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Abstract

Timed marked graphs, a special class of Petri nets, are extensively used to model and analyze cyclic manufacturing

systems. Weighted marked graphs are convenient to model systems with bulk services and arrivals. We consider two

problems of practical importance for this class of nets. The marking optimization problem consists in finding an

initial marking to minimize the weighted sum of tokens in places while the average cycle time is less than or equal

to a given value. The cycle time optimization problem consists in finding an initial marking to minimize the average

cycle time while the weighted sum of tokens in places is less than or equal to a given value. We propose two heuristic

algorithms to solve these problems. Several simulation studies show that the effectiveness of the proposed approach

is significantly faster than existing ones.

Note to Practitioners—This paper is motivated by the optimization of manufacturing systems such as assembly

lines and job-shops. The quantity of products which have to be stored or moved and the number and type of machines

which operate the system have economical consequences. Therefore, the main problem for designers is to find a trade-

off between minimizing the cost of the resources and maximizing the system’s throughput. To this end, we formalize

and address two problems. First, we aim to minimize the use of resources required to meet a desired throughput.

Second, we aim to maximize the throughput with a given set of available resources. However, the existing results

fail to provide practically effective and computationally efficient methods to analyze and solve the problems in such

systems. The proposed iterative heuristic algorithms can find a proper schedule for a system, which is significant and

useful to manufacturing engineers.
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I. INTRODUCTION

Timed Petri nets are a well known tool to model discrete event systems and represent their dynamic behavior. In

this paper, we study a particular class of timed Petri nets called timed weighted marked graphs (TWMGs). The main

structural feature of this class of nets is that each place has only one input and one output transition. Moreover,

the firing delay of each transition is deterministic.

Timed weighted marked graphs and timed marked graphs (TMGs) find wide applications in manufacturing. They

can model complex assembly lines and solve cyclic scheduling problems. Workshop operations and products are

usually modeled by transitions and tokens, respectively. Between two successive transformations, semi-finished

products have to be stored or moved from a workshop to another. The amount of products, also called Work In

Process (WIP), that have to be stored or moved may have economical consequence. Therefore, the main problem

for designers is to determine a proper schedule of WIP that allows the system to reach prespecified productivity

while the amount of WIP is the smallest.

Some results have been developed for this class of Petri nets. Teruel et al. [1] proposed several techniques for the

analysis of WMGs. Nakamura and Silva [2] and Campos et al. [3] developed methods to compute the average cycle

time of TMGs for a given initial marking. Benabid-Najjar et al. [4] discussed the periodic schedules of bounded

TWMGs and presented polynomial algorithms to check the existence of periodic schedules. Giua et al. [5] dealt

with the problem of allocating a given number of tokens in a TMG so as to maximize the firing rate (i.e., the

inverse of the cycle time) and proposed three different procedures to solve the problem. Laftit et al. [6] investigated

the problem of reaching on TMGs a desired average cycle time that is less than a given value, while minimizing

an invariant linear criterion. In their work, a heuristic algorithm and an exact algorithm are presented. However, in

the literature, few studies are found to consider the marking optimization problem of TWMGs. Sauer [7] addressed

the problem of finding an initial marking to minimize the weighted sum of tokens in places while the average cycle

time is less than or equal to a given value, and proposed a heuristic solution based on an iterative process. Touris

and Sauer [8] presented an approach based on the branch and bound to solve the same problem.

This paper copes with the marking optimization problem of a TWMG and the related cycle time optimization

problem. The marking optimization problem consists in finding an initial marking to minimize the weighted sum

of tokens in places while the average cycle time is less than or equal to a given value. The cycle time optimization

problem consists in finding an initial marking to minimize the average cycle time while the weighted sum of tokens

in places is less than or equal to a given value.

In the first part, we propose an iterative heuristic algorithm (Algorithm 1) to solve the marking optimization

problem. At each step, we select places from some circuits to which we add tokens until the average cycle time

is less than or equal to the desired value. Numerical simulation studies presented in Section IV-D show that the

proposed method requires less iteration steps and thus is much faster than the approach in [7]. In some special

cases the objective function that we obtained may be greater (i.e., worse) than the one found by Sauer. However,

we show that by combining the two approaches, i.e., the one in [7] and the one proposed in this work, we can
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always reach the same objective function in [7] with a significant reduction of computational costs. Some of these

results were presented in a preliminary form in [9].

In the second part of this paper, we study the cycle time optimization problem of a TWMG, an issue that to the

best of our knowledge has not been addressed in the literature. Another iterative heuristic algorithm (Algorithm 2)

is presented. At each step, we provide a criterion to select one place to which tokens are allocated until all available

tokens (i.e., resources) are used up or the average cycle time reaches the lower bound.

The main contributions of the present paper can be summarized as follows:

1) A heuristic solution combined with an analytical method for the marking optimization problem is presented.

By several experimental studies, we show that the combined method (He+Sauer) is more efficient than previous

one in most cases.

2) The cycle time optimization problem of TWMGs is originally presented. A novel heuristic solution is proposed

which is fast and efficient.

This paper is structured as follows. In the following section, we briefly recall some basic concepts and the main

properties of TWMGs. Section III presents the problem statement. In Section IV, we propose a heuristic solution

for the marking optimization problem based on a live marking. Following the algorithm, some numerical examples

are shown to illustrate it and details are given to compare the proposed method with the one in [7]. In Section V,

the cycle time optimization problem is considered and another heuristic algorithm is proposed. Some applications

in manufacturing are presented at the end of this section. Conclusions are finally drawn in Section VI.

II. BACKGROUND

A. Generalities

We assume that the reader is familiar with the structure, firing rules, and basic properties of Petri nets (see [1],

[10] and [11]). In this section, we will recall the formalism used in the paper. A place/transition net (P/T net) is a

structure N = (P, T, Pre, Post), where P is a set of n places; T is a set of m transitions; Pre : P × T → N and

Post : P×T → N are the pre- and post-incidence functions, respectively, that specify the arcs; and C = Post−Pre

is the incidence matrix. Note that N is a set of non-negative integers.

A vector x = [x1, x2, . . . , xm]T ∈ N|T | such that x ̸= 0 and C · x = 0 is a T-semiflow. A vector y =

[y1, y2, . . . , yn]
T ∈ N|P | such that y ̸= 0 and yT · C = 0T is a P-semiflow. The supports of a T-semiflow and a

P-semiflow are defined by ∥x∥={ti ∈ T |xi > 0} and ∥y∥={pi ∈ P |yi > 0}, respectively. A minimal T-semiflow1

(P-semiflow) is a T-semiflow ∥x∥ (P-semiflow ∥y∥) that is not a superset of the support of any other T-semiflow

(P-semiflow), and its components are mutually prime.

