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Abstract

In this paper we study the problem of constraint transformation for Petri nets with uncontrollable tran-

sitions and containing both conflicts and synchronizations. We show that given an arbitrary net and a set

of legal markings, the admissible marking set cannot always be represented by a finite number of disjunc-

tions of GMECs. Moreover, we characterize the GMEC inflation phenomenon, that is, the case in which

the representation of the admissible marking set may be too complex to be efficiently implemented in a

closed-loop net. To rule out the possibility of GMEC inflation we consider a subclass of constraints called

singular GMECs with an acyclic backward-conflict-free uncontrollable subnet. By these assumptions we

propose an algorithm to transform a given singular GMEC into a controllable OR-GMEC which precisely

characterizes its admissible marking set.
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1 Introduction

Supervisory Control Theory (SCT), originated by Ramadge and Wonham [1], provides a unifying framework

for modeling and control of discrete event systems (DESs) and has been widely used in modeling various

physical systems. In the original work of Ramadge and Wonham [2] automata are used to model plants

and specifications, and in recent years Petri nets have been proposed as SCT models since they provide an

efficient solution to control problems (e.g., deadlock prevention [3, 4, 5, 6, 7, 8], fault diagnosis [9, 10, 11],

identification [12], and marking avoidance [13, 14, 15, 16, 17, 18]) without requiring the enumeration of the

state space.

In SCT, two types of control requirements, which are called state specifications and language specifi-

cations, are usually considered. In [2] Ramadge and Wonham show that a language specification can be

converted into a state specification in an extended model obtained by the concurrent composition of the plant

and the language specification. As a result, enforcing an arbitrary state specification is a fundamental SCT

problem. In Petri nets, a state specification consists in a set of legal states, i.e., markings, and the control

objective consists in preventing the system from reaching the illegal states which are also called forbidden

markings. Due to the existence of uncontrollable transitions, an illegal marking can be reached from a le-

gal marking by firing uncontrollable transitions. Hence one needs to find a more restrictive control policy

which enforces a subset of legal markings, called admissible markings, from which the system cannot reach

a forbidden marking by firing uncontrollable transitions.

Both on-line and off-line approaches have been proposed to solve this problem. For live bounded marked

graphs, Ghaffari et al. propose an efficient online control policy that is based on the determination of the

maximal uncontrollably reachable marking of critical places [19]. For backward-conflict-free-choice nets,

by the method of Basile et al., an on-line feedback control logic can be obtained by decomposing the net into

a number of marked graph components, which has only polynomial complexity [20]. However, both methods

apply to restricted subclasses of nets and the online supervisor must solve a linear programming problem at

each step.

On the other hand, off-line approaches have the advantage of providing a closed form solution and do

not require complex on-line computations. Many techniques for Petri net marking specifications have been

proposed based on reachability analysis. In these approaches, a reachability graph is first computed, and

then a suitable control law is established by using the theory of regions [21]. For example, in the method of

Uzam and Zhou [22, 23] first-met bad markings (FBMs) are computed from a reachability graph and then are

singled out by iteratively adding monitor places. This approach is further improved by Chen [24] to obtain a

maximally permissive controller. These approaches work well in systems with a state space of medium size,

but for large scale systems they are not applicable due to the state explosion problem.
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To circumvent the need of computing a full reachability graph, a different off-line approach is based on

the notion of constraint transformation: it seeks a solution by directly characterizing the set of admissible

markings that corresponds to a given legal marking set, without enumerating the reachability space. Gener-

alized Mutual Exclusion Constraints (GMECs) [25] are a common type of linear constraints which defines

a set of legal markings. A GMEC can be easily enforced by a control structure composed of a single mon-

itor place [25], while OR-AND GMECs that are a disjunction of conjunctive GMECs can be enforced by a

monitor-switcher control structure [17].

A GMEC transformation substitutes a given uncontrollable GMEC by one or more controllable GMECs

whose legal set is contained in the admissible marking set of the original constraint. Moody and Antsaklis

proposed a method to transform a given uncontrollable GMEC into a new controllable one [14]. Their ap-

proach is very efficient from a computational point of view but the solution is not guaranteed to be maximally

permissive, i.e., it may restrict the plant within a strict subset of the admissible marking set. Holloway et

al. studied a very similar problem and proposed an algorithm to estimate the maximal number of tokens that

a place may uncontrollably receive at a given marking [26]. Luo et al. and Wang et al. proposed several

GMEC transformation algorithms that have been shown to be maximally permissive for different subclasses

of Petri nets [27, 28, 29]. However, these methods are restrictive since they can only be applied to ordinary

and synchronization-free nets (i.e., each transition has at most one input place). Moreover, we note that there

are also some approaches that combine reachability analysis and transformation in both centralized [30] and

decentralized cases [31, 32].

In this work, we study the problem of GMEC transformation in Petri nets in a more general setting. The

main contributions of this work are summarized as follows.

First, we show that given an arbitrary net containing both conflicts and synchronizations and a set of legal

markings LW0
defined by an OR-AND GMEC W0, the corresponding admissible marking set AW0

may

not be a finite union of integer convex sets and hence cannot be defined by an OR-AND GMEC. However,

in the special case in which the set of legal markings is represented by a nonnegative OR-AND GMEC

W0, the admissible marking set AW0 can always be characterized by a transformed OR-AND GMEC W .

Nevertheless, besides the nonnegligible difficulty in finding such a transformed constraint, W may contain

the disjunction of a very large number of GMECs. This number depends not only on the constraint and the

structure of the net but also on the bound of the constraint. We call this phenomenon the GMEC inflation.

To rule out the undesirable phenomenon of the GMEC inflation, we consider two assumptions. The first

assumption requires that the legal marking set to be enforced be characterized by a particular type of GMECs

called singular GMECs which are fairly general and of practical usage. The second assumption requires that

the influenced uncontrollable subnet (defined in Section IV) of the singular GMEC be backward-conflict-

free (BCF) and acyclic. A BCF net is an ordinary net in which each place has at most one input transition:
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this class of nets can model both conflicts (e.g., two or more workflows share the same source buffer) and

synchronizations (e.g., two or more products are assembled) in the workflow systems. We show that these

two assumptions are sufficient to exclude the possibility of the GMEC inflation.

Finally, for a singular GMEC whose influenced uncontrollable subnet is acyclic and BCF, we propose

a method to transform it into a controllable OR-GMEC which precisely represents its admissible marking

set. This transformation is based on the expansion and composition of singular GMECs. To the best of our

knowledge, no other method has been presented in the literature for maximally permissive GMEC transfor-

mation in the nets containing both conflicts and synchronization. Such a resulting OR-GMEC can be further

implemented by a Petri net controller [15, 17, 33].

The paper is organized in seven sections. Section II recalls the basic notions of Petri nets and GMECs.

Section III studies the properties of admissible marking sets and the GMEC inflation. Section IV introduces

the notion of singularity of GMECs, GMEC expansion and compositions, and their properties are explored. In

Section V an algorithm based on the GMEC composition operation is proposed to transform a given singular

GMEC into a controllable OR-GMEC that is maximally permissive, and the correctness of the algorithm is

proved in Section VI. Section VII draws the conclusions.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a set of m places represented by circles;

T is a set of n transitions represented by bars; Pre : P × T → N and Post : P × T → N are the

pre- and post-incidence functions that specify the arcs in the net and are represented as matrices in Nm×n

(here N = {0, 1, 2, . . .}). The incidence matrix of a net is defined by C = Post − Pre ∈ Zm×n (here

Z = {0,±1,±2, . . .}). A net is ordinary if Pre(p, t), Post(p, t) ∈ {0, 1} for all p ∈ P and t ∈ T .

For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t) > 0} and its set of

output places as t• = {p ∈ P | Post(p, t) > 0}. The notions for •p and p• are analogously defined.

