
State Estimation of Max-Plus Automata

with Unobservable Events

Aiwen LAI ∗, Sébastien Lahaye †, Alessandro Giua ‡

Abstract

The state estimation problem is a fundamental issue in discrete event systems.

Partial observations arise when the occurrence of some events cannot be detected.

The considered problem then consists in finding all the states in which the system

may be when an observed sequence is given. To the best of our knowledge there

are few works dealing with this problem in the framework of timed discrete event

systems. In this paper we investigate state estimation for systems represented as

max-plus automata. Max-plus automata represent a particular class of weighted

automata and if a timed interpretation is given to weights, then max-plus automata

are strongly related to timed automata. We first give the definition of consistent

states with respect to an observed timed sequence and a given time instant. Then,

based on the state vectors of a max-plus automaton, an algorithm is proposed to

compute the set of all consistent states.

Published as:

Aiwen LAI, Sébastien Lahaye, Alessandro Giua, “State Estimation of Max-Plus Au-

tomata with Unobservable Events,” Automatica, Vol. 105, pp. 36-42, July 2019. DOI:

10.1016/j.automatica.2019.03.003.

∗Aiwen LAI is with LARIS, Université d’Angers, Angers, France, email: aiwen.lai@etud.univ-angers.fr.
†Sébastien Lahaye is with LARIS, Université d’Angers, Angers, France, email: sebastien.lahaye@univ-

angers.fr.
‡Alessandro Giua is with DIEE, University of Cagliari, Cagliari, Italy, email: giua@unica.it.

1

1 Introduction

The state estimation of a dynamic system is a fundamental issue in control theory. Two

relevant properties, i.e., observability and detectability, are introduced to investigate this

problem for time driven systems (TDS) and discrete event systems (DES). In TDS, the

state estimation aims at generating an estimate x̂(t) of the current state x(t) at a time

instant t while in DES, it consists in characterizing all possible states with respect to a

finite set of observed outputs [9].

The state estimation plays a very important role in some applications of DES. One related

application is opacity. A system is said to be current state opaque if the intruder can not

decide if the current state surely belongs to a set of states. Another important application

is fault diagnosis. The failures are often associated with some unobservable events and

diagnosis aims at determining the occurrence of a fault event [18]. In [25], the failures

are modeled by a particular subset of states and the diagnosis problem then reduces to a

state estimation problem. Automata and Petri nets (PNs) have been intensively used to

deal with the state estimation problem over the past few decades.

The embryonic form of state estimation problem first appeared in [23]. Since then, this

problem has been studied by many researchers. Ramadge [17] studied the issue of deter-

mining the current state of the system modeled by a nondeterministic finite state automa-

ton and showed a procedure to design an observer for a discrete event process. Ozveren

and Willsky [16] defined the observability as having perfect knowledge of the current state

at points in time separated by bounded numbers of transitions. An approach is proposed

to build an observer according to a finite string from outputs. Besides, they showed

that an observer may have an exponential number of states although it can be built in

polynomial time.

Shu et al. [19], [20] addressed the detectability, an issue derived from state estimation,

for non-probabilistic and probabilistic DES. In [19] four types of detectabilities are de-

fined, and necessary and sufficient conditions are proposed to check these detectabilities.

In [20] a given probabilistic automaton is first converted into a non-probabilistic automa-

ton, then necessary and sufficient conditions are proposed to check the strong and weak

detectabilities. Keroglou and Hadjicostis [13] investigated the state estimation of proba-

bilistic automata by defining the concept of AA-detectability. As the number of observed

output symbols increases, the state estimation will become more accurate. Yin [24] in-

vestigated the problem of initial-state detection of probabilistic finite-state automata. An

approach is proposed for the verification of stochastic initial-state detectability, and the

author proved that this verification problem is PSPACE-complete.

Giua and Seatzu [11] proposed an algorithm for marking estimation, assuming that the

PN structure is known and the transition firings can be precisely observed. Labeled PNs

2

with silent or/and indistinguishable transitions are studied in [4], [5], [10]. The notion of

basis marking is proposed to compute the consistent markings. The authors proved that

consistent markings can be characterized by a linear system with a fixed structure that

does not change as the length of the observed word increases.

Bonhomme [3] proposed a method for current state estimation in P-time PNs. A state

observer is synthesized according to the corresponding untimed PN, and the schedula-

bility of a firing sequence is defined. The checking of schedulability of a sequence is

completed by solving a linear programming problem. In [6], timed labeled PNs with un-

observable transitions are described by algebraic models. An approach for reconstructing

the sequence of unobservable transitions, i.e., completing an observed word into a fireable

sequence which is consistent with this observation is developed therein. Timed choice-free

PNs are studied in [22]. The authors computed the set of basis markings, notion extended

from [5], and used the time equations to reduce this set by removing all markings that are

inconsistent with the time information. In [2] an online approach based on the modified

state class graph is presented for state estimation of time labeled PNs. The computational

complexity of this approach is exponential in the length of the observation.