A marking is a vector M : P → N that assigns to each place of a P/T net a non-negative integer number of

tokens; we denote the marking of place p as M(p). A P/T system or net system ⟨N,M0⟩ is a net N with an

1This is also called a minimal and minimal support semiflow in some references. For the sake of simplicity, we call it a minimal semiflow.
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initial marking M0. A transition t is enabled at M if M ≥ Pre(·, t) and an enabled transition t may fire yielding

a marking M ′ with

M ′ = M + C(·, t) (1)

where Pre(·, t) (resp. C(·, t)) denotes the column of the matrix Pre (resp. C) associated with transition t.

A P/T net is said to be ordinary when all arc weights are 1′s. A marked graph (MG, also called an event graph)

is an ordinary Petri net that satisfies the condition |•p| = |p•| = 1. A weighted marked graph (WMG, also called a

weighted event graph) is a net that also satisfies this condition but may not be ordinary, i.e., the weight associated

with an arc can be a non-negative integer.

A deterministic timed P/T net is a pair Nδ = (N, δ), where N = (P, T, Pre, Post) is a P/T net, and δ : T → N,

called firing delay, assigns a non-negative integer firing duration to each transition. A transition with a firing delay

equal to 0 is said to be immediate. A clock θi(t) associated with transition t represents the residual time to fire t

at marking Mi. If a transition t is not enabled at marking Mi, it is usually assumed that θi(t) = +∞. We denote

the clock vector θi = (θi(t1), θi(t2), . . . , θi(tm)).

We denote the state of a TWMG as [M ; θ]. Thus the evolution of a deterministic TWMG will be described by

the marking Mi, the clock vector θi and the time instant τi at which marking Mi is reached (for i = 1, 2, . . . , n).

We initialize τ0 = 0 for the initial marking M0.

When a transition t becomes enabled, it cannot fire before the time δ(t) has elapsed. Under the As Soon As

Possible (ASAP) execution policy, a transition t will fire exactly after t is enabled for a time δ(t). In this paper,

we deal with TWMGs which are conflict-free nets, and thus the firing of a transition t does not disable any other

transitions. In the ASAP execution, from state [Mi;θi], all transitions that have a minimal value of the clock can be

fired simultaneously after a time ϕi = mint∈T θi(t) = τi+1− τi and the TWMG reaches a new state [Mi+1;θi+1].

The marking will change as shown in Eq. (1) and the clock will be updated by the following equations:

θ0(t) =

δ(t), if M0[t⟩

+∞, if ¬M0[t⟩
(2)

θi(t) =



δ(t), if ¬Mi−1[t⟩ and Mi[t⟩

or t fired at Mi−1 and Mi[t⟩

+∞, if ¬Mi[t⟩

θi−1(t)− ϕi−1, otherwise

(3)

where ¬M [t⟩ means that t is not enabled at marking M . In this paper, we consider a single server semantics, i.e.,

we assume that each transition can fire only once at each time instant even if its enabling degree is greater than

one (see [7]).
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B. Strongly connected nets and circuits

A net is strongly connected if there exists a directed path from any node in P ∪ T to every other node. Let us

define an elementary circuit γ (or elementary cycle) in a net as a directed path that goes from one node back to

the same node without passing twice on the same node. In a strongly connected net, it is easy to show that each

node belongs to an elementary circuit, and thus the name cyclic nets are also used to denote this class.

Given a place p of a WMG, let ti (resp. tj) be its unique input (resp. output) transition as shown in Fig. 1. We

denote by w(p) = Post(p, ti) the weight of its input arc and by ν(p) = Pre(p, tj) the weight of its output arc. For

any place p ∈ P , we denote by gcdp (resp. lcmp) the greatest common divisor (resp. the least common multiple)

of the integers w(p) and ν(p).

tjti
v(p)w(p)

p

Fig. 1. A place p between two transitions ti and tj .

Definition 1: Every elementary circuit γ of a WMG is neutral if the following condition holds.

∏
p∈γ

ν(p)

w(p)
= 1

�
In other words, in a neutral circuit the product of the weights of all pre-arcs is equal to that of the weights of all

post-arcs. This means that if the circuit initially contains enough tokens, it is possible to fire all transitions along

the path returning to the same initial marking. It is well known that a WMG whose circuits are all neutral has a

unique T-semiflow x and it contains all transitions in its support [1]. In this paper, we limit our study to strongly

connected WMGs in which all circuits are neutral.

A strongly connected WMG in which all circuits are neutral is bounded, i.e., there exists an integer B ∈ N such

that the marking of any place p is not greater than B at any reachable marking.

C. Liveness of a TWMG

Theorem 1: (Theorem 4.12 of Teruel et al. [1]) A TWMG is live iff each elementary circuit is live. �
In the case of a TMG, an elementary circuit is live if there exists at least one token in the circuit. The liveness

decision problem of a TMG is polynomial, solved in [12], [13]. A weighted circuit of a TWMG is live if each

transition can be fired infinitely. However, determining the liveness of a weighted circuit is not so easy. Up to now,

no polynomial algorithm for liveness checking has been found, for example, the algorithms developed in [14] to

answer this question are not polynomial. Next, we review some sufficient conditions for the liveness of weighted

circuits existing in the literature. Later, these conditions will be used in the proposed optimization approach.
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Teruel et al. [1] and Chrzastowski-Wachtel and Raczunas [15] proposed a few methods to verify the liveness of

weighted circuits. First they define a weighted function with respect to a marking, i.e.,

W (M) = yT ·M (4)

where y is a minimal P-semiflow. Furthermore, they define a marking:

MD = (ν(p1)− 1, ν(p2)− 1, . . . , ν(pn)− 1)T (5)

The following result provides a sufficient, albeit restrictive, condition for liveness.

Proposition 1: (Proposition 5.2 of Teruel et al. [1]) If W (M0) > W (MD), then the weighted circuit is live. �
Less restrictive conditions for liveness also exist. Let R+ be a set of positive real numbers and M(ω) =

{M |W (M) = ω, ω ∈ R+}. The least live weight is the minimal ω such that ∀M ∈ M(ω), M is a live marking.

In [15] the least live weight of a weighted circuit with a minimal P-semiflow y was defined as

WL = W (MD)− g(y1, y2, · · · , yn) (6)

where g is the Frobenius number.2 Note that a Frobenius number only exists if all its arguments are greater than

one and coprime. The first condition is always verified in our case since we consider minimal P-semiflows. The

second condition may not always be verified: when it is, the least live weight in Eq. (6) can be computed and the

following proposition holds.

