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Abstract

In this paper we tackle the opacity enforcement problem in discrete event systems using supervisory control theory. In

particular, we consider the case where the intruder and the supervisor may observe different sets of events and neither of these

sets needs to be contained in the other one. Moreover, there may be controllable events that cannot be observed by the supervisor.

We propose a finite structure, called an augmented I-observer, to characterize the strings that will not leak the secret. Based on

such a structure, a locally optimal supervisor enforcing current-state opacity is designed.
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I. INTRODUCTION

Motivated by the concern about security and privacy in computer systems, communication protocols, etc., various notions of

secrecy have been formulated, such as non-interference [1], [2], anonymity [3], [4] and opacity [5], [6], [7], [8], [9]. Among

them opacity is a useful notion for describing in a unitary framework some other security properties such as trace-based

non-interference and anonymity [10]. In this paper we focus on an opacity property, called current-state opacity, in discrete

event systems (DES). This opacity property was introduced in [6]. Given a system, a subset of its states is considered as

“secret”. There exists a malicious observer (called intruder) who attempts to detect when the system is in a secret state so

that an attack can be launched. It is usually assumed that the intruder knows the structure of the system but has only partial

observation of the system’s evolution. The system is said to be current-state opaque with respect to the given secret if based

on its observations the intruder cannot determine with certainty if the current state of the system belongs to the secret.

It is proven that opacity verification problems in bounded systems are decidable [40]. There are several ways to verify opacity

using the so-called observer automaton [7], [9], [11], [12] or Petri net based techniques [13], [14], [15], [16]. Meanwhile, the

opacity enforcement problem is another active topic that has received a lot of attention in the DES community. Given a system

that is not opaque, the opacity enforcement problem consists in turning the system into an opaque one. Approaches to opacity

enforcement may rely on supervisory control [17], [18], [19], [20], [21], dynamically restraining the observability of events

[22], inserting additional events in the output behavior of the system [23], [24] and the runtime validation technique [25]. The

aim of this work is to enforce current-state opacity [6], [9] using supervisory control.

Given a system that is not current-state opaque with respect to a given secret, our purpose is to design a maximally permissive

supervisor that restricts the behavior of the system to ensure that the controlled system is current-state opaque. There has been

some related work on the design of supervisors to enforce opacity properties. In [26], the authors consider the secret defined

as a set of event sequences (such an opacity property is usually called language-based opacity) and a set of intruders having

different observations. They assume that all events are observable and controllable to the supervisor, and show that the optimal

supervisor always exists. Considering the same language-based opacity enforcement problem but with only one intruder, Dubreil

et al. [18], [27] study a more general case where the supervisor may observe a set of events different from the one observed by

the intruder in the presence of uncontrollable events. [20] propose methods for designing optimal supervisors to enforce two

different opacity properties: initial-state opacity and infinite-step opacity, with the assumption that the supervisor can observe

all events. More recently, the common assumption that all controllable events are also observable [18], [20], [26], [27] is

relaxed in [21] to enforce current-state opacity.

We point out that all the aforementioned works are carried out in the framework of finite automata and rely on Ramadge and

Wonham’s basic theory of supervisory control for DES [28]. Note that the objective of opacity enforcement is not concerned

with liveness since opacity properties focus on a set of indiscernible runs from the perspective of the intruder instead of

individual runs. In this paper we tackle the current-state opacity enforcement problem in the framework of finite automata and

what distinguishes our work from the existing works consists in three aspects.

• No containment relation is assumed between the sets EI , ES of events observable by the intruder and by the supervisor,

respectively. We call this general setting incomparable observations. In this sense, the problem considered here is more

general than the one in [18], [20], [21], [26], [27].

• We also relax the assumption made in [17], [18], [19], [20], [29] that all controllable events EC should be observable.

• Finally, we consider the problem of enforcing opacity under the assumption that the intruder does not know that a supervisor
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TABLE I
COMPARISON BETWEEN THE PROPOSED APPROACH AND PREVIOUS APPROACHES.

Works [18] [21] [29] This Paper

Assumptions
EI ⊆ ES

(or ES ⊆ EI ) EI ⊆ ES EC ⊆ ES None
EC ⊆ ES

Does the
intruder know Yes Yes No No
the supervisor?

Complexity O(|X| × 2|X|) O(22(|X|+|EC |)) O(22
2|X|

) O(22(|X|×2|X|+|EC |))

is acting on the system. To address this problem, we define G-opacity of a language. We show that if a controlled system

Sup/G is current-state opaque then its generated language L(Sup/G) is G-opaque but the converse does not hold in the

general case. However, if the intruder does not know the supervisor, L(Sup/G) being G-opaque is sufficient to guarantee

that the intruder cannot detect if the current state belongs to the secret.

To be more clear, comparison between the proposed approach and previous ones [18], [21], [29] is summarized in Table I.

All the approaches are developed for deterministic finite automata but under different assumptions. The last row of Table I

presents their computational complexity, where X is the set of states of the system and EC is the set of controllable events.

Note that the assumption that the intruder does not know the supervisor simplifies the problem of opacity enforcing due to the

incomplete structural information available to the supervisor’s adversary.

