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Abstract

In this paper we propose a novel approach to perform codiagnosability analysis of labeled bounded Petri nets. A set of sites
observe the system evolution, each one with its own observation mask. Sites do not exchange information with each other
but communicate with a coordinator. The coordinator is able to detect a fault if and only if at least one site is able to do
that. In a previous work by some of us it has been proven that a necessary and sufficient condition for codiagnosability under
such a framework, is the absence of sequences that are “ambiguous” with respect to all sites and whose length may grow
indefinitely after the occurrence of some fault. The novelties of the approach consist in using the notion of basis markings to
avoid exhaustive enumeration of the set of reachable markings, and in the construction of an automaton, called Verifier, that
allows one to detect the presence of ambiguous sequences.

Finally, we introduce the notion of K-codiagnosability: a system is K-codiagnosable if and only if faults can be detected in
the above framework within at most K observations after their occurrence. An algorithm is provided to compute the smallest
value of K such that the system is K-codiagnosable.
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1 Introduction

Solving a diagnosability problem consists in determining if, once a fault has occurred, its occurrence can
be detected in a finite number of steps. This problem has been extensively investigated in a centralized
setting [2,3,7,9,10,14,19]. However, nowadays systems are often intrinsically distributed. This is the reason
why in recent years, a series of decentralized approaches have been developed both in the automata and
Petri net framework [1, 4, 8, 12,15,17,18].

The notion of codiagnosability has been first introduced by Qiu and Kumar in [12] under the assumption
that all local diagnosers do not communicate with each other and only send information to a coordinator.
Algorithms with polynomial complexity in the size of the automaton modeling the plant and the nonfaulty
specification are provided for verifying codiagnosability and computing the bound in the delay of diagnosis.
Yin and Lafortune [18] investigate the transformation from codiagnosability to coobservability under
dynamic observations, and present an approach for the verification of codiagnosability. Their results
complement those in Wang et al. [17] who study the reverse transformation, namely from coobservability
to codiagnosability, thereby resulting in a thorough characterization of the relationship between the two
notions of codiagnosability and coobservability and their verification. Takai and Ushio [15] consider the
decentralized failure diagnosis problem of Mealy automata with nondeterministic output functions. They
introduce an extended version of codiagnosability as a condition for the existence of a decentralized
diagnoser, and give an algorithm to verify codiagnosability.

In recent years, some results have been presented for decentralized fault diagnosis of bounded Petri
nets. Cabasino et al. [4] present a procedure to analyze the diagnosability of a Petri net system in
a decentralized framework. Inspired by Debouk et al. [8], they first prove that the absence of failure
ambiguous sequences is a necessary and sufficient condition for codiagnosability, and give a procedure to
verify the absence of such kind of sequences in bounded and unbounded Petri net systems. The verification
is based on the analysis of the reachability/coverability graph of a particular Petri net called Modified
Verifier Net, which is an extension of the Verifier Net introduced in [3] to analyze diagnosability in a
centralized setting. However, the complexity of this approach may increase exponentially with the size
of the net (structure and number of tokens in the initial marking) thus making it unfeasible in practical
situations. In [1] Basile et al. propose an approach for the analysis of K-codiagnosability that differs from
most of the other approaches in the literature (including ours) for the fact that it is not based on the
off-line construction of an automaton, e.g., a Verifier, but is based on the solution of an integer linear
programming problem. Even if the approach by Basile et al. is NP-complete being it based on integer
linear programming, it could be (as the authors claim) a promising approach to formalize the problem of
optimally select sensors to be attached to transitions to guarantee K-codiagnosability. Furthermore, the
approach proposed by Basile et al. does not require that the unobservable-induced subnets with respect
to local sites are acyclic.

In this paper, we propose an approach for codiagnosability analysis that is still based on the idea of
constructing a Verifier, but, thanks to the notion of basis makings [5] we avoid an exhaustive enumeration
of the state space. As in [4], we analyze codiagnosability by looking at failure ambiguous sequences. We
define an automaton called Verifier that enables us to check the existence of special cycles called F-
cycles, which correspond to failure ambiguous sequences having infinite length after the fault. In this
way, the problem of codiagnosability analysis reduces to the problem of looking for F-cycles in the
Verifier. Furthermore, we introduce the definition of K-codiagnosability, which is a generalization of
K-diagnosability. In simple words, a labeled Petri net system monitored by a set of local sites, is K-
codiagnosable with respect to a given fault class if faults in that class can be detected in at most K
observations after the occurrence of the fault. An algorithm to compute the smallest value of K such that
a system is K-codiagnosable is provided.

Note that this paper is an extended version of [13]. Novelties are: (1) a more exhaustive survey of the
literature; (2) a slightly different definition of failure ambiguous string that does not assume that the
system is diagnosable in a centralized way; (3) formal proofs of all the results; (4) the definition of
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K-codiagnosability and an algorithm for its analysis.

2 Background on labeled Petri nets

A Petri net (PN) [11] is a 4-tuple N = (P, T, F,W ), where P and T are finite, non-empty, and disjoint sets,
F ⊆ (P × T )∪ (T ×P ) is called the flow relation of the net, W is a mapping that assigns a non negative
integer weight to an arc: W (x, y) > 0 iff (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T . The
incidence matrix [N ] of N is a |P | × |T | integer matrix with [N ](p, t) = W (t, p)−W (p, t). Let x ∈ P ∪ T
be a node of net N . The preset of x is defined as •x = {y ∈ P ∪ T | (y, x) ∈ F} while the postset of x is
defined as x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A marking m of a PN N is a mapping from P to N = 0, 1, 2, ...: m(p) denotes the number of tokens in
place p. (N,m0) denotes a PN system with an initial marking m0.

