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Abstract

In this paper we propose a novel continuous-time protocol that solves the consensus problem on the median value, i.e., it
provides distributed agreement in networked multi-agent systems where the quantity of interest is the median value of the agents’
initial values. In contrast to the average value, the median value is a statistical measure inherently robust to the presence of outliers,
which is a significant robustness issue in large-scale sensor and multi-agent networks. The proposed protocol requires only binary
information regarding the relative state differences among the neighboring agents and achieves consensus on the median value
in finite time by exploiting a suitable ad-hoc discontinuous local interaction rule. In addition, we characterize certain resiliency
properties of the proposed protocol against the presence of uncooperative agents which do not implement the underlying local
interaction rule whereas they interact with their neighbors thus influencing the network. In particular, we prove that despite the
persistent influence of (at most) a certain number of uncooperative agents, the cooperative agents achieve finite time consensus
on a value lying inside the convex hull of the cooperative agents’ initial conditions, provided that the special class of so-called
“k-safe” network topology is considered. Capabilities of the proposed consensus protocol and its effectiveness are supported by
numerical studies.
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I. INTRODUCTION

A networked multi-agent system consists of a set of dynamical systems interconnected by a communication network. One
of the most popular research topics in networked multi-agent systems is the so-called “consensus” problem, i.e., the problem
of designing a decentralized local interaction rule forcing the states of dynamical agents to converge to (or “agree upon”) a
common value (called “consensus value”). The reader is referred to [1] for a tutorial overview of cooperative consensus-based
control. When the desired consensus value is the average of agents’ initial states, the problem is denoted as “consensus on the
average”, which constitutes one of the most studied consensus problems.

In [2], [3], [4], [5] distributed protocols that guarantee consensus on the average were proposed to address the case of
multi-agent systems with communication topology represented by time-varying, unbalanced and/or directed graphs. These
approaches, based on linear local interaction rules, have in common the use of the so-called “companion” (or “storage”)
variables to preserve the average of the state variables across the (continuous or discrete) iterations of the algorithm.

The so-called ratio consensus algorithm was proposed in [6], [7]. Such an algorithm consists in a local interaction protocol
that achieves consensus on the average by exploiting the ratio of two state variables that execute linear state updates, one
initialized arbitrarily and the other initialized with a default value. A major feature of ratio consensus is that it achieves
consensus on the average also in directed graphs while being additionally robust against packet drops.

In [8] a method was proposed to achieve consensus on the average exploiting the iterative and distributed scaling of a
column-stochastic matrix. Additionally, in [9] the average consensus problem was solved by estimating with a distributed
algorithm the left eigenvector of the stochastic matrix encoding the network topology, to subsequently be used for weighting
the different final consensus values thus recovering the average of the initial agents’ states.

Protocols yielding consensus on the average intrinsically suffer from a significant problem: in spite of the large-scale nature
of the underlying multi-agent systems, the existence of even a single outlier agent (i.e., an agent whose initial value holds an
abnormal value) may arbitrarily affect the emergent behavior of the network. In presence of one, or more, outliers the ultimate
consensus value may largely differ from the average of the agents with nominal initial state.

This issue has been investigated in [10], [11], [12], [13] and [14] where the main idea to cope with such a problem is that
of identifying in a decentralized way, and then removing from the network, the outlier agents, thus recovering the emergent
network’s behavior of interest. In [15] some fundamental limitations of the average consensus problem in unreliable networks
are investigated, whereas in [16] a strategy to compute in a distributed fashion an arbitrary function over a network containing
malicious nodes is presented. In [17], a method is proposed to achieve resilient consensus on the average by exploiting the
knowledge of the maximum number of misbehaving agents and removing from the network those agents holding abnormally
different state values with respect to their neighbors. In [18], an optimization-based method is proposed to attenuate the
detrimental effects of the outliers on the distributed computation of the average of the initial values.

Although some appropriate ad-hoc adjustments to the local interaction protocols can certainly attenuate the sensitivity to the
outliers, the average value of a set of variables is in fact a statistical measure inherently sensitive to the presence of outlier
data [19].

Thus motivated, the main contribution of this paper is a consensus algorithm where the consensus value of interest is the
median (in contrast to the average) of the initial agents’ states. The median is a statistical measure which is significantly more
robust to outliers as compared to the average, in that the existence of abnormal initial values is filtered out by the possibly
large number of samples [20]. We consider the case of heterogenous tuning parameters, then we provide sufficient tuning
inequalities involving such parameters. To properly tune the algorithm, an upper bound to the number n of agents is supposed
to be available.

The primary target scenario of the present investigation is a network in which some of the sensors/agents feature abnormal
initial values that corrupt significantly the corresponding average. Furthermore, another source of error consists in the so-called
“uncooperative” agents, i.e., faulty agents which do not possess abnormal initial conditions, i.e., are not outlier agents, but
do not update their own state according to the prescribed local interaction protocol while sending the state information to
the corresponding neighbors, thereby disrupting the emergent network behaviour in absence of proper countermeasures. We
consider oblivious uncooperative agents with arbitrary state trajectories, by assuming that these trajectories may intersect those
of cooperative agents only at, possibly infinite, isolated instants of time. Oblivious uncooperative agents are not supposed to
exploit maliciously the information they may gather from their neighbors. In this paper, we complement the analysis of the
“nominal” scenario, where all agents are supposed to be cooperative, by presenting a characterization of certain robustness
properties of the proposed consensus on the median value protocol against the presence of uncooperative agents.

Consensus on the median value can be usefully exploited to increase reliability in several applications of mobile multi-robot
systems or sensor networks which make use of consensus algorithms for coordination and estimation purposes. Reliability of
the entire network of robots/sensors is often questionable, and large-scale distributed protocols thus need to be fault-tolerant
with respect to both outlier measurements and uncooperative agents.

In sensor networks which sample a random variable with symmetric probability distribution centered on the average value, the
median value coincides with the average value, but it retains higher robustness properties with respect to outlier measurements
violating the underlying probability distribution due to faulty sensors.
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In mobile multi-robot systems, consensus protocols are used to achieve rendezvous on the network barycenter or leader
following, among several other applications. A major weakness of robotic swarms interacting via average consensus algorithms
is that in spite of the possibly large size of the network a single faulty robot can disrupt the global emergent behavior. The ability
of the consensus on the median value protocol to both disregard displaced robots far apart from the group and uncooperative
robots (e.g., due to faults such as broken wheels) allows to counteract such a weakness by profitably exploiting the redundancy
of the network.

We point out that methods to achieve consensus on general functions, the so-called χ-consensus algorithms (see, e.g., [21],
[22], [23]), cannot be applied to the present scenario since the median value is not a continuous function of the initial state
of the network. Thus, the achievement of consensus on the median value requires an ad-hoc protocol, analysis and robustness
characterization.

The approach presented in this paper is based on a discontinuous local interaction rule. We refer the reader to [24], [25],
[26] for exhaustive tutorials on the analysis of discontinuous gradient flows and discontinuous dynamical systems by means
of non-smooth Lyapunov theory.

While the main novelty of the present proposal is the achievement of consensus on the median value, the local interaction
protocol proposed in this paper features the additional desirable property of finite-time convergence to the consensus value.
Protocols that achieve finite-time converging consensus (on the average, or on different consensus values such as, for instance,
the minimum or maximum value or the geometric mean) can be found, e.g., in [27], [28], [29], [21] and they work for
undirected, directed and/or time-varying network topologies. In [30] and [31], the finite-time consensus on an arbitrary smooth
function of the initial state is investigated, for agents modeled as single integrators and respectively second-order systems with
unknown non-linear dynamics, by considering continuous non-smooth local interactions. In [32] a so-called binary protocol
to achieve consensus is proposed, which basically exploits only the sign of the relative state differences between neighboring
agents. In [33] the use of the sign function is suggested along with an appropriate discontinuous local interaction rule to
achieve finite-time consensus in the case of switching network topologies with communication time-delays.

The present proposal differs from [32] in that instead of considering a leader agent and the task of making each agent
converge towards the state of the leader, we introduce a specific ad-hoc term in the local interaction rule which depends on
the agents’ own initial state, thus being different for each agents. This term turns out to be instrumental in steering the states
of all agents towards the median value of the corresponding initial values.

In our previous work [34], the disturbance rejection properties of a discontinuous local interaction rule based on the sum
of the signs of the relative state differences were investigated in the case of undirected graphs with switching topology. In
the present work the similar discontinuous term is present in the local interaction rule, but the introduction of the previously
mentioned ad-hoc term, depending on the agent’s initial conditions, drastically change the performance of the algorithm which,
in contrast to [34], provides finite time consensus on the median value. In [35] the disturbance rejection properties of a
discontinuous interaction rule based on the sign of the sum of relative state differences were investigated in directed graphs.
Note that our previous work is mainly focused on reaching consensus in presence of disturbances: however, the consensus value
remains unspecified and it is generally time-varying and possibly unbounded. A further difference of the present work with
respect to the above mentioned papers consists in different and refined proof techniques, based on the non-smooth Lyapunov
theory, which allow us to characterize the evolution of the consensus value also in presence of outliers and uncooperative
agents.