In this paper, first a structure called augmented I-observer is constructed. The augmented I-observer of a system is a

deterministic finite automaton, where each state contains the current-state estimate of the intruder. Based on the augmented

I-observer, evolutions of the system that satisfy current-state opacity can be characterized. Then we show that the current-state

opacity enforcement problem can be reduced to the basic supervisory control problem under partial observation [30]. Note

that the maximally permissive supervisor enforcing current-state opacity may not be unique. Thus we obtain a set of locally

optimal supervisors where the adverb “locally” points out that the behavior of the controlled system under each of them is

not strictly included in another. Finally, we show that based on the proposed approach it is possible to solve current-state

opacity enforcement problem assuming that the intruder does not know the supervisor. To summarize, there are three main

contributions of the paper:

• The definition of G-opacity of a language that enables us to formalize the opacity enforcement problem under the

assumption that the intruder has no knowledge (or at most a partial knowledge) of the superviso,

• The definition of a novel finite structure, the augmented I-observer, that enables one to relax the assumptions ES ⊆ EI

(or EI ⊆ ES) and EC ⊆ ES , and

• The demonstration that based on the notion of G-opacity and the augmented I-observer, the current-state opacity enforce-

ment problem can be reduced to the basic supervisory control problem under partial observation, which is a result that has

not been previously discussed in the literature. Then, locally optimal supervisors are achieved using appropriate supervisory

control techniques.

This paper improves the results presented in the previous work [29] to a more general setting, by removing the assumption

that all events controllable by the supervisor should be observable. In addition, under the same assumptions, the proposed

approach has lower complexity than the approach in [29].

The rest of this paper is organized as follows. Basic notions on automata and supervisory control theory are recalled in
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Section II. Section III presents the definition of current-state opacity and the corresponding verification approach. In Section IV

the current-state opacity enforcement problem is formalized and a method for the synthesis of an optimal supervisor is proposed.

Finally, this paper is concluded in Section V, where our future work in this topic is also discussed.

II. BACKGROUND

In this section we recall some elementary notions on automata and supervisory control. For more details, we refer the reader

to [28], [30].

A. Automata

A system is modeled in this paper as a deterministic finite automaton (DFA) G = (X,E, δ, x0), where X is the finite set

of states, E is the set of events, δ : X ×E → X is the (partial) transition function, x0 ∈ X is the initial state. The transition

function can be extended to δ : X ×E∗ → X recursively: for all x ∈ X , δ(x, ε) = x and δ(x, σe) = δ(δ(x, σ), e) for σ ∈ E∗

and e ∈ E. We denote by δ(x, σ)! the fact that σ is defined at x. The generated language of a DFA G = (X,E, δ, x0) is

defined as

L(G) = {σ ∈ E∗|δ(x0, σ)!}.

A string σ′ is a prefix of a string σ ∈ E∗ if for some σ′′ ∈ E∗, σ = σ′σ′′. The prefix closure of a language L ⊆ E∗ is

defined to be the language

L = {σ′ ∈ E∗|σ′σ′′ ∈ L for some σ′′ ∈ E∗}.

If L = L, we say that L is prefix-closed. Clearly, the generated language of a DFA is always prefix-closed, i.e., L(G) = L(G).

To model the partial observation of event sequences by the intruder and the supervisor, we denote by EI ⊆ E and ES ⊆ E

the sets of events observable by the intruder and the supervisor, respectively. The natural projection PI : E∗ → E∗
I on EI is

defined as i) PI(ε) = ε; ii) for all σ ∈ E∗ and e ∈ E, PI(σe) = PI(σ)e if e ∈ EI , and PI(σe) = PI(σ), otherwise. Similarly,

the natural projection PS : E∗ → E∗
S on ES can be defined. Given an event sequence σ ∈ E∗, its projection wi = PI(σ) (resp.,

ws = PS(σ)) on EI (resp., ES) is called an observation of the intruder (resp., supervisor). We denote by EUI (resp., EUS)

the set of events that cannot be observed by the intruder (resp., supervisor). We denote by EC ⊆ E (resp. EUC = E \ EC)

the set of events that can (resp. cannot) be controlled by the supervisor.

Definition 2.1 (Unobservable Reach): Given a system G = (X,E, δ, x0) and a state x, the unobservable reach RI(x, ε) of

x with respect to the intruder is

RI(x, ε) = {x′ ∈ X|∃σ ∈ E∗
UI : δ(x, σ) = x′}.

⋄

Obviously, x ∈ RI(x, ε). Given an event e ∈ EI , the e-reach RI(x, e) of x is defined as RI(x, e) = RI(x
′, ε), where

x′ = δ(x, e).

B. Supervisory Control

Given a system G = (X,E, δ, x0), the goal of supervisory control is to design a control agent (called supervisor) that

restricts the behavior of the system within a specification language K ⊆ L(G). The supervisor observes a set of observable

events ES ⊆ E and is able to control a set of controllable events EC ⊆ E. The supervisor enables or disables controllable
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Fig. 1. Supervisory control under partial observation

events. When an event is enabled (resp., disabled) by the supervisor, all transitions labeled by the event are allowed to occur

(resp., prevented from occurring). After the supervisor observes a string generated by the system it tells the system the set of

events that are enabled next to ensure that the system will not violate the specification. A supervisor can be represented by

Sup = (Y,ES , δs, y0,Ψ), where (Y,ES , δs, y0) is an automaton and

Ψ : Y → {E′ ⊆ E|EUC ⊆ E′}

specifies the set of events enabled by the supervisor in each state. Fig. 1 illustrates the paradigm of supervisory control under

partial observation. Let σ ∈ L(G) be the string generated by the system and ws = PS(σ) be the corresponding observation of

the supervisor. Then the set of events enabled by the supervisor is Ψ(y), where y = δs(y0, ws). System G under the control

of a suitable supervisor Sup is denoted as Sup/G, and it satisfies L(Sup/G) ⊆ K.

