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Performance optimization for timed weighted

marked graphs under infinite server semantics
Zhou He, Zhiwu Li, Alessandro Giua

Abstract

This paper deals with the performance optimization of resource allocation systems with the aim of maximizing

the system’s throughput under a given budget for acquiring resources. Resources are assumed to be renewable, i.e.,

they are not consumed by the operations and become available again after they have been released. The systems under

consideration are modeled by a subclass of timed Petri nets called deterministic timed weighted marked graphs. In

addition, we take into account infinite server semantics, i.e., the degree of self-concurrency of each transition is

infinite. We propose an approach which provides an optimal solution, but has a high computational cost. For this

reason, we also present two different approaches which can find suboptimal solutions with a reduced computational

cost. The performances of the proposed approaches are compared by means of numerical simulations.
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I. INTRODUCTION

Performance optimization plays an important role in resource allocation systems [1] which are typical encountered

in the domain of automated manufacturing, software engineering, logistics, etc. Timed Petri nets (PNs) have found

their extensive applications for modeling and analysis of this class of systems.

Cyclic manufacturing systems such as assembly lines, kanban systems, and transfer lines can be modeled by

timed marked graphs (TMGs) a class of conflict-free nets that have been studied since the early 90’s. Campos et

al. [2] addressed the performance analysis of TMGs and computed throughput bounds. The marking optimization

problem for TMGs was investigated in [3] and a heuristic algorithm was developed to find a proper schedule which

minimizes the cost of resources under the constraint that the system’s throughput should not smaller than a given

value. The cycle time optimization problem of TMGs was considered in [4] and different approaches were developed

to find a proper schedule which maximizes the system’s throughput under the constraint that the cost of resources

should not exceed a given bound.

However, TMGs cannot model important features that may be present in resource allocation systems such as

the use of different quantities of resources in different operations or the processing in batches whose size may

change during different processing steps. For this reason, a more general model called timed weighted marked graph

(TWMG) was studied in the literature. This model, characterized by weighted arcs, can conveniently describe systems

with bulk services and arrivals that operate in a cyclic mode, which are commonly encountered in manufacturing,

transportation, logistics, and so on.

Several analytical methods were proposed to compute the cycle time of a TWMG — converting it into an

equivalent TMG — both under single server semantics [5] and under infinite server semantics [6]. From a physical

point of view, the server semantics can be interpreted as the number of times that an operation can be executed

concurrently. Under single server semantics, the same operation can only be executed once at a time, while the

same operation can be executed as many times as the number of available servers under infinite server semantics.

Note that infinite server semantics is more general than single server (or in general k-server) semantics.

Algebraic approaches based on (max,+) algebra have also been used for the analysis of TWMGs [11]. They can

usually be applied to restricted subclasses because the corresponding model is non-linear due the presence of the

weights. A polynomial algorithm to check the existence of periodic schedules for a TWMG was presented in [7].

The marking optimization problem of TWMGs under single server semantics was studied in [8], [9]: in these

works some efficient heuristic approaches were provided to find a near optimal solution. The same problem under

infinite server semantics was addressed in [10] exploiting heuristics based on greedy allocations scheme.

Among other recent works based on net models, we mention a heuristic strategy for resources optimization in

process PNs [12], a stochastic approximation algorithm for the performance optimization of stochastic PNs [13]

and, finally, the optimization of a new model — called batch deterministic and stochastic PNs — introduced to

model batch features in supply chains [14].

Based on mixed integer linear programming problem (MILPP) technique, the cycle time optimization problem

for TWMGs under single server semantics was investigated in [15]. In this paper we study the same problem under

the more general infinite server semantics.
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This paper is based on the results initially presented in [16], where we showed that a TWMG under infinite

server semantics can be transformed into a finite family of equivalent TMGs, each one valid for a class belonging

to a finite partition of the initial markings set. We also presented an MILPP to solve the cycle time minimization

problem under a constraint on the cost of available resources. The approach finds an optimal allocation for the

equivalent TMG under the constraint that the initial marking belongs to a suitable partition class. However, this

procedure has a high computational complexity due to the fact that the number of classes can increase exponentially

with the number of places.

In this paper, we better formalize the optimal approach proposed in [16] providing complete proofs for the

presented results. In addition, we explore in detail two more efficient suboptimal approaches that can obtain a good

approximation of the optimal solution with a significantly reduced computational cost. The first suboptimal approach

consists in an MILPP that ensures finding a live marking with an upper bound on the corresponding cycle time:

detailed proofs of the main result are here originally presented. The second suboptimal approach, consists in finding

a suitable subset of places to which resources are allocated — instead of taking all places into consideration —

to reduce the number of partition classes to explore. We extend this approach considering three different objective

functions: 1) minimal number of places; 2) minimal cost of resources; 3) minimal number of partition classes. In

a series of original numerical experiments, we compare all approaches presented in this paper.

