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Abstract

Detectability is a basic property of dynamic systems: when it holds an observer can use
the current and past values of the observed output signal produced by a system to reconstruct
its current state.

In this paper, we consider properties of this type in the framework of discrete-event systems
modeled by labeled Petri nets and finite automata. We first study weak approximate detectabil-
ity. This property implies that there exists an infinite observed output sequence of the system
such that each prefix of the output sequence with length greater than a given value allows an
observer to determine if the current state belongs to a given set. We prove that the problem of
verifying this property is undecidable for labeled Petri nets, and PSPACE-complete for finite
automata.

We also consider one new concept called eventual strong detectability. The new property
implies that for each possible infinite observed output sequence, there exists a value such that
each prefix of the output sequence with length greater than that value allows reconstructing the
current state. We prove that for labeled Petri nets, the problem of verifying eventual strong de-
tectability is decidable and EXPSPACE-hard, where the decidability result holds under a mild
promptness assumption. For finite automata, we give a polynomial-time verification algorithm
for the property. In addition, we prove that strong detectability is strictly stronger than eventual
strong detectability for labeled Petri nets and even for deterministic finite automata.
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1 Introduction

Detectability is a basic property of dynamic systems: when it holds an observer can use the current
and past values of the observed output signal produced by a system to reconstruct its current state
[9, 30, 27, 28, 8, 36, 48, 23, 41, 16, 12, 25]. This property plays a fundamental role in many
related control problems such as observer design and controller synthesis. Hence for different
applications, it is meaningful to characterize different notions of detectability. This property also
has different terminologies, e.g., in [9, 36, 23], it is called “observability” while in [8, 48], it is
called “reconstructibility”. In this paper, we uniformly call this property “detectability”, and call
another similar property “observability” implying that the initial state can be determined by the
observed output signal produced by a system (e.g., [38, 29, 46, 47]).

1.1 Literature review

Finite automata

For discrete-event systems (DESs) modeled by finite automata, the detectability problem has been
widely studied [30, 27, 44, 16, 41] in the context of ω-languages, i.e., taking into account all
output sequences of infinite length generated by a DES. These results are usually based on two
assumptions that a system is deadlock-free and that it cannot generate an infinitely long subse-
quence of unobservable events. These requirements are collected in Assumption 1 formally stated
in the following sections: when it holds, a system will always run and generate an infinitely long
observation.

Two fundamental definitions are those of strong detectability and weak detectability [30]. Strong
detectability implies1 that:

(A) there exists a positive integer k such that for all infinite output sequences σ gen-
erated by a system, all prefixes of σ of length greater than k allow reconstructing the
current states.

Weak detectability implies that:

(B) there exists a positive integer k and some infinite output sequence σ generated by
a system such that all prefixes of σ of length greater than k allow reconstructing the
current states.

Weak detectability is strictly weaker than strong detectability. Consider the finite automaton shown
in Fig. 1, where events a and b can be directly observed. It is weakly detectable but not strongly
detectable. The automaton can generate infinite event sequences aω and bω, where (·)ω denotes

1Formal definitions of strong and weak detectability are given later in Definitions 1 and 3.
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Figure 1: A finite automaton.

the concatenation of infinitely many copies of ·. When any number of a’s were observed but no b
was observed, the automaton could be only in state s0. Hence it is weakly detectable. When any
number of b’s were observed but no a was observed, it could be in states s1 or s2. Hence it is not
strongly detectable.

Strong detectability can be verified in polynomial time while weak detectability can be verified in
exponential time [30, 27] under the usual Assumption 1.

In addition, checking weak detectability is PSPACE-complete in the numbers of states and events
for finite automata, where the hardness result holds for deterministic finite automata whose events
can be directly observed [44]. The hardness result even holds for more restricted deterministic
finite automata having only two events that can be directly observed [16].

Petri nets

Detectability of free-labeled Petri nets with unknown initial markings (i.e., states) has been stud-
ied in [9], where several types of detectability called “(strong) marking observability”, “uniform
(strong) marking observability”, and “structural (strong) marking observability” are proved to be
decidable2 by reducing them to several decidable home space properties [6] that are more general
than the reachability problem of Petri nets (with respect to a given marking).

Some detectability properties of labeled Petri nets3 have also been studied. In [23], a notion of
detectability called “structural observability” is characterized. This property implies that for every
initial marking, each observed label (i.e., output) sequence determines the current marking. It
is pointed out that the “structural observability” is important, because “the majority of existing
control schemes for Petri nets rely on complete knowledge of the system state at any given time
step” [23]. It is shown that structural observability can be verified in polynomial time [23]. In the
same paper, in order to make a labeled Petri net structurally observable, the problem of placing the
minimal number of sensors on places and the problem of placing the minimal number of sensors
on transitions are studied, respectively. The former problem is proved to be NP-complete, while
the latter is shown to be solvable in polynomial time, both in the numbers of places and transitions.

In [11], for labeled Petri nets, a concept of determinism is characterized, where this concept implies

2In the sequel, we will always use the expression “a property is decidable/undecidable” instead of “the problem of
verifying the property is decidable/undecidable.”

3More precisely labeled place/transition nets or labeled P/T nets for short
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that each label sequence generated by a net can be used to determine the current marking. It is
proved that verifying determinism is as hard as verifying coverability for Petri nets [21, 15], hence
EXPSPACE-complete. Note that the “structural observability” studied in [23] requires a labeled
Petri net to satisfy the determinism property at each initial marking.

The above mentioned detectability results for labeled Petri nets apply to finite-length languages of
the nets, i.e., the set of all words (of finite length) that a net can generate. In the sequel, we always
use terminology “language” to denote “finite-length language” for short, and use “ω-language” to
denote a “language” consisting of several infinite-length label sequences. However, a few authors
have recently studied detectability properties of ω-languages extending to labeled Petri net models
the notions of strong and weak detectability which Shu and Lin have originally studied in the
context of finite automata.

Weak detectability of labeled Petri nets with inhibitor arcs has been proved to be undecidable in
[45] by reducing the well known undecidable language equivalence problem [10, Theorem 8.2]
of labeled Petri nets to the inverse problem of the weak detectability problem, i.e., the non-weak
detectability problem.

Decidability and complexity of strong detectability and weak detectability for labeled Petri nets are
also studied in [17]. Under the first item of Assumption 1 and another assumption that a net cannot
generate an infinite unobservable sequence which is actually equivalent to the second item of
Assumption 1 for Petri nets, strong detectability has been proved to be decidable with EXPSPACE-
hard complexity in [17] by reducing its negation to the satisfiability of a Yen’s path formula ([37,
2]). Weak detectability has been proved to be undecidable by reducing the undecidable language
inclusion problem [10, Theorem 8.2] to the non-weak detectability problem, thus improving the
related result given in [45].

1.2 Contribution of the paper

In this paper, we propose some new notions of detectability in the context of ω-languages, and
characterize the related decision problems (in terms of decidability or computational complexity)
for both finite automata and labeled Petri nets.

To motivate the interest for this work, let us recall that the theory of ω-languages is a rich and
important domain of computer science [20]. We mention, in addition, that these languages have a
practical interest in automatic control because they can describe the infinite behavior of a system:
for this reason they find significant applications in the very active area of verification with discrete-
event and hybrid systems — in particular model checking with temporal logic.

Eventual detectability

Let us consider again the notion of strong dectability implied by condition (A) stated above. An
alternative definition could be based on the following definition:
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(A’) for every infinite output sequence σ generated by a system, there exists a positive
integer kσ such that all prefixes of σ of length greater than kσ allow reconstructing the
current states,

where the length kσ of the transient before the state can be reconstructed may depend on a particular
output sequence σ.

Obviously, condition (A) implies condition (A’) but the converse implication does not hold, be-
cause there may exist infinitely many strings of infinite length and thus a maximal value among all
kσ may not be computed (this will be formally proved in Proposition 4).

We point out some similarities with the notion of diagnosability introduced by Lafortune and co-
authors [24] which requires the occurrence of a fault to be detected within a finite delay. The
original definition in [24] assumes this delay may depend on the string that produces the fault, i.e.,
it is similar to condition (A’) above. A different condition, similar to condition (A) above and called
K-step diagnosability or uniform diagnosability, is considered in [3] or [43]: it assumes the length
of the delay is bounded for all strings. Note however a difference with respect to the detectability
results we present here: the two notions of diagnosability and K-step diagnosability are equivalent
in the case of finite automata, thanks to the well-known Myhill-Nerode characterization of a regular
language by the finiteness of its set of residuals. They only differ for infinite-state systems, such
as labeled Peri nets. Recent diagnosability results could be found in [1, 33, 7, 19], etc.

Based on condition (A’), we consider a new type of detectability, which we call eventual strong
detectability. Formally, eventual strong detectability implies that for every infinite output sequence
σ generated by a system, there exists a positive integer kσ such that each prefix σ′ of σ with length
greater than kσ allows reconstructing the current state. We will prove that eventual strong de-
tectability is strictly weaker than strong detectability and strictly stronger than weak detectability,
for labeled Petri nets and even for deterministic finite automata satisfying Assumption 1.

We will also prove that eventual strong detectability can be verified in polynomial time for finite
automata. For labeled Petri nets, we show that the property is decidable and the corresponding
decision problem is EXPSPACE-hard: note that this decidability result holds under the prompt-
ness assumption (collected in (ii) of Assumption 2) that is actually equivalent to condition (ii) of
Assumption 1 for labeled Petri nets.

Approximate detectability

State estimation is usually a preliminary step that a plant operator must address so that, depending
on the state value, a suitable action may be taken, which is also similar to the state disambiguation
problem in the literature [42, 26, 35]. Examples include computing a control input in supervisory
control, raising an alarm in fault diagnosis, inferring a secret in an opacity problem, reacting to
the detection of a cyber-attack, etc. The number of these possible actions is usually finite and this
naturally determines a finite partition of the system’s state space into equivalence classes, each
one corresponding to states for which the same action should be taken. In such a context, it is not
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necessary to solve a detectability problem, i.e., determine the exact value of the state, but just to
solve an approximate version of it, i.e., determine to which class the state belongs.

The notion of approximate detectability applies to all previously defined detectability notions,
weak or strong. Here we just study one of them, namely weak approximate detectability which
implies that, given a finite partition of the state space, there exists an integer k and an infinite
output sequence generated by a system each of whose prefixes of length greater than k allows
determining the partition cell to which the current state belongs. In this paper, we will prove
that weak approximate detectability is undecidable for labeled P/T nets. For finite automata, we
will prove that deciding this property is PSPACE-complete. The undecidable result is obtained
by reducing the undecidable language equivalence problem for labeled P/T nets to negation of the
weak approximate detectability problem. The result for finite automata is obtained by using related
results for weak detectability of finite automata [44, 30].

1.3 Paper structure

To help the reader better understand the contribution of the paper, the relations among the different
detectability properties studied in this work are shown in Tabs. 1 and 2. The table also includes
known results on strong detectability and weak detectability of finite automata and labeled Petri
nets proved in [17, 44].