Besides automata and PNs, max-plus algebra plays an important role in some applica-

tions of timed DES [14]. Hardouin et al. [12] investigated the state estimation of timed

event graphs (TEGs), a subclass of timed PNs capturing only synchronization and de-

lay phenomena. TEGs can be represented by state-space equations in max-plus algebra,

strongly reminiscent of discrete-time representations for conventional linear systems. The

design of an observer matrix for TEGs is proposed in analogy to Luenberger observer for

classical linear systems.

Max-plus automata are also significant mathematical tools for modeling timed DES in-

volving not only synchronization but also resource sharing. They were investigated as

a formalism for DES, first by Gaubert in [7], as a generalization of both conventional

automata (by including weights with state transitions) and max-plus linear systems (by

capturing resource sharing phenomena). This paper deals with the state estimation prob-

lem of a system represented as a max-plus automaton. Max-plus automata represent a

particular class of weighted automata and if a timed interpretation is given to weights,

then max-plus automata are strongly related to timed automata [1]. There exist con-

nections, and in some cases equivalences, between max-plus automata and time or timed

PNs [8], [15], the models used in [2], [3], [6], [22]. However, to the best of our knowledge,

there is no work for dealing with this problem when max-plus automata are used as the

system models in the literature. According to an observed timed sequence, the state esti-

mation problem consists in finding all possible states in which the system may be at the

given time instant.

We first give the definition of the set of states consistent with an observation at a given

3

time. Then we propose algorithms to solve online the state estimation problem. The main

idea behind the proposed algorithms originates from the fact that the dynamic behavior

of a max-plus automaton can be characterized by its state vector, solution of recurrent

equations on words representing the sequence of occurring events.

This paper is structured as follows. In Section 2, we briefly recall some necessary concepts

on max-plus algebra, max-plus automata and sequence projection. Section 3 presents

the problem statement and specifies our assumptions. In Subsection 4.1, we propose

algorithms to estimate the consistent states for any observed timed sequence over the

operation of the system. Following the proposed algorithms, one numerical example is

shown to illustrate them. In Subsection 4.2, we analyse the computational complexity of

state estimation for a fixed-length observation using our approach. Finally, conclusions

and future work are drawn in Section 5.

2 Background

2.1 Max-plus algebra

Definition 1 An idempotent semiring (Dioid) is a set D together with two binary oper-

ations (addition and multiplication), denoted respectively ⊕ and ⊗. D with ⊕ forms an

idempotent semigroup, i.e., ⊕ is commutative, associative, has a zero element ε (ε⊕a = a

for each a ∈ D), and is idempotent: a ⊕ a = a for each a ∈ D. ⊗ is associative, has

a unit element e, and distributes over ⊕. Moreover, ε is absorbing for ⊗, i.e., ∀a ∈ D,

ε⊗ a = a⊗ ε = ε.

Example 1 The max-plus algebra, denoted by Rmax, is a typical instance of dioid with

D = R∪{−∞}. The maximum plays the role of addition ⊕, and the conventional addition

is used as multiplication ⊗, with ε = −∞, e = 0.

Example 2 Let E be an alphabet, i.e., a finite non empty set of symbols. A string ω

defined on E is a sequence (concatenation) of symbols in E, e.g., ω = e1e2 · · · ek with

e1, e2, · · · , ek ∈ E, and k is called its length. The empty word, the sequence of zero length,

is denoted by ǫ. The free monoid E∗ defined on E is the set of all strings defined on E.

Formal languages are subsets of the free monoid E∗. The set of formal languages with the

union of languages playing the role of addition and concatenation of languages playing the

role of multiplication is a dioid.

For matrices A,B ∈ Dm×n, and C ∈ Dn×p, the matrix sum and product are defined in a

conventional way:

[A⊕ B]ij , Aij ⊕ Bij = max(Aij , Bij),

4

[A⊗ C]ij ,
n

⊕

k=1

(Aik ⊗ Ckj) = max
k=1,··· ,n

(Aik + Ckj).

2.2 Max-plus automata

An automaton with weights in the Rmax semiring is called a max-plus automaton [7].

Definition 2 A max-plus automaton is a tuple G = (Q,E, α, µ, β) where

• Q and E are respectively a non-empty finite set of states and an alphabet;

• α ∈ R
1×|Q|
max specifies the initial delays. A state q ∈ Q is said to be an initial state iff

αq 6= ε, and αq is the corresponding initial delay;

• µ: E → R
|Q|×|Q|
max is a morphism representing the state transitions given by the

family of matrices µ (a) ∈ R
|Q|×|Q|
max , a ∈ E. For any string ω = a1a2 · · · an, we have

µ(ω) = µ(a1a2 · · · an) = µ(a1)⊗ · · · ⊗ µ(an);

• β ∈ R
|Q|×1
max specifies the final delays. A state q is said to be a final state iff βq 6= ε,

and βq is the corresponding final delay.

An automaton G can be associated with a useful graphical representation, which is a

valued multigraph:

• Q corresponds to the set of nodes;

• an initial state q ∈ Q (i.e., αq 6= ε) is characterized by an input arrow labeled by αq

representing its initial delay. Let us denote Qi ⊆ Q the set of initial states;

• a final state q ∈ Q (i.e., βq 6= ε) is characterized by an output arrow labeled by βq

representing its final delay;

• there exists an arrow from q to q′, labeled by a/µ(a)qq′, iff µ(a)qq′ 6= ε, a ∈ E.