A transition t is enabled at a marking m if ∀p ∈ •t,m(p) ≥ W (p, t). This fact is denoted by m[t⟩ while
m[σ⟩ is used to denote that the transition sequence σ = t1t2...tk is enabled at m. We denote by |σ| the
length of the sequence σ. The Parikh vector of σ is denoted by π(σ). The set of all sequences that are
enabled at the initial marking m0 is denoted by L(N,m0), i.e., L(N,m0) = {σ ∈ T ∗ | m0[σ⟩}. We write
t ∈ σ to denote that a transition t is contained in σ, T ′ ∩ σ ̸= ∅ to denote that there is at least one
transition in T ′ contained in σ and T ′ ∩ σ = ∅ to denote that there is no transition in T ′ contained in σ,
where T ′ is a set of transitions.

Firing t yields a new marking m′ such that ∀p ∈ P,m′(p) = m(p)+ [N ](p, t), which is denoted by m[t⟩m′.
Marking m′′ is said to be reachable from m if there exists a transition sequence σ such that m[σ⟩m′′.
The set of markings reachable from m in N is called the reachability set of (N,m) and is denoted by
R(N,m).

A PN is said to be bounded if there exists a positive constant k such that ∀p ∈ P , ∀m ∈ R(N,m0),
m(p) ≤ k. It is unbounded if it is not bounded.

Given a PN system (N,m0), t ∈ T is live under m0 if ∀m ∈ R(N,m0), ∃m′ ∈ R(N,m), m′[t⟩. A PN
system (N,m0) is: live if ∀t ∈ T , t is live under m0; dead under m0 if @t ∈ T , m0[t⟩; deadlock-free if
∀m ∈ R(N,m0), ∃t ∈ T , m[t⟩.

Given a PN N = (P, T, F,W ) and a set T ′ ⊆ T of transitions, we define T ′-induced subnet of N the
new PN N ′ = (P, T ′, F ′,W ), where F ′ is the restriction of F to (P × T ′) ∪ (T ′ × P ). The net N ′ can be
obtained from N by removing all transitions in T \ T ′.

A Petri net with no directed circuits is said to be acyclic.

A labeled PN system is a triple (N,m0,L), where (N,m0) is a PN system, L is a labeling function
L : T → A ∪ {ε} that assigns to each transition in T either a symbol from a given alphabet A or the
empty sequence ε.

We use Tu to denote the set of transitions whose labels are ε, and To to denote the set of transitions
whose labels are the symbols in A. Tu and To are called the set of unobservable and observable transitions,
respectively. [N ]u (or [N ]o) is used to denote the restriction of the incidence matrix [N ] to Tu (or To).
Given σ ∈ T ∗, we denote Pu(σ) (or Po(σ)) the projection of σ over Tu (or To).

The labeling function can be naturally extended to define the projection operator L : T ∗ → A∗ as follows:
(1) L(ε) = ε; (2) L(t) = l for some l ∈ A, if t ∈ To; (3) L(t) = ε, if t ∈ Tu; and (4) L(σt) = L(σ)L(t), if
σ ∈ T ∗ ∧ t ∈ T .

Moreover, L−1(w) is used to denote the set of all transition sequences consistent with w ∈ A∗, i.e.,
L−1(w) = {σ ∈ L(N,m0) | L(σ) = w}. Using the extended labeling function, the language of transition
labels is therefore denoted by L(L(N,m0)).
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Let K ⊆ T ∗ be a language, we use K/σ to denote the post-language of K after σ, i.e., K/σ = {σ′ ∈ T ∗ |
σσ′ ∈ K}.

3 Problem statement

The unobservable transition set is partitioned as Tu = Tf ∪ Treg, where Tf is the set of fault transitions
and Treg is the set of unobservable but regular transitions. We use [N ]reg to denote the restriction of the
incidence matrix to Treg. The fault transition set Tf is partitioned into r different subsets T i

f that model
different fault classes, where i = 1, 2, ..., r.

The PN is monitored by a set J = {1, 2, ..., ν} of sites. Each site knows the structure of the net and
observes the evolution of the system by its own mask. Sites may send information to a coordinator but
do not communicate with the other sites. We assume that the coordinator follows protocol 3 in [8], i.e.,
a fault in a given class is diagnosed if and only if at least one local site detects its occurrence.

The set of transitions that are observable (resp., unobservable) for site j ∈ J is denoted by To,j ⊆ To

(resp., Tu,j ⊆ T ). The alphabet of the j-th site is denoted Aj ⊆ A, and the labeling function associated
with the j-th site is Lj(t) = L(t) if L(t) ∈ Aj , otherwise it is Lj(t) = ε.

Given a transition sequence σ ∈ L(N,m0), wj = Lj(σ) is used to denote the sequence of labels in Aj

associated with σ observed by the j-th site.

We make the following assumptions:

A1) The PN system is deadlock-free after the occurrence of any fault;

A2) The PN system is bounded;

A3) The Tu,j-induced subnets are acyclic for all j = 1, 2, ..., ν.

For i = 1, . . . , r, we use Ψ(T i
f ) to denote the set of all sequences in L(N,m0) that end with a transition

in T i
f .