A preliminary version of the proposed interaction protocol for the case of homogeneous tuning gains and with a limited
characterization of its convergence properties was announced in [36].

The paper is structured as follows. In Section II some background material is introduced. In Section III the problem
statement is given and the proposed protocol is described. Section IV investigates the finite-time convergence properties of
the novel consensus on the median protocol. In Section V, robustness and resiliency of the proposed protocol are investigated
and, particularly, it is shown that there exist appropriate conditions ensuring that uncooperative agents neither prevent the
achievement of consensus between cooperative agents nor affect arbitrarily the consensus value. In Section VI, we present
numerical simulations to corroborate the theoretical results. Finally, in Section VII concluding remarks and future perspectives
of the present research are discussed.

II. NOTATION AND PRELIMINARIES

Let G = (V, E) be an undirected static graph, where V = {1, . . . , n} is the set of nodes representing agents and E ⊆ {V×V}
is the set of edges representing information flow between the agents. Let (i, j) ∈ E be the edge joining the agents i and j. Let
Ni = {j ∈ V : (i, j) ∈ E} be the set of neighbors of agent i, i.e., the set of agents that exchange information with the agent i.

A path in a graph G is a sequence of consecutive edges connecting two agents. A graph is said to be connected if there
exists a path between any pair of nodes. A cut in graph G is a partition of its nodes into two sets which are joined by at least
one edge. A minimum cut of a graph is a cut in which the two sets are joined by the minimum number of edges among all the
possible cuts. A given graph may admit one or more minimum cuts. We now introduce the definition of k-connected graph.

Definition 2.1 (k-connected graph): We denote a graph G as being “k-connected” if its minimum cuts partition the nodes
of the graph in two sets joined by at least k edges. �
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Notation 1n stands for the n-dimensional vector with unit elements.

A. Preliminaries on non-smooth analysis

We recall some definitions and results that will be employed hereafter in the paper. We define the discontinuous “sign”
function and the discontinuous and set-valued “SIGN” function as follows

sign(y) =

 1, if y > 0,
0, if y = 0,

−1, if y < 1,
y ∈ R, (1)

SIGN (y) ∈

 1 if y > 0,
[−1, 1] if y = 0,
−1 if y < 0.

y ∈ R. (2)

Consider the (possibly discontinuous) dynamical system

ẋ = f(x), x ∈ Rn, x(0) = x0 ∈ Rn, (3)

where f(x) : Rn → Rn, is defined almost everywhere, i.e., it is defined for every x ∈ Rn \W , where W is a subset of Rn

of measure zero. Furthermore, f(x) is measurable in an open region Q ⊂ Rn and for all compact sets D ⊂ Q there exists a
constant AD such that ∥f(x)∥ ≤ AD almost everywhere in D.

If the differential equation (3) has discontinuous right-hand side, following [37] we understand the corresponding solution
in the so-called Filippov sense as the solution of an appropriate differential inclusion, as explained in the next definition.

Definition 2.2 (Filippov solution): A vector function x(·) ∈ Rn is called a Filippov solution of (3) on [t0, t1] if x(·) is
absolutely continuous on [t0, t1] and, for almost all t ∈ [t0, t1], satisfies the differential inclusion

ẋ ∈ K(x) ,
∩
δ>0

∩
µ(N)=0

co {f (B(x, δ) \N, t)} , (4)

where
∩

µ(N)=0 denotes the intersection over all sets N of Lebesgue measure zero, co{·} denotes the convex hull and B(x, δ)
is a ball of radius δ centered at x. �
If f(x) is measurable and locally bounded then the set-valued map K(x) is upper semicontinuous, compact, convex valued
and locally bounded so that the differential inclusion (4) possesses a Filippov solution for each initial condition x0.

The reader is referred to [25] for a comprehensive tutorial on the different alternative solution notions for discontinuous
dynamical systems, and to [38] for a comprehensive theory of generalized gradients and their applications.

We recall the definition of the Clarke’s Generalized Gradient [39].

Definition 2.3 (Clarke’s Generalized Gradient): Let V (x) : Rn → R be a locally Lipschitz continuous function. Its Clarke’s
generalized gradient ∂V (x) is defined as

∂V (x) , co
{
lim
i→∞

∇V (xi)|xi → x, xi /∈ ΩV ∪N
}
,

where ∇V denotes the conventional gradient, xi ∈ Rn represents a point of an infinite succession which converges to x ∈ Rn

as i grows to infinity, ΩV is a set of Lebesgue measure zero which contains all points where ∇V (x) does not exist, and N
is an arbitrary set of measure zero. �
The Clarke’s generalized gradient coincides with the standard gradient at the points where the standard derivative of the scalar
function exists. Further details and examples of computation can be found in [24], [25].

Next, we recall the definition of set-valued Lie derivative.

Definition 2.4: Given a locally Lipschitz function V (x), where x ∈ Rn is governed by the differential inclusion ẋ ∈ K(x),
the set-valued Lie derivative of V (x) at x is

L̃V (x) = {a ∈ R|∃v ∈ K(x) such that ζ · v = a, ∀ζ ∈ ∂V (x)} (5)

As mentioned in [21], the set-valued Lie derivative allows the study of the evolution of a Lyapunov function along the
Filippov solutions of the system under study, according to the next theorem.

Theorem 2.5: Evolution along Filippov solutions [39] Let x(t) : [t0, t1] → Rn be a Filippov solution of (4). Let V (x) be
a locally Lipschitz and regular function. Then d

dt (V (x(t))) exists a.e. and d
dt (V (x(t))) ∈ L̃V (x(t)) a.e.. �

Next we provide a generalization of an extended Lyapunov Theorem for non-smooth analysis previously presented, in
different form, in the literature.
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Theorem 2.6: Let M = span(1n) be the subspace spanned by vector 1n. Consider a scalar function V (x) : Rn → R,
with V (x) = 0 ∀x ∈ M and V (x) > 0 ∀x ̸∈ M . Let x : R → Rn and V (x(t)) be absolutely continuous on [t0,∞) with
d
dt (V (x(t))) ≤ −ϵ < 0 a.e. on {t|x(t) ̸∈ M}. Then, V (x(t)) converges to 0 in finite time and x(t) reaches the subspace M
in finite time as well.

Proof: See Appendix A. �
The original version of Theorem 2.6, proven in [24], dealt with the conditions guaranteeing the finite-time convergence to

the origin rather than to the consensus subspace M .

III. CONSENSUS ON THE MEDIAN VALUE

We consider a network of n agents with single integrator dynamics, i.e.,

ẋi(t) = ui(t), xi(0) = zi, i = 1, 2, . . . , n, (6)

where ui(t) ∈ R is the local control input, to subsequently be specified, and xi(t) ∈ R is the state of the i-th agent. Define

z = [z1, z2, . . . , zn], (7)

and let the agents be labeled in ascending order according to the corresponding initial state in such a way that the inequalities

zi ≤ zi+1, i = 1, 2, ..., n− 1, (8)

hold.
Remark 3.1: Although the agents’ labels are ordered according to (8), we stress the fact that the agents ignore their respective

labels and this ordering is only adopted to simplify the notation in the algorithm convergence analysis. We also point out that
to implement the interaction protocol to be designed each agent needs to store the value of its own initial value zi during its
evolution. �

The median value between the agents’ initial values, stored in the vector z, is defined (see [20]) as

m(z) = argmin
ℓ∈R

n∑
i=1

|zi − ℓ|, (9)

and it takes the explicit form given in the next definition.

Definition 3.2: The median value m(z) of vector z in (7), satisfying (8), takes the form

m(z) ∈

{ {
zn+1

2

}
if n is odd,[

zn
2
, zn

2 +1

]
if n is even.

(10)

�
Note that the median value m(z) is uniquely defined only when the dimension n of vector z is odd, whereas the median

belongs to the closed interval
[
zn

2
, zn

2 +1

]
when n is even.

Remark 3.3: In the remainder a slight abuse of notation will be taken. If n is even then the notations c < m(z), c > m(z)
and c = m(z), with c ∈ R, will be adopted to denote, respectively, the relations c < zn

2
, c > zn

2 +1 and c ∈
[
zn

2
, zn

2 +1

]
. �

Next, we give a definition of finite-time consensus.
Definition 3.4: The state variables xi(t) ∈ R, i ∈ V , of a networked multi-agent system are said to reach a finite-time

consensus if there exist T > 0 and c(t) ∈ R such that

xi(t) = c(t), ∀i ∈ V, ∀t ≥ T, (11)

where c(t) is referred to as “consensus function”. �
Our objective is to design a decentralized consensus protocol such that the finite-time consensus condition (11) is achieved by
the network (6) with the consensus function c(t) = m(z). The protocol that addresses our objective is given by the following
local interaction rule:

ui(t) = −αi sign (xi(t)− zi)−
∑
j∈Ni

λijsign (xi(t)− xj(t)) , (12)

where αi ∈ R+, i ∈ V , and λij ∈ R+, (i, j) ∈ E , are tuning parameters. The resulting collective dynamics is thus

ẋi(t) = −αi sign (xi(t)− zi)−
∑
j∈Ni

λijsign (xi(t)− xj(t)) ,

xi(0) = zi.
(13)
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governing the closed-loop behavior of the multi-agent network (6) under the proposed local interaction rule (12).
A Filippov solution to (13) exists for every initial condition since the corresponding right-hand side is uniformly bounded

[25]. The emerging behavior of the collective network’s dynamics (13) is analyzed and theoretically supported in the next
section.

