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Abstract
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such that the Petri net system is K-diagnosable under the new labeling function, which implies that faults can be detected
in at most K observations after their occurrence.
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1 Introduction

A discrete event system is said to be diagnosable if, once a fault has occurred, its occurrence can be
detected based on a finite number of observations obtained via appropriate sensors placed in the system.
The problem of establishing if a given system is diagnosable has been extensively studied in the past few
decades, following the framework of Lafortune [7], both using automata and Petri nets [2,4,8,10,12,13]. In
the case of Petri nets, transitions are typically partitioned into observable and unobservable transitions.
To the first ones, sensors are attached and produce an observable event whenever they fire. To the second
ones, no sensor is attached, so their firing is silent with respect to an observer. Clearly, diagnosability
is strictly related to the way sensors are attached to transitions. In this paper we address the following
problem: given a system that is not diagnosable under a given configuration of sensors, we want to
reconfigure the sensors placement to make the system diagnosable. In particular, we look for a solution
that minimizes a given performance index, which typically consists in the cost associated with the new
sensors.

To the best of our knowledge, this problem has only been considered by Cabasino et al. [7] for bound-
ed/unbounded labeled Petri nets. The method in [7] is based on the notion of Verifier Net [4] and on
a series of relabeling rules to eliminate the paths in the Unfolded reachability/coverability graph of the
Verifier Net that lead to a violation of the conditions for diagnosability. The application of such an ap-
proach is limited in practical situations by the fact that the number of reachable markings may increase
exponentially with the size of the net (structure and number of tokens in the initial marking).

The goal of this paper is that of looking for a practically efficient solution that can cope with the state
explosion problem. In particular, we propose a solution that takes advantage of a special automaton,
called Unfolded Verifier, which is the unfolded version of another automaton called Verifier, recently
presented by some authors of this paper in [11] to make codiagnosability analysis of bounded nets. Such
an automaton benefits of the notion of basis marking [5] and thus reduces (in some cases significantly,
depending on the net structure, on the initial marking, and on the labeling function) the set of markings
that should be enumerated, with consequent advantages in terms of computational complexity. Similarly
to [7], necessary and sufficient conditions for diagnosability can be derived looking at some paths in the
Unfolded Verifier. Then, paths in the Unfolded Verifier that prevent diagnosability could be eliminated,
appropriate relabeling some of the transitions. A labeling function that is optimal according to a given
criterion can be selected solving an integer linear programming problem.

In this paper we also deal with a problem that was not considered in [7] related to the the notion of
K-diagnosability [11], which guarantees that faults can be detected in at most K observations after their
occurrence. More precisely, we show how to select among the set of optimal solutions of the considered
sensor allocation problem, one that leads to the smallest value ofK such that the system isK-diagnosable.
A similar problem has been addressed by Basile et al. in [3]. However, a fair comparison in terms of
computational complexity between the two approaches could not be done. Indeed in [3] authors deal with
a slightly different notion of K-diagnosability and also with a different problem statement: no a priori
partition in observable and unobservable transitions is given there. The solution they proposed (that also
applies to unobservable-induced subnets that are not acyclic) is based on integer linear programming,
rather that graph analysis.

2 Background on Labeled Petri Nets

A Petri net (PN) is a 4-tuple N = (P, T, F,W ), where P and T are finite, non-empty, and disjoint sets,
F ⊆ (P × T ) ∪ (T × P ) is called the flow relation of the net, W is a mapping that assigns a weight
to an arc: W (x, y) > 0 iff (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T . The incidence
matrix [N ] of N is a |P | × |T | integer matrix with [N ](p, t) = W (t, p) − W (p, t). Let x ∈ P ∪ T be a
node of net N . The preset of x is defined as •x = {y ∈ P ∪ T |(y, x) ∈ F} while the postset is defined as
x• = {y ∈ P ∪ T |(x, y) ∈ F}.

A marking m of a PN N is a mapping from P to N = 0, 1, 2, ...: m(p) is equal to the number of tokens in
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place p. (N,m0) is a PN system with an initial marking m0.

A transition t is enabled at m if ∀p ∈ •t,m(p) ≥ W (p, t) and is written as m[t⟩. Firing t yields to m′

such that ∀p ∈ P,m′(p) = m(p) + [N ](p, t), which is written as m[t⟩m′. m[σ⟩ is used to denote that the
transition sequence σ = t1t2...tk is enabled at m. Marking m′′ is said to be reachable from m if there
exists a transition sequence σ such that m[σ⟩m′′. The set of markings reachable from m in N is called
the reachability set of (N,m) and is denoted by R(N,m). We indicate as |σ| the length of the sequence
σ. The Parikh vector of σ is denoted by π(σ). The set of all sequences that are enabled at the initial
marking m0 is denoted by L(N,m0), i.e., L(N,m0) = {σ ∈ T ∗|m0[σ⟩}. We use λ to indicate the empty
transition sequence in T ∗. We write t ∈ σ to denote that a transition t is contained in σ, T ′ ∩ σ ̸= ∅ to
indicate that there is at least one transition in T ′ contained in σ, and T ′ ∩ σ = ∅ to denote that there is
no transition in T ′ contained in σ, where T ′ is a set of transitions.

A PN is said to be bounded if there exists a positive constant k such that ∀p ∈ P , ∀m ∈ R(N,m0),
m(p) ≤ k.

Given a PN system (N,m0), t ∈ T is live under m0 if ∀m ∈ R(N,m0), ∃m′ ∈ R(N,m), m′[t⟩. A PN
system (N,m0) is: live if ∀t ∈ T , t is live under m0; dead under m0 if @t ∈ T , m0[t⟩; deadlock-free if
∀m ∈ R(N,m0), ∃t ∈ T m[t⟩.