It represents the state transition when event a occurs. In this paper, µ(a)qq′ is

interpreted as the activation time for event a before it can occur for the transition

from q to q′.

Note that, we assume the states of G are well ordered by natural numbers. With an abuse

of notation, we denote µ(a)qq′ the element in the qth row and q′th column of the matrix

µ(a). A max-plus automaton may be nondeterministic because there may be more than

one element different from ε in α or/and in a row of µ(a), a ∈ E.

5

Example 3 Assume a max-plus automaton with set of states Q = {1, 2, 3, 4}, alphabet

E = {u, b}, transitions µ(u)1,2 = 1, µ(u)4,3 = 2, µ(b)2,2 = 6, µ(b)2,1 = 4, µ(b)3,2 = 3,

initial and final delays α1 = α4 = β1 = 0. The other values for α, β and µ are equal to ε.

This max-plus automaton is represented in Fig. 1.

1 2 3 4
0

0
0

1/u

4/b

6/b

3/b 2/u

Figure 1: Max-plus automaton G

Definition 3 Given a max-plus automaton G = (Q,E, α, µ, β), we define a path of length

k as a sequence of transitions π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk) where µ(ei)qi−1qi 6=

ε, for i = 1, · · · , k.

Moreover, π is said to be labeled by e1e2 · · · ek, and π is a circuit if q0 coincides with qk.

We denote W(π) the product ⊗ of the weights on path π as:

W(π) =
⊗

i=1,··· ,k

µ(ei)qi−1qi =
k

∑

i=1

µ(ei)qi−1qi.

Let p, q ∈ Q, ω ∈ E∗. We denote p
ω
 q the set of paths from p to q which are labeled by

string ω. For P,R ⊆ Q, P
ω
 R represents the union of p

ω
 q for all p ∈ P , q ∈ R. It

can be shown that

µ(e1e2 · · · ek)q0qk =
⊕

π∈q0
e1···ek
 qk

W(π).

This means that µ(e1e2 · · · ek)q0qk represents the maximal weight for paths from q0 to qk
labeled by e1e2 · · · ek. The dynamic evolution of the max-plus automaton is described by

its state vector x(ω) ∈ R
1×|Q|
max which is defined as:

x(ω) =

{

α, if ω = ǫ;

α⊗ µ(ω), otherwise.

For any string ω = e1 · · · ek ∈ E∗, it can be checked that

x(ω)qk = max
q0∈Qi; q1,··· ,qk∈Q

αq0 +

[

k
∑

i=1

µ(ei)qi−1qi

]

.

In simple words, x(ω)qk is the maximal weight of paths labeled by ω going from an initial

state to state qk (the initial delay is added to the weight of the path). We shall interpret

6

x(ω)qk as the date at which state qk is reached when the sequence ω is completed, with

the convention that x(ω)qk = ε if qk is not reachable via ω from an initial state.

Example 4 Consider the max-plus automaton G in Fig. 1. It can be checked that x(u) =

(ε, 1, 2, ε), x(ub) = (5, 7, ε, ε), and |Qi
ub
 2| = 2 since π1 = (1, u, 2)(2, b, 2) and π2 =

(4, u, 3)(3, b, 2) are the two paths labeled by ub from an initial state to state 2. When u is

completed, state 2 is reached at time 1 because x(u)2 = 1. Besides, x(ub)2 = 7 means that

state 2 is reached at instant 7 when ub is completed. Here we observe that events along

path π1 occur as soon as their activation time has elapsed. However, this is not always

the case. In particular, along π2, state 3 is first reached at time 2 since x(u)3 = 2 and

state 2 is then reached at instant 7 when ub is completed. Whereas the activation time of

b for transition (3, b, 2) is equal to µ(b)3,2 = 3, this event here occurs 5 units of time (the

real duration) after that state 3 was reached. This is consistent with the interpretation

that µ(b)3,2 specifies the activation time before event b can occur for this transition.

Formally, considering the occurrence of a ∈ E for transition (q, a, q′), µ(a)qq′ 6= ε, suppose

that q is reached at time tq, it may happen that event a occurs at a time strictly greater

than tq + µ(a)qq′. This can happen if ∃q ∈ Q, ∃ω ∈ E∗ : |Qi
ω
 q| ≥ 1 (i.e., several paths

labeled by ω from an initial state to q). Such a configuration captures a synchronization

occurring in the system, a common phenomenon in DES.

Based on the above discussion, we can say that a max-plus automaton describes a system

characterized by synchronizations between concurrent sequential timed processes. A path

in a max-plus automaton represents a concurrent process whose transitions weights denote

the minimal time required by the process to fire the transitions. The timed evolution

of the automaton will be given by the synchronization of the evolutions of processes

corresponding to paths with the same labeling and reaching the same state. Therefore,

we associate to each path π of max-plus automaton G a timed sequence corresponding to

this synchronization.

