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1 Introduction

In this paper we deal with the problem of distributing evenly a set of indivisible tasks over a network of agents
who have to process them. To keep the presentation general, we consider tasks with different costs and agents
with different execution speeds 1 . This problem, which we called discrete consensus in (2), is a generalization of
the quantized consensus problem proposed by Kashyap et al. in (3) where all tasks (or tokens) have equal weight
(or cost) and task execution speeds are not considered, namely they are assumed to be the same for all nodes. We
say that the assignment is performed on heterogeneous networks to emphasize the fact that each agent has its own
execution speed. Agents are assumed to be interconnected by a bidirectional communication network. In accordance
with most of the literature in this area, such a network is assumed to be modeled by an undirected graph as opposed
to a directed graph. The quantized consensus problem on directed graphs has been studied by Kai and Ishii in (4).

We investigate the distributed task assignment problem in the framework of gossip algorithms. These algorithms were
popularized in the control literature by Boyd et al. (5) who proposed and elegantly characterized a simple, randomized
and asynchronous scheme to solve the distributed average problem in a network of sensors. This communication
scheme became popular in the development of distributed algorithms for multi-agent systems because it does not
require network wide synchronization of the interagent interactions as fundamental assumption for its execution.
Among the many results that followed, we mention the work by Ravazzi et al. in (6) which characterized randomized
affine dynamics with several applications to multi-agent systems, social networks and sensor networks and the very
popular survey on gossip algorithms by Dimakis et al. in (7) and references therein. We also mention applications
of gossip algorithms proposed by Riazi et al. to the heterogeneous multi-vehicle routing problem in (8) and to home
healthcare scheduling problems (9).

Our goal in this paper is that of minimizing the network execution time of the set of tasks. The assignment is
performed according to a novel distributed algorithm based on gossip-like asynchronous local state updates between
the nodes. As a result of the proposed local interaction mechanism, the achievement of an optimal task assignment
is not guaranteed. However, we are able to prove almost sure convergence in finite time to a bounded set containing
optimal solutions. We guarantee that the worst case difference between the optimal value of the execution time and
the performance of the proposed algorithm is bounded by a constant which does not depend on the network size.

The quantized consensus algorithm by Kashyap et al. (3) and the discrete consensus algorithm proposed by Franceschelli
et al. (2) are based on a local balancing rule to redistribute tasks or tokens among selected pairs of nodes and a
so called ”swap” rule which updates the state of the nodes by simply swapping their set of tasks or tokens. The
swap rule is necessary to avoid blocking configurations. It “shakes” the network state to redistribute the load and
allows loads composed by discrete tasks to travel in the network, reaching a situation in which a new balancing may
occur. The study of the convergence time of this process depends upon the meeting time of two random walkers
in a graph and has received a significant attention in (10; 11; 12) among others. When considering heterogeneous
execution speed, methods developed for the homogeneous case may fail to converge to the desired convergence set.
The approach in (2), which considers heterogeneous execution speeds, suffers the limitation that each pair of swap
domains, namely connected subgraphs induced by nodes with the same speed, should be connected.

The main contribution of this paper is a novel distributed algorithm which allows to remove the mentioned
limitation of (2) and considers arbitrary topologies modeled by connected undirected graphs with nodes of arbitrary
speed. Furthermore, we characterize the convergence properties of the algorithm in terms of almost sure convergence
to a set of task assignments which well approximates the optimal solution. We prove an absolute performance
guarantee by showing that in the worst case scenario the execution time obtained by the proposed algorithm does
not differ from the optimal one by more than a constant which does not depend on the network size. Thus, the
proposed approach is well suited to address the task assignment problem in large networks. Furthermore, we propose
a distributed self-triggered stop criterion to terminate a Poisson edge selection process while keeping the performance
guarantee.

