4 = M0. The set of

consistent markings is C(λ, 3) = Rh,uo(M
l
4,M

f
4 ) = Rh,uo(M0,M

f
4 ).

Suppose that we observe a at τ = 4. At the fast-bound state (Mf
4 ,Θ

f
4 ), both t3 and t4 can fire to generate

a. By Theorem 5.3, the new consistent marking set

C((a, 4), 4) =
⋃

i∈{3,4}

Rh,uo(M
l
4,ti ,M

f
4,ti

)

where (M l
4,t4 ,M

f
4,t4

) = ([1, 1, 0, 1, 0]T , [0, 1, 1, 0, 1]T ) and (M l
4,t3 ,M

f
4,t3

) = ([1, 0, 0, 1, 1]T , [0, 1, 0, 0, 2]T ).

M
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Theorem 5.3 can be generalized to the case that the set of consistent markings is the union of reachable

hulls of several SFM-pairs, which is stated by the following corollary.

Corollary 5.2 Given a TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, if its consis-

tent marking set C(φ, τ) =
⋃

(M l
τ ,M

f
τ )∈SFM(φ)Rh,uo(M

l
τ ,M

f
τ ) at time τ , then the set of consistent markings

by observing e at time τ , i.e., C(φ(e, τ), τ), is:

C(φ(e, τ), τ) =
⋃

(M l
τ ,M

f
τ )∈SFM(φ)

⋃
`(ti)=e

Rh,uo(M
l
τ,ti ,M

f
τ,ti) (7)

where M l
τ,ti and Mf

τ,ti are from Eqs. (5) and (6), respectively.

Proof: Straightforwardly from Theorem 5.3. �

Figure 5 illustrates the evolution of C(φ, τ) to C(φ(e, τ), τ) by observing event e. Suppose that the

consistent marking set before observing e is C(φ, τ) = Rh,uo(M
l
τ ,M

f
τ ), and there are two transitions t1

and t2 whose labels are both e, firable at the fast-bound state (Mf
τ ,Θ

f
τ ). Since t1 can fire at the fast-bound

state (Mf
τ ,Θ

f
τ ), by Theorem 5.3 the consistent markings by firing t1 (which is a subset of C(φ(e, τ), τ)) are

those in (M l
τ,t1 ,M

f
τ,t1), and the consistent markings by firing t2 (which is another subset of C(φ(e, τ), τ)) are

those in (M l
τ,t2 ,M

f
τ,t2). Hence the new consistent marking set C(φ(e, τ), τ) is the union of (M l

τ,t1 ,M
f
τ,t1)

and (M l
τ,t2 ,M

f
τ,t2).

5.4 The Final Result

Finally, by combining all results above, we reach the following conclusion.

Theorem 5.4 Given a TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4, for a TO φ

at the absolute time τ , the set of consistent markings is:

C(φ, τ) =
⋃

(M l
τ ,M

f
τ )∈SFM(φ)

Rh,uo(M
l
τ ,M

f
τ ). (8)

Proof: The statement holds by first applying Theorems 5.1 and 5.2 followed by repeatedly applying

Corollary 5.1, Theorem 5.3, and Corollary 5.2 for each (ei, τi) in φ. �

Theorem 5.4 provides us an iterative way to compute the consistent marking set, i.e., the consistent

marking set is not presented in an explicit way but is described by a linear algebraic system by SFM-pairs

that can be maintained online.

We conclude this section by observing that in our method the set of consistent markings C is represented

by the fast- and slow-bound markings, which are in fact vertices of C. On the other hand, in an untimed

continuous Petri net the set of consistent markings can also be represented as a set of vertices of convex

polyhedrons [32, 33]. We believe that by adding temporal constraints and similar assumptions, the approaches

in [32, 33] may also be applied to the marking estimation in time continuous Petri nets, which will be explored

in future work.

6 Online Marking Estimation Policy

By Theorem 5.4 the consistent marking set can be described by a linear algebraic system via SFM-pairs. In

this section we propose an online marking estimation algorithm, i.e., a marking estimator, for a TLPN that
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satisfies the assumptions.