The following constants

λmax = max
(i,j)∈E

λij , λmin = min
(i,j)∈E

λij , (14)

αmax = max
i∈V

αi, αmin = min
i∈V

αi. (15)

are of relevance in the framework of the convergence and robustness analysis to subsequently be developed.

IV. FINITE-TIME CONVERGENCE PROPERTIES

In this section we characterize the convergence properties of the collective dynamics (13). The finite-time convergence of
the agents’ states towards the median value of the initial conditions takes place in two consecutive steps. First, the consensus
condition (11) is achieved in a finite time T1, under certain inequalities involving the tuning parameters λij and αi of the
proposed local interaction rule, and it is maintained indefinitely at any t ≥ T1. This is proven in Theorem 4.1. Then, we show
in Theorem 4.3 that the time-varying consensus value c(t) converges in finite time T2 > T1 to the median value m(z).

Theorem 4.1: Consider the network dynamics (6) along with a k-connected undirected graph G describing the underlying
communication topology, with k ≥ 1. Let the local interaction rule (12) be implemented with tuning parameters αi, λij such
that

λij = λji > 0, ∀(i, j) ∈ E , (16)

0 < αmax <
2kλmin

n
. (17)

Then, the consensus condition (11) is achieved and the transient time T is such that

T ≤ T1 =
max
i∈V

xi(0)−min
i∈V

xi(0)

µ2
, µ2 = 2

(
2kλmin

n
− αmax

)
. (18)

Proof: A complete proof is presented in the Appendix B. A short proof sketch, summarizing the main steps and lines of
reasoning, is given hereinafter. First, we define the sets

Imax(t) = {k ∈ V : xk = max
i∈V

xi(t)},
Imin(t) = {k ∈ V : xk = min

i∈V
xi(t)},

and consider the next non-smooth Lyapunov candidate function

V1(x(t)) =

∑
i∈Imax(t)

xi(t)

|Imax(t)|
−

∑
i∈Imin(t)

xi(t)

|Imin(t)|
,

where |Imax(t)| and |Imin(t)| denote the cardinalities of the sets. By exploiting the property of absolute continuity of the state
trajectories we argue that sets Imax(t) and Imin(t) may change cardinality only at isolated instants of time. Therefore, these
time instants can be disregarded in the non-smooth Lyapunov analysis and |Imax(t)|, |Imin(t)| can be treated as constants
while evaluating the generalized gradient of V1(x(t)).

Then, we exploit the definition of the generalized time-derivative d
dt (V1(x(t)) to obtain the corresponding set-valued map.

Particularly, we take advantage of the symmetry of interactions (16) to obtain the instrumental relations

∑
i∈Imax(t)

 ∑
j∈Ni

∩
Imax(t)

λijsign (xi(t)− xj(t))

 = 0,

∑
i∈Imin(t)

 ∑
j∈Ni

∩
Imin(t)

λijsign (xi(t)− xj(t))

 = 0,

on the basis of which, by assuming the graph G to be k-connected, the set-valued generalized time-derivative d
dt (V1(x(t)) is

shown to fulfill the estimate
d

dt
(V1(x(t))) ≤ −µ2,
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where µ2 is the strictly positive constant defined in (18). The above estimate straightforwardly yields the finite-time convergence
of V1(x(t)) to zero, according to Theorem 2.6, which in turns implies that the finite time consensus condition (11) is achieved.
�

Remark 4.2: We point out that the protocol tuning condition (17) depends upon the number n of nodes in the network,
which is a global information. This information, however, needs not to be exactly known by the designer since any overestimate
nmax ≥ n can be substituted for n in (17). On the other hand, online distributed algorithms capable of estimating the number
of agents are available in the literature (see, e.g., [40]). �

In the next theorem we prove that the time-varying consensus value c(t), achieved due to the local interaction protocol (13),
converges in finite time to the median value m(z) of vector (7).

Theorem 4.3: Consider the network dynamics (6) along with a k-connected undirected graph G describing the underlying
communication network, with k ≥ 1, and the local interaction rule (12) with tuning parameters that satisfy conditions (16) and
(17). Let the consensus condition (11) be in force starting from the finite moment t = T on. If the additional tuning inequality

αmax − αmin

αmin
<

1

n
, (19)

is met, then there exist T2 ≥ T such that the consensus value c(t) meets the relation

c(t) = m(z), ∀t ≥ T2, (20)

where m(z) denotes the median value (10) and

T2 ≤ 2n
|c(T )−m(z)|

αmax
+ T. (21)

Proof: A complete proof is presented in the Appendix C. A short proof sketch summarizing its main steps and rationale
is given in the sequel.

The analysis starts at t ≥ T , i.e., after that the consensus condition (11) is established. We consider the Lyapunov function
candidate

V2(x(t)) = |c(t)−m(z)|, t ≥ T.

Due to (11) all agents hold the same state value c(t), thus the corresponding average state value is equal to c(t), i.e.:

c(t) =

∑
i∈V xi(t)

n
, t ≥ T.

By exploiting the symmetry of local interactions, formalized by (16), it can be shown that the consensus value c(t) obeys
the discontinuous differential equation

ċ(t) = −

∑
i∈V

αisign (xi(t)− zi)

n
. (22)

We then define the sets
Iup = {k ∈ V : xk < zk}, Idown = {k ∈ V : xk > zk},

Iequal = {k ∈ V : xk = zk}.
which are disjoint and such that their union forms the set V . By manipulating the set-valued map which defines the differential
inclusion governing the Filippov solutions of the discontinuous differential equation (22), we show that the set valued Lie
derivative of V2(x(t)) is such that

L̃V2(x(t)) ∈ − 1

n
SIGN(c(t)−m(z))

 ∑
i∈Idown

αi −
∑
i∈Iup

αi

+
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))

 .

Further manipulations, taking into consideration the definition of median value and that of sets Idown, Iup and Iequal, relation
(19), and the fact that the network is at consensus for all t ≥ T , yield that unless c(t) = m(z) (i.e. V2(x(t))) = 0) it holds

d

dt
(V2(x(t))) ≤ −αmax

2n
,

which is sufficient to assess the finite-time convergence of c(t) to the median value m(z) and it also allows for straightforwardly
determining the upper bound (21) to the convergence time. �
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Remark 4.4: The results of Theorems 4.1 and 4.3 can be straightforwardly generalized to graphs with switching topology
provided that the time-varying graph G(t) remains k-connected for almost every t ≥ 0 and the topology changes take place at
isolated time instants whose union forms a set of measure zero.

Remark 4.5: The proposed strategy does not work for directed graph topologies. The reason is that the symmetry of local
interactions, given by (16), is only achievable for undirected graphs, and such property is instrumental to get the consensus
value dynamics (22). If property (16) is not in force one obtains a more complex form for ċ(t), also depending on the signs of
the relative state differences, which does not yield convergence of c(t) towards the median value. Thus, in the directed graph
scenario a different protocol has to be devised to achieve consensus on the median value.

V. ROBUSTNESS PROPERTIES

In this section we explore the robustness properties of the consensus protocol (13) against uncooperative agents, i.e., agents
that belong to the network but do not adjust their own state according to protocol (13). Agents may act uncooperatively due
to a variety of reasons such as faults or sabotages.

A critical vulnerability of distributed averaging networks is that a single uncooperative agent may arbitrarily influence the
emergent behavior of the network despite the large number of agents/sensors. The consensus protocol (13) overcomes the issue
of outlier initial states/measurements due to the inherent robustness of the median value with respect outlier data. We now
show that, in some circumstances, protocol (13) is also able to limit the effect of uncooperative agents.

We are in need of introducing some further notation. We classify the agents of the network in two categories: i. agents that
are known to be cooperative; ii.) agents that may be uncooperative. Let Vsafe be the subset of agents which are known to
be cooperative, and let Vunsafe be the subset of agents which are not known for certainty to be cooperative. Vunsafe may
thus contain both cooperative and uncooperative agents. Additionally, let Vc be the subset of cooperative agents and Vu be the
subset of uncooperative agents. Uncooperative agents do not implement protocol (13), and follow arbitrary trajectories, i.e.,
ẋi = ui(t), with ui(t) : R+ → R, while interacting with the rest of the network. We consider oblivious uncooperative agents
which are not supposed to exploit maliciously the information they may gather from the state of the neighbors. As a result, it
is sensible to assume that the trajectories of the uncooperative agents may cross the trajectories of other agents only at isolated
instants of time.