A marking is a vector M : P → N that assigns to each place of a Petri net a non-negative integer number

of tokens, represented by black dots. A marking can also be represented as an m-component vector. We

denote by M(p) the marking of place p. A marked net 〈N,M0〉 is a net N with an initial marking M0.

A transition t is enabled atM ifM ≥ Pre(·, t) and may fire reaching a new markingM ′ = M0+C(·, t).

We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and we write M [σ〉M ′ to denote

that the firing of σ yields M ′. We denote by R(N,M0) the set of all markings reachable from the initial one.
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The transition set T can be partitioned into Tc and Tu which represent the controllable and uncontrollable

transition sets, respectively, i.e., T = Tc ∪ Tu and Tc ∩ Tu = ∅. A transition tu ∈ Tu is not controllable, i.e.,

it cannot be disabled by a control agent (e.g., control places).

Given a net N = (P, T, Pre, Post), N̂ = (P̂ , T̂ , P̂ re, P̂ ost) is called a subnet of N if P̂ ⊂ P , T̂ ⊂ T

and P̂ re (resp., P̂ ost) is the restriction of Pre (resp., Post) to P̂ × T̂ .

In a net N = (P, T, Pre, Post), a path is a sequence of nodes π = x1x2 · · ·xk such that xi ∈ P ∪ T for

all i = 1, . . . , k, and xi ∈ •xi+1 for all i = 1, . . . , k− 1. A node x1 ∈ P ∪ T is said to be in the downstream

of x2 ∈ P ∪ T if there exists a path from x2 to x1. The set of nodes in the upstream (resp., downstream) of a

node x is denoted as (•x)∞ (resp., (x•)∞).

2.2 GMEC

A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w, k) where w ∈ Zm and k ∈ N. A GMEC

defines a set of legal markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}.

The objective of a supervisor is to ensure that only legal markings are reached by preventing transition

firings that yield forbidden markings in the set F = Nm \ L(w,k). However, the presence of uncontrollable

transitions may complicate the problem. In fact, given a net N with set of uncontrollable transitions Tu, it

may occur that from a legal marking M ∈ L(w,k) a sequence of uncontrollable transitions, which cannot be

disabled by the supervisor, yields a forbidden marking. For this reason the supervisor needs to restrict the

evolution of the system within the set of admissible markings denoted by A(w,k):

A(w,k) = {M ∈ Nm | ∀σu ∈ T ∗u ,M [σu〉M ′ ∈ L(w,k)}

where Tu is the set of uncontrollable transitions of the given net N .

An AND-GMEC [17] is a pair (W,k) where W ∈ Zs×m and k ∈ Ns. An AND-GMEC defines a set of

legal markings:

L(W,k) = {M ∈ Nm |WT ·M ≤ k}

and a set of admissible markings:

A(W,k) = {M ∈ Nm | ∀σu ∈ T ∗u ,M [σu〉M ′ ∈ L(W,k)}
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Legal Markings 

Admissible Markings 

Forbidden Markings 

Reachable Markings 

Figure 1: The graphic illustration of legal, admissible, forbidden, and reachable marking sets.

An OR-AND GMEC [17] is a set: W = {(W1,k1), . . . , (Wr,kr)} where (Wi,ki) is an AND-GMEC

for i ∈ {1, . . . , r}. An OR-GMEC defines a set of legal markings:

LW = {M ∈ Nm | ∃(Wi,ki) ∈W,WT
i ·M ≤ ki}

and a set of admissible markings:

AW = {M ∈ Nm | ∀σu ∈ T ∗u ,M [σu〉M ′ ∈ LW }

Definition 1 (Controllability of GMECs) [34] Given a net N with set of uncontrollable transitions Tu and

incidence matrix C, a single GMEC (w, k) is said to be structurally controllable if ∀t ∈ Tu, wT · C(·, t) ≤ 0

holds. An OR-AND GMEC is said to be structurally controllable if all single GMECs in it are structurally

controllable. M

Proposition 1 If (w, k) is controllable, then L(w,k) = A(w,k) holds.

Proof: First, it is obvious that L(w,k) ⊇ A(w,k) holds. Second, For any marking M ∈ L(w,k) and any

σ ∈ T ∗u such that M [σu〉M ′, wT ·M ′ = wT · (M + C · yσ) ≤ wT ·M , since wT · C(·, t) ≤ 0 holds for

all t ∈ Tu. This indicates that M ′ ∈ L(w,k) and thus M ∈ A(w,k) holds, i.e., L(w,k) ⊆ A(w,k) holds, which

concludes the proof. �

For simplicity, in the sequel we call a GMEC “controllable” if it is structurally controllable. By Proposi-

tion 1, if a GMEC is controllable, then the firing of any uncontrollable sequence at any legal marking does not

reach a marking that is illegal. A controllable GMEC can be enforced on a marked net 〈N,M0〉 by adding a

monitor place ps withC(ps, t) = −wT ·C(·, t) andM0(ps) = k−wT ·M0 (an analogous control mechanism

is also used to design a controller for OR-AND GMECs [17]).

In general, an uncontrollable GMEC (w, k) cannot be enforced since the monitor place may attempt to
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disable some uncontrollable transitions. Note, however, that for some particular initial marking M0 it may

happen that the monitor place corresponding to an uncontrollable GMEC does not disable uncontrollable

transitions at any reachable marking1. However, there is no efficient way to determine this except checking

the entire reachability graph. Furthermore, this property depends on the intial marking M0. On the contrary,

the controllability of a GMEC can be easily verified by incidence matrix analysis [35] and provides a feasible

solution for all initial markings.

2.3 Integer convex sets

A setX ⊆ Rm (R is the set of real numbers) is convex if (x1, x2 ∈ X)⇒ ((∀λ ∈ [0, 1])λ ·x1+(1−λ) ·x2 ∈

X).

A set S ⊆ Nm is said to be an integer convex set if there exists a convex set Sreal ⊆ Rm such that

S = Sreal ∩ Nm.

According to the previous definition, an integer convex set S is the set of integer points contained in a

corresponding real convex set Sreal. For example, the set S = {x1, x2, x3}where x1 = [0, 0]T , x2 = [0, 1]T ,

and x3 = [1, 0]T , is an integer convex set since there exists Sreal = {(a, b) ∈ R × R | (a ≥ 0) ∧ (b ≥

0) ∧ (a+ b ≤ 1)} such that S = Sreal ∩ Nm.

Note that given two integer convex sets S1 and S2, S = S1 ∩ S2 is also an integer convex set since

S = S1 ∩ S2 = (S1,real ∩ Nm) ∩ (S2,real ∩ Nm) = (S1,real ∩ S2,real) ∩ Nm where S1,real ∩ S2,real is a

real convex set.

From the definitions of GMECs above, two properties trivially hold.

Property 1 The legal marking set defined by an AND-GMEC (i.e., L(W,k)) is an integer convex set.

Property 2 The legal set defined by an OR-AND GMEC (i.e., LW ) is a finite union of integer convex sets.

3 GMEC Characterization of Admissible Marking Sets

Assume that the legal marking set to be enforced on a Petri net is defined by an OR-AND GMEC W0. Due

to the presence of uncontrollable transitions, such a constraint may be uncontrollable and hence cannot be

directly enforced, as discussed at the end of Section II.B.

1Such GMECs are called admissible GMECs in the literature [14]. We note that the admissibility of a GMEC depends on the initial
marking M0, while the set of admissible markings does not. Obviously a controllable GMEC is always admissible regardless of the
initial marking, but the converse is not true.
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To solve this problem, one may determine a different OR-AND GMEC W to meet the control demand.

The new constraint must satisfy two conditions: (1) W must be controllable, i.e., LW = AW (otherwise it

cannot be enforced); (2) the legal marking set defined by W must be a subset of AW0
, i.e., LW ⊆ AW0

. The

set of OR-AND GMECs that satisfy the two conditions are denoted as Ω(W0), i.e., Ω(W0) = {W | (LW ⊆

AW0) ∧ (W is controllable)}.