Given a PN N = (P, T, F,W ) and a set T ′ ⊆ T of transitions, we define the T ′-induced subnet of N as
the new PN N ′ = (P, T ′, F ′,W ′), where F ′ is the restriction of F to (P ×T ′)∪ (T ′ ×P ). The net N ′ can
be obtained from N by removing all transitions in T \ T ′.

A PN with no directed circuits is said to be acyclic.

A labeled PN system (LPNS) is a triple (N,m0,L), where (N,m0) is a PN system, L is a labeling function
L : T → A ∪ {ε} that assigns to each transition in T either a symbol from a given alphabet A or the
empty sequence ε in A∗.

We use Tu (To) to denote the set of transitions whose labels are ε (symbols in A). Tu and To are called
the set of unobservable and observable transitions, respectively. Two or more transitions sharing the same
label are called indistinguishable. [N ]u (or [N ]o) is used to denote the restriction of the incidence matrix
[N ] to Tu (or To).

The labeling function is extended to strings L : T ∗ → A∗:

(1) L(λ) = ε, where λ is the empty transition sequence;

(2) L(t) = l for some l ∈ A, if t ∈ To;

(3) L(t) = ε, if t ∈ Tu; and

(4) L(σt) = L(σ)L(t), if σ ∈ T ∗ ∧ t ∈ T .

L−1(w) denotes the set of all transition sequences consistent with w ∈ A∗, i.e., L−1(w) = {σ ∈
L(N,m0)|L(σ) = w}. Using the extended labeling function, the language of transition labels is therefore
denoted by L(L(N,m0)).

Given a transition sequence σ ∈ T ∗, we denote Pu(σ) (or Po(σ)) the projection of σ over Tu (or To). Let
K ⊆ T ∗ be a language, we use K/σ to denote the post-language of K after σ, i.e., K/σ = {σ′ ∈ T ∗ |
σσ′ ∈ K}.

3 Problem Statement

Consider an LPNS (N,m0,Linit) with an “initial” labeling function Linit : T → Ainit∪{ε} that assigns to
each transition in T either a symbol from a given alphabet Ainit or the empty string ε. The unobservable
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transition set is partitioned as Tu = Tf ∪ Treg, where Tf is the set of fault transitions and Treg is the set
of unobservable but regular transitions. The fault transition set Tf is partitioned into r different subsets
T i
f that model different fault classes, where i = 1, 2, ..., r. The set of regular transitions Treg is partitioned

into Tr,o ∪ Tr,uo, where Tr,o (resp., Tr,uo) is the set of regular transitions to which is possible (resp., not
possible) to associate a sensor. We use [N ]r,uo to denote the restriction of the incidence matrix to Tr,uo.
We also assume that Ainit ∩ T ̸= ∅, i.e., none of the original labels can be the name of a transition.

Following [7], we say that (N,m0,L) having no deadlock after any fault is not diagnosable wrt T i
f if

given any k ∈ N there exist two transition sequences σ1, σ2 ∈ L(N,m0) satisfying the conditions: (1)
L(σ1) = L(σ2); (2) σ1 ∩ T i

f ̸= ∅; (3) σ2 ∩ T i
f = ∅; (4) σ1 is of “arbitrary length” after fault transition

tf ∈ T i
f , i.e., there exists at least one decomposition σ1 = σ′

1tfσ
′′
1 with |σ′′

1 | > k.

Let us now consider the special labeling function Ltotal where each transition in To ∪ Tr,o is assigned
a unique symbol that distinguishes it from all other transitions. Without loss of generality, we take
these unique symbols to be the names of the transitions, i.e., ∀t ∈ To ∪ Tr,o, Ltotal(t) = t. In this case,
Atotal = To ∪ Tr,o; all transitions except those in Tr,uo ∪ Tf have a unique label. We make the following
assumptions.

(A1) The PN system is bounded.

(A2) The PN system does not enter a deadlock after the occurrence of any fault.

(A3) The (Tr,uo ∪ Tf )-induced subnets is acyclic.

(A4) The PN system is diagnosable under Ltotal.

(A5) There is a single fault class.

As clarified in the following section, Assumption (A1) is necessary to implement the proposed approach
based on the notion of basis marking [5]. Note that such an assumption was made in [7] when introducing
the problem statement. However, in [7] this was done for the sake of simplicity in the presentation of
the results but was not a requirement. Assumption (A2) is a weakened version of the typical “liveness”
assumption made in most of the works on diagnosability of discrete event systems. Assumption (A3),
which does not appear in [7], is fundamental to apply the proposed approach based on the notion of basis
marking [5] 1 . Assumption (A4) ensures that it is possible to diagnose the occurrence of fault transitions
when all transitions in To ∪ Tr,o are unambiguously observable. Finally, Assumption (A5) is made for
simplicity of exposition. A discussion on how to relax it is proposed in Section 5.2.

Assume that (N,m0,Linit) is not diagnosable. Our objective is to find a new labeling function Lnew :
T → Anew such that (N,m0,Lnew) is diagnosable, where Anew = Ainit ∪ Atotal. Furthermore, we also
would like to choose the labeling function Lnew in a manner that minimizes an objective function related
to the cost of attaching sensors to the transitions of the PN system.

As in [7], we assume that a transition t ∈ To ∪ Tr,o is relabeled based on the following rules:

(R1) For a transition t ∈ Tr,o, we either set Lnew(t) = t or leave it unchanged as Lnew(t) = Linit(t) = ε.

(R2) For a transition t ∈ To such that there exists t′ ∈ To with t ̸= t′ and Linit(t) = Linit(t
′), we either

set Lnew(t) = t or leave it unchanged as Lnew(t) = Linit(t).