Definition 1 Let (N,m0,L) be a labeled PN system that is deadlock-free after the occurrence of any fault
tf ∈ Tf . Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. The labeled PN
system (N,m0,L) is codiagnosable wrt the i-th fault class T i

f if

(∀s ∈ Ψ(T i
f )), (∃K ∈ N), (∀σ ∈ L(N,m0)/s), |σ| ≥ K ⇒ (∃j ∈ J ), (∀σ′ ∈ L−1

j (Lj(sσ))), T i
f ∩ σ′ ̸= ∅.

The labeled PN system (N,m0,L) is codiagnosable if it is codiagnosable wrt all fault classes.

In simple words, (N,m0,L) is codiagnosable wrt T i
f if, once a fault in T i

f has occurred, there exists
at least one site that detects it within a finite delay. In this paper we provide an approach to analyze
codiagnosability that is based on the notion of failure ambiguous string.

Definition 2 Consider a labeled PN system (N,m0,L) whose labeling function L is defined over an
alphabet A. Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. A sequence σ ∈ T ∗

such that T i
f ∩ σ ̸= ∅ is said to be failure ambiguous wrt T i

f if there exist ν sequences σ1, σ2, ..., σν ∈ T ∗,
not necessarily distinct, such that

T i
f ∩ σj = ∅ and Lj(σ) = Lj(σj), j = 1, 2, ..., ν.

In words, a sequence σ containing some fault transitions in T i
f is failure ambiguous wrt T i

f if σ is ambiguous
for all sites.

A very similar definition has been proposed in [4]. However, in that case it was assumed that the sequence
that is ambiguous for all sites is not ambiguous for a centralized diagnoser who observes all the labels
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Fig. 1. A Labeled PN system (N,m0,L).

observed by the local sites.

Example 1 Consider the labeled PN system (N,m0,L) in Fig. 1, where To = {t3, t6, t10}, Tu = {t1, t2, t4, t5, t7−
t9}, Tf = {t9}, m0 = [k 0 0 0 0 0 0 0]T , and k is a positive constant. The labeling function is defined
as follows: L(t3) = a, L(t6) = b and L(t10) = c. Assume that the PN is monitored by two local sites
whose alphabets are equal to A1 = {a, c} and A2 = {b, c}, respectively. The faulty sequence σ = t7t8t9t10
is failure ambiguous wrt Tf . In fact, there exist two fault-free sequences σ1 = t4t5t6t10 and σ2 = t1t2t3t10
such that L1(σ) = L1(σ1) = c and L2(σ) = L2(σ2) = c.

Following the same arguments used by Debouk in [8] to illustrate the effectiveness of their protocol 3, it
has been proved in [4] that under the considered architecture, the absence of failure ambiguous sequences
is a necessary and sufficient condition for codiagnosability. Obviously the same result also holds under
the revised definition.

Theorem 1 ( [4]) Consider a labeled PN system (N,m0,L) whose labeling function L is defined over
an alphabet A. Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. The system
is codiagnosable iff there do not exist failure ambiguous sequences that are arbitrarily long after the
occurrence of any fault in T i

f , for i = 1, . . . , r.

4 Extended Basis Reachability Graph

In this section we first introduce a particular graph, called Extended Basis Reachability Graph. Then, we
prove some properties that are the starting point for the proposed approach of codiagnosability analysis.
Note that Definitions 3 to 7 are taken from [5] and [7].

For the sake of simplicity, in the rest of the paper we assume that there is a single fault class Tf . In the
following it is clearly discussed how to deal with the case of several fault classes.

Definition 3 ( [5]) Given a marking m and an observable transition t, the set of explanations of t at
m is denoted by Σ(m, t) = {σ ∈ T ∗

u | m[σ⟩m′,m′[t⟩}, and the set of e-vectors (or explanation vectors) is
denoted by Y (m, t) = π(Σ(m, t)).

Definition 4 ( [5]) Given a marking m and an observable transition t, the set of minimal explanations
of t at m is denoted by Σmin(m, t) = {σ ∈ Σ(m, t) | @σ′ ∈ Σ(m, t) : π(σ′) � π(σ)}, and the set of minimal
e-vectors is denoted by Ymin(m, t) = π(Σmin(m, t)).

Definition 5 ( [5]) Let (N,m0,L) be a labeled PN system and w ∈ L∗ be an observation, where N =
(P, T, F,W ) and T = To ∪ Tu. We define the following sets of pairs:

Ĵ (w) = {(σo, σu), σo ∈ T ∗
o ,L(σo) = w, σu ∈ T ∗

u | [∃σ ∈ L−1(w) : σo = Po(σ), σu = Pu(σ)]

∧[@σ′ ∈ L−1(w) : σo = Po(σ
′), σ′

u = Pu(σ
′) ∧ π(σ′

u) � π(σu)]},
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and

Ŷmin(m0, w) = {(σo, y), σo ∈ T ∗
o ,L(σo) = w, y ∈ N|Tu| | ∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}.

In simple words, Ĵ (w) is the set of pairs whose first element is the sequence σo ∈ T ∗
o labeled w and whose

second element is the corresponding sequence of unobservable transitions interleaved with σo whose firing
enables σo and whose firing vector is minimal. The firing vectors of these sequences are called j-vectors.

Ŷmin(m0, w) is the set of pairs whose first element is the sequence σo ∈ T ∗
o labeled w and whose second

element is the corresponding j-vector (justification vector).

Definition 6 ( [5]) Let (N,m0,L) be a labeled PN system, w ∈ A∗ be an observation and Ĵ (w) be a set
of pairs. The set of basis markings of w is denoted by

Mb(w) = {m ∈ N|P | | m = m0 + [N ]u · π(σu) + [N ]o · π(σo), (σo, σu) ∈ Ĵ (w)},

and the set of all basis markings is denoted by Mb, i.e., Mb =
∪

w∈A∗
Mb(w).