The remainder of the paper is as follows. Section 2 introduces necessary preliminaries, including
finite automata, labeled Petri nets, the language equivalence problem, and the coverability problem,
together with necessary tools such as Dickson’s lemma, Yen’s path formulae, etc. Section 3 collects
the results on weak approximate detectability for finite automata and labeled Petri nets. Section 4
consists of the results on eventual strong detectability also for both models. Section 5 ends up with
a short conclusion. We first study weak approximate detectability because fewer tools are needed
than in studying eventual strong detectability.

2 Preliminaries

Next we introduce necessary notions that will be used throughout this paper. Symbols N and Z+
denote the sets of natural numbers and positive integers, respectively. For a set S, S∗ and Sω are
used to denote the sets of finite sequences (called words) of elements of S including the empty
word ε and infinite sequences (called configurations) of elements of S, respectively. As usual, we
denote S+ = S∗ \ {ε}. For a word s ∈ S∗, |s| stands for its length, and we set |s′| = +∞ for all
s′ ∈ Sω. For s ∈ S and natural number k, sk and sω denote the k-length word and configuration
consisting of copies of s’s, respectively. For a word (configuration) s ∈ S∗(Sω), a word s′ ∈ S∗
is called a prefix of s, denoted as s′ @ s, if there exists another word (configuration) s′′ ∈ S∗(Sω)
such that s = s′s′′. For two natural numbers i ≤ j, [i, j] denotes the set of all integers between
i and j including i and j; and for a set S, |S| its cardinality and 2S its power set. For a word
s ∈ S∗, where S = {s1, . . . , sn}, ](s)(si) denotes the number of si’s occurrences in s, i ∈ [1, n].
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Table 1: Relationships among different detectability notions for labeled Petri nets, where⇒means
“the notion on the tail is stronger than the notion on the head”, 6= means “the two notions are not
equivalent by the counterexample shown in the figure beside 6=”, the decidability result for strong
detectability proved in [17] is based on Assumption 1, and can be strengthened to hold only based
on the promptness assumption which is actually (ii) of Assumption 1 for labeled Petri nets by using
our proposed extended concurrent composition method similarly as in the proof of Theorem 4. The
decidability result for eventual strong detectability is also based on the promptness assumption.
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Weak
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PSPACE-complete
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Table 2: Relationships among different detectability notions for finite automata, where s and e are
the numbers of states and events, ⇒ means “the notion on the tail is stronger than the notion on
the head”, 6= means “the two notions are not equivalent by the counterexample shown in the figure
beside 6=”; the polynomial-time verification algorithm for strong detectability given in [27] applies
to finite automata satisfying Assumption 1, but generally does not apply to finite automata that vi-
olate Assumption 1; by using the proposed method in our paper, one can design a polynomial-time
verification algorithm for strong detectability of all finite automata; the exponential-time verifica-
tion algorithm for weak detectability given in [27] actually applies to finite automata satisfying
the assumption of non-emptiness of generated ω-languages that is weaker than Assumption 1, and
in this paper we characterize how to verify the weaker assumption and how to deal with the case
when the weaker assumption is not satisfied.
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A partition of a set S is a set of nonempty subsets of S such that these subsets are pairwise disjoint
and their union equals S.

2.1 Labeled state-transition systems

In order to formulate detectability notions in a uniform manner, we introduce labeled state-transition
systems (LSTSs) as follows, which contain finite automata and labeled Petri nets as special cases.
An LSTS is formulated as a sextuple

S = (X,T,X0,→,Σ, `),

where X is a set of states, T a set of events, X0 ⊂ X a set of initial states, →⊂ X × T × X a
transition relation, Σ a set of outputs (labels), and ` : T → Σ ∪ {ε} a labeling function. As usual,
we use `−1(σ) to denote the preimage {t ∈ T |`(t) = σ} of an output σ ∈ Σ. A state x ∈ X is
called deadlock if (x, t, x′) /∈→ for any t ∈ T and x′ ∈ X . S is called deadlock-free if it has no
deadlock state. Events with label ε are called unobservable. Other events are called observable.
Denote T =: To∪̇Tε, where To and Tε are the sets of observable events, and unobservable events,
respectively. For an observable event t ∈ T , we say t can be directly observed if `(t) differs from
`(t′) for any other t′ ∈ T . Labeling function ` : T → Σ ∪ {ε} can be recursively extended to
` : T ∗ ∪ T ω → Σ∗ ∪ Σω as `(t1t2 . . . ) = `(t1)`(t2) . . . and `(ε) = ε. For all x, x′ ∈ X and
t ∈ T , we also denote x t−→ x′ if (x, t, x′) ∈→. More generally, we denote all transitions x t1−→ x1,
x1

t2−→ x2, . . . , xn−1
tn−→ xn by x t1...tn−−−→ xn for short, where n is a positive integer. We say a

state x′ ∈ X is reachable from a state x ∈ X if there exist t1, . . . , tn ∈ T such that x t1...tn−−−→ x′,
where n is a positive integer. We say a subset X ′ of X is reachable from a state x ∈ X if some
state of X ′ is reachable from x. Similarly a state x ∈ X is reachable from a subset X ′ of X if
x is reachable from some state of X ′. We call a state x ∈ X reachable if either x ∈ X0 or it
is reachable from some initial state. For an LSTS S, we call the new LSTS the accessible part
(denoted by Acc(S)) of S that is obtained from S by removing all non-reachable states. An LSTS
S is called deterministic if for all x, x′, x′′ ∈ X and all t ∈ T , if (x, t, x′) ∈→ and (x, t, x′′) ∈→
then x′ = x′′.

For each σ ∈ Σ∗, we denote by M(S, σ) the set of states that the system can be in after σ has
been observed, i.e., M(S, σ) := {x ∈ X|(∃x0 ∈ X0)(∃s ∈ T+)[(`(s) = σ) ∧ (x0

s−→ x)]}. In
addition, we setM(S, ε) :=M(S, ε) ∪X0. Particularly, for all X ′ ⊂ X we denoteM(X ′, ε) :=
X ′ ∪ {x ∈ X|(∃x′ ∈ X ′)(∃s ∈ T+)[(`(s) = ε) ∧ (x′ s−→ x)]}; and for all σ ∈ Σ+, we denote
M(X ′, σ) := {x ∈ X|(∃x′ ∈ X ′)(∃s ∈ T+)[(`(s) = σ) ∧ (x′ s−→ x)]}. L(S) denotes the
language generated by system S, i.e., L(S) := {σ ∈ Σ∗|M(S, σ) 6= ∅}. An infinite event
sequence t1t2 . . .∈ T ω is called generated by S if there exist states x0, x1, . . .∈ X with x0 ∈ X0
such that for all i ∈ N, (xi, ti+1, xi+1) ∈→. We use Lω(S) to denote the ω-language generated by
S, i.e., Lω(S) := {σ ∈ Σω|(∃t1t2 . . .∈ T ω generated by S)[`(t1t2 . . . )= σ]}.
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2.2 Finite automata

A DES can be modeled by a finite automaton or a labeled Petri net. In order to represent a DES, we
consider a finite automaton as a finite LSTS S = (X,T,X0,→,Σ, `), i.e., when X,T,Σ are finite.
Such a finite automaton is also obtained from a standard finite automaton [31] by removing all
accepting states, replacing a unique initial state by a set X0 of initial states, and adding a labeling
function `. In the sequel, a finite automaton always means a finite LSTS. Transitions x t−→ x′

with `(t) = ε are called ε-transitions (or unobservable transitions), and other transitions are called
observable transitions.

2.3 Labeled Petri nets

A net is a quadruple N = (P, T, Pre, Post), where P is a finite set of places graphically rep-
resented by circles; T is a finite set of transitions graphically represented by bars; P ∪ T 6= ∅,
P ∩ T = ∅; Pre : P × T → N and Post : P × T → N are the pre- and post-incidence functions
that specify the arcs directed from places to transitions, and vice versa. Graphically Pre(p, t) is
the weight of the arc p → t and Post(p, t) is the weight of the arc t → p for all (p, t) ∈ P × T .
The incidence function is defined as C = Post− Pre.

A marking is a map M : P → N that assigns to each place of a net a natural number of tokens,
graphically represented by black dots. For a marking M ∈ NP , the restriction of M to a subset
P ′ of P is denoted by M |P ′ . For a marking M ∈ NP , a transition t ∈ T is called enabled at
M if M(p) ≥ Pre(p, t) for all p ∈ P , and is denoted by M [t〉, where as usual NP denotes
the set of maps from P to N. An enabled transition t at M may fire and yield a new making
M ′(p) = M(p) + C(p, t) for all p ∈ P , written as M [t〉M ′. As usual, we assume that at each
marking and each time step, at most one transition fires. For a marking M , a sequence t1 . . . tn of
transitions is called enabled at M if t1 is enabled at M , t2 is enabled at the unique M2 satisfying
M [t1〉M2, . . . , tn is enabled at the unique Mn−1 satisfying M [t1〉 · · · [tn−1〉Mn−1. We write the
firing of t1 . . . tn at M as M [t1 . . . tn〉 for short, and similarly denote the firing of t1 . . . tn at M
yielding M ′ by M [t1 . . . tn〉M ′. T (N,M0) := {s ∈ T ∗|M0[s〉} is used to denote the set of
transition sequences enabled atM0. Particularly we haveM0[ε〉M0. A pair (N,M0) is called a Petri
net or a place/transition net (P/T net), whereN = (P, T, Pre, Post) is a net,M0 : P → N is called
the initial marking, and the Petri net evolves initially at M0 as transition sequences fire. Denote
the set of reachable markings of the Petri net byR(N,M0) := {M ∈ NP |∃s ∈ T ∗,M0[s〉M}.

A labeled P/T net is a quadruple (N,M0,Σ, `), where N is a net, M0 is an initial marking, Σ
is an alphabet (a finite set of labels), and ` : T → Σ ∪ {ε} is a labeling function that assigns
to each transition t ∈ T a symbol of Σ or the empty word ε, which means when a transition t
fires, its label `(t) can be observed if `(t) ∈ Σ; and nothing can be observed if `(t) = ε. A
transition t ∈ T is called observable if `(t) ∈ Σ, and called unobservable otherwise. Particularly,
a labeling function ` : T → Σ is called ε-free, and a P/T net with an ε-free labeling function is
called an ε-free labeled P/T net. A Petri net is actually an ε-free labeled P/T net with an injective
labeling function. For a labeled P/T net G = (N,M0,Σ, `), the language generated by G is
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denoted by L(G) := {σ ∈ Σ∗|∃s ∈ T ∗,M0[s〉, `(s) = σ}, i.e., the set of labels of finite transition
sequences enabled at the initial marking M0. We also say for each σ ∈ L(G), G generates σ. For
σ ∈ Σω, we sayG generates σ if an infinite event sequence t1t2 . . .∈ T ω is enabled atM0 (denoted
M0[t1t2 . . . 〉) and `(t1t2 . . . ) = σ. The set of infinite label sequences generated by G is denoted
by Lω(G) (which is an ω-language).