In either case, Lnew may assign a new unique label to transition t, namely, t itself.

In [7] it has been proved that when rules (R1) and (R2) are applied incrementally for relabeling, at each

1 More precisely, the necessity of Assumption A3 follows from Theorem 3.8 in [6]. The acyclicity of the unobserv-
able subnet is indeed instrumental to ensure that a basis marking description provides necessary and sufficient
conditions to determine if a marking (or firing sequence) is consistent with a given observation.
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step, two transition sequences that are distinguishable under the initial labeling function Linit will always
remain distinguishable.

Let Lnew be a new labeling function obtained from Linit by repeated application of rules (R1) and (R2).
We denote Tnew ⊆ To ∪ Tr,o the set of transitions whose labels are changed by Lnew, i.e., Tnew = {t ∈
To ∪ Tr,o : Lnew(t) = t}. By assumption (A4), we know that there exists a choice of Tnew for which the
system is diagnosable, namely, Tnew = To∪Tr,o. In [7] it has been demonstrated that given (N,m0,Linit)
that is not diagnosable, it is always possible to find at least one transition to relabel according to rules
(R1) and (R2).

Finally, since in general multiple solutions exist to the above problem, as in [7], we look for a solution
that minimizes a given performance index, e.g., J(Lnew) =

∑
t∈Tnew

ct, where ct is the cost of attaching
a sensor to transition t that produces a uniquely identifiable label.

4 Unfolded Verifier

4.1 Preliminary definitions

Definition 1 [5] Given a marking m and an observable transition t, the set of explanations of t at m
is denoted by Σ(m, t) = {σ ∈ T ∗

u | m[σ⟩m′,m′[t⟩}, and the set of e-vectors is indicated as Y (m, t) =
π(Σ(m, t)).

Definition 2 [5] Given a marking m and an observable transition t, the set of minimal explanations of
t at m is denoted by Σmin(m, t) = {σ ∈ Σ(m, t) | @σ′ ∈ Σ(m, t) : π(σ′) � π(σ)}, and the set of minimal
e-vectors is indicated as Ymin(m, t) = π(Σmin(m, t)).

Definition 3 [5] Let (N,m0,L) be an LPNS and w ∈ L∗ be an observation, where N = (P, T, F,W )
and T = To ∪ Tu. The set of pairs (σo ∈ T ∗

o with L(σo) = w and the justification) is indicated as

Ĵ (w) = {(σo, σu), σo ∈ T ∗
o ,L(σo) = w, σu ∈ T ∗

u |

[∃σ ∈ L−1(w) : σo = Po(σ), σu = Pu(σ)]

∧[@σ′ ∈ L−1(w) : σo = Po(σ
′), σ′

u = Pu(σ
′)

∧π(σ′
u) � π(σu)]},

and the set of pairs (σo ∈ T ∗
o with L(σo) = w and the j-vector) is denoted by

Ŷmin(m0, w) = {(σo, y), σo ∈ T ∗
o ,L(σo) = w, y ∈ N|Tu| | ∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}.

Definition 4 [5] Let (N,m0,L) be an LPNS, w ∈ L∗ be an observation and Ĵ (w) be a set of pairs. The
set of basis markings of w is indicated as

Mb(w) = {m ∈ N|P | | m = m0 + [N ]u · π(σu) + [N ]o · π(σo), (σo, σu) ∈ Ĵ (w)},

and Mb =
∪

w∈L∗
Mb(w).

In simple words, a basis marking is a marking that can be reached from the initial marking firing a
sequence of transitions that is consistent with the observation and a sequence of unobservable transitions,
interleaved with the previous sequence, whose firing is strictly necessary to enable it (in the sense that
its firing vector is minimal) [5]. The set of basis markings is a subset (usually a strict subset) of the set
of reachable markings. Therefore, if the net is bounded, the set of basis markings is finite.
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Fig. 1. An LPNS (N,m0,Linit).

Definition 5 An extended basis marking (EBM) is a basis marking computed assuming that all transi-
tions in Tf ∪ Tr,o are observable. The set of all EBMs is denoted by Me.

The set Me can be computed by restricting the minimal explanations to Tr,uo. In the following, we denote
Y r,uo
min (m, t) the set of minimal e-vectors restricted to Tr,uo. The set Y r,uo

min (m, t) can be computed using
Algorithm 4.4 in [5].

Example 1 Consider the LPNS (N,m0,Linit) in Fig. 1, where To = {t1, t3, t7, t8}, Tu = {t2, t4, t5, t6},
Tf = {t4}, Tr,o = {t5}, Tr,uo = {t2, t6} and m0 = [1 0 0 0 0 0 0]T . The labeling function is defined as fol-
lows: Linit(t1) = a, Linit(t3) = Linit(t7) = b and Linit(t8) = c. The set of EBMs is m0 = [1 0 0 0 0 0 0]T ,
m1 = [0 1 0 0 1 0 0]T , m2 = [0 0 0 0 1 0 1]T , m3 = [0 0 0 1 1 0 0]T , m4 = [0 1 0 0 0 0 1]T ,
m5 = [0 0 0 0 1 1 0]T , m6 = [0 0 0 1 0 0 1]T , m7 = [0 0 0 0 0 1 1]T , m8 = [0 0 0 0 0 0 2]T .

In the following we denote by (N ′,m0,L′) the T ′-induced subnet of (N,m0,L), where T ′ = T \ Tf , i.e.,
(N ′,m0,L′) is the nonfailure subnet of (N,m0,L). Therefore, L(N ′,m0) is the language formed with all
sequences of L(N,m0) that do not contain faults, and L′ is equal to L restricted to T \ Tf .