Definition 4 Given a max-plus automaton G = (Q,E, α, µ, β) and a path

π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk)

where q0 ∈ Qi, we define the timed sequence σ(π) ∈ (E × R)∗ generated by π as: σ(π) =

(e1, τ1)(e2, τ2) · · · (ek, τk) where τj, j = 1, · · · , k, is defined by: τj = x(e1, · · · , ej)qj .

We use notation q0
σ(π)
 qk to denote the fact that path π starts from initial state q0 and

generates the timed sequence σ(π) reaching state qk. Such a generated timed sequence

consists of pairs composed by an event and a time value. In simple words, it specifies a

sequence of events, i.e., the untimed sequence generated by π, and their occurrence time

instants. In this paper, for any generated timed sequence σ, we denote tf (σ) the time

7

instant at which the last event in σ occurred, i.e., the completion time of σ. For any

σ1, σ2 ∈ (E × R)∗, σ1 · σ2 is used to represent their concatenation.

Example 5 Consider again path π1 = (1, u, 2)(2, b, 2) and path π2 = (4, u, 3)(3, b, 2) of

G in Fig. 1 with Qi = {1, 4}. The generated timed sequences are σ(π1) = (u, 1)(b, 7) and

σ(π2) = (u, 2)(b, 7). Therefore, tf (σ(π1)) = tf (σ(π2)) = 7.

Based on the definition of timed sequence generated by a path π, we define the generated

timed language of a max-plus automaton.

Definition 5 Given a max-plus automaton G = (Q,E, α, µ, β), the generated timed lan-

guage L(G) (set of all timed sequences generated by G) is defined as:

L(G) = {σ ∈ (E × R)∗ | ∃q ∈ Q,

∃ω ∈ E∗, ∃π ∈ Qi
ω
 q : σ(π) = σ}

(1)

2.3 Sequence projection

In the state estimation problem, the alphabet is usually partitioned as E = Eo ∪ Euo

where Eo (resp. Euo) is the set of observable (resp. unobservable) events.

Definition 6 Given an alphabet E = Eo ∪ Euo, the projection operator on the set of

observable events Eo is denoted by P : E∗ → E∗
o and is defined as: P (ǫ) = ǫ; P (sa) =

P (s)a, if a ∈ Eo, otherwise P (sa) = P (s).

Now we extend the projection operator to any timed sequence σ = (e1, t1)(e2, t2) · · · (ek, tk) ∈

(E × R)∗. The projection of a timed sequence on observable pairs is denoted by P :

(E × R)∗ → (Eo × R)∗ where P (σ) is the string obtained from σ by erasing all pairs cor-

responding to unobservable events. For instance, consider σ(π) = (a, 1)(u, 4)(a, 5) with

a observable and u unobservable. Then, we have P (σ(π)) = (a, 1)(a, 5). In the rest of

this paper, we denote P (L(G)) the set of possibly observed timed sequences for max-plus

automaton G. In other words, all observations obtained by an external agent belong to

P (L(G)).

3 Problem statement

In this paper, we deal with the problem of estimating the state of a timed DES represented

as a max-plus automaton whose state cannot be directly detected. The studied max-

plus automaton is completely known, namely, initial states, state transitions, weights of

transitions are available. Considering that the firing of unobservable events cannot be

8

distinguished by an external agent observing the system evolution, we assume that all the

unobservable events are labeled by the same symbol u, i.e., Euo = u and E = Eo ∪ {u}.

We make the following assumption.

Assumption 1 There is no circuit labelled only by unobservable events.

Assumption 1 implies that generated sequences of unobservable events (strings composed

exclusively of u) have finite length.

For any state q ∈ Q, we use notation q• to represent the set of its output transi-

tions, i.e., q• = {(q, a, q′)|a ∈ E, q′ ∈ Q : µ(a)qq′ 6= ε}. Given a timed sequence σ =

(e1, t1)(e2, t2) · · · (ek, tk), we denote lab(σ) = e1e2 · · · ek the sequence of labels associated

with σ, neglecting the occurrence dates.

Given an observed timed sequence σo ∈ P (L(G)) and a time instant τ , we define the set

C(σo, τ) of (σo, τ)−consistent states as the set of all possible states in which the system

may be at τ after the observation of σo. We assume that there is no further observation

after the last event in σo.

Definition 7 Given an observed timed sequence σo ∈ P (L(G)) and a time instant τ ≥

tf (σo), the set of all (σo, τ)− consistent states is defined as

C(σo, τ) = {q ∈ Q | (∃σ ∈ L(G), ∃q0 ∈ Qi : q0
σ
 q,

P (σ) = σo, tf (σ) ≤ τ) ∧ ((q• = ∅)∨

(∃(q, a, q′) ∈ q• : τ < x(lab(σ)a)q′))}

(2)

In simple words, a state q without output transition is a consistent state, if there exists

a timed sequence σ from an initial state to q such that the projection of σ coincides with

the observation, and the completion time of σ is less than or equal to given time instant

τ . If q has output transition(s), then at least one of the output transitions is required to

occur after τ .