From these definitions, it follows that nodes in the set Vsafe are all cooperative, i.e., Vsafe ⊆ Vc. Uncooperative agents
belong all to the set Vunsafe, i.e., Vu ⊆ Vunsafe. It also holds that Vsafe

∪
Vunsafe = Vc

∪
Vu = V .

Let Gsafe = (Vsafe, Esafe) be the subgraph of G representing the interconnections between agents in the set Vsafe. We now
introduce the notion of k-safe network which allows us to characterize a class of network topologies which, under the local
interaction rule (13), holds certain robustness features against uncooperative agents.

Definition 5.1: k-safe network. A connected network G, whose nodes are partitioned into the sets Vsafe and Vunsafe

according to the above-defined notation, is said to be k-safe if the corresponding subgraph Gsafe ⊆ G is k-connected and all
nodes in the set Vunsafe are connected only to nodes in the set Vsafe. �

A simple way to achieve a k-safe network is to let nodes in Vsafe form a rigid graph in k dimensions (a rigid planar graph
when k = 2, see [41]) and let nodes in Vunsafe share edges only with nodes in Vsafe.

In Figure 1 it is shown an example of 2-safe network. A plausible scenario in which k-safe network topologies can occur
is, e.g., when a set of expensive and cheap sensors are scattered in an area which they need to monitor. Cheap sensors are
large in number but prone to faults, and they only interact with a smaller set of more expensive “reliable” sensors which must
be sufficiently connected between each other so as to form a k-connected graph.

Let us define
λsafe
max = max

(i,j)∈Esafe

λij , λsafe
min = min

(i,j)∈Esafe

λij ,

λunsafe
max = max

(i,j)∈E\Esafe

λij , λunsafe
min = min

(i,j)∈E\Esafe

λij .

The following theorem proposes sufficient conditions for the finite time achievement of consensus by cooperative agents
under the influence of uncooperative agents.

Theorem 5.2: Consider an undirected k-safe network G of single integrator agents (6). Let δ̄ be the maximal number of
uncooperative agents, whose arbitrary trajectories are supposed to cross the trajectories of the cooperative agents only at
isolated instants of time. Let ∆max be the maximum degree of nodes in the set Vunsafe. Let the local interaction rule (12) be
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Fig. 1. Example of 2-safe network partitioned into safe nodes (black dots) and unsafe nodes (other nodes). The white node is uncooperative. The topology
of Gsafe is 2-connected and is highlighted with edges depicted as solid lines.

implemented for all i ∈ Vc, with tuning parameters such that

λsafe
min > λunsafe

max , (23)
λij = λji > 0, ∀(i, j) ∈ E , (24)

αmax < 2
kλsafe

min −∆maxδ̄λ
unsafe
max

n− δ̄
, (25)

λsafe
min

λunsafe
max

>
∆maxδ̄

k
. (26)

Then, there exists a finite T > 0 such that

xi(t) = c(t), ∀i ∈ Vc, ∀t ≥ T. (27)

with

T ≤ T1 =
max
i∈Vc

xi(0)−min
i∈Vc

xi(0)

β2 ,

β2 = 2
(

2(kλsafe
min −∆maxδ̄λ

unsafe
max )

n−δ̄
− αmax

)
.

(28)

Proof:
The complete proof is presented in Appendix D, whereas a short proof sketch in presented hereinafter.
The proof develops along the same lines followed in the proof of Theorem 4.1 by considering the subset of agents Vc ⊆ V

as opposed to set V . For this purpose we first redefine sets Imax and Imin as

Icmax(t) = {k ∈ Vc : xk = max
i∈Vc

xi(t)},
Icmin(t) = {k ∈ Vc : xk = min

i∈Vc

xi(t)}.

We then consider the next function as non-smooth Lyapunov candidate

V c(x(t)) =

∑
i∈Ic

max

xi(t)

|Icmax|
−

∑
i∈Ic

min

xi(t)

|Icmin|
.

As in the proof of Theorem 4.1, sets Icmax and Icmin may change cardinality only at isolated instants of time. By exploiting
the fact that the network is k-safe and each uncooperative agent is connected only to cooperative agents which belong to set
Vsafe, we show that with protocol parameters that satisfy the tuning constraints (23)-(26) one has that

d

dt
(V c(x(t))) ≤ −β2, (29)

where β2 = 2
(

2(kλsafe
min −δ̄λunsafe

max )

n−δ̄
− αmax

)
> 0, which proves the finite-time convergence of V c(x(t)) to zero, according to

Theorem 2.6, within a maximal transient time T1 satisfying (28). �
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In the next theorem, we show that despite the presence of uncooperative agents in the network, if consensus is reached then
under appropriate conditions the consensus value cannot be arbitrarily affected by the uncooperative agents.

Theorem 5.3: Consider an undirected k-safe network G of agents (6) along with the local interaction rule (12), implemented
for all i ∈ Vc, with tuning parameters such that

λij = λji > 0, ∀(i, j) ∈ E ,
2
∆maxδ̄λ

unsafe
max

n−δ̄
< αmax,

αmax−αmin

αmin
< 1

n ,

(30)

where δ̄ is the maximal number of uncooperative agents. If

xi(t) = c(t), ∀i ∈ Vc, ∀t ≥ T, (31)

and if the trajectories of the uncooperative agents cross the trajectories of the cooperative agents only at isolated instants of
time, then there exists a finite T̄ > 0 such that

c(t) ∈ [zcmin, z
c
max] , ∀t ≥ T + T̄ . (32)

where
zcmax = max

i∈Vc

zi, zcmin = min
i∈Vc

zi, (33)

and T̄ satisfies

T̄ ≤

∣∣∣c(T )− zc
max+zc

min

2

∣∣∣− zc
max−zc

min

2

β2
,

β2 =
αmax

2
− λunsafe

max

∆maxδ̄

n− δ̄
.

(34)

Proof:
A complete proof is presented in Appendix E, the main steps of which are summarized in the following.
We consider the Lyapunov function

V3(x(t)) = |c(t)− c̄|, c̄ =
zcmax + zcmin

2
, t ≥ T.

Taking into account that |Vc| = n− δ, where δ is the actual unknown number of uncooperative agents, we show that

c(t) =

∑
i∈Vc

xi(t)

n− δ
.

Exploiting the symmetry of local interactions between the cooperative agents, formalized by the first relation of (30), we show
that the time-varying consensus value c(t) obeys the discontinuous differential equation

ċ(t) = −

∑
i∈Vc

αisign (xi(t)− zi)

n− δ

−

∑
i∈Vc

∑
j∈Vu

∩
Ni

λijsign (xi(t)− xj(t))

n− δ
.

Differently from the proof of Theorem 4.3, we define Icup = {k ∈ Vc : xk < zk}, Icdown = {k ∈ Vc : xk > zk},
Icequal = {k ∈ Vc : xk = zk}, which actually refer to the subset Vc of collaborative agents rather than to the full set V of
agents.

We then assume that V (x(t)) >
zc
max−zc

min

2 , which happens when c(t) > zcmax or when c(t) < zcmin. If c(t) > zcmax one
has that |Icdown| = n− δ, whereas if c(t) < zcmin then |Icup| = n− δ. In both cases, it holds that |Icdown| − |Icup| = n− δ and
|Icequal| = 0. By assumption, uncooperative agents are only connected with cooperative agents and their trajectories cross the
trajectories of cooperative agents only at isolated instants of time, which can thus be disregarded. Furthermore, by definition
δ ≤ δ̄. Then, by exploiting these arguments and with further manipulations, we show that if αmax−αmin

αmin
< 1

n then the set
valued Lie derivative of V3(x(t)) fulfills the following relation

d

dt
(V3(x(t))) ∈ L̃V3(x) ≤ −αmax

2
+ λunsafe

max

∆maxδ̄

n− δ̄
, (35)

which implies, due to the second relation of (30), that the domain V c(x) ≤ zmax−zmin

2 is finite-time attracting and invariant,
with a transient time T + T̄ fulfilling the estimation (34) thereby completing the proof. �



11

The tuning conditions considered in Theorem 5.3 are different from those of Theorem 5.2. In particular, if the tuning
conditions of Theorem 5.2 are satisfied, then cooperative agents reach consensus. If the tuning conditions of both Theorems 5.2
and 5.3 are satisfied then cooperative agents achieve consensus and their state value can not be arbitrarily affected by
uncooperative agents, i.e., the consensus value stays inside the convex hull of the cooperative agents’ initial states. If the
tuning conditions of Theorem 5.2 are not satisfied, then it is not guaranteed that cooperative agents achieve consensus but
they may do as shown in the numerical simulations section. Therefore, it might be the case that only the tuning conditions of
Theorem 5.3 are satisfied, and in this case the claimed results hold only in the event that cooperative agents achieve consensus.

In light of the results of Theorem 5.2 and Theorem 5.3, we now discuss the qualitative behavior of the proposed consensus
protocol depending on the chosen values of parameters αi and λij , when the network topology is k-safe.