We now define the following two graphs inspired from [11].

Definition 6 Let (N,m0,L) be an LPNS, Me the set of EBMs, and (N ′,m0,L′) the nonfailure subnet
of (N,m0,L). • The Extended Basis Reachability Graph (EBRG) is a (non-deterministic) finite state
automaton Ge = (Me, E,∆,m0), where Me is the set of states; E ⊆ (To × A) ∪ Tf ∪ Tr,o is the set
of event labels; ∆ ⊆ Me × E × Me is the transition relation; and m0 is the initial state. In particular,
(m, e,m′) ∈ ∆ where e = t(a) ∈ To × A or e = t ∈ Tf ∪ Tr,o, if and only if ∃y ∈ Y r,uo

min (m, t) and
m′ = m+ [N ]r,uo · y + [N ](·, t).

• The nonfailure EBRG, denoted by Gn
e = (Mn, En,∆n,m0), is the EBRG of (N ′,m0,L′) constructed

under the assumption that the set of observable transitions is equal to To ∪ Tr,o, and all transitions in
Tr,uo are unobservable.

The EBRG Ge is computed using Algorithm 1 in [11] but assuming that the set of observable transitions
is equal to To∪Tr,o∪Tf , and restricting minimal explanations to the set Tr,uo. The nonfailure EBRG Gn

e

can also be computed using Algorithm 1 in [11] assuming that the set of observable transitions is equal
to To ∪ Tr,o, and restricting minimal explanations to the set Tr,uo.

Example 2 The EBRG Ge and the nonfailure EBRG Gn
e of the LPNS in Example 1 are reported in

Fig. 2a and Fig. 2b, respectively.

4.2 Unfolded Verifier

An Unfolded Verifier (UV) U = (MU , EU ,∆U ,mU
0 ) is a (non-deterministic) finite state automaton con-

structed using the following algorithm.
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Fig. 2. a) EBRG Ge of the LPNS in Fig. 1.b) Nonfailure EBRG Gn
e of the LPNS in Fig. 1.

Algorithm 1: [Construction of the Unfolded Verifier]

Input: Ge = (Me, E,∆,m0) and Gn
e = (Mn, En,∆n,m0).

Output: The Unfolded Verifier U = (MU , EU ,∆U ,mU
0 ).

1. Let mU
0 = (m0,N;m0) be the root node.

2. While nodes with no tag exist, do
2.1. select a node (m1, l;m2) with no tag,
2.2. if (m1, l;m2) is identical to a node on the path from the root node to (m1, l;m2), then tag the

node (m1, l;m2) “duplicate” and goto step 2.
2.3. ∀t1 ∈ To ∪ Tf ∪ Tr,o and ∀t2 ∈ To ∪ Tr,o, do

• add a node (m′
1, l;m

′
2) and an arc (t1, t2) from (m1, l;m2) to (m′

1, l;m
′
2) if

– (m1, t1,m
′
1) ∈ ∆, (m2, t2,m

′
2) ∈ ∆n, t1, t2 ∈ To, and L(t1) = L(t2);

• add a node (m′
1,F;m2) and an arc (t1, λ) from (m1, l;m2) to (m′

1,F;m2) if
– t1 ∈ Tf and (m1, t1,m

′
1) ∈ ∆;

• add a node (m′
1, l;m2) and an arc (t1, λ) from (m1, l;m2) to (m′

1, l;m2) if
– t1 ∈ Tr,o and (m1, t1,m

′
1) ∈ ∆.

• add a node (m1, l;m
′
2) and an arc (λ, t2) from (m1, l;m2) to (m1, l;m

′
2) if

– t2 ∈ Tr,o and (m2, t2,m
′
2) ∈ ∆n.

2.4. tag the node (m1, l;m2) “old”.

A state (m1, l;m2) in the UV is called an l-state. Furthermore, if it is tagged “duplicate” it is called a
duplicate l-state.

Proposition 1 An LPNS (N,m0,L) is diagnosable iff its UV U has no duplicate F-states.

Proof. The statement easily follows from a result proved in [11] and the fact that the UV is the “unfolded
version” of the Verifier in [11] in the case of a single observation site that observes all the events in the
alphabet A. In particular, an l-cycle of the Verifier is a cycle where each node is an l-state. In [11] it
has been proved that an LPNS is diagnosable iff its Verifier has no F-cycles. Now, the only difference
between the algorithm to construct the UV and the algorithm to construct the Verifier consists in the way
repeated nodes are handled: the first algorithm does not fuse repeated nodes, and tag a node “duplicate” if
it is identical to another node on the path from the root node to the considered one; on the contrary, the
second algorithm fuses repeated nodes. Therefore, the necessary an sufficient condition for diagnosability
based on F-cycles in the Verifier can be easily rephrased as follows in terms of duplicate nodes in the UV:
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Fig. 3. The elementary F-paths for the LPNS of Example 1.

the LPNS (N,m0,L) is diagnosable iff its UV U has no duplicate F-states.

Given an automaton G, we write m
σ−→
G

m′ to denote that m′ is reached in G from m with a sequence σ.

Definition 7 Let (N,m0,L) be an LPNS and U be its UV. A sequence σ̂ = (γi1 , γj1)(γi2 , γj2) . . . (γik , γjk)
in U is called an elementary F-path wrt L if the following holds:

(1) m0

γi1 ...γiq−−−−−→
Ge

m
γiq+1

...γik−−−−−−−→
Ge

m;

(2) m0

γj1
...γjq−−−−−→
Gn

e

m′ γjq+1
...γjk−−−−−−−→

Gn
e

m′;

(3) L(γi1 . . . γiq ) = L(γj1 . . . γjq ) and L(γiq+1 . . . γik) = L(γjq+1 . . . γjk);
(4) Tf ∩ (γi1 . . . γiq ) ̸= ∅;
(5) no prefix of σ̂ satisfies items (1) – (4).

