
1

Some remarks on “State Estimation and Fault

Diagnosis of Labeled Time Petri Net Systems

with Unobservable Transitions”
Zhou He, Zhiwu Li, Alessandro Giua, Francesco Basile, and Carla Seatzu,

Abstract

In this paper we comment on the algorithm proposed in the paper mentioned in the title to define and construct

a graph, called Modified State Class Graph (MSCG), which summarizes all possible evolutions of a Time Petri

net. We first show that under the assumptions mentioned in such a paper, the proposed graph could be infinite.

Then, we underline the requirement of revising the notation and adding some information on certain edges of the

graph. Finally, we remark that the current version of the algorithm does not consider all possible evolutions of the

net system. In the final part of the manuscript we propose a revised algorithm for the definition and construction

of the MSCG that overcomes all such limitations.

Published as:

Zhou He, Zhiwu Li, Alessandro Giua, Francesco Basile, and Carla Seatzu. “Some remarks on “State Estimation

and Fault Diagnosis of Labeled Time Petri Net Systems with Unobservable Transitions”,” IEEE Trans.

on Automatic Control, Vol. 64, No. 12, pp. 5253-5259, 2019. DOI: 10.1109/TAC.2019.2910168.

Z. He is with the College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

(email: hezhou@sust.edu.cn).

Z. W. Li is with the Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau and also with School

of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China (email: zhwli@xidian.edu.cn).

A. Giua is with the DIEE, University of Cagliari, Cagliari 09124, Italy (email: giua@unica.it).

F. Basile is with the Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica applicata, Università di Salerno,

Italy (email: fbasile@unisa.it).

C. Seatzu is with the DIEE, University of Cagliari, Cagliari 09124, Italy (email: seatzu@unica.it).

I. INTRODUCTION

In a recent paper Basile et al. [1] introduced a graph called Modified State Class Graph (MSCG) to describe

in a compact and exhaustive manner all possible evolutions of a labeled Time Petri net system. The definition

of the MSCG was given in an algoritmic way, namely it was based on the algorithm used for its construction.

In this paper we show that the algorithm presented in [1] to define and construct the MSCG is not correct. In

particular:

• The assumptions in [1] do not ensure the finiteness of the MSCG, as claimed. We show this via a

counterexample.

• The notation used to define the time spent by the net system in a given class (node) of the graph may

affect the correctness of the way some constraints, used to describe the possible evolutions on the net system,

are written.

• Finally, the algorithm in [1] does not guarantee, as claimed, that all possible evolutions of the net system

are described in the MSCG.

In this Technical Note we provide a revised version of the algorithm in [1] that overcomes the above limitations.

We also prove that, under the assumptions that the TPN is bounded and there exists no repetitive sequence that

may fire in zero time, the MSCG constructed using the revised algorithm is finite, which is equivalent to prove

that the algorithm terminates in a finite number of steps.

We conclude this section with three important remarks. First, the example proposed in [1] is correct since

it does not violate the missing assumption, the problem in the notation does not appear there, and the MSCG

actually provides all possible evolutions of the net system. Second, in [1] a procedure for the state estimation

and fault diagnosis of labeled Time Petri nets is proposed based on the MSCG. The correctness of such results

is not affected by the modifications introduced in the algorithm defining the MSCG. Indeed, the resulting MSCG

mantains the structure and the features that were assumed when such results have been derived. Finally, the

MSCG has been recently used in [2] to perform diagnosability analysis. Again, the example in [2] is correct

and the results proposed there still apply when using the revised algorithm to construct the MSCG.

II. THE MODIFIED STATE CLASS GRAPH

A Time Petri net (TPN) is defined as a pair Nd = (N,Q) where N = (P, T, Pre, Post) defines the net

structure and Q : T → R+
0 × (R+

0 ∪ {∞}) defines the set of static intervals associated with transitions [1]. In

particular, P is the set of places, T is the set of transitions, and Pre : P → N and Post : P → N are the pre–

and post– incidence functions that specify the arcs [3]. In the following, the static lower bound of transition ti

is denoted li, while its static upper bound is denoted as ui.

A TPN Nd with a marking M0 at the initial time instant τ0 = 0 is called a marked TPN, or a TPN system,

and is denoted as ⟨Nd,M0⟩.

In this paper, as in [1], we assume that a labeling function L̄ : T → L∪ {ε} assigns to each transition t ∈ T

either a symbol from a given alphabet L or the empty string ε. The label of a transition represents the output

2

it produces when firing.