Proposition 2: (Proposition 2.4 of Chrzastowski-Wachtel and Raczunas [15]) If g(y1, y2, · · · , yn) has no non-

negative integer solution and the marking M0 satisfies W (M0) = WL, then the weighted circuit is live. �
In the case that there exists a unitary component in a minimal P-semiflow, then a least live weight cannot be

computed by Eq. (6). Let us consider the example in Fig. 2. We have yT = (3, 4, 3), MD = (3, 2, 2)T , x = (4,

3, 3)T , and WL = W (MD) − g(y1, y2, y3) = 23−g(3, 4, 3) =23−5=18. We conclude that any marking M with

weight W (M) > 23 or W (M) = 18 is a live marking.

1
t

1
p

2
p

3
p

2
t

3
t

Fig. 2. A weighted circuit.

2Given positive integers y1, y2, · · · , yn such that gcd(y1, y2, · · · , yn)=1, the Frobenius number g(y1, y2, · · · , yn) is the largest integer

that cannot be expressed as an integer linear combination of these numbers, i.e., as a sum a1y1 + a2y2 + · · ·+ anyn, where a1, a2, · · · , and

an are non-negative integers.
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It can be checked that every marking with a weight equal to 18 is live. For instance (6, 0, 0)T as well as (0, 3,

2)T is live. We use the two approaches above to select a live initial marking.

D. Cycle time of a TWMG

The average cycle time χ(M) of a TWMG system ⟨N,M⟩ is the average time to fire once the minimal T-

semiflow under the ASAP operational model (i.e., transitions are fired as soon as possible). For deterministic

TWMGs, the following limit exists:

lim
τ→∞

σ⃗τ

τ
= σ⃗∗ < ∞⃗

where the vector σ⃗τ represents the firing vector from time 0 to time τ and the constant vector σ⃗∗ is called the limit

firing vector. σ⃗∗(ti) represents the average number of firing ti per time unit. The average cycle time of transition

ti of a TWMG is the average time between two consecutive firings of ti, which is equal to

1

σ⃗∗(ti)

Definition 2: Let ti ∈ T be an arbitrary transition of a TWMG with the minimal T-semiflow x. The average

cycle time of the TWMG is equal to
xi

σ⃗∗(ti)

�
Note that the value of the average cycle time does not depend on the considered transition. In [16] and [17], the

authors proved that the ASAP execution of a live and strongly connected TMG with integer delays is ultimately

repetitive. The period of the pattern is τij = τj − τi and the number of firings of every transition within a period

is k (the periodicity). In terms of TWMGs, the ASAP execution is also ultimately periodic. Fig. 3 shows the

evolution of a live TWMG, where M0 is the initial marking and the arrows correspond to ASAP execution steps.

The number of firings of transition ti within the steady period is ki. This value is not identical for each transition

but the proportion is equal to the minimal T-semiflow. Thus, the average cycle time of the TWMG is equal to

xi ·
τij
ki

(7)

[M ] [M ] [M ][M ]

0=0 1 i

0 1 1i

j

i j-1

Fig. 3. Evolution of a live and strongly connected TWMG.

The average cycle time of a TWMG depends on the average cycle time of its circuits. Considering a net consisting

of only one circuit, we define χγ(M) as the average cycle time of circuit γ. Let Γ represent the set of elementary

circuits of a cyclic TWMG and χ⋆(M) = maxγ∈Γ χγ(M) be a critical time. Any γ ∈ Γ such that χγ(M) =
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χ⋆(M) is a critical circuit that is denoted as γ⋆. It is well known that for a TMG the average cycle time is equal

to the critical time, i.e.,

χ(M) = χ⋆(M)

This result does not apply to a TWMG as we will show in the example in Fig. 5, but it holds that the critical

time is less than or equal to the average cycle time, i.e.,

χ(M) ≥ χ⋆(M)

To a certain extent, the critical circuits are those that bind the speed of the system. Up to now, no analytical

method to compute the average cycle time of a TWMG has been proposed in the literature: only bounds on this

value can be found in [3]. The studies in [2], [14] have proposed techniques to convert a TWMG into an equivalent

TMG for which an average cycle time can be analytically computed. However, this expansion can lead to a model of

significant size. A method to compute the average cycle time of a TWMG is proposed in [19] but under restrictive

conditions on the initial marking. This is why in this paper we resort to a simulation study to compute the average

cycle time of a TWMG using Eq. (7).

Example: Let us consider the evolution of the TWMG in Fig. 4(b). It starts with an initial marking M0 = (10, 0)T

and θ0 = (+∞, 5). The evolution of the TWMG is presented as follows:

[M =(10,0)T; =(+ ,5); =0]

[M =(6,4)T; =(+ ,5); =5]

[M =(2,8)T; =(2,+ ); =10]

[M =(8,2)T; =(+ ,5); =12]

[M =(4,6)
T
; =(2,5); =17]

[M =(10,0)
T
; =(+ ,3); =19]

[M =(6,4)T; =(+ ,5); =22]

t2

t2

t1

t1

t2

t2

Note that states [M1;θ1] and [M6;θ6] are the same, implying that from state [M6;θ6] the system will enter a

cycle which includes five states and the firing sequence is t2t1t2t1t2. The minimal T-semiflow is x = (2, 3)T and

τ1,6 = 17. The average cycle time of the TWMG is equal to 17 by solving Eq. (7).

III. PROBLEM STATEMENT

A. Problem formulation

The marking optimization problem of a TWMG consists in finding an initial marking M0 that minimizes a

weighted function of the initial marking while the average cycle time is less than or equal to a given value. In other

words we aim to find a solution of the following optimization problem:
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(P1)

min f(M0) = yT ·M0

s.t. χ(M0) ≤ b

(8)

where

• χ(M0) is the average cycle time of the TWMG associated with marking M0,

• b is a given positive real number that represents the upper bound of the cycle time, and

• y =
∑

γ∈Γ cγ · yγ is a P-semiflow and yγ is a minimal P-semiflow, i.e.,

yγ(pi) = y(pi) if pi ∈ γ, else yγ(pi) = 0

and cγ represents the cost of the resources modeled by tokens in the support of yγ .

We choose y as a P-semiflow since the value of yT ·M0 at every reachable marking M ∈ R(N,M0) is invariant.

Proposition 3: (Proposition 2 of Sauer [7]) (P1) has a solution iff b ≥ χ′(M) = max{xi · δi, ti ∈ T}, where x

is the minimal T-semiflow. �
The cycle time optimization problem of a TWMG consists in finding an initial marking that minimizes the average

cycle time, i.e., maximizes the throughput of the system, while the weighted sum of the marking (resources) is less

than or equal to a given value. In other words we need to find a solution of the following optimization problem:

(P2)

min χ(M0)

s.t. yT ·M0 ≤ s

(9)

where

• y is a P-semiflow as in (P1),

• s is a given positive real number, representing the maximal available resources that can be allocated.