6.1 The Algorithm

Algorithm 1 Online Marking Estimation
Input: A TLPN GT = (N,M0, E, `,Q,Θ0) satisfying Assumptions 1, 2, 3, and 4

1: Initialize X = {(M l
0,M

f
0 ,Θ0)} by Theorem 5.1;

2: while time elapses ∆ do
3: Let τ = τ + ∆;

4: for all (M l,Mf ,Θf ) ∈ X , do
5: Update (Mf ,Θf ) by the asap-firing rule;

6: end for
7: if an event e is observed; then
8: for all (M l,Mf ,Θf ) ∈ X , do
9: Remove (M l,Mf ,Θf ) from X ;

10: for all t ∈ Te, (Mf ,Θf )[(t, τ)〉, do
11: Let M l

new = M l + Cuo · y(M l,t) + Cuo(·, t);

12: Let (Mf
new,Θ

f
new) be the state (Mf ,Θf )[(t, τ)〉(Mf

new,Θ
f
new);

13: Let X = X ∪ {(M l
new,M

f
new,Θ

f
new};

14: end for
15: end for
16: end if
17: end while

We briefly describe the main step of our algorithm that is presented as Algorithm 1. The estimator keeps

track of a set of triples (M l,Mf ,Θf ) that are called the estimator states. In an estimator state (M l,Mf ,Θf ),

M l is a slow-bound marking and (Mf ,Θf ) is a fast-bound state. In the beginning, the estimator state is first

initialized as that in Theorem 5.1. During the online stage, if no event is observed, the slow-bound marking

M l remains unchanged while the fast-bound state (Mf ,Θf ) is simulated by applying the asap-firing rule.

Whenever an event is observed, each estimator state (M l,Mf ,Θf ) in X is removed from X and then be

checked one-by-one: for each transition to that is labelled with e and is firable at the fast-bound state (Mf , τ)

(i.e, (Mf , τ)[to〉), a new estimator state (M l
new,M

f
new,Θ

f
new) is computed by Eqs. (5) and (6) and put into

X . Precisely speaking, Mf
new is the marking reached from Mf by firing to, while M l

new is the marking

reached fromM l by firing a minimal explanation (whose Parikh vector is y(M l
τ ,to)) followed by to. Note that

if at an estimator state (M l,Mf ,Θf ) no transition labeled e is firable at (Mf ,Θf ), then this estimator state

is abandoned. At any moment, the current consistent marking set is the union of reachable hulls of all those

pairs (M l,Mf ).

Before presenting an example, we make some comments on Algorithm 1. Once an event e is observed,

a current estimator state (M l,Mf ,Θf ) is split to one or more new estimator states (M l
new,M

f
new,Θ

f
new)’s

where each M l
new is updated from M l by Eq. (5). This implies that the slow-bound markings are in fact the

so-called basis markings [7, 34] of the underlying LPN. As a result, if the LPN has finite number of basis

markings, they can be computed offine so that the online computational load can be further reduced. The
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Figure 6: The TLPN for the example in Section VI-B.

number of basis markings is in general much smaller than the size of the associated reachability graph (in the

worst case the same) of the LPN. On the other hand, SCGs that can also be computed offline are in general

much larger than the reachability space. This indicates that our approach have an advantage since only a

much smaller structure is computed during the offline stage. Moreover, it does not require that the underlying

LPN be bounded, which the SCG and MSCG based methods require.

6.2 An Example

Consider the TLPN in Figure 6 which models an automatic manufacturing system. Two types of parts from

two storages (p1 and p2) enter the workflow (t1 and t2, respectively) and are then assembled (t3). The semi-

finished product is then assembled (t4) with another part from a third storage (p6) to obtain a raw final product

(p7). Such a raw product may either be tested for quality control (t8), or can be sent (t6) to the product stock

(p9). A part to be tested (p8) is assembled (t10) with a test part from (p10). A product that passes the test is

put (t11) into the stock (p9), otherwise it is disassembled (t12) to return the two initial parts to their stocks,

respectively (the test part (from p6) is discarded). In this TLPN model, transitions t1, t2, t6, t8, t11, and t12
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are observable, and transitions t6 and t11 are indistinguishable since they generate the same signal “in-stock”.

In the following we consider two cases. For better readability, a transition t with label e and time interval

[lt,+∞) is denoted as t(e)[lt], while for `(t) = ε its label is omitted, i.e., t(ε)[lt] is denoted as t[lt].

