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1 Introduction

With the rapid growth of information and communication technology during the last two decades, people
are actively using networks for getting information, exchanging ideas, and even adopting new products.
From a psychological perspective, it is well understood that an individual’s behavior is highly influenced by
its neighbors or friends. Motivated by this, the study of influence propagation finds several applications in
real-world life including viral marketing or the adoption of innovations in organizations [1, 2, 3, 8, 16, 21],
the spread of rumors or memes, trust [9], opinion dynamics [5, 14], etc.

In order to model the propagation of an idea or innovation through a network, Kempe et al. [8] proposed
a threshold model. It consists of a directed graph where each node can be either active (if it has adopted
the innovation) or inactive (if it has not adopted the innovation). A node adopts the innovation when the
number of its active neighbors is beyond a given threshold. The innovation propagates in a progressive
fashion, i.e., nodes can only switch from inactive to active but not in the opposite direction, until a set
of final adopters is determined.

Threshold models are dynamical systems whose evolution consists in a transient phase that eventually
reaches a steady state in a finite number of steps and are suited to describe collective behaviors [4]. The
linear threshold model that we adopt in this paper provides a simplified description which is sufficiently
accurate and relatively easy to analyze. We refer to [17] for a non-progressive version of this diffusion
model and to [21] for a more general multiplex threshold network. In [13] linear threshold networks with
node dynamics are considered.

The influence maximization problem in social networks aims to identify a small subset of initial adopters
(called controlled nodes, driver nodes, leaders, or seed nodes) to maximize the influence propagation
under a given diffusion model and has been widely studied in the literature [8, 15, 18]. The choice of the
seed set can be seen as a control action that determines the network performance and has a clear practical
motivation in many applications [2]. A similar approach based on node selection has also been studied
from a different perspective in other applications. We mention the problem of controlling the state of
leader nodes to minimize the information propagation error caused by noise on the communication links
between nodes in leader-follower systems [10, 19].

Rosa and Giua [16] provided a linear algebraic characterization of the set of final adopters corresponding
to a given seed set in a linear threshold model. The set of final adopters can be computed by solving
an Integer Linear Programming (ILP) problem. They also used this approach to solve the influence
maximization over a finite horizon k, but the proposed approach is rather inefficient as it requires a
number of integer decision variables up to 2× n× k, where n is the number of nodes.

Just as good things (e.g., innovation, positive information, etc.) spread through a network and bring
positive effects to individuals, undesirable things (e.g., bad reputation, failures, etc.) may also spread
in a similar fashion. For this reason, in this paper we consider a linear threshold model and address
problems related to influence minimization, which so far have not received much attention. We show that
an ILP characterization of the steady state can be adapted to solve two meaningful classes of influence
minimization problems where the control action is the choice of the seed set. This was not the case for
influence maximization problems, where maximizing the cardinality of the set of final adopters (which
we show is equal to minimizing a maximal cohesive set) results in a min-max integer programming of
difficult solution.

A problem of this type was addressed in [9] where a contamination minimization problem was defined
and solved by blocking some links in the network. However, in many realistic situations such a solution
is not viable because it may be impossible for a control agent to interfere with a network structure.

We formalize two general problems called Loss Minimization with Disruption (LMD) and Diffusion Min-
imization with Guaranteed Target (DMGT). The LMD represents a family of influence minimization
problems with a linear constraint on the seed set. On the contrary, the DMGT represents a family of

2



influence minimization problems with a guaranteed target and restriction of the seed set to a subset of
nodes. Note that both problems have a combinatorial nature and finding the optimal solution for either
of them requires an exhaustive search in general.

Our main contributions are the following:

• For the LMD problem, we first provide an optimal solution by solving an integer linear programming
problem and then present two heuristics to find approximate solutions based on nodes’ degrees and
centralities that are commonly used in the literature to estimate a node’s influence.
• For the DMGT problem, we provide a technique to search for an optimal solution that works only in
particular cases and discuss a simple heuristic to find a solution in the general case.
• We test the proposed algorithms on two real-world datasets with different scale and compare their
performance with other heuristic approaches.