Proposition 4: (P2) has a finite solution if s ≥ s⋆, where

s⋆ = min yT ·M

s.t. yT
γ ·M > W (Mγ

D), ∀γ ∈ Γ �

Proof . Let M be the initial marking of a TWMG and W (Mγ
D) be the weighted function of marking MD

restricted to circuit γ. If ∀γ ∈ Γ, yT
γ · M > W (Mγ

D), from Proposition 1, we conclude that each circuit of the

TWMG is live. Then, the TWMG is necessarily live according to Theorem 1 and its average cycle time will be

finite. �

B. A previous approach for Problem P1

In this subsection, we briefly recall an approach dealing with the marking optimization problem of TWMGs

presented by Sauer in [7].

The proposed iterative heuristic algorithm starts with an initial marking M0 such that

M0(p) = xp• · Pre(p, p•), ∀p ∈ P.
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Obviously, under the condition imposed by Proposition 3 this marking is feasible for Eq. (8), i.e., it satisfies

χ(M0) ≤ b.

The approach requires to evaluate the average cycle time and the corresponding average marking by simulation.

At each iteration step, one place is selected to remove a token from M0 as long as the average cycle time is less

than or equal to the upper bound b. The selected place should maximize the following criterion:

L(p,∝) · yp,

where L(p,∝) denotes the number of tokens in the average marking that cannot be used to enable transition p•. If

M0(p) = 0, a marking reachable from M0 containing at least one token is computed. The algorithm stops when

there is no place that can be selected to remove tokens.

When the net size becomes larger, this approach usually requires a large number of iteration steps to remove the

redundant tokens.

IV. MARKING OPTIMIZATION FOR TWMGS

A. The main idea of the heuristic solution

We propose here a fast and efficient heuristic solution based on an iterative process to solve the problem of

marking optimization for TWMGs. It starts with a live marking that has a small weighted sum, and then we

compute the average cycle time of the TWMG. If the average cycle time is greater than the upper bound of the

cycle time, we add tokens to some circuits until the average cycle time is less than or equal to the upper bound

of the cycle time. We select the places to which tokens should be added so as to increase the performance index

f(M0) as small as possible.

1) Useful tokens: The initial marking M0(p) of any place p can be replaced by M⋆
0 (p) tokens without any

influence on the precedence constraints induced by p (see [20] and [21]), where

M⋆
0 (p) =

⌊
M0(p)

gcdp

⌋
· gcdp (10)

As a result, we can deduce that the average cycle time at M0 and M⋆
0 are the same. However, the value of

f(M⋆
0 ) is less than or equal to f(M0). Let us consider the example in Fig. (4). The initial marking of the TWMG

is M0 = (11, 1)T and gcdp1 = gcdp2 = 2.

M⋆
0 (p1) =

⌊
M0(p1)

gcdp1

⌋
· gcdp1 =

⌊
11

2

⌋
· 2 = 10

M⋆
0 (p2) =

⌊
M0(p2)

gcdp2

⌋
· gcdp2 =

⌊
1

2

⌋
· 1 = 0

Then M⋆
0 = (10, 0)T and we can check that f(M⋆

0 ) = 10 < f(M0) = 12 and the average cycle time at M0

and M⋆
0 are identical, i.e., χ(M0) = χ(M⋆

0 ) = 17.
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1
p

2p

1 (2)t 2 (5)t

1p

2p

1 (2)t 2 (5)t

(a) (b)

Fig. 4. Useful tokens.

2) Selection of a proper initial marking: For each circuit, there exist some markings that satisfy the least live

weight condition. We choose the one that makes the net live while satisfies the following condition:
min f(M) = yT ·M

s.t. C(M , γ) ∀γ ∈ Γ

(11)

where

C(M , γ) : yT
γ ·M = W γ

L (12)

or

C(M , γ) : yT
γ ·M > W (Mγ

D) (13)

For each circuit γ, we consider its minimal P-semiflow. If it contains no unitary component, the least live weight

W γ
L of the circuit can be determined and we use Eq. (12) for γ, as this provides a sufficient condition for liveness

with minimal cost. If the minimal P-semiflow of the circuit contains unitary components, we use Eq. (13).

We point out that it may happen that IPP (11) has no feasible solution due to the presence of the equality

constraints given by Eq. (12) that may not be compatible. Should this situation occur, we use for all circuits the

inequality constraints given by Eq. (13), thus ensuring that a feasible solution exists.

When there exists more than one optimal solution for the marking M , we choose one. Then the initial marking

M0 can be computed using Eq. (10), i.e., M0 = M⋆. If we start the iteration from a marking that satisfies the

condition above, we can ensure that the net is live and the value of performance index f(M0) is small. If the

average cycle time of M0 is greater than the upper bound of the cycle time, we add tokens to the net until the

requirement on the average cycle time is satisfied. Otherwise, the initial marking M0 is a heuristically good solution

(although possibly not optimal).

3) Selection of the places to add tokens: After we select the initial marking M0, we can compute the average

cycle time χ(M0) of the TWMG and χγ(M0) for every elementary circuit. If the average cycle time satisfies the

condition χ(M0) ≤ b, no more tokens should be added and the marking M0 is chosen as a solution.

If the average cycle time does not satisfy the condition χ(M0) ≤ b, two situations are possible. If there exist

circuits γ’s that have average cycle time greater than b, i.e., χγ(M0) > b, tokens should be added to all these

circuits. The set of selected circuits is denoted as Γc = {γ ∈ Γ|χγ(M0) > b}. However, as we discussed in II-D,
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Fig. 5. The TWMG of Example 1.

it may also happen that for any circuit γ ∈ Γ, χγ(M0) ≤ b holds, even if the cycle time of the net is χ(M0) > b.

In this case we choose to add tokens to all critical circuits γ⋆, i.e., the set of circuits selected for adding tokens is

Γc = {γ ∈ Γ|χγ(M0) = χ⋆(M0)}, where χ⋆(M0) is the critical time.

For each of these circuits, we select one place pr and add gcdpr tokens to this place. We choose the one that

increases f(M0) as small as possible, i.e., the increment of the criterion value f(M0) should be the least after

adding gcdpr tokens. We define an n-dimensional vector I of zeros and ones.

IT = (Ip1 , Ip2 , · · · , Ipn) (14)

where

Ipr =

1, add gcdpr tokens to place pr

0, add 0 token to place pr

(15)

In other words, we add tokens to the places with the coefficient Ipr = 1. Let Pa be the set of these places and

Gd = (gcdp1 · y1, gcdp2 · y2, · · · , gcdpn · yn)T , where y is a P-semiflow of the net and gcdpr · yr represents the

increment of f(M0) after adding gcdpr tokens to place pr. We denote by ∆f(M0) the total increment of f(M0),

where

∆f(M0) = IT ·Gd (16)

Then, we can select the places by solving the following problem:
min ∆f(M0)

s.t.
∑

p∈γ Ip = 1, ∀γ ∈ Γc

(17)

The constrains in Eq. (17) will ensure that only one place should be selected for each circuit.
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B. Heuristic solution

We can summarize the proposed procedure in Algorithm 1. In step 6 of Algorithm 1, the average cycle time

needs to be computed. This can be done using any of the techniques mentioned in Section II-D. In this paper, we

use the Petri net tool HYPENS [24] to compute the cycle time via simulation.