1) Place p6 and p10 are bounded: Suppose that the numbers of tokens in p6 and p10 are bounded by 5,

i.e., the initial marking is [6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5] as shown in Figure 6. The TLPN in Figure 6 has

169335 state classes in the SCG and 38483 reachable markings in the underlying LPN. Therefore to estimate

the current markings by SCG-based methods, a very large SCG must be computed offline. On the contrary,

its underlying LPN has only 110 basis markings, which is about 2% of the logical reachability set and 0.3%

of the SCG.

Let us consider the following TO at time τ = 10:

φ = (a, 1)(b, 1)(d, 5)(c, 9)(e, 10). (9)

The detailed evolution of the set X is listed in Table 1. Initially, X contains only one estimator state

(M l
0,M

f
0 ,Θ) = (M0,M0,Θ0), which indicates that C(λ, 0) = {M0}.

At time τ = 1 before we observe any events, (M l,Mf ) (Entry 1) remains unchanged and hence the

consistent marking set is C(λ, 1) = {M0}. Now at τ = 1 we observe a, and (M l,Mf ,Θf ) is updated

accordingly, where M l
new = Mf

new = [6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5] (Entry 2) which is also the only con-

sistent marking. Then we observe b in an infinitesimal period of time after a, and (M l,Mf ,Θf ) is again

updated to M l
new = Mf

new = [4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5] (Entry 3).

Entries 4 to 7 shows the evolution of the estimator state during the silent period of time τ ∈ (1, 5). In

this silent period, the slow-bound marking remains unchanged while the fast-bound state evolves according

to the asap-firing rule. At the end of this period, the set of consistent markings is C((a, 1)(b, 1), 5) =

Rh,uo(M
l,Mf ) shown in Entry 7, where M l = [4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5] and Mf = [4, 4, 2, 2, 0, 0,

0, 0, 0, 0, 0, 5, 5]. Now we observe event d at time τ = 5. By Steps 7 to 15 in Algorithm 1, X is updated

to Entry 8 with M l = [4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5] and Mf = [4, 4, 0, 0, 1, 1, 0, 1, 0, 1, 0, 4, 4]. Here

M l
new = M l + Cuo · y(M l,t8) + C(·, t8) is obtained by following the transition relation from Mb1 to Mb2,

and (Mf
new,Θ

f
new) is obtained by firing t8 at state (Mf ,Θf ).

Entries 9 to 12 shows the evolution of (M l,Mf ,Θf ) in the silent period of time τ ∈ (5, 9). At the end of

this silent period, we have M l = [4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5] and Mf = [4, 4, 0, 0, 0, 2, 1, 0, 0, 2, 1, 2, 2]

as shown in Entry 12. By observing event c, we notice that both t6 and t11 with label c can fire at the fast-

bound state in Entry 12. As a result, the current estimator state (M l,Mf ,Θf ) in Entry 12 is split into two new

states (M l
new,1,M

f
new,1,Θ

f
new,1) and (M l

new,2,M
f
new,2,Θ

f
new,2) (in Entry 13), each of which corresponds

to the firing of t6 and t11, respectively. Hence we have

C((a, 1)(b, 1)(d, 5)(c, 9), 9) =
⋃
i=1,2

Rh,uo(M
l
i ,M

f
i )

where M l
i ’s and Mf

i ’s are those in Entry 13.

Finally after another silent period, the time reaches τ = 10. At the end of this silent period, we have

C((a, 1)(b, 1)(d, 5)(c, 9), 10) =
⋃
i=1,2Rh,uo(M

l
i ,M

f
i ), where both (M l

i ,M
f
i )’s in Entry 14 are derived

from (M l
i ,M

f
i ) in Entry 13. By observing event e, each estimator state (M l

i ,M
f
i ,Θ

f
i ) in X is checked.

Since at (Mf
2 ,Θ

f
2 ) (the second line in Entry 14) t12 with label e cannot fire, it indicates that the new consistent

markings cannot be a continuation from the the reachable hull of (M l
2,M

f
2 ). As a result, the estimator state
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Entry τ Observed TO (M l,Mf ,Θf ) in X

0 0 λ
([6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5], [6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

1 1 λ
([6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5], [6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5],

[1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0])

2 1 (a, 1)
([4, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5],

[0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0])

3 1 (a, 1)(b, 1)
([4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5],

[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0])

4 2 (a, 1)(b, 1)
([4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 4, 2, 2, 0, 1, 0, 0, 0, 0, 0, 4, 5],