In other words, a sequence σ̂ in U is called an elementary F-path wrt L if the sequence σ̂ starts at the
root node of U and ends in a duplicate F-state.

Proposition 2 A LPNS (N,m0,L) is diagnosable iff its UV has no elementary F-paths wrt L.

Proof. Follows from Proposition 1 and Definition 7.

Example 3 Let us consider again Example 1. We first construct the UV U , which is not reported here for
the sake of brevity. The elementary F-paths in U are drawn in Fig. 3. Obviously, the state (m8,F;m8) is a
duplicate F-state, and there are 6 elementary F-paths wrt Linit: σ̂1 – σ̂6. Hence this net is not diagnosable
given Linit.

5 Optimal Sensor Selection

We now show how the approach in [7] based on Integer Linear Programming (ILP), can be efficiently
used starting from the UV.

5.1 Relabeling of elementary F-paths

The transitions of the UV are pairs (γi, γj) where:

8



(1) γi either corresponds to a transition in the EBRG Ge or to λ;

(2) γj either corresponds to a transition in the nonfailure EBRG Gn
e or to λ.

Based on rules (R1) and (R2) described in Section 3, we propose the following relabeling options for the
transitions that compose an elementary F-path.

(LO1) (γi, γj) where γi = ti and γj = tj with i ̸= j. According to Algorithm 1, we know that ti, tj ∈ To

with Linit(ti) = Linit(tj). In such a case, we can either assign a new label to ti, Lnew(ti) = ti, or to tj ,
Lnew(tj) = tj .

(LO2) (γi, λ) where γi = ti ∈ Tr,o. In such a case, we can make the unobservable transition ti observable
by assigning to it Lnew(ti) = ti.

(LO3) (λ, γj) where γj = tj ∈ Tr,o. In such a case, we can make the unobservable transition tj observable
by assigning to it Lnew(tj) = tj .

(LO4) (γi, γj) where γi = ti and γj = tj with i = j. In such a case it is irrelevant to relabel ti since we
are synchronizing a transition with itself when building the UV.

(LO5) (γi, λ) where γi ∈ Tf . In such a case we do noting since we cannot make the fault transition
observable.

It should be noted that the above relabeling options for the pair (γi, γj) are identical with the first five
options in [7]. On the contrary, if the relabeling is based on the UV, rather the unfolded reachabili-
ty/coverability graph of the Verifier Net as in [7], the last two options in [7] (namely, (LO6) and (LO7))
are no more necessary since they handle the case where transition γi (ti) or γj (tj) belongs to the set
Tr,uo.

Now, as in [7], we drop (LO4) and (LO5) and based on the remaining three options, we define the following
two rules for the construction of the new labeling function Lnew.

(R3) For each elementary F-path, relabel at least one transition t ∈ To ∪ Tr,o in the path from the root
to the leaf based on one of the relabeling options (LO1), (LO2) and (LO3).

(R4) For a given elementary F-path, transition ti ∈ Tr,o should not be chosen in (R3) if it only appears
in the path in consecutive pairs of the form: (ti, λ)(λ, ti) or (λ, ti)(ti, λ).

As explained in detail in [7], rule (R3) is necessary since if none of the transitions contained in the path
are relabeled, then the same path will still arise after relabeling. Rule (R4) can be explained as follows. If
ti only appears in an elementary F-path in consecutive pairs (ti, λ)(λ, ti) or (λ, ti)(ti, λ), and is relabeled
based on (LO2) or (LO3) and (R1), then the same elementary F-path may still arise in the new UV and
the PN system remains non-diagnosable under Lnew. For more details, refer to Lemma 4.4 in [7].

The following proposition shows that we can always find at least one transition in each elementary F-path
to relabel according to rule (R3).

Proposition 3 In each elementary F-path in the UV, there must exist at least one transition that can be
relabeled according to the relabeling options (LO1) and (LO2) or (LO3) and associated rules (R1), (R2),
(R4).

Proof. By contradiction, assume that there exists an elementary F-path in which all transition are in
the form of (LO4), (LO5) or consecutive pairs. In fact, we need not to consider the case of (LO5) since
a failure cannot be relabeled. For the other two cases, we observe that even each transition are relabeled,
the elementary F-path would still exist. Consequently, the PN is still not diagnosable under Ltotal, which
is a contradiction of assumption (A4). Hence, the result holds.

The following two propositions, still inspired by [7], ensure that if we relabel an elementary F-path based
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on rules (R1) – (R4) the elementary F-path is no more feasible, and no new elementary F-path is created.

Proposition 4 Let σ̂ = (γi1 , γj1)(γi2 , γj2) . . . (γik , γjk) be an elementary F-path of length k that is rela-
beled according to the relabeling options (LO1) and (LO2) or (LO3) and associated rules (R1) – (R4).
Let σ = γi1γi2 . . . γik and σ′ = γj1γj2 . . . γjk . It holds that: Lnew(σ) ̸= Lnew(σ

′).

Proof. Let us consider the case of (LO1) and let (ti, tj) be the pair of transitions of interest where ti ∈ σ
and tj ∈ σ′. Since we either assign a new label to ti, Lnew(ti) = ti, or to tj, Lnew(tj) = tj, the observable
projection of either σ or σ′ wrt Lnew is changed. Thus Lnew(σ) ̸= Lnew(σ

′).