A preliminary version of this work was presented in [20]. This paper is a substantially different version
where the significance of the two influence minimization problems and the challenges in solving them are
clarified; the proofs of all results are given; heuristics are generalized to the case of heterogenous nodes
and the issues of their convergence, scalability and performance are discussed.

2 Preliminaries

2.1 Linear threshold network

A linear threshold network N is a 4-tuple (V,E, θ,W ) where V = {1, 2, ..., n} is the set of nodes in the
network and E ⊆ V × V is a set of directed arcs, i.e, (i, j) ∈ E when there is an arc from node i to
j. Function θ : V → (0, 1] is a mapping that assigns a threshold value θi ∈ (0, 1] to each node i ∈ V .
Function W : V × V → (0, 1] is a mapping that assigns an influence weight W (i, j) ∈ (0, 1] to each arc
(i, j) ∈ E such that W (i, j) = 0 if (i, j) /∈ E and

∑
i∈V W (i, j) = 1 for all j ∈ V . We also call this function

the weighted adjacency matrix W ∈ (0, 1]V×V .

Each node in a network represents an individual or agent (therefore in this paper, we will use node,
agent, and individual interchangeably) and the thresholds θi represent the different tendencies of nodes
to adopt the innovation when their neighbors do [8]. We define the in-neighbor set of node i ∈ V as
N in

i = {j|(j, i) ∈ E} and the out-neighbor set as Nout
i = {j|(i, j) ∈ E}. Arc (i, j) in a network denotes

that node j can be influenced by node i.

Let Θ = diag([θ1, θ2, · · · , θn]) be the threshold matrix whose diagonal elements are the thresholds of the
nodes and all other elements are equal to 0.

Let ϕ0 be the seed set which represents a set of agents that are initially activated at step t = 0. The
activation from the seed set propagates in the network step by step. We denote ϕt the set of nodes which
are activated at step t. The set of nodes active at step t, i.e., those that have been activated at step t or
at an earlier one, is denoted by Φt =

∪t
k=0 ϕk. By definition, we have Φ0 = ϕ0.

At each step t = 1, 2, . . . , an inactive node i becomes active if the total influence weight of its neighbors
active at step t− 1 is at least θi, i.e.,

i ∈ ϕt ⇐⇒
∑

j∈Nin
i

∩Φt−1

W (j, i) ≥ θi (∀i ∈ V \ Φt−1) . (1)

The evolution propagates until no more individuals adopt the innovation and the network reaches a
steady state. Then we define the set of final adopters as Φ∞(ϕ0) =

∪∞
i=0 ϕi.
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2.2 Cohesiveness

In this part, we present a linear characterization of the set of final adopters based on cohesiveness.

Definition 2.1 [1] A subset X ⊆ V is called a cohesive set if for all i ∈ X it holds:∑
j∈X∩Nin

i

W (j, i) > 1− θi (2)

Note that for a cohesive set X, if ϕ0 ∩X = ∅, then ∀t ≥ 0, ϕt ∩X = ∅. In other words, if no individual
in X belongs to the seed set, then no individual in X will adopt the innovation at the following steps.

Lemma 2.1 [1] Given a linear threshold network N = (V,E, θ,W ) with seed set ϕ0 ⊆ V , let M ⊆ V \ϕ0

be the maximal cohesive set contained in V \ ϕ0. The final adopter set is:

Φ∞(ϕ0) = V \M (3)

Lemma 2.1 gives a direct way to compute the set of final adopters that does not require to determine the
evolution of the network.

Definition 2.2 Given a set X ⊂ V , its characteristic vector x ∈ {0, 1}n is such that xi = 1 if i ∈ X,
otherwise xi = 0.

Lemma 2.2 [16] A set X ⊂ V is cohesive if and only if its characteristic vector x satisfies

xTW (·, i) > 1− θi (∀i ∈ X). (4)

where W (·, i) is the i-th column of the weighted adjacency matrix.

Proposition 2.1 [16] Given a linear threshold network N = (V,E, θ,W ) with n nodes, let ϕ0 ⊆ V be a
seed set with characteristic vector y. The maximal cohesive set M contained in V \ϕ0 has a characteristic
vector x∗ that is the solution of the following ILP:

max
x

1T · x (ILP − 1)

s.t. 1− x ≥ y

[I −Θ−WT ] · x < 0

x ∈ {0, 1}n.