In simple words, a basis marking is a marking that can be reached from the initial marking firing a
sequence of transitions that is consistent with the observation and a sequence of unobservable transitions,
interleaved with the previous sequence, whose firing is strictly necessary to enable it (in the sense that
its firing vector is minimal) [5]. The set of basis markings is a subset (usually a strict subset) of the set
of reachable markings. Therefore, if the net is bounded, the set of basis markings is finite.

In [7] it has been proved that when performing centralized diagnosability, it is useful to compute basis
markings assuming that fault transitions are observable.

Definition 7 ( [7]) An extended basis marking (EBM) is a basis marking computed assuming that all
transitions in Tf are observable. The set of all EBMs is denoted by Me.

The set Me can be computed by restricting the minimal explanations to the set of regular unobservable
transitions Treg.

Example 2 Let us consider the labeled PN system in Fig. 1 previously introduced in Example 1, where
To = {t3, t6, t10} and Tf = {t9}. The set of EBMs is {mi | mi = [k − i 0 0 0 0
0 0 i]T , i = 0, 1, ..., k}.

Let us now define a graph whose nodes are uniquely associated with EBMs and edges are labeled with
either observable transitions (and their labels) or with fault transitions. In the following, we denote
Y reg
min(m, t) the set of minimal e-vectors restricted to Treg. The set Y reg

min(m, t) can be computed using
Algorithm 4.4 in [5].

Definition 8 Let (N,m0,L) be a labeled PN system, Tf be the set of fault transitions and Me be the
set of EBMs. The Extended Basis Reachability Graph (EBRG) is a (non-deterministic) finite state
automaton Ge = (Me, E,∆,m0), where Me is the set of states; E ⊆ (To × A) ∪ Tf is the set of event
labels; ∆ ⊆ Me×E×Me is the transition relation; and m0 is the initial state. In particular, (m, e,m′) ∈ ∆
where e = t(a) ∈ To×A or e = t ∈ Tf , if and only if ∃y ∈ Y reg

min(m, t) and m′ = m+ [N ]reg · y+ [N ](·, t).

Note that a similar graph, called Modified Basis Reachability Graph (MBRG) has been proposed in [7] to
perform centralized diagnosis. In the MBRG, as well as in the EBRG, a different node is associated with
each extended basis marking and edges are labeled either with an observable transition (and its label)
or with a fault transition. However, the MBRG may contain a higher number of edges since a different
edge is associated with each minimal e-vector. In more detail, if there exist two minimal explanations of
a given transition that lead to the same extended basis marking, in the MBRG two different edges are
associated with it, while only one edge appears in the EBRG.
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Fig. 2. a) Ge: EBRG of (N,m0,L), b) G1
e: Nonfailure EBRG wrt site 1, and c) G2

e: Nonfailure EBRG wrt site 2.

Algorithm 1: [EBRG construction]

Input: A labeled PN system (N,m0,L).

Output: The EBRG Ge.

1. Let m0 be the initial node.
2. While nodes with no tag exist, do

2.1. select a node m with no tag,
2.2. for all t ∈ To ∪ Tf , do

• if Y reg
min(m, t) ̸= ∅, then
· for all y ∈ Y reg

min(m, t), do
let m′ = m+ [N ]reg · y + [N ](·, t),
if @ a node m′, then add a node m′,
if t ∈ To ∧ @ an arc t(e) from m to m′, where e = L(t), then add an arc t(e)
from m to m′,
if t ∈ Tf ∧ @ an arc t from m to m′, then add an arc t from m to m′,

2.3. tag the node m “old”.
3. Remove all tags.

Example 3 Consider again the labeled PN system in Example 1. The EBRG Ge is shown in Fig. 2a,
where {mi|mi = [k − i 0 0 0 0 0 0 i]T , i = 0, 1, ..., k}.

Property 1 Let (N,m0,L) be a labeled PN system, Ge be its EBRG and L(Ge) be the language generated
by Ge. It holds that ρ(L(N,m0)) = L(Ge), where ρ(L(N,m0)) is the projection of L(N,m0) over To∪Tf .

Proof. Let us recall Theorem 3.8 in [6] which can be restated as follows. In a net whose unobservable
subnet is acyclic there exists a firing sequence σ ∈ T ∗ such that m0[σ⟩ with observable projection Po(σ) =
w and Parikh vector π(σ) if and only if there exists a sequence σ′ with Po(σ

′) = w and an unobservable
sequence σu ∈ T ∗

u such that m0[σ
′⟩m[σ′′⟩ where m is a basis marking and π(σ) = π(σ′) + π(σ′′).

The result follows observing that, by construction, there exists a path in the EBRG that starts from the
initial node m0 and reaches a node m generating word w if and only if basis marking m can be reached
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on the net from the initial marking m0 by a firing sequence σ′ with Po(σ
′) = w.

In words, the above property claims that the set of transition sequences in L(Ge) coincides with the
projection of L(N,m0) over the set To ∪ Tf .

5 Verifier

In this section, we show that the codiagnosability of a bounded PN can be checked by analyzing a special
automaton called Verifier.

For the sake of simplicity, and without loss of generality, we assume that the PN is monitored by only
two local sites.

In the following we denote by (N ′,m0,L′) the T ′-induced subnet of (N,m0,L), where T ′ = T \ Tf , i.e.,
(N ′,m0,L′) is the nonfailure subnet of (N,m0,L). Therefore, L(N ′,m0) is the language composed by all
sequences of L(N,m0) that do not contain faults, and L′ is equal to L restricted to T \ Tf .