Problem 1 The state estimation problem of a max-plus automaton consists in finding a

systematic approach to characterize the set C(σo, τ) for any observation σo and any time

instant τ ≥ tf (σo).

Example 6 Consider again the automaton G in Fig. 1. Let σo = (b, 7)(b, 11) and τ =

11.5. It can be verified that the set of consistent states is C(σo, τ) = {1}. In fact, π =

(1, u, 2)(2, b, 2)(2, b, 1) is the unique path whose timed sequence is consistent with σo. We

have σ = σ(π) = (u, 1)(b, 7)(b, 11), 1
σ
 1, tf (σ) = 11 ≤ 11.5, and P (σ) = σo. Moreover,

the occurrence time instant of the output transition (1, u, 2) of state 1 is x(ubbu)2 = 12,

which is greater than 11.5. Therefore, state 1 is consistent with σo and τ .

9

4 State estimation of max-plus automata

4.1 State estimation

In this subsection we introduce an approach to solve Problem 1.

Definition 8 Given a max-plus automaton G = (Q,E, α, µ, β), a pair (qj , ωj) with qj ∈ Q

and ωj ∈ E∗ is said to be compatible with a timed sequence σo = (e1, t1)(e2, t2) · · · (ej , tj) ∈

P (L(G)), j ≥ 1, if there exists path π labeled by ωj ending with ej from an initial state

q0 in G such that P (σ(π)) = σo and q0
σ(π)
 qj. We define W (σo) as the set of all pairs

compatible with σo.

We define two functions UpdateW and ConsistentSet, given in Algorithms 1 and 2

respectively.

Algorithm 1 Update the compatible set
Input: W (σo), a pair (e, t) ∈ (Eo × R)

Output: W (σo · (e, t))

function UpdateW ((e, t),W (σo))

W (σo · (e, t)) := ∅

for each (q′, ω′) ∈ W (σo) do

for each q ∈ Q do

for i = 0 to |Q| − 1 do

if [x(ω′)⊗ µ(ui)⊗ µ(e)]q = t

and [µ(ui)⊗ µ(e)]q′q 6= ε then

W (σo · (e, t)) := W (σo · (e, t)) ∪ {(q, ω′uie)}

end if

end for

end for

end for

return (W (σo · (e, t)))

end function

Function UpdateW is employed to update the compatible set each time a new event (e, t)

is observed.

Proposition 1 Assume W (ǫ) = {(q, ǫ) | q ∈ Qi}. Called for successive pairs in sequence

σo = (e1, t1)(e2, t2) · · · (ej , tj) ∈ P (L(G)), function UpdateW returns W (σo).

Proof 1 Proposition 1 can be proved by induction on the length of the observation.

W (ǫ) = {(q, ǫ) | q ∈ Qi} is the compatible set for the empty timed sequence. Let σ′
o =

(e1, t1)(e2, t2) · · · (ej−1, tj−1), and assume that function UpdateW returns W (σ′
o) when it

10

has been called for successive pairs in σ′
o. When called for (ej , tj), function UpdateW first

computes the state vectors [x(ω′)⊗ µ(ui)⊗ µ(ej)]q and [µ(ui)⊗ µ(ej)]q′q, i = 0, · · · , |Q|−

1, for each pair (q′, ω′) ∈ W (σ′
o) and for any q ∈ Q. Then, any pair (q, ω′uiej) is included

in set W (σo) if [x(ω′)⊗ µ(ui)⊗ µ(ej)]q = tj and [µ(ui)⊗ µ(ej)]q′q 6= ε. Note that the

condition [x(ω′)⊗ µ(ui)⊗ µ(ej)]q = tj ensures that state q can be reached at time instant

tj via string ω′uiej and the condition [µ(ui)⊗ µ(ej)]q′q 6= ε ensures that there exists a path

labeled by uiej from state q′ to q. Since (q′, ω′) is compatible, the above two conditions

ensure that (q, ω′uiej) is compatible with σo. Therefore, function UpdateW returnsW (σo)

when it has been called for successive pairs in σo. �

Function ConsistentSet is employed to determine the set of states consistent with an

observation σo and a time instant τ ≥ tf(σo). Although we assume that no observable

event occurs between tf (σo) and τ , unobservable events may occur between them. This

requires us to enumerate unobservable transitions in continuation of compatible pairs in

W (σo).

Proposition 2 For any σo ∈ P (L(G)) whose compatible set is W (σo) calculated by

Algorithm 1, and for a time instant τ ≥ tf(σo), the set C(σo, τ) returned by function

ConsistentSet is equal to C(σo, τ) defined in Equation (2).

Proof 2 According to Algorithm 1, we know that W (σo) is composed of all pairs (q′, ω′)

such that q′ is reached at time tf(σo) from an initial state by a path π labeled by ω′ ending

with the last event in σo, and P (σ(π)) = σo. For each pair (q′, ω′) ∈ W (σo) and for any

q ∈ Q, function ConsistentSet computes the state vectors [x(ω′)⊗ µ(ui)]q and [µ(ui)]q′q,

i = 0, · · · , |Q| − 1. Conditions ε 6=
[

x(ω′)⊗ µ(ui)
]

q
≤ τ and [µ(ui)]q′q 6= ε ensure that

state q can be reached by a generated timed sequence σ such that P (σ) = σo and tf(σ) ≤ τ .