Note that for a labeled P/T netG = (N,M0,Σ, `), when we observe a label sequence σ ∈ Σ∗, there
may exist infinitely many firing transition sequences labeled by σ. However, for an ε-free labeled
P/T net, when we observe a label sequence σ, there exist at most finitely many firing transition
sequences labeled by σ. Denote byM(G, σ) := {M ∈ NP |∃s ∈ T ∗,M0[s〉M, `(s) = σ}, the set
of markings in which G can be when σ is observed. Then for each σ ∈ Σ∗,M(G, σ) is finite for
an ε-free labeled P/T net G.

2.4 The language equivalence problem

The undecidable result proved in this paper is obtained by using the following language equiva-
lence problem.

Proposition 1 [10, Theorem 8.2] It is undecidable to verify whether two ε-free labeled P/T nets
with the same alphabet generate the same language.

2.5 Dickson’s lemma

Let P be a finite set. For every two elements x and y of NP , we say x ≤ y if and only if x(p) ≤ y(p)
for all p in P . We write x < y if x ≤ y and x 6= y. For a subset S of NP , an element x ∈ S is called
minimal if for all y in S, y ≤ x implies y = x. Dickson’s lemma [5] shows that for each subset S
of NP , there exist at most finitely many distinct minimal elements. This lemma follows from the
fact that every infinite sequence with all elements in NP has an increasing infinite subsequence,
where such an increasing subsequence can be chosen component-wise [22, Theorem 2.5]. We will
use Dickson’s lemma to prove some decidable results for labeled P/T nets.

2.6 The coverability problem

We also need the following Proposition 2 on the coverability problem to obtain some main results
on complexity.

Proposition 2 [21, 15] It is EXPSPACE-complete to decide for a Petri net G = (N,M0) and a
destination marking M ∈ NP whether G covers M , i.e., whether there exists a marking M ′ ∈
R(N,M0) such that M ≤M ′.
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In [15], it is proved that deciding coverability for Petri nets requires at least 2cn space infinitely
often for some constant c > 0, where n is the number of transitions. In [21], it is shown that
deciding this property for a Petri net requires at most space 2cm logm for some constant c, where
m is the size of the set of all transitions. For a Petri net ((P, T, Pre, Post),M0), each transition
t ∈ T corresponds to a |P |-length vector Post(·, t) − Pre(·, t) =: c(t) whose components are
integers. The size of t is the sum of the lengths of the binary representations of the components of
c(t) (where the length of 0 is 1). The size of T is the sum of the sizes of all transitions of T , and is
set to be the above m.

The coverability problem belongs to EXPSPACE [21]. Proposition 2 has been used to prove the
EXPSPACE-hardness of checking diagnosability [40] and prognosability [39] of labeled Petri nets.

2.7 Infinite graphs

Let (V,E) be a directed graph, where V is the vertex set, and E ⊂ V × V the edge set. For each
edge (v, v′) ∈ E, also denoted by v → v′, v and v′ are called the tail and the head of the edge,
respectively, v is called a parent of v′ and v′ is called a child of v. A directed graph is called infinite
if it has infinitely many vertices. A path is a sequence of vertices connected by edges with the same
direction, i.e., a path is of one of the forms: (1) · · · → v−1 → v0 → v1 → · · · (bi-infinite), (2)
v0 → v1 → · · · (infinite), (3) · · · → v−1 → v0 (anti-infinite), or (4) v1 → · · · → vn (finite). For
each finite path v1 → · · · → vn, v1 is called an ancestor of vn, and vn is called a descendant of v1.
A directed graph (V,E) is called a tree if there is a vertex v0 without any parent (called root), any
other vertex is a descendant of v0 and the head of exactly one edge. A tree is called locally finite if
each vertex has at most finitely many children.

2.8 Yen’s path formulae for Petri nets

The final tool that we will use to prove some decidable results is Yen’s path formula [37, 2] for
Petri nets. In [37], a concept of Yen’s path formulae is proposed and some upper bounds for ver-
ifying the satisfiability of the formulae are studied. In addition, it is shown that many problems,
e.g., the boundedness problem, the coverability problem for Petri nets, can be reduced to the satis-
fiability problem of some Yen’s path formulae. In [2], a special class of Yen’s path formulae called
increasing Yen’s path formulae is proposed. The main results of [2] are stated as follows.

Proposition 3 ([2]) The reachability problem for Petri nets can be reduced to the satisfiability
problem of some Yen’s path formula, and the satisfiability problem of each Yen’s path formula can
be reduced to the reachability problem for Petri nets with respect to the marking with all places
empty, all in polynomial time. In addition, the satisfiability of each increasing Yen’s path formula
can be verified in EXPSPACE.

For a Petri net (N,M0), where N = (P, T, Pre, Post) is a net, each Yen’s path formula consists
of the following elements:
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1. Variables. There are two types of variables, namely, marking variables M1,M2, . . . and
variables for transition sequences s1, s2, . . . , where each Mi denotes an indeterminate func-
tion in ZP and each si denotes an indeterminate finite sequence of transitions, Z is the set of
integers.

2. Terms. Terms are defined recursively as follows.

(a) ∀ constant c ∈ NP , c is a term.
(b) ∀j > i, Mj −Mi is a term, where Mi and Mj are marking variables.
(c) T1 + T2 and T1 − T2 are terms if T1 and T2 are terms.

3. Atomic Predicates. There are two types of atomic predicates, namely transition predicates
and marking predicates.

(a) Transition predicates.
• y�](si) < c, y�](si) = c, and y�](si) > c are predicates, where i > 1, constant
y ∈ ZT , constant c ∈ N, and � denotes the inner product (i.e., (a1, . . . , a|T |) �
(b1, . . . , b|T |) = ∑|T |

i=1 akbk).
• ](s1)(t) ≤ c and ](s1)(t) ≥ c are predicates, where constant c ∈ N, t ∈ T .

(b) Marking predicates.
• Type 1. M(p) ≥ c and M(p) > c are predicates, where M is a marking variable

and c ∈ Z is constant.
• Type 2. T1(i) = T2(j), T1(i) < T2(j), and T1(i) > T2(j) are predicates, where
T1, T2 are terms and i, j ∈ T .

4. F1 ∨ F2 and F1 ∧ F2 are predicates if F1 and F2 are predicates.

A Yen’s path formula f is of the following form (with respect to Petri net (N,M0), where N =
(P, T, Pre, Post)):

(∃M1, . . . ,Mn ∈ NP )(∃s1, . . . , sn ∈ T ∗)[(M0[s1〉M1[s2〉 · · · [sn〉Mn)
∧ F (M1, . . . ,Mn, s1, . . . , sn)],

(1)

where F (M1, . . . ,Mn, s1, . . . , sn) is a predicate.

Given a Petri net G and a Yen’s path formula f , we use G |= f to denote that f is true in G. The
satisfiability problem is the problem of determining, given a Petri net G and a Yen’s path formula
f , whether G |= f .

A Yen’s path formula (1) is called increasing if F does not contain transition predicates and implies
Mn ≥ M1. When n = 1, it naturally holds Mn ≥ M1, then in this case an increasing Yen’s path
formula is (∃M1)(∃s1)[(M0[s1〉M1) ∧ F (M1)].

The unboundedness problem can be formulated as the satisfiability of the increasing Yen’s path
formula (∃M1,M2)(∃s1, s2)[(M0[s1〉M1[s2〉M2) ∧ (M2 > M1)].

The coverability problem can be formulated as the satisfiability of the increasing Yen’s path for-
mula (∃M1)(∃s1)[(M0[s1〉M1) ∧ (M1 ≥M)], where M is the destination marking.
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3 Weak approximate detectability

The concept of weak detectability is formulated as follows.

Definition 1 (WD) Consider an LSTS S = (X,T,X0,→,Σ, `). System S is called weakly de-
tectable if Lω(S) 6= ∅ implies there exists a label sequence σ ∈ Lω(S) such that for some positive
integer k, |M(S, σ′)| = 1 for every prefix σ′ of σ satisfying |σ′| ≥ k.

Sometimes, we do not need to determine the current state of an LSTS, but only need to know
whether the current state belongs to some prescribed subset of reachable states. Then the concept
of weak approximate detectability is formulated as below.

Definition 2 (WAD) Consider an LSTS S = (X,T,X0,→,Σ, `). Given a positive integer n > 1
and a partition {R1, . . . , Rn} of the set of its reachable states, S is called weakly approximately de-
tectable with respect to partition {R1, . . . , Rn} if Lω(S) 6= ∅ implies there exists a label sequence
σ ∈ Lω(S) such that for some positive integer k, for every prefix σ′ of σ satisfying |σ′| ≥ k,
∅ 6=M(S, σ′) ⊂ Riσ′ for some iσ′ ∈ [1, n].

3.1 Labeled Petri nets

One directly sees that if an LSTS is weakly detectable, then it is weakly approximately detectable
with respect to every finite partition of its state space. However, if it is weakly approximately
detectable with respect to some finite partition of its state space, then it is not necessarily weakly
detectable. See the following example.

Example 1 Consider a labeled Petri netG in Fig. 2. We haveLω(G) = {aω, bω}. We also have for
all k ∈ Z+,M(G, ak) = {(0, 1, 0, 0, 0), (1, 0, 0, 0, 0)},M(G, bk) = {(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},
where the components of a marking is in the order (p−2, p−1, p0, p1, p2). These observations show
that the net is not weakly detectable. It is weakly approximately detectable with respect to the
partition:

R1 = {(0, 0, 1, 0, 0)},
R2 = {(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},
R3 = {(0, 1, 0, 0, 0), (1, 0, 0, 0, 0)}

(2)

of the set of its reachable markings. Also, this net is a nondeterministic finite automaton with
(0, 0, 1, 0, 0) being the unique initial state. Similarly we have the automaton is also weakly ap-
proximately detectable with respect to partition (2) but not weakly detectable. In addition, this net
becomes a deterministic finite automaton if we regard a and b as labels of four different events,
respectively, and the corresponding deterministic finite automaton is also weakly approximately
detectable with respect to partition (2) but not weakly detectable.

14



p0 b

b
p1

p2

b

ba

a
p−1

p−2

a

a

Figure 2: A labeled P/T net G, where letters beside transitions denote their labels, each arc is with
weight 1.

For the weak approximate detectability of labeled P/T nets, the following result holds.

Theorem 1 Let n > 1 be a positive integer. It is undecidable to verify for an ε-free labeled P/T
net and a partition {R1, . . . , Rn} of the set of its reachable markings, whether the labeled P/T net
is weakly approximately detectable with respect to {R1, . . . , Rn}.

Proof We prove this result by reducing the language equivalence problem of labeled Petri nets
(Proposition 1) to the problem under consideration. We only need to prove the case n = 2, since
the undecidability of the case for any n greater than 2 trivially follows from that. In addition, in
our reduction, the partition is computable by using the reachability algorithm ([13, 18, 14]).