This paper is organized as follows. Basic concepts and the main properties of TWMGs are presented in Section

II. In Section III the problem under consideration is formulated. Section IV recalls the approaches proposed in [16]

and proposes a place subset allocation approach. Section V investigates the complexity of the three approaches.

Applications of the proposed approaches and numerical studies are investigated in Section VI. Conclusions are

finally reached in Section VII.

II. BACKGROUND

A. Preliminaries

In this subsection, we recall the basic concepts and definitions used in this paper. A place/transition net (P/T

net) is a structure N = (P, T,Pre,Post) with a set of n places P ; a set of m transitions T ; the pre and post

incidence matrix Pre, Post ∈ Nn×m, where N denotes the set of non-negative integers.

A vector x ∈ N|T | (resp., y ∈ N|P |) is a T-semiflow (resp., P-semiflow) such that C ·x = 0 (resp., yT ·C = 0),

where N+ denotes the set of positive integers and C = Post − Pre is the incidence matrix. The supports of

a T-semiflow and a P-semiflow are defined by ∥x∥={ti ∈ T |xi > 0} and ∥y∥={pi ∈ P |yi > 0}, respectively. A

P-semiflow (resp., T-semiflow) is called minimal if ∥y∥ (resp., ∥x∥) is not a superset of the support of any other

P-semiflow (T-semiflow), and its components are coprime.

A marking M : P → N of a P/T net is a mapping that assigns a non-negative integer of tokens to each place;

M(p) denotes the marking of place p. A P/T system or marked net ⟨N,M0⟩ is a net N with an initial marking

M0.
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A P/T net is ordinary if all arcs have unitary weight. A marked graph is an ordinary P/T net such that each

place has exactly one output and exactly one input transition. A weighted marked graph is a net that also meets

this structural condition but may not be ordinary.

A P/T net is strongly connected if there exists an oriented path from each node to any node. An elementary

circuit γ of a net is an oriented path that goes from one node back to the same node while all the other nodes are

different. We denote the set of elementary circuits by Γ.

Consider a place pi ∈ P of a WMG which connects transition tin(pi) to transition tout(pi)) as shown in Fig. 1.

Let I(pi) and O(pi) be the weights of its input arc and output arc, respectively. We denote the greatest common

divisor of I(pi) and O(pi) by gcdpi
.

Fig. 1. A place pi which connects transitions tin(pi)
to transition tout(pi).

Definition 1: A WMG is said to be neutral if for each elementary circuit it holds that
∏

p∈γ
I(p)
O(p) = 1. �

A strongly connected and neutral WMG is conservative, i.e., there exists a P-semiflow whose components are

all positive. In the rest of this paper, we assume that the considered WMG is neutral and strongly connected.

B. Dynamic behavior

There exist two ways of introducing the timing structure in PN models, i.e., associating the timing structure with ei-

ther transitions or places. A deterministic transition timed PN is a pair Nδ = (N, δ), where N = (P, T,Pre,Post)

is a standard PN, and δ : T → N, called delay time, assigns a non-negative integer fixed duration to each transition.

In the rest of this paper, we will consider weighted marked graphs that are deterministic transition timed and call

them TWMGs.

A transition t is enabled at M if M ≥ Pre(·, t) and is denoted by M [t⟩. In a timed net a transition that

becomes enabled is assigned a timer initially set to δ(t) and whose value will decrease with time. An enabled

transition t whose timer has reached a zero value will fire reaching a new marking M ′ with

M ′ = M +C(·, ti). (1)

Here Pre(·, t) (resp., C(·, t)) denotes the column of Pre (resp., C) corresponding to transition t.

The enabling degree of transition ti enabled at a marking Mj , denoted by αi(j), is the biggest integer number

φ such that

Mj ≥ φ · Pre(·, ti). (2)

The server semantics specifies how many clocks are associated with an enabled transition:

• Single server: one clock.

• Infinite server: as many clocks as its enabling degree
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• k-server: a number of clocks equal to min (φ, αi(j)).

Note that single server is a special case of k-server with k = 1. Under infinite server semantics, at each time instant

the number of clocks associated with a transition ti is equal to its current enabling degree; this number changes

with the enabling degree. If a transition has k > 1 clocks which have reached the ZERO value, it will fire k times

simultaneously.

C. Cycle time of a TWMG

The cycle time χ(M) of a TWMG system ⟨N,M⟩ is the average time to fire once the minimal T-semiflow. We

denote the cycle time of an elementary circuit γ by χγ(M).

The execution of a live and strongly connected TWMG with integer delays is ultimately repetitive with period

Ψ. The number of firings of transition ti within the period is fi and the cycle time of the TWMG ⟨N,M⟩ is

χ(M) = xi ·
Ψ

fi
, (3)

where x is the minimal T-semiflow.

