
Containment of Rumor Spread in Complex

Social Networks ⋆

Lan Yang a,dZhiwu Li a,bAlessandro Giua c

aSEME, Xidian University, Xi’an, China

bISE, Macau University of Science and Technology, Taipa, Macau

cDIEE, University of Cagliari, Cagliari, Italy

dAix Marseille University, Universite de Toulon, CNRS, LIS, Marseille, France

Abstract

Rumors can propagate at great speed through social networks and produce significant damages. In order to control rumor
propagation, spreading correct information to counterbalance the effect of the rumor seems more appropriate than simply
blocking rumors by censorship or network disruption. In this paper, a competitive diffusion model, namely Linear Threshold
model with One Direction state Transition (LT1DT), is proposed for modeling competitive information propagation of two
different types in a same network. The problem of minimizing rumor spread in social networks is explored and a novel
heuristic based on diffusion dynamics is proposed to solve this problem under the LT1DT. Experimental analysis on four
different networks shows that the novel heuristic outperforms pagerank centrality. By seeding correct information in the
proximity of rumor seeds, the novel heuristic performs as well as the greedy approach in scale-free and small-world networks
but runs three orders of magnitude faster than the greedy approach.

Key words: Social networks, Threshold models, Information propagation, Rumor containment.

Published as:
L. Yang, Z.W. Li, A. Giua, ”Containment of Rumor Spread in Complex Social Networks,” Information
Sciences, published on-line, 2019. DOI: https://doi.org/10.1016/j.ins.2019.07.055

⋆ This work was supported partially by the National Key R&D Program of China under Grant 2018YFB1700104,
the National Natural Science Foundation of China under Grant Nos. 61673309 and 61873342, the Science and
Technology Development Fund, MSAR, under Grant No. 122/2017/A3, and the Project PHC CAI YUANPEI
2017 from the Chinese Scholarship Council under Project No. 38908TK. (Corresponding author: Zhiwu Li. Tel.:
+86-29-8820-1986. Fax: +86-29-8820-2456.)

Email addresses: yanglan3009@gmail.com (Lan Yang), zhwli@xidian.edu.cn (Zhiwu Li),
giua@diee.unica.it (Alessandro Giua).



1 Introduction

Propagation phenomena can be observed in many complex systems as diverse as diffusion of innovation,
belief, and information in social networks, epidemics spread in human and animal physical contact net-
works, cascading failures in infrastructure networks, virus spread in computer networks, etc. Besides, the
prevalence of online social media has been witnessed in the past decades where people are more and
more likely to exchange ideas, share information, and even adopt innovations or new products. Thus a
rich body of the research has been devoted to analyzing the propagation of information, opinion, social
behavior, and innovation. This kind of research may help people to understand how the information or
opinion propagates in social networks and how to convince people to adopt an innovation or follow a
new idea. To model such propagation, Kempe et al. [20] firstly proposed two main discrete diffusion
models, namely the Linear Threshold Model (LTM) and the Independent Cascade Model (ICM). Both
models consist in directed graphs denoted by G(V,E), where each node represents a user or an individual
and has two alternative states at a given time step, namely active (if it has adopted the innovation) and
inactive (if it has not adopted the innovation). Initially, all the nodes are inactive. At time step t = 0, a
subset of nodes S ⊆ V is activated in order to start the diffusion process and other nodes stay inactive.

1.1 Related work

The most widely studied problem considering propagation in social networks is the influence maximization
problem. This is a problem of identifying a small subset of early adopters to maximize the total influence
propagation for a given diffusion model and has a clear practical motivation in many applications including
budget allocation in viral marketing [1, 11, 20, 27, 34, 41, 46], controlling the rumor spread [17, 40, 48],
opinion formation [14, 33, 38, 49], information spread forecasting [26], etc. The influence maximization
problem was firstly formalized by Kempe et al. [20] as an optimization problem and is proved to be
NP-hard under both the ICM and LTM. The authors then presented a greedy algorithm to solve the
problem that can achieve a good sub-optimal solution. Following this work, improved greedy algorithms
[8, 9, 13, 24], community based approaches [7, 23, 36], new centrality measures [35, 37] and efficient
heuristics [15, 25, 31, 45] have been proposed to solve the problem aiming to balance the time complexity
of algorithms and the influence propagation and trying to make them scalable to large datasets. In recent
years, researchers have studied the influence maximization problem in more complex networks by taking
the heterogeneity of individual relationships [18] or multiplexity [42] into consideration.

Influence maximization problems are to maximize the spread of good things such as positive information
and innovation. Undesirable things, such as failures, rumors, epidemics, etc., may also spread in a similar
fashion and could produce significant damages to the society. For instance, the rumor “Two explosions
in White House and Obama is injured” occurred in April 23, 2013 caused 10 billion USD losses before
the rumor was clarified [32]. Therefore, the problem of containing or controlling the undesirable things
spread is nonnegligible. Recently, Yang et al. [44] addressed two different classes of influence minimization
problems. The first one, called loss minimization with disruption, aims to minimize the spread due to an
unavoidable disturbance. The second one, called diffusion minimization with guaranteed target, aims to
minimize the spread under the constraint that the spread should reach a given target set.

In this paper, we focus on containing the rumor spread in social networks. Rumor control strategies
can be divided into two categories: network disruption strategies and counterbalance strategies. Network
disruption strategies can be carried out by removing some critical nodes and edges of the underlying
network and were used in [21, 22] to suppress the misinformation spread. However, such a strategy is not
viable in practice since (1) interfering with the network structure may be impossible for a control agent
and (2) removing critical nodes is a form of censorship that may violate ethical standards. Counterbalance
strategies, on the contrary, aim to reduce the diffusion of rumors by spreading correct information. This
is the approach that we will consider in this paper.

The basic diffusion models –such as the one we considered in [44]– assume that there is only one item
propagating in the network. For this reason they are not suitable to model the competitive propagation
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phenomenon that characterizes the use of a counterbalance strategy to control the rumor spread. Several
competitive diffusion models have been proposed [3, 4, 5, 16, 29, 47] being different in the mechanisms
describing how an individual chooses an item to adopt when two competitive items reach him/her at
the same step. Under the competitive diffusion models, a meaningful problem, i.e., competitive influence
maximization, is that of choosing a suitable set of nodes adopting an item initially, so as to maximize
the influence spread of such an item. It is usually assumed that the seeding strategy of the competitors
has already been fixed and is known. Nash equilibrium analysis has been proposed in the case in which
all competitors may adapt their strategy in a game theoretic perspective [10].

In this paper, we also consider the competitive propagation between two types of information, e.g., rumor
and truth (from now on for the sake of simplicity we will use “truth” instead of “correct information”) on
a topic or an activity. Instead of studying the competitive influence maximization problem, we address
the problem of minimizing rumor spread by choosing a suitable set of nodes to spread the truth once the
rumor is detected.