Among all OR-AND GMECs in Ω(W0), we look for constrains whose set of legal marking is maximal,

so as to minimally restrict the behavior of the controlled net. This motivates the following definition that

identifies the “optimal” solution to the considered control problem.2

Definition 2 Given a Petri net N and an OR-AND GMEC W0, an OR-AND GMEC W ∈ Ω(W0) is said to

be maximally permissive (with respect to N and W0) if LW = AW0
. M

Now the problem studied in this work is formalized as the following.

Problem 1 Given a net N = (P, T, Pre, Post) with T = Tc ∪ Tu and an OR-AND GMEC W0, determine

a maximally permissive OR-AND GMEC W . M

In the literature, GMEC transformation techniques are used to solve Problem 1 for subclasses of nets.

In the approaches based on transformation, uncontrollable GMECs are iteratively substituted by new ones

until a maximally permissive solution is reached [14, 26, 27, 28, 29]. However, in the following we show

that this scenario is not possible for arbitrary nets and initial GMEC W0, since in some cases AW0 cannot be

characterized as the legal set of an OR-AND GMEC. In other cases, such a characterization is possible but

requires such a large number of disjunctive constraints that is practically useless.

3.1 Problem 1 with Arbitrary Nets and GMECs

We first present a negative result, i.e., we show that given an arbitrary net and an arbitrary OR-AND GMEC

W0, there does not always exist a maximally permissive OR-AND GMEC W . We first present the following

lemma.

Lemma 1 Given a Petri net N containing m places, let W be an OR-AND GMEC with set of legal markings

LW . For any integer convex set X ⊆ Nm, the intersection LW ∩X is a finite union of integer convex sets.

Proof: From the definition of OR-AND GMECs and Property 2, LW can be written as LW =
⋃r
i=1 Li

and each Li is an integer convex set. For any given integer convex set X ⊆ Nm, each Li ∩ X is also an
2In [34] a similar notion called the supremal controllable subset is also discussed, which is defined on the reachability set of a marked

net R(N,M0).
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p3p1

t1

p2 p4

p5

t2 t4t3t0

Figure 2: A Petri net for Proposition 2 with Tc = {t0} and Tu = {t1, t2, t3, t4}.

integer convex set. Hence LW ∩X =
⋃r
i=1(Li ∩X) is a finite union of integer convex sets. �

By Lemma 1, given a set of markings S ∈ Nm, if we can find an integer convex set X such that S ∩X is

not a finite union of integer convex sets (which implies that both S and X are infinite sets), then there does

not exist an OR-AND GMEC W such that LW = S.

Proposition 2 [Non-Existence of a GMEC Solution] There exist some Petri nets and OR-AND GMECs whose

admissible marking set cannot be characterized by an OR-AND GMEC.

Proof: We prove this by the following counterexample. In Figure 2, let Tc = {t0} and Tu =

{t1, t2, t3, t4}. Consider an OR-AND GMEC W0 consisting of a single GMEC (w0, k0) ≡ M(p4) −

M(p5) ≤ 0. The admissible marking set AW0
⊂ N5 is too complicated to be defined explicitly. Con-

sider the marking set X = {M ∈ N5 | M(p2) = M(p3) = M(p4) = 0} which is a convex subset of N5.

The set AW0 ∩X contains the points in the shaded area in Figure 3 including the boundary.

One can readily find thatAW0
∩X cannot be represented by an OR-AND GMEC. Actually the following

infinite union of AND-GMECs characterizes AW0 ∩X:

+∞∨
j=0

(M(p1) ≤ 2j + 1) ∧ (M(p5) ≥ 2j)) (1)

As a result,AW0
∩X cannot be written as a finite union of integer convex sets. By Lemma 1,AW0

is not

a the legal set of an OR-AND GMEC. �

3.2 Problem 1 with Nonnegative GMECs and GMEC Inflation

It has been proved [36, 37] that if the uncontrollable subnet is ordinary and synchronization-free (i.e., each

transition has at most one input place), and if the initial legal marking is characterized by a single nonnegative

(w0, k0), then the admissible marking set of (w0, k0), i.e., A(w0,k0), can always be characterized by an

AND-GMEC. Here we show a generalized result stating that given a nonnegative OR-AND GMEC W0, its
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M(p5)

M(p1)

2 4 6
1
3
5
7

80

Figure 3: The admissible marking set of the net in Figure 2 with the uncontrollable GMECM(p4)−M(p5) ≤
0.

admissible marking set can always be characterized by an OR-AND GMEC W regardless the structure of the

net.

Definition 3 An AND-GMEC (W, k) is said to be nonnegative if W ≥ 0. An OR-AND GMEC is said to be

nonnegative if all AND-GMECs in it are nonnegative. M

Given an OR-AND GMEC W0, if ∀(Wi,ki) ∈ W0, Wi is nonnegative, then there always exists an

OR-AND GMEC W such that LW = AW0
. To prove this we first recall the well-known Dickson’s Lemma.

Lemma 2 [Dickson’s Lemma][38] Let S ⊆ Nm be a right-closed set3. Then the set Smin of minimal ele-

ments of S for the ordering ≤ is finite. M

Proposition 3 Given a Petri net N = (P, T, Pre, Post) in which T = Tc ∪ Tu and an OR-AND GMEC

W0 = {(W1, k1), . . ., (Wr, kr)} such that Wi ≥ 0 for i = 1, . . . , r, there exists an OR-AND GMEC W such

that LW = AW0
.

Proof: Consider an arbitrary (Wi,ki) ∈W0. Let Fi = {A(Wi,ki), i.e., the complement set of A(Wi,ki).

Since for any markingM ∈ Fi, there exists a firing sequence σu ∈ T ∗u such thatM [σu〉M ′ /∈ L(Wi,ki). Then

for any M̂ ≥ M ∈ Fi, M̂ [σu〉M̂ ′ ≥ M ′ where WT
i · M̂ ′ � k holds due to Wi ≥ 0, which indicates the

truth of M̂ /∈ L(Wi,ki). Hence Fi is right-closed. According to Dickson’s Lemma, the set composed by the

minimal elements of Fi, denoted as Fmin,i, is finite. As a result, Fi can be represented as a finite union of

integer convex sets:

Fi =
⋃

M ′∈Fmin,i

{M ∈ Nm |M ≥M ′}

3A set S ⊆ Nm is said to be right-closed if (x ∈ S, y ≥ x)⇒ (y ∈ S).
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which can be enforced by a disjunction of conjunctive inequalities denoted as Ii. Consequently, AW0 can be

written as:

AW0
= {(

r⋂
i=1

Fi)

and AW0
can be characterized by a logical expression I = ¬

∧r
i=1 Ii consisting of linear inequalities. The

disjunctive normal form of I is a finite union of integer convex sets and hence, by Property 2, can be enforced

by an OR-AND GMEC. �

Although Proposition 3 ensures the existence of an OR-AND GMEC W such that LW = AW0
in case

thatW0 is nonnegative, it cannot be used to determine the OR-AND GMECW , since it is difficult to compute

the minimal elements of Fi for each AND-GMEC. In general an exhaustive enumeration of markings in the

space Nm is needed, which is even worse than enumerating the reachability space. Moreover, even if it is

possible to find the expected OR-AND GMEC W , it can be too complex to be practically implemented as a

closed-loop net, as shown in the following example.