The cycle time can be computed by simulation. In addition, a TWMG whose initial marking is known can

be transformed into an equivalent TMG whose cycle time can be rather easily computed by several methods. A

transformation algorithm for nets under infinite server semantics was presented in [6].

III. PROBLEM STATEMENT

In this paper, we deal with the cycle time optimization problem for a TWMG under infinite server semantics

whose complexity has been proved to be NP-complete [17]. This problem consists in finding an initial marking

M such that the weighted sum of tokens in places is less than or equal to a given value and the cycle time is

minimized.
min χ(M)

s.t. yT ·M ≤ R
(4)

where χ(M) is the cycle time of the TWMG system ⟨N,M⟩, yT = (y1, . . . , yn) is a non-negative weight vector

that represents the cost of the resources, and R is a given positive real number, representing the upper bound on

the cost of resources.

In this paper, we assume that R is a large enough number to ensure that there exists a live initial marking M .

The type of resources considered in this paper are renewable, i.e., the resources are not consumed by the operations

and become available again after they have been released, such as machines, tools, and equipments. In addition,

we do not necessary consider homogeneous resources. In terms of manufacturing systems, the cost of the resources

will remains constant as the production process proceeds.

As a result, we choose the weight vector y as a P-semiflow since the value of yT · M for every reachable

marking is an invariant. In particular, we choose the P-semiflow y that is equal to the weighted sum of all minimal

P-semiflows, i.e., y =
∑

γ∈Γ λγ · yγ , where yγ represents the minimal P-semiflow corresponding to circuit γ and

λγ represents the cost of the resources modeled by tokens in the support of yγ .
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IV. THE PROPOSED APPROACHES

In this section, we first recall the optimal approach and the Throughput Upper Bound (TUB) approach proposed

in [16] and give detailed proofs of the main results. Then, a place subset allocation (PSA) approach is presented.

A. Optimal approach

Nakamura and Silva [6] proved that a TWMG system ⟨N,M⟩ with n places and m transitions under infinite

server semantics can be transformed into an equivalent place timed marked graph (PTMG) system ⟨N̂ ,M̂⟩ with n̂

places and m̂ transitions. The method consists in transforming the transitions and the places of the TWMG system

⟨N,M⟩.

Each transition ti ∈ T of the TWMG system ⟨N,M⟩ is replaced by a strongly connected circuit with xi

transitions t1i , . . ., txi
i and xi places q1i , . . ., qxi

i (recall that x is the minimal T-semiflow). Each place pi ∈ P of

the TWMG system ⟨N,M⟩ is replaced by a set of n̂i equivalent timed places p1i , . . . , p
n̂i
i whose number, input

and output arcs, and marking depend on both the minimal T-semiflow x and the initial marking M(pi) (for more

details, see [6] and [16]).

Example 1: Let us consider a simple TWMG model N in Fig. 2 whose minimal T-semiflow is x=(2, 3)T . Fig. 3

shows the equivalent PTMG systems ⟨N̂ ,M̂⟩ corresponding to different initial markings. Transitions t1 and t2 are

replaced by circuits t11q
1
1t

2
1q

2
1 and t12q

1
2t

2
2q

2
2t

3
2q

3
2 , respectively. Place p1 (resp., p2) is replaced by n̂1=2 (resp., n̂2=2)

places p11 and p21 (resp., p12 and p22). For different initial markings, the structures of equivalent transitions (gray

blocks) are always the same, while the structures and markings of equivalent places (blue blocks) may change.

Considering the equivalent PTMG system ⟨N̂2,M̂2⟩ in Fig. 3(b), we denote the initial markings of equivalent

places by µ(p11) = M̂(p11) = 0, µ(p21) = M̂(p21) = 1, µ(p12) = M̂(p12) = 0, and µ(p22) = M̂(p22) = 0. ⋄

Fig. 2. The TWMG net N for Example 1.

The cycle time optimization problem for a PTMG net N̂ can be formulated as follows:

min χ(M̂)

s.t. ŷT · M̂ ≤ R
(5)

Next result shows how the cycle time optimization problem for a PTMG can be solved using MILPP.

Proposition 1: Let (M̂∗, β∗,α∗) be an optimal solution of the MILPP:

max β

s.t.


Ĉ ·α+ M̂ ≥ Dp · ˆPost · v · β,

ŷT · M̂ ≤ R,

M̂ ∈ Nn̂, α ∈ Rm̂, β ∈ R+,

(6)
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Fig. 3. Equivalent PTMG systems corresponding to different initial markings.

where v is the visit ratio vector which is equal to 1⃗m̂×1 and Dp is a n̂ × n̂ matrix such that Dp(i, j) = δ(pi),

when i = j and otherwise Dp(i, j) = 0.

Then M̂∗ is an optimal solution of problem (5) with an optimal cycle time χ(M̂∗) = 1/β∗ for a PTMG under

infinite server semantics.