Definition 2.2 (Controllability): [28] Given a DFA G, a set of controllable events EC , and a language K ⊆ L(G), K is

said to be controllable (wrt L(G) and EC ) if

KEUC ∩ L(G) ⊆ K,

where EUC = E \ EC . ⋄

In other words, the controllability of K requires that for any prefix σ of a string in K, if σ followed by an uncontrollable

event e ∈ EUC is in L(G), then it must also be a prefix of a string in K. It is known that controllability is preserved under

arbitrary unions and consequently the supremal controllable sublanguage of a given language exists.

Definition 2.3 (Observability): [28] Given a DFA G, a set of controllable events EC , a set of observable events ES , and

a language K ⊆ L(G), K is said to be observable (wrt L(G), ES and EC) if for all σ, σ′ ∈ K and all e ∈ EC such that

σe ∈ L(G), σ′e ∈ K and PS(σ) = PS(σ
′), σe ∈ K holds. ⋄

Roughly speaking, observability requires that supervisor’s observation of the system (i.e., the projection of σ on ES) provides

sufficient information to decide after the occurrence of a controllable event whether the resultant string is still in K. Unlike

controllability, observability is however not preserved under union, therefore the supremal observable sublanguage of a given

language may not exist. However maximal observable sublanguages exist, but are not usually unique.

Theorem 2.4: [28] Let K ⊆ L(G) be a prefix-closed nonempty language, EC the set of controllable events and ES the set

of observable events. There exists a supervisor Sup such that L(Sup/G) = K if and only if K is controllable and observable.

Definition 2.5 (Supervisory Control and Observation Problem, SCOP): Given a system G, a set of controllable events EC ,

a set of observable events ES by the supervisor, and a specification language K ⊆ L(G), find a locally optimal supervisor
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Fig. 2. System G where ES = {a}, EC = {a, b, c} and states 3 and 5 should be unreachable.

Sup such that:

1) L(Sup/G) ⊆ K

2) L(Sup/G) is maximal, i.e., for any other supervisor Sup′,

L(Sup/G′) ⊆ K ⇒ L(Sup/G) ̸⊂ L(Sup′/G).

⋄

A SCOP involves the system1 G, the set ES of events observable by the supervisor, the set EC of events controllable by

the supervisor, and the specification language K. To be concise, we call this problem SCOP(G,ES , EC ,K).

Since the supremal observable sublanguage may not exist, there may not be the supremal controllable and observable

sublanguage of a given language. Consequently, there may be multiple solutions to a SCOP and they are said to be “locally

optimal” since under the control of the corresponding supervisors, the behaviors of the controlled system are incomparable.

The SCOP has been considered in the literature and many different methods have been proposed to solve it [31], [32], [33],

[34], [35], [36]; in this work we briefly introduce the approach recently presented in [35].

C. Approach Based on the Total Controller

The authors of [35] propose a structure, called total controller, based on which all locally optimal supervisors of the

SCOP can be computed. Given a SCOP(G,ES , EC ,K) with K = L(H), it is assumed, without loss of generality, that

H = (XH , E, δH , xH,0) is a strict sub-automaton2 of G. In other words, the language specification K of a SCOP is reduced

to a state specification: a state x ∈ X is legal iff x ∈ XH , i.e., σ ∈ K with x = δ(x0, σ). We denote by F = X \XH the set

of forbidden states. In this subsection, such an approach is introduced through a numerical example.

Consider the system G = (X,E, δ, x0) in Fig. 2, where ES = {a} and EC = {a, b, c}. The set of forbidden states is

F = {3, 5}. The approach proposed by Yin and Lafortune [35] can be summarized as follows. First, construct a finite structure

called a total controller, which enumerates all possible control policies of the system. In the total controller there are two types

of states: Y-states Y ⊆ X in rounded boxes and Z-states Z = (Z, I) in rectangles, where Z ⊆ X and I is a control decision,

i.e., it contains the set of events enabled by the supervisor. The initial state of the total controller is Y0 = {x0}. Y-states are

driven to Z-states by control decisions. At each Y-state Y , we enumerate all control decisions3, and then the successor Z-state

corresponding to a control decision is computed: Z is the set of states reachable from Y by firing unobservable events enabled

by the control decision and I is the control decision. For instance, in Fig. 3, from Y-state {1}, for control decision {b} the

1Properly speaking, the SCOP concerns the language L(G).
2If H is not a strict subautomaton of G, the algorithm in [37] can be used to transform both of them to G′ and H′, respectively, such that H′ is a strict

subautomaton of G′.
3For the system in Fig. 2, there is no need to enumerate all control decisions when Y-state is {0} or {1}. Indeed, from state 0, observable event a would

never occur before b and c, therefore all other control policies are equivalent to {a} or {}. From state 1, event a would never be executed. As a result, control
policies containing a are redundant.
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Fig. 3. Total controller of G in Fig. 2. Removing the state in the dashed box, the all inclusive controller is obtained.

0 1
a

Fig. 4. The automaton structure of the two locally optimal supervisors: for Sup1, Ψ(0) = {a} and Ψ(1) = {b}; for Sup2, Ψ(0) = {a} and Ψ(1) = {c}.

Z-state reached is ({1, 2}, {b}) and for control decision {b, c} the Z-state reached is ({1 − 5}, {b, c}). Z-states are driven to

Y-states by observable events e ∈ ES that are defined at a state in Z and enabled by the control decision I . The successor

Y-state is the set of states reachable from a state in Z after the occurrence of e. For instance, from Z-state ({0}, {a}) event a

is enabled at 0 and is allowed by the control decision, therefore the Y-state reached is {1}.