The Modified State Class Graph (MSCG) is a directed graph whose nodes are called classes. With each

class is associated a state of the net, namely a reachable marking M and a set of inequalities Θ that define

the timing constraints pertaining to all transitions enabled at M . Such inequalities depend on a certain number

of variables, denoted ∆ variables, which take into account how much time a transition has been enabled. The

way such constraints are defined, as well as the way the ∆ variables are initialized and updated, is clarified

by Algorithms 1 and 2 in Section V. Edges are labeled as (t, γ,∆ ∈ [l∗, u∗]), where t is the transition whose

firing leads from the marking in the tail node to the marking in the head node; γ is the label associated with t,

and ∆ ∈ [l∗, u∗] is a constraint on the time spent in the tail node of the edge. The upper bounds l∗ and u∗ are

functions of ∆ variables in the path from the root node to the head node of the edge at hand. As discussed in

Section V where Algorithms 1 and 2 are presented, a fourth entry is added on certain edges to link ∆ variables

from a class to the next one when this is needed.

The goal of the MSCG relative to a TPN system ⟨Nd,M0⟩ is that of providing a compact and exhaustive rep-

resentation of all its possible evolutions. In more detail, a time-transition sequence (ti1 , τ1)(ti2 , τ2) . . . (tik , τk) ∈

(T × R+
0)

∗ is firable at the initial marking if and only if the following two conditions hold: (1) there exists a

path in the MSCG starting from the initial node, whose sequence of first entries in the edges is ti1ti2 . . . tik ;

(2) the time instants τ1, τ2, . . ., τk satisfy a series of constraints univocally defined, as explained in [1], by the

inequalities Θ in the nodes along the path and by the third entries of the edges along the same path.

Example 1: Consider the TPN system in Fig. 1. A part of its MSCG built according to Algorithm 1 in [1]

is shown in Fig. 2.

The time-transition sequence (t1, 1)(t3, 1.5) is firable at the initial marking and leads to marking p1 + p2

where t1 and t2 are enabled and have a firing delay satisfying the constraints 0 ≤ θ1 ≤ 2 and 0 ≤ θ2 ≤ 0.5,

respectively. Such an evolution corresponds to the path C0
t1,ε,∆1∈[0,2]−−−−−−−−→ C1

t3,a,∆3∈[0,2−∆1]−−−−−−−−−−−→ C2 in the MSCG

where ∆1 = 1 and ∆3 = 0.5, which imply τ1 = ∆1 = 1 and τ2 = ∆1 +∆2 = 1.5.

On the contrary, the time-transition sequence (t1, 1)(t3, 2.5) is not firable. This can be easily verified in the

MSCG. Indeed, it logically corresponds to the path C0
t1,ε,∆1∈[0,2]−−−−−−−−→ C1

t3,a,∆3∈[0,2−∆1]−−−−−−−−−−−→ C2. However, only

∆1 = 1 satisfies the timing constraints, while ∆3 = 1.5 is not an admissible value since, according to the

constraint in the second edge of the path, it should be ∆3 ∈ [0, 2−∆1] = [0, 1]. �

III. SOME REMARKS ON ALGORITHM 1 IN [1]

In this section we describe in detail the three issues mentioned in the introduction, which affect Algorithm 1

in [1].

In the following, in accordance with the notation in [1], the generic node Ce is labeled with (Me, Θe) where

Me is the marking that characterizes it and Θe is the set of constraints that characterize the admissible values

of the timing delays θi, for all transitions ti enabled at Me. Finally, we denote as ∆(e) the set of symbolic

variables ∆’s involved in Θe.

3

A. The resulting MSCG may be infinite

Proposition 5 in [1] claims that, under appropriate assumptions, the Modified State Class Tree (MSCT) built

according to Algorithm 1 in [1] (and consequently the MSCG) is finite. This may not be correct in some cases,

as shown by the following simple counterexample.

Example 2: Consider again the TPN system in Fig. 1. The repetitive sequence t1t3 may fire arbitrarily often

in zero time, while keeping unaltered the marking of place p2. This leads to an infinite number of classes as

shown in Fig. 2. This can be explained in detail as follows. Whenever a new firing of either t1 or t3 occurs, a

new constraint is defined involving a new ∆ variable which takes into account the time delay in which the firing

could have occurred with respect to the previous transition firing. This leads to the definition of a new class

in the graph. Since each ∆ variable may take a zero value, constraints involving an ever increasing number of

different variables ∆ (and consequently also new classes) can be defined. As a result, the MSCG has an infinite

number of classes. �

B. A problem in the notation

In [1] the generic symbolic variable ∆i is denoted as a function of the transition ti appearing in the edge

(see e.g., Fig. 2). This may lead to an improper formalisation when transition ti is labeling two or more edges

along a path and produces multiple occurences of the same variable ∆i in a constraint.

This appears evident looking again at the MSCG in Fig. 2. Here variable ∆1 appears twice in the constraint

p

t1

p

p

t2

t3

a

b

Fig. 1. The TPN system considered in Example 1.

Fig. 2. A part of the MSCG associated with the TPN system in Fig. 1 constructed according to Algorithm 1 in [1].