Proof: In [6] it was shown that the cycle time of a PTMG system ⟨N̂ ,M̂⟩ under infinite server semantics can

be directly obtained by solving the following LPP:

max σT ·Dp · ˆPost · v

s.t.


σT · Ĉ = 0,

σT · M̂ = 1,

σ ≥ 0,

(7)

The dual problem of LPP (7) is

min χ(M̂)

s.t. Ĉ · z + χ(M̂) · M̂ ≥ Dp · ˆPost · v
(8)

where the decision variables are χ(M̂) ∈ R+ and z ∈ Rm̂. Now let us consider problem (8). This problem can

be easily converted into the problem of determining the maximal throughput (i.e., the inverse of cycle time) of the

TMG system, given the initial marking. To this end, we only need to replace χ(M̂) with its inverse β = 1/χ(M̂)

and obtain the following LPP:
max β

s.t. Ĉ · (βz) + M̂ ≥ Dp · ˆPost · v · β,
(9)

where β ∈ R+, and βz ∈ Rm̂, or equivalently

max β

s.t. Ĉ ·α+ M̂ ≥ Dp · ˆPost · v · β,
(10)
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where α ∈ Rm̂ and β ∈ R+ are the new decision variables. Finally, assuming that M is unknown but under a

given constraint on the cost of resources (ŷT · M̂ ≤ R), we have Eq. (6) where M̂ ∈ Nn̂ is a non-negative integer

vector. �
To solve the cycle time optimization for a TWMG, we propose to transform it into an equivalent PTMG and

use the previous result to compute an optimal initial marking. The main obstacle, however, is the fact that the

transformation depends on the (unknown) initial marking. For this reason we need to explore all possible equivalent

PTMG structures.

In [16] we showed that the equivalent net structure N̂ corresponding to place pi ∈ P is periodic with respect to

the initial marking M(pi) and the period is

ϕi = O(pi) · xout(pi). (11)

In addition, when looking for an optimal solution we may only consider markings such that for each place pi the

number of assigned tokens is a multiple of gcdpi
to rule out the presence of useless tokens that do not contribute

to the cycle time. Thus, we can partition the marking space of a TWMG into Φ subsets, where

Φ =
∏
pi∈P

ϕi

gcdpi

. (12)

This allow us to transform a TWMG into a finite family of equivalent PTMGs, each one valid for a partition

class of set of initial markings

Mj = M̄kj,1
p1 × M̄kj,2

p2 × . . .× M̄kj,n
pn ,

M̄ki
pi

= {ki · gcdpi + ξ · ϕi|ξ ∈ N, ki = 0, . . . , ϕi

gcdpi
− 1}.

(13)

For instance, in Example 1 it holds: gcdp1 = gcdp2 = 1 and ϕ1 = ϕ2 = 6. Hence the marking space of the

TWMG N can be partitioned into Φ = 36 classes: M1 = (6ξ1,1, 6ξ1,2)
T , . . . , M36 = (5 + 6ξ36,1, 5 + 6ξ36,2)

T .

Proposition 2: For each partition class Mj (j = 1, . . . ,Φ) in Eq. (13), let (β∗
j ,M

∗
j , M̂

∗
j , α̂

∗
j , ξ

∗
j ) be an optimal

solution of the MILPP:

maxβj

s.t.

Ĉj ·αj −Dp · ˆPostj · v · βj + M̂j ≥ 0, (a)

yT ·Mj ≤ R, (b)

Mj(pi) = kj,i · gcdpi
+ ξj,i · ϕi, ∀pi ∈ P, (c)

M̂j(p
s
i ) = µj(p

s
i ) + ξj,i, s = 1, . . . , n̂i, (d)

M̂j(q
a
i ) = 0, i = 1, . . . ,m, a = 1, . . . , xi − 1, (e)

M̂j(q
xi
i ) = 1, i = 1, . . . ,m, (f)

βj ∈ R≥0, ξj,i ∈ N,Mj ∈ Nn,M̂j ∈ Nn̂, α̂j ∈ Rm̂. (g)

(14)

where µj(p
s
i ) is the marking of equivalent place psi corresponding to Mj(pi) = kj,i · gcdpi

.
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Then M∗
j is an optimal solution of problem (4) restricted to partition class Mj .

Proof: The constraint (a) can provide an optimal solution if Ĉj , ˆPostj and Dp are given. The constraint (b)

specifies that the weighted sum of tokens in places cannot exceed the upper bound on the cost of resources, and the

constraint (c) specifies that feasible markings should be restricted to partition class Mj . The equivalent marking

M̂j is consistent with the marking Mj as ensured by constraints (d), (e) and (f). Thus M∗
j is an optimal solution

of problem (4) restricted to partition class Mj . �
Among all the Φ optimal solutions associated with each partition class, we can obtain the maximal throughput

and its corresponding marking, i.e., optimal solutions of problem (4).