Algorithm 1: Marking Optimization

Input: A cyclic TWMG N with a set of elementary circuits Γ, an upper bound b of its average cycle time, and a

P-semiflow y =
∑

γ∈Γ cγ · yγ .

Output: An initial marking M0 such that the cycle time of the net satisfies χ(M0) ≤ b.

1: Compute the marking MD as in Eq. (5).

2: For every elementary circuit γ ∈ Γ, compute W (Mγ
D) = yT

γ ·MD.

3: For every elementary circuit γ ∈ Γ, compute W γ
L = yT

γ ·MD − g if possible.

4: Compute a marking M that satisfies Eq. (11).

5: Compute an initial marking M0 = M⋆.

6: Compute the average cycle time χ(M0) and χγ(M0), ∀γ ∈ Γ.

7: If χ(M0) ≤ b, stop and M0 is a solution.

8: while (χ(M0) > b)

{

If ∃γ, χγ(M0) > b, tokens should be added to all these circuits in Γc = {γ ∈ Γ|χγ(M0) > b}

Else Γc = {γ ∈ Γ|χγ(M0) = χ⋆(M0)};

Compute I and Pa;

Add tokens to Pa and update M0;

}

9: Output an initial marking M0.

TABLE I

THE ITERATION PROCESS FOR EXAMPLE 1.

M0 χγ1 (M0) χγ2 (M0) χγ3 (M0) χγ4 (M0) χ(M0) b f(M0) Γc Pa

(4, 0, 4, 0, 0, 0, 6, 2, 0)T 38 39 21 20 43 30 34 {γ1, γ2} {p1, p5}

(5, 0, 4, 0, 3, 0, 6, 2, 0)T 34 30 21 20 34 30 42 {γ1} {p1}

(6, 0, 4, 0, 3, 0, 6, 2, 0)T 30 30 21 20 30 30 44
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C. Numerical Examples

We consider Example 1 in Fig. 5. There are four weighted circuits in the TWMG:

γ1 = p1t2p2t1

γ2 = p3t3p4t4p5t2

γ3 = p6t3p4t4p7t5

γ4 = p8t6p9t5

The minimal T-semiflows of γ1, γ2, γ3, and γ4 are

x1 = (2, 3, 0, 0, 0, 0)T

x2 = (0, 2, 1, 1, 0, 0)T

x3 = (0, 0, 3, 3, 4, 0)T

x4 = (0, 0, 0, 0, 1, 2)T

while the minimal P-semiflows of γ1, γ2, γ3, and γ4 are

y1 = (1, 1, 0, 0, 0, 0, 0, 0, 0)T

y2 = (0, 0, 3, 12, 2, 0, 0, 0, 0)T

y3 = (0, 0, 0, 4, 0, 1, 1, 0, 0)T

y4 = (0, 0, 0, 0, 0, 0, 0, 1, 1)T

TABLE II

THE ITERATION PROCESS FOR EXAMPLE 2.

M0 χγ1 (M0) χγ2 (M0) χ(M0) b f(M0) Γc Pa

(2, 3, 0, 1, 0)T 29 26 30 21 20 {γ1, γ2} {p3}

(2, 3, 2, 1, 0)T 25 26 26 21 24 {γ1, γ2} {p3}

(2, 3, 4, 1, 0)T 21 21 21 21 28

TABLE III

A COMPARISON BETWEEN THE APPROACH OF SAUER AND THE APPROACH PROPOSED IN THIS PAPER (HE).

Sauer [ave] He [ave] He/Sauer [ave]

Nb. of Nb. of |P | |T | Iteration CPU Obj. Iteration CPU Obj. Iteration CPU Obj.

cycles nets [ave] [ave] steps time [s] Fun. steps time [s] Fun. steps time [s] Fun.

1 10 4 4 36.5 168 29.5 3.6 18 29.7 26.4% 29.2% 101.0%

2 10 9 8 64.7 615 34.3 1.9 44 38.5 9.4% 26.8% 111.3%

4 10 15 12 279.7 3676 80.2 3.6 155 85.8 2.2% 9.4% 106.7%

6 10 22 17 387.5 8890 100.8 4 358 114.1 1.5% 6.0% 114.1%

10 10 40 31 — — — 4.3 753 191.5 4.3/— 753/— 191.5/—
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The cost of γ1 and γ3 is twice the cost of γ2 and γ4, i.e., cγ1 = cγ3 = 2 and cγ2 = cγ4 = 1. Therefore, the

P-semiflow used in the criterion f(M0) is y = 2y1 +y2 +2y3 +y4= (2, 2, 3, 20, 2, 2, 2, 1, 1)T , and the minimal

T-semiflow of the net is x=(4, 6, 3, 3, 4, 8)T .

γ1 : since y1 = 1, W (MD) = 1× 1 + 1× 2 = 3

γ2 : WL = W (MD)− g(y3, y4, y5) = 13− 1 = 12

γ3 : since y6 = 1, W (MD) = 4× 0 + 1× 2 + 1× 3 = 5

γ4 : since y8 = 1, W (MD) = 1× 0 + 1× 1 = 1

We have gcdp1
= 1, gcdp2

= 1, gcdp3
= 2, gcdp4

= 1, gcdp5
= 3, gcdp6

= 1, gcdp7
= 1, gcdp8

= 1, and gcdp9
=

1.

Gd = (2, 2, 6, 20, 6, 2, 2, 1, 1)T

min f(M) = 2M(p1) + 2M(p2) + 3M(p3) + 20M(p4) + 2M(p5) + 2M(p6) + 2M(p7) +M(p8) +M(p9)

s.t



M(p1) +M(p2) > 3

3M(p3) + 12M(p4) + 2M(p5) = 12

4M(p4) +M(p6) +M(p7) > 5

M(p8) +M(p9) > 1

We obtain a marking M = (4, 0, 4, 0, 0, 0, 6, 2, 0)T and the initial marking M0 = M⋆ = M . From Table I, we

can find that the average cycle time of γ1 and γ2 are greater than the upper bound of the cycle time b at the initial

marking M0. Then, we compute IT and Pa to add tokens.

min ∆f(M0) = 2Ip1 + 2Ip2 + 6Ip3 + 20Ip4 + 6Ip5 + 2Ip6 + 2Ip7 + Ip8 + Ip9

s.t

 Ip1 + Ip2 = 1

Ip3 + Ip4 + Ip5 = 1

We can find that IT = (1, 0, 0, 0, 1, 0, 0, 0, 0) and Pa = {p1, p5}. Then, we add one token and three tokens to

places p1 and p5, respectively. We can observe from Table I that after the first iteration step, χγ1(M0) > b holds.