4

on θ2 in class C3: max{0, 1−∆1−∆3−∆1} ≤ θ2 ≤ 2−∆1−∆3−∆1. Apparently such a constraint could be

rewritten as max{0, 1− 2∆1 −∆3} ≤ θ2 ≤ 2− 2∆1 −∆3, which is not correct. Indeed, the same symbol ∆1

denotes two different symbolic variables. One of these variables (let us call it ∆′
1) is subject to the constraint

∆′
1 ∈ [0, 2] labeling the edge from C0 to C1. The second variable (let us call it ∆′′

1) is subject to the constraint

∆′′
1 ∈ [0, 2−∆′

1 −∆3] labeling the edge from C2 to C3.

C. Some possible evolutions could be missing

The last issue concerns the representation of all possible evolutions of the net system. When a node is

explored, while constructing the MSCG, it may happen that a logically enabled transition cannot fire because

its occurrence will be necessarily preempted by the firing of another enabled transition. In fact, in each node

Ce the admissible firing delays of enabled transitions satisfy a linear constraint set that depends on the path

from the root node to node Ce. If for all paths leading to Ce the lowest admissible value for the firing delay of

a logically enabled transition t is greater than the highest admissible value of another enabled transition, then

t will never be able to fire from Ce. In this case we say that transition t is preempted at node Ce. This leads

to the key definition of deficient node and deficient transition at a certain node.

Definition 1: A node Ce is deficient if there exists at least one transition that is logically enabled at Me, but

whose firing will be necessarily preempted by another transition.

Transitions that make node Ce deficient are said deficient at node Ce. �
According to Algorithm 1 in [1] each node is explored only once, when it is tagged “new”. Therefore, if

a transition is deficient when the node is explored, it always remains deficient at that node and no output arc

corresponding to it will be created. This may lead to neglect some possible evolutions of the system. Indeed,

when new “duplicate” nodes are created1, they could generate new paths leading to nodes that have already

been explored. If this happens at a node that is deficient, such a node should be explored again to take the new

paths into account and determine if some transitions that were previously classified as deficient at such a node,

could now be enabled.

Example 3: Consider the TPN system in Fig. 3. The MSCG, constructed according to the Revised Algorithm 1

illustrated in detail in the following Section V, is reported in Fig. 4.f, while the main steps of the construction

of the MSCT are shown in Figs. 4.a–e.

Let us focus on node C1. It is added when examining node C0 (Fig. 4.a). When first analyzed, node C1 is

tagged “deficient” since only one (t4) of the two transitions logically enabled at marking p2 + p4 (t4 and t5),

may actually fire (Fig. 4.b). In particular, t5 cannot fire since the smallest admissible value of its lower bound

is equal to 2 (it corresponds to ∆0 = 1) and is thus greater than the upper bound of t4, which is equal to 1.

Then, when node C2 is examined, node C ′
1, which is a duplicate of C1, is added to the tree (Fig. 4.c). Node

C ′
1 will be merged with C1 when constructing the graph (Fig. 4.f), thus the path leading to it also leads to node

1The tag “duplicate” is used here to avoid exploring nodes already considered. Duplicate nodes are then merged when constructing the

graph starting from the tree.

5

C1 in the graph. Therefore, differently from what is done in [1], C1 should be examined again to see if some

of the deficient transitions (t5 in this case) cease being deficient thanks to the new path. In the case at hand,

this is actually the case and node C1 ceases being deficient as highlighted in Fig. 4.e. Indeed, according to the

new path that leads to C ′
1 (and thus to C1 in the graph) the smallest admissible value of the lower bound of

the delay of t5 is equal to 1 (which corresponds to2 ∆2 = 2) and is thus equal to the upper bound of t4, which

is also equal to 1.

We finally notice that nodes C0 and C2 are tagged “deficient” when first examined, and remain deficient for

ever. In particular, no further path leading to them is created while constructing the MSCT, so they are not

examined further. �

IV. REVISED NOTATION, EQUIVALENT NODES, AND ISOMORPHISM RELATIONSHIP

In this section we first provide a solution to the problem in the notation discussed in the previous Subsec-

tion III-B. Then, we formalize the notion of equivalent nodes (provided only in a discursive way in [1]) and

clarify the requirement of including additional information on some edges of the MSCG.

An easy solution to the problem in the notation consists in defining symbolic variables ∆’s on the edges

exiting from a certain node, as a function of the node itself. In this new formalism, given a node Ce all variables

∆’s associated with output edges from Ce are denoted as ∆e, regardless of the transition with which they are

associated. This is also consistent with the physical meaning of such variables: ∆e represents the time spent

by the net system in class Ce. Clearly, depending on the transition associated with the edge, the constraints to

which they are subject, are typically different.

This revision in the notation requires a modification in the algorithm to construct the MSCT. To explain this

(and the proposed solution) we preliminarily provide a formal definition of the notion of equivalent classes.