Arbitrarily given two ε-free labeled P/T netsGi = (Ni,M
i
0,Σ, `i), whereNi = (Pi, Ti, P rei, Posti),

i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct a new ε-free labeled P/T net G =
(NG,M

G
0 ,Σ∪{σG}, `G) fromG1 andG2. G is specified as follows: (1) Add 5 places p0, p

1
1, p

2
1, p2, p3

to G1 and G2, where initially p0 has one token, and all the other places have no token. (2) Add 6
transitions t10, t

2
0, t

1
1, t

2
1, t2, t3, and arcs p0 → t10 → p1

1 → t11 → p2 → t2 → p3 → t3 → p2, and
p0 → t20 → p2

1 → t21 → p3, where these transitions are labeled by σG /∈ Σ. (3) For each transition
t ∈ Ti, add arcs pi1 → t→ pi1, i = 1, 2. (4) All these newly added arcs are with weight 1. See Fig.
3 as a sketch.

p0

t10

t20

p̄
t̄

p2

p1
1 t11

p̂ t̂ p3

p2
1

t21

G1

G2

t3
t2

Figure 3: Sketch for the reduction in the proof of Theorem 1, where all transitions outside G1∪G2
are with the same label.
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For net G, initially only transition t10 or t20 can fire. After t10 (t20) fires, the unique token in place p0
moves to place p1

1 (p2
1), initializing net G1 (G2). While G1 (G2) is running, only transition t11 (t21)

outside T1 ∪ T2 can fire. The firing of t11 (t21) moves the token in place p1
1 (p2

1) to place p2 (p3), and
terminates the running of G1 (G2), yielding that the token in p2 (p3) can move along the direction
p2 → p3 → p2 periodically forever, but G1 (G2) will never run again. Hence net G may fire only
infinite transition sequences t10st

1
1(t2t3)ω, t10s

′, t20rt
2
1(t3t2)ω, or t20r

′, where s ∈ (T1)∗, s′ ∈ (T1)ω,
r ∈ (T2)∗, r′ ∈ (T2)ω. So G can generate only configurations σGσ(σG)ω or σGσ′ where σ ∈ Σ∗,
σ′ ∈ Σω. Note that for some nets G1 and G2, the corresponding net G never fires t10s

′ or t20r
′

as above, e.g., when L(G1) ∪ L(G2) is finite; but for all G1 and G2, the corresponding G fires
t10st

1
1(t2t3)ω and t20rt

2
1(t3t2)ω as above.

We partition the setR(NG,M
G
0 ) of reachable markings of net G as follows:

R1 ={M ∈ NPG|M(p0) or M(p1
1) or M(p2) = 1,M(p2

1) = M(p3) = 0}
∩ R(NG,M

G
0 ),

R2 ={M ∈ NPG|M(p2
1) or M(p3) = 1,M(p0) = M(p1

1) = M(p2) = 0}
∩ R(NG,M

G
0 ).

(3)

By using the reachability algorithm in the literature, one can decide whether an arbitrary given
marking belongs to R1, R2, or neither R1 nor R2.

If L(G1) 6= L(G2), without loss of generality, we assume that there exists σ ∈ L(G1) \ L(G2).
Then when G generates configuration σGσ(σG)ω, it can fire only transition sequences t10st

1
1(t2t3)ω,

where s ∈ (T1)∗, `G(s) = σ. It can be directly seen for each positive integer k, ∅ 6=M(G, σGσ(σG)k) ⊂
Rkmod 2+1, where k mod 2 means the remainder of k divided by 2. That is, net G is weakly ap-
proximately detectable with respect to partition (3).

Next we assume that L(G1) = L(G2). Note that net G generates only configurations σGσ′ or
σGσ(σG)ω, where σ′ ∈ Σω, σ ∈ Σ∗. For the former case, for each prefix σ′′ of σ′, there exist
firing sequences s ∈ (T1)∗ of net G1 and r ∈ (T2)∗ of net G2 such that `G(s) = `G(r) = σ′′,
and markings MG,M

′
G ∈ NPG such that MG

0 [t10s〉MG, MG
0 [t20r〉M ′

G, MG(p1
1) = 1, MG(p2

1) = 0,
M ′

G(p1
1) = 0, and M ′

G(p2
1) = 1, then we have M(G, σ′′) ∩ R1 6= ∅ and M(G, σ′′) ∩ R2 6= ∅.

For the latter case, chosen an arbitrary prefix σGσ(σG)k of σGσ(σG)ω, where k is an arbitrary
positive integer, we have there exist firing sequences s ∈ (T1)∗ of net G1 and r ∈ (T2)∗ of net
G2 such that `G(s) = `G(r) = σ and net G can fire both t10ss

′ and t20rr
′, where s′ and r′ are k

length prefixes of (t2t3)ω and (t3t2)ω, respectively. Since G will fire both t10ss
′ and t20rr

′, we have
M(G, σGσ(σG)k) ∩ R1 6= ∅ andM(G, σGσ(σG)k) ∩ R2 6= ∅. Hence for each positive integer k,
M(G, σGσ(σG)k) intersects both R1 and R2. We have checked all label sequences generated by
G, hence G is not weakly approximately detectable with respect to partition (3).

�
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3.2 Finite automata

Next, we study the complexity of deciding weak approximate detectability of finite automata.

An exponential-time algorithm for verifying weak detectability of a finite automaton S under As-
sumption 1 is given in [27], but the algorithm actually applies to every S satisfying Lω(S) 6= ∅
which is weaker than Assumption 1. Automaton S satisfying Lω(S) = ∅ is naturally weakly de-
tectable and hence weakly approximately detectable with respect to very finite partition of its set of
reachable states as well, and the condition Lω(S) = ∅ can be verified in linear time of the size of S
by computing all strongly connected components of S . Note that in Assumption 1, (ii) is actually
a little weaker than the counterpart in [30, 27], as in these two papers, there is no requirement
“reachable from an initial state”. However, one easily sees that existence of a cycle not reachable
from an initial state consisting of only unobservable events does not violate the verification results
for weak detectability given in [27].

Assumption 1 An LSTS S = (X,T,X0,→,Σ, `) satisfies

(i) S is deadlock-free,

(ii) no cycle in S reachable from an initial state contains only unobservable events, i.e., for every
reachable state x ∈ X and every nonempty unobservable event sequence s, there exists no
transition sequence x s−→ x in S.

In Assumption 1, (i) guarantees that the automaton never halts, (ii) ensures that for each infinite
event sequence generated by the automaton, the corresponding label sequence is also of infinite
length.

It is not difficult to see that weak approximate detectability is PSPACE-complete for finite au-
tomata. In order to show the PSPACE-hardness of weak approximate detectability with respect to
a partition of cardinality n, we can slightly change the reduction in our paper [44] to reduce the
finite automaton intersection problem to weak approximate detectability in polynomial time. To
prove the PSPACE membership, we can reduce weak approximate detectability to weak detectabil-
ity in polynomial time by constructing a quotient automaton from the original automaton, where
elements of the corresponding partition are states of the quotient automaton. Hence the following
theorem holds.

Theorem 2 1. The weak approximate detectability of finite automata can be verified in PSPACE.

2. Deciding weak approximate detectability of deterministic finite automata whose events can
be directly observed is PSPACE-hard.

Remark 1 The notion of weak approximate detectability can be extended from a finite partition
of the set of reachable states to a finite cover of that set. Such an extension may have potential
applications in supervisor reduction of supervisory control theory. In supervisory control theory,
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the optimal solution to the control problem associated with a DES is the supremal supervisor
(the supremal controllable sublanguage), and it is important to reduce the size of the supremal
supervisor together with preserving some corresponding control actions [4, 32, 34], where the
reduction is done based on a notion of control cover that is actually a cover of the state set.
Under this extension, it is not difficult to see that the extended weak approximate detectability of
finite automata can also be verified in PSPACE by the powerset construction used to verify weak
detectability in [27], and it is undecidable to verify this notion for labeled Petri nets (from Theorem
1).

4 Eventual strong detectability

The concepts of strong detectability and eventual strong detectability are given as follows. The
former implies there exists a positive integer k such that for each infinite label sequence generated
by a system, each prefix of the label sequence of length greater than k allows reconstructing the
current state. The latter implies that for each infinite label sequence generated by a system, there
exists a positive integer k (depending on the label sequence) such that each prefix of the label
sequence of length greater than k allows doing that. Hence the former is stronger than the latter.

Definition 3 (SD) Consider an LSTS S = (X,T,X0,→,Σ, `). System S is called strongly de-
tectable if there exists a positive integer k such that for each label sequence σ ∈ Lω(S), |M(S, σ′)| =
1 for every prefix σ′ of σ satisfying |σ′| > k.

Definition 4 (ESD) Consider an LSTS S = (X,T,X0,→,Σ, `). System S is called eventually
strongly detectable if for each label sequence σ ∈ Lω(S), there exists a positive integer kσ such
that |M(S, σ′)| = 1 for every prefix σ′ of σ satisfying |σ′| > kσ.

By definition, strong detectability implies eventual strong detectability. The following Proposition
4 shows that they are not equivalent.

Proposition 4 Strong detectability strictly implies eventual strong detectability for labeled P/T
nets and finite automata.

Proof Consider the labeled P/T net G in Fig. 4, where a and b are labels of transitions. It can be
seen that Lω(G) = aω + a∗bω + a∗baω := {aω} ∪ {anbω|n ∈ N} ∪ {anbaω|n ∈ N}. One also has
that M(G, an) = {(1, 0, 0)}, M(G, anb) = {(0, 1, 0), (0, 0, 1)}, M(G, anbbm+1) = {(0, 1, 0)},
M(G, anbam+1) = {(0, 0, 1)} for all m,n ∈ N. Hence G is eventually strongly detectable, but not
strongly detectable.

The net can be regarded as a deterministic finite automaton satisfying Assumption 1 when a and b
are regarded as labels of events. By a direct observation, it is also eventually strongly detectable,
but not strongly detectable.

�
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Figure 4: A labeled P/T net G that is eventually strongly detectable, but not strongly detectable.

4.1 Finite automata

In order to give an easily understandable way to verify eventual strong detectability of finite au-
tomata, for a finite automaton S = (X,T,X0,→,Σ, `), we next construct three new automata
from S.