The set of final adopters is Φ∞(ϕ0) = {i ∈ V |x∗
i = 0}.

Note that operators < and ≥ are intended componentwise for vectors.

3 Loss Minimization with Disruption

3.1 Problem statement

In this section, we introduce a class of influence minimization problems called Loss Minimization with
Disruption. The idea is that the propagation of an initial perturbation has a cost. Given a cost vector
c = [c1, c2, · · · , cn] ∈ Rn

+, where ci denotes the cost of node i ∈ V , one aims to minimize the total cost
of active nodes in the steady state. The problem is meaningful if the initial perturbation (nodes initially
activated) is lower bounded: for this reason we introduce a weight vector s = [s1, s2, · · · , sn] ∈ Rn

+, where
si denotes the weight of node i ∈ V and assume that the total weight of nodes in the seed set must be
greater than or equal to a pre-assigned value.
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Problem 3.1 (LMD: Loss Minimization with Disruption) Given a diffusion model represented by
a network with n nodes, let c ∈ Rn

+ be a cost vector, s ∈ Rn
+ a weight vector, k ∈ R+ a lower bound on

the seed set. Find a seed set ϕ0 whose total weight is at least k, such that the total cost of the set of final
adopters Φ∞(ϕ0) is minimized, i.e.,

min
ϕ0

fc(ϕ0)
def
=

∑
i∈Φ∞(ϕ0)

ci

s.t.
∑
i∈ϕ0

si ≥ k (a)

As an example of a problem that can be framed as a LMD, consider a company that must cut the total
supply to its customers of a given amount k because the current demand exceeds its production capacity.
Cutting the supply si of customer i will produce a discontent which will propagate in the networks of
customers. The company wants to determine a suitable set of customers whose supply will be cut, so as
to minimize this discontent spread. In this scenario, the weight of each node represents the supply and
the cost represents the damage due to discontent.

3.2 Optimal solution

Motivated by Proposition 2.1, we address the LMD problem for linear threshold networks.

Proposition 3.1 Given a linear threshold network N = (V,E, θ,W ) with n nodes, let c ∈ Rn
+ be a cost

vector, s ∈ Rn
+ a weight vector and k ∈ R+ a constant. Consider the following ILP with binary variables

x and y:

max
x

cT · x (ILP − 2)

s.t. 1− x ≥ y (a)

[I −Θ−WT ] · x < 0 (b)

sT · y ≥ k (c)

x,y ∈ {0, 1}n

and let x∗,y∗ ∈ {0, 1}n be the optimal solution of (ILP-2). Then the seed set ϕ∗
0 = {i ∈ V |y∗i = 1} is

the optimal solution of the LMD problem and the corresponding set of final adopters is Φ∞(ϕ∗
0) = {i ∈

V |x∗
i = 0}.

PROOF. First we observe that constraint (c) ensures that a set ϕ0 whose characteristic vector is y is
an admissible solution of the LMD problem. In addition (thanks to Proposition 2.1 and the fact that
c > 0) constraints (a) and (b) ensure that the set M with characteristic vector x is the maximal cohesive
set contained in V \ ϕ0, hence Φ∞(ϕ0) has characteristic vector 1− x. Finally, the objective function of
(ILP-2) ensures that the set ϕ∗

0 with characteristic vector y∗ is an optimal solution of the LMD problem.
2

The number of decision variables in (ILP-2) is 2n. This makes it computationally hard to solve when the
size of the network becomes large enough.

3.3 Heuristic solutions

To reduce the computation burden of solving (ILP-2), we propose in this section two different heuristics
that provide approximate solutions to the LMD problem. In particular, they are based on nodes’ degrees
and centralities within the network and are commonly used in the literature to address the influence
maximization problem. In an influence maximization problem it is common to select the seed set among
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nodes with highest degree/centrality. Since we are to solve an influence minimization problem, we then
make the opposite choice. The approaches are briefly described in the following.