Besides, the existence of transition (q, a, q′′) ∈ q• such that [x(ω′)⊗ µ(ui)⊗ µ(a)]q′′ > τ

guarantees that at least one of the occurrence time instants of the output transitions of

q is greater than τ . Condition q• = ∅ ensures that q has no output transition. All states

satisfying the above conditions is included in C(σo, τ), which coincides with the definition

of (σo, τ)−consistent states. �

Using functions proposed in Algorithms 1 and 2, Algorithm 3 is introduced to deal with

the state estimation problem during the operation of the system.

Proposition 3 Algorithm 3 provides an online solution to Problem 1.

Proof 3 Algorithm 3 initializes W (ǫ) = {(q, ǫ) | q ∈ Qi} since all initial states can be

reached via an empty string (no observation has occurred). Each time a new observ-

able event occurs, function UpdateW is called to update the compatible set, and, when

needed, the consistent states is determined by calling function ConsistentSet. According

to Propositions 1 and 2, Algorithm 3 does provide a solution to Problem 1. �

11

Algorithm 2 Compute the set of consistent states
Input: W (σo), τ ≥ tf (σo)

Output: C(σo, τ)

function ConsistentSet(W (σo), τ)

C := ∅

for each (q′, ω′) ∈ W (σo)

for i = 0 to |Q| − 1 do

Qτ := ∅

for each q ∈ Q do

if ε 6= [x(ω′)⊗ µ(ui)]q ≤ τ

and [µ(ui)]q′q 6= ε then

Qτ := Qτ ∪ {q}

end if

end for

for q ∈ Qτ

Tq := ∅

if q• = ∅ then

C := C ∪ {q}

else

for each (q, a, q′′) ∈ q•

Tq = Tq ∪
{

[x(ω′)⊗ µ(ui)⊗ µ(a)]q′′
}

if ∃t ∈ Tq such that t > τ then

C := C ∪ {q}

end if

end for

end if

end for

end for

end for

return (C(σo, τ) = C)

end function

12

Algorithm 3 Online state estimation

Input: G = (Q,E,α, µ, β)

Output: C(σo, τ)

σo := ǫ, W (σo) := ∅

for each q ∈ Qi do

W (σo) := W (σo) ∪ {(q, ǫ)}

end for

while state estimation is required do

if observation (e, t) arrives then

W (σo · (e, t)) := UpdateW ((e, t),W (σo))

σo := σo · (e, t)

end if

if the set of consistent states is required then

Let τ be the current time instant

C(σo, τ) := ConsistentSet(W (σo), τ)

end if

end while

Example 7 Let us consider again the max-plus automaton G in Fig. 1. Let us assume

that the timed sequence σo = (b, 5)(b, 10) is observed and that the set of consistent states

is required at time instant τ = 14. It can be checked that α = (e, ε, ε, e), β = (e, ε, ε, ε),

µ(u) =

ε 1 ε ε

ε ε ε ε

ε ε ε ε

ε ε 2 ε

, µ(b) =

ε ε ε ε

4 6 ε ε

ε 3 ε ε

ε ε ε ε

1) Initialize W (ǫ) = {(1, ǫ), (4, ǫ)}.

2) Update compatible set when observation (b, 5) arrives:

Firstly, compute µ(ui), i = 0, 1, 2, 3:

µ(u0) =

e ε ε ε

ε e ε ε

ε ε e ε

ε ε ε e

, µ(u2) = µ(u3) =

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

Secondly, for pair (1, ǫ), compute x(ǫ) ⊗ µ(ui) ⊗ µ(b) and [µ(ui)⊗ µ(b)]1,• (the row cor-

responding to state 1 in matrix µ(ui) ⊗ µ(b)), i = 0, 1, 2, 3: x(ǫ) ⊗ µ(u) ⊗ µ(b) =

(5, 7, ε, ε); x(ǫ) ⊗ µ(ui) ⊗ µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3; [µ(u)⊗ µ(b)]1,• = (5, 7, ε, ε);

[µ(ui)⊗ µ(b)]1,• = (ε, ε, ε, ε), for i = 0, 2, 3. According to function UpdateW , any pair

13

(q, uib) is recorded as an element of the compatible set if [x(ǫ)⊗ µ(ui)⊗ µ(b)]q = 5 and

[µ(ui)⊗ µ(b)]1,q 6= ε. In this case, the only pair (1, ub) is obtained as an element of the

updated set W since [x(ǫ)⊗ µ(u)⊗ µ(b)]1 = 5 and [µ(u)⊗ µ(b)]1,1 = 5 6= ε.

Thirdly, for pair (4, ǫ), compute x(ǫ) ⊗ µ(ui) ⊗ µ(b) and [µ(ui)⊗ µ(b)]4,•, i = 0, 1, 2, 3:

x(ǫ)⊗µ(u)⊗µ(b) = (5, 7, ε, ε); x(ǫ)⊗µ(ui)⊗µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3; [µ(u)⊗ µ(b)]4,• =

(ε, 5, ε, ε); [µ(ui)⊗ µ(b)]4,• = (ε, ε, ε, ε), for i = 0, 2, 3.