After the total controller is constructed, removing all the Y-states and Z-states that contain a forbidden state (i.e., 3 and 5

in this case) and the related arcs, the all inclusive controller is obtained. In Fig. 3 ({1− 5}, {b, c}) is such a state and should

be removed. The all inclusive controller models all the control policies that enforce the specification language. Finally, after

each Y-state we pick a control decision that is not a strict subset of any other decisions. A combination of those local maximal

control decisions corresponds to a locally optimal supervisor.

It has been proven that the time complexity of the approach proposed in [35] to solve the SCOP is O(|X||E|2|X|+|EC |). In

Fig. 3, each locally maximal control decision is colored. There are two optimal supervisors Sup1 and Sup2 (see Fig. 4) and

the behaviors of the controlled system under different supervisors are L(Sup/G1) = {ε, a, ab} and L(Sup/G2) = {ε, a, ac},

respectively.

III. CURRENT-STATE OPACITY AND ITS VERIFICATION

Current-state opacity has been defined in both automata and Petri nets frameworks [6], [9], [13], [38]. In this section, we

recall the definition of current-state opacity in finite automata and describe the approach in [38] to checking this property.

Given a system, it is usually assumed that the intruder knows the system’s structure G but only the occurrence of some

events can be detected by the intruder. Current-state opacity is defined as follows.

Definition 3.1 (Current-State Opacity): Given a system G = (X,E, δ, x0), a secret S ⊆ X , and a set EI of events observable
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by the intruder, G is said to be current-state opaque (CSO) wrt S and EI if ∀σ ∈ L(G) such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(G) : PI(σ
′) = PI(σ) and δ(x0, σ

′) /∈ S.

⋄

In simple words, for any sequence of events σ that leads to a state in the secret, i.e., a secret state, there exists at least

one sequence of events that reaches a non-secret state but produces the same observation PI(σ) to the intruder. Therefore,

when the intruder observes PI(σ), it cannot conclude whether the current state is contained or not in the secret. Based on the

system’s structure and its observation, the intruder can estimate the current state.

Definition 3.2 (Estimate of the Intruder): Given a system G = (X,E, δ, x0) and an observation wi of the intruder, the

estimate of the intruder is defined as

CI(wi) = {x ∈ X|∃σ ∈ E∗ : δ(x0, σ) = x, PI(σ) = wi}.

⋄

Therefore, if the intruder observes a sequence of events wi, it knows that the current state could be any state in the set

CI(wi). Obviously, CI(ε) = RI(x0, ε). The estimate of the intruder after observing wi can be iteratively computed by

CI(wi) =
∪

x∈CI(w′
i)

RI(x, e), (1)

where wi = w′
ie, w′

i ∈ E∗
I , and e ∈ EI [30].

Theorem 3.3: [38] Let G = (X,E, δ, x0) be the system, S ⊆ X be the secret and EI be the set of events observable by

the intruder. The system is current-state opaque wrt S and EI if and only if for all σ ∈ L(G),

CI(wi) * S,

where wi = PI(σ).

In simple words, to verify if a system is current-state opaque wrt the given secret, one needs to compute the intruder’s

estimate CI(PI(σ)) for all words σ ∈ L(G) generated by the system and check whether CI(PI(σ)) * S holds. This can be

done by constructing the observer (defined in Section 2.5.2 of [30]) of the system for the intruder (i.e., wrt EI ). The observer

captures all state estimates of the intruder. More specifically, the state of the observer reached by wi is equal to CI(wi).

Therefore, we can use the observer to verify current-state opacity. The algorithm to construct the observer can also be found

in [30]. Herein, it is not recalled for the sake of brevity.

Example 3.4: Consider the system in Fig. 5. Let EI = {o2} and S = {5} (the secret state is in a box). The corresponding

observer for the intruder is shown in Fig. 6. Since there exists wi = o2 such that CI(wi) = {5} ⊆ S, by Theorem 3.3, the

system is not current-state opaque wrt S and EI . ⋄

Let us introduce the following notion of opacity that is related to a sublanguage of the generated language of the system

and is useful to formalize the result of the work.

Definition 3.5 (G-opaque Language): Given a system G = (X,E, δ, x0), a secret S ⊆ X and a set EI of events observable

by the intruder, a sublanguage L ⊆ L(G) is said to be G-opaque (wrt S and EI ) if ∀σ ∈ L such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(G) : δ(x0, σ
′) /∈ S, PI(σ) = PI(σ

′).
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Fig. 5. System G that is not CSO wrt S = {5} and EI = {o2} in Example 3.4.

{0-6}
o2

{5}

Fig. 6. Observer of the system in Fig. 5 for the intruder.

⋄

Clearly, by Definitions 3.1 and 3.5, Corollary 3.6 follows.

Corollary 3.6: Given a system G = (X,E, δ, x0), a secret S ⊆ X and a set EI of events observable by the intruder, G is

current-state opaque wrt S and EI if and only if L(G) is G-opaque.

In other words, CSO of a system G is equivalent to G-opacity of its generated language.

Proposition 3.7: Given a system G, a secret S ⊆ X , a set EI of events observable by the intruder, and two G-opaque

languages L1, L2 ⊆ L(G), then it holds:

i) L1 ∪ L2 is G-opaque;

ii) ∀L ⊆ L1, L is G-opaque.