B. Throughput upper bound

Campos et al. [2] proved that an upper bound of the throughput of a TWMG system ⟨N,M⟩ under infinite

server semantics can be obtained by solving the following LPP:

max β′

s.t.

C · z +M − Pre · θ · β′ ≥ 0,

β′ ∈ R+, z ∈ Rm.

(15)

where θ = (x1 · δ(t1), x2 · δ(t2), . . . , xm · δ(tm))T (recall x is the minimal T-semiflow of the TWMG). The optimal

value of β′ provides an upper bound of the throughput, i.e.,

β′ ≥ β. (16)

In the following, we first review some conditions concerning the liveness of a TWMG.

Theorem 1: (Teruel et al. [18]) A TWMG system ⟨N,M⟩ is live iff each elementary circuit is live. ⋄

Proposition 3: (Teruel et al. [18]) If a weighted elementary circuit with an initial marking M0 satisfies W (M0) >

W (MD), then M0 is a live marking, where MD = (O(p1)−1, O(p2)−1, . . . , O(pn)−1)T and W (M) = yT ·M .1

⋄

Combining these conditions, we present the following proposition.

Proposition 4: Let (M , β′) be the optimal solution of the MILPP

max β′

s.t.



yT
γ ·M > W (Mγ

D),∀γ ∈ Γ,

C · z +M − Pre · θ · β′ ≥ 0,

M(pi) mod gcdpi
= 0, i = 1, . . . , n,

yT ·M ≤ R,

β′ ∈ R≥0,M ∈ Nn, z ∈ Rm.

(17)

1Recall that O(pi) represents the weight of output arc of place pi and y represents the minimal P-semiflow corresponding to the weighted
circuit.
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where yγ denotes the P-semiflow associated with the elementary circuit γ.

Then M is an admissible (possibly non-optimal) live solution for problem (4) and β′ is an upper bound of the

throughput that it produces.

Proof: According to Theorem 1, a TWMG is live iff each elementary circuit is live. The first constraint is a

sufficient condition that ensures the liveness of a weighted elementary circuit according to Proposition 3. Thus, the

marking M that we obtain by Eq. (17) will be a live marking. The second condition ensures that marking M is

a solution with an upper bound of throughput β′. The number of tokens in place pi should be a multiple of gcdpi
,

which is guaranteed by the third constraint. The fourth constraint is added to limit the cost of resources. �

C. Place Subset Allocation

From a theoretical point of view, it may be interesting to consider a subset of places to which resources are

allocated instead of taking all places into consideration, and we believe that in many cases this initial assignment

may has a physical meaning that can lead to an optimal solution. As a result, the number of partition classes of

marking space can be significantly reduced since we consider ϕi

gcdpi
partition classes only for a subset of places pi

and one single partition class for other places which are set to be empty. In the following, we will present three

different methods to select a subset of places to which resources should be allocated.

According to Theorem 1, a necessary condition to ensure the liveness of a TWMG is that all its elementary

circuit are marked. In addition, if the weighted sum of tokens of each elementary circuit is greater than a constant

value, then Proposition 3 provides a sufficient condition to ensure the liveness of a TWMG. Combining these two

conditions, we select at least one place for each elementary circuit to which tokens are allocated. As we discussed

in Section III, we assume the upper bound on the weighted sum of tokens is large enough such that the liveness

of each elementary circuit can be guaranteed by putting enough tokens into the selected places.

We define a binary vector I ∈ {0, 1}n, i.e., I = (I(1), · · · , I(n))T . Tokens are initially allocated to the places

pj such that I(j) = 1 and we denote by the set of selected places as Pr = {pj |I(j) = 1}. To fulfill the requirement

that each elementary circuit should be marked, we enforce the following constraint:∑
pj∈γ

I(j) ≥ 1, ∀γ ∈ Γ. (18)

In addition, in order to reduce the number of partition classes, we present three different approaches to compute

the place subset Pr based on different objective functions.

PSA1: In this approach, we aim to minimize the number of places to which tokens should be added. Thus, the

place subset Pr can be obtained by solving the following problem:

PSA1 :

 min 1⃗T
n · I

s.t.
∑

pj∈γ I(j) ≥ 1, ∀γ ∈ Γ.

(19)

PSA2: In this approach, we aim to select the places which use the minimal cost of resources. First we define an

n-dimensional vector gd = (gcdp1
· y1, · · · , gcdpn

· yn)T , where y is the weight vector used in the criterion that

represents the cost of resources. Note that the number of useful tokens in place pj should be a multiple of gcdpj
.



11

Therefore, the cost of resources used for place pj should be a multiple of gcdpj
· yj . Among all the places, we aim

to choose the one whose value of gcdpj
· yj is the minimal. As a result, the place subset Pr can be obtained by

solving the following problem:

PSA2 :

 min gT
d · I

s.t.
∑

pj∈γ I(j) ≥ 1, ∀γ ∈ Γ.