Example 1 Consider the Petri net in Figure 4(a). The initial inadmissible GMEC W0 consists of a single

GMEC (w0, k0) ≡ M(p4) ≤ k0. By applying Lemma 1 we consider the set AW0
∩ X where X = {M ∈

N4 |M(p2) = M(p3) = 0}. It is trivial thatAW0
∩X can be characterized by the following finite OR-AND

GMEC W ′:

bk0/2c+1∨
j=0

(M(p1) ≤ 2j + 1) ∧ (M(p4) ≤ k0 − 2j)), (2)

and the admissible marking sets for k0 = 3, 5, and 999 are illustrated in Figure 5. As a result, there will be

bk0/2c+1 AND-GMECs inW ′, and one can verify that all these AND-GMECs are not redundant. Therefore

for k0 = 999, in the original N4 space an OR-AND GMEC W satisfying LW = AW0 contains at least 500

AND-GMECs. To enforce an OR-AND GMEC as a closed-loop supervisor, by using the technique in [17]

(which synthesizes a closed-loop controller with the lowest structural complexity) the number of additional

transitions (in [17] they are called mirror transitions) is in the order of O(r2) where r is the number of

AND-GMECs. To enforce such an OR-AND GMEC W more than 250,000 (i.e., (bk0/2c + 1)2) additional

transitions will be added for a single transition in the plant. As a result, although such an OR-AND GMEC

W exists, it is practically infeasible to be used as a controller in real systems. M

From Example 1 we observe a phenomenon we call the GMEC inflation. The number of GMECs in the

OR-AND GMEC W describing the admissible marking set A(w0,k0) depends not only on the structure of the

constraint and of the net but also on the parameter k0, i.e., the constraint bound. Since the constraint bound

k0 is related to the capacity of the physical plant system, the GMEC inflation may occur in real systems with

large capacity, even if the net structure is rather simple (e.g., Figure 4(a)). For the net in Figure 4(a) with
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(a)

(b)p3p1

t1

p2 p4

t2t0

p3p1

t1

p2 p4

t2 t4t3t0

p5

Figure 4: Two Petri nets for Examples 1 and 4.

M(p4)

M(p1)

5

999

0

3

3 5 999

Figure 5: The admissible marking set of the net in Figure 4(a) with the uncontrollable GMEC M(p4) ≤ k0.
Solid circle border markings (•), empty circle border markings (◦), and solid box border markings (�) and
all markings down-left to the borders belong to the admissible marking set A(w0,k0) ∩X for k0 = 3, 5, and
999, respectively.
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k0 = 999, the OR-AND GMEC W that describes the set of admissible markings requires more than 1,500

additional places and 250,000 additional transitions, which indicates that the closed-loop net has an incidence

matrix in Z1,500×250,000 that can hardly be further analyzed.

Since the GMEC inflation greatly increases the complexity of the controller, to avoid it one may try

to modify the structure of the uncontrollable subnet, e.g., adding additional control logic to make some

uncontrollable transitions become controllable. We find that the GMEC inflation does not occur in some

restrictive subclasses of Petri nets (e.g., synchronization-free ordinary nets [27] and conflict-free ordinary

nets [13]). On the other hand, Example 1 is a net containing both a conflict place and a synchronization

transition. Conflict and synchronization structures are very common in resource allocation systems, which

motivates us to study the GMEC transformation in Petri nets containing both primitives.

4 Singularity of GMECs and Problem Statement

This section introduces a particular type of GMECs called singular GMECs. We show that the GMEC

inflation would not occur in case that the initial GMEC is singular and its influenced uncontrollable subnet is

backward-conflict-free.

4.1 Singular GMECs and Backward-conflict-free Nets

We first define the root place of a given GMEC and then introduce singular GMECs.

Definition 4 Given a net N and a GMEC (w, k), px ∈ |w| is called a root place of |w| if |w| ⊆ (p•x)∞, where

|w| denotes the support4 of w and (p•x)∞ denotes the set of all nodes in the downstream of p. M

In other words, given a GMEC (w, k), a root place px is a place that belongs to the support of w such that

all the places in the support of w are in its downstream. The root place of a GMEC may be unique, multiple,

or not exist.

Definition 5 Given a Petri net N , a GMEC (w, k) is said to be singular if:

1. its root place px exists and is unique;

2. there exists at most one transition tx such that wT · C(·, tx) > 0;

3. if tx exists, then •tx ∩ |w| = ∅, t•x ∩ |w| = {px}, and wT · C(·, tx) = 1.

4In a net N with m places, the support of a vector w ∈ Nm is {p ∈ P | w(p) 6= 0}.
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For a singular GMEC (w, k), such a transition tx, if it exists, is called its injection transition. M

The concept of singular GMECs involves the fact that there exists at most one transition tx whose firing

will add one token to the root place px (whose weight is w(px) = 1) but will not remove tokens from any

support place of w, while the firing of all other transitions will not increase the token count of w.

Checking if a GMEC is singular is not difficult: to verify Conditions 1 and 3 one could simply check

the incidence matrix of the net, and to check Condition 2 one needs to do |Tu| vector multiplications. By

definition, a singular GMEC has the following property.

Proposition 4 For any singular GMEC the firing of any transition t will increase its token count by one at

most.

Proof: Trivial, since the firing of its injection transition tx (if it exists) increases its token count by one,

while the firing of any transition t 6= tx does not increase its token count. �

Notice that the injection transition is the only transition whose firing would increase the token count of a

singular GMEC, we have the following result.

Corollary 1 A singular GMEC with no injection transition is controllable.

Example 2 Figure 6 illustrates an automated factory equipped with robots and AGVs. Raw material A

arrives at Workplace 1 and then is transported by an AGV to Workplace 2. Material A can be assembled with

raw material B from either Workplace 3 or Workplace 4 by two different robots, and the product is transported

to Workplaces 5 and 6, respectively. Another robot assembles parts from Workplaces 5 and 6 and the product

is transported to Storehouse 7.

The Petri net model is depicted in Figure 7 in which Tu = {t1, t2, t3, t4}. In the net in Figure 7, the

GMEC M(p2) +M(p5) +M(p6) + 2M(p7) ≤ 3 is singular with root place p2 and injection transition t1.

The GMEC M(p1) + M(p2) + M(p5) + M(p7) ≤ 1 is also singular with root place p1 but no injection

transition. On the contrary, the GMECs 2M(p5) +M(p7) ≤ 1 and M(p3) +M(p5) + 2M(p7) ≤ 3 are not

singular. M

Singular GMECs are common as a state specification. For example, in monolithic supervisor trimming

problems [16], the initial GMEC to be enforced is usually in the form k1M(p) ≤ k2 (k1 > 0) that can always

be converted into an equivalent GMEC M(p) ≤ bk2/k1c where bxc denotes the maximal integer which does

not exceed x. Such a GMEC is singular if place p has one single input arc whose weight is 1. In the sequel

we make the first assumption on the initial GMEC (w0, k0) to be enforced.
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Assumption 1 (Initial Singularity Assumption) The initial GMEC (w0, k0) to be enforced is singular.

However, only Assumption 1 is not sufficient to rule out the possibility of the GMEC inflation, as will be

shown at the end of this subsection. In the following we make another assumption on the net structure.

Notice that given an uncontrollable GMEC (w, k) to be enforced, there may exist some places p ∈ P

whose tokens will never uncontrollably flow to the support places of w. Hence practically we only need to

consider the subnet which may potentially affect the token count of (w, k).

Definition 6 The influenced uncontrollable subnet of a GMEC (w, k) inN , denoted as N̂ = (P̂ , T̂ , P̂ re, P̂ ost),

is the subnet of N obtained by removing all transitions t ∈ Tc followed by removing all places p such that

∀p′ ∈ |w| there neither exists a path from p to p′ nor from p′ to p. M

Now we make the second assumption on the influenced uncontrollable subnet of the initial GMEC to be

enforced.

Definition 7 A backward-conflict-free net (BCF net) is an ordinary Petri net in which each place has at most

one input transition, i,e., ∀p ∈ P , |•p| ≤ 1 holds. M

Assumption 2a (BCF Assumption) The influenced uncontrollable subnet of the initial singular GMEC (w0, k0)

is BCF.