Finally, we provide numerical simulations to characterize the expected convergence time of the proposed algorithm
in line graphs and random graphs and compare it with the performance of the algorithm in (2). We conclude the
Introduction with a brief overview of the state of the art in this area.

1 In (1) some preliminary results leading to this paper were presented. In this manuscript we provide extended proofs, an
improved characterization of the convergence properties, a distributed mechanism to terminate interagent communications,
and an extended simulation campaign.
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1.1 Literature review

One of the first major contributions to the problem of quantized consensus which inspired several works in the
following years, was proposed in (3). It consists in a gossip-based algorithm to steer a set of quantized state variables
towards a common value. Other significant contributions, still consisting in randomized gossip algorithms, have been
provided in (13). In these papers state variables in the networks are not considered as indivisible tokens or tasks.
More recently, in (4) it was proposed a quantized consensus algorithm that, unlike the previous approaches, applies
to networks described by directed graphs.

The issue of providing a characterization of the convergence time of quantized consensus algorithms is investigated
in depth in (10), (14) and more recently in (11).

A series of contributions in the framework of discrete consensus have been recently proposed. Apart from (2) that
has already been recalled in the first part of this section, we want to mention (15) where a discrete consensus
algorithm in networks affected by execution feasibility constraints has been considered. In (16) tasks of different cost
and type with capacity and feasibility constraints are considered. Furthermore, authors impose a constraint on the
maximum number of tasks executable by individual nodes. Almost sure convergence to a feasible and time-invariant
configuration is proved. However, only preliminary results on the converge time are proposed. In (17) a modification
of the quantized consensus algorithm is proposed to solve a load balancing problem with tasks of identical size and
nodes with limited capacity.

In (18) a discrete consensus algorithm with improved convergence time with respect to quantized consensus algo-
rithms is proposed for Hamiltonian graphs. In (19) the expected convergence time of discrete and quantized consensus
has been improved on arbitrary graphs to O(n)d(G), where n is the number of nodes and d(G) is the diameter of
graph G representing the network topology.

In (20) the distributed task assignment problem in a network of heterogeneous mobile robots with heterogeneous
tasks is investigated. The authors exploit gossip based local optimizations to both assign tasks located in a plane
and compute optimized routes for robots. Finally, Chopra and Egerstedt investigated in (21; 22) heterogeneity in
multi-robot systems as the ability of robots with heterogeneous skill sets to serve spatially and temporally distributed
tasks.

The paper is structured as follows. In Section 2 we introduce the proposed problem statement. In Section 3 we
present the main result of the paper, namely the Heterogeneous Discrete Consensus (HDC) Algorithm. In Section 4
we characterize the convergence properties of local estimation variables exploited in the HDC algorithm. In Section 5
we characterize the convergence properties of Algorithm 1 with respect to the assignment of tasks. In Section 7 we
corroborate the theoretical analysis with numerical simulations. Finally, in Section 8 we discuss concluding remarks.

2 Problem Statement

Consider a network of n nodes whose pattern of interconnections can be described by an undirected connected
graph G = (V, E), where V = {1, . . . , n} is the set of nodes and E ⊆ {V × V} is the set of edges. We consider K
indivisible tasks to be assigned to the nodes with execution cost cj ∈ N+, j = 1, . . . ,K associated with each task.

We define the maximal cost cmax = max
j=1,...,K

cj , and the average load cave =
1

n

∑
j=1,...,K

cj . The tasks assigned to

each node can be specified by n binary vectors yi ∈ {0, 1}K such that yi,j = 1 if the j-th task is assigned to node
i, yi,j = 0 otherwise. The load assigned to node i is cTyi, i.e., it represents the total cost of tasks assigned to it
(here c ∈ NK is a vector whose j-th component is equal to cj). The current task assignment of the network is thus
Y = [y1 y2 . . . yn] ∈ {0, 1}K×n. Each node has an associated execution speed γi ∈ N+ and we define the minimal
speed γmin = mini=1,...,n γi and the average speed γave = 1

n

∑
i=1,...,n γi. Without loss of generality, we consider

integer task costs and integer execution speeds because any real value can be quantized with arbitrary precision with

fixed point notation, for all practical purposes. The execution time of node i is therefore xi = cTyi