Definition 2: Given a node Ce labeled with (Me, Θe) and a node Cq labeled with (Mq , Θq), Ce and Cq

are said to be equivalent if Me = Mq , and the set of constraints Θe and Θq are isomorphic, i.e., there exists

a bijective function that defines a one to one mapping between the symbolic variables ∆’s in ∆(e) and the

2Looking at the edge from C2 to C′
1, we read that ∆2 ∈ [0.2]. In the same edge we find out (as the fourth label) an isomorphism

relationship, namely ∆0 := ∆2. As explained in detail in the following, this means that in all the constraints in the input node of the edge,

namely C′
1, ∆0 should be replaced by ∆2.

p t1

p

p

t2 t3

0 2

1

3 4

t4

a

a b

p
t5 b

Fig. 3. The TPN system considered in Example 3.

6

...

...

Fig. 4. The MSCG (Fig. (f)) of the TPN system in Fig. 3, built according to Revised Algorithm 1, and the most significant intermediate

steps in its construction (Figs. (a) to (e)).

symbolic variables ∆’s in ∆(q), so that the set of constraints Θe is converted into the set of constraints Θq , and

viceversa.

In the following we denote by feq : ∆(e) → ∆(q) the one to one mapping between the variables in the set

∆(e) and the variables in the set ∆(q). �
When constructing the MSCT, several nodes belonging to the same class of the equivalence relation previously

defined may be encountered. The first of this node, say Ce, is considered as representative of the class and the

7

possible evolutions from it will be further explored. All other nodes are labeled “duplicate” and will not be

further explored: thus they will be leaves of the MSCT. In addition, to keep track of the isomorphism between

a duplicate node Cq and its representative node Ce, we add to the label of the edge entering Cq a fourth entry

∆(e) := feq(∆
(q)).

Example 4: Consider again the TPN system in Fig. 3. As already discussed in Example 3, Fig. 4 illustrates

the main steps in the construction of the MSCT using Revised Algorithm 1, as well as the resulting MSCG.

Let us focus on node C1. It is added during the first iteration of Algorithm 1, when examining node C0

(Fig. 4.a). Then, when exploring node C2, a node equivalent to C1, namely C ′
1, is computed. Therefore, C ′

1 is

tagged “duplicate” (Fig. 4.c) and the isomorphism relationship ∆0 := ∆2 is added as the fourth entry of the

edge from C2 to C ′
1.

Node C1 is then merged with node C ′
1 when constructing the MSCG strarting from the MSCT (Fig. 4.f) and

the isomorphism relationship mentioned above (appearing in the edge from C2 to C1 in the MSCG) specifies

how to write the constraints involving the timing delays of transitions t4 and t5 when following the path

C0
t2,ε,∆0∈[0,1]−−−−−−−−→ C2

t3,b,∆2∈[0,2]−−−−−−−−→ C1 in the MSCG. In particular, it specifies that all constraints written in terms

of ∆0 in node C1 and in its output edges, should be rewritten replacing ∆0 with ∆2 when C1 is reached via

C2. �

V. THE REVISED ALGORITHM FOR THE CONSTRUCTION OF THE MSCT

In this section we provide a revised version of Algorithm 1 in [1] and prove that, under appropriate as-

sumptions, the resulting MSCG is finite. For the sake of clarity and conciseness, the proposed algorithm uses

a function, named “Look for new nodes”, which is called twice with different input arguments. In more detail,

Revised Algorithm 1 summarizes the main steps of the new algorithm for the construction of the MSCT, while

Algorithm 2 summarizes the main steps of the function “Look for new nodes”. Such a function has two input

arguments: a node Ck and a set of duplicate nodes Duplicate. Its role is that of looking for new nodes in the

tree starting from the exploration of node Ck. Furthermore, as discussed in more detail in the rest of the section,

the second argument takes different values depending on the fact that Ck is explored for the first time, or it has

been already explored.

Note that in Revised Algorithm 1 and in Algorithm 2, A(M) denotes the set of transitions logically enabled

at M .

A. Explanation of Algorithm 1

Algorithm 1 starts by defining as root node of the tree the class C0, which is initially tagged “new”.

Then two sets are introduced and initialized at the empty set (Steps 2 and 3, respectively):

• Def is the current set of deficient nodes;

• Dup is the current set of duplicate nodes.

The above two sets are then updated while executing Algorithm 2.

8

Revised Algorithm 1: Construction of the Modified State Class Tree
Input: A labeled TPN system

Output: Its Modified State Class Tree.

1 Initialize: The root node C0 is labeled with the initial marking M0 and a set of inequalities Θ0 defined as

follows: ∀ti ∈ A(M0), let l0i ≤ θi ≤ u0
i where l0i = li and u0

i = ui. Tag the root node “new”.