Assumption 2b (Acyclicity Assumption) The influenced uncontrollable subnet of the initial singular G-

MEC (w0, k0) is acyclic.

Assumption 2 includes two closely related sub-assumptions on the net structure, i.e., the influenced

uncontrollable subnet is an acyclic BCF net. The class of BCF nets strictly includes marked graphs and

assembly-flow systems [39]. In a BCF net, the tokens in a place p can be uncontrollably injected only from its

unique upstream uncontrollable transition. On the other hand, the assumption that the uncontrollable subnet

is acyclic is a widely used assumption in the supervisory framework of Petri nets.

Example 3 In the net in Figure 7 with Tu = {t1, t2, t3, t4}, its uncontrollable subnet N contains all places

and transitions except tc1, tc2, tc3, and tc4 and it is backward-conflict-free. M

BCF nets can model both conflicts (e.g., two or more workflows share the same source buffer) and syn-

chronizations (e.g., two or more products are assembled) in the working flow systems. It is a widely studied
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Figure 6: An automated assembly system.
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Figure 7: The Petri net model of the system in Figure 6.

subclass of Petri nets since many real systems (e.g., assembly workflows discussed in [39] and backward-

conflict-free-choice-nets in [20]) can be modeled by it. In particular, for uncontrollable subnets that are

backward-conflict-free-choice, by the technique in [20] an online feedback control logic with polynomial

complexity can be obtained. On the other hand, the acyclic condition is reasonable since an uncontrollable

loop may unstoppably consume incoming resources or cause an overflow.

Both Assumptions 1 and 2 can be immediately verified by the inspection of the net structure and the

constraint structure. The two aforementioned assumptions are sufficient to rule out the GMEC inflation,

which will be shown in the next section. Moreover, the following example shows that the GMEC inflation

may occur if either of the two assumptions is not satisfied.

Example 4 Consider the following two cases: (1) the net in Figure 4(a) and an initial GMEC (w′0, k′0) ≡

M(p5) ≤ k0 which does not satisfy Assumption 2; (2) the net in Figure 4(b) and an initial GMEC (w′′0 , k′′0 ) ≡

M(p3) + M(p4) ≤ k0 which does not satisfy Assumption 1. In both cases the admissible marking sets are

identical to that in Example 1, which suffers from the GMEC inflation. M
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4.2 Operations of Singular GMECs

In this subsection we define two operations on singular GMECs, which will be used to build an algorithm

in Section V. We point out that these operations can also be applied to singular GMECs in non-BCF nets.

However, BCF nets have some special properties that will be used to guarantee the singularity of GMECs

during the transformation procedure.

Definition 8 Given a singular GMEC (w, k) with root place px and injection transition tx such that •tx =

{p1, . . . , pr}, the expansion set of (w, k) is defined as E(w,k) = {(wi, ki), 1 ≤ i ≤ r}, in which each (wi, ki)

is computed by the following operations:


wi(p) = w(px) = 1, if p = pi

wi(p) = w(p), otherwise

ki = k

(3)

M

In brief, for each place pi in •tx a new GMEC (wi, ki) is put in E(w,k) in which the weight of pi is

increased to 1, i.e., the weight of px. The physical interpretation of the expansion operation is to back-

propagate the tokens of its support to previous places through uncontrollable transitions. The following

proposition shows that in an acyclic BCF net, given a singular (w, k), all GMECs in E(w,k) are singular.

Proposition 5 Given a singular GMEC (w, k) with root place px and injection transition tx with |•tx| = r,

if its influenced uncontrollable subnet is acyclic and BCF, then all GMECs (wi, ki) in E(w,k) are singular.

Proof: Consider the arbitrary i-th GMEC (wi, ki) in E(w,k).

(1) Since |w| ⊂ (p•x)∞ and px ∈ (p•i )
∞, we have |wi| = |w| ∪ {pi} ⊂ (p•i )

∞ and by Definition 4 its

unique root place is pi.

(2) Since (w, k) is singular and the only weight change from w to wi is that of pi: wi(pi) = w(px) = 1,

the firing of any t /∈ •pi will not increase the token count of (wi, ki). By considering that the net is BCF,

there exists at most one transition tz ∈ •pi such that wTi · C(·, tz) > 0.

(3) Since the net is acyclic and pi is the root place of (wi, ki), •tz ∩ |wi| = ∅ holds. If wTi · C(·, tz) > 0,

then t•z∩|wi| = {pi} since pi is the root place of (wi, ki) and the net is BCF. Hence Condition 3 in Definition 5

is satisfied. By the three arguments, (wi, ki) is singular. �
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Then we define the composition of two singular GMECs. Two GMECs are composable if they are both

singular and share the same root place.

Definition 9 Given two singular GMECs (wa, ka) and (wb, kb) which share the same root place px, their

composition GMEC (wab, kab) is computed by the following operations:


wab(p) = 1, if p = px

wab(p) = wa(p) + wb(p), otherwise

kab = [(ka + 1) + (kb + 1)]− 1

(4)

M

Note that two singular GMECs are composable only if they have the same root place, and they would

have the same injection transition if it exists. The graphic illustration of GMEC expansion and composition

is shown in Figure 8.

Theorem 1 Given an acyclic net N and a set of nonnegative singular GMECs, any GMEC that can be

obtained by the expansion and composition operations has a unique root place.

Proof: The uniqueness of the root place for any GMEC obtained by the expansion follows from the

proof of Proposition 5. For the composition, |wab| ⊂ (p•x)∞ holds since |wab| = |wa| ∪ |wb| while both |wa|

and |wb| are subsets of (p•x)∞. �

The physical interpretation of the composition operation is not straightforward. It characterizes the token

conflict situation in place px if px is a conflict place, which help us to establish the algorithm in the next

section. Specifically, if a marking M satisfies the composed GMEC (wab, kab), then any marking uncontrol-

lably reachable from M cannot violate (wa, ka) and (wb, kb) simultaneously. Moreover, for arbitrary two

singular composable GMECs, their composed GMEC is not always singular. However, in the next section we

show that by proper ordering the expanding and composing sequence the singularity can be kept throughout

a transformation algorithm.

4.3 Problem Statement

Now we state the problem to be studied in the remaining part of this paper.

Problem 2 Given a Petri net N0 and a GMEC (w0, k0) ≡ M(p0) ≤ k0 that satisfies Assumptions 1 and 2,

determine an equivalent controllable OR-GMEC W such that LW = A(w0,k0). M
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Figure 8: The graphic illustration of singular GMEC expansion (a) and composition (b). The number in each
place represents its weight, i.e., w(p).
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Example 5 Consider again the net in Figure 7 with the initial GMEC (w0, k0) = ([0, 0, 0, 0, 0, 0, 1], 1),

i.e., M(p7) ≤ 1. This GMEC is singular and its influenced uncontrollable subnet contains all places and

transitions except tc1, tc2, tc3, and tc4 and it is acyclic and backward-conflict-free. M

5 GMEC Transformation in Acyclic BCF Uncontrollable Subnets

5.1 Algorithm

In this section, we present Algorithm 1 which computes an OR-GMEC W from a given singular GMEC

(w0, k0). We claim that W is the solution of Problem 2, i.e., LW = A(w0,k0).