Similar work has been done in [5] and [16]. Specifically, in [5], minimizing rumor spread was studied
considering an independent cascade model where it is assumed that if truth and rumor reach an individual
at the same step then truth prevails. In [16], He et al. formalized the influence blocking maximization
problem under an extension of the linear threshold model where rumor prevails if an individual can be
activated by both rumor and truth at the same time step.

However, the above two models are limited in two aspects.

• The probability of a user accepting the truth when rumor and truth reach him/her simultaneously is
either 0 or 1. However, in realistic cases this probability of individuals accepting the truth varies with
many complex social factors. As an example, sometimes he/she may doubt the source of the truth.
• In addition, all the mentioned competitive diffusion models assume that once an individual is activated
by one type of information, he/she keeps like that forever and never changes his/her mind. This
assumption works well for product adoption that is associated with purchase behaviors which typically
are not easily reversible, but not for information spread or opinion formation since people’s attitude
towards a politic activity or a news event changes according to new information gathered from the
network.

1.2 Contributions

In this work, there are three main contributions.

First, a Linear Threshold model with One Direction state Transition (LT1DT) is presented to overcome
the shortcomings of previous models.

• We introduce two thresholds for each individual: influence threshold and decision threshold which take
effect in different stages when activating an inactive node or convincing a rumor activated node to
switch its belief to the truth.
• The model allows a reconsideration for nodes that have already accepted the rumor but not for nodes
that have already accepted the truth.

Such a model is consistent with behavioral patterns that many of us have personally observed: people
who have unintentionally contributed to the rumor spread may later apologize for the mistakes. On the
other hand, an individual which knowingly accepts the truth will most likely disregard the rumor [40].

The LT1DT turns out to be non-progressive due to the reconsideration process. However, by analyzing
the steady state, we can provide an upper bound of the number of nodes that will eventually adopt the
rumor and a lower bound of the number of nodes that will eventually adopt the truth.

Second, under the framework of the LT1DT model, we address the issue of minimizing rumor spread
adopting a counterbalance strategy. We show that this problem is NP-hard and propose a novel heuristic
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called ContrId which is based on the diffusion dynamics to solve the problem. We compare ContrId with
two different heuristics which are adaptations of well known ones. One is solely based on the network
structure and uses a PageRank algorithm to select nodes with higher centrality score and the other
one uses a greedy framework called MinGreedy. ContrId outperforms PageRank and has the same level
of computation complexity, which grows linearly with the number of nodes n in the network. ContrId
performs not as well as MinGreedy in terms of rumor containment but runs three orders of magnitude
faster than MinGreedy.

Third, we study the proximity effect, i.e., the effect of seeding truth in the proximity of rumor seeds,
in combination with the algorithms ContrId, PageRank, and MinGreedy. The corresponding heuristics
are called ProxContrId, ProxPageRank, and ProxMinGreedy. Such restriction significantly reduces the
computation complexity of the heuristics especially for MinGreedy and brings better effectiveness of rumor
containment. The experimental results also show that ProxContrId performs as well as ProxMinGreedy
in scale-free and small-world networks and runs three orders of magnitude faster than ProxMinGreedy.
Furthermore, ContrId and ProxContrId can guarantee that adding nodes to the truth seed set will not
increase the rumor spread. This cannot be guaranteed if the truth seed set is selected by other approaches
such as PageRank and ProxPageRank.

Some preliminary results on this topic were presented in [43]. This paper is substantially different: an
analysis of the steady state is provided; a greedy approach and its constrained version are presented as well
to solve the problem of minimizing rumor spread in order to compare ContrId and the greedy approach;
complete analysis of computation complexity and monotonicity guarantee of all presented approaches are
clarified; the issue of scalability of the approaches are discussed; a more comprehensive simulation on both
synthetic datasets generated by some popular models (e.g., Barabási-Albert model [2] and Watts-Strogatz
model [39]) and real-world datasets is given.

1.3 Organization

The organization of this paper is the following. Section 2 proposes a new competitive diffusion model, i.e.,
Linear Threshold model with One Direction state Transition. Section 3 presents the minimizing rumor
spread problem (MRS) and its hardness. Section 4 lists two categories of heuristics to solve the MRS
problem. A series of experimental study are presented in Section 5. Section 6 concludes the paper and
discusses the future work.

2 Linear Threshold model with One Direction state Transition

In this section, we generally introduce the Linear Threshold model with One Direction state Transition
(LT1DT for short) to describe the competitive influence propagation of two items (e.g., two similar
products with different qualities, two opposite beliefs on a topic, etc.), say R and T, in the same network.

2.1 Network Structure

A LT1DT network N is a 4-tuple (G(V,E),W, θ, θR) where G(V,E) is a directed graph with V =
{1, 2, ..., n} denoting the set of nodes and E ⊆ V × V denoting a set of directed arcs, i.e., we write
(u, v) ∈ E when there is a directed arc from node u to v. Functions θ, θR : V → (0, 1] are mappings that
assign an influence threshold θu ∈ (0, 1] and a decision threshold value θRu ∈ (0, 1] to each node u ∈ V .
Function W : V × V → (0, 1] is a mapping that assigns a weight W (u, v) ∈ (0, 1] to each directed arc
(u, v) ∈ E such that W (u, v) = 0 if (u, v) /∈ E and for all v ∈ V it holds

∑
u∈V W (u, v) = 1.

The influence threshold θu intuitively represents the tendency of node u to be influenced to participate
into an activity or adopt a type of information or innovation when their neighbors do [20] (the smaller θu
is, the easier node u can be influenced) and the decision threshold θRu represents the tendency of node u
to adopt item R after being influenced (the smaller θRu is, the easier node u will adopt item R). We define
the in-neighbor set of node u ∈ V as N in

u = {v|(v, u) ∈ E} and out-neighbor set as Nout
u = {v|(u, v) ∈ E}.

Arc (u, v) represents that node u has direct influence on node v.
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In this paper we assume that the parameters of the network are given. In reality, it may not be easy to
learn them from real social network data. This identification problem goes beyond the scope of this paper
but we refer to [12] for the studies on learning network parameters.

2.2 Diffusion Dynamics

In the LT1DT model, each node has three alternative states at each step: inactive, R-active (adopting
R), and T-active (adopting T) and one transient state: influenced. Let SR denote the seed set of R which
represents a set of nodes that adopt R at time step t = 0. Such an adoption starting from the seed set
propagates to the network in discrete steps. We denote by φT

t the set of nodes that adopt T at step t. The
set of nodes T-active at step t, i.e., those which adopt T in the interval [0, t], is denoted by ΦT

t =
⋃t

k=0 φ
T
k .