γi
. We define the

network execution time as

F (Y ) = max
i∈V

cTyi
γi

, (1)

i.e., it corresponds to the maximum execution time among all nodes.
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Our objective is to minimize the execution time of the network. An optimal assignment Y ∗ can be found as the
solution of the following integer programming problem with binary variables

min F (Y ) = max
i∈V

cTyi
γi

s.t. Y 1n = 1n

yi,j ∈ {0, 1} ∀i ∈ V, j = 1, . . . ,K.

(2)

We denote by 1n a vector of ones with n elements. The constraint Y 1n = 1n imposes that tasks are indivisible and
can be assigned only to one node. For large number of nodes and tasks, the computational complexity of the integer
programming problem (2) can be extremely high. In particular, (2) is a formulation of the makespan minimization
problem on heterogeneous parallel machines. The complexity of finding an exact solution to this problem is known
to be NP-hard (see (23) for reference). Furthermore, it requires a centralized coordinator with full knowledge of the
network state and ability to communicate with all the nodes.

In this manuscript, we aim to develop a distributed algorithm which by exploiting only local and asynchronous
interactions between the nodes is able to achieve a task assignment with a guaranteed distance from the optimum.
In particular we consider a (parametrized) target set

Yε =

{
Y | F (Y ) ≤ F (Y ∗) +

cmax
γmin

+ ε

}
, (3)

where ε is a given arbitrary small constant. As discussed in the following section, ε is a design parameter of the
proposed algorithm. A solution Y ∈ Yε provides an absolute performance guarantee with bounded error which does
not depend on the size of the network, i.e., on the number of nodes. We point out that in the case tasks have unitary
cost and nodes have unitary speed, provided that ε is sufficiently small, the set in eq. (3) contains the same set of
task assignments that correspond to the quantized consensus state in (3).

3 Proposed Algorithm

The proposed algorithm is based on local updates of task assignments among nodes. It also exploits a local estimate
of the of the average load and of the average speed. These local estimates are updated at each communication.

To do this we associate to each node node i at time t a generalized state given by the triple (ĉave,i(t), γ̂ave,i(t),Ki(t)),
where:

• ĉave,i(t) denotes the current estimate at node i of the average load cave in the network;
• γ̂ave,i(t) denotes the current estimate at node i of the average speed γave in the network;
• Ki(t) = {j | yi,j = 1} denotes the set of indices of tasks currently assigned to node i.

The first two components of the state are called local estimation variables while the last one is the task assignment.
As it will appear clear in the following, we considering the two local estimation variables as part of the state to
emphasize that the proposed method is gossip based. Indeed such variables are updated by the same process which
updates the local task assignment.

We consider a gossip model of communication between agents, driven by a random edge selection process, described
in Algorithm 1 (Heterogeneous Discrete Consensus). At each iteration an arbitrary edge (i, j) is selected, and nodes i
and j communicate to update their state. First, the two nodes execute an averaging of the local estimation variables.
In addition they execute the Balancing Rule described in Algorithm 2 to update their task assignment. We make
the following common assumption concerning the network and the edge selection process.

Assumption 3.1 The underlying undirected graph is connected and at each iteration all arcs have a non-null lower
bounded probability of being selected. �

Note that in Algorithms 1 and 2 we denote by the superscript + the updated value of a variable at the generic time
t and omit the absolute time t altogether. Therefore, the current state will be denoted by (ĉave,i, γ̂ave,i,Ki), while
the updated state will be denoted by (ĉ+ave,i, γ̂

+
ave,i,K

+
i ).
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To simplify the presentation of our algorithms, we also denote the execution time of a node i with task assignment

Ki as: xi(Ki) =
1

γi

∑
r∈Ki

cr.