Definition 9 Let (N,m0,L) be a labeled PN system and (N ′,m0,L′) be its nonfailure subnet. The non-
failure EBRG wrt site j, denoted by Gj

e = (Mj , Ej ,∆j ,m0), is the EBRG of (N ′,m0,L′) construct-
ed under the assumption that the set of observable transitions is equal to To,j, and all transitions in
T ′ \ To,j = T \ Tf \ To,j are unobservable.

Obviously,Ge,j can be computed using Algorithm 1 assuming that the set of observable transitions is equal
to the set of transitions observable by the j-th site, namely To,j , and restricting minimal explanations to
the set T ′ \ To,j = T \ Tf \ To,j .

Example 4 Consider again the Petri net in Example 1. The nonfailure-EBRGs G1
e and G2

e are shown
in Fig. 2b and Fig. 2c, respectively, where mi = [k − i 0 0 0 0 0 0 i]T , i = 0, 1, ..., k.

Property 2 Let (N,m0,L) be a labeled PN system, Gj
e be its nonfailure EBRG wrt site j and L(Gj

e) be
the language generated by Gj

e. It holds that ρj(L(N
′,m0)) = L(Gj

e), where ρj(L(N
′,m0)) is the projection

of L(N ′,m0) over To,j.

Proof. Follows the same lines of the proof of Property 1.

We now introduce a (non-deterministic) finite state automaton, called Verifier, that is defined as the
parallel composition of the EBRG of a given labeled PN system and the nonfailure EBRGs G1

e and G2
e

of the two sites that monitor it, where synchronization is performed on the set of labels A. We denote it
V = (MV , EV ,∆V ,mV

0 ) and compute it using the following algorithm.

Algorithm 2: [Construction of the Verifier]

Input: Ge = (Me, E,∆,m0), G
1
e = (M1, E1,∆1,m0) and G2

e = (M2, E2,∆2,m0).

Output: The Verifier V = (MV , EV ,∆V ,mV
0 ).

1. Let MV = M × {F,N} ×M1 ×M2.
2. Let EV = (To ∪ Tf )× (To,1 ∪ {ε})× (To,2 ∪ {ε}).
3. Let mV

0 = (m0, N ;m0;m0).
4. ∆V ⊆ MV × EV ×MV is defined as follows:

4.1. ((m, l;m1,m2)(t, ε, ε)(m
′,F;m1;m2)) ∈ ∆V if

• t ∈ Tf and (m, t,m′) ∈ ∆.
4.2. ((m, l;m1,m2)(t, t1, t2)(m

′, l;m′
1;m

′
2)) ∈ ∆V if

• t ∈ To,1 ∩ To,2, (m, t,m′) ∈ ∆, (m1, t1,m
′
1) ∈ ∆1, (m2, t2,m

′
2) ∈ ∆2, L1(t) = L1(t1) and

L2(t) = L2(t2).
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4.3. ((m, l;m1,m2)(t, t1, ε)(m
′, l;m′

1;m2)) ∈ ∆V if
• t ∈ To,1 \ To,2, (m, t,m′) ∈ ∆, (m1, t1,m

′
1) ∈ ∆1 and L1(t) = L1(t1).

4.4. ((m, l;m1,m2)(t, ε, t2)(m
′, l;m1;m

′
2)) ∈ ∆V if

• t ∈ To,2 \ To,1, (m, t,m′) ∈ ∆, (m2, t2,m
′
2) ∈ ∆2 and L2(t) = L2(t2).

5. Trim the automaton V = (MV , EV ,∆V ,mV
0 ) by removing the states that are not reachable from the

initial state mV
0 and all their input and output edges.

Definition 10 Consider the Verifier of a given PN system. We denote as

φ : (EV )∗ → (To ∪ Tf )
∗,

φ1 : (EV )∗ → T ∗
o,1, φ2 : (EV )∗ → T ∗

o,2

the three functions that assign to a generic production

σV = (λ1, λ1
1, λ

1
2) . . . (λ

k, λk
1 , λ

k
2)

in the Verifier, the following three sequences of transitions:

φ(σV ) = λ1 . . . λk,

φ1(σ
V ) = ρ1(λ

1
1 . . . λ

k
1), φ2(σ

V ) = ρ2(λ
1
2 . . . λ

k
2),

where ρ1(λ
1
1 . . . λ

k
1) (ρ2(λ

1
2 . . . λ

k
2)) denotes the projection of λ1

1 . . . λ
k
1 (λ1

2 . . . λ
k
2) over To,1 (To,2).

In simple words, given a production σV of the Verifier, the concatenation of the first entries of σV is
equal to a sequence of transitions σ = λ1 . . . λk ∈ (To ∪ Tf )

∗. Furthermore, if we denote as σ1 = λ1
1 . . . λ

k
1

(σ2 = λ1
2 . . . λ

k
2) the sequence of symbols obtained as the concatenation of the second (third) entries of

σV , then φ1(σ
V ) (φ2(σ

V )) is equal to the projection of σ1 (σ2) over To,1 (To,2).

Given a Verifier V , we write mV eV−−→ mV
1 to denote that state mV

1 ∈ MV is reached in V from mV ∈ MV

with an event eV ∈ EV .