• General Degree (G-D for short): Standard degree heuristic is a simple heuristic approach that selects
a set of k nodes with the lowest out-degrees in the graph. The out-degree of a node i ∈ V in a graph
denoted by di is the number of its out-neighbors, i.e., di = A(i, :)1. If we set c, s = 1, i.e., all nodes
are homogenous, we can apply this heuristic directly to select k nodes.

However, for heterogenous nodes, i.e., c, s ̸= 1, it is hard to select a set of nodes with lowest out-
degrees such that the constraint (a) of the LMD problem is exactly satisfied. Therefore, in order to
make it feasible for heterogenous nodes, we make the following changes based on the standard degree
heuristic.

By taking its cost and weight into account together we define its general out-degree d̄i as follows:
d̄i =

di

si
· ci. We prefer the nodes with minimum degree, low cost and high weight. Then, we select the

set of nodes with minimum general out-degrees until constraint (a) of the LMD problem is satisfied.
• General PageRank (G-PR for short): Standard pagerank heuristic is a popular algorithm for ranking
web pages. We use the teleportation model [7] shown in Eq. (5) to compute every pagerank value and
the restart probability γ of pagerank is set as 0.15. Let p denote the pagerank vector and pi denote
the pagerank value of node i.

p = (1− γ)Âp+
γ

n
1, (5)

where p ∈ (0, 1)n and
∑n

i=1 pi = 1, and Â is the scaled adjacency matrix in which Â(i, j) =
A(i, j)/1TA(:, j). If all the nodes are homogenous, we select a set of k nodes with the lowest pagerank
value as the seed set.

In order to make it feasible for heterogenous nodes, we modify the pagerank as we do for the degree
heuristic. Then we define the general pagerank of i p̄i as follows: p̄i = pi

si
· ci. We prefer nodes with

minimum pagerank value, low cost and high weight. Then, we select the set of nodes with minimum
general pagerank values until constraint (a) of the LMD problem is satisfied.

Note that, both the G-D and the G-PR are guaranteed to converge (although in general to a suboptimal
solution) since they are structural approaches and not depend on the system dynamics.

4 Diffusion Minimization with Guaranteed Target

4.1 Problem statement

In this section, we introduce a class of influence minimization problems called Diffusion Minimization
with Guaranteed Target. Let Vinit denote the set of nodes that are accessible to be controlled and Vtarget

denote the set of nodes that are desired targets. The diffusion minimization with guaranteed target aims
to find a subset of nodes in Vinit spreading from which all desired targets are influenced while the diffusion
is minimized.

Problem 4.1 (DMGT: Diffusion Minimization with Guaranteed Target) Given a diffusion mod-
el represented by a network with set of nodes V , let sets Vtarget ⊆ V and Vinit ⊆ V be assigned. Find a
seed set ϕ0 contained in Vinit such that the set of final adopters Φ∞(ϕ0) contains all nodes in Vtarget and
has minimal cardinality, i.e.,

min
ϕ0

|Φ∞(ϕ0)|

s.t. Φ∞(ϕ0) ⊇ Vtarget (a)

ϕ0 ⊆ Vinit. (b)

As an example of a problem that can be framed as a DMGT consider the following. Cascading failures
occur frequently in a power grid as failures of power generators can trigger additional node failures, due
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to load imbalance or thermal effect, following a linear threshold model [6]. A cyber-attack may aim to
disrupt a set Vtarget of generator nodes by directly attacking a set of vulnerable nodes in Vinit, while
minimizing the total number of disrupted nodes to avoid a total network failure.

In the rest of this section we address the DMGT problem for a linear threshold network.

4.2 Existence of a solution

A first observation is that the DMGT problem may have no admissible solution. The following is a
necessary and sufficient condition for the existence of a solution.

Fact 1 The DMGT problem has a solution if and only if Φ∞(Vinit) ⊇ Vtarget.

The previous result immediately follows by observing that the largest set of final adopters that one can
obtain is Φ∞(Vinit) corresponding to a seed set ϕ0 = Vinit. This leads to the following result.