The notations SR, φ
R
t will be similarly adopted for item R. Let φR→T

t denote the set of nodes changing
from R-active to T-active at step t. Then, the set of nodes R-active at step t, i.e., those which adopt R
and do not change the decision in the interval [0, t], is denoted by ΦR

t =
⋃t

k=0 φ
R
k \

⋃t
k=0 φ

R→T
k . The set

of nodes that are active (no matter if R-active or T-active) at step t, is denoted by Φt = ΦR
k ∪ ΦT

t . By
definition, we have Φ0 = SR ∪ ST .

 !"#$ %&

a

 !"#$%!&%'

()*&+ ,%
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 !"#$%&'

a
b

c

d

Fig. 1. LT1DT model: Node-level automaton. Events a, ā, b, c, d, d̄ represent different possible state transition.
When a node is inactive, event a (the node is influenced) occurs if Eq. (1) holds, otherwise event ā (remains
inactive) occurs. When a node is influenced, event b (the node adopts R) occurs if Eq. (2) holds, otherwise event
c (the node adopts T) occurs. When a node is R-active, event d̄ (the node remains R-active) occurs if Eq. (2)
holds, otherwise event d (the node changes its mind to T-active) occurs.

Different with the LTM, in the LT1DT at each step, each node uses its own node-level automaton to
decide to which state it transits. The state transition depends on its current state and the influence it
received and compared to its thresholds. The node-level automaton is shown in Fig. 1 where each state
is indicated by a circle with label and the influenced state framed by the dotted line is transient.

Precisely, at step t = 1, 2, · · · , two processes occur concurrently, i.e., activation process (for each inactive
node u ∈ V \ Φt−1) and reconsideration process (for R-active nodes except the seeding nodes u ∈ V \
(ΦT

t−1 ∪ SR))
1 .

2.2.1 Activation process

The process of activating an inactive node takes place in two stages: influence stage which depends on the
influence threshold and decision stage which depends on the decision threshold. In the influence stage, an
inactive node u is influenced to participate into the activity if the total weight from its active in-neighbors
is greater than or equal to θu, i.e., ∀u ∈ V \ Φt−1,

u is influenced ⇐⇒
∑

v∈Nin
u ∩Φt−1

W (v, u) ≥ θu. (1)

In the decision stage a node’s decision depends on its decision threshold θRu . Node u will adopt R if the
ratio of the sum of the influence weights from its R-active in-neighbors to the total weight from its active

1 The reconsideration of the R’s seeds is not allowed since normally initial spreaders are given free samples or
benefits and it is hard to change their mind.
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in-neighbors is greater than or equal to θRu , i.e.,

u ∈ φR
t ⇐⇒

∑
v∈Nin

u ∩ΦR
t−1

W (v,u)

∑
v∈Nin

u ∩Φt−1

W (v,u)
≥ θRu . (2)

Otherwise, it will adopt T, i.e., u ∈ φT
t .

2.2.2 Reconsideration process

At each step t, an R-active node u ∈ V \ (ΦT
t−1 ∪ SR) reconsiders its active states due to the influence

of its in-neighbors. It remains R-active if the ratio of the sum of the influence weights from its R-active
in-neighbors to the total weight from its active in-neighbors is greater than or equal to θRu , i.e., Eq. (2)
holds. Otherwise, it becomes T-active, i.e., u ∈ φR→T

t .

The evolution propagates until no more individual can be influenced or reconsider his decision. In this
case the network enters a steady state. The sets of R-final adopters and T-final adopters are denoted by
Φ∗

R(SR, ST ) and Φ∗
T (SR, ST ) =

⋃∞
t=0 φ

T
t , respectively. The set of final adopters including R-final adopter

and T-final adopter is denoted by Φ∗(SR, ST ) and its cardinality |Φ∗(SR, ST )| is called the adoption
function. Analogously, the cardinality of R-final adopters, i.e., |Φ∗

R(SR, ST )|, is called the R-adoption
function, and |Φ∗

T (SR, ST )| is called the T-adoption function.

Note that the LT1DT can be directly reduced to the simple LTM model when there is only one type of
item propagating through the network.

In the following two parts, we discuss the properties of the LT1DT model in terms of the transient phase
and the steady state.

2.3 Analysis of the System’s Dynamics

We say that a set function f(S) : 2V → R is non-decreasing (resp., non-increasing) if for any subsets
S ⊆ S′ ⊆ V , it holds f(S) ≤ f(S′) (resp., f(S) ≥ f(S′)). Function f(S) is said to be monotone if it is
non-increasing or non-decreasing. An analogous notion of monotonicity with respect to argument S1 can
be given for a function f(S1, S2, . . . , Sn) with multiple arguments.

The propagation of the two items in the LT1DT model is a complex phenomenon where competition and
complementarity may occur.

Let us first consider the timed evolution during the transient phase. The total propagation is progressive
in the network since any active node never switches back to inactive. The propagation of T is progressive
as well since T-active is a sink state. However, the propagation of R is non-progressive since a node that
is R-active at a certain step may switch to T-active in a future step.

Concerning the final steady state, while both adoption function |Φ∗(SR, ST )| and T-adoption function
|Φ∗

T (SR, ST )| are obviously non-decreasing w.r.t. ST given SR, the R-adoption function |Φ∗
R(SR, ST )| is

not non-increasing w.r.t. ST given SR, that is, adding nodes to the seed set of T may not always decrease
the spread of its competitor R. This property means that in this setting the choice of the seed set of
item T requires particular consideration if the objective is that of minimizing the number of adopters of
item R. This phenomenon cannot be avoided in some scenarios because spreading a competitive product
boosts the awareness of such type of product or innovation, while the type of product adopted depends
on the human decision making. However, we will show that if ST is selected by some particular strategies
(e.g., ContrId and ProxContrId presented in Section 4), |Φ∗

R(SR, ST )| is guaranteed to be non-increasing
w.r.t. ST .

We show the non-monotonicity in the general case by giving an example. Consider the network in Fig. 2.
Assume that SR = {1}, W (u, v) = 1/|N in

v |, θ2, θ3 ∈ (0.5, 1], θ5 ∈ (0, 0.5), and θR2 , θ
R
3 ∈ (0, 0.5), θR5 ∈

(0.5, 1]. Without the competition with T, i.e., only R spreads in the network, Φ∗
R(SR, ∅) = {1, 2, 5, 6}. By
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Fig. 2. A counterexample for monotonicity.

spreading T from node 6 (i.e., ST = {6}), node 5 will reconsider its decision to adopt T, which results in
Φ∗

R = {1, 2} and Φ∗
T = {5, 6}. Such an addition of ST decreases the spread of R. However, if set ST = {4},

we have Φ∗
R = {1, 2, 5, 6, 3} and Φ∗

T = {4}. Node 3 gets an additional influence from node 4 but adopts
R based on its decision threshold. This implies that adding nodes to ST may increase the spread of R.