Then, we only need to add tokens to γ1 to decrease the average cycle time. The optimal marking is M = (6, 0, 4,

0, 3, 0, 6, 2, 0)T and the weight sum of tokens is f(M) = 44.

Let us consider Example 2 in Fig. 6. The marking obtained by Eq. (11) is M = (3, 3, 0, 1, 1)T . We have

M⋆(p1) =

⌊
M(p1)

gcdp1

⌋
· gcdp1 =

⌊
3

2

⌋
· 2 = 2

M⋆(p5) =

⌊
M(p5)

gcdp5

⌋
· gcdp5

=

⌊
1

2

⌋
· 1 = 0

Then the initial marking is M0 = M⋆ = (2, 3, 0, 1, 0)T . The iteration process is shown in Table II and the

optimal marking is (2, 3, 4, 1, 0)T .

By enumerating all the possible markings for examples in Figs. 5 and 6, we found that the solutions obtained

by our proposed approach are optimal.
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TABLE IV

A COMPARISON BETWEEN THE APPROACH OF SAUER AND THE COMBINED APPROACH (HE+SAUER).

He+Sauer [ave] He+Sauer/Sauer [ave] He+Sauer/He [ave]

Nb. of Nb. of |P | |T | Iteration CPU Obj. Iteration CPU Obj. Iteration CPU Obj.

cycles nets [ave] [ave] steps time [s] Fun. steps time [s] Fun. steps time [s] Fun.

1 10 4 4 4.7 23 29.5 38.9% 40.9% 100.0% 157.9% 155.6% 99.1%

2 10 9 8 4.1 63 34.3 18.6% 35.6% 100.0% 215.0% 140.7% 91.4%

4 10 15 12 6.5 193 80.2 3.9% 11.0% 100.0% 189.1% 138.9% 94.1%

6 10 22 17 8.5 472 100.8 2.9% 7.6% 100.0% 293.7% 137.2% 87.9%

10 10 40 31 11.1 973 167.3 11.1/— 973/— 167.3/— 282.0% 131.0% 87.0%

1p 2 (1)t

3 (2)t

4 (3)t1 (7)t

2p

3p

5p

4p

Fig. 6. The TWMG of Example 2 from [7].

D. Comparison with previous approaches

As we know, the previous approach dealing with the marking optimization problem of TWMG is the one presented

by Sauer in [7]. We review this iterative heuristic approach in Section III-B and mention that it requires a large

number of iterations since it starts from a very large feasible marking.

Adopting the heuristic solution proposed in this section, one starts with a live marking that has a small weighted

sum. We focus our attention on the low speed circuits whose cycle times are greater than the desired value. To a

certain extend, these circuits blind the speed of the system. We never add tokens to circuits whose cycle time is

lower than the desired value, i.e., high speed circuits. At every iteration step, we choose one place for each selected

circuit by using Eq. (17) and add tokens to it simultaneously. This procedure ensures that the cycle time of the

system will decrease to the desired value rapidly. The average cycle time is computed by using simulation which

stops when the system enters a cycle (see Section II-D).

In order to compare the approach of Sauer and the proposed approach, we have tested a large number of examples

with different net sizes, and for each case we consider a sample of ten nets. All the samples are randomly generated

under the assumption that each circuit has at least two places and at most six places. Meanwhile, for each tested

example, we initialize b = max{xi ·δi, ti ∈ T}. In the proposed approach, the solution of steps 4 and 8 in Algorithm

1 is computed using Lingo, which takes a negligible time. The highest computational effort is spent in step 6 of

Algorithm 1, where we need to determine the cycle time. Similarly, in Sauer’s approach, the highest computational

16



effort is due to the repeated computation of the cycle time. Both cases use the Petri net tool HYPENS [24] to

compute the cycle time via simulation. The simulation test is executed on a laptop equipped with a 1.8GHZ Core

i5 Processor.

The results of a first series of tests are proposed in Table III that shows the comparison between the proposed

approach (i.e., He) and that of Sauer. For all cases, we consider the average net size, the average number of iteration

steps, the average CPU time, and the average value of obtained objective function. The cardinalities of P and T

are approximated to the nearest integer. Note that “—” in Table III means that the computation cannot be finished

within a reasonable time. As shown in Table III, we can see that the proposed method is much faster than that

by Sauer [7] with the increase of the net size, while the obtained objective function is slightly worse than that of

Sauer (i.e., the value of weighted sum Y T ·M0 is greater). The main reason that the proposed approach produces

a worse result is that the initial marking computed by Eqs. (11) and (10) does not have the least weighted sum to

ensure the liveness. Up to now, it is an interesting yet open problem to determine the least live weighted sum of

a TWMG. Although we do not allocate any tokens to high speed circuits, the tokens of these circuits may still be

too high.

Looking for a better and fast solution, we combine the approach proposed in this paper with that of Sauer [7],

namely He+Sauer, as seen in Table IV. First, a candidate marking M0 is computed by the proposed approach. Then

we use the approach of Sauer to remove tokens if possible. The simulation results in Table IV present the comparison

between the combined approach and the method of Sauer, and also the comparison between the combined approach

and the approach proposed in this paper. Comparing the combined approach (He+Sauer) with the approach of Sauer,

we always reach the same objective value while the computational costs are significantly reduced.

As one can see, the proposed method needs to find all the elementary circuits and corresponding average cycle

times at the first iteration step. Then, we keep track of these slow circuits to allocate tokens. Although in practical

examples, the number of circuits in a net is quite reasonable, it is well known that one may define families of nets

where the number of circuits can grow exponentially as the net size increases. A case suffering from the circuit

explosion is shown in Fig. 7, where Zi (i = 1, · · · , n) is an arbitrary integer. The set of circuits of this net is

Γ = {p′1t2p′2t3 . . . p′nt1 | (∀i = 1, . . . , n) p′i ∈ {p2i−1, p2i}}

and their number is equal to 2n (n ≥ 2). The minimal P-semiflow of each circuit is the characteristic vector of the

places along the circuit. Therefore, the sum of all minimal P-semiflows is Y = Y1 + Y2 + . . . Y2n = 2n−1 · 1⃗2n,

and we can choose the corresponding P-semiflow y = 1⃗2n in the criterion f(M0). Table V shows the simulation

results with different number of n and Zi is a random integer number picked up from the interval [1, 6]. As we

can see, in the case of n ≥ 6, the method by Sauer will be more efficient than the proposed method.

Nevertheless, we point out this example is rather academic. In fact, an optimal solution to this problem could be

found by studying the equivalent net where places p2, p4, · · · , p2n are removed. The equivalent net contains only

one circuit, hence can be efficiently studied by the proposed approach. A corresponding optimal solution for the

net in Fig. 7 consists in assigning the same number of tokens to the places p2i as in place p2i−1.
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Fig. 7. Example with a large number of circuits.