Let us consider the case of (LO2) and (LO3). We can either relabel ti (LO2) or tj (LO3). However, by
Rule (R4) it cannot occur that ti is relabeled according to option (LO2) if tansition ti only appears in the
path in consecutive pairs of the form (ti, λ)(λ, ti) or (λ, ti)(ti, λ). Thus Lnew(σ) ̸= Lnew(σ

′). The same
argument can be repeated for the case (LO3).

Proposition 5 If each elementary F-path wrt Linit is relabeled according to the relabeling options (LO1)
and (LO2) or (LO3) and associated rules (R1) – (R4), then in the LPNS (N,m0,Lnew) there are no
more elementary F-paths wrt Lnew, i.e., the relabeling creates no new elementary F-path.

Proof. By contradiction, assume that there is a “new” elementary F-path σ̂ = (γi1 , γj1)(γi2 , γj2) . . . (γik , γjk)
of length k wrt Lnew. Let σ = γi1γi2 . . . γik and σ′ = γj1γj2 . . . γjk . Obviously, there exist two transition
sequences σ̄, σ̄′ ∈ T ∗ such that: (i) σ̄ is arbitrarily long after the occurrence of the fault; (ii) σ̄′ contains
no fault; and (iii) Lnew(σ̄) = Lnew(σ̄

′). Hence, it is Linit(σ̄) = Linit(σ̄
′), and σ̄ and σ̄′ could form an

elementary F-path wrt Linit.

By rule (R3), we have relabeled at least one transition in each elementary F-path. According to relabeling
options (LO1) – (LO3) and rule (R4), it holds that Lnew(σ̄) ̸= Lnew(σ̄

′). This leads to a contradiction.

Theorem 1 Let (N,m0,Linit) be a non-diagnosable PN system satisfying assumptions (A1) – (A5),
and U be its UV. Let Lnew be a labeling function obtained according to rules (R1) – (R4) with relabeling
options (LO1) – (LO3) for elementary F-paths of U . Then (N,m0,Lnew) is diagnosable.

Proof. The proof is straightforward from Propositions 2, 4 and 5. In fact, by Proposition 4 we know
that each elementary F-path is disabled according to rules (R1) – (R4) with relabeling options (LO1) –
(LO3). From Proposition 5 we can state that the relabeling procedure does not create any new elementary
F-path. Hence, once we relabeled each elementary F-path in U , there are no more elementary F-paths. By
Proposition 2, this implies that the PN system (N,m0,Lnew) is diagnosable.

5.2 Optimal relabeling using linear integer programming

In this subsection we recall the approach based on linear integer programming proposed in [7] that may
also be applied (in a slightly simplified form) when the elementary paths are computed in the UV. Define
a set of binary variables vt ∈ {0, 1} for each t ∈ To ∪ Tr,o, where vt = 1 means that the transition t has
been relabeled under Lnew. For each elementary F-path in the UV, build an inequality of the form:

vt + v′t + v′′t + ... ≥ 1 (1)

for some transitions t, t′, t′′, ... ∈ To ∪ Tr,o, where the left hand side of (1) is obtained by the following
procedure almost coincident with the one in [7]:

(1) Examine each transition pair (γi, γj) in the elementary F-path.

(2) For each transition pair (γi, γj), add terms to left hand side of (1) according to rules C1 – C5:

• C1. If (γi, γj) = (ti, tj) with i ̸= j, then add +vi + vj .
• C2. If (γi, γj) = (ti, λ) with ti ∈ Tr,o

· If the previous transition of the path is (λ, ti), where +vi was added at that step, then add −vi;
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· If the previous transition of the path is (λ, ti), where −vi was added at that step, then add +vi;
· If the previous transition of the path is not (λ, ti), then add +vi.

• C3. If (γi, γj) = (λ, tj) with tj ∈ Tr,o

· If the previous transition of the path is (tj , λ), where +vi was added at that step, then add −vj ;
· If the previous transition of the path is (tj , λ), where −vi was added at that step, then add +vj ;
· If the previous transition of the path is not (tj , λ), then add +vj .

• C4. If (γi, γj) = (ti, tj) with i = j, then do nothing.
• C5. If γi ∈ Tf and γj = λ, then do nothing.

Rules C1 – C5 correspond to relabeling options (LO1) – (LO5). As stated in Section 5.1, the transitions
in Tr,uo would not arise in the elementary F-paths, thus the last two rules in [7] (C6 and C7) do not
appear in this paper.

Let R be the set of all linear inequalities so obtained for all elementary F-paths of the UV.

Theorem 2 Let (N,m0,Linit) be a non-diagnosable PN system, and U be its UV. There exists a new
labeling function Lnew, which is obtained according to rules (R1) – (R4) with relabeling options (LO1)
– (LO3) for elementary F-paths of U , such that (N,m0,Lnew) is diagnosable iff the set R of linear
inequalities has a solution.

Proof. (Only if) The set R of linear inequalities is obtained according to rules (R1) – (R4) with relabeling
options (LO1) – (LO3). For each elementary F-path, we relabel either a transition t ∈ Tr,o according to
rule (R1) with (LO2)/(LO3), or a transition t ∈ To according to rule (R2) with (LO1). In more detail,
rules (R1) and (R2) are imposed by adding +vi (see C2) or +vj (see C3) or +vi + vj (see C1) in
the left hand side of the constraint of the form (1). Rule (R3) is imposed by “≥ 1” in the constraint.
In particular, rule (R4) is imposed by (C2) and (C3): if there exists a consecutive pair of the form
(ti, λ)(λ, ti) or (λ, ti)(ti, λ), we add +vi − vi in the left hand side of the constraint. Hence, if there
exists a labeling function Lnew, obtained according to rules (R1) – (R4) with (LO1) – (LO3), such that
(N,m0,Lnew) is diagnosable, then the set R of linear inequalities has a solution.