Algorithm 1: Heterogeneous Discrete Consensus (HDC)

Input : Sets Ki(0), for i ∈ V (initial assignment of tasks to nodes).
Output: Sets Ki,∞, for i ∈ V (final assignment of tasks to nodes).
1 - Initialize: For i ∈ V, let

γ̂ave,i(0) = γi and ĉave,i(0) =
∑

r∈Ki(0)

cr.

2 - while NOT stop criterion do
3 - A random edge (i, j) is selected according to a given stochastic selection process.
4 - Update the local estimation variables according to

ĉ+ave,i = 1
2 (ĉave,i + ĉave,j)

ĉ+ave,j = 1
2 (ĉave,i + ĉave,j)

γ̂+ave,i = 1
2 (γ̂ave,i + γ̂ave,j)

γ̂+ave,j = 1
2 (γ̂ave,i + γ̂ave,j)

(4)

and let x̂ave,i = ĉ+ave,i/γ̂
+
ave,i.

5 - Update the task assignment of nodes i and j according to

(K+
i ,K

+
j ) = Balancing rule(Ki,Kj , γi, γj , x̂ave,i)

as described in Algorithm 2.

We now discuss separately the two types of updates executed by Algorithm 1. The stopping condition will be
discussed later.

Update of the local estimation variables. These variables are initialized, respectively, with the node initial load and
with the node speed. The evolution of these two variables, that does not depend on the current task assignments,
follows the well known gossip averaging algorithm whose properties have been investigated in (5). The computed
value x̂ave,i = ĉave,i/γ̂ave,i is the estimate of the average execution time assuming it may be possible to assign to
each node a fraction of total load in the network proportional to its speed (but this may not be possible due to task
discretization).

Update of the task assignments. The task assignments of communicating nodes are updated as described in Algo-
rithm 2. Initially (step 2) a simple heuristic is used to average the load of two nodes incident on the selected edge.
This heuristic is a modification of the very well known algorithm for the 2-machine N job problem by Johnson
et al. in (24) and is completed in a number of steps proportional to the number of tasks contained in node i and
j. Variations of this greedy and widely known heuristic have been investigated in the context of load distribution
between two parallel machines and is a polynomial time approximation of the 2-partitioning problem (25). This rule
computes two updated assignments: K+

i , K+
j . If the new assignments do not yield a smaller local execution time we

revert to the original assignments (step 3). However, in such a case we also check if the maximum local execution
time exceeds the estimated average time by a quantity greater than cmax/γmin + ε/2 (step 4): if this is true we move
one random task from one node to the other one to shake the network configuration and avoid being stuck in local
minima. Here ε is a design parameter that will be discussed in the following section. Note also that we assume the
exact value of cmax and γmin to be known to all nodes: if these parameters are not available, it is possible to estimate
them with max-consensus algorithms such as those developed in (26).

The proposed algorithm has a straightforward embedded stopping criterion for what regards task exchanges among
nodes: when all nodes have a sufficiently accurate estimation x̂ave,i and a local execution time below the estimated
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Algorithm 2: Balancing rule

Input : Ki, Kj , γi, γj , x̂ave,i (current node task assignments, node speeds and estimated average execution
time)

Output: K+
i , K+

j (updated node task assignments)

1 - Initialize: Let K = Ki ∪ Kj , let K+
i := ∅ and K+

j := ∅.
2 - while K 6= ∅ do

let δ := argmaxj∈Kcj ;

if xi(K+
i ) + cδ/γi ≤ xj(K+

j ) + cδ/γj then

let K+
i := K+

i ∪ {δ}, K+
j := K+

j ;

else
let K+

i := K+
i , K+

j := K+
j ∪ {δ}.