TABLE V

SIMULATION RESULTS OF THE EXAMPLE IN FIG. 7.

He/Sauer

Iteration CPU Obj.

n steps time [s] Fun.

2 3/40 29/106 22/22

4 5/66 696/1169 30/30

6 5/104 4916/4399 44/44

7 —/128 —/7320 —/50

8 —/140 —/12194 —/60

9 —/— —/— —/—

V. CYCLE TIME OPTIMIZATION FOR TWMGS

A. The main idea of the heuristic solution

In this section, we propose another heuristic solution based on an iterative process to solve the cycle time

optimization problem. It starts with a feasible initial marking that makes the net live while the throughput (i.e., the

inverse of the cycle time) is low, then we compute the average cycle time of the net and each circuit. It is well

known that the cycle time of a TMG can be reduced if and only if tokens are added to the critical circuit [5]. Thus,

we allocate tokens to the critical circuit at each iteration step as long as the available resources are used up or the

cycle time reaches the lower bound. We add tokens to the place that satisfies a certain criterion.

1) A criterion for selecting places: The basic idea of the heuristic is to allocate tokens, which reduces the average

cycle time χ(M) as much as possible while increases the cost of resources as less as possible. After we select the

TABLE VI

THE ITERATION PROCESS FOR EXAMPLE 1.

M0 χγ1 (M0) χγ2 (M0) χ(M0) χ′(M0) γ⋆ p n f(M)

(2, 3, 0, 1, 0)T 29 26 30 21 γ1 20

(4, 3, 0, 1, 0)T 25 26 26 21 γ2 p1 2 22

(4, 4, 0, 1, 0)T 25 21 21 21 γ1 p2 1 26

(6, 4, 0, 1, 0)T 21 21 21 21 p1 2 28
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initial marking, we can compute the average cycle time χ(M) of the TWMG and the average cycle time χγ(M)

for every elementary circuit. Only when f(M) < s and χ(M) > χ′(M) hold, i.e., there exist available tokens to

be used and the average cycle time does not reach its lower bound, we select the critical circuit γ⋆ to which tokens

should be allocated. If there exists more than one critical circuit, we choose one. At each step, we select one place

p and add n tokens to it. The number n is a multiple of gcdp which represents the minimal number of tokens that

we should add to decrease the average cycle time of the critical circuit. It can be computed by using simulation.

We denote the decrease in the average cycle time by ∆χγ⋆ after allocating n tokens to place p. We have

∆χγ⋆ = χγ⋆(M ′)− χγ⋆(M) (18)

where M ′ is the marking such that M ′(p) = M(p) + n and M ′(p′) = M(p′) if p′ ̸= p. Let gp be the gain in

criterion value, i.e., the resources that we add, where

gp = yp · n (19)

We introduce a criterion ∆p in which p takes into account both the decreasing of the average cycle time and the

gain in criterion value, i.e.,

∆p =
gp

∆χγ∗
(20)

Tokens will be allocated to the place such that

∆p∗ = min ∆p (21)

Note that, the computation of ∆p is simple: the amount of computation is proportional to the number of places

which belong to the critical circuit. At each iteration step, if there is more than one place with minimal value of

∆p, we keep the optimal allocations that have the minimal average cycle time to next iteration step. Before adding

n tokens to the selected place p, we will check if f(M ′) > s is true. In case that f(M ′) > s holds, another place

p′ ∈ γ⋆ ∩ P\{p} should be selected instead of place p. We stop the allocation of tokens to the system until all

available resources are used up or the average time reaches the lower bound.

TABLE VII

CRITERION VALUES FOR ALL ITERATION STEPS FOR EXAMPLE 1.

M = (2, 3, 0, 1, 0)T p1 p3 p4 M = (4, 3, 0, 1, 0)T p2 p3 p5 M = (4, 4, 0, 1, 0)T p1 p3 p5

n 2 2 1 1 4 2 2 2 1

∆χγ∗ 4 4 7 5 5 5 4 4 4

gp 2 4 6 4 8 6 2 4 3

∆p 0.5 1 0.85 0.8 1.6 1.2 0.5 1 0.75
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2) Heuristic solution: We can summarize the proposed procedure in Algorithm 2.

Algorithm 2: Cycle time optimization

Input: A cyclic TWMG N with a set of elementary circuits Γ, an upper bound s of its weighted sum of tokens,

and a P-semiflow y =
∑

γ∈Γ cγ · yγ .

Output: An initial marking M0 such that the weighted sum of tokens satisfies yT ·M0 ≤ s.

1: Compute the marking MD as in Eq. (5).

2: For every elementary circuit γ ∈ Γ, compute W (Mγ
D) = yT

γ ·MD.

3: For every elementary circuit γ ∈ Γ, compute W γ
L = yT

γ ·MD − g if possible.

4: Compute a marking M that satisfies Eq. (11).

5: Compute an initial marking M0 = M⋆.

6: Compute the average cycle time χ(M0) and χγ(M0), ∀γ ∈ Γ.

7: If χ(M0) ≤ χ′(M), stop and M0 is a solution.

8: while (f(M0) < s and χ(M0) > χ′(M))

{

Select a critical circuit γ⋆;

Compute ∆p, ∀p ∈ γ⋆;

Add tokens to the selected place p, M0(p) := M0(p) + n;

}

9: Output an initial marking M0.

B. Numerical Examples

In this section, we apply Algorithm 2 to the cycle time optimization of a TWMG and a flexible manufacturing

system (FMS).

1) First example: Let us consider the net in Fig. 6. Let s = 30 be the maximum number of available resources

to be allocated. In Table VI, all optimal allocations are given.

We can find that γ1 is a critical circuit at the initial marking M0. Accordingly, we compute gp and ∆χγ∗ to

select the place to which tokens should be added. Table VII shows the criterion values for all iteration steps. After

three steps, we stop the iteration since the average cycle time converges to the lower bound. The optimal solution

is M0 = (6, 4, 0, 1, 0)T .

2) Optimization of a flexible manufacturing system: In this subsection, we deal with the example in Fig. 8 from

[22]. An FMS composed of three machines U1, U2 and U3 is considered. It can manufacture two products, denoted

by R1 and R2. The production mix is 60% and 40% for R1 and R2, respectively. The production processes of

these products are R1 : (U1, U2, U3) and R2 : (U2, U1).

In this model, there are three types of elementary circuits:

• Process circuits: Model the manufacturing process. The tokens belonging to these circuits represent transporta-

tion resources.
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Fig. 8. The TWMG model of a flexible manufacturing system.

• Command circuits: Model the control of the system. One command circuit is associated with each machine.