Firstly, we construct its concurrent composition

CCA(S) = (X ′, T ′, X ′0,→′) (4)

as follows:

1. X ′ = X ×X;

2. T ′ = T ′o ∪ T ′ε , where T ′o = {(t̆, t̆′)|t̆, t̆′ ∈ T, `(t̆) = `(t̆′) ∈ Σ}, T ′ε = {(t̆, ε)|t̆ ∈ T, `(t̆) =
ε} ∪ {(ε, t̆)|t̆ ∈ T, `(t̆) = ε};

3. X ′0 = X0 ×X0;

4. for all (x̆1, x̆
′
1), (x̆2, x̆

′
2) ∈ X ′, (t̆, t̆′) ∈ T ′o, (t̆′′, ε) ∈ T ′ε , and (ε, t̆′′′) ∈ T ′ε ,

• ((x̆1, x̆
′
1), (t̆, t̆′), (x̆2, x̆

′
2)) ∈→′ if and only if (x̆1, t̆, x̆2), (x̆′1, t̆′, x̆′2) ∈→,

• ((x̆1, x̆
′
1), (t̆′′, ε), (x̆2, x̆

′
2)) ∈→′ if and only if (x̆1, t̆

′′, x̆2) ∈→, x̆′1 = x̆′2,

• ((x̆1, x̆
′
1), (ε, t̆′′′), (x̆2, x̆

′
2)) ∈→′ if and only if x̆1 = x̆2, (x̆′1, t̆′′′, x̆′2) ∈→.

For an event sequence s′ ∈ (T ′)∗, we use s′(L) and s′(R) to denote its left and right components,
respectively. Similar notation is applied to states of X ′. In addition, for every s′ ∈ (T ′)∗, we
use `(s′) to denote `(s′(L)) or `(s′(R)), since `(s′(L)) = `(s′(R)). In the above construction,
CCA(S) aggregates every pair of transition sequences of S producing the same label sequence.
In addition, CCA(S) has at most |X|2 states and at most |X|2(2|Tε||X| +

∑
σ∈Σ |`−1(σ)|2|X|2)

transitions, where the number does not exceed |X|2(2|Tε||X| + |To|2|X|2). Hence it takes time
O(2|X|3|Tε|+|X|4

∑
σ∈Σ |`−1(σ)|2) to construct CCA(S). For the special case when all observable

events can be directly observed studied in [27], the complexity reduces toO(2|X|3|Tε|+ |X|4|To|).
See the following example.

Example 2 A finite automaton S and its concurrent composition CCA(S) are shown in Fig. 5.
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Figure 5: A finite automaton (left) and its concurrent composition (right, only the accessible part
illustrated).

Secondly, we construct its observation automaton

Obs(S) = (X, {ε, ε̂}, X0,→′, {ε̂}, `′) (5)

in linear time of the size of S, where→′⊂ X×{ε, ε̂}×X , `′(ε) = ε, `′(ε̂) = ε̂, for every two states
x, x′ ∈ X , (x, ε̂, x′) ∈→′ if there exists t ∈ T such that (x, t, x′) ∈→ and `(t) 6= ε; (x, ε, x′) ∈→′
if there exists t ∈ T such that (x, t, x′) ∈→ and for all t′ ∈ T with (x, t′, x′) ∈→, `(t′) = ε. Here
the labeling function `′ is also naturally extended to `′ : {ε, ε̂}∗ ∪ {ε, ε̂}ω → {ε̂}∗ ∪ {ε̂}ω. One
sees that Lω(S) 6= ∅ if and only if in Obs(S) there is a transition sequence x0

s−→ x
s′
−→ x such that

x0 ∈ X0, s, s′ ∈ {ε, ε̂}∗, and `′(s′) 6= ε.

Thirdly, we also need to construct its bifurcation automaton

Bifur(S) = (X, {ε̄, ε̌}, X0,→′, {ε̄, ε̌}, `′) (6)

in linear time of the size of S, where →′⊂ X × {ε̄, ε̌} × X , `′(ε̄) = ε̄, `′(ε̌) = ε̌, `′ is also
naturally extended to `′ : {ε̄, ε̌}∗ ∪ {ε̄, ε̌}ω → {ε̄, ε̌}∗ ∪ {ε̄, ε̌}ω, transitions x ε̄−→ x′ are called fair
transitions, transitions x ε̌−→ x′ are called bifurcation transitions, for every two states i, j ∈ X , (1)
(j, ε̄, i), (j, ε̌, i) /∈→′ if ¬A1, (2) (x, ε̄, x′) ∈→′ if A1∧A2∧A3, (3) (x, ε̌, x′) ∈→′ otherwise, where

A1 =(∃t ∈ T )[(j, t, i) ∈→],
A2 =(@t ∈ T, j′ ∈ X)[((j, t, j′) ∈→) ∧ (`(t) = ε) ∧ (j′ 6= j)],
A3 =(∀t ∈ T )[(((j, t, i) ∈→) ∧ (`(t) 6= ε)) =⇒

(@t′ ∈ T, j′ ∈ X)[((j, t′, j′) ∈→) ∧ (`(t′) = `(t)) ∧ (j′ 6= i)]].

Ones sees that both fair transitions and bifurcation transitions can be ε-transitions or observable
transitions. Next we explain the relation between Bifur(S), the original automaton S, and the
concurrent composition CCA(S). Here (1) holds if there is no transition from state j to state i in
S; (2) holds if there exists a transition from j to i, and none of such transitions has a bifurcation
in S; and (3) holds if there is a transition from j to i that has a bifurcation also in S. For the case
that (3) holds, if A1 holds but A2 does not hold, then for S one has {j} (M({j}, ε) and hence

|M({j}, ε)| > 1, for CCA(S) there is a transition (j, j) (ε,t̃)−−→ (j, i′) with `(t̃) = ε and i′ 6= j; if A1
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Figure 6: Observation automaton (left) and bifurcation automaton (right) of the automaton in the
left part of Fig. 5.

and A2 hold but A3 does not hold, then for S one has |M({j}, ε)| = 1, {i} (M({j}, `(t̃′)), and
hence |M({j}, `(t̃′))| > 1 for some t̃′ ∈ T with `(t̃′) 6= ε and (j, t̃′, i) ∈→; for CCA(S) there is a

transition (j, j) (t̃′,t̃′′)−−−→ (i, i′) with i′ 6= i and `(t̃′) = `(t̃′′) for the above t̃′.

One also has that for all states x and x′, there is a transition from x to x′ in S if and only if there
is a transition from x to x′ in Obs(S) if and only if there is a transition from x to x′ in Bifur(S).
This obvious observation is helpful in verifying eventual strong detectability for finite automata.

Example 3 Reconsider the finite automaton S in Example 2 (in the left part of Fig. 5). Its obser-
vation automaton and bifurcation automaton are seen in Fig. 6. It has a unique initial state and
generates a nonempty ω-language. In addition, all its states are reachable.

We next use the concurrent composition, the observation automaton, and the bifurcation automaton
of a finite automaton S defined by (4), (5), and (6) to verify its eventual strong detectability without
any assumption. Note that by using a similar way, one can design a polynomial-time algorithm for
verifying strong detectability, which strengthens the polynomial-time verification algorithm given
in [27] under Assumption 1. In addition, the method in [27] can also be used to check eventual
strong detectability, but also only under Assumption 1.

Theorem 3 The eventual strong detectability of finite automata can be verified in polynomial time.

Proof Consider a finite automaton S = (X,T,X0,→,Σ, `) and another finite automaton Acc(CCA(S)) =
(X ′, T ′, X ′0,→′). We use Acc(CCA(S)), Obs(Acc(S)), and Bifur(Acc(S)) to verify its eventual
strong detectability.

One observes by definition that S is not eventually strongly detectable if and only if

there is an infinite transition sequence x0
s1−→ such that (7a)

x0 ∈ X0, `(s1) ∈ Σω and for every n ∈ Z+, there is a prefix (7b)
s′1 of s1 satisfying |`(s′1)| > n and |M(S, `(s′1))| > 1. (7c)

We claim that (7) holds if and only if one of the following items holds:
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(1) In Acc(CCA(S)), there exists an infinite transition sequence

x′0
s′

1−→ x′1
s′

2−→ · · · (8)

such that x′0 ∈ X ′0, for every i ∈ Z+, s′i ∈ (T ′)∗, `(s′i) ∈ Σ+, and s′i(L) 6= s′i(R).

(2) In S, there exists an infinite transition sequence

x0
s1−→ x1

s2−→ x2
s3−→ · · · (9)

such that x0 ∈ X0, for all i ∈ Z+, si ∈ T ∗, `(si+1) ∈ Σ+, and |M({xi}, σ)| > 1 for some
σ @ `(si+1).

It is trivial to see that either Item (1) or Item (2) implies (7).

Conversely suppose that (7) holds but Item (2) does not hold. Then for S, there is an infinite
transition sequence

x̄0
s̄1−→ x̄1

s̄2−→ x̄2
s̄3−→ · · · (10)

satisfying (7b) and (7c) such that for every i ∈ Z+, s̄i ∈ T ∗, `(s̄i+1) ∈ Σ+, and |M({x̄i}, σ̄)| = 1
for all σ̄ @ `(s̄i+1). Fix such a sequence (10). Then for every i ∈ Z+, there exists a finite transition
sequence

x̄i0
s̄i1−→ · · ·

s̄ii−→ x̄ii (11)

such that x̄i0 ∈ X0, for all j ∈ [1, i], one has `(s̄ij) = `(s̄j), x̄ij 6= x̄j . Choose k sufficiently large,
by the finiteness of X , we obtain a transition sequence

x̄′0
s̄′

1−→ · · ·
s̄′
k−→ x̄′k (12)

of Acc(CCA(S)) such that x̄′0 ∈ X ′0, the left component and the right component of (12) are a
prefix of (10) and (11) with i = k; for all i ∈ [1, k], x̄′i(L) 6= x̄′i(R), and x̄′l′ = x̄′l′′ for some

0 < l′ < l′′ ≤ k. Then the prefix x̄′0
s̄′

1−→ · · ·
s̄′
l′−→ x̄′l′

s̄′
l′+1−−−→ · · ·

s̄′
l′′−→ x̄′l′′ of (12) can be extended to an

infinite transition sequence of the form (8) by repeating x̄′l′
s̄′
l′+1−−−→ · · ·

s̄′
l′′−→ x̄′l′′ for infinitely many

times, i.e., Item (1) holds.

Next we show that both Item (1) and Item (2) can be verified in polynomial time.

Observe that Item (1) holds if and only if in Acc(CCA(S)), there is a finite transition sequence

x̃′0
s̃′

1−→ x̃′1
s̃′

2−→ x̃′1 (13)

with x̃′0 ∈ X ′0, s̃′1, s̃
′
2 ∈ (T ′)∗ such that `(s̃′2) ∈ Σ+ and x̃′1(L) 6= x̃′1(R). Next we verify (13) in

polynomial time. See Fig. 7 for a sketch.

1. Compute Obs(Acc(CCA(S))).
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∦
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Figure 7: A sketch for verifying (13).

2. Compute all strongly connected components of Obs(Acc(CCA(S))).

3. Denote the set of states (x, x̄) of Obs(Acc(CCA(S))) with x 6= x̄ that belong to a cycle with
nonempty label sequence by X ′c, check whether X ′c 6= ∅.

Each of the first two steps costs linear time of CCA(S). Note that X ′c 6= ∅ if and only if (13) holds.
Observe that X ′c 6= ∅ if and only if in one of the obtained strongly connected components, there
is an observable transition and a state (x′, x̄′) with x′ 6= x̄′. Hence the third step also costs linear
time. Overall, verifying Item (1) costs linear time of CCA(S), at most O(|X|4|T |2).