Due to relation αmax−αmin

αmin
< 1

n , which is a requirement of both Theorems 4.2 and 5.3, parameters αi should be designed
with identical values or values that differ little, especially when the number n of nodes grows. If one selects them all identical,
the former relation is identically satisfied. Provided that consensus is achieved within the set of cooperative agents, then if

αmax > 2
∆maxδ̄λ

unsafe
max

n− δ̄
,

the uncooperative agents cannot arbitrarily influence the consensus value, which is constrained inside the convex hull of the
cooperative agents’ initial states. If

αmax < 2
kλsafe

min −∆maxδ̄λ
unsafe
max

n− δ̄
,

then all cooperative agents are guaranteed to achieve consensus.
Therefore, if the condition in inequality (19) and both previous conditions hold simultaneously, i.e., if

2
∆maxδ̄λ

unsafe
max

n− δ̄
< αmax < 2

kλsafe
min −∆maxδ̄λ

unsafe
max

n− δ̄
,

we can guarantee that the network achieves consensus with a value inside the convex hull of the cooperative agents initial
states despite the influence of the δ ≤ δ̄ uncooperative agents. Such choice of parameters that satisfies both conditions exists
only if

kλsafe
min − 2∆maxδ̄λ

unsafe
max > 0,

therefore choosing a large λsafe
min and a well connected network with k ≥ 1 improves the robustness properties of the approach,

i.e., a greater number of uncooperative agents can be disregarded.

VI. SIMULATIONS

In the first simulation we consider a network of 23 agents interacting by the graph in Figure 1 which is a 2-safe network
with maximum degree of unsafe agents being equal to ∆max = 3. We consider the case in which three agents hold an outlier
initial value. The initial network state is chosen at random with values in the range [0, 10] while the initial values of outlier
agents are chosen to be far off the average value and equal to 40, 43, 50. The initial network state is thus

x(0) = z = [0.17, 1.14, 2.49, 2.87, 3.70, 4.40, 5.30, 5.71,
6.00, 6.97, 7.05, 7.78, 8.08, 8.65, 8.83, 8.89,

9.55, 9.69, 9.97, 9.99, 40.00, 43.00, 50.00]
T
.

The initial states’ average is 11.31 whereas the median value m(z) is 7.78. The median value disregarding the outlier agents
belongs to the interval [6.97, 7.05]. In the first simulation we choose parameters that satisfy the conditions (16) and (30).
We choose the tuning parameters uniformly at random within the ranges αi ∈ [0.5, 0.51] for i ∈ V , λij ∈ [1.5, 2] and
λsafe
ij ∈ [10, 11] for (i, j) ∈ E . This choice of parameters also satisfies condition (30) for δ = 1 and ∆max = 3.
In Figure 2 it is shown the time evolution of the network states in a preliminary test where no uncooperative agents are

considered. It is apparent that after a finite transient time consensus on a common value is achieved, and afterwards the time
varying consensus value converges in finite time to the median value 7.78. Agents move at different speeds depending on
the number of their neighbors. Agents with a single neighbor and tuning parameters λij close to λmin represent the worst
case scenario with respect to the convergence speed. Figure 3, which is a zoom extracted from Figure 2, shows the transient
evolution of the consensus value c(t), highlighting its finite-time convergence towards the median value according to our
theoretical findings.

In Figure 4 it is shown the network evolution during a second simulation run which considers the same tuning parameters as
in the first simulation, which fulfill the tuning conditions (23) and (30) but it also includes one uncooperative agent (white node
in Figure 1). Cooperative agents interact with the uncooperative agent while it is following its own independent trajectory. The
trajectory of the uncooperative agent is represented by the bold line. It is evident that despite the presence of the uncooperative
agent the network of cooperative agents converges to a consensus value inside the convex hull of the initial network state,
according to (32)-(33). The steady state consensus value is 8.2.
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Fig. 2. Evolution of the network state x(t) with tuning parameters αi ∈ [0.5, 0.51], λij ∈ [1.5, 2] and λsafe
ij ∈ [10, 11] of the network in Figure 1 with

three outliers and no uncooperative agents.
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x(
t)

Fig. 3. Zoom of the evolution of the network state in Figure 2.

In Figure 5 we repeat the previous simulation with one uncooperative agent by choosing tuning parameters αi = 1.5 for all
i ∈ V , λij = 2 and λsafe

ij = 2 for all (i, j) ∈ E , thus violating the tuning conditions (23) of Theorem 5.2. It can be seen that
consensus is achieved by the cooperative agents and that the final consensus value is 7.788, thus well approximating the median
value. Numerical simulations show that if parameters αi are close to, but less than, parameters λij , then the performance of
the algorithm is improved but there exist network topologies and initial conditions for which it fails to converge to consensus.

In another simulation run, whose results are shown in the Table VI, we consider a scenario where the network topology is
a connected Erdős-Rényi random graph G(p, n) with n = 100 nodes and probability of edge existence equal to p = ln(n)

n , just
above the theoretical threshold which ensure almost sure connectivity in large networks [42]. We choose the tuning parameters
α = 1 and λ = 2, and have made 1000 simulation runs with random initial conditions and a number of uncooperative agents
varying between 1 and 5. In Table VI the simulations results are summarized. We have measured the success rate of cooperative
agents in the task of achieving consensus. Simulations show that for the given scenario, the protocol is always robust in the
case of one uncooperative agents and starts to fail more frequently as the number of uncooperative agents grows. In this context
failure to achieve consensus does not imply that all the network states tend to arbitrary value but only that some cooperative
agents may not reach the consensus value. The number of cooperative agents which do not converge to the consensus value

0 10 20 30 40 50

−40

−20

0

20

40

60

Time

x(
t)

Fig. 4. Evolution of the network state x(t) with tuning parameters as in Figure 2 with three outliers and one uncooperative agent with arbitrary trajectory
(bold line).
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Fig. 5. Evolution of the network state x(t) with tuning parameters αi = 1.5 for all i ∈ V and λij = 2 for all (i, j) ∈ E , three outliers and one uncooperative
agent with arbitrary trajectory (bold line).

is surprisingly small. This indicates that in general, while it is not possible to guarantee robustness to uncooperative agents
for arbitrary networks, it is possible to observe robustness, in a probabilistic sense, in large networks where the number of
uncooperative agents is small with respect to the total number of agents. This feature seems to be more evident when the
parameters λij are close to the parameters αi. In summary, very small values of the αi’s, as suggested by Theorem 5.2, can
guarantee global consensus at the price of making the emergent behavior very sensitive to uncooperative agents. Instead, if
parameters αi’s are close to, but less than, the λij’s, global consensus between cooperative agents is not guaranteed anymore
but sensitivity with respect to uncooperative agents is greatly reduced.

Number of uncooperative agents
1 2 3 4 5

Percentage of simulations where all 100% 95% 83% 82% 81%
cooperative agents achieve consensus

Maximum number of cooperative 0 1 2 4 4
agents not at consensus

TABLE I
ROBUSTNESS WITH RESPECT TO UNCOOPERATIVE AGENTS ON ERDŐS - RÉNYI RANDOM GRAPHS G(p, n) WITH n = 100, p =

ln(n)
n

AND PROTOCOL
TUNING PARAMETERS α = 1, λ = 2.

Finally, in Figure 6 we show the results of a large scale simulation considering a random network with 1000 agents and
tuning parameters αi = 1 and λij = 2. In this simulation we considered 5 uncooperative agents with state value equal to 100
for the whole simulation time. In Figure 6 it can be seen that most of the network, except one cooperative agent, reaches
the consensus value of 5.40. The initial average value of the set of cooperative agents is 5.07 whereas the median value is
5.10. In general, numerical simulations of protocol (13) show that if parameter λij’s are close to parameters αi, while it is not
guaranteed that all cooperative agents reach consensus on the median value, which happens or not depending on the current
network topology, with high probability most of the cooperative agents converge to a value close to the median value of the
network while being able to significantly disregard the existence of uncooperative agents which can not arbitrarily affect the
network emerging behavior. We are interested in proving this conjecture in future works.

Fig. 6. Time evolution of a random network with 1000 nodes with 5 uncooperative agents.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel consensus protocol which achieves agreement with respect to the median value of the
initial states of a network of continuous-time single integrators in finite time. The proposed protocol achieves distributed
agreement towards an inherently robust statistical measure with respect to outlier states corresponding to large abnormal
values due to measurement errors or faulty equipment. We characterized the finite-time convergence properties of the proposed
protocol and some robustness properties with respect to uncooperative agents. In particular, we proved that there exist tuning
conditions for the protocol parameters so that for a network with the so-called k-safe topology the achievement of consensus
is robust to the influence of uncooperative agents and the consensus value lies inside the convex hull of the initial states of the
cooperative agents. Future work will involve the characterization of the robustness properties with respect to noisy relative state
measurements and the application of possibly modified versions of the protocol to concrete problems involving multi-robot
networks. The convergence and robustness properties of the discrete-time versions of the proposed interaction protocol are also
worth to be investigated in future research activities.
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APPENDIX

A. Proof of Theorem 2.6

This proof is a slight extension of the proof of Theorem 2 (Lypunov’s Theorem Generalized) in [24]. We show that the
similar result holds in the case one is interested in proving the convergence of x(t) toward the consensus subspace span(1n)
rather than towards the origin.