Theorem 2 Let (N,m0,L) be a labeled PN system with EBRG Ge. Let G1
e and G2

e be the nonfailure
ERBGs wrt site 1 and site 2, respectively. Let V be the Verifier constructed using Algorithm 2 and
L(V ) ∈ (EV )∗ its language. It holds that:

σV ∈ L(V ) ⇔ φ(σV ) ∈ L(Ge), φ1(σ
V ) ∈ L(G1

e), φ2(σ
V ) ∈ L(G2

e), and

L1(φ(σ
V )) = L1(φ1(σ

V )),

L2(φ(σ
V )) = L2(φ2(σ

V )).

Proof. We prove the statement by induction on the length of a production in V .

(Basis step) The result clearly holds if we consider productions of length 0.

(Inductive step) Assume the result holds for a production σV = eV1 . . . eVk of length k such that

mV
0

eV1−−→ mV
1 . . .

eVk−−→ mV
k .

Assume that the production is continued with event eVk+1 ∈ EV , namely it is

mV
k

eVk+1−−−→ mV
k+1.
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Let eVk+1 = (t, λk+1
1 , λk+1

2 ). Four different cases may occur.

• t ∈ Tf : In such a case, according to Step 4.1 of Algorithm 2, it is λk+1
1 = λk+1

2 = ε and consequently,
φ(σV eVk+1) = φ(σV )t, φ1(σ

V eVk+1) = φ1(σ
V ), and φ2(σ

V eVk+1) = φ2(σ
V ). Therefore, if the result holds

for σV , then it obviously holds for σV eVk+1.

• t ∈ To,1∩To,2: In such a case, according to Step 4.2 of Algorithm 2, node mV
k+1 is obtained simultaneously

firing at the three markings in mV
k transitions t, t1, t2 ∈ To,1 ∩ To,2, such that L1(t) = L1(t1) and L2(t) =

L2(t2), respectively (obviously, as a special case, it may also be t = t1 = t2). Therefore, it is φ(σ
V eVk+1) =

φ(σV )t ∈ L(Ge), φ1(σ
V eVk+1) = φ1(σ

V )t1 ∈ L(G1
e), and φ2(σ

V eVk+1) = φ2(σ
V )t2 ∈ L(G2

e). Finally, it is

L1(φ(σ
V ek+1)) = L1(φ1(σ

V ek+1))

being

L1(φ(σ
V ek+1)) = L1(φ(σ

V )t) = L1(φ(σ
V ))L1(t),

L1(φ1(σ
V ek+1)) = L1(φ1(σ

V )t1) = L1(φ1(σ
V ))L1(t1),

L1(φ(σ
V )) = L1(φ1(σ

V ))

by the inductive assumption. Analogously, we may prove that

L2(φ(σ
V eVk+1)) = L2(φ2(σ

V eVk+1)).

• t ∈ To,1 \ To,2: In such a case λk+1
1 is equal to a transition t1 (that may also be coincident with t) such

that L1(t) = L1(t1), while λk+1
2 = ε. The result follows from Step 4.3 of Algorithm 2 using arguments

analogous to the previous two steps.

• t ∈ To,2 \To,1: In such a case λk+1
1 = ε and λk+1

2 is equal to a transition t2 (that may also be coincident
with t) such that L2(t) = L2(t2). The result follows from Step 4.4 of Algorithm 2 using arguments
analogous to the first two steps.

In simple words, Theorem 2 implies that a generic production σV in the Verifier captures three sequences
of transitions: σ = φ(σV ), σ1 = φ1(σ

V ), σ2 = φ2(σ
V ), which belong to L(Ge), L(G

1
e), and L(G2

e),
respectively. Furthermore, the projections of σ and σ1 over A1 coincide. Analogously, the projection of σ
over A2 coincides with the projection of σ2 over A2. Finally, given node mV of the Verifier reached with a
certain production σV , label N (resp., F) in mV indicates that the first sequence of transitions associated
with σV (namely, φ(σV )) does not (resp., does) include a fault in Tf .

A state (m, l;m1;m2) in the Verifier is called an l-state. For example, the initial state mV
0 is an N-state.

A cycle in the Verifier is called an l-cycle if each state in the cycle is an l-state.

Example 5 Consider again the PN system in Example 1. Fig. 3 shows a part of the Verifier. The cycle
((m1,F;m1;m1), (t10, t10, t10), (m1,F;m1;m1)) is an F-cycle.

Now, since sequences in L(Ge) also include faults, while sequences in L(Gj
e)’s do not, looking at sequences

in the Verifier, we could establish if there exists any faulty sequence in L(Ge) whose observable projection
in all sites could be explained without the firing of any fault. This is formalized in the following result.

Property 3 Let (N,m0,L) be a labeled PN system with EBRG Ge. Let G1
e and G2

e be the nonfailure
EBRGs wrt site 1 and site 2, respectively. The Verifier V constructed using Algorithm 2 has the following
properties.
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Fig. 3. The Verifier of the PN system in Example 1.

a) The language of V is:

L(V ) = { σV ∈ (EV )∗ | ∃σ̄, σ̄1, σ̄2 ∈ L(N,M0)

φ(σV ) = ρ(σ̄),

φ1(σ
V ) = ρ1(σ̄1), φ2(σ

V ) = ρ2(σ̄2),

L1(σ̄) = L1(σ̄1), L2(σ̄) = L2(σ̄2),

σ̄1 ∩ Tf = σ̄2 ∩ Tf = ∅}
where ρ(σ̄) denotes the projection of σ̄ over To ∪ Tf .

b) If state (m, l;m1;m2) is reached in V from the initial state with a sequence σV , then

l =

{
N iff (∀σ̄ ∈ ρ−1(σ)), σ̄ ∩ Tf = ∅
F iff (∀σ̄ ∈ ρ−1(σ)), σ̄ ∩ Tf ̸= ∅

where σ = φ(σV ).