Proposition 4.1 Given a linear threshold network N = (V,E, θ,W ) with n nodes, let sets Vtarget ⊆ V
and Vinit ⊆ V with characteristic vectors vtarget and vinit be assigned. Consider the following ILP with
binary variable x:

max
x

1T · x (ILP − 3)

s.t. 1− x ≥ vinit

[I −Θ−WT ] · x < 0

x ∈ {0, 1}n

The DMGT problem has a solution if and only if (ILP-3) has an optimal solution x∗ ≤ 1− vtarget.

PROOF. By Fact 1, the DMGT problem has solution if and only if Φ∞(Vinit) ⊇ Vtarget. By Propo-
sition 2.1, this happens if and only if the characteristic vector of Φ∞(Vinit), i.e., 1 − x∗, satisfies
1− x∗ ≥ vtarget. 2

4.3 A sufficient condition for optimality

In the following we provide a sufficient condition for a solution of the DMGT problem to be optimal.

Proposition 4.2 Given a linear threshold network N = (V,E, θ,W ) with n nodes, let sets Vtarget ⊆ V
and Vinit ⊆ V with characteristic vectors vtarget and vinit be assigned. Consider the following ILP with
binary variable x:

max
x

1T · x (ILP − 4)

s.t. 1− x ≥ vtarget

[I −Θ−WT ] · x < 0

x ∈ {0, 1}n

Let x̄∗ be its optimal solution and define z = max{vinit − x̄∗,0}. If the following ILP,

max
x

1T · x (ILP − 5)

s.t. 1− x ≥ z

[I −Θ−WT ] · x < 0

x ∈ {0, 1}n
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has optimal solution x∗ = x̄∗, then the seed set ϕ∗
0 = {i ∈ V |zi = 1} is an optimal solution of the DMGT

problem.

PROOF. Firstly, if we remove constraint (b) in the DMGT problem, i.e., we can select any node as seed
in V , obviously the optimal seed set is ϕ0 = Vtarget. The optimal set of final adopters can be computed
by solving (ILP-4) and is Φ∞(Vtarget) = {i ∈ V |x̄∗i = 0} according to Proposition 2.1.

Now assume that the seed set is Z = Vinit∩Φ∞(Vtarget) (its characteristic vector is z = max{vinit−x̄∗,0}).
This set is the largest one that will not activate nodes in the complement of Φ∞(Vtarget) and that also
satisfies constraint (b) in the DMGT problem. If the optimal solution x∗ of (ILP-5) is also the solution
of (ILP-4), then we have Φ∞(Z) = {i ∈ V |x∗i = 0} that is identical to Φ∞(Vtarget). 2

4.4 Heuristic solution

The algebraic approach discussed above for finding an optimal solution works only in particular cases.
Instead, in the general case in order to obtain a reasonably efficient solution to the DMGT problem, we
propose the greedy algorithm shown in Algorithm 1. We start with a seed set ϕ0 = Vmin = Vtarget ∩Vinit

Algorithm 1 Greedy algorithm for the DMGT problem

1: Input: A social network with set of nodes V , sets Vinit ⊆ V and Vtarget ⊆ V with Φ∞(Vinit) ⊇ Vtarget.
2: Output: Seed set ϕ0.
3: Let Vmin = Vtarget ∩ Vinit.
4: Let Vcomplete = Vinit \ Vmin.
5: Let ϕ0 = Vmin.
6: while Φ∞(ϕ0) + Vtarget do
7: S = argmax

v∈Vcomplete

|Φ∞(ϕ0 ∪ {v}) ∩ Vtarget|.

8: u = argmin
u∈S

|Φ∞(ϕ0 ∪ {u})|.

9: ϕ0 ← ϕ0 ∪ {u}.
10: Vcomplete ← Vcomplete \ {u}.
11: end while

(line 3). If the set of final adopters corresponding to Vmin contains all nodes in Vtarget, we stop and output
ϕ0. Otherwise, at each iteration, we select a node from Vcomplete = Vinit \ Vmin and add it to the seed
set. We select from Vcomplete all the seed nodes with maximal marginal gain in reaching the target nodes
(line 7) as set S. Then we choose from S node u with minimal cardinality of the set of final adopters
(line 8) and add it to the seed set ϕ0. This is repeated until the current seed set can influence all nodes
in Vtarget: in this case we stop and output ϕ0.