[1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0])

5 3 (a, 1)(b, 1)
([4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 4, 1, 1, 1, 1, 0, 0, 0, 1, 0, 4, 4],

[2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])

6 4 (a, 1)(b, 1)
([4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 4, 1, 1, 0, 1, 1, 0, 0, 1, 0, 3, 4],

[3, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0])

7 5 (a, 1)(b, 1)
([4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], [4, 4, 0, 0, 1, 1, 1, 0, 0, 1, 0, 3, 4],

[4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0])

8 5 (a, 1)(b, 1)(d, 5)
([4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5], [4, 4, 0, 0, 1, 1, 0, 1, 0, 1, 0, 4, 4],

[4, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0])

9 6 (a, 1)(b, 1)(d, 5)
([4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5], [4, 4, 0, 0, 0, 1, 1, 1, 0, 2, 0, 3, 3],

[5, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])

10 7 (a, 1)(b, 1)(d, 5)
([4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5], [4, 4, 0, 0, 0, 1, 1, 1, 0, 2, 0, 3, 3],

[6, 6, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0])

11 8 (a, 1)(b, 1)(d, 5)
([4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5], [4, 4, 0, 0, 0, 2, 1, 0, 0, 1, 1, 2, 3],

[7, 7, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0])

12 9 (a, 1)(b, 1)(d, 5)
([4, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 5, 5], [4, 4, 0, 0, 0, 2, 1, 0, 0, 2, 1, 2, 2],

[8, 8, 0, 0, 1, 3, 0, 3, 0, 0, 1, 1])

13 9

(a, 1)(b, 1)(d, 5)(c, 9)
([4, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 5, 5], [4, 4, 0, 0, 0, 2, 0, 0, 1, 2, 1, 3, 2],

[8, 8, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1])

(a, 1)(b, 1)(d, 5)(c, 9)
([4, 4, 1, 1, 0, 0, 0, 0, 1, 0, 0, 5, 5], [4, 4, 0, 0, 0, 2, 1, 0, 1, 2, 0, 2, 3]

[8, 8, 0, 0, 1, 3, 0, 3, 0, 0, 0, 0])

14 10

(a, 1)(b, 1)(d, 5)(c, 9)
([4, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 5, 5], [5, 5, 0, 0, 0, 3, 0, 0, 0, 2, 1, 2, 2],

[9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2])

(a, 1)(b, 1)(d, 5)(c, 9)
([4, 4, 1, 1, 0, 0, 0, 0, 1, 0, 0, 5, 5], [5, 5, 0, 0, 0, 3, 1, 0, 0, 2, 0, 1, 3],

[9, 9, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0])

15 10 (a, 1)(b, 1)(d, 5)(c, 9)(e, 10)
([4, 4, 1, 1, 0, 0, 0, 0, 1, 0, 0, 5, 5], [5, 5, 0, 0, 0, 3, 0, 0, 0, 2, 1, 2, 2],

[9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])

Table 1: The stepwise evolution of X for the example in Section VI-B.
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(M l
2,M

f
2 ,Θ

f
2 ) is abandoned. On the other hand, transition t12 can fire at (Mf

1 ,Θ
f
1 ) (the first line in Entry 14).

Hence the updated X contains only one estimator state (M l
new,M

f
new,Θ

f
new) derived from (M l

1,M
f
1 ,Θ

f
1 )

in Entry 14. Therefore we finally have:

C((a, 1)(b, 1)(d, 5)(c, 9)(e, 10), 10) = Rh,uo(M
l,Mf ) (10)

where M l and Mf are those in Entry 15.

2) Place p6 and p10 are unbounded: Suppose that the numbers of tokens in p6 and p10 are not bounded,

i.e., in Figure 6 places p12 and p13 as well as the related arcs are removed. Since the underlying LPN is now

unbounded, its SCG is not finite and hence cannot be computed offline. Although an on-the-fly method that

computes the set of consistent state classes online may still be used, such a process is not efficient since the

number of consistent classes may grow with the length of the observed sequence. On the other hand, the

underlying LPN has also 110 basis markings. For the same TO φ = (a, 1)(b, 1)(d, 5)(c, 9)(e, 10) at τ = 10,

we have exact the same estimation result as illustrated in the bounded case. Note, however, that in general

the number of estimator states (i.e., the number of SFM-pairs) may be infinite if the TLPN is unbounded.