Proof: i) By assumption, Li (with i = 1, 2) is G-opaque. By Definition 3.5, for all σ ∈ Li, CI(PI(σ)) * S. Therefore,

for all σ ∈ L1 ∪L2, CI(PI(σ)) * S, i.e., L1 ∪L2 is G-opaque. ii) Given a subset L of Li, for all σ ∈ L, CI(PI(σ)) * S, i.e.,

L is G-opaque.

The G-opacity property of a language is closed under union, and the supremal G-opaque sublanguage of a given language

exists. Any sublanguage of a G-opaque language is still G-opaque.

Proposition 3.8: Let Sup/G be the controlled system of G = (X,E, δ, x0) under a supervisor Sup, EI ⊆ E the set of

events observable by the intruder, and S ⊆ X the secret. Given a language L ⊆ L(G), if L is Sup/G-opaque wrt S and EI

then L is G-opaque wrt S and EI .

Proof: Assume that L is Sup/G-opaque. Then for all σ ∈ L such that δ(x0, σ) ∈ S, there exists σ′ ∈ L(Sup/G) such

that δ(x0, σ
′) /∈ S and PI(σ) = PI(σ

′). Since L(Sup/G) ⊆ L(G), there also exists σ′ ∈ L(G) such that δ(x0, σ
′) /∈ S and

PI(σ) = PI(σ
′). Therefore, L is G-opaque wrt S and EI .

If L(Sup/G) ⊆ L(G) is Sup/G-opaque (i.e., Sup/G is CSO) then L(Sup/G) is also G-opaque. Note that the converse

of Proposition 3.8 is not true. In other words, even if the generated language L(Sup/G) of a controlled system Sup/G is

G-opaque wrt S and EI , the controlled system Sup/G may not be CSO wrt S and EI . Therefore, CSO of Sup/G generally
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is a stronger requirement than L(Sup/G) being G-opaque.

Example 3.9: Consider the system G in Fig. 5 and its controlled system Sup2/G in Fig. 12(b). Let S = {5}, EI = {o1, o2},

ES = {o1}, and EC = {a, b, c}. Clearly, L(Sup2/G) is G-opaque wrt S and EI but not Sup2/G-opaque. Namely, Sup2/G

is not CSO wrt S and EI . Indeed, when the intruder observes o1, if it knows the structure of Sup2/G, its estimate would

be CI(o1) = {5} ⊆ S, i.e., Sup2/G is not CSO; on the contrary, if the intruder does not know the structure of Sup2/G, its

estimate would be CI(o1) = {2, 5, 6} * S, i.e., the intruder is not able to discover the secret. ⋄

Example 3.9 also shows that if the intruder knows the supervisor Sup, to guarantee that the intruder does not discover the

secret, L(Sup/G) should be Sup/G-opaque. On the contrary, if the intruder does not know the supervisor Sup, it is sufficient

that L(Sup/G) is G-opaque. In the latter case, the problem is equivalent to synthesizing a supervisor Sup of G such that

L(Sup/G) is G-opaque, which is clearly a weaker condition than Sup/G being CSO.

Note that G-opacity of L(Sup/G) may guarantee that the intruder cannot infer the secret also in some cases where the

intruder knows that there is a supervisor acting on the system but has no sufficient information to determine it exactly.

Suppose that the intruder knows that there is a supervisor and has some information on ES and EC but not precise. Then the

intruder may synthesize an estimated supervisor Sup′ on G such that L(Sup′/G) is Sup′/G-opaque. However, if L(Sup/G)

is Sup′/G-opaque, then the intruder is still not able to discover the secret.

Example 3.10: Consider Example 3.9 again. Suppose now that the intruder knows that there is a supervisor and believes

the supervisor can observe E′
S = {a, o1}, and can control E′

C = {b, c}, which are different from what the supervisor really

can observe and control. The estimated supervisor synthesized based on E′
S and E′

C is Sup′ which disables event b when

observing nothing. Consider the supervisor Sup2 defined in Example 3.9. It is easy to see that, L(Sup2/G) is Sup′/G-opaque

wrt S and EI . Therefore, under the control of Sup2 the intruder is still not able to infer the secret. ⋄

For simplicity, in the remainder of the paper it is directly assumed that the intruder does not know that a supervisor is

controlling the plant to enforce opacity at all. Introducing such an assumption enables us to solve opacity enforcement using

supervisory control in an efficient way. Meanwhile, imposing such an assumption is reasonable and meaningful. Indeed, this

is realistic in many practical situations. Furthermore, it is interesting from a theoretical point of view since it provides some

insights into tackling more general and complicated problems.

IV. CURRENT-STATE OPACITY ENFORCEMENT BY CONTROL

Given a system that is not current-state opaque wrt a secret, an interesting question is how to restrict its behavior or how to

modify the observation structure such that the secret will never be revealed to the intruder. In this work we address the first

issue using supervisory control theory [28]. The supervisor will restrict the system’s behavior to prevent the evolutions leaking

the secret. In this section, we present a novel approach to designing a locally optimal supervisor enforcing current-state opacity

without assuming any containment relationship between ES and EI , and between EC and ES .

A. Problem Formulation

The problem we want to solve in this work can be formalized as follows.

Definition 4.1 (Current-State Opacity Enforcement Problem, CSOEP): Given a system G = (X,E, δ, x0), a secret S ⊆ X ,

a set EI of events observable by the intruder, a set ES of events observable by the supervisor, and a set EC of controllable

events, synthesize a locally optimal supervisor Sup such that

1) L(Sup/G) is G-opaque wrt S and EI ;
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TABLE II
OBSERVABLE AND CONTROLLABLE EVENTS IN EXAMPLE 4.2.