Also observe that Item (2) holds if and only if in S, there exists a finite transition sequence

x̃0
s̃1−→ x̃1

s̃2−→ x̃1 (14)

such that x̃0 ∈ X0, s̃1, s̃2 ∈ T ∗, `(s̃2) ∈ Σ+, and |M({x̃1}, σ)| > 1 for some σ @ `(s̃2).

Next we show that (14) can be verified in polynomial time. See Fig. 8 for a sketch.

1. Compute Obs(Acc(S)) and Bifur(Acc(S)).

2. Compute Xoc and Xbc, where Xoc (resp. Xbc) is the set of states of Acc(S) that belong to a
cycle containing an observable transition (resp. a bifurcation transition).

3. Check whether Xoc ∩Xbc = ∅.

Note that a state x of Acc(S) belongs to a cycle containing an observable transition (resp. a bifur-
cation transition) if and only if x is any state of any strongly connected component of Obs(Acc(S))
(resp. Bifur(Acc(S))) that contains an observable transition (resp. a bifurcation transition). Then
one has Xoc ∩Xbc 6= ∅ if and only if (14) holds. Hence it takes linear time of S to check whether
Item (2) holds.

�

Example 4 Recall the finite automaton S in the left part of Fig. 5. Following the procedure in the
proof of Theorem 3, by Figs. 5 and 6, we have Xoc = {s0, s1}, Xbc = ∅, Xoc ∩Xbc = ∅ (implying
that Item (2) does not hold), and X ′c = ∅ (implying that Item (1) does not hold either), then S is
eventually strongly detectable.
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+
bifurcation

Figure 8: A sketch for verifying (14).

Remark 2 By using a similar method as in the proof of Theorem 3, one can design a polynomial-
time verification algorithm for strong detectability of finite automata without any assumption, with
complexity linear of the size of Obs(Acc(CCA(S))), hence at most O(|X|4|T |2).

Let us analyse the computational complexity of using [27, Theorem 5] to verify strong detectability
of finite automata satisfying Assumption 1. In [27], for a finite automaton S (satisfying Assumption
1), a nondeterministic finite automaton Gdet with at most |X|2/2 + |X|/2 + 1 states and at most
(|X|2/2 + |X|/2 + 1)2|T | transitions is constructed to verify its strong detectability, where every
state of Gdet is a subset of states of S with cardinality 1 or 2, except for the initial state of Gdet

being a superset of X0. The time consumption for computing Gdet is as follows:

|X| |Tε||X|︸ ︷︷ ︸
compute initial state Q0 of Gdet by traversing all ε-transition
sequences from X0, where X0 ⊂ Q0 ⊂ X

+ (15)

|Q0| |To||X|︸ ︷︷ ︸
compute
Q′⊂X
by traversing
all observable
transitions
from Q0

+ |Σ||X||Tε||X|︸ ︷︷ ︸
compute Q′′

by traversing
all ε-transition
sequences
from Q′

+ |Σ||X|2︸ ︷︷ ︸
split Q′′ into
subsets of X
of cardinality 2
to obtain
non-initial states
of Gdet

+ (16)

|X|2(2|To||X|+ |Σ||X||Tε||X|+ |Σ||X|2)︸ ︷︷ ︸
Repeat (16) from states of Gdet of cardinality 2

+ (17)

|X|(|To||X|+ |Σ||X||Tε||X|+ |Σ||X|2)︸ ︷︷ ︸
Repeat (16) from states of Gdet of cardinality 1

, (18)

i.e., at mostO(2|X|3|To|+ |X|4|Σ||Tε|+ |X|4|Σ|). For the special case when all observable events
can be directly observed studied in [27], the complexity is O(2|X|3|To|+ |X|4|To||Tε|+ |X|4|To|).
Actually, this construction tracks sets of states of S with consistent observations, which is similar to
the powerset construction that is of exponential size of S. It is proved that S is strongly detectable
if and only if every state of Gdet reachable from a cycle is a singleton. This condition can be check
in linear time of Gdet by computing strongly connected components of Gdet.

However, this method generally does not apply to a finite automaton that does not satisfy Assump-
tion 1. For example, let us consider the finite automaton S in the left part of Fig. 5. Remove the
self-loop on s1, and denote the new automaton by S̄. Then one directly sees that Lω(S̄) = {aω},
and S̄ is strongly detectable. However, in the corresponding Gdet, which consists of a self-loop
with label a on {s0} and a transition from {s0} to {s1, s2} with label b, there is a state {s1, s2}
with cardinality 2 reachable from a cycle, hence S̄ is not strongly detectable by [27, Theorem 5].
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Actually, the verification method does not apply to this example because, two deadlock states s1
and s2 are not in any infinite-length transition sequence, but reachable from a state s0 that belongs
to an infinite-length transition sequence with infinite-length label sequence.

Remark 3 Eventual strong detectability is a uniform concept. That is, a labeled Petri net is even-
tually strongly detectable if and only if it is eventually strongly detectable when its initial marking is
replaced by any of its reachable markings. Formally, for a labeled Petri net G = (N,M0,Σ, `), G
is eventually strongly detectable if and only if G′ = (N,M,Σ, `) is eventually strongly detectable
for each M ∈ R(N,M0).

Example 5 Consider a labeled P/T net G as shown in Fig. 9, where a, b are labels. We have
Lω(G) = aω + a∗bω, |M(G, an)| = 1, |M(G, anbm)| = 2 for all m,n ∈ Z+. Hence the net
is weakly detectable, but not eventually strongly detectable. The deterministic finite automaton
obtained from the net when a and b are regarded as labels of events (particularly b as the label of
four different events) is also weekly detectable, but not eventually strongly detectable.

a b

b b

b

Figure 9: A labeled P/T net G that is weakly detectable, but not eventually strongly detectable.

4.2 Labeled Petri nets

In this subsection we discuss the decidability and complexity of eventual strong detectability for
labeled Petri nets.

If a labeled Petri net G satisfies Lω(G) = ∅, then it is naturally eventually strongly detectable.
Actually whether the property Lω(G) = ∅ holds can be verified in EXPSPACE, and can also be
guaranteed by the following Assumption 2 that is weaker than the widely used Assumption 1 in
detectability studies of DESs.

Proposition 5 Verifying whether a labeled Petri netG satisfiesLω(G) = ∅ belongs to EXPSPACE.

Proof Consider a labeled Petri net G = (N = (P, T, Pre, Post),M0,Σ, `). Observe that
Lω(G) 6= ∅ if and only if there exists an infinite firing sequence

M0[s1〉M1[s2〉 · · · (19)

such that for each i ∈ Z+, `(si) ∈ Σ+.
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For G, a sequence (19) exists if and only if G satisfies the following Yen’s path formula

(∃M̃1, M̃2)(∃s̃1, s̃2)[(M0[s̃1〉M̃1[s̃2〉M̃2) ∧ (M̃2 ≥ M̃1) ∧ (`(s̃2) ∈ Σ+)]. (20)

The “if” part follows from M̃1[s̃2〉M̃2 being a repetitive firing sequence (hence can consecutively
fire for infinitely many times) and |`(s̃2)| > 0.

For the “only if” part: Arbitrarily fix a sequence (19). By Dickson’s lemma, in the set {M0,M1, . . . },
there are totally finitely many distinct minimal elements. Choose k > 0 such that {M0, . . . ,Mk}
contains the maximal number of distinct minimal elements of {M0,M1, . . . }, then there exist 0 ≤
k′ ≤ k < k′′ such that Mk′ ≤ Mk′′ . Then the firing sequence M0[s1 . . . sk′′〉Mk′′ [sk′+1 . . . sk′′〉M ′

satisfies Mk′′ ≤M ′ and `(sk′+1 . . . sk′′) ∈ Σ+.

The satisfiability of (20) is actually a fair nondetermination problem and hence belongs to EX-
PSPACE [2, Subsection 6.1]. �

Assumption 2 (i) A labeled P/T net G does not terminate, i.e., there exists an infinite firing
sequence at the initial marking, and

(ii) it is prompt, i.e., there exists no repetitive firing sequence labeled by the empty string.

Note that the deadlock-freeness assumption (see (i) of Assumption 1) implies (i) of Assumption 2,
but not vice versa; (ii) of Assumption 2 is actually equivalent to (ii) of Assumption 1 for labeled
Petri Petri nets. Note also that for a labeled P/T net G, Lω(G) 6= ∅ implies that G does not
terminate, but not vice versa, because transitions could be labeled by ε. Verifying termination
of Petri nets (the first part of Assumption 2) is EXPSPACE-complete by the results of [21, 15].
Verifying promptness of labeled Petri nets belongs to EXPSPACE [2]. In addition, promptness is
equivalent to all infinite firing sequences being labeled by infinite-length sequences.

In order to characterize eventual strong detectability for labeled Petri nets, we introduce the concur-
rent composition of a labeled Petri net. Given a labeled P/T netG = (N = (P, T, Pre, Post),M0,Σ, `),
we construct in polynomial time its concurrent composition as a Petri net

CCN(G) = (N ′ = (P ′, T ′, P re′, Post′),M ′
0) (21)

which aggregates every pair of firing sequences of G producing the same label sequence. Denote
P = {p̆1, . . . , p̆|P |} and T = {t̆1, . . . , t̆|T |}, duplicate them to Pi = {p̆i1, . . . , p̆i|P |} and Ti =
{t̆i1, . . . , t̆i|T |}, i = 1, 2, where we let `(t̆1i ) = `(t̆2i ) = `(t̆i) for all i in [1, |T |]. Then we specify G′

as follows:

1. P ′ = P1 ∪ P2;

2. T ′ = T ′o ∪ T ′ε , where T ′o = {(t̆1i , t̆2j) ∈ T1 × T2|i, j ∈ [1, |T |], `(t̆1i ) = `(t̆2j) ∈ Σ}, T ′ε =
{(t̆1, ε)|t̆1 ∈ T1, `(t̆1) = ε} ∪ {(ε, t̆2)|t̆2 ∈ T2, `(t̆2) = ε};
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p1

b(b)

a(ε)

p2

Figure 10: A labeled Petri
net G, where event a is un-
observable, but b can be di-
rectly observed.

p′1

p′′1

(b, b)

(a, ε)

(ε, a)

p′2

p′′2

Figure 11: Concurrent com-
position of the net in Fig.
10.

p′1

p′′1

(b, b)

(a, ε)

(ε, a) p′2

p′′2

(a, φ) (b, φ)

(φ, a) (φ, b)

Figure 12: Extended concurrent
composition of the net in Fig.
10.