(If) Straightforward from Theorem 1.

The new labeling function Lnew that minimizes the total cost can be obtained solving the following ILP
problem [7]:

min
∑

t∈To∪Tr,o

ctvt, s.t. R (2)

where ct and vt are the cost and the binary variable associated with transition t ∈ Tnew, respectively.

Example 4 Consider the LPNS in Example 1. Associate a unitary cost with each transition in To ∪Tr,o

such that the ILP problem (2) reduces to minimize the number of sensors that need to be attached to make
the system diagnosable. The elementary F-paths can be identified from Fig. 3 and for each of them we
write a linear inequality according to rules C1 – C5. Therefore, the set R is defined by the six constraints:
vt5 + vt7 + vt3 ≥ 1, vt5 + vt7 + vt3 ≥ 1, vt7 + vt3 + vt5 ≥ 1, vt5 + vt7 + vt3 ≥ 1, vt7 + vt3 + vt5 ≥ 1,
vt5 + vt7 + vt3 ≥ 1, which in this special case, are coincident.

We use the tool LINGO to solve the ILP problem (2). We obtain that an optimal solution is the relabeling
of transition t5 which is consistent with the fact that, if Lnew(t5) = t5, the PN system becomes diagnosable.
Furthermore, such a solution is obviously optimal since at least one transition should be relabeled to
guarantee diagnosability. Note that other optimal solutions exist, namely: L′

new(t3) = t3 or L′′
new(t7) = t7.

We finally remark that, in the case of r fault classes we first construct an UV Ui for each fault class T i
f ,

where all fault transitions in Tf \T i
f should be considered as regular unobservable transitions that cannot

be relabeled. Then we compute all elementary F-paths of Ui and build the set Ri of linear inequalities

11



according to rules C1 – C5. Finally, we solve the ILP problem (2) with all sets of linear inequalities Ri

for i = 1, 2, ..., r.

6 Comparison With the Approach in [7]

We first remark that the two approaches provide the same optimal solutions. Indeed, in both cases, the
set of relabeling functions that lead to diagnosability, is exhaustively described by the set of constraints
of the ILP problem to be solved (see Theorem 2 in this paper and Theorem 5.2 in [7]). What changes
in the two cases, is the way such a set is obtained and described, namely how many paths should be
considered and how many constraints should be written.

If we consider again the PN system in Example 1 and compute its pruned Reachability Tree, we realize
that 616 paths should be considered (that can be visualized at the web page in [1]). All of them lead to
the same constraint, namely vt3 + vt7 + vt5 ≥ 1, which coincides with the constraints obtained using the
proposed approach, so the results of the optimization are the same in the two cases: we should relabel
one of the following transitions: t3, t5, or t7.

As a conclusion, our approach is definitely more efficient because the same set of constraints is obtained
looking at only 6 paths rather than 616 as in [7]. This is a consequence of the fact that the notion of
basis marking avoids exhaustive enumeration of the state space. Therefore, the structure of the UV is in
general much simpler than the structure of the pruned RT and, as a consequence, the number of paths
that need to be disabled is much smaller in the former case.

Note that in the above example it was immediate to remove redundancy among constraints since all of
them were identical. In other cases (that are not reported here for sake of brevity) and in particular, in
the presence of several integer variables, this is not the case. Therefore, using the approach in [7], not only
we look at a larger number of paths, but we also deal with an ILP with a larger number of constraints.

We conclude this section with a brief discussion on the complexity of the proposed approach. We first
observe that the size of the state space of the EBRG, in the worst case, is equal to that of the reachability
graph. However, the EBRG has significantly fewer states than the reachability graph in most cases. Now,
let x be the number of nodes of Ge, i.e., x = |Me|. According to Algorithm 1, the maximum number
of nodes in an elementary F-path is 2x2 + 1, and the maximum number of output arcs at each node is
(|T | + 1)2 − 1. Therefore, the maximum number of elementary F-paths is ((|T | + 1)2 − 1)2x

2

. Since we
need to write an inequality for each elementary F-path, the complexity of generating an ILP problem is
O(((|T |+ 1|)2 − 1)2x

2

).

It is well known that an ILP problem is NP-complete in the worst case. In our case, the fact that the
variables are binary may help to mitigate the computation burden. The number of such variables is at
most equal to |To|+ |Tr,o|.

7 K-diagnosability

Definition 8 [11] Consider an LPNS (N,m0,L) and an integer K. The LPNS (N,m0,L) is K-diagnosable
wrt the i-th fault class T i

f if there do not exist two transition sequences σ and σ′ such that: (1) T i
f ∩σ ̸= ∅,

T i
f ∩ σ′ = ∅; (2) L(σ) = L(σ′); (3) the number of observable events in σ after the first occurrence of a

fault transition tf ∈ T i
f is K.

The LPNS (N,m0,L) is K-diagnosable if it is K-diagnosable wrt all fault classes.

In simple words, an LPNS is K-diagnosable wrt a given fault class if faults in that class can be detected
in at most K observations after the occurrence of the fault. Obviously, a K-diagnosable PN system is
also K ′-diagnosable if K ′ > K.

Let Lopt be the set of optimal relabeling functions corresponding to a given objective function. Tipically,
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relabeling functions in Lopt result in different properties in terms of K-diagnosability, i.e., all of them
make the system K-diagnosable, but with a different value of K. We denote as Kmin(Lnew) the smallest
value of K such that the system relabeled under Lnew is K-diagnosable. We want to select a relabeling
function L∗

new to which it corresponds the smallest value of Kmin, namely, we show to compute K∗
min =

minLnew∈Lopt Kmin(Lnew) and L∗
new = argminLnew∈Lopt

Kmin(Lnew).