(20)

PSA3: In this approach, we aim to minimize the number of partition classes and reduce the computational cost of

optimal approach as much as possible. Thus, the place subset Pr can be obtained by solving the following problem:

PSA3 :

 min
∏

pi∈P ϕ
I(i)
i

s.t.
∑

pj∈γ I(j) ≥ 1, ∀γ ∈ Γ.

(21)

Note that the objective function of PSA3 is equivalent to min
∏

pi∈Pr
ϕi. It may be unsolvable when the number

of variables is large due to the fact that it is non-linear.

After we obtain the place subset Pr by solving the aforementioned approaches, we can look for possible

suboptimal but computationally more efficient solutions of the cycle time optimization problem, as formalized

in the following proposition.

Proposition 5: Let (M , β) be the optimal solution of the MILPP (14) by replacing constraint (c) with following

constraints: Mj(pi) = kj,i · gcdpi
+ ξj,i · ϕi, ∀pi ∈ Pr, (c1)

Mj(pi) = 0, ∀pi /∈ Pr. (c2)

(22)

where Pr is the place subset computed by any of the PSA approaches proposed above, i.e., PSA1, PSA2, or PSA3.

If β > 0, then M is a (possibly suboptimal) live solution for problem (4).

Proof: Constraint c1 is the same as constraint c in Eq. (14) and is only valid for the selected places. Constraint

c2 ensures that the number of tokens in places that do not belong to the subset Pr should be zero which is used

to reduce the number of partition classes.

Thus, by solving Eq. (14) with new constraints c1 and c2 in Eq. (22), we obtain a live marking M if β > 0. �
As a result, the number of partition classes for the PSA approaches is reduced to

Φ′ =
∏

pj∈Pr

ϕj

gcdpj

. (23)

According to the results in [16], for a place pi with zero token there may exist several markings that belong

to the same partition class. Thus, the solution obtained by MILPP (14) with new constraints in Eq. (22) may be

improved by the following proposition.

Proposition 6: In MILPP (14), constraint c2 from Eq. (22) may be relaxed in

Mj(pi) = ξj,i · ϕi, ξj,i ∈ N, ∀pi /∈ Pr. (c2′)

The relaxed MILPP has a solution β greater than or equal to the original MILPP (14) and the same number of
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partition classes Φ′.

Proof: Given constraint c2 in Eq. (22), only one partition class may correspond to places pi /∈ Pr since they are

marked with zero token. On the basis of Proposition 2 in [16], Mj(pi) = 0 and Mj(pi) = ξj,i · ϕi belong to the

same partition class, while Mj(pi) = 0 is a special case of Mj(pi) = ξj,i · ϕi when ξj,i = 0. As a consequence,

the number of admissible markings is increased and the obtained throughput β of the PSA approaches may be

improved by replacing constraint c2 in Eq. (22) with the more general constraint c2′, while the number of partition

classes Φ′ remains the same. �

V. COMPLEXITY DISCUSSION

In this section, we discuss the computational complexity of the three approaches. It is well known that ILPPs are

NP-hard and it is common to characterize the computational burden by the number of variables and constraints.

For the optimal approach, the MILPP in Eq. (14) has 2n+ n̂+ m̂+1 (βj , Mj , M̂j , α̂j , and ξj,i) variables and

2n̂+ n+ 1⃗ · x+ 1 constraints totally. The optimal approach requires solving Φ MILPPs in Eq. (14) (recall that n̂

and m̂ are the numbers of equivalent places and transitions of the TMG, respectively).

For the PSA approaches, we first need to compute the place subset Pr by solving ILPPs (19), (20), and non-

linear programming problem (21). These problems have n variables and |Γ| constraints totally, where |Γ| denotes

the number of elementary circuits. While |Γ| can grow exponentially with respect to the net size, in practice we

found that the time to compute the set Pr is a very small fraction of the total computational time. The MILPP in

Eq. (14) with new constraints in Eq. (22) has n + |Pr| + n̂ + m̂ + 1 (βj , Mj , M̂j , α̂j , and ξj,i) variables and

2n̂ + n + 1⃗ · x + 1 constraints totally, where |Pr| denotes the number of selected places. The PSA approaches

require solving Φ′ MILPPs in Eq. (14). We observe that the number of variables in Eq. (22) is smaller than that of

Eq. (14) and the number of partition classes Φ′ is also smaller than that of Eq. (12). In the worst case, |Pr| = n

and Φ′ = Φ, i.e., the place subset Pr contains all places. Then, the computational burden of the PSA approaches is

the same with the optimal approach. However, in practical example, we find that the computational burden of the

PSA approach is much smaller than that of the optimal approach.