2 Let Def = ∅.

3 Let Dup = ∅.

4 while a node tagged “new” exists do

5 select a node Ck tagged “new”;

6 let Tk = A(Mk);

7 apply function “Look for new nodes (Ck, Dup)”;

8 untag node Ck.

9 while no node tagged “new” exists and there exists a node Ck ∈ Def with Lk ̸= ∅ do

10 for all Ck ∈ Def with Lk ̸= ∅ do

11 apply function “Look for new nodes (Ck,Lk)”.

While nodes tagged “new” exist, one of such nodes is selected. Let’s call it Ck (Step 5). A set of transitions

Tk is associated with node Ck and it is initialized at Tk = A(Mk) (Step 6).

• Set Tk contains the deficient transitions at node Ck. More precisely, the first time node Ck is selected at

Step 5 of Algorithm 1, namely when Ck is tagged “new”, Tk is initialized at A(Mk) (Step 6 of Algorithm 1).

Then, whenever Algorithm 2 (Step 3) finds out that a transition in Tk is not deficient at node Ck, such

a transition is removed from set Tk (Step 4 of Algorithm 2). Therefore, once Ck has been explored, Tk

contains the set of transitions that are currently deficient at node Ck. As a result, Ck is classified deficient

at a certain iteration if and only if at that iteration it is Tk ̸= ∅.

At Step 7, Algorithm 2 is executed having as input arguments Ck and Dup. In simple words, new nodes

are eventually created in the tree exploring node Ck and taking into account the whole current set of duplicate

nodes. After that, node Ck is untagged (Step 8).

The second while loop is based on the definition of set Lk which has the following physical meaning:

• Lk is associated with the generic deficient node Ck and contains the duplicate nodes that have been created

in the tree after node Ck has been explored the last time.

The second while loop applies when no node tagged “new” exists, but there exists at least one deficient node

Ck whose set Lk is not empty: this means that Ck is not new, but, since it is deficient and some duplicate nodes

have been added to the tree after it has been examined the last time, it could happen that some transitions that

are currently deficient at node Ck, cease being deficient thanks to the new paths that such duplicate nodes have

9

Algorithm 2: Function “Look for new nodes (Ck, Duplicate)”

1 while Tk ̸= ∅ do

2 select ti ∈ Tk;

3 if max{0, lki } ≤ minj: tj∈Tk
{uk

j } at least along one path in Paths(Ck, Duplicate), then

4 let Tk = Tk \ {ti};

5 let Mq = Mk + C(·, ti) be the marking reached from Mk firing ti;

6 for all transitions tr ∈ A(Mq) do
if tr ∈ Tk (i.e., if tr was already enabled at class Ck) and the firing of ti does not first disable

tr and then re-anables it then

8 let

lqr = lkr −∆k, uq
r = uk

r −∆k

else

10 let

lqr = lr, uq
r = ur.

11 Add a new node Cq labeled with marking Mq and a set of inequalities Θq defined as follows:

∀tr ∈ A(Mq), let max{0, lqr} ≤ θr ≤ uq
r.

13 Add an edge from Ck to Cq labeled

ti, L̄(ti),∆k ∈ [max{0, lki },

minj: tj∈Tk
{uk

j }].

14 if there already exists a set of nodes equivalent to Cq in the tree then

15 tag node Cq “duplicate”,

16 let Ce be the node equivalent to Cq not tagged “duplicate”, add the following forth entry to the

label of the edge from Ck to Cq: ∆(e) := feq(∆
(q)).

17 for all Cj ∈ Def do
Lj = Lj ∪ {Cq}.

19 Let Dup = Dup ∪ {Cq}.

else

21 tag it “new”.

22 if Tk ̸= ∅ and Ck ̸∈ Def then
Let Def = Def ∪ {Ck}.

24 if Tk = ∅ and Ck ∈ Def then
Let Def = Def \ {Ck}.

26 if Ck ∈ Def then
Let Lk = ∅.

10

generated. The role of this while loop is that of investigating if this actually occurs and, if such is the case for

some node Ck, apply function “Look for new nodes” with input arguments node Ck and its corresponding set

Lk.

B. Explanation of Algorithm 2

Algorithm 2, as the name of the function highlights, looks for new nodes in the tree. This is done exploring

a generic node Ck. If this happens when node Ck is tagged “new”, namely it has never been explored before,

the second argument of the function Duplicate is equal to Dup, i.e., all duplicate nodes should be considered.

On the contrary, if Ck is not tagged “new”, namely it has been already explored, Duplicate is equal to Lk, i.e.,

only the duplicate nodes that have been created after Ck has been examined the last time, should be considered.

The effect of Algorithm 2 is not only that of eventually creating new nodes and edges. It also updates: sets

Tk and Lk associated with the current node Ck, sets Lj associated with the current deficient nodes Cj ∈ Def ,

sets Dup and Def .