Similar to the above process, any pair (q, uib) is added into the updated setW if [x(ǫ)⊗ µ(ui)⊗ µ(b)]q =

5 and [µ(ui)⊗ µ(b)]4,q 6= ε. In this case, no pair is recorded. Hence, function UpdateW

returns W ((b, 5)) = {(1, ub)}.

3) Update compatible set when observation (b, 10) arrives: Similar to step 2), any pair

(q, ubuib) is recorded as an element of the new compatible set if [x(ub)⊗ µ(ui)⊗ µ(b)]q =

t2 = 10 and [µ(ui)⊗ µ(b)]1,q 6= ε. In this case, the unique pair (1, ubub) is recorded, and

function UpdateW returns W ((b, 5)(b, 10)) = {(1, ubub)}.

4) Compute set of consistent states required at τ = 14: For pair (1, ubub), compute

x(ubub) ⊗ µ(ui) and [µ(ui)]1,•, i = 0, 1, 2, 3: x(ubub) ⊗ µ(u0) = (10, 12, ε, ε); x(ubub) ⊗

µ(u) = (ε, 11, ε, ε); x(ubub) ⊗ µ(ui) = (ε, ε, ε, ε), for i = 2, 3; [µ(u0)]1,• = (e, ε, ε, ε);

[µ(u)]1,• = (ε, 1, ε, ε); [µ(ui)]1,• = (ε, ε, ε, ε), for i = 2, 3.

According to Algorithm 2, we get Qτ = {1, 2}. State 1 is not consistent with σo =

(b, 5)(b, 10) and τ = 14 since it has only one output transition labeled by u leading to

state 2, and x(ababa)2 = 11 < τ . State 2 is consistent with σo and τ because one of

its output transitions occur at time instant x(ababab)2 = 17 greater than τ . Therefore

C(σo, τ) = {2}.

4.2 Computational complexity

In this subsection, we discuss the computational complexity of estimating all possible

states consistent with an observation σo = (e1, t1)(e2, t2) · · · (ek, tk) ∈ P (L(G)) and a

given time instant τ ≥ tf(σo) = tk using Algorithm 3.

Function UpdateW is used to update the compatible set each time an event is observed.

Let σ′
o = (e1, t1)(e2, t2) · · · (ej−1, tj−1) and σ′′

o = (e1, t1)(e2, t2) · · · (ej , tj) with 1 ≤ j ≤ k. In

order to calculate W (σ′′
o) from W (σ′

o) when observation (ej , tj) arrives, we have to check

whether the pair (q, ω′uiej), i = 0, · · · , |Q| − 1, satisfies [x(ω′)⊗ µ(ui)⊗ µ(ej)]q = tj
and [µ(ui)⊗ µ(ej)]q′q 6= ε for each pair (q′, ω′) belonging to W (σ′

o). Therefore, computing

W (σ′′
o) requires 2×|Q|2×|W (σ′

o)| comparisons where |W (σ′′
o)| is the cardinality of W (σ′

o).

In the worst case, it is equal to 2 × |Q|j+2 since |W (σ′
o)| ≤ |Q|j . There are k observed

events in σo, which means that function UpdateW should be called k times. Thus, the

14

total number of comparisons for calculating W (σo) is at most
k
∑

j=1

2× |Q|j+2.

The function ConsistentSet is called to calculate all states consistent with observation

σo and τ . Any state q ∈ Q is a consistent state if there exists a pair (q′, ω′) ∈ W (σo) and

an integer number l ∈ [0, |Q| − 1] such that ε 6=
[

x(ω′)⊗ µ(ul)
]

q
≤ τ and

[

µ(ul)
]

q′q
6= ε.

Besides, the occurrence time instants of output transitions of q need to be compared with

τ . In the worst case, the number of comparisons required to check this for all states in

the worst case is (3 + |E|)× |Q|k+3.

Therefore, in the worst case, the total complexity of solving the problem of state estimation

for a fixed-length observation σo = (e1, t1) (e2, t2) · · · (ek, tk) and a given time instant

τ ≥ tk using Algorithm 3 is O(
k
∑

j=1

2× |Q|j+2 + (3 + |E|)× |Q|k+3).

Remark 1 The computational complexity, in terms of the number of comparisons, of our

online algorithm grows exponentially with the length of the observation. This is because

each time a new event is observed, the compatible set should be updated from the previous

one. For an observation σo = (e1, t1) (e2, t2) · · · (ek, tk), all possible sequences of unob-

servable transitions interleaved with it should be taken into account. That is, at worst,

we have to consider all sequences ui1e1u
i2e2 · · ·u

ikek with i1, · · · , ik = 0, 1, · · · |Q| − 1 to

determine W (σo). This implies that in the worst case |W (σo)| = |Q|k+1.