2.4 Analysis of the Steady State

In this part, we first present a characterization of the steady state based on the notion of cohesiveness
which was formalized in [1] for the LTM. We can see from the state transition graph from Fig. 1 that,
each influenced node will become active (either R-active or T-active) eventually. Therefore, the influence
stage is exactly equivalent to the activation process of the LTM. Then, if we define the total seed set
S = SR ∪ ST , the set of final adopters can be characterized based on the notion of cohesiveness.

Definition 2.1 [1] A subset X ⊆ V is called a cohesive set if for all u ∈ X it holds:

∑

v∈X∩Nin
u

W (v, u) > 1− θu (3)

⋄

This states that a set X ⊆ V is cohesive if for all u ∈ X , the sum of the influence coming from set X
exceeds 1 − θu, which is equivalent to say that the sum of the influence that does not come from set X
is below its influence threshold, i.e.,

∑

v∈V \X∩Nin
u

W (v, u) < θu. (4)

Given a cohesive set X , if no node in X belongs to the total seed set S = SR∪ST , then all nodes in X will
never become active (or influenced) at the following steps. This leads to the following characterization of
the set of final adopters.

Lemma 2.1 [1] Given a LT1DT N = (G(V,E),W, θ, θR) and seed sets SR, ST ⊆ V , let S = SR ∪ ST

and M ⊆ V \ S be the maximal cohesive set contained in V \ S. The set of final adopters is:

Φ∗ = V \M (5)

⋄

Example 2.1 Consider again the simple LT1DT shown in Fig. 2, where set X = {1, 2, 3, 4} is a cohesive
set. Assume that SR = {1} and ST = {6}. The maximal cohesive set M contained in V \S is M = {3, 4}
and then Φ∗ = {1, 2, 5, 6}. △

The set of final adopters Φ∗ can be computed by simulating the evolution. Here, Lemma 2.1 provides a
direct way to compute Φ∗ without necessity to determine the evolution of the network. We refer to [44]
for the computation of Φ∗ by solving an integer linear programming.

Based on the characterization of the steady state, we can extract an active subgraph Ĝ(V̂ , Ê) from the
original graph G(V,E) by keeping all nodes in Φ∗ and their relationships such that V̂ = Φ∗ = V \M
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and Ê ⊆ V̂ × V̂ ⊆ E. In the active subgraph Ĝ, all nodes are active but we cannot distinguish which is
R-active or T-active except for the seed nodes without studying the evolution of the network. However,
we can provide a lower bound for the T-adoption function |Φ∗

T | and an upper bound for the R-adoption
function |Φ∗

R|.

Definition 2.2 A node v ∈ V̂ \ST is said to be reachable from SR in Ĝ if there exists at least a directed
path from any node in SR to v without passing through a node in ST . ⋄

Next two results provide for nodes in Ĝ a sufficient condition for becoming T-active and a necessary
condition for becoming R-active.

Theorem 2.1 In the active subgraph Ĝ, a node v is reachable from SR in Ĝ if it is R-active in the steady
state.

PROOF. For any R-active node v, Eq. (2) holds in a certain step t, which indicates that there exists
at least one of its in-neighbor node u that is R-active before t. Repeating this argument, we can find a
directed path from SR to v without passing through any node in ST . Then by Definition 2.2, node v is
reachable from SR in Ĝ.

Theorem 2.2 In the active subgraph Ĝ, a node v ∈ V̂ is T-active if v is not reachable from SR.

PROOF. By Theorem 2.1, we can infer that any node that is not reachable from SR in Ĝ cannot be
R-active in the steady state, which means that it must be T-active since every node in Ĝ is active.

1

2 3 4 5

67

8

9

(a) A simple LT1DT

1

2 3 4 5

(b) Active subgraph

Fig. 3. Extraction for the active subgraph.

Example 2.2 Consider the simple LT1DT network shown in Fig. 3a with 9 nodes whose influence thresh-
olds are [0.6, 0.6, 0.5, 0.3, 0.2, 0.7, 0.8, 0.7, 0.6] and decision thresholds are [0.5, 0.5, 0.6, 0.3, 0.5, 0.5,
0.5, 0.5, 0.5] and the influence weight W (u, v) = 1/|N in

v |. Assume that SR = {1} and ST = {4}. The
maximal cohesive set within V \ (SR ∪ ST ) is M = {6, 7, 8, 9}. Then we have Φ∗ = {1, 2, 3, 4, 5}. The
active subgraph Ĝ can be extracted as in Fig. 3b. In Ĝ, node 5 is not reachable from SR, therefore it is
T-active. By simulating the evolution, we have Φ∗

R = {1} and Φ∗
T = {2, 3, 4, 5}. △
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Theorems 2.1 and 2.2 provide an upper bound and a lower bound for |Φ∗
R| and |Φ

∗
T |, respectively.

Corollary 2.1 Given a LT1DT N = (G(V,E),W, θ, θR) with seed sets SR, ST ⊆ V such that SR∩ST = ∅,
it holds |Φ∗

T | ≥ |R̄SR(Ĝ)|, where R̄SR(Ĝ) denotes the set of nodes that are not reachable from SR in the

active subgraph Ĝ.

Corollary 2.2 Given a LT1DT N = (G(V,E),W, θ, θR) with seed sets SR, ST ⊆ V such that SR∩ST = ∅,
it holds |Φ∗

R| ≤ |RSR(Ĝ)|, where RSR(Ĝ) denotes the set of nodes that are reachable from SR in the active

subgraph Ĝ.

Example 2.3 Consider again the LT1DT shown in Fig. 3a. By analyzing the reachability of each node
in Ĝ shown in Fig. 3b, we have R̄SR(Ĝ) = {4, 5} and RSR(Ĝ) = {1, 2, 3}, which indicates that the lower
bound of |Φ∗

T | is 2 and the upper bound of |Φ∗
R| is 3. △

3 Problem definition

The LT1DT model is a competitive diffusion model that allows a state transition from R-active to T-
active but not in the opposite direction. We believe that this model can be used to describe many different
practical cases, e.g., product adoption, rumor spread, etc.

For example, in product adoption, items R and T can be interpreted as two similar products with low
quality and high quality, respectively. A user adopting the low quality product may change its mind and
pass to the high quality product when he compares them. However, it is hard to influence a user who
uses a high quality product to adopt a low quality product. After studying a series of product choices,
Macdonald and Sharp [28] found that consumers tend to select the high-quality brand among several
totally unknown brands.

Similarly in the case of rumor spread, R represents the rumor and T represents the truth. An individual
that adopts the rumor may reconsider his belief, while an individual that adopts the truth will become
immune to the rumor [40]. We should mention here that in this case, the term rumor seeds, is not
equivalent to rumor sources, which however means that the set of nodes has adopted the rumor when the
rumor is detected.

In the following part, we focus on the application of rumor spread, a problem of rumor containment.
Rumors may cause panic or lead people to wrong decisions, therefore it is vital to study how to control the
rumor spread. Rather than cutting some connections in the network or censoring the opinions expressed
by the individuals, we identify individuals to seed the truth so as to reduce people’s vulnerabilities to
rumor. Under the framework of the LT1DT, in this section we study the problem of minimizing rumor
spread.