3. for all k ∈ [1, 2], all l ∈ [1, |P |], and all i, j ∈ [1, |T |] such that `(t̆1i ) = `(t̆2j) ∈ Σ,

Pre′(p̆kl , (t̆1i , t̆2j)) =

 Pre(p̆kl , t̆1i ) if k = 1,

P re(p̆kl , t̆2j) if k = 2,

Post′(p̆kl , (t̆1i , t̆2j)) =

 Post(p̆kl , t̆1i ) if k = 1,

Post(p̆kl , t̆2j) if k = 2;

4. for all l ∈ [1, |P |], all i ∈ [1, |T |] such that `(t̆1i ) = `(t̆2i ) = ε,

Pre′(p̆1
l , (t̆1i , ε)) = Pre(p̆1

l , t̆
1
i ),

P re′(p̆2
l , (ε, t̆2i )) = Pre(p̆2

l , t̆
2
i ),

Post′(p̆1
l , (t̆1i , ε)) = Post(p̆1

l , t̆
1
i ),

Post′(p̆2
l , (ε, t̆2i )) = Post(p̆2

l , t̆
2
i );

5. M ′
0(p̆kl ) = M0(p̆l) for any k in [1, 2] and any l in [1, |P |].

A labeled Petri net and its concurrent composition are shown in Fig. 10 and Fig. 11, respectively.

Assume that there exists a label sequence σ ∈ L(G) such that |M(G, σ)| > 1, then there exist
transitions tµ1 , . . . , tµn , tω1 , . . . , tωn ∈ T ∪ {ε}, where n ≥ 1, such that `(tµi) = `(tωi) for all
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i ∈ [1, n], `(tµ1 . . . tµn) = `(tω1 . . . tωn) = σ, M0[tµ1 . . . tµn〉M1 and M0[tω1 . . . tωn〉M2 for dif-
ferent M1 and M2 both in NP . Then for CCN(G), we have M ′

0[(t1µ1 , t
2
ω1) . . . (t1µn , t2ωn)〉M ′, where

M ′(p̆kl ) = Mk(p̆l), k ∈ [1, 2], l ∈ [1, |P |], and M ′(p̆1
l′) 6= M ′(p̆2

l′) for some l′ ∈ [1, |P |] (briefly
denoted by M ′|P1 6= M ′|P2).

Assume that for each label sequence σ ∈ L(G), we have |M(G, σ)| = 1. Then for all M ′ ∈
R(N ′,M ′

0), M ′(p̆1
l ) = M ′(p̆2

l ) for each l in [1, |P |] (briefly denoted by M ′|P1 = M ′|P2).

We next characterize eventual strong detectability for labeled P/T nets. If a labeled Petri net G
satisfies Lω(G) = ∅, then it is eventually strongly detectable.

Checking strong detectability for labeled P/T nets is proved to be decidable and EXPSPACE-hard
in the size of a labeled P/T net [17] under Assumption 1 (it is not difficult to see that the assumption
“there does not exist an infinite unobservable sequence” used in [17] is equivalent to promptness
by Dickson’s lemma). Here the size of a P/T net G = (N = (P, T, Pre, Post),M0) is dlog |P |e+
dlog |T |e+ the size of {Pre(p, t)|p ∈ P, t ∈ T} ∪ {Post(p, t)|p ∈ P, t ∈ T} ∪ {M0(p)|p ∈ P},
where the last term means the sum of the lengths of the binary representations of the elements of
{Pre(p, t)|p ∈ P, t ∈ T} ∪ {Post(p, t)|p ∈ P, t ∈ T} ∪ {M0(p)|p ∈ P} [2, 37]. Hence the size
of a labeled P/T net can be defined as the sum of the size of its underlying P/T net and that of its
labeling function ` : T → Σ ∪ {ε}, where the latter is actually no greater than |T |.

Consider a labeled Petri net G. Consider a reachable marking M1 of G and a firing sequence
ψ = M1[t2〉M2[t3〉 · · · [tl〉Ml, where l > 1, ti is a transition of G for every i ∈ [2, l]. We say
that ψ has a bifurcation if there exists k ∈ [2, l] such that in the concurrent composition CCN(G)
of G, there is a firing sequence M ′

1[t′2〉M ′
2[t′3〉 · · · [t′n〉M ′

n for some n > 1 and with all t′2, . . . , t
′
n

being transitions of CCN(G) such that M ′
1|P1 = M ′

1|P2 = M1, M ′
n|P1 = Mk, the left component of

t′2 . . . t
′
n equals t2 . . . tk, and M ′

k′|P1 6= M ′
k′ |P2 for some k′ ∈ [2, n].

For G, for two infinite firing sequences

M0[t̃1〉M̃1[t̃2〉 · · · and (22a)

M0[t̂1〉M̂1[t̂2〉 · · · , (22b)

where t̃i, t̂i are transitions of G for all i ∈ Z+, we call they merge after a finite time if in CCN(G),
there is an infinite firing sequenceM ′

0[t′1〉M ′
1[t′2〉 · · · with t′1, t

′
2, . . . all being transitions of CCN(G)

such that the left component and right component of t′1t
′
2 . . . equal t̃1t̃2 . . . and t̂1t̂2 . . . , respec-

tively, and there exists k ∈ Z+ such that M ′
j|P1 = M ′

j|P2 for all j > k.

Theorem 4 (1) The eventual strong detectability of a labeled P/T net G under (ii) of Assumption
2 is decidable.

(2) Deciding whether a labeled P/T net G with Lω(G) 6= ∅ is eventually strongly detectable is
EXPSPACE-hard.

Proof (1) Proof of the decidability result:

By Proposition 5, we first verify whether G satisfies Lω(G) 6= ∅ in EXPSPACE. If no, then G is
eventually strongly detectable. Otherwise, continue the following procedure.
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Consider a labeled Petri net G = (N = (P, T, Pre, Post),M0,Σ, `) with Lω(G) being nonempty.
By definition, G is not eventually strongly detectable if and only if there exists σ ∈ Lω(G) such
that for all k ∈ N there exists a prefix σ̄ of σ satisfying |σ̄| > k and |M(G, σ̄)| > 1. We construct
the concurrent composition CCN(G) = (N ′ = (P ′, T ′, P re′, Post′),M ′

0) of G as in (21).

We claim that G is not eventually strongly detectable if and only if one of the following two items
holds (see Examples 6 and 7):

(1) In CCN(G), there exists an infinite firing sequence

M ′
0[s′1〉M ′

1[s′2〉 · · · , (23)

where for every i ∈ Z+, s′i contains a transition of T ′o, and M ′
i |P1 6= M ′

i |P2 .

(2) In G, there exists an infinite firing sequence

M0[s1〉M1[s2〉M2[s3〉 · · · (24)

such that M0[s1〉M1 has a bifurcation, for each i ∈ Z+, `(si) ∈ Σ+, and Mi[si+1〉Mi+1 also
has a bifurcation.

Apparently if Item (1) or Item (2) holds, then G is not eventually strongly detectable.

Suppose that G is not eventually strongly detectable. Then there exists an infinite firing sequence

M0[s̄1〉M1[s̄2〉M2[s̄3〉 · · · (25)

such that `(s̄i) ∈ Σ+ and |M(G, `(s̄1 . . . s̄i))| > 1 for all i ∈ Z+. Next we fix such a sequence
(25).

Furthermore, suppose that Item (1) does not hold. Then (25) and each infinite firing sequence of G
staring atM0 and having the same label sequence as (25) has will merge after a finite time, since the
label sequence of (25) is of infinite length. Next we prove that Item (2) holds. If in (25), infinitely
many of M0[s̄1〉M1, M1[s̄2〉M2, . . . have bifurcations, then (25) is a firing sequence satisfying
the requirement in Item (2). Next we assume that there are only finitely many of them having
bifurcations, and reach a contradiction. Without loss of generality, we assume that only M0[s̄1〉M1
has a bifurcation. Then for each k ∈ Z+, there exists a firing sequence M0[s̃k〉M̃k such that
`(s̃k) @ `(s̄1s̄2 . . . ), |`(s̃k)| > k, and some prefix of (25) andM0[s̃k〉M̃k can be combined to obtain
a firing sequence M ′

0[s′k〉M
′
k of CCN(G) such that the label sequence of the right component of s′k

equals `(s̃k), M ′
k|P2 = M̃k, and M ′

k|P1 6= M
′
k|P2 . Collecting all such firing sequences M0[s̃k〉M̃k,

k ∈ Z+, we obtain a locally finite, infinite tree T with M0 the root. Also collect all such markings
M̃k, k ∈ Z+, to obtain a set M. Observe that in T, M0 has infinitely many descendants of M. Also
observe in T that one of the finitely many children of M0 also has infinitely many descendants of
M, denote such a child of M0 by M̂1, then we obtain a firing sequence M0[t̂1〉M̂1 of G, where
t̂1 ∈ T . Since T is locally finite, repeating the process of looking for M0[t̂1〉M̂1, we can obtain an
infinite firing sequence

M0[t̂1〉M̂1[t̂2〉 · · · (26)
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of G such that for each i ∈ Z+, M̂i has infinitely many descendants of M in T. By (ii) of As-
sumption 2, we have (26) is labeled by an infinite-length label sequence. Also, since for each
i ∈ Z+, M0[t̂1 . . . t̂i〉M̂i is a prefix of some path of T, we have `(t̂1t̂2 . . . ) = `(s̄1s̄2 . . . ). Then it is
not difficult to see that (26) and (25) can be combined into an infinite firing sequence of CCN(G)
satisfying the requirement in Item (1), which is a contradiction.

Next we prove that the satisfiability of Item (1) or Item (2) are both decidable, completing the
proof of the decidability result of eventual strong detectability.

For Item (1):

We claim that Item (1) holds if and only if there exists a firing sequence

M ′
0[s′1〉M ′

1[s′2〉M ′
2 (27)

in CCN(G) satisfying

(M ′
2 ≥M ′

1) ∧ (s′2 contains a transition in T ′o) ∧ (M ′
2|P1 6= M ′

2|P2), (28)

where T ′o ⊂ T ′ is shown in (21). That is, we next prove that Item (1) holds if and only if

(∃M ′
1,M

′
2)(∃s′1, s′2)[(27) ∧ (28)] (29)

is satisfied.

“if”: Assume that for CCN(G), Eqn. (29) holds. Then Item (1) holds, because M ′
2|P1 6= M ′

2|P2 , s′2
contains a transition in T0 (hence `(s′2) is of positive length), and M ′

1[s′2〉M ′
2 is a repetitive firing

sequence and can fire consecutively for infinitely many times.

“only if”: Assume that Item (1) holds, and fix a sequence (23).

By Dickson’s lemma, the set {M ′
0,M

′
1, . . . } contains at most finitely many distinct minimal ele-

ments. Then there exists k ∈ Z+ such that {M ′
0, . . . ,M

′
k} contains the maximal number of distinct

minimal elements of {M ′
0,M

′
1, . . . }. Hence there exists 0 ≤ l ≤ k such that M ′

l ≤ M ′
k+1. Then

the firing sequence
M ′

0[s′1 . . . s′l〉M ′
l [s′l+1 . . . s

′
k+1〉M ′

k+1

satisfies that M ′
k+1 ≥ M ′

l , s
′
l+1 . . . s

′
k+1 contains at least one transition of T ′o, and M ′

k+1|P1 6=
M ′

k+1|P2 , i.e., (29) holds.