Events EI ES EC

o1 ×
√

×
o2

√
× ×

a × ×
√

b × ×
√

c × ×
√

2) For any other supervisor Sup′ such that L(Sup′/G) is G-opaque wrt S and EI it holds

L(Sup/G) ̸⊂ L(Sup′/G).

⋄

A CSOEP involves the system G, the set EI of events observable by the intruder, the secret S, the set ES of events

observable by the supervisor and the set EC of events controllable by the supervisor. To be concise, this problem is denoted

as CSOEP(G,EI , S, ES , EC). A solution to the CSOEP is called a locally optimal supervisor.

Example 4.2: Consider again the system in Fig. 5. From Example 3.4 we know that the system is not current-state opaque

wrt S = {5} and EI = {o2}. Now we want to design a locally optimal supervisor Sup, so that L(Sup/G) is G-opaque. The

sets of events observable\controllable by the intruder and the supervisor are shown in Table II. In this case, EI and ES are

not comparable, i.e., neither EI ⊆ ES nor ES ⊆ EI holds, and not all controllable events are observable, i.e., EC ̸⊆ ES . ⋄

Proposition 4.3: There exists a solution to the CSOEP if and only if there exists a prefix-closed language K ⊆ L(G) such

that

1) K is controllable (wrt L(G) and EC) and observable (wrt L(G), ES and EC );

2) K is G-opaque (wrt S and EI );

3) For any other controllable, observable and G-opaque language K ′ ⊆ L(G), K ̸⊂ K ′.

Proof: By Theorem 2.4, the first item is a necessary and sufficient condition for the existence of a supervisor that restricts

the behaviour of the system to K. Items 2 and 3 correspond to items 1 and 2, respectively, of Definition 8 that formalizes the

requirements that a supervisor has to satisfy for being a locally optimal solution to the CSOEP.

Thus, to solve the CSOEP we have to compute a prefix-closed maximal controllable, observable and G-opaque sublanguage

of L(G). It is known that the supremal observable sublanguage may not exist. Therefore such a maximal controllable, observable

and G-opaque sublanguage, if it exists, may not be unique. In other words, there may exist a set of locally optimal supervisors.

In the next subsection, we introduce a structure, called augmented I-observer, based on which the supremal G-opaque

sublanguage can be characterized and the optimal supervisors can be designed.

B. Synthesis of Locally Optimal Supervisors

To design locally optimal supervisors, we have to characterize a maximal controllable and observable behavior of the system

such that the secret will never be leaked. To do this, we need to first characterize the supremal G-opaque sublanguage of the

system as the specification language K, and then compute a maximal controllable and observable sublanguage of K. Indeed,

by Proposition 3.7 if a language is G-opaque, any sublanguage of it is still G-opaque. Unfortunately, the absence of specific

containment relationships between sets EI and ES makes the solution via a single structure, as in [18], [21], tricky. In the
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Fig. 7. System G that is not CSO wrt S = {5} and EI = {a, d}.
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Fig. 8. Parallel composition N of the observers for the intruder and the supervisor.

following we provide an example where the approach in [18] fails since none of the containment relationships EI ⊆ ES or

ES ⊆ EI holds.

Example 4.4: Consider the system in Fig. 7. Let EI = {a, d}, ES = {b, c}, EC = {c}, and S = {5}. Obviously, the

system is not opaque wrt S and EI since when the intruder observes ad it unambiguously knows that the current state is 5.

According to [18], observers of the system for the intruder and the supervisor should be constructed first. Then we have to

compute the parallel composition N of these two observers to characterize the behavior that would leak the secret and that

should be forbidden (see Fig. 8, states in shadow should be unreachable).

Finally, by computing the observer (wrt ES) of the parallel composition structure the optimal supervisor can be obtained.

Without the assumption EI ⊆ ES or ES ⊆ EI , the parallel composition between the observers would introduce event

sequences (e.g., σ = abd) not belonging to Po(L(G)), where Po : E∗ → (EI ∪ES)
∗. In the case at hand, being Eo = E, it is

Po(L(G)) = L(G). As a result, the behavior of the system would be over restricted. For instance, sequence ab does not leak

the secret. However, it should be disabled: N tells that after uncontrollable event d occurs, sequence abd will lead to a state

in shadow. Therefore, the obtained supervisor would not be optimal, or even no such an opacity enforcing supervisor exists

(as in the case at hand). Note that assuming EC = {o1} = ES the approach in [18] coincidentally works for Example 4.2

though neither EI ⊆ ES nor ES ⊆ EI holds. ⋄
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In this work, we show that locally optimal supervisors for the CSOEP can be designed in two phases, without assuming

EI ⊆ ES , or ES ⊆ EI , or EC ⊆ ES . First, by introducing a structure, called augmented I-observer, the supremal G-opaque

sublanguage can be computed. Then, applying the method recalled in Section II-C to the augmented I-observer, the locally

optimal supervisors can be designed.

The augmented I-observer of system G = (X,E, δ, x0) is a DFA denoted as A = (Q,E, δa, q0) and consists in the parallel

composition of the observer for the intruder and the system G. In more detail, a state q ∈ Q of A is a pair (CI , x), where

CI ⊆ X and x ⊆ X . The initial state of the augmented I-observer is q0 = (RI(x0, ε), x0). Algorithm 1 illustrates the

construction of the augmented I-observer. It also computes the set F = {q = (CI , x) ∈ Q|CI ⊆ S} that contains the set of

states of A where the estimate CI of the intruder is a subset of the secret. As proven in the following, set F allows one to

identify a necessary and sufficient condition for current-state opacity of G, and to define the supremal G-opaque sublanguage

of L(G).