3.1 Minimizing rumor spread

The problem of rumor containment is to select a suitable set of nodes for spreading truth to minimize
the number of nodes eventually accepting the rumor. We then formalize the problem as follows.

Problem 3.1 (MRS: Minimizing Rumor Spread) Consider a LT1DT model represented by a net-
work N = (G(V,E),W, θ, θR) with rumor seed set SR. Given an integer k, find in V \ SR a seed set for
the truth ST = X of cardinality less than or equal to k such that the cardinality of R-final adopters is
minimized, i.e.,

min |Φ∗
R(SR, X)|

s.t. X ⊆ V \ SR

|X | ≤ k

9



The MRS problem has a combinatorial nature and finding the optimal solution requires an exhaustive
search. In the following we show the hardness of the MRS problem.

Theorem 3.1 The MRS problem is NP-hard under the Linear Threshold model with One Direction state
Transition.

PROOF. To prove the NP-hardness of the MRS problem, it is sufficient to show that the classical
Maximum Coverage Problem (MCP) which is known to be NP-hard can be reduced to the MRS problem
under the LT1DT. To do this, we employ a similar approach in [47] to construct an instance of MRS
following the definition of MCP.

Problem 3.2 (Maximum Coverage Problem (MCP)) Consider a set of q elements O = {o1, o2, · · · , oq},
and a collection of sets X = {X1, X2, · · · , Xp} where Xi is a set of elements oj ∈ O. The sets may have
some elements in common. Given a positive constant l, find a subset X ′ ⊂ X of cardinality less than or
equal to l such that the number of elements | ∪Xi∈X ′ Xi| covered in O is maximized, i.e.,

max | ∪Xi∈X ′ Xi|

s.t. X ′ ⊂ X

|X ′| ≤ l

The decision version of the MCP is to answer whether there exists a subset X ′ ⊂ X of size l which can
cover at least λ elements in O where λ ≤ q is a positive integer. The decision version of the MRS problem
is to answer whether there exists a subset ST ⊂ V of size k such that the number of R-active nodes is at
most ρ where ρ is a positive integer. In the following we show that the MCP problem can be reduced to
the MRS problem. To prove the result, we show that for any instance of the MCP, an equivalent instance
of the MRS can be constructed.
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Fig. 4. Construction of an instance of the MRS.

Given an instance I = (O,X , l, λ) of the MCP, we construct a corresponding instanceM = (V,E, θ, θR,W, SR, k, ρ)
of the MRS as follows. A simple example shown in Fig. 4 is used to explain the construction. Beginning
with 0 node, we add a node ui for each subset Xi ∈ X , a node oj for each element in O, and a special
node x. Then we connect x to each node oj and add an edge (ui, oj) for each oj ∈ Xi. Take node o3
as an example. It has at least three incoming arcs from u1, u2, up which means that oi exists in the
corresponding subsets X1, X2, Xp at least. All nodes oi are given the same influence threshold θoi = 1/q

and the decision threshold θRoi =
doi

q−1 where the positive integer doi is the number of subsets Xi to which
element oi belongs. We do not care about the thresholds of the source nodes ui and x. The weights of
arcs from node x to node oi are set to 1/q, i.e., W (x, oi) = 1/q. The weights of arcs from uj to oi are
homogeneous and set to (1 − 1/q)/doi , i.e., W (uj , oi) = (1 − 1/q)/doi . Then, for each oi, the sum of the
weights incoming from x and uj is 1. Finally, set SR = {x}, k = l, and ρ = q − λ+ 1. We then show the
equivalence between the instances I andM.
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Assume that X ∗ is a solution to the instance I, i.e., |X ∗| ≤ l and it can cover at least λ elements in O.
By our construction, we can select all the nodes uj corresponding to subset Xj ∈ X ∗ as truth seed set
ST . Therefore, |ST | = k = l. Since X ∗ can cover at least λ elements oi in O, then from ST there will be
at least λ nodes in O believing the truth. This is because for any covered oi, let d∗oi be the number of
subsets Xj ∈ X ∗ to which oi belongs, then we have 1 ≤ d∗oi ≤ doi . Then, the total influence from both

rumor and truth is 1/q+ d∗oi(
1−1/q
doi

) ≥ θoi = 1/q. The sum of weights from its R-active neighbors is 1/q.

Then, oi will believe the truth since 1/q

1/q+d∗
oi

(
1−1/q
doi

)
≤ 1/q

1/q+
1−1/q
doi

=
doi

doi
+q−1 < θRoi =

doi

q−1 . Therefore, the

cardinality of T-final adopter set is at least λ + k in the MRS problem and the cardinality of R-final
adopter set is at most ρ = q − λ+ 1.

Conversely, assume that S∗
T is a solution to the instance M, i.e., |S∗

T | = k such that the cardinality
of R-final adopter set is at most ρ. This implies that the cardinality of T-final adopter set is at least
q− (ρ− 1) + k. Then X ∗ can be a collection of subset Xi corresponding to those ui ∈ S∗

T . Therefore, X
∗

has size k since l = k according to the assumption and it can cover at least q − ρ+ 1 elements in O.

4 Heuristic solutions for the MRS

Given that the MRS problem is NP-hard, we present some heuristic approaches to solve it. They can be
classified into two categories, unconstrained and constrained, according to the search space for choosing
truth seeds. We first present three different unconstrained heuristics and then give their constrained
versions where we restrict the search space to be a subnetwork instead of the whole network.

4.1 Unconstrained approaches

The unconstrained approaches can select any node to be a truth seed in set V \ SR according to specific
judgements.

4.1.1 MinGreedy

A greedy approach (also called hill-climbing approach) is a heuristic optimization paradigm that iteratively
makes the locally optimal choice with the hope of finding a global optimal solution.

In the MinGreedy shown in Algorithm 1, at each iteration we add to the truth seed set ST the node u
which maximally decreases rumor spread (line 5). The node selection process stops when k nodes have
been selected or when the addition of a node to ST does not reduce the rumor spread (line 7). In each
iteration, for each candidate node w ∈ V \SR we need to compute the corresponding set of final adopters
which may require to check every node if it is activated and this can be done in time O(nd). Therefore,
the time complexity of MinGreedy is O(kdn2).