In (28), “M ′
2 ≥M ′

1” can be expressed as combination of marking predicates, “s′2 contains a transition in T ′o”
is a transition predicate, only “M ′

2|P1 6= M ′
2|P2” is not a predicate.

Add two new places p′′0 and p′′1 into CCN(G), where initially p′′0 contains exactly 1 token, but p′′1
contains no token; add one new transition r′′1 , and arcs p′′0 → r′′1 → p′′1, both with weight 1. Also,
for each transition t in CCN(G), add arcs p′′1 → t→ p′′1, both with weight 1. Then we obtain a new
Petri net CCN(G)′. We have CCN(G) satisfies (29) if and only if CCN(G)′ satisfies the Yen’s path

30



formula

(∃M ′′
1 ,M

′′
2 ,M

′′
3 )(∃s′′1, s′′2, s′′3)[

(M ′′
0 [s′′1〉M ′′

1 [s′′2〉M ′′
2 [s′′3〉M ′′

3 )∧
(s′′1 = r′′1) ∧ (M ′′

3 ≥M ′′
2 ) ∧ (s′′3 contains a transition of T ′o)∧

((M ′′
3 −M ′′

1 )|P1 6= (M ′′
3 −M ′′

1 )|P2)],

(30)

where note that one always has M ′′
1 |P1 = M ′′

1 |P2 .

Then by Proposition 3, the satisfiability of (29) is decidable, implying that the satisfiability of Item
(1) is decidable.

Next we prove that the satisfiability of Item (2) is decidable.

We claim that for G, Item (2) holds if and only if

there exists a firing sequence M0[s1〉M1[s2〉M2 satisfying (31a)
M1 ≤M2, (31b)
s2 contains an observable transition, and (31c)
M1[s2〉M2 contains a bifurcation. (31d)

Assume that for G, Item (2) holds. Again by Dickson’s lemma, there exist 0 ≤ l < k such that
the firing sequence M0[s1 . . . sl〉Ml[sl+1 . . . sk〉Mk satisfies that Ml ≤ Mk, sl+1 . . . sk contains an
observable transition, and Ml[sl+1 . . . sk〉Mk has a bifurcation. That is, (31) holds.

Assume that (31) holds. By (31b), (31c), and (31d), the sequence in (31a) can be extended to an
infinite firing sequence

M0[s1〉M1[s2〉M2[s2〉(M2 + (M2 −M1))[s2〉 · · · [s2〉(M2 + k(M2 −M1))[s2〉 · · ·

satisfying for each l ∈ Z+, one has (M2 + l(M2 −M1))[s2〉(M2 + (l + 1)(M2 −M1)) has a
bifurcation. That is, Item (2) holds.

Add a new set
Tφ = T 1

φ ∪ T 2
φ

of transitions into CCN(G), where φ /∈ T1 ∪ T2, T 1
φ = {(t̆1, φ)|t̆1 ∈ T1}, T 2

φ = {(φ, t̆2)|t̆2 ∈ T2}.
Add the following rules: for all l ∈ [1, |P |], all i ∈ [1, |T |],

Pre′(p̆1
l , (t̆1i , φ)) = Pre(p̆1

l , t̆
1
i ),

P re′(p̆2
l , (φ, t̆2i )) = Pre(p̆2

l , t̆
2
i ),

Post′(p̆1
l , (t̆1i , φ)) = Post(p̆1

l , t̆
1
i ),

Post′(p̆2
l , (φ, t̆2i )) = Post(p̆2

l , t̆
2
i ).

The newly obtained extended concurrent composition is denoted by

CCE
N(G) = (N ′′ = (P ′′, T ′′, P re′′, Post′′),M ′′

0 ), (32)

31



where P ′′ = P ′, T ′′ = T ′ ∪ Tφ, M ′′
0 = M ′

0. For example, the corresponding extended concurrent
composition of the net in Fig. 10 is shown in Fig. 12.

Then for G, (31) holds if and only if for CCE
N(G),

there exists a firing sequence M ′′′
0 [s′′′1 〉M ′′′

1 [s′′′2 〉M ′′′
2 [s′′′3 〉M ′′′

3 such that (33a)
M ′′′

1 ≤M ′′′
3 , (33b)

s′′′3 contains a transition (t1, ∗) with `(t1) ∈ Σ, (33c)
M ′′′

2 |P1 6= M ′′′
2 |P2 , (33d)

s′′′1 , s
′′′
2 ∈ (T ′)∗, (33e)

s′′′3 ∈ (T ′ ∪ T 1
φ)∗, (33f)

where we omit a similar proof for the equivalence compared to the previous claim. Among (33b)-
(33f), only (33d) is not a predicate. Using a similar construction to the one that is used to reduce
the satisfiability of (29) for CCN(G) to the satisfiability of a Yen’s path formula for CCN(G)′, we
can reduce the satisfiability of (33) to the satisfiability of a Yen’s path formula for a new Petri net.
Hence, the satisfiability of Item (2) for G is decidable.

(2) Proof of the hardness result:

To prove conclusion 2 of Theorem 4, we are given a Petri net G = (N = (P, T, Pre, Post),M0)
and a destination marking M ∈ NP , and construct a labeled P/T net

G′ = (N ′ = (P ′, T ′, P re′, Post′),M ′
0, T ∪ {σG}, `) (34)

as follows (see Fig. 13 as a sketch):

1. Add three places p0, p1, p2, where initially p0 contains exactly one token, but p1 and p2
contain no token;

2. add three transitions t0, t1, t2, and arcs p0 → t0 → p0, t1 → p1, t2 → p2, all with weight 1;
for every p ∈ P , add arcs p→ t1 and p→ t2, both with weight M(p);

3. add label σG /∈ T∪{t0, t1, t2}, `(t) = t for each t ∈ T∪{t0}, `(t) = σG for each t ∈ {t1, t2}.

It is clear that if M is not covered by G then G′ shown in (34) is eventually strongly detectable.
If M is covered by G, then there exists a firing sequence M0[σ1〉M1 with M1 ≥ M . Furthermore,
there exist two infinite firing sequences

M ′
0[σ1〉M ′

1[t1〉M ′
2[t0〉M ′

2[t0〉 · · · ,
M ′

0[σ1〉M ′
1[t2〉M ′′

2 [t0〉M ′′
2 [t0〉 · · · ,

where M ′
2 6= M ′′

2 since M ′
2(p1) > 0, M ′

2(p2) = 0, M ′′
2 (p2) > 0, M ′′

2 (p1) = 0. Also by `(t1) =
`(t2), we have G′ is not eventually strongly detectable. This reduction runs in time linear of
the number of places of G and the number of tokens of the destination marking M . Since the
coverability problem is EXPSPACE-hard in the number of transitions of G, deciding non-eventual
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p̃1

t1(σG)
M(p̃1)t2(σG)M(p̃1)

p̃2M(p̃2) M(p̃2)

p1p2 p0 t0
G

Figure 13: Sketch for the reduction in the hardness proof of Theorem 4.

strong detectability is EXPSPACE-hard in the numbers of places and transitions of G′ and the
number of tokens of M , hence deciding eventual strong detectability is also EXPSPACE-hard,
which completes the proof.

�

Remark 4 By using the extended concurrent composition and a similar procedure as the proof of
Theorem 4, the decidability result for strong detectability of labeled Petri nets proved in [17] can
be strengthened to hold only based on the promptness assumption.

Example 6 Consider a labeled Petri net G shown in Fig. 14, where event a can be directly
observed, but b and c share the same label b. One directly sees that Lω(G) = {(ab)ω}, and
M(G, (ab)n) = {(1, 0), (0, 0)} for all n ∈ Z+. Hence G is not weakly detectable, and hence not
eventually strongly detectable. By its reachability graph shown in Fig. 15, one sees that this net
satisfies Item (2) in the proof of Theorem 4, but not Item (1) in the proof. However, the net in Fig.
9 satisfies Item (1) but not Item (2).

p1 b(b)

a(a)

p2 c(b)

Figure 14: A labeled P/T net G.

(1, 0) (0, 1) (1, 0) (0, 1) (1, 0) · · ·

(0, 0) (0, 0)

a(a) b(b) a(a) b(b) a(a)
c(b)

c(b)

Figure 15: Reachability graph of the labeled Petri net in Fig 14.

33



Example 7 Consider a labeled Petri net G shown in Fig. 16. Its reachability graph is shown in
Fig. 17, one has Lω(G) = {abω}. By the reachability graph, one sees that the net is not prompt,

since there is a repetitive firing sequence in (1, 0, 0, 0, 0) t2(a)−−→ (0, 0, 1, 0, 0) t4(ε)−−→ (0, 0, 1, 1, 0)
labeled by the empty string. This net is not eventually strongly detectable, since for each n ∈ Z+,
|M(G, abn)| = ∞ > 1. However, the net does not satisfy Item (1) or Item (2) in the proof of
Theorem 4.

p1 t1(a)t2(a) p2 t3(b)p3t4(ε)p4

t6(b)p5

t5(b)

Figure 16: A labeled P/T net G.

(1, 0, 0, 0, 0) (0, 1, 0, 0, 0)

(0, 0, 1, 0, 0) (0, 0, 0, 0, 1)

(0, 0, 1, 1, 0) (0, 0, 0, 1, 1)

...
...

(0, 0, 1, n, 0) (0, 0, 0, n, 1)

...
...

t1(a)

t2(a)
t4 (ε)

t4 (ε)
t4 (ε)

t4 (ε)
t3(b)

t6(b)

t6(b)

t6(b)

t 5
(b

)
t 5

(b
)

t 5
(b

)
t 5

(b
)

Figure 17: Reachability graph of the labeled Petri net in Fig 16.

5 Conclusion

In this paper, we obtained a series of results on detectability of discrete-event systems. We pro-
posed one new notion of weak detectability and one new notion of strong detectability. We proved
that (1) the problem of verifying weak approximate detectability of labeled Petri nets is undecid-
able; (2) the problem of verifying eventual strong detectability of labeled Petri nets is decidable
and EXPSPACE-hard under the promptness assumption; (3) for finite automata, the problem of
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verifying weak approximate detectability is PSPACE-complete, and the other property can be ver-
ified in polynomial time. (4) The relationships between thse notions of detectability were also
characterized, and it was proved that no two of them are equivalent.

The decidability of strong detectability and eventual strong detectability of labeled Petri nets with-
out the promptness assumption are two interesting open problems. It is also an open problem
whether there is a reduction from weak detectability to weak approximate detectability, or vice
versa, for labeled Petri nets. Other variants of notions of detectability, e.g., different notions of ap-
proximate detectability are left for further study. Uniform versions of these notions of detectability
are left for further study. It is also an interesting topic to look for fast algorithms for verifying these
notions for (bounded) labeled Petri nets.
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