Algorithm 2 uses the function Paths(Ck, Duplicate) defined as follows:

• Paths(Ck, Duplicate) is a function that returns all paths in the current MSCG obtained merging duplicate

nodes in the set Duplicate, and terminating in node Ck. In particular, such paths are defined moving

backward towards C0, untill all variables ∆’s defining the set of admissible firing delays of the transitions

enabled at Ck have been encountered, taking into account isomorphism relationships, if any.

We point out that Paths(Ck, Duplicate) always returns a finite number of paths. In fact, even if a cycle

originates while merging duplicate nodes, when moving backward along the cycle, before the cycle is completed,

the involved timers are reset and no trace of the upstream variables ∆’s remains. Indeed, if by absurd, one timer

is not reset, while moving backward, the number of variables ∆’s associated with it would grow indefinitely.

However, this is in contrast with the fact that a cycle is defined via a duplicate node and an isomorphism

relationship associated with the input edge closing the cycle.

Let us now explain Algorithm 2 step by step.

It examines the set of transitions in Tk (Step 1). More precisely, given a transition ti ∈ Tk, it checks if there

exists at least one path in Paths(Ck, Duplicate) that enables it (Step 3). If such is the case, ti is removed

from Tk (Step 4) and the marking Mq reached firing ti at Mk is computed (Step 5). Lower and upper bounds

of all transitions logically enabled at marking Mq are updated at Step 8 or 10.

At Step 11 a new node Cq labeled with marking Mq and set of inequalities Θq is added. Step 13 defines the

label of the edge from Ck to Cq , to whom an additional entry may be eventually added in Step 16.

Step 16 clarifies how to handle the case in which Cq is a duplicate node. In particular, it defines the

isomorphism relationship to be added as a fourth entry on the edge from Ck to Cq in accordance with the

discussion in the previous section.

At Step 17 all sets Lj associated with the current set of deficient nodes (nodes in Def) are updated, including

in all of them the new node Cq . Analogously, Cq is included in the set Dup at Step 19.

11

If the new node Cq is not duplicate, it is tagged “new” at Step 21.

Finally, if the set Tk is not empty after all transitions in it have been examined and Ck was not already in

Def , then Ck is added to Def . Note that this could only occur when node Ck is examined for the first time.

A node initially assigned to Def , may later be removed if its set Tk becomes empty (Step 24).

The algorithm terminates at Step 26 which imposes that set Lk is reset to the empty set if Ck is still a

deficient node: all duplicate nodes computed up to now have been already considered when examining Ck.

Example 5: Consider again the TPN system in Fig. 3. The main steps in the construction of the MSCT, built

according to Revised Algorithm 1, and the resulting MSCG are reported in Fig. 4 as already mentioned in the

previous examples.

• At Step 1 of Revised Algorithm 1, node C0 is created and tagged “new”: it contains the initial marking

M0 and the timing constraints of the transitions logically enabled at M0 are those defined by function Q(·).

Sets Def and Dup are initialized at the empty set (Steps 2 and 3).

• Node C0 is examined since it is the only node of the tree and it is tagged “new” (Steps 4 and 5). Set T0 is

initialized at the set of transitions logically enabled at p1 + p4, namely, it is T0 = {t1, t2, t5}. Only transitions

t1 and t2 satisfy the if condition at Step 3 of Algorithm 2. In particular, their firing leads to nodes C1 and

C2, respectively, which are added to the tree and tagged “new” as shown in Fig. 4.a. Set T0 becomes equal to

T0 = {t5}, therefore at Step 22 of Algorithm 2 set Def is updated at Def = {C0}. At Step 26 of the same

algorithm a new set L0 is introduced and initialized at the empty set. Finally, node C0 is untagged at Step 8 of

Revised Algorithm 1.

• Assume that node C1 is selected at Step 5 of Revised Algorithm 1. Set T1 is initialized at T1 = {t4, t5}.

However, only t4 satisfies the if condition in Step 3 of Algorithm 2. Therefore T1 is updated at T1 = {t5} and a

new node, denoted C3, is added to the tree and tagged “new” as shown in Fig. 4.b. At Step 22 of Algorithm 2,

the set of deficient nodes Def is updated at Def = {C0, C1}. Furthermore, at Step 26 of the same algorithm,

a new set L1 is introduced and initialized at the empty set.

• Assume that node C2 is selected at Step 5 of Revised Algorithm 1. Set T2 is initialized at T2 = {t3, t5}.