4.1.2 PageRank

In network science, it is of interest to determine the relative importance of nodes which can be measured by
centrality scores [6]. There are varieties of centrality scores, e.g., degree centrality, eigenvector centrality,
pagerank centrality, etc. In this paper, we use pagerank centrality which is a well-known algorithm
adopted by GOOGLE for ranking web pages. It is also widely used to solve influence maximization
problems in social networks. We use the teleportation model [19] to compute pagerank values of all nodes
in a network according to Eq. (6) where p ∈ (0, 1)n denotes the pagerank vector such that

∑n
i=1 pi = 1,

pi denoting the pagerank value of node i. And Â in Eq. (6) is the scaled adjacency matrix in which
Â(i, j) = A(i, j)/1TA(:, j) where A is the adjacency matrix of a given graph. In the model, the restart
probability γ is set to 0.15.

p = (1 − γ)Âp+
γ

n
1, (6)

In order to contain the rumor spread, PageRank chooses k nodes in V \SR with highest pagerank values
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Algorithm 1 MinGreedy

1: Input: A LT1DT network N = (G(V,E),W, θ, θR), constant k, rumor seed set SR, R-adoption
function Φ∗

R(·, ·).
2: Output: Truth seed set ST .
3: Let ST ← ∅.
4: while |ST | < k do
5: u = argmin

i∈V \SR

|Φ∗
R(SR, ST ∪ {i})|.

6: ∆ = |Φ∗
R(SR, ST )| − |Φ∗

R(SR, ST ∪ {u})|.
7: if ∆ > 0 then
8: ST ← ST ∪ {u}.
9: else

10: break.
11: end if
12: end while
13: Return ST .

to serve as the truth seeds.

Since the scaled adjacency matrix Â is a sparse matrix with average d non-zero elements in each row
(so called average degree of the network), the multiplication of the matrix and a vector can be done in
time O(nd). Therefore, the computation of pagerank values requires time O(n(d + 1)I) where I is the
number of iterations for p converging to a reasonable approximation. Selecting the first k nodes with
highest pagerank values in V \ SR requires time O(kn). Overall, the time complexity of PageRank is
O(In(d + 1) + kn).

4.1.3 ContrId

PageRank, regardless of the diffusion dynamics of the considered diffusion model, solely depends on the
network structure. Here, we present a novel heuristic ContrId (short for Contributors Identification) which,
based on the dynamics of rumor spread, tries to identify which nodes contribute most (called contributors)
to the rumor spread and interrupt the important paths through which the rumor will spread from the
rumor seeds to the remaining network.

The following proposed way to measure a node’s contribution to the rumor spread is motivated by
observations under the LTM model. The spread of rumor evolves in discrete steps till no more nodes can
be activated. A node activated at time step t immediately spreads its influence to its out-neighbors which
may be activated in later steps. Therefore, the contribution of node v which is activated at time tv can
be defined as the number of its out-neighbors that are activated at any time t > tv.

We first simulate the rumor spreads from SR with ST = ∅ and record the set of nodes activated at every
step from step 1 to step Ts at which the network enters a steady state, i.e., φR

t for all t = 1, 2, · · · , Ts. Let
L denote the length of the longest simple path in the network, we then have Ts ≤ L since the diffusion
process requires at most L time steps. Now, for each node v ∈ φR

t , its contribution denoted as Ctr(v)
can be formalized as

Ctr(v) = |(∪Ts

i=t+1φ
R
i ) ∩Nout

v |. (7)

For the completeness of the definition on node’s contribution, we set the contribution of all inactive nodes
as 0.

ContrId selects the first k contributors ranked by their contributions to rumor spread Ctr(v) and this
can be done in time O(kn). Computation time O(nd) is required to simulate the rumor spread from SR.
Therefore, the time complexity of ContrId is O(n(d + k)).
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4.2 Constrained approaches

In the previous part, we present three heuristic approaches that select k truth seeds in V \SR. In this part,
we also consider their constrained versions (called ProxMinGreedy, ProxPageRank, and ProxContrId) by
restricting the search space to the proximity of the rumor seed set. We call this space SR-proximity space
and denote it as N out(SR) = (∪v∈SRN

out
v )\SR. The idea is that of blocking the influential paths from the

rumor seeds to the remaining network. In other words, this measure may reduce the number of nodes which
are reachable from SR in corresponding active subgraphs. For instance, consider Example 2.3, if ST = {3}
which is the out-neighbor set of SR = {1} then RSR(Ĝ) = {1} instead of {1,2,3} (when ST = {4}). We
will see from experimental results presented in Section 5 that the constrained versions perform better
than the unconstrained approaches in terms of both computation speed and rumor containment.

4.2.1 ProxMinGreedy

ProxMinGreedy iteratively selects k nodes in N out(SR) with the minimal gain of rumor spread to serve
as the truth seeds. We use Eq. (8) to replace line 5 in Algorithm 1, i.e.,

u = argmin
i∈Nout(SR)

|Φ∗
R(SR, ST ∪ {i})|. (8)

The resulting ProxMinGreedy has lower time complexity than MinGreedy. The time complexity in average
should be O(k|SR|d2n) where |SR| denotes the size of rumor seed set and d denotes the average degree
of the network, therefore |SR|d is the size of the SR-proximity space.

4.2.2 ProxPageRank

ProxPageRank selects k nodes in N out(SR) with highest pagerank values to serve as the truth seeds,
which results in time complexity O(Rn(d+ 1) + k|SR|d).

4.2.3 ProxContrId

ProxContrId selects k nodes in N out(SR) with highest contributions to serve as the truth seeds, which
results in time complexity O(nd+ k|SR|d).

Table 1
Comparison on the time complexity

Type Approach Complexity

Unconstrained

MinGreedy O(kdn2)

PageRank O(In(d+ 1) + kn)

ContrId O(n(d+ k))

Constrained

ProxMinGreedy O(k|SR|d
2n)

ProxPageRank O(Rn(d+ 1) + k|SR|d)

ProxContrId O(nd + k|SR|d)

The constrained approaches have lower time complexity than their unconstrained version thanks to
the smaller search space. The time complexity of all the above proposed approaches is summarized in
Table 1. Besides MinGreedy, the others have the same level of time complexity which grows linearly with
n. Introducing the proximity effect can reduce the time complexity of greedy approach from O(n2) to
O(n). The idea of restricting the search space to SR-proximity space can be also applied to restricting
the search space to any possible subset of nodes, e.g., the set of nodes that can be easily convinced to
adopt the truth.

4.3 Analysis of monotonicity guarantee

In Section 2.3, we have shown that, given a rumor seed set SR, the R-adoption function may increase as
nodes are added to the truth seed set ST . In this subsection, we show that the R-adoption function is
guaranteed to be non-increasing by some particular truth seed set selection strategies.
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Theorem 4.1 For any given LT1DT N = (G(V,E),W, θ, θR) and seed set SR ⊆ V , the R-adoption
function |Φ∗

R(SR, ST )| is non-increasing w.r.t ST if ST is selected by MinGreedy or ProxMinGreedy.

PROOF. This result follows from the constraint shown in line 7 of Algorithm 1 which ensures that a
candidate seed can only be added to ST if adding this seed decreases the rumor spread.