To conclude this section, let us compare our approach with other techniques available in the literature.

All SCG-based methods have to explicitly record all consistent state classes. For the schedulability-based

method [17], a set of logical consistent markings is explicitly computed and for each of them an ILPP needs

to be solved to remove the time-spurious markings. On the other hand, in our method only the tuples of

slow-bound marking and the fast-bound state are recorded, which requires much less computational effort

and less memory requirement.

Let us take Entry 7 in Table 1 as an example, i.e., we observe (a, 1)(b, 1) at τ = 5. The set of

consistent markings C((a, 1)(b, 1), 5) = Rhuo(M
l,Mf ) where M l = [4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5] and

Mf = [4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 5, 5], which consists of 26 markings. In the SCG there are 54 state classes

consistent with (a, 1)(b, 1) at τ = 5. By applying the schedulability-based method in [16, 17] and analyzing

the underlying untimed LPN, there are 192 consistent marking candidates that need to be tested one-by-one

by solving an ILPP, and finally all 26 consistent markings are explicitly recorded. On the contrary, applying

our method only one marking M l and one state (Mf ,Θf ) is recorded.

7 Conclusion

In this paper we propose an online marking estimation method for a subclass of TLPNs. The set of consistent

markings can be determined by a linear algebraic system based on the so-called slow-bound marking and

fast-bound marking pairs, which can be efficiently computed online. The proposed method does not require

the computation of the full state space, and hence the exhaustive construction of the full state space including

the state class graph is avoided. This approach provides guidelines of sensor deployment in the design stage

such that the online marking estimation problem can be efficiently solved. In future work we expect to relax

the assumptions used in this paper, and to consider stochastic time Petri nets in which the delay of a transition

is not fixed but follows a particular probability distribution.
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Appendix: Proof of Lemma 5.1

To prove Lemma 5.1 we first introduce the notion of terminal places.

Definition A.1: Given a non-zero firing vector y, a place p is called a terminal place of y if there exists a

non-zero component y(t) such that p ∈ t• holds, and for any other non-zero components y(t′) where t′ 6= t,

p /∈ •t′ holds. M

In other words, a terminal place of y is the output place of some transition with a nonnegative component

in y and is not an input place of any other transitions with nonnegative components in y. Note that the defi-

nition of terminal places is based on the net structure, and there does not necessarily exist a firable sequence

associated to y. It is not difficult to understand that under the assumptions of Lemma 5.1, for any non-zero

firing vector y the set of its terminal places is always non-empty, otherwise it implies the existence of cycles

and/or sink transitions. Moreover, by the definition, C(p, ·) · y > 0 holds if p is a terminal place of y. The

proof of Lemma 5.1 is given as follows.

Proof of Lemma 5.1: We first prove that for any markings M1 and M2 such that M1[σ〉M2 there exists a

unique firing vector yσ such that M1 + C · yσ = M2 by contradiction.

Suppose that there exist two different firing vectors y1 and y2 such that M1 + C · y1 = M2 and M1 +

C · y2 = M2, which indicates that C · y1 = C · y2. We can remove all commonly fired transitions from

both sides to obtain two new firing vectors ymin,1 and ymin,2 satisfying C · ymin,1 = C · ymin,2 (i.e.,

ymin,i = yi −min{y1,y2} for i = 1, 2 where the min operator on vector is intended componentwise) and

yTmin,1 · ymin,2 = 0. If ymin,1 = 0, it indicates that ymin,2 is a T -invariant of the net. However, this cannot

happen since for any place p that is its terminal place, C(p, ·) · ymin,2 > 0 holds. This argument also holds

for the case that ymin,2 = 0. Thus, both ymin,1 and ymin,2 must be non-zero. In such a case, if a terminal

place p of ymin,1 satisfies C(p, ·) · ymin,1 = k, then C(p, ·) · ymin,2 = k must also hold. However, since

ymin,1 and ymin,2 do not share any transitions, it indicates that place p can receive tokens by firing at least

two different transitions. This contradicts the backward-conflict-free assumption. As a result, we conclude

that the firing vector y such that M1 + C · y = M2 is unique.

Since y is unique, by the fact that yσ′ + yσ′′ = y and yσ′ ,yσ′′ ≥ 0, Lemma 5.1 holds. �
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