However, only t3 satisfies the if condition in Step 3 of Algorithm 2. Therefore T2 becomes equal to {t5} and a

new node is added to the tree. As shown in Fig. 4.c such a node is denoted as C ′
1 to point out that it is equivalent

to node C1. Such a node is tagged “duplicate”. Furthermore, in accordance with Step 16 of Algorithm 2, the

isomorphism relationship ∆0 := ∆2 is added as the fourth enrty of the edge from C2 to C ′
1. A new set L′

1 is

introduced and initialized at the current set Dup, namely, it is L′
1 = Dup = ∅. At Step 17, sets L0 and L1

are updated, including the duplicate node C ′
1, namely it becomes L0 = L1 = {C ′

1}. Set Dup is updated at

Step 19. In particular, it is Dup = {C ′
1}. At Step 22, set Def is updated at Def = {C0, C1, C2}. A new set

L2 is introduced and initialized at the empty set at Step 26. Finally, node C2 is untagged at Step 8 of Revised

Algorithm 1.

• At this point, there exists only one node tagged “new”, namely C3 therefore it is selected at Step 5 of

Revised Algorithm 1. Set T3 is initialized at {t5} since t5 is the only transition enabled at p4. Transition t5

12

satisfies the if condition in Step 3 of Algorithm 2. Therefore T3 becomes equal to the empty set. A new node

is computed, denoted as C5, which corresponds to the empty marking. Steps 22 to 26 produce no effect since

none of the if condition is satisfied. Therefore sets Def and Dup remain unaltered and node C3 is untagged.

• Again, there exists only one node tagged “new”, namely C5 therefore it is selected at Step 5 of Revised

Algorithm 1. However, since it enables no transition (T5 = ∅), the effect of Algorithm 2 is simply that of

removing the tag “new” from it as shown in Fig. 4.d.

• Now, no node tagged “new” exist. However, Def = {C0, C1, C2} and L0 = L1 = {C ′
1} (while L2 = ∅),

therefore the condition on the while loop at Step 9 of Revised Algorithm 1 is satisfied. In more detail, nodes

C0 and C1 also satisfy the condition on the for loop in Step 10.

Assume that node C0 is considered first. Since function Path(C0,L0) = Path(C0, C′
1) returns no path

(duplicate node C′
1 created no new path going from C0 to C0), no new node is added. The only effect of

Algorithm 2 is that of updating L0 at the empty set.

• Let us now consider node C1. Function Path(C1,L1) = Path(C1, C′
1) returns the path C0C2C1. Further-

more, transition t5 ∈ T1 satisfies the if condition of Step 3 of Algorithm 2. Therefore T1 becomes equal to the

empty set. A new node, denoted as C4 in Fig. 4.e, is computed and tagged “new”. Node C1 is removed from

set Def , which becomes equal to Def = {C0, C2} at Step 24 of Algorithm 2.

• Now, there exists again a node tagged “new” (C4) so Revised Algorithm 1 executes the first while loop.

At node C4 only one transition is enabled (t4) and it leads to node C ′
5, which is a duplicate of C5.

At this point no node tagged “new” exist. Furthermore, Def = {C0, C2} but L0 and L2 are both equal to

the empty set so the conditions to enter in both while loops are violated. As a result Revised Algorithm 1 stops

and the tree is complete.

C. Finiteness of the MSCG built using Revised Algorithm 1

We conclude this section proving that Revised Algorithm 1 terminates in a finite number of steps, which in

turns implies that the resulting MSCG is finite, provided that the following two assumptions hold: Assumption A1

in [1] (the TPN is bounded), plus an additional assumption that prevents situations like the one pointed out in

Subsection III-A. In particular, if we denote as

T0 = {ti ∈ T : li = 0},

the additional assumption imposes that:

(B) no sequence σ ∈ T ∗
0 is repetitive.

By Assumption B, for a given bounded net the maximum number of consecutive firings of transitions in T0,

denoted as r0, is finite. Clearly, r0 is a function of the initial marking.

In simple words, the MSCG is finite if there exist no repetitive sequence may fire in zero time. We notice that

such an assumption does not provide a limitation in practical applications because this is just a necessary and

sufficient condition to rule out the possibility that the model is zeno and consequently not suitable to describe

13

a real physical system. Indeed, events represent operations on the system that require a non null time to be

executed. As an example, in a manufacturing system, events may be the processing of a part by a machine, or

the failure of a certain operation, or some activities performed by a human operator, and so on.

We now provide a lemma which is fundamental to demonstrate the finiteness of the MSCG. It claims that no

transition may remain enabled, without firing, along a path of the MSCG of arbitrary lentgh.

Lemma 1: Consider a bounded TPN ⟨Nd,M0⟩ and its MSCG built according to Revised Algorithm 1. Under

Assumption B, no transition t ∈ T remains enabled without firing along a path of length greater than or equal

to

µ = (r0|T \ T0|+ 1)

⌈
umax

lmin

⌉
(1)

where

lmin = min
ti∈T\T0

li, umax = max
ti∈T\T0

ui.