Algorithm 1 GMEC Transformation in acyclic BCF Nets

Input: A singular GMEC (w0, k0) and its influenced uncontrollable subnet N̂ = (P̂ , T̂ , P̂ re, P̂ ost) that is
acyclic and BCF;

Output: An OR-GMEC W such that LW = A(w0,k0)

1: Let P ′ = P \ |w0|,P ′′ = |w0|, T ′ = T̂ , T ′′ = ∅;
2: Let s = 0, W0 = {(w0, k0)}, E = C = ∅;
3: while tx ∈ T ′ such that tx• ⊆ P ′′ exists, do
4: for all (w, k) ∈Ws such that wT · C(·, tx) > 0, do
5: E = E ∪ E(w,k), Ws = Ws \ {(w, k)};
6: end for
7: for all (wa, ka) ∈ E and (wb, kb) ∈Ws, do
8: Let C = C ∪ {(wab, kab)};
9: end for

10: Let Ws+1 = Ws ∪ E ∪ C, E = ∅, C = ∅;
11: Let T ′′ = T ′′ ∪ {tx}, T ′ = T ′ \ {tx};
12: for all p ∈ P ′ such that p• ⊆ T ′′, do
13: Let P ′′ = P ′′ ∪ {p}, P ′ = P ′ \ {p};
14: end for
15: Let s = s+ 1;
16: end while
17: Output W = Ws.

Algorithm 1 works as follows. In the initialization stage (Steps 1 and 2) four sets P ′,P ′′, T ′, and T ′′ are

defined to record the current state of places and transitions, where P ′/T ′ and P ′′/T ′′ denote the unchecked

and checked sets of places/transitions, respectively. Initially all transitions are put into the unchecked transi-

tion set T ′, and the support places of w are put into the checked place set P ′′ while other places are put into

the unchecked place set P ′. Step 2 initializes two temporary sets for GMECs E and C.

Step 3 to 16 compose the iteration cycle. The iteration process is like a step-by-step analysis of N̂

backward. At each iteration, an unchecked transition tx is picked from T ′ in Step 3. The selection of

transition tx is not random but follows the rule: a transition t can be picked only if all its output places (i.e.,

all places in t•) are checked. We note that this rule is to ensure the singularity of all GMECs in Ws. Then
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s Pick P ′ P ′′ T ′ T ′′ Ws

0 - p1, p2, p3, p4, p5, p6 p7 t1, t2, t3, t4 ∅ c0
1 t4 p1, p2, p3, p4 p5, p6, p6 t1, t2, t3 t4 c1, c2
2 t2 p1, p2, p4 p3, p5, p6, p7 t1, t3 t2, t4 c2, c3, c4
3 t3 p1 p2, p3, p4, p5, p6, p7 t1 t2, t3, t4 c3, c4, c5, c6, c7
4 t1 ∅ p1, p2, p3, p4, p5, p6, p7 ∅ t1, t2, t3, t4 c3, c6, c8, c9, c10

Table 1: Iteration steps of Example 6.

by Step 4 for each GMEC (w, k) ∈ Ws such that wT · C(·, tx) > 0 (i.e., the firing of tx will increase the

token count of (w, k)), its expansion set E(w,k) is computed and put in E to be further treated, while (w, k) is

removed from Ws.

Step 7 checks GMECs in E andWs. If there exist (wa, ka) ∈ E and (wb, kb) ∈Ws which are composable,

then their composed GMEC (wab, kab) is generated5 and put in C. Step 10 computes Ws+1 as the union of

Ws, E and C. At the end of this iteration, tx is moved to T ′′ as it has been checked, and in Step 12 a place

p ∈ P ′ is moved to P ′′if all transitions in p• are checked. Note that Step 12 and Step 3 imply that a transition

t cannot be picked until all transitions in the downstream of t (i.e., (t•)∞) are checked, since the influenced

uncontrollable subnet is acyclic. Another iteration starts until there is no transition tx which could increase

the token counts of GMECs in Ws.

5.2 An Illustrative Example

In this subsection we present an example to illustrate Algorithm 1. To simplify the notation we use c(·) to

denote (w(·), k(·)).

Example 6 Let us consider the Petri net in Figure 7 that models the automated assembly system in Figure 6.

Suppose that the storehouse has a maximum capacity of k0, and hence the initial GMEC to be enforced is

c0 = (w0, k0) = ([0, 0, 0, 0, 0, 0, 1], k0), i.e., M(p7) ≤ k0. The entire iteration process is listed in Table 1.

In W0 there is only one constraint c0:

c0 : M(p7) ≤ k0

In the first iteration, only transition t4 could be picked. In Step 5, c0 is substituted by Ec0 consisting of

two new constraints:
5If (wa, ka) and (wb, kb) are not composable, then no composed GMEC is generated, i.e., C remains unchanged.
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c1 : M(p5) +M(p7) ≤ k0

c2 : M(p6) +M(p7) ≤ k0

Then W1 = {c1, c2} is obtained by Step 10. In Step 11 t4 is moved to T ′′. In Step 12 p5 and p6 are

moved to P ′′. In the second iteration either t2 or t3 can be picked. Suppose that t2 is picked. Since t2 is the

injection transition of c1, c1 is substituted by:

c3 : M(p3) +M(p5) +M(p7) ≤ k0

c4 : M(p2) +M(p5) +M(p7) ≤ k0

Then we haveW2 = {c2, c3, c4} and t2 is moved to T ′′. Since p•2 * T ′′, p2 remains in P ′ (since a GMEC

composition will be taken in some further iteration(s)). Therefore only p3 is moved to P ′′.

In the third iteration, since p2 /∈ P ′′, t1 cannot be picked. Hence t3 is picked and c2 is substituted by c5

and c6:

c5 : M(p2) +M(p6) +M(p7) ≤ k0

c6 : M(p4) +M(p6) +M(p7) ≤ k0

At this moment, c5 and c4 are composable at p2. Therefore Step 8 is triggered and a new composition

GMEC c7 is added:

c7 : M(p2) +M(p5) +M(p6) + 2M(p7) ≤ 2k0 + 1

Now W3 = {c3, c4, c5, c6, c7} is obtained and p2 is moved to P ′′. In the final iteration, t1 is picked and

c4, c5 and c7 are substituted by c8, c9 and c10, respectively:



c8 : M(p1) +M(p2) +M(p5) +M(p7) ≤ k0

c9 : M(p1) +M(p2) +M(p6) +M(p7) ≤ k0

c10 : M(p1) +M(p2) +M(p5) +M(p6) + 2M(p7)

≤ 2k0 + 1

The algorithm ends and outputs W4 = {c3, c6, c8, c9, c10} that is an OR-GMEC containing five single
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GMECs. M

6 Correctness of the GMEC Transformation Method

Before formally showing the correctness of the algorithm, we provide a short roadmap of the proof which is

built on two observations. First, by the assumption that the initial GMEC is singular and the uncontrollable

net is acyclic and BCF, it holds that at arbitrary iteration step s of Algorithm 1, all GMECs inWs are singular.

Hence when Algorithm 1 ends, all GMECs inW are singular with no injection transitions, which implies that

all GMECs in the outputW are controllable. Second, at any iteration step s of Algorithm 1, by the singularity

of GMECs in Ws−1 the admissible marking sets AWs
and AWs+1

are identical. In the sequel when we say

“at the beginning of the s-th iteration step” and “at the end of s-th iteration step”, we refer to Step 3 and

Step 14 of the s-th iteration, respectively.

6.1 Singularity of GMECs in Ws

The following proposition reveals the relationship between the GMEC (wab, kab) composed by (wa, ka) ∈

E(wa0 ,ka0 )
and (wb, kb) ∈Ws and its ancestor (wa0 , ka0).

Proposition 6 At each iteration step of Algorithm 1, if (wa, ka) ∈ E(wa0
,ka0

) is composed with (wb, kb), then

wab = wa0 + wb.

Proof: Let px be the root place of (wa, ka). Then wab(p) = wa0(p) + wb(p) holds by the fact that

wa0(px) = 0 and wa0(p) = wa(p) for all p 6= px. �

Proposition 7 At each iteration step of Algorithm 1, t ∈ T ′′ implies that ∀x ∈ (t•)∞, x ∈ T ′′ ∪ P ′′.

Proof: Trivial, since a place p is put into P ′′ only if p• ⊆ T ′′, and a transition t is put into T ′′ only if

t• ⊆ P ′′ �

Proposition 8 At the end of each s-th iteration of Algorithm 1, for an arbitrary GMEC (w, k) in Ws, (•t ∩

|w| 6= ∅, t• ∩ |w| 6= ∅)⇒ (t ∈ T ′′).