Algorithm 1 Computation of the Augmented I-observer
Input: A system G = (X,E, δ, x0), the sets of events EI and the secret S.
Output: An augmented I-observer A = (Q,E, δa, q0) and the subset F of Q.

1: q0 := (RI(x0, ε), x0) and assign no tag to it;
2: Q := {q0};
3: if RI(x0, ε) ⊆ S, then
4: F := {q0};
5: else
6: F := ∅;
7: end if
8: while q = (CI , x) ∈ Q with no tag exists, do
9: for all e ∈ E such that δ(x, e)!, do

10: if e ∈ EI , then
11: C ′

I :=
∪

x∈CI
RI(x, e);

12: else
13: C ′

I := CI ;
14: end if
15: x′ := δ(x, e);
16: q′ := (C ′

I , x
′);

17: if q′ /∈ Q then
18: Q := Q ∪ {q′};
19: end if
20: if C ′

I ⊆ S, then
21: F := F ∪ {q′};
22: end if
23: δa(q, e) := q′;
24: end for
25: Tag q “old”;
26: end while
27: Remove all tags;
28: Output A.

Now we explain the main ideas behind Algorithm 1. The initial state of the augmented I-observer is q0 = (RI(x0, ε), x0),

i.e., the pair (set of states estimated by the intruder when observing nothing, initial state of the system). Given a state

q = (CI , x) ∈ Q and an event e ∈ E that is defined at x in G, using Algorithm 1, the generic state δa(q, e) = q′ = (C ′
I , x

′)

in the augmented I-observer is computed as follows. C ′
I is updated to the new intruder estimate when event e is observed by

the intruder; otherwise, CI = C ′
I . State x′ is reached by the occurrence of e at x in G. If q′ is a new state, it is added to Q,
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Fig. 9. Augmented I-Observer A of the system in Example 4.5, where states in F are in dashed boxes.

otherwise Q does not change. The maximum number of states of the augmented I-observer is |X| × 2|X|.

We finally note that the augmented I-observer differs from the parallel composition of observers proposed in [18] and the

parallel observer proposed in [29].

Example 4.5: Consider the problem in Example 4.2. Using Algorithm 1, the augmented I-observer is constructed and shown

in Fig. 9, where states in F are in dashed boxes. ⋄

Proposition 4.6: Let G = (X,E, δ, x0) be a system, EI the set of events observable by the intruder, and S the secret. The

augmented I-observer A = (Q,E, δa, q0) constructed using Algorithm 1 has the following properties:

i) L(A) = L(G);

ii) {σ ∈ L(A)|δa(q0, σ) ∈ F} = {σ ∈ L(G)|CI(PI(σ)) ⊆ S}.

Proof:

i) The statement follows from the fact that Steps 9 and 15 of Algorithm 1 consider all the events (and only them) that are

defined at each state of G.

ii) Let q = (CI , x) = δa(q0, σ). By Steps 3 to 7, and 20 to 22 of Algorithm 1, and Eq. (1), CI = CI(PI(σ)) holds. Therefore,

δa(q0, σ) ∈ F if and only if CI(PI(σ)) ⊆ S.

Moreover, by Steps 3 to 5 and 20 to 22 of Algorithm 1, there exists σ ∈ L(A) such that CI(PI(σ)) ⊆ S if and only if F ̸= ∅.

Therefore, we have the following corollary showing that the augmented I-observer can also be used to verify current-state

opacity.

Corollary 4.7: Given a system G, a secret S and the sets of events EI and ES , let A = (Q,E, δa, q0) be the augmented

I-observer. G is current-state opaque wrt S and EI if and only if F = ∅.

Proof: Follows from Steps 3 to 5 and 20 to 22 of Algorithm 1, Proposition 4.6 and Theorem 3.3.

The following proposition shows how it is possible to compute the supremal G-opaque sublanguage of G using the augmented

I-observer.
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Fig. 10. Total controller of A in Fig. 9. Removing the states in the dashed boxes, the all inclusive controller is obtained. For simplicity, in the diagrams,
we use i (with i = 0, 1, . . . , 7) to denote state qi in the augmented I-observer and omit all uncontrollable events in the control decisions, e.g., decision {}
represents {o1, o2}, and so forth.

Proposition 4.8: The supremal G-opaque sublanguage of L(G) is K = {σ ∈ L(A)|δa(q0, σ) /∈ F}.

Proof: First, we prove that K is G-opaque. Let σ ∈ K, δa(q0, σ) = q = (CI , CS). Since q /∈ F , CI * S, i.e., CI(wi) * S,

where wi = PI(σ). Therefore, K is G-opaque. Now we show that K is the “largest” opaque sublanguage of L(G) and for

any other opaque language L ⊆ L(G), L is contained in K. Let σ ∈ L and q = δa(q0, σ) = (CI , CS). Since L is opaque,

CI(PI(σ)) * S, i.e., CI * S, q /∈ F and σ ∈ K. Therefore, L is a subset of K and K contains all opaque sublanguages of

G.