• Mixed circuits: Theses circuits are partially composed of parts of the command circuits and parts of the process

circuits.

There are six circuits in the FMS:

γ1 = p1t2p2t3p3t1

γ2 = p4t5p5t4

γ3 = p10t8p11t4p12t9p13t2

γ4 = p6t6p7t5p8t7p9t1

γ5 = p2t3p3t1p6t6p7t5p5t4p12t9p13t2

γ6 = p10t8p11t4p4t5p8t7p9t1p1t2

where γ1 and γ2 are process circuits, γ3 and γ4 are command circuits, and γ5 and γ6 are mixed circuits. The

command circuits that model the control of the system must prevent two transitions corresponding to the same

machine from being fired simultaneously. Then, they need to satisfy the condition:

M(p10) +M(p13) = 3 and M(p11) +M(p12) = 0 (22)

or

M(p11) +M(p12) = 2 and M(p10) +M(p13) = 0 (23)

For the command circuit γ3 in Fig. 8, the conservative component is:

2M(p10) + 3M(p11) + 3M(p12) + 2M(p13) = 6 (24)

and this command circuit cannot be allocated tokens any more.
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TABLE VIII

THE ITERATION PROCESS FOR THE FMS.

M0 χγ1 χγ2 χγ3 χγ4 χγ5 χγ6 χ χ′ γ⋆ p n f(M0)

(1,0,0,1,0,0,1,1,1,0,0,2,0)T 18 6 11 7 15 9 21 11 γ1 35

(1,1,0,1,0,0,1,1,1,0,0,2,0)T 9 6 11 7 12 9 13 11 γ5 p2 1 38

(1,0,1,1,0,0,1,1,1,0,0,2,0)T 9 6 11 7 12 9 13 11 γ5 p3 1 38

(1,1,0,1,1,0,1,1,1,0,0,2,0)T 9 4 11 7 9 9 11 11 p5 1 42

(1,0,1,1,1,0,1,1,1,0,0,2,0)T 9 4 11 7 9 9 11 11 p5 1 42

The minimal T-semiflows of γ1, γ2, γ3, γ4, γ5, and γ6 are

x1 = (1, 1, 1, 0, 0, 0, 0, 0, 0)T

x2 = (0, 0, 0, 1, 1, 0, 0, 0, 0)T

x3 = (0, 3, 0, 2, 0, 0, 0, 1, 1)T

x4 = (3, 0, 0, 0, 2, 1, 1, 0, 0)T

x5 = (3, 3, 3, 2, 2, 1, 0, 0, 1)T

x6 = (3, 3, 0, 2, 2, 0, 1, 1, 0)T

and the minimal P-semiflows of γ1, γ2, γ3, γ4, γ5 and γ6 are

y1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

y2 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

y3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 2)T

y4 = (0, 0, 0, 0, 0, 2, 3, 3, 2, 0, 0, 0, 0)T

y5 = (0, 2, 2, 0, 3, 2, 3, 0, 0, 0, 0, 3, 2)T

y6 = (2, 0, 0, 3, 0, 0, 0, 3, 2, 2, 3, 0, 0)T

We assume that cγ = 1, ∀γ ∈ Γ. Therefore, the P-semiflow used in the performance index is y = y1 + y2 +

y3 + y4 + y5 + y6= (3, 3, 3, 4, 4, 4, 6, 6, 4, 4, 6, 6, 4)T , and the minimal T-semiflow of the net is x=(3, 3, 3, 2,

2, 1, 1, 1, 1)T .

Note that, both process circuits γ1 and γ2 are timed marked graphs. We only need put one token in each circuit

initially. We have 

γ4 : WL = 6, W (MD) = 7

γ5 : WL = 6, W (MD) = 7

γ6 : WL = 6, W (MD) = 7
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TABLE IX

SOLUTIONS OBTAINED BY ALGORITHM 2.

Nb. of Nb. of |P | |T | Ave. iteration Ave. CPU Ave. obtained

cycles nets [ave] [ave] steps time [s] cycle time

1 10 4 4 3.6 49 21.4

2 10 9 8 3.4 114 38.8

4 10 15 12 4.3 233 85.2

6 10 22 17 6.1 615 136.1

10 10 40 31 6.6 1121 324.3

and gcdp1 = 1, gcdp2 = 1, gcdp3 = 1, gcdp4 = 1, gcdp5 = 1, gcdp6 = 1, gcdp7 = 1, gcdp8 = 1, gcdp9 = 1, gcdp10 =

1, gcdp11 = 1, gcdp12 = 1, and gcdp13 = 1.

min f(M) = 3M(p1)+3M(p2)+3M(p3)+4M(p4)+4M(p5)+4M(p6)+6M(p7)+6M(p8)+4M(p9)+

4M(p10) + 6M(p11) + 6M(p12) + 4M(p13)

s.t



M(p1) +M(p2) +M(p3) >= 1

M(p4) +M(p5) >= 1

2M(p10) + 3M(p11) + 3M(p12) + 2M(p13) = 6

2M(p6) + 3M(p7) + 3M(p8) + 2M(p9) > 7

2M(p2) + 2M(p3) + 3M(p5) + 2M(p6) + 3M(p7)

+3M(p12) + 2M(p13) > 7

2M(p1) + 3M(p4) + 3M(p8) + 2M(p9) + 2M(p10)

+3M(p11) > 7

Note that in this example, if we use WL for γ4, γ5 and γ6 to compute an initial marking, there is no feasible

solution since the constrains are overly strict. We find the initial marking

M0 = M⋆ = (1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 2, 0)T

Let s=45 be the maximum number of available resources that can be allocated. Table VIII shows the iteration

process. Both (1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 0)T and (1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 2, 0)T are optimal solutions.

We have tested some examples with different net sizes for Algorithm 2 and the simulation results are summarized

in Table IX. Note that according to Proposition 4, the number of available resources s should be greater than s∗

for each tested net.
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VI. CONCLUSION

This paper deals with determinisitc timed weighted marked graphs. We address the problem of marking opti-

mization and cycle time optimization of a TWMG. The marking optimization problem consists in finding an initial

marking to minimize the weighted sum of tokens in places while the average cycle time is less than or equal to

a given value. The cycle time optimization problem consists in finding an initial marking to minimize the average

cycle time while the weighted sum of tokens in places is less than or equal to a given value. Two heuristic algorithms

are proposed to solve these problems.

Numerical simulation studies show that the proposed method in Section IV-B requires less iteration steps and thus

is much more efficient than the approach in [7]. In some special cases the objective function obtained may be worse

than the one found by Sauer. However, we show that by combining the two approaches, we always reach the same

objective function by Sauer [7] with a significant reduction of computational costs. Future work includes finding

an analytical solution to compute the average cycle time and proposing optimal solutions to the two optimization

problems.
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