The time complexity of Algorithm 1 is O(l2nd) where l = |Vcomplete|, n = |V |, and d is the average
degree of network. In fact, the algorithm requires at most l iterations since in the worst case it needs to
go through all nodes in Vcomplete to reach all target nodes. At each iteration it also needs to test all l
nodes in Vcomplete to find the ones with maximal marginal gain. At each step a time O(nd) is required to
compute the set of final adopters.

5 Experiments and analysis

5.1 Experimental set up

We performed a series of experiments based on two real-world networks of different scale under the
linear threshold model. NetScience [12] and Hep-Th [11] are from different sections of the e-print arXiv,
which is a data source commonly used in the literature for social network analysis. Empirical evidence
suggests that coauthorship graphs are representative of typical social networks [11]. The precise statistical
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information of the datasets is summarized in Table 1. All experiments are performed using MATLAB on
a 2.5 GHz Intel(R) Core(TM) i5-6300U CPU and 8GB memory.

Table 1
Statistics of real datasets

Dataset Nodes Edges Average degree

NetScience 1,461 2,742 1.88

Hep-Th 7,610 15,751 2.07

5.2 Experimental results for the LMD problem

For the LMD problem, we compare our exact ILP approach proposed in Proposition 3.1 with the heuristics
presented in Section 3.3. We test the algorithms on the two networks and compare them in terms of the
influence spread and the running time. We consider for the cost vector c and weight vector s two cases:
a) the nodes in the network are homogenous, i.e., c = s = 1, and b) the nodes in the network are
heterogenous, i.e., c, s ̸= 1 (in this experiment, we assume that all ci and si are in [1,10]). In order to
have a good estimate of the efficiency of the algorithms, we run each experiment on 100 different randomly
generated linear threshold networks with the same network structure and influence weights but different
thresholds randomly selected in (0, 1]. Then we take the average total cost over the 100 runs.

 

(a) Homogenous, NetScience
 

(b) Heterogenous, Netscience

 

(c) Homogenous, Hep-Th (d) Heterogenous, Hep-Th

Fig. 1. Influence spread of various algorithms for the LMD problem on NetScience and Hep-Th.

Fig. 1 shows the average total cost of the tested algorithms on datasets NetScience and Hep-Th under
two cases: homogenous nodes in Figs. 1a and 1c and heterogenous nodes in Figs. 1b and 1d. The average
running time of the compared approaches for selecting each size k under two cases (from 1 to 100 and from
1 to 200 respectively) is illustrated in Fig. 2. From the experimental results, we can make the following
observations on the effectiveness of the approaches.

• The ILP successfully selects the optimal seed set, and always outperforms the heuristics relying solely on
the structure properties of the network. We define the optimality gap for the heuristics G-D and G-PR
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(a) Homogenous, NetScience
 

(b) Heterogenous, Netscience

 

(c) Homogenous, Hep-Th (d) Heterogenous, Hep-Th

Fig. 2. Comparisons of running time for the LMD problem on NetScience and Hep-Th.

as (fheu
c −f ILP

c )/f ILP
c ×100% (where fheu

c denotes the final total cost by either G-D or G-PR and f ILP
c

denotes the final total cost by the ILP). On NetScience with homogenous nodes (Fig. 1a), the optimality
gaps for the G-D and G-PR are 28% and 64% respectively. On Hep-Th with homogenous nodes (Fig.1c),
the gaps are 68% and 72% respectively. Furthermore, the gap is bigger in the heterogenous cases. On
NetScience the gaps are 636% and 890% for the G-D and G-PR respectively (Fig. 1b) and they are
446% and 495% on Hep-Th (Fig. 1d). We believe this is due to the fact that low-degree (or low-
centrality) nodes may be connected with nodes that have high degree (or high centrality) which may
lead to further diffusion of the bad influence.
• The heuristic approaches G-D and G-PR are 1 and 2 orders of magnitude faster than the exact ILP
respectively for the homogenous case in both NetScience and Hep-Th (see Figs. 2a and 2c). For the
heterogenous case, the G-D and G-PR are around 20 times and twice faster than the ILP (see Figs. 2b
and 2d).