Proof: We prove this by contradiction. Suppose that at the beginning of s-th iteration a transition tx

is picked, and at the end of this iteration there exists a GMEC (w, k) and a transition ty ∈ T ′ such that
•ty ∩ |w| 6= ∅ and t•y ∩ |w| 6= ∅. Since the net is BCF, it is trivial that (w, k) cannot be generated by
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Figure 9: The example to illustrate the proofs of Proposition 8 and Theorem 2.

the expansion. Hence (w, k) must be composed by two singular GMECs (wa, ka) and (wb, kb) such that
•ty ∩ |wa| 6= ∅, t•y ∩ |wa| = ∅, •ty ∩ |wb| = ∅, and t•y ∩ |wb| 6= ∅, which is illustrated in Figure 9(a) where

p1, p2 ∈ |wa| and p1, p3 ∈ |wb|. Hence ty is in the downstream of tx, which is impossible since tx can only

be picked after ty is checked. Therefore the statement holds. �

Now we prove that all GMECs in Ws are singular.

Theorem 2 At any iteration step s of Algorithm 1, all GMECs in Ws are singular.

Proof: We prove this by induction.

(Base step) For W0 = {(w0, k0)}, (w0, k0) is singular by Assumption 1.

(Induction Step) Assume that at the beginning of s-th iteration, all GMECs in Ws are singular. Suppose

that at this iteration a transition tx ∈ T ′ is picked. Since all GMECs in Ws are singular, by Proposition 5

all new GMECs generated by the expansion operation are singular. Now we prove that all new GMECs

generated by composition are also singular.

At this iteration, a composed (wab, kab) is generated by the following procedure: by picking tx some

GMEC (wa0 , ka0) is substituted by E(wa0
,ka0

) through tx, and then some (wa, ka) in E(wa0
,ka0

) is composed

with (wb, kb) in Ws, producing the new constraint (wab, kab).

Since (wa, ka) and (wb, kb) are composable, the common injection transition tz , if it exists, is unique.

Since all input places of tz have a weight zero in wa and wb, we have wTab · C(·, tz) = 1. Now let us

consider an arbitrary transition t 6= tz . Since both (wa, ka) and (wb, kb) are singular, wTa · C(·, t) ≤ 0 and

wTb · C(·, t) ≤ 0 hold. Therefore (wa + wb)T · C(·, t) ≤ 0 that, by Proposition 6, can be rewritten as:

(wa + wb)T · C(·, t) = (wa0 + wb)T · C(·, t) + C(px, t)

= wTab · C(·, t) + C(px, t) ≤ 0
(5)
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Since the influenced uncontrollable subnet is assumed to be BCF and hence ordinary (see Definition 7), the

only possibility to make wTab · C(·, t) > 0 is that in Eq. (5) C(px, t) = −1 and wa0 · C(·, t) = 1 hold.

Since wa0 · C(·, t) = 1, transition t is the injection transition tx of (wa0 , ka0), i.e., t = tx, which is picked

at this iteration. Since wTb · C(·, tx) = 0, px ∈ |wb| and C(px, t) = −1, we have •t ∩ |wb| 6= ∅ and

t• ∩ |wb| 6= ∅. However, by noting that (wb, kb) is inherited from Ws−1, by Proposition 8, tx is already in

T ′′ at the beginning of this iteration and thus it cannot be picked. This contradiction excludes the possibility

of wTab · C(·, t) > 0.

As a result, (1) (wab, kab) has a unique root place px, (2) there exists at most one transition tz such that

wTab ·C(·, tz) > 0, and (3) wTab ·C(·, tz) = 1 and •tz ∩ |wab| = t•z ∩ |wab| = ∅. Hence (wab, kab) is singular

by Definition 5 and the statement holds. �

For a better understanding we briefly explain the induction step of Theorem 2. By Proposition 5 a G-

MEC obtained by the expansion of a singular GMEC is necessarily singular. Hence we need to exclude

the possibility that a non-singular GMEC is composed by two singular GMECs. The only possibility to

make wTab · C(·, t) > 0 in Eq. (5) is illustrated in Figure 9(b): suppose that there exists a singular GMEC

(wa0 , ka0) ≡M(p2) + · · · ≤ ka0 . By selecting tx, a new GMEC (wa, ka) ≡M(p1) +M(p2) + · · · ≤ ka is

obtained, which is composed with (wb, kb) ≡M(p1)+M(p3)+ · · · ≤ kb. However, since both p1 and p3 are

already in |wb|, tx must be already checked and cannot be picked at this iteration. Therefore wTab ·C(·, t) ≤ 0

holds and the statement in Theorem 2 is true. From Theorem 2 and Proposition 4 we immediately have the

following results.

Proposition 9 At any iteration step s of Algorithm 1, for arbitrary (w, k) ∈ Ws and t ∈ T ′′, the firing of t

does not increase the token count of (w, k).

Proof: Since all GMECs in Ws are singular, only the firing of its injection transition tx ∈ •px can

increase its token count. By the rule of selection, t ∈ T ′′ implies t /∈ (•px)∞, and hence the firing of t does

not increase its token count in forthcoming iterations. �

Since Algorithm 1 ends after |T̂ | iterations, i.e., all uncontrollable transitions in T ′ are moved to T ′′.

Therefore we have the following result from Proposition 9.

Corollary 2 The OR-GMEC output by Algorithm 1 is controllable.

Moreover, the following proposition shows that the negative support of the initial GMEC remains un-

changed during the transformation, and if two GMECs are composable by Algorithm 1, the firing of tx does

not change the token count of their composed GMEC.
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Proposition 10 At any iteration step s of Algorithm 1, ((w, k) ∈Ws, w(p) < 0)⇔ (w0(p) < 0).

Proof: This can be trivially proved by induction. At the first iteration, i.e, s = 1, the statement holds.

For the induction step, suppose that at the s̄-th iteration the statement holds. Then at the (s̄+ 1)-th iteration,

any new GMEC (wa, ka) obtained by the expansion of (wa0 , ka0) has exactly the same negative support

since the only weight change is the new root place in •t whose weight increases from 0 to 1, and obviously

a composed GMEC would have the identical negative support places if it is composed by two GMECs that

have the same negative support places. �

Proposition 11 At any iteration step s of Algorithm 1, if (wa, ka) ∈ E(w,k) and (wb, kb) are composable,

then wTab · C(·, tx) = 0 and wTb · C(·, tx) = −1.

Proof: By Theorem 2 the firing of tx does not increase the token count of (wab, kab), since wTab ·

C(·, tx) = wTa0 ·C(·, tx)+wTb ·C(·, tx) = 1+wTb ·C(·, tx) ≤ 0. If “<” holds, then wTb ·C(·, tx) ≤ −2. Notice

that tx is the injection transition of (wa0 , ka0). There does not exist a place p ∈ t•x such that wa(p) ≥ 0, and

hence by Proposition 10 ∀p ∈ t•x, wb(p) ≥ 0 holds. Since the net is ordinary, •tx ∩ |wb| ≥ 2 is true. This

implies that some transition ty that satisfies •ty ∩ |wb| 6= ∅ and t•y ∩ |wb| 6= ∅ is checked before tx ∈ (t•y)∞,

which contradicts Proposition 7. Hence “=” must hold, and wTab · C(·, tx) = 0 is true.

Since wTa0 · C(·, tx) = 1, wTab · C(·, tx) = 0, and wab = wa0 + wb, we have wTb · C(·, tx) = −1, which

concludes the statement. �

6.2 The Invariance of Admissible Sets

This subsection develops the key step to the final result. The following theorem claims that during the

execution of Algorithm 1, the admissible marking set of each Ws remains identical.