We begin by proving by contradiction that there exists T0 ≥ t0 such that V (T0) = 0. If there exists no such T0, then x(t) ̸∈ M
∀t ∈ [t0,∞) and d

dt (V (x(t))) ≤ −ϵ a.e. on [t0,∞). Thereby, limt→∞ V (t) = V (0) +
∫∞
t0

d
dt (V (x(t))) dt = −∞, thus

contradicting that V (T0) = 0 never holds since V (0) ≥ 0. Therefore, there exists such a T0 ≥ t0. We now prove by contradiction
that V (t) = 0 for t ≥ T0. Suppose that there exists T1 ≥ T0 such that V (T1) > 0, then

∫ T1

T0

d
dt (V (x(t))) dt = V (T1) > 0.

It follows that d
dt (V (x(t))) > 0 on a set of positive measure, thus contradicting that d

dt (V (x(t))) ≤ −ϵ < 0 a.e. on [t0,∞).
Therefore, there exists T0 ≥ t0 such that V (t) = 0 ∀t ≥ T0. Furthermore, V (t) = 0 implies x(t) ∈ M = span(1n). This
concludes the proof. �

B. Proof of Theorem 4.1

Let
Imax(t) = {k ∈ V : xk = max

i∈V
xi(t)},

Imin(t) = {k ∈ V : xk = min
i∈V

xi(t)}.
(36)

In the sequel, the explicit dependence of Imax(t) and Imin(t) on t will be omitted to simplify the notation. Consider the
non-smooth Lyapunov candidate function

V1(x(t)) =

∑
i∈Imax

xi(t)

|Imax|
−

∑
i∈Imin

xi(t)

|Imin|
. (37)

It is clear that V1(x(t)) ≥ 0 and V1(x(t)) = 0 iff the network is at consensus. It is worth noting that by construction the next
relations ∑

i∈Imax

xi(t)

|Imax|
≡ max

i∈V
xi(t),

∑
i∈Imin

xi

|Imin|
≡ min

i∈V
xi(t), (38)

hold, which means that the alternative definition V1(x(t)) = maxi∈V xi −mini∈V xi could in principle be adopted. However,
definition (37) proves to be convenient to get a subsequent Lyapunov analysis yielding less conservative requirements on the
tuning parameters of the local interaction protocol.

The cardinalities of sets Imax and Imin change over time. We first observe that the cardinality of the sets Imax(t) and
Imin(t) is a piecewise constant function whose instants of discontinuity belong to a set of measure zero. We show this for
Imax(t), but a similar reasoning applies to Imin(t). Since for all i ∈ V ẋi is a sum of sign functions for every t, it is bounded.
Therefore, xi(t) is locally Lipschitz. This implies that xi(t) is absolutely continuous. Consider any j /∈ Imax(t) then, since
xj(t) is absolutely continuous with bounded derivative, it takes a finite time before xj(t) can become maximal. Therefore,
increments of |Imax(t)| occur at isolated instants of time. Now assume, by contradiction, that there exists an interval of time
positive measure in which |Imax(t)| is discontinuous. In this interval, |Imax(t)| should take an infinite number of decrements
which is impossible, given that the cardinality is an integer between 1 and n. This shows that the instants of discontinuity
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of Imax(t) are isolated points. These time instants can be disregarded in the non-smooth Lyapunov analysis and |Imax(t)|,
|Imin(t)| can be treated as constants while evaluating the generalized gradient of V1(x(t)).

Let us note that V1(x(t)) : R+ → R is absolutely continuous because it is the composition of the function V1(·), which is
locally Lipschitz continuous, and the absolutely continuous function x(t). Therefore, d

dt (V (x(t)) exists almost everywhere and
there exists a set N of measure zero such that for all t ∈ [0,∞)\N , both ẋ(t) and the generalized time derivative d

dt (V1(x(t))
exist.

Now, fix t ∈ [0,∞)\N . Following [43], owing on the local Lipschitz continuity of V1(x(t) one has that

d

dt
(V1(x(t)) = lim

h→0

V1(x(t) + hẋ(t))− V1(x(t))

h
. (39)

By substituting (37) into (39), it holds

d
dt

(V1(x(t)) = lim
h→0


∑

i∈Imax

xi(t) + hẋi(t)

h|Imax|
−

∑
i∈Imin

xi + hẋi(t)

h|Imin|

−

∑
i∈Imax

xi(t)

h|Imax|
+

∑
i∈Imin

xi(t)

h|Imin|

 ,

which simplifies as follows

d

dt
(V1(x(t)) =

∑
i∈Imax

ẋi(t)

|Imax|
−

∑
i∈Imin

ẋi(t)

|Imin|
. (40)

By taking into account the discontinuous collective dynamics (13), one straightforwardly derives∑
i∈Imax

ẋi =
∑

i∈Imax

(
− αi sign (xi(t)− zi)

−
∑

j∈Ni

∩
Imax

λijsign (xi(t)− xj(t))

−
∑

j∈Ni\Imax

λijsign (xi(t)− xj(t))

 .

(41)

Due to the symmetry of interactions, formalized by (16), it holds∑
i∈Imax

 ∑
j∈Ni

∩
Imax

λijsign (xi(t)− xj(t))

 = 0. (42)

By virtue of (42), we can manipulate (41) into∑
i∈Imax

ẋi =
∑

i∈Imax

(
− αi sign (xi(t)− zi)

−
∑

j∈Ni\Imax

λijsign (xi(t)− xj(t))

 .

(43)

Thus, one derives the following set-valued map associated to (43)∑
i∈Imax

ẋi ∈
∑

i∈Imax

(
− αi SIGN (xi(t)− zi)

−
∑

j∈Ni\Imax

λijSIGN (xi(t)− xj(t))

)
.

(44)

By making similar developments, one also derives that∑
i∈Imin

ẋi ∈
∑

i∈Imin

(
− αi SIGN (xi(t)− zi)

−
∑

j∈Ni\Imin

λijSIGN (xi(t)− xj(t))

)
.

(45)
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Substituting (44) and (45) into (40), one obtains that d
dt (V1(x(t))) takes values in the following set-valued map

d
dt (V1(x(t))) ∈

1

|Imax|
∑

i∈Imax

(
− αi SIGN (xi(t)− zi)

−
∑

j∈Ni\Imax

λijSIGN (xi(t)− xj(t))

)

− 1

|Imin|
∑

i∈Imin

(
− αi SIGN (xi(t)− zi)

−
∑

j∈Ni\Imin

λijSIGN (xi(t)− xj(t))

)
.

(46)

By the definition of set Imax, any agent j in the set Ni\Imax is such that if the network is not at consensus then xi(t) > xj(t)
∀i ∈ Imax, which implies that SIGN (xi(t)− xj(t)) = 1 ∀i ∈ Imax. Similarly, one concludes that SIGN (xi(t)− xj(t)) = −1
∀i ∈ Imin.

Furthermore, since graph G is k-connected, if the network is not in the consensus state then there exist at least k edges
connecting nodes in Imax with nodes with a different state value, and at least k edges connecting nodes in Imin with nodes
with a different state value.

Therefore, the following estimate can be derived by (46)
d
dt (V1(x(t))) ≤ αmax − kλmin

|Imax| + αmax − kλmin

|Imin| . (47)

Additionally, if the network is not in the consensus state then |Imax| = p < n and |Imin| ≤ n − p. Thus, (47) is further
elaborated as follows

d

dt
(V1(x(t))) ≤ 2αmax − nkλmin

p(n− p)
. (48)

The upper bound is maximized taking p = n
2 , therefore it yields

d

dt
(V1(x(t))) ≤ 2αmax − 4kλmin

n
. (49)

In view of (16), by letting µ2 = 2
(
2kλmin

n − αmax

)
one derives

d

dt
(V1(x(t))) ≤ −µ2, (50)

where, by (17), µ2 > 0, thereby proving the finite-time convergence of V1(x(t)) to zero according to Theorem 2.6. To evaluate
the convergence time, let us write down the inequality

V1(x(t)) = V1(x(0)) +
∫ t

0
d
dt (V1(x(t))) dt

≤ V1(x(0)))−
∫ t

0
µ2dt = V1(x(0))− µ2t.