Proof: We prove this by contradiction. Assume that there exists a transition t̄ which remains enabled without

firing, along an arbitrarily long path in the MSCG. Let

Ci0

tj0 ,L(tj0),∆i0∈[...]
−−−−−−−−−−−−→ Ci1

tj1 ,L(tj1),∆i1∈[...]
−−−−−−−−−−−−→ Ci2 → . . . (2)

be such a path, where the first node of the path, Ci0 , corresponds to the node where transition t̄ is newly

enabled. Since t̄ remains enabled along the above path, a constraint on its firing delay θ̄ appears in all nodes of

the path. In particular, if we denote by l̄ and ū the static bounds of t̄, the constraint on θ̄ in the generic node

Cr of the path, is equal to

max{0, l̄ −
r−1∑
q=0

∆iq} ≤ θ̄ ≤ ū−
r−1∑
q=0

∆iq . (3)

Now, by Assumption B, the number of consecutive firings of transitions with a null firing delay in the path at

hand, is bounded and can be easily computed. Indeed, the longest sequence of transitions that fire consecutively

in zero time and may appear in the path, have the following form:

σ0,1tϱ1σ0,2tϱ2 . . . tϱk
σ0,k (4)

where σ0,i ∈ T ∗
0 , tϱi ∈ T \ T0 \ {t̄}, for i = 1, . . . , k, and tϱi ̸= tϱj for all i ̸= j. The last condition follows

from the fact that, when a transition fires, its timer is reset and, in the case of a transition in T \ T0, the next

firing may only occur after a time interval which is greater than zero by definition. As a result, the integer k in

(4) satisfies

k = |T \ T0| − 1

where −1 originates from the fact that t̄ is not firing by assumption. Therefore, the max length of a sequence

defined as in Eq. (4), is equal to r0(|T \ T0| − 1) + r0 = r0|T \ T0|.

After the firing of a sequence defined as in Eq. (4), a transition in T \ T0 \ {t̄} fires after a delay greater

than or equal to lmin. This enables us to conclude that, after a number of firings equal to r0|T \ T0| + 1, all

14

admissible values for the timer of t̄ are certainly smaller than ū− lmin. Repeating this reasoning, after at most

µ̄ firings, where µ̄ is equal to

µ̄ = (r0|T \ T0|+ 1)

⌈
ū

lmin

⌉
,

all admissible values of the timer of t̄ is certainly smaller than lmin, thus the transition must fire after at most

r0|T \ T0|+ 1 additional firings. The statement follows from the fact that ∀t̄ ∈ T \ T0, it is

µ̄ ≤ µ = (r0|T \ T0|+ 1)

⌈
umax

lmin

⌉
.

�
Proposition 1: Let ⟨Nd,M0⟩ be a bounded TPN. Under Assumption B, the MSCT as defined by Revised

Algorithm 1 is finite.

Proof: Each node Ce of the graph is labeled by pair (Me,Θe) where Me is a reachable marking and Θe

is a constraint set. The result follows from two facts. First, being the TPN bounded, the number of reachable

markings is finite. Secondly, by Lemma 1 in each inequality in Θe the number of ∆ variables is at most equal

to µ, hence, the number of possible constraint sets is finite. �
Clearly, if the MSCT is finite, the MSCG is finite as well, since it is obtained simply merging the duplicate

nodes.

We conclude this section mentioning that in [1] the static bounds of all transitions were assumed to be rational

numbers. As shown in the above proposition, such a condition is not necessary to guarantee the finiteness of

the MSCG.

VI. CONCLUSIONS

In this Technical Note we made some remarks on the paper by Basile et al. [1]. In particular, the concerns

are related to a graph, called Modified State Class Graph, which should, under certain assumptions, summarize

all possible evolutions of a labeled Time Petri net system. Three are the main criticalities in the algorithm in

[1]: the resulting MSCG may be infinite, there is a problem in the notation used in [1], some possible evolutions

could be missing. A revised version of the algorithm is proposed in this paper and it is proved to be finite under

an additional assumption, not mentioned in [1].

We finally observed that the procedures for state estimation and fault diagnosis proposed in [1], as well as

the diagnosability analysis approach in [2], which use the Modified State Class Graph as the basis tool, are not

affected by the proposed modifications in its definition and in its rules of construction.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61803246,

61472295, and 61703321, the Science and Technology Development Fund, MSAR, under Grant No. 078/2015/A3,

and the Natural Science Foundation of Shaanxi University of Science and Technology under Grant Nos. 2016BJ-

15 and 2017BJ-39.

15

REFERENCES

[1] F. Basile, M.P. Cabasino, and C. Seatzu. “State estimation and fault diagnosis of time labeled Petri net systems with unobservable

transitions,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 997–1009, 2015.

[2] F. Basile, M.P. Cabasino, and C. Seatzu. “Diagnosability analysis of labeled time Petri net systems,” IEEE Transactions on Automatic

Control, vol. 62, no. 3, pp. 1384–1396, 2017.

[3] T. Murata. “Petri nets: Properties, analysis and applications,” in Proc. IEEE, vol. 77, no. 4, pp. 541–580, 1989.

16