Theorem 3 In Algorithm 1, AWs+1
= AWs

.

Proof: To prove this theorem we prove that both AWs+1
⊆ AWs

and AWs+1
⊇ AWs

hold. At the

beginning of each iteration s, a transition tx ∈ T ′ is picked and some GMECs (wa1 , ka1), . . . , (war , kar ) ∈

Ws are picked. In Step 5 their expansion sets are computed whose union is E . If a GMEC (wa, ka) ∈ E

and a GMEC (wb, kb) in the remaining of Ws, denoted as W ′s, is composable, a new GMEC (wab, kab) is

generated and put into C. Finally Ws+1 = W ′s ∪ E ∪ C.

(AWs+1 ⊆ AWs ) We first show that LWs ⊇ LWs+1 . Consider a marking M which violates all GMEC in

Ws. On the one hand, by the definition of the expansion operation, if M violates (w, k) then M violates all
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GMECs in E(w,k). Hence M violates all GMECs in E . On the other hand, if M violates both (wa, ka) and

(wb, kb), then M violates their composed GMEC (wab, kab). The reason is stated as follows. Suppose that

(wa, ka) is in the expansion set of (wa0 , ka0), i.e., (wa, ka) ∈ E(wa0
,ka0

). By the definition of the composition

operation and Proposition 6, wab = wa0 + wb and kab = ka0 +kb + 1 hold. Since M violates (wa0 , ka0) and

(wb, kb), wTa0 ·M ≥ ka0 + 1 and wTb ·M ≥ kb + 1 hold, which indicates that wTab ·M ≥ ka0 + kb + 2 > kab,

leading to the fact that M violates all composed GMEC in C. Hence M /∈ LWs
implies M /∈ LWs+1

, and

thus LWs
⊇ LWs+1

.

For a marking M ∈ AWs+1
, M would never evolve to a marking M ′ /∈ LWs+1

by firing uncontrollable

transitions. Since LWs
⊇ LWs+1

, M would never evolve to a marking M ′ /∈ LWs
by firing uncontrollable

transitions. This indicates M ∈ AWs and hence AWs+1 ⊆ AWs .

(AWs+1
⊇ AWs

) We prove that if a marking M0 is not in AWs+1
, i.e., M0 would evolve to a marking M

violating all GMECs in LWs+1 by firing only uncontrollable transitions, then from M by repeatedly firing tx

for enough times we reach a new marking M ′ which violates all GMECs in Ws.

Suppose that M violates all GMECs in LWs+1 . Let (wa0 , ka0) be the GMEC among those picked in

Step 4 such that wTa0 ·M ≤ ka0 but with a minimum shortage. Let (wb, kb) be the GMEC in W ′s such that

wTb ·M ≥ kb but with a minimum excess. We claim that by repeatedly firing tx for a certain number of times

at M , we can always reach a new marking M ′ which simultaneously violates (wa0 , ka0) and (wb, kb), i.e.,

wTa0 ·M
′ > ka0 ,wTb ·M ′ > kb.

By contradiction, if this operation cannot be done, then at a certain moment a marking Mf is reached

while there exists at least one place pi ∈• tx that is empty. On the one hand, if wTa0 ·Mf ≤ ka0 , M ′ does not

violate (wa, ka) since the firing of tx does not change the token count of (wi, ki) corresponding to pi in the

expansion set of (wa0 , ka0). On the other hand, if wTa0 ·Mf = ka0 + 1 (it is always possible since each firing

of tx increases the token count of (wa0 , ka0) by one due to Proposition 4) and wTb ·Mf ≤ kb, by

wTab ·Mf = (wa0 + wb)T ·Mf

≤ ka0 + 1 + kb

= kab,

(6)

Mf satisfies (wab, kab). However, by Proposition 11, the firing of tx does not change the token count of

(wab, kab), which also contradicts the fact that M ′ is not in LWs+1 . By the selection rule of (wa0 , ka0) and

(wb, kb), all GMECs in Ws are also violated at M ′.

Since M ′ can always be reached and M ′ /∈ LWs
, we have M0 /∈ AWs

. Hence AWs+1
⊇ AWs

. �
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6.3 Final Result

Finally, by the series of results above, we can state the main result of this paper.

Theorem 4 The OR-AND GMEC W output by Algorithm 1 satisfies LW = A(w0,k0).

Proof: First, the initial GMEC (w0, k0) is singular. Since the net is acyclic and BCF, according to

Theorem 2, all GMECs in Ws are singular in all iterations. By repeatedly applying Theorem 3, AW =

A(w0,k0) holds. According to Corollary 2, LW = AW . Hence LW = A(w0,k0). �

Let us provide some motivation for the GMEC inflation when Assumptions 1 and/or 2 are unsatisfied. If

the net is not BCF, then during the transformation the resulting GMEC would not be singular. For a non-

singular GMEC, Proposition 4 does not hold, i.e., the firing of t may change its token count by q > 1. This

makes (AWs+1
⊇ AWs

) in Theorem 3 unfounded. In fact, fromM by firing tx it may not be possible to reach

a marking Mf such that wTa0 ·Mf = ka0 + 1, since its token count can only vary by a multiple of q. This

integer-discontinuity would fragment the inadmissible marking set and hence cause the GMEC inflation.

Now we discuss the complexity of Algorithm 1. At each iteration step of Algorithm 1, a transition in T ′

is picked. Hence Algorithm 1 terminates after at most |T̂ | iterations. However, in the worst case the number

of single GMECs in the set W may be exponential with respect to that of conflict-synchronization structures

in the system. The number of GMECs in the final W depends on the conflict-synchronization structure in the

influenced uncontrollable subnet N̂ . Specifically, the alternation of conflict places and synchronization tran-

sitions in one path would greatly increase the number of GMECs in W , while a large uncontrollable subnet

with few such structures would have a very simple W . However, since both the expansion and the composi-

tion operations simply involve a vector addition, Algorithm 1 is usually efficient, and in many practical cases

the number of GMECs in W remains in an acceptable scale.

Example 7 (Ex. 6 Continued) Let us again consider the Petri net in Figure 7 and the initial GMEC to be

enforced c0 : M(p7) ≤ k0. As discussed in Example 6, by Algorithm 1 we obtain an OR-GMEC W =

{c3, c6, c8, c9, c10}. One can verify that the OR-AND GMEC is controllable and maximally permissive, i.e.,

LW = A(w0,k0). We also note that the GMEC inflation does not occur since the output OR-GMEC W always

contain five single GMECs regardless the value of k0. M

At the end of this paper we point out that Sections V and VI focus on the case that the initial legal marking

set to be enforced is defined by a single GMEC (w0, k0). The method can be generalized to the case in which

the initial legal marking set is defined by an OR-AND GMECW0. In fact, for each single GMEC (wij , kij) in

W0, Algorithm 1 can be carried out to convert it into an OR-GMEC WOR,ij such that LWOR,ij
= A(wij ,kij).

Hence the admissible marking set AW0
can be defined by the linear constraint

∨
i

∧
jWOR,ij that can be
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converted to its equivalent disjunctive normal form. As a result, the admissible marking set AW0 is defined

by an OR-AND GMEC.

7 Conclusion

In this paper the problem of GMEC transformation in Petri nets is studied. The contribution of this work is

two-fold. First, the properties of the admissible marking set of a given GMEC specification are studied. The

admissible marking set may not be represented by an OR-AND GMEC in general, and it may be too complex

to be practically enforced due to the occurrence of the GMEC inflation phenomenon. We characterize two

structural assumptions for ruling out the GMEC inflation, i.e, the singularity of the initial GMEC and the

backward-conflict-freeness of its influenced subnet. Second, if these conditions are satisfied, an effective

GMEC transformation method is proposed to compute the admissible marking set. As far as we know, it is the

first work to preform the GMEC transformation in Petri nets containing both conflicts and synchronizations.
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