Therefore, by means of the augmented I-observer we can compute the supremal opaque sublanguage of G, and by Proposi-

tions 3.7 and 4.3, the CSOEP can be solved by computing a maximal sublanguage of K that is prefix-closed, controllable and

observable. The following theorem states that the CSOEP(G,EI , S, ES , EC) is equivalent to the SCOP(A, ES , EC ,K), i.e.,

based on the augmented I-observer locally optimal supervisors can be synthesized to enforce current-state opacity to a system

G.

Theorem 4.9: The set of solutions to the CSOEP(G,EI , S, ES , EC) coincides with the set of solutions to the SCOP(A, ES , EC ,K),

where A is the augmented I-observer of G and K = {σ ∈ L(A)|δa(q0, σ) /∈ F}.

Proof: We prove this theorem by showing that CSOEP(G,EI , S, ES , EC) and SCOP(A, ES , EC ,K) define the same

supervisory control problem. By Proposition 3.7, any sublanguage of a G-opaque language is still G-opaque. By Proposition 4.8,

K is the supremal G-opaque sublanguage of G. Therefore, condition 1 in Definition 4.1 can be rephrased as “L(Sup/G) ⊆

K”, same as condition 1 in Definition 2.5. Moreover, L(G) = L(A). Therefore, the CSOEP(G,EI , S, ES , EC ) and the

SCOP(A, ES , EC ,K) define the same supervisory control problem, and thus they share the same set of solutions. Namely, if

Sup is a locally optimal supervisor of SCOP(A, ES , EC ,K), then Sup is also a locally optimal supervisor of CSOEP(G,EI , S,

ES , EC), and vice versa.

In other words, CSOEP(G,EI , S, ES , EC) can be solved by synthesizing a locally optimal supervisor of A with F being

the set of forbidden states.

Example 4.10: By Theorem 4.9, the CSOEP in Example 4.2 is reduced to the problem of finding a locally optimal supervisor

Sup for A such that state q7 of A is not reachable in the controlled system. Applying the approach recalled in Section II-B, first
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Fig. 11. Supervisors of the CSOEP in Example 4.2: Sup1 and Sup2. They have the same automaton structure. However, for Sup1, Ψ(0) = {a, c, o1, o2}
and Ψ(1) = {o1, o2}; for Sup2, Ψ(0) = {b, c, o1, o2} and Ψ(1) = {o1, o2}.
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Fig. 12. Controlled system under different locally optimal supervisors in Example 4.10.

we construct the total controller in Fig. 10 and then, after removing all the states that contain forbidden state 7 (i.e., q7 in A),

we obtain the all inclusive controller. Finally, at each step we choose a local maximal control decision and all locally optimal

supervisors are computed. There are two locally optimal supervisors: Sup1 and Sup2 with the same automaton structure shown

in Fig. 11. For Sup1, Ψ(0) = {a, c, o1, o2} and Ψ(1) = {o1, o2}; for Sup2, Ψ(0) = {b, c} and Ψ(1) = {o1, o2}. The controlled

systems under Sup1 and Sup2 are shown in Fig. 12. ⋄

C. Computational complexity analysis

According to the previous analysis, in the worst case the number of states of the augmented I-observer is |X| × 2|X|, where

X is the set of states of G. Since the complexity of solving the SCOP is O(|Q||E|2|Q|+|EC |), where Q is the set of states of

the augmented I-observer, the worst-case complexity of solving the CSOEP is O(|X| × 2|X||E|2|X|×2|X|+|EC |), i.e., double

exponential in the number of states of G. It is clear that one exponential order comes from the construction of the augmented

I-observer and the other one comes from the method adopted in this paper to solve the SCOP.

We point out that in some cases (e.g., finding a near optimal supervisor [31], [39], on-line synthesizing the supervisor [34]),

the complexity of solving the SCOP may decrease and consequently so would be the complexity of solving CSOEP.

Assuming that the intruder has no knowledge of the supervisor, the proposed approach can solve the same problems in [18],

[21], [29] with the same or lower complexity: exponential or double exponential, respectively. Consider the problem in [18]

where EI ⊆ ES = E, EC ⊆ ES . The augmented I-observer contains all observations of the supervisor (i.e., PS(L(A)) =

L(A)). Therefore, the augmented I-observer can be used to synthesize the supervisor directly. Moreover, due to EC ⊆ ES

the complexity of the proposed approach reduces to O(|X| × 2|X|) as same as the complexity of the approach in [18]. On

the other hand, the complexity of solving the problem in [29] (where ES and EI are incomparable but EC ⊆ ES) using the

proposed approach is O(2(|X|×2|X|)), lower than that of the approach in [29]. In addition, if either ES ⊆ EI (or EI ⊆ ES)
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or EC ⊆ ES holds, the supervisory synthesis problem considered in the paper cannot be solved using the approaches in [20],

[21], [27], [29].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to solve the problem of current-state opacity enforcement in discrete event systems

using finite automata. By constructing the augmented I-observer, all the strings that will leak the secret can be characterized.

Based on the augmented I-observer, current-state opacity can be checked and a synthesis algorithm was provided to design a

locally optimal supervisor, without assuming the existence of containment relationships between EI and ES , or between EC

and ES .

There are several directions along which the current research could be extended. First we note that the proposed approach can

be applied to systems modeled by nondeterministic finite automata (NFA). In this case the obtained augmented I-observer will

be an NFA as well. We also point out that the proposed approach can be extended to Petri nets, a model that is more powerful

than finite automata. Moreover, some structural properties of Petri nets may be useful to further reduce the computational

complexity and this is one direction for our future research. The other direction is to develop a unified structure that combines

the features of augmented I-observer and the total controller so that the complexity of solving CSOEP could decrease.
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