Proof. Condition a) follows from the fact that V = Ge ∥ G1
e ∥ G2

e is the concurrent composition of the
three EBRGs on the sets, resp., To ∪ Tf , To,1 and To,2. In addition, the first EBRG is obtained from net
(N,m0,L) while the nonfailure EBRGs have been obtained from the nonfailure subnet (N ′,m0,L′): hence
σ̄1 ∩ Tf = σ̄2 ∩ Tf = ∅.

Condition b) follows from the definition of the transition relation of V . In fact by construction (m,N;m1;m2)
is reached in V from the initial state with sequence σV if and only if φ(σV )∩ Tf = ∅ and hence by Prop-
erty 1 for all σ̄ ∈ ρ−1(σ) it holds σ̄ ∩ Tf = ∅. The same applies if we consider F-states.

Theorem 3 Let V = (MV , EV ,∆V ,mV
0 ) be the Verifier of a given PN system constructed by Algorithm

2. The net has failure ambiguous sequences of arbitrary length after the occurrence of some fault in Tf

iff V contains F-cycles.

Proof. Consider an evolution of V such that

mV
0

σV

−−→ mV ′ (t,ε,ε)−−−−→ mV ,

where mV ′
is an N-state and mV is an F-state. Hence there exists a sequence σ̄′ ∈ ρ−1(φ(σV )t) that ends

with a fault by Property 3. By assumption A1 this sequence can be continued indefinitely. This means
that all sequences in the set

A(σ̄′) = {σ̄ = σ̄′σ̄′′ | |σ̄′′| ≥ 0, ρ(σ̄) = φ(σV ), σV ∈ L(V )}

are failure ambiguous according to Definition 2. Additionally for any such sequence σ̄, the sequence σV

such that ρ(σ̄) = φ(σV ), drives the Verifier to an F-state by Property 3.
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Now there exist failure ambiguous sequences of arbitrary length after the fault, if and only if there exists
a sequence σ̄′ of the net that ends with a fault and is such that A(σ̄′) is an infinite set. From this set we
can extract an infinite increasing sequence σ̄0, σ̄1 = σ̄0t̄1, σ̄2 = σ̄0t̄1t̄2, . . .. Obviously the chain of states
of the Verifier reached by sequences σV

i such that φ(σV
i ) = ρ(σ̄i), i = 0, 1, . . ., belongs to an infinite path

of F-states by assumption A3. Since the set of states of V is finite by assumption A2, this is possible if
and only if there exists an F-cycle.

Corollary 1 A labeled PN system (N,m0,L) monitored by two local sites is codiagnosable iff its Verifier
has no F-cycles.

Proof. Straightforward from Theorems 1 and 3.

Example 6 Let us consider again Example 5. By Corollary 1, we conclude that the PN system is not
codiagnosable since there exists an F-cycle in the Verifier.

In the discussion so far, we only considered one fault class. In the case of r fault classes we need to construct
r Verifiers, one for each fault class. When verifying the codiagnosability wrt T i

f , all fault transitions in

Tf \ T i
f should be considered as regular unobservable transitions.

We conclude this section with a brief discussion on the complexity of the proposed method. The size of
the state space of the EBRG, in the worst case, is equal to that of the reachability graph. However, the
EBRG has significantly fewer states than the reachability graph in most cases. For example, the number
of reachable markings of the PN in Example 1 is (8+k−1

k ), while the number of states in the EBRGs is
k + 1.

Let x be the number of nodes in Ge, i.e., x = |Me|. Assume that the PN system is monitored by ν local
sites and has r fault classes. According to Algorithm 2, the number of nodes and edges in the Verifier
are at most equal to 2xν+1 and 2xν+1 × |T |ν+1, respectively. Moreover, we need to check all cycles in
the Verifier. This can be computed by Tarjan’s strongly connected components algorithm [16], whose
complexity is linear in the sum of the number of nodes and arcs in the Verifier, i.e., O((x × |T |)ν+1).
Hence, the overall complexity is O((x× |T |)ν+1 × r).

Therefore the advantage of the proposed approach lies in the use of basis markings rather than exhaus-
tively enumerating the set of reachable markings. The numerical example above clearly highlights this.
However, as discussed in other papers, we cannot a priori quantify such an advantage since it depends
on the structure of the net, on the labeling function, and on the initial marking.

6 K-codiagnosability

A labeled PN system monitored by a set of local sites is K-codiagnosable wrt a given fault class if faults
in that class can be detected in at most K observations after the occurrence of the fault. The formal
definition of K-codiagnosability follows.

Definition 11 Consider a labeled PN system (N,m0,L) and an integer K. Assume that (N,m0,L) is
monitored by a set J = {1, 2, ..., ν} of local sites. The labeled PN system (N,m0,L) is K-codiagnosable
wrt the i-th fault class T i

f if there does not exist a transition sequence σ such that: (1) T i
f ∩ σ ̸= ∅; (2) σ

is failure ambiguous wrt T i
f ; (3) the number of observable transitions in σ after the first occurrence of a

fault transition tf ∈ T i
f is K.

The labeled PN system (N,m0,L) is K-codiagnosable if it is K-codiagnosable wrt all fault classes.