Furthermore, we do an experimental study on random networks of different size under the homogenous
case to test the scalability of the three approaches. The networks are generated by Software Gephi of size
from 2K to 12K and the wiring probability (i.e.,the probability that there is an arc between node i and
j) is set to 0.005. The result is shown in Fig. 3 for selecting 100 seeds in each network, which suggests
that the G-D and G-PR are about 20 and 5 times faster than the ILP respectively. The complexity
of ILP may grow large in very large scale networks. It may be possible to combine the integer linear
programming approach with a divide-and-conquer scheme, that is, a large network may be divided into
smaller communities according to suitable partition rules. This may lead to a reduced complexity approach
for finding solutions close to the optimum.
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Fig. 3. Scalability of the algorithms

5.3 Experimental results for the DMGT problem

For the DMGT problem, we test the efficiency of Algorithm 1 which can find a solution in the general
case on both networks NetScience and Hep-Th. In this part, in order to have a good estimate of the
performance of the greedy algorithm, we also run the process 100 times taking the average number of
final adopters and re-choose the sets Vinit (of size k1 which is a constant) and Vtarget (of size k2 which
is a constant) randomly at each time. In order to guarantee that the DMGT problem has a solution and
obtain a feasible seed set ϕ0 ⊆ Vinit such that Φ∞(ϕ0) ⊇ Vtarget, we randomly choose a set of nodes of
size k1 in V as Vinit and compute Φ∞(Vinit), and then we randomly choose a set of nodes of size k2 in
Φ∞(Vinit) as Vtarget. We introduce a coefficient ρpro that denotes the percent of nodes that can avoid
being activated by our strategy but will be activated if the seed set is Vinit, i.e.,

ρpro =
||Φ∞(Vinit)| − |Φ∞(ϕ0)||
||Φ∞(Vinit)| − |Vtarget||

× 100%.

where |Φ∞(ϕ0)| is the number of final adopters activated by seed set ϕ0 chosen by Algorithm 1.

The experiment result is listed in Table 2, where ρpromax is the maximal percent (over all simulations) of
nodes that can avoid being activated but will be activated if the seed set is Vinit, and (|Vinit|, |Vtarget|) is a
pair showing the cardinality of sets Vinit and Vtarget. We test three pairs for each dataset. The three pairs
are for the cases |Vinit| = |Vtarget|, |Vinit| < |Vtarget|, and |Vinit| > |Vtarget|, respectively. We can observe

Table 2
Experimental result for the DMGT problem

Dataset (|Vinit|, |Vtarget|) ρpro ρpromax

NetScience

(10,10) 29.62% 100%

(30,50) 22.06% 45.00%

(40,20) 44.72% 69.23%

Hep-Th

(10,10) 28.13% 100%

(30,50) 20.63% 36.07%

(40,20) 44.53% 70.33%

from Table 2 that the proposed greedy strategy can efficiently protect some percent of nodes from being
activated. For example, when (|Vinit|, |Vtarget|) = (10, 10), 29.62% nodes in average avoid being activated.
Besides, among all the simulations, the maximal percent of nodes that can avoid being activated is 100%,
i.e., the selected seed set just reaches nodes in Vtarget at the end of the process and no additional node is
activated. The algorithm performs the best for the case |Vinit| > |Vtarget|. Since for the other two cases,
the number of targeted nodes is bigger than or equal to that of the nodes which can be infected directly,
sometimes we need to select almost all of the nodes in Vinit such that all targeted nodes can be reached.
However, how far away the solution obtained by the proposed strategy is from the optimal solution is
unknown so far, and determining a lower bound of the approximate guarantee for our solution is an open
problem.
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6 Conclusions and future work

In this paper, we formalize two different influence minimization problems generalizing real-world scenarios.
For the LMD problem, following the characterization of [16], we provide an optimal solution by solving
an integer linear programming problem and show that it outperforms other general heuristics. For the
DMGT problem, we provide a technique to search for an optimal solution that works in some particular
cases and discuss a simple heuristic to find a solution (in general suboptimal) in the general case.

We are aware that ILP based solutions do not scale well for large networks. For this reason our future
work will consist in exploring reduced complexity approach for finding solutions close to the optimum by
combining the ILP with a divided-and-conquer scheme.
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