(51)

By (51), it derives that the finite-time consensus condition (11) is achieved within a maximal transient time T1 satisfying (18).
Theorem 4.1 is proved. �

C. Proof of Theorem 4.3

Let us consider the Lyapunov function

V2(x(t)) = |c(t)−m(z)|, t ≥ T. (52)

i.e., our analysis begins after that the consensus condition (11) has been already achieved.
It is worth to note that due to (11) all agents hold the same state value c(t), and therefore the average state value is given

by c(t), i.e.

c(t) =

∑
i∈V xi(t)

n
, t ≥ T. (53)

The generalized gradient of V2(x(t)) takes the form

∂V2(x) = SIGN(c(t)−m(z)). (54)
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By (53), the time varying consensus value c(t) obeys the discontinuous differential equation

ċ(t) =

∑
i∈V

ẋi(t)

n
= −

∑
i∈V

αisign (xi(t)− zi)

n

−

∑
i∈V

∑
j∈Ni

λijsign (xi(t)− xj(t))

n
. (55)

Due to the symmetry of local interactions, specified by (16), one has that

∑
i∈V

∑
j∈Ni

λijsign (xi(t)− xj(t))

 = 0,

therefore (55) straightforwardly simplifies as

ċ(t) = −

∑
i∈V

αisign (xi(t)− zi)

n
. (56)

The Filippov solutions of (56) are governed by the differential inclusion

ċ(t) ∈ − 1

n

∑
i∈V

αiSIGN (xi(t)− zi) . (57)

Let
Iup = {k ∈ V : xk < zk}, Idown = {k ∈ V : xk > zk},

Iequal = {k ∈ V : xk = zk}.
(58)

Clearly, the sets Iup, Idown and Iequal are disjoint, and their union forms the set V . We can thus rewrite (57) as follows

ċ(t) ∈ − 1

n

∑
i∈Iup

αiSIGN (xi(t)− zi)

+
∑

i∈Idown

αiSIGN (xi(t)− zi)

+
∑

i∈Iequal

αiSIGN (xi(t)− zi)

 .

(59)

By construction, the next relations hold

SIGN (xi(t)− zi) = −1 ∀i ∈ Iup, (60)
SIGN (xi(t)− zi) = 1 ∀i ∈ Idown. (61)

Therefore, by (60) and (61) one manipulates (59) as follows

ċ(t) ∈ − 1

n

( ∑
i∈Idown

αi −
∑
i∈Iup

αi

+
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))

)
,

(62)

and the set-valued Lie derivative of V2(x(t)) correspondingly takes the form

L̃V2(x(t)) = − 1

n
SIGN(c(t)−m(z))(

∑
i∈Idown

αi −
∑
i∈Iup

αi

+
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))).
(63)

Taking into account that
xi(t) = c(t), ∀i ∈ V, ∀t ≥ T, (64)

by construction it holds

c(t) < zi, ∀i ∈ Iup, (65)
c(t) > zi, ∀i ∈ Idown. (66)
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Having in mind the Definition 3.2 of the median value, the next implication holds

|Idown| = |Iup| =⇒ c(t) = m(z). (67)

Therefore, we concentrate on the case in which |Idown| ̸= |Iup|. When |Idown| ̸= |Iup|, two cases may occur

Case 1 : ||Idown| − |Iup|| > |Iequal|, (68)

Case 2 : ||Idown| − |Iup|| ≤ |Iequal|, (69)

which will be treated separately.
Case 1. When relation (68) is in force, it holds∑

i∈Iequal

αiSIGN(xi(t)− zi(t)) ∈ [−αmax|Iequal|, αmax|Iequal|]. (70)

We now derive a lower bound to the next quantity∣∣∣∣∣∣
∑

i∈Idown

αi −
∑
i∈Iup

αi +
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))

∣∣∣∣∣∣ . (71)

Without loss of generality we consider the case |Idown| > |Iup| and thus inequality (68) becomes |Idown| − |Iup| > |Iequal|
(the same derivation can be carried out for the case |Idown| < |Iup|). Thus, we consider the value for each term αi in (71)
with the aim to find the minimal magnitude of (71) and thus yielding the next estimate∣∣∣∣∣∣

∑
i∈Idown

αi −
∑
i∈Iup

αi +
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))

∣∣∣∣∣∣
≥ αmin|Idown| − αmax|Iup| − αmax|Iequal|.

(72)

Denote
k = |Iup|+ |Iequal|. (73)

By substituting eq. (73) into |Idown|+ |Iup|+ |Iequal| = n, it follows that

|Idown| = n− k. (74)

Now substituting (73) into the previously derived condition |Idown| > |Iup|+ |Iequal|, it holds that |Idown| > k. Since |Idown|
and k are integer numbers, this implies the next inequality

|Idown| ≥ k + 1. (75)

Thus, since the smaller lower bound of |Idown| occurs for n odd, it holds

k ≤ n− 1

2
. (76)

In light of eq. (73) and eq. (74), the right hand side of eq. (72) can be rewritten as

αmin|Idown| − αmax|Iup| − αmax|Iequal|
= αmin(n− k)− αmaxk.

(77)

Since the right hand side of eq. (77) is a decreasing function of k, its minimum subject to the constraint in eq. (76) is obtained
when k = n−1

2 . Thus, it holds

αmin(n− k)− αmaxk ≥ αmin(n− n−1
2 )− αmax

n−1
2

= αmin
n+1
2 − αmax

n−1
2 .

(78)

By rewriting the tuning inequality (19) in the equivalent form
αmin

αmax
>

n

n+ 1
, (79)

we further manipulate the right-hand side of eq. (78) as follows

αmin
n+1
2 − αmax

n−1
2 = αmax

(
αmin

αmax

n+1
2 − n−1

2

)
> αmax

(
n

n+1
n+1
2 − n−1

2

)
= αmax

(
n
2 − n−1

2

)
= αmax

1
2 .

(80)
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By virtue of (80) one derives that∣∣∣∣∣∣
∑

i∈Idown

αi −
∑
i∈Iup

αi +
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))

∣∣∣∣∣∣ > αmax

2
. (81)

Additionally, (68), (19) and (70) also imply that

sign

 ∑
i∈Idown

αi −
∑
i∈Iup

αi +
∑

i∈Iequal

αiSIGN(xi(t)− zi(t))


= sign (|Idown| − |Iup|) .

(82)

By exploiting the definition of the median value, and considering (64), (68) and (19) one derives the following implications

|Idown| < |Iup| ⇐⇒ c(t) < m(z), (83)
|Idown| > |Iup| ⇐⇒ c(t) > m(z). (84)

Relations (83) and (84) imply in turns that

sign (|Idown| − |Iup|) = sign (c(t)−m(z)) . (85)

Therefore, by (63), (81) and (85) it derives that

max
ξ∈L̃V2(x(t))

ξ ≤ −αmax

2n
. (86)

Since d
dt (V2(x(t))) ∈ L̃V2(x(t)), according to eq. (86), unless c(t) = m(z) (i.e. V2(x(t))) = 0) it holds

d

dt
(V2(x(t))) ≤ −αmax

2n
. (87)

Thus, in Case 1, the finite time achievement of condition c(t) = m(z) is guaranteed by analogous developments as those
made in the proof of Theorem 4.1, with a finite transient time satisfying (21).

Case 2. This case may only happen in the (unlikely) event that more than one agent hold the same value of their corresponding
initial state, xi(0) = zi, and additionally this value corresponds to the median value. We now prove that if condition (69) holds
then c(t) = m(z), i.e, the network has already achieved consensus on the median value.

Define
kup = min

k∈Iup

k, kdown = max
k∈Idown

k. (88)

Due to (8), and owing on the definitions (58), one has that

kup > kdown, (89)
|Iup| = n− kup + 1, (90)

|Idown| = kdown. (91)

By substituting (90) and (91) into the next relation

|Iup|+ |Idown|+ |Iequal| = n, (92)

which is verified by construction, one obtains

|Iequal| = (kup − kdown)− 1. (93)

Relation (69) yields the two inequalities

|Iup| − |Idown| ≤ |Iequal| if |Iup| > |Idown| (94)
|Idown| − |Iup| ≤ |Iequal| if |Iup| < |Idown| (95)

By substituting (90), (91) and (93) into (94) it yields

kup ≥ n

2
+ 1. (96)

By substituting (96) into (90) we get
|Iup| ≤

n

2
(97)
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Since we are investigating the case |Iup| > |Idown|, it derives from (97) and (91) that

kdown <
n

2
. (98)

Thus, if |Iup| > |Idown| then the set Iequal satisfies

max
k∈Iequal

k = kup − 1 ≥ n

2
, (99)

and
min

k∈Iequal

k = kdown + 1 <
n

2
+ 1. (100)

By applying similar manipulations to (95), one derives the same conditions (99)-(100), which, considered together, imply that
c(t) = m(z). Theorem 4.3 is proven. �

D. Proof of Theorem 5.2

Let
Icmax(t) = {k ∈ Vc : xk = max

i∈Vc

xi(t)},
Icmin(t) = {k ∈ Vc : xk = min

i∈Vc

xi(t)}.
(101)

The proof develops along the same lines followed in the proof of Theorem 4.1 by considering the set of agents Vc ⊆ V as
opposed to set V .