Obviously, a K-codiagnosable PN system is also K ′-codiagnosable if K ′ > K. In this section, we provide
an algorithm to compute the smallest value of K, denoted by Kmin such that the system is Kmin-
codiagnosable. The proposed approach is based on the notion of Verifier. Therefore, for the sake of
simplicity, we present it under the assumption of a single fault class.
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Based on the results in Section 5, we know that a system is codiagnosable if and only if all paths in the
Verifier that contain F-states end in a deadlock state. Indeed, if such is not the case, it means that there
are faulty paths of infinite length and the system is not codiagnosable. Furthermore, based on the above
definition, the value of Kmin is equal to the maximum number of observable transitions after the first
occurrence of a fault in a path containing F-states, plus one.

Before providing the algorithm for the computation of Kmin, let us introduce a preliminary definition.

Definition 12 Let V = (MV , EV ,∆V ,mV
0 ) be the Verifier of a given labeled PN system (N,m0,L)

constructed by Algorithm 2. Let ZF be the set of F-states of the Verifier. The observable delay wrt an

F-state z ∈ ZF is defined as od(z) = {1 + max |Po(φ(σ
V ))| | σV ∈ (EV )∗, (∃z′ ∈ ZF ) : z

σV

−−→ z′}.

In simple words, the observable delay of an F-state z is equal to the maximum number of transitions that
could be observed starting from state z. Such a number is obviously finite if the system is codiagnosable
since in such a case, a deadlock state is reached in a finite number of steps. Note that in the above
definition, being z ∈ ZF , it is also z′ ∈ ZF since an N-state cannot be reached from an F-state.

Clearly, it is Kmin = max
z∈ZF

od(z).

Algorithm 3: [Computation of Kmin]

Input: A labeled PN system (N,m0,L).

Output: Kmin.

1. Construct the Verifier V of (N,m0,L) and check if (N,m0,L) is codiagnosable.
2. If (N,m0,L) is codiagnosable, then

2.1. Let k = 0, stop = False, Γ = ∅ and ∀z ∈ ZF : od0(z) = 1.
2.2. While not stop, do

• k = k + 1.
• for all z ∈ ZF , do

· for all z′ ∈ ZF such that ∃(λ, λ1, λ2) ∈ EV : z
(λ,λ1,λ2)−−−−−−→ z′, do

if λ ∈ To, then γ = odk−1(z′) + 1;
else γ = odk−1(z′).
Γ = Γ ∪ {γ}.

· let odk(z) = max{odk−1(z),max
γ∈Γ

γ}.

· let Γ = ∅.
• if ∀z ∈ ZF , od

k(z) = odk−1(z), then stop = True.
2.3. Let Kmin = max

z∈ZF

odk(z).

The above algorithm could be explained as follows. The observable delay is initialized at “1” for each
F-state (Step 2.1), which means that a fault is detected observing at least an observable transition after
its occurrence. Step 2.2 iteratively updates the observable delay of all the F-states counting the number
of observable transitions contained in faulty paths starting from them. Step 2.2 is executed until the value
of the observable delay of each F-state no longer changes. Finally, Kmin is computed at Step 2.3 as the
maximum observable delay wrt all the F-states.

Example 7 Consider the labeled PN system (N,m0,L) in Fig. 4, where To = {t2− t5, t7}, Tu = {t1, t6},
Tf = {t1} and m0 = [1 0 0 0 0]T . The labeling function is defined as follows: L(t2) = L(t3) = L(t4) = a,
L(t5) = b and L(t7) = c. EBMs are: m0 = [1 0 0 0 0]T , m1 = [0 1 0 0 0]T , m2 = [0 0 1 0 0]T ,
m3 = [0 0 0 1 0]T , m4 = [0 0 0 0 1]T . Assume that the PN is monitored by two local sites whose alphabets
are equal to A1 = {a, c} and A2 = {b, c}, respectively. The Verifier V of the PN system is shown in

13



1p

1t

4p

2p

5|b t

3p

2|a t

3|a t

6t

4|a t

5p

7|c t

Fig. 4. A labeled PN system (N,m0,L).

0 0 0,N; ;m m m
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4 4 0,N; ;m m m
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4 2 0,F; ;m m m
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7 7 7( , , )t t t
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7 7 7( , , )t t t

7 7 7( , , )t t t

Fig. 5. The Verifier of the PN system in Example 7.

Fig. 5. By Corollary 1, the PN system is codiagnosable.

The set of F-states is ZF = {(m1,F;m0;m0), (m4,F;m2,m0)}. By Algorithm 3, od(m1,F;m0;m0) = 2
and od(m4,F;m2,m0) = 1. Thus, Kmin = 2. Hence, the labeled PN system (N,m0,L) is 2-codiagnosable.

In the case of r fault classes, the approach should be applied r times separately, considering one fault
class at a time and the transitions in the other fault classes as regular unobservable transitions. A value
of Kmin,i is computed for each fault class. The system is Kmin-codiagnosable for Kmin = max

i=1,2,...,r
Kmin,i.

7 Conclusions and future work

This paper proposes a new approach to verify codiagnosability of labeled bounded Petri nets. It is based on
the result that a necessary and sufficient condition for codiagnosability is the absence of failure ambiguous
sequences that are arbitrarily long after the occurrence of any fault. An automaton, called Verifier, is
constructed to detect the presence of such kind of sequences. The main feature of the proposed method
is that it uses the notion of basis marking thus avoiding exhaustive enumeration of the state space.

Our future efforts will be twofold. First we plan to develop efficient codiagnosability analysis approaches
for unbounded Petri nets. Second, we plan to study fault diagnosis in a distributed setting, namely
assuming that there is no coordinator but the sites could communicate with each other according to a
given communication topology network.
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