For sake of simplicity in the explanation, we again assume that there is a single fault class. In the case of
r fault classes, the computation should be repeated r times separately.

The following algorithm allows to compute the value of Kmin(Lnew) associated with a generic optimal
solution Lnew. The value of K∗

min is obtained enumerating all the relabeling functions in Lopt, and
arbitrarily selecting one to each it corresponds the smallest value of Kmin.

Algorithm 2: [Computation of Kmin(Lnew)]

Input: Labeling function Lnew and UV U .

Output: Kmin(Lnew).

1. Let z be the number of elementary F-paths of U .
2. For each elementary F-path σ̂h, h = 1, 2, ..., z, do

2.1. let Kh = 1.
2.2. for each transition pair (γi, γj) along the path σ̂h, going from the root to the leaf, do

• if γi, γj ∈ To, then
· if γi = γj and the output node of (γi, γj) is an F-state, then Kh = Kh + 1.
· if γi ̸= γj , then

if neither γi nor γj are relabeled by Lnew and the output node of (γi, γj) is an
F-state, then Kh = Kh + 1.
if γi or γj is relabeled by Lnew, then goto Step 2.

• if γi ∈ Tf and γj = λ, then do nothing.
• if γi ∈ Tr,o and γj = λ, then

· if (γi, γj) is tagged “consecutive pairs” and its output node is an F-state, then Kh =
Kh + 1.

· if γi is relabeled by Lnew and (γi, γj) have no tag, then
if the subsequent transition pair in σ̂h is (λ, γi), then tag (λ, γi) “consecutive
pairs”.
else goto Step 2.

• if γj ∈ Tr,o and γi = λ, then
· if (γi, γj) is tagged “consecutive pairs” and its output node is an F-state, then Kh =
Kh + 1.

· if γj is relabeled by Lnew and (γi, γj) have no tag, then
if the subsequent transition pair in σ̂h is (γj , λ), then tag (γj , λ) “consecutive
pairs”.
else goto Step 2.

3. Let Kmin(Lnew) = max
h=1,2,...,z

Kh.

The basic idea behind Algorithm 2 is the following. Given an elementary F -path σ̂h in U , we compute the
smallest number of observations Kh that lead to the detection of the first occurrence of the fault, when
the evolution of the system (relabeled with Lnew) corresponds to path σ̂h in U . All elementary F-paths
are examined, and Kmin(Lnew) is equal to the largest value of Kh.

In more detail, Algorithm 2 can be explained step by step, as follows. Let us first introduce the notion of
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head F-state and terminal state of an elementary F-path σ̂h.

– We call head F-state of σ̂h the first F-state we encounter following the path, starting from the root
node.

– We call terminal state of σ̂h the first node we encounter following the path, starting from the root node,
whose output arc is “prevented” by Lnew.

The variable Kh is initialized at 1 since at least one observation should occur before detecting a fault.
Step 2.2 examines each pair (γi, γj) in σ̂h from the root to the leaf. In particular, the value of Kh is
increased by 1 when encountering a pair (γi, γj) that satisfies the following conditions:

(1) the terminal state is an F-state; and
(2) the transition pair (γi, γj) locates between the head F-state and the terminal state of σ̂h, and it

satisfies one of the following conditions:
i) the transitions γi, γj ∈ To.
ii) the transition γi ∈ Tr,o ∩ Tnew and it appears in consecutive pairs.
iii) the transition γj ∈ Tr,o ∩ Tnew and it appears in consecutive pairs.

Finally, Kmin(Lnew) is computed at Step 3 as the maximum value of Kh among all the elementary
F-paths σ̂h, h = 1, . . . , z.

Example 5 Consider again the elementary F-paths in Fig. 3. We first consider the optimal solution
Lnew(t5) = t5. For the elementary F-path σ̂1, the head F-state is (m3,F;m1), the terminal state is
also (m3,F;m1) and the number of observable events (under Lnew) between the head F-state and the
terminal state is 0. Therefore, K1 is initialized at 1 and it is not increased. Analogously, for the other five
elementary F-paths σ̂2 to σ̂6, it is K2 = 1, K3 = 2, K4 = 2, K5 = 1 and K6 = 1. Hence, Kmin(Lnew) = 2,
i.e., the relabeled PN system is 2-diagnosable. We apply the same approach to the other three optimal
solutions mentioned in Example 4, and find out that Kmin(L′

new) = Kmin(L′′
new) = 2. Thus, K∗

min = 2.

8 Conclusions and Future Work

This paper proposes a new approach to enforce diagnosability to a non-diagnosable labeled Petri net sys-
tem by relabeling some transitions and optimizing a given objective function. We construct an automaton,
called Unfolded Verifier, which allows to identify all paths that prevent diagnosability. Then, we formu-
late an integer linear programming problem based on some relabeling rules applied to the elementary
F-paths of the Unfolded Verifier. Compared with the approach in [7], the new technique is computation-
ally more efficient since it employs the notion of basis markings to prevent exhaustive enumeration of the
set of reachable markings. We finally provide an approach to select, among the set of optimal relabeling
functions, one that leads to the smallest value of K such that the PN system is K-diagnosable.

Our future efforts will be devoted to extending the current approach to unbounded PNs and to a decen-
tralized setting. In particular, concerning unbounded PNs, we plan to use the notion of Basis Coverability
Graph recently introduced in [9]. Finally, we plan to investigate if the ideas in this paper may be adapted
to solve the problem of opacity enforcement.
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