For the TUB approach, it has m + n + 1 (M , z, and β′) variables and n +m + |Γ| + 1 constraints totally. In

contrast to the optimal approach and the PSA approaches, the TUB approach requires to solve the MILPP only

once.

VI. NUMERICAL RESULTS

In this section, we apply the proposed approaches to the optimization of the operation of some manufacturing

systems taken from the literatures.

A. Application to an FMS

Example 2: Let us consider the flexible manufacturing system in Fig. 4 which combines cyclic assembly process,

buffers, work in process, and batch operations. It consists of three machines U1, U2 and U3, and produce two products

PR1 and PR2. The production ratios are 3/5 and 2/5 for PR1 and PR2, respectively. The production processes
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of these products are: PR1 : (U1, U2, U3) and PR2 : (U2, U1). We assume that the upper bound on the cost of

resource R is equal to 100.

Fig. 4. A TWMG model of a flexible manufacturing system.

TABLE I
SIMULATION RESULTS OF EXAMPLE 2.

Approach X Nb. of partition classes Obtained marking M βX β′ GX G′
X CPU time [s]

Optimal 419904 (6, 0, 0, 0, 2, 3, 0, 4, 0, 0, 0, 6, 0, 2)T 0.31 0% 13.9% 156168
TUB N/A (0, 0, 7, 3, 0, 5, 1, 0, 1, 8, 0, 0, 1, 1)T 0.17 0.36 45.2% 52.8% 4
PSA1 72 (0, 0, 6, 0, 2, 0, 0, 6, 0, 0, 2, 4, 0, 2)T 0.31 0% 13.9% 23 (0)
PSA2 162 (0, 6, 0, 0, 2, 0, 0, 6, 0, 0, 2, 4, 0, 2)T 0.31 0% 13.9% 48 (0)
PSA3 72 (0, 0, 6, 0, 2, 0, 0, 6, 0, 0, 2, 4, 0, 2)T 0.31 0% 13.9% 24 (1)

The Petri net model in Fig. 4 is a strongly connected TWMG which consists of seven elementary circuits:

γ1 = p1t2p2t3p3t1, γ2 = p4t5p5t4, γ3 = p10t8p11t4p12t9p13t2, γ4 = p6t6p7t5p8t7p9t1, γ5 = p14t3, γ6 =

p2t3p3t1p6t6p7t5p5t4p12t9p13t2, and γ7 = p10t8p11t4p4t5p8t7p9t1p1t2. The tokens in circuits γ3, γ4, and γ5 and

circuits γ1 and γ2 represent the servers and available pallets for products, respectively. Circuits γ6 and γ7 are mixed

circuits. The minimal T-semiflow is x=(3, 3, 3, 2, 2, 1, 1,1, 1)T . For each circuit we assume that λγ = 1 and the

weight vector used in the criteria is y = (3, 3, 3, 4, 4, 4, 6, 6, 4, 4, 6, 6, 4, 1)T .

For the optimal approach, we have ϕ1 = 3, ϕ2 = 3, ϕ3 = 3, ϕ4 = 2, ϕ5 = 2, ϕ6 = 3, ϕ7 = 2, ϕ8 = 2, ϕ9 = 3,

ϕ10 = 3, ϕ11 = 2, ϕ12 = 2, ϕ13 = 3, ϕ14 = 3, and gcdpi
= 1 (i = 1, . . . , 14). Thus, the markings of the TWMG

are partitioned into Φ = 419904 subsets.

For the PSA approaches, we solve Eqs. (19), (20), and (21) by using the software Lingo and obtain the place

subset Pr and the total number of partition classes of equivalent TMGs as shown in the following.

PSA1 : Pr = {p1, p4, p7, p11, p14}, Φ′ = 72,

PSA2 : Pr = {p2, p5, p9, p13, p14}, Φ′ = 162,

PSA3 : Pr = {p2, p4, p8, p11, p14}, Φ′ = 72.
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The experiment results are carried out on a PC with a Pentium Dual-Core CPU 3.0 GHz using MATLAB with

YALMIP subroutines. For a given approach X (where X ∈ {Optimal, PSA1, PSA2, PSA3, TUB}), we define

the optimality gap

GX = (βopt − βX)/βopt (24)

the difference in % between the optimal throughput βopt and the throughput computed with approach X, and the

optimality gap upper bound

G′
X = (β′ − βX)/β′ (25)

the difference in % between the upper bound on the throughput β′ computed with the TUB approach and the

throughput computed with approach X .

In Table I, we show the tested approach, the number of partition classes Φ (resp., Φ′) that must be considered

for the optimal approach (resp., PSA approaches), the obtained marking M , the throughput βX computed with

approach X , the throughput upper bound β′ obtained with the TUB approach, the optimality gap GX , the optimality

gap upper bound G′
X , and the CPU time for each approach. The number in parenthesis in the last column represents

the computational time to determine place subset Pr.