Theorem 4.2 For any given LT1DT N = (G(V,E),W, θ, θR) and seed set SR ⊆ V , the R-adoption
function |Φ∗

R(SR, ST )| is non-increasing w.r.t ST if ST is selected by ContrId or ProxContrId.

PROOF. What we need to prove is that for any two seed sets S1
T and S2

T selected by ContrId (or
ProxContrId) such that S1

T ⊆ S2
T ⊆ V \ SR, it holds that |Φ∗

R(SR, S
2
T )| ≤ |Φ

∗
R(SR, S

1
T )|. Assume that

Ĝ0(V̂ 0, Ê0) denotes the active subgraph extracted from G(V,E) given SR and ST = ∅. Since ContrId
(or ProxContrId) chooses truth seeds in Ĝ0, the addition of a seed set ST selected by ContrId will not
change the active subgraph, i.e., Φ∗(SR, ∅) = Φ∗(SR, ST ). Therefore, it is equivalent to prove that for any
S1
T ⊆ S2

T ⊆ V \SR, it holds that |Φ∗
T (SR, S

1
T )| ≤ |Φ

∗
T (SR, S

2
T )|, which is obviously true since |Φ∗

T (SR, ST )|
is non-decreasing w.r.t. ST . This completes the proof.

However, such monotonicity guarantee cannot be achieved by PageRank and ProxPageRank. This will
be confirmed by the experimental results in Section 5.

5 Evaluations

5.1 Experimental set up

We performed a series of experiments on two synthetic datasets and two real-world datasets to evaluate
the effectiveness of the heuristics solving the MRS problem under the proposed LT1DT. The synthetic
datasets are the following.

• Scale-free network: A scale-free network is a network with power-law degree distribution. A few ex-
amples of networks claimed to be scale-free include collaboration networks, protein-protein interaction
networks, etc. We adopt the Barabási-Albert model [2] to generate a scale-free network with 500 nodes.
• Small-world network: A small-world network is a network where most nodes are not linked with others,
but the neighbors of a certain node are likely to be linked with each other. Besides, most nodes in
the network can reach any other node through a few steps or hops. Many real-world networks exhibit
small-world properties, e.g., electronic power grids, neural networks, social influence networks, etc. A
small-world network with 500 nodes is generated by adopting the Watts-Strogatz model [39] and setting
the mean degree of a regular lattice to 4 and the rewiring probability β = 0.2.

The real-world datasets are the following.

• NetScience: NetScience is the co-authorship of researchers who work on network theory and experi-
ments, compiled by Newman [30].
• US-power: US-power is the topology of the Western States power grid of USA, compiled by Watts and
Strogatz [39].

We summarize in Table 2 the statistics of the benchmarks. The networks are all undirected, and thus we
considered the arcs in both directions. For achieving a good estimate of the effectiveness of the tested
approaches, we run each experiment on 100 different randomly generated LT1DT networks with the same
network structure G(V,E) and influence weights W but different influence and decision threshold values
θu and θRu that are selected in (0, 1] uniformly at random. We set the influence weight W (u, v) = 1/|N in

v |
for all u ∈ N in

v and v ∈ V . Then we take the average cardinality of Φ∗
R and Φ∗

T over the 100 runs.
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Table 2
Summary of the datasets

Dataset
Number of

nodes

Number of

edges

Average

degree

Clustering

coefficient

Scale-free 500 498 2.0 0

Small-world 500 1,000 4 0.29

NetScience 1,589 2,742 3.5 0.88

US-power 4,941 6,594 2.7 0.11

In addition, the set of original spreaders for the rumor should be given. On all networks, we set |SR| = 3
and let |ST | range from 1 to 10. To determine the rumor seeds, we adopt the following two different
selection strategies.

• Random: rumor spreads from three nodes selected randomly.
• Degree: rumor spreads from three nodes with highest degrees.

All experiments are performed on a 2.5 GHz Intel(R) Core(TM) i5-6300U CPU and 8GB memory and
all code is written in C++.

5.2 Experimental results and discussions

We evaluate the performance of the approaches presented in Section 4 in terms of rumor containment,
computation time and scalability. Note that since the MinGreedy is time-consuming in large networks,
we do not test it on network US-power.

 

(a) Scale-free

 

(b) Small-world

 

(c) NetScience (d) US-power

Fig. 5. Rumor spread in different networks (SR is selected by Random).
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(a) Scale-free

 

(b) Small-world

 

(c) NetScience

 

(d) US-power

Fig. 6. Rumor spread in different networks (SR is selected by Degree).

5.2.1 Analysis of rumor containment

Table 3
Comparisons of all approaches on the performance of rumor containment

Compared

approaches

Outperformance Dataset

Scale-free Small-world NetScience US-power

ProxPageRank v.s. PageRank 29% / 2% 37% / 21% 41% / 21.7% 36% / 10.8%

ProxContrId v.s. ContrId 22% / 12% 26% / 16.5% 28% / 11.9% 30% / 12.6%

MinGreedy v.s. ProxMinGreedy 0% / 0% 1.4% / 2% 5.7% / 0% - / -

ContrId v.s. PageRank 47% / 10% 56% / 47% 55% / 28.9% 54% / 25.2%

ProxContrId v.s. ProxPageRank 40% / 19.6% 46% / 42.5% 45% / 19.1% 50% / 27%

ProxMinGreedy v.s. ProxContrId 0 / 0 5.7% / 5% 16.6% / 13.5% 14% / 8%

(The outperformance on the left of / is for the case when SR is selected by Random, while the outperformance
on the right is for the case when SR is selected by Degree.)

The rumor spread, truth spread on the four networks under the proposed heuristic approaches are shown
in Figs. 5, 6 and Figs. 7, 8. From the rumor spread in Figs. 5 and 6 we have the following observations.

Proximity effect works well: ProxPageRank, and ProxContrId outperform their unconstrained ver-
sions in terms of rumor containment, which well reflects the good property of the proximity effect.

• When SR is selected by Random, in Scale-free (resp., Small-world, NetScience, US-power), ProxPageR-
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(a) Scale-free

 

(b) Small-world

 

(c) NetScience (d) US-power

Fig. 7. Truth spread in different networks (SR is selected by Random).

ank outperforms PageRank by 29% (resp., 37%, 41%, 36%) and ProxContrId outperforms ContrId by
22% (resp., 26%, 28%, 30%).
• When SR is selected by Degree, in Scale-free (resp., Small-world, NetScience, US-power), ProxPageRank
outperforms PageRank by 2% (resp., 21%, 21.7%, 10.8%) and ProxContrId outperforms ContrId by
12% (resp., 16.5%, 11.9%, 12.6%).