Note that other approaches for state estimation [2] or related problems [21] for timed DES

have also exponential complexity in the length of the observation. A solution to this issue

for online implementation could be to construct an observer (as in [18], [19], or similar

structures in [2], [4]) to move the computation having high complexity to a preliminary

and offline phase. To the best of our knowledge, this problem for max-plus automata is

open, and constitutes a challenge for future investigations.

5 Conclusion

Max-plus automata play an important role in the modeling of timed DES, especially in

the presence of synchronization. This paper copes with the state estimation problem for

a max-plus automaton. Once a timed sequence is observed and a time instant is given,

the state estimation problem consists in determining all consistent states, i.e., the states

in which the system may be. An algorithm is proposed to deal with this issue online.

As future work, we plan to investigate the identification problem, which is closely related

to the state estimation problem. In addition, it is planned to study the feasibility of

constructing an observer or similar structures for state estimation of max-plus automata.

15

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.

[2] F. Basile, M. Cabasino, and C. Seatzu. State estimation and fault diagnosis of

labeled time Petri net systems with unobservable transitions. IEEE Transactions on

Automatic Control, 60:997–1009, 2015.

[3] P. Bonhomme. Marking estimation of p-time petri nets with unobservable transitions.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45:508–518, 2015.

[4] M. P. Cabasino, A. Giua, M. Pocci, and C. Seatzu. Discrete event diagnosis using

labeled Petri nets. An application to manufacturing systems. Control Engineering

Practice, 19:989–1001, 2011.

[5] D. Corona, A. Giua, and C. Seatzu. Marking estimation of Petri nets with silent

transitions. IEEE Transactions on Automatic Control, 52:1695–1699, 2007.

[6] P. Declerck and P. Bonhomme. State estimation of timed labeled Petri nets with un-

observable transitions. IEEE Transactions on Automation Science and Engineering,

11:103–110, 2014.

[7] S. Gaubert. Performance evaluation of (max,+) automata. IEEE transactions on

automatic Control, 40:2014–2025, 1995.

[8] S. Gaubert and J. Mairesse. Modeling and analysis of timed petri nets using heaps

of pieces. IEEE Transactions on Automatic Control, 44:683–697, 1999.

[9] A. Giua. State estimation and fault detection using Petri nets. In Proceedings of

32nd International Conference on Application and Theory of Petri Nets, Newcastle,

UK, pages 38–48, 2011.

[10] A. Giua, D. Corona, and C. Seatzu. State estimation of λ-free labeled Petri nets

with contact-free nondeterministic transitions. Discrete Event Dynamic Systems,

15:85–108, 2005.

[11] A. Giua and C. Seatzu. Observability of place/transition nets. IEEE Transactions

on Automatic Control, 47:1424–1437, 2002.

[12] L. Hardouin, C. A. Maia, B. Cottenceau, and M. Lhommeau. Observer design for

(max,+) linear systems. IEEE Transactions on Automatic Control, 55:538–543, 2010.

[13] C. Keroglou and C. N. Hadjicostis. Verification of detectability in probabilistic finite

automata. Automatica, 86:192–198, 2017.

16

[14] J. Komenda, S. Lahaye, J.-L. Boimond, and T. van den Boom. Max-plus algebra in

the history of discrete event systems. Annual Reviews in Control, 45:240–249, 2018.

[15] S. Lahaye, J. Komenda, and J.-L. Boimond. Compositions of (max,+) automata.

Discrete Event Dynamic Systems, 25:323–344, 2015.

[16] C. M. Ozveren and A. S. Willsky. Observability of discrete event dynamic systems.

IEEE Transactions on Automatic Control, 35:797–806, 1990.

[17] P. J. Ramadge. Observability of discrete event systems. In Proceedings of 25th IEEE

Conference on Decision and Control, Athens, Greece, pages 1108–1112, 1986.

[18] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Di-

agnosability of discrete-event systems. IEEE Transactions on Automatic Control,

40:1555–1575, 1995.

[19] S. Shu, F. Lin, and H. Ying. Detectability of discrete event systems. IEEE Transac-

tions on Automatic Control, 52:2356–2359, 2007.

[20] S. Shu, F. Lin, H. Ying, and X. Chen. State estimation and detectability of proba-

bilistic discrete event systems. Automatica, 44:3054–3060, 2008.

[21] S. Tripakis. Fault diagnosis for timed automata. In International symposium on

formal techniques in real-time and fault-tolerant systems, pages 205–221. Springer,

2002.

[22] X. Wang, C. Mahulea, J.e Júlvez, and M. Silva. On state estimation of timed choice-

free Petri nets. In Proceedings of 18th IFAC World Congress, Milano, Italy, vol-

ume 44, pages 8687–8692, 2011.

[23] W. M. Wonham. Towards an abstract internal model principle. IEEE Transactions

on Systems, Man, and Cybernetics, 6:735–740, 1976.

[24] X. Yin. Initial-state detectability of stochastic discrete-event systems with proba-

bilistic sensor failures. Automatica, 80:127–134, 2017.

[25] S. H. Zad, R. H. Kwong, and W. M. Wonham. Fault diagnosis in discrete-event

systems: Framework and model reduction. IEEE Transactions on Automatic Control,

48:1199–1212, 2003.

17