In this example, we solve PSA1, PSA2, and PSA3 approaches by MILPP (14) with new constraints c1 in Eq. (22)

and c2′ in Proposition 6 and the obtained solutions are optimal. Nevertheless, this result does not hold in general,

i.e., the PSA approaches cannot always provide an optimal solution. The number of partition classes of PSA1 and

PSA3 are smaller than that of PSA2. Due to the reduced number of partition classes, the CPU times required by

the PSA approaches are much smaller than that of the optimal approach. The solution obtained by TUB is quite

far from the optimal one.

TABLE II
SIMULATION RESULTS FOR DIFFERENT INSTANCES.

|P | |T | R Approach X Nb. of partition classes βX β′ GX G′
X CPU time [s]

Optimal 216 0.23 0% 0% 70
TUB N/A 0.21 0.23 8.7% 8.7% 3

Case 1 8 5 1000 PSA1 1 0.23 0% 0% 4 (0)
PSA2 36 0.23 0% 0% 12 (0)
PSA3 1 0.23 0% 0% 4 (0)

Optimal 1.00e+11 o.o.t N/A N/A o.o.t
TUB N/A 0.36 0.38 N/A 5.3% 7

Case 2 24 12 1000 PSA1 3456 0.31 N/A 18.4% 1097 (1)
PSA2 10368 0.27 N/A 28.9% 4982 (1)
PSA3 3456 0.22 N/A 42.1% 1110 (6)

We mention that the computational cost of the optimal approach and the PSA approach can be influenced by the

arcs of the TWMG model tremendously. For example, if we change the production ratios for PR1 and PR2 to

2/3 and 1/3, the arcs of the command circuits will be changed accordingly, i.e., Pre(p6, t6) = 2, Post(p7, t6) = 1,

Pre(p8, t7) = 1, Post(p9, t7) = 2, Pre(p10, t8) = 2, Post(p11, t8) = 1, Pre(p12, t9) = 1, and Post(p13, t9) = 2.

Thus, the number of partition classes for optimal approach and PSA1/PSA2/PSA3 approaches are 64 and 4/8/4,

respectively. Nevertheless, if we change the production ratios for PR1 and PR2 to 7/10 and 3/10, these numbers
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will increase to 6.004e+9 and 3087/7203/3087, respectively. ⋄

B. More cases study

To better compare the efficiency of the proposed approaches for solutions obtained by the PSA approach and

the optimal and TUB approaches proposed in [16], we analyzed some examples taken from literature. Case 1 is an

assembly line taken from Fig. 3 in [16]. Case 2 is a jobshop taken from Fig. 6 in [6] that contains four process

circuits.

In Table II, we show for each considered instance the number of places and transitions, the upper bound on the

cost of resources R, the tested approach, the number of partition classes Φ (resp., Φ′) for the optimal approach

(resp., PSA approaches), the throughput βX computed with approach X , the throughput upper bound β′ obtained

with the TUB approach, the optimality gap GX as defined in Eq. (24), the optimality gap upper bound G′
X as

defined in Eq. (25), and the CPU time for each approach. The number in parenthesis in the last column represents

the computational time to determine place subset Pr.

The simulation results show the tradeoff between computational cost and quality of the solution. Note that “o.o.t”

(out of time) in Table II means that the solution cannot be found within 48 hours. The computational cost of the

optimal solution can grow exponentially as the net size increases. For Case 1, the PSA approaches can provide an

optimal throughput which in this case coincides with the upper bound on the throughput. Actually, if we find a

solution whose throughput is equal to the upper bound on the throughput by using PSA approaches, we can deduce

that this solution is also optimal. For Case 2, the number of partition classes required by the optimal approach is

so large that we cannot obtain a solution within a reasonable computational time. The solution obtained by the

TUB approach for Case 2 is better than that of the PSA approach. It is not obvious that which approach is the best

among the three PSA approaches, i.e., PSA1, PSA2, and PSA3. We observe that the upper bound gap of solutions

obtained by the TUB approach for Case 2 are smaller than the one obtained by PSA approaches, which means that

these solutions are closer to the optimal one than the solutions obtained by PSA approaches.

VII. CONCLUSION

In this paper, we deal with the performance optimization for TWMGs under infinite server semantics, which is a

more general case than the previous ones [15]. The method proposed in [16] that can provide an optimal solution

has a high computational cost. We consider a subset of places to allocate resources instead of taking all places into

consideration and develop three practically efficient methods to reduce the computational burden.

The main restriction of TWMGs is the fact that they cannot describe systems with choice, i.e., a condition where

several future evolutions are possible but in conflict among them. Future work will aim to extend the considered

modelling framework by assuming that choices are possible and must be resolved with a stationary routing, that

assigns resources to conflicting processes with a preassigned ratio. The routing parameters will be additional decision

variable of our optimization problem.
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