Consider the next non-smooth Lyapunov candidate function

V c(x(t)) =

∑
i∈Ic

max

xi(t)

|Icmax|
−

∑
i∈Ic

min

xi(t)

|Icmin|
. (102)

Similarly to the proof of Theorem 4.1, sets Icmax and Icmin may change cardinality only at isolated instants of time. Furthermore,
we can use the same reasoning to get an expression of the generalized time derivative of V c(x(t)) as follows

d

dt
(V c(x(t)) =

∑
i∈Ic

max

ẋi(t)

|Icmax|
−

∑
i∈Ic

min

ẋi(t)

|Icmin|
. (103)

Due to the symmetry of local interactions between the cooperative agents it holds

∑
i∈Ic

max

 ∑
j∈Ni

∩
Ic
max

λijsign (xi(t)− xj(t))

 = 0. (104)

Thus, considering the corresponding set-valued map, it holds

d
dt

(V c(x(t))) ∈ 1

|Icmax|

(
−

∑
i∈Icmax

αiSIGN (xi(t)− zi)

−
∑

i∈Icmax

∑
j∈Vc

∩
Ni\Icmax

λijSIGN (xi(t)− xj(t))

−
∑

i∈Icmax

∑
j∈Vu

∩
Ni\Icmax

λijSIGN (xi(t)− xj(t))

)

− 1

|Icmin|

(
−

∑
i∈Icmin

αiSIGN (xi(t)− zi)

−
∑

i∈Icmin

∑
j∈Vc

∩
Ni\Icmin

λijSIGN (xi(t)− xj(t))

−
∑

i∈Icmin

∑
j∈Vu

∩
Ni\Icmin

λijSIGN (xi(t)− xj(t))

)
.

(105)

By definition of set Icmax, any agent j which belongs also to set Vc

∩
Ni\Icmax is such that if the network is not at consensus

then xi(t) > xj(t) ∀i ∈ Icmax, which implies that SIGN (xi(t)− xj(t)) = 1 ∀i ∈ Icmax. On the contrary, nothing can be said
about the sign of xi(t)− xj(t) when j ∈ Vu

∩
Ni\Icmax. The number of uncooperative agents is δ (a value unknown a-priori)

whereas ∆max is the maximum degree of agents in the set Vunsafe. Since the network is k-safe each uncooperative agent is
connected only to cooperative agents which belong to set Vsafe.
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Furthermore, if the network is not in the consensus state, then either Icmax contains only cooperative agents belonging to
set set Vunsafe and thus only connected to other cooperative agents in the set Vsafe or Icmax contains at least one node in the
set Vsafe. In the first case, nodes in Icmax are not connected among themselves therefore, it can be shown that they converge
toward nodes in thr set Vsafe with speed at worst equal to αmax − λunsafe

min .
In the second case, since there exist at least k edges connecting nodes in Icmax with nodes having a different state value,

the following estimate can be derived by (103) and (105)

d
dt (V

c(x(t))) ≤ αmax − kλsafe
min −∆maxδλ

unsafe
max

|Ic
max|

+αmax − kλsafe
min −∆maxδλ

unsafe
max

|Ic
min|

.
(106)

Additionally, if the network is not in the consensus state then |Icmax| = p < n and |Icmin| ≤ n− δ − p. Thus, (106) is further
elaborated as

d

dt
(V c(x(t))) ≤ 2αmax − (n− δ)(kλsafe

min − δλunsafe
max )

p(n− δ − p)
. (107)

The value of p which maximizes the right-hand side of (107) is p = n−δ
2 , therefore by exploiting relation δ ≤ δ̄ we further

manipulate (107) as follows
d

dt
(V c(x(t))) ≤ 2αmax − 4(kλsafe

min −∆maxδ̄λ
unsafe
max )

n− δ̄
. (108)

If the tuning conditions (25) and (26), then inequality (108) is rewritten as follows

d

dt
(V c(x(t))) ≤ −β2, (109)

where β2 = 2
(

2(kλsafe
min −δ̄λunsafe

max )

n−δ̄
− αmax

)
> 0, which proves the finite-time convergence of V c(x(t)) to zero according to

Theorem 2.6. To evaluate the convergence time, we follow analogous developments as those made in the end of the proof of
Theorem 4.1, yielding that the finite-time consensus condition (11) is achieved within a maximal transient time T1 satisfying
(28). Theorem 5.2 is proved. �

E. Proof of Theorem 5.3

Consider the following Lyapunov function

V3(x(t)) = |c(t)− c̄|, c̄ =
zcmax + zcmin

2
, t ≥ T. (110)

By (31), and taking into account that |Vc| = n− δ (where δ is the actual number of uncooperative agents) one has that

c(t) =

∑
i∈Vc

xi(t)

n− δ
. (111)

The generalized gradient of V3(x(t)) takes the form ∂V3(x) = SIGN(c(t) − c̄). Function c(t), the time varying consensus
value, obeys the discontinuous differential equation

ċ(t) =

∑
i∈Vc

ẋi(t)

n− δ
= −

∑
i∈Vc

αisign (xi(t)− zi)

n− δ

−

∑
i∈Vc

∑
j∈Vc

∩
Ni

λijsign (xi(t)− xj(t))

n− δ

−

∑
i∈Vc

∑
j∈Vu

∩
Ni

λijsign (xi(t)− xj(t))

n− δ
.

(112)

Due to the symmetry of local interactions between the cooperative agents, it holds

∑
i∈Vc

 ∑
j∈Vc

∩
Ni

λijsign (xi(t)− xj(t))

 = 0,
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therefore the second term in the right hand side of (112) is identically zero, and (112) simplifies to

ċ(t) = −

∑
i∈Vc

αisign (xi(t)− zi)

n− δ

−

∑
i∈Vc

∑
j∈Vu

∩
Ni

λijsign (xi(t)− xj(t))

n− δ
.

(113)

The Filippov solutions of (113) are governed by the differential inclusion ċ(t) ∈ K(x), with the set-valued map

K(x) = − 1

n− δ

∑
i∈Vc

αiSIGN (xi(t)− zi)

−

∑
i∈Vc

∑
j∈Vu

∩
Ni

λijSIGN (xi(t)− xj(t))

n− δ
.

(114)

Let Icup = {k ∈ Vc : xk < zk}, Icdown = {k ∈ Vc : xk > zk}, Icequal = {k ∈ Vc : xk = zk}. We point out that sets
Icup, I

c
down, I

c
equal are here defined over the subset Vc of collaborative agents instead of over the full set V of agents as it as

was done in the proof of Theorem 4.3.
We can thus decompose the Filippov map K(x) in (114) as follows

K(x) = − 1

n− δ

( ∑
i∈Ic

up

αiSIGN (xi(t)− zi)

+
∑

i∈Ic
down

αiSIGN (xi(t)− zi)

+
∑

i∈Ic
equal

αiSIGN (xi(t)− zi)

−
∑
i∈Vc

∑
j∈Vu

∩
Ni

λijSIGN (xi(t)− xj(t))

)
,

(115)

where, by construction

SIGN (xi(t)− zi) = −1 ∀i ∈ Icup, (116)
SIGN (xi(t)− zi) = 1 ∀i ∈ Icdown. (117)

Substituting (115)-(117) into (114) we obtain

K(x) = − 1

n− δ

( ∑
i∈Ic

down

αi −
∑
i∈Ic

up

αi

+
∑

i∈Ic
equal

αiSIGN(xi(t)− zi(t))

−
∑
i∈Vc

∑
j∈Vu

∩
Ni

λijSIGN (xi(t)− xj(t))

)
.

(118)

and the set valued Lie derivative of V3(x(t)) correspondingly takes the form

L̃V3(x(t)) = − 1

n− δ
SIGN(c(t)− c̄)

( ∑
i∈Ic

down

αi −
∑
i∈Ic

up

αi

+
∑

i∈Ic
equal

αiSIGN(xi(t)− zi(t))

+
∑
i∈Vc

∑
j∈Vu

∩
Ni

λijSIGN (xi(t)− xj(t))

)
.

(119)

We now assume that V3(x(t)) >
zc
max−zc

min

2 , which happens when c(t) > zcmax or when c(t) < zcmin. If c(t) > zcmax it
holds |Icdown| = n − δ, whereas if c(t) < zcmin then |Icup| = n − δ. In both cases, it holds |Icdown| − |Icup| = n − δ and
|Icequal| = 0. Since, by assumption, each uncooperative agent is connected only to cooperative agents and the trajectories of the
uncooperative agents cross the trajectories of the cooperative agents only at isolated instants of time, these instants of time can
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thus be disregarded in the analysis. Thus, if αmax−αmin

αmin
< 1

n , by manipulating eq. (119) as done in the proof of Theorem 4.3
to derive inequality (81), and considering the relation δ ≤ δ̄ it derives that

maxξ∈L̃V3(x(t))
ξ ≤ −αmax

2 + λunsafe
max

∆maxδ̄
n−δ̄

. (120)

Thus, taking into account (30), it follows from (120) that

d

dt
(V3(x(t))) ∈ L̃V3(x) ≤ −αmax

2
+ λunsafe

max

∆maxδ̄

n− δ̄
. (121)

which implies that the level set V3(x) ≤ zmax−zmin

2 is invariant and finite-time attracting with a transient time T + T̄ fulfilling
the estimation (34). Theorem 5.3 is proven. �
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