However, the MinGreedy and ProxMinGreedy almost perform the same. We can explain this phenomenon
by comparing the truth seeds placement between MinGreedy and ProxMinGreedy. Let us take network
Scale-free as an example on selecting 10 truth seeds, set all θv = 0.5, θRv = 0.3, and let SR be selected
by Degree. By ProxMinGreedy, we have ST = {85, 319, 5, 9, 16, 54, 87, 95, 100, 147} where the number is
node’s label. Then by MinGreedy, we have ST = {85, 319, 5, 9, 16, 54, 87, 95, 100, 147} which is the same
as selected by ProxMinGreedy. The result shows that MinGreedy prefers to locate the truth seeds at the
SR-proximity space as well.

Diffusion dynamics based approach performs better than centrality based approach: PageR-
ank performs not as well as ContrId and MinGreedy and even sometimes does not help to contain the
rumor spread. This fact can be seen from up-and-down lines for PageRank in Figs. 5 and 6, which re-
flects the non-monotonicity of the LT1DT model. This is because PageRank directly exploits the network
structure and ignores the location of the rumor seeds. The nodes with high pagerank values sometimes
are far away from the rumor seeds and then rumor and truth spread in different parts of the network.

• When SR is selected by Random, ContrId performs better than PageRank, i.e., 47% (resp., 56%,
55%, 54%) in Scale-free (resp., Small-world, NetScience, US-power), since it tries to target the nodes
that play important role in rumor spreading. ProxContrId outperforms ProxPageRank by 40% (resp.,
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(a) Scale-free

 

(b) Small-world

 

(c) NetScience (d) US-power

Fig. 8. Truth spread in different networks (SR is selected by Degree).

46%, 45%, 50%) in Scale-free (resp., Small-world, NetScience, US-power). In Scale-free, ProxContrId
performs as well as ProxMinGreedy. In Small-world (resp., NetScience, US-power) ProxMinGreedy
outperforms ProxContrId 5.7% (resp., 16.6%, 14%).
• When SR is selected by Degree, ContrId performs better than PageRank, i.e., 10% (resp., 47%, 28.9%,
25.2%) in Scale-free (resp., Small-world, NetScience, US-power). ProxContrId outperforms ProxPageR-
ank by 19.6% (resp., 42.5%, 19.1%, 27%) in Scale-free (resp., Small-world, NetScience, US-power). In
Scale-free, ProxContrId performs as well as ProxMinGreedy. In Small-world (resp., NetScience, US-
power) ProxMinGreedy outperforms ProxContrId 5% (resp., 13.5%, 8%).

The comparisons of the approaches on the performance of rumor containment are summarized in Table 3.

From Figs. 5 and 6, it can also be observed that it is much harder to contain rumor when the rumor
spreads from nodes with large degrees compared with rumor spreading from nodes randomly selected.
As we can see in Fig. 5a, spreading truth from 5 nodes selected by ProxContrId and ProxMinGreedy
can completely contain the rumor spread. However, in Fig. 6a, the rumor spread can only be reduced by
about 37.5% spreading truth from 10 nodes selected by ProxContrId and ProxMinGreedy with the best
performance.

From the truth spread in Figs. 7 and 8, spreading truth from the nodes selected by PageRank normally
produces the largest set of nodes that adopt the truth, which reflects the fact that PageRank performs well
in solving influence maximization problem. Note, however, that the goal of our study is not truth maxi-
mization but rumor minimization. We can also observe that information can spread further in networks
with lower clustering coefficient, which is consistent with the results in [1].
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5.2.2 Analysis of running time and scalability

Table 4
Average running time over 100 runs for selecting 10 truth seeds

Approach

Time(sec) Dataset
Scale-free Small-world NetScience US-power

PageRank 0.012 / 0.03 0.006 / 0.015 0.13 / 0.25 3.0 / 2.2

ProxPageRank 0.014 / 0.028 0.006 / 0.015 0.14 / 0.21 3.0 / 2.23

ContrId 0.0002 / 0.003 0.0005 / 0.002 0.001 / 0.015 0.017 / 0.05

ProxContrId 0.0002 / 0.003 0.0005 / 0.002 0.001 / 0.015 0.017 / 0.05

MinGreedy 1.5 / 6.2 3.2 / 6.6 17 / 200 - / -

ProxMinGreedy 0.012 / 1.1 0.034 / 0.17 0.18 / 5.1 1.2 / 11

(The time on the left of / is for the case when SR is selected by Random, while the time on the right is for the
case when SR is selected by Degree.)

The average running time over 100 runs for all the heuristics are illustrated in Table 4. Selecting truth
seeds in SR-proximity space obviously speeds up the seed location process, for instance, ProxMinGreedy
runs 40 times faster than MinGreedy in NetScience when the rumor seed set is selected by Degree.
We believe that the gap must increase with n. In terms of rumor containment, the ProxMinGreedy
outperforms the ProxContrId a bit in some networks, but it is three orders of magnitude slower than the
ProxContrId.

Finally, an experimental study on synthetic small-world networks with different number of nodes is carried
out to test the scalability of the constrained approaches which outperform their unconstrained versions
in terms of both the computation speed and the effectiveness of rumor containment. The networks are
generated by Watts-Strogatz model [39] with the number of nodes from 0.5K to 4K where the mean
degree and rewiring probability are set to 4 and 0.2, respectively. We select 3 rumor seeds selected by
Degree in every network and choose 10 nodes as the truth seeds to contain the rumor spread. We average
the running time over 100 runs with different threshold values. The result is shown in Fig. 9, which
suggests that the ProxContrId are two and three orders of magnitude faster than the ProxPageRank and
ProxMinGreedy.

Fig. 9. Scalability of the heuristic algorithms.

6 Conclusion and future work

We have proposed a competitive and generalized version of the simple Linear Threshold model which
captures practical situations in which rumor and truth compete in a same network. Based on the notion
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of cohesiveness, we have provided a lower bound for the T-adoption function and an upper bound for
the R-adoption function. We have addressed the problem of minimizing rumor spread (MRS) which is
proved to be NP-hard under our generalized model. We have also presented three different heuristics and
defined their constrained versions to highlight the proximity effect for solving the MRS problem. The
novel heuristic approaches ContrId and ProxContrId can guarantee the monotonicity for the LT1DT.
Finally, simulations were carried out under four different networks. Experimental results have shown
that diffusion dynamics based approach (ContrId) outperforms centrality based approach (PageRank)
with the same level of computation complexity which grows linearly with the number of nodes n, and
therefore can scale well to large networks. By introducing the proximity effect, ContrId performs as well
as MinGreedy but runs much faster than MinGreedy.

Among future directions for maximizing rumor containment we mention the problem of containing the
rumor spread in finite time. This is motivated by the fact that the propagation of influence from one
person to his friends may have a certain time delay due to the heterogeneity in human activities and the
influence between individuals may also decay with time passing. Another interesting topic or trend is to
analyze diffusion dynamics in signed social networks, i.e., networks where arcs are associated positive or
negative signs. Social individuals are likely to make the same decision with their friends (connected with
positive arcs) and make the opposite decision with their foes (connected with negative arcs).
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