(assign task δ so as to minimally increase the maximal execution time of the two nodes) K := K \ {δ}.
3 - if max(xi(K+

i ), xj(K+
j )) ≥ max(xi(Ki), xj(Kj)) then

K+
i := Ki, K+

j := Kj ;
(the heuristic did not find a more balanced assignment and we revert to original one)

4 - if max(xi(Ki), xj(Kj)) > x̂ave,i +
cmax
γmin

+
ε

2
then

Choose at random a task δ ∈ Ki ∪ Kj .
if δ ∈ Ki then
K+
i = Ki \ {δ}, K+

j = Kj ∪ {δ}
else
K+
i = Ki ∪ {δ}, K+

j = Kj \ {δ}
(move one random task from one node to the other one)

return Sets K+
i and K+

j .

1 2 3 4 5

Fig. 1. Graph considered in Example 3.2.

threshold x̂ave,i + cmax

γmin
+ ε

2 , then task exchanges do not occur anymore. In Section 6 we discuss how to add a

distributed self-triggered stop criterion to terminate the edge selection process once a satisfactory task assignment
has been achieved. We point out that the current literature on quantized consensus algorithms does not usually
consider a stop criterion on the edge selection process.

Example 3.2 We now propose a simple example to corroborate the description of Algorithm 1 and illustrate a
limitation of a previously developed algorithm in (2). Let us consider the line network in Figure 3.2 where γ1 = 101,
γ2 = 102, γ3 = 103, γ4 = 104, γ5 = 105. Tasks with cost c1 = c2 = . . . c15 = 10 are assigned such that

K1(0) = {10}, K2(0) = {10, 10}, K3(0) = {10, 10, 10},

K4(0) = {10, 10, 10, 10}, K5(0) = {10, 10, 10, 10, 10}.

It holds cave = 30, cmax = 10, γave = 103, γmin = 101. It can be seen that each node is optimally balanced with
its neighbors, i.e., by solving a local optimization problem involving two nodes at a time such as in the Discrete
Consensus algorithm proposed in (2), it is not possible to improve the maximum execution time. On the other hand,
it can be seen that the assignment is neither optimal nor it belongs to set Yε for an arbitrary small ε because, as
it will be explained in Section 5 (Proposition 5.1), it holds that a lower bound for the objective value at the optimal
solution is F (Y ∗) ≥ cave

γave
, and F (Y ) = 0.476 > cave

γave
+ cmax

γmin
= 0.39. Furthermore, since the nodes have different

execution speed the ”swap” mechanism, popular in quantized consensus algorithms and employed also in (2) can not
be implemented because a swap of tasks among two nodes with different speed which are locally optimally balanced
implies an increment of the maximum execution time among the two nodes.
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We now examine the evolution of Algorithm 1 starting from the above task assignment. We choose ε = 10−5.
Table 3.2 summarizes the most significant steps of the algorithm. More precisely, for increasing values of time
t0 < t1 < t2 . . ., it specifies the selected edge, and for any node i = 1, . . . , 5 it points out: the current task assignment
Ki, the current execution time xi(t), and its current estimate of average load ĉave,i, average execution speed γ̂ave,i
and average execution time x̂i. We can see that at time t0 node 5 holds the maximum execution time x5 = 0.4761
and all estimation variables are initialized with the local values of speed and load, respectively, of each node according
to step 1 of Algorithm 1.

At t1, edge (2, 3) is selected according to step 3 of the algorithm, and estimation variables ĉave,2, ĉave,3 γave,2 γave,3
are averaged and updated according to step 4. The balancing rule is then executed at step 5 following Algorithm 2.
However, since the two nodes are locally optimally balanced, no better local task assignment is found, the if condition
at step 4 is not verified and thus the tasks are not moved.

At time t2 edge (4, 5) is selected, the estimation variables are updated but again no better task assignment is found.

The algorithm continues to iterate until the estimation variables reduce their error, thus at time t11 edge (4, 5) is
randomly selected again and despite the balancing rule can not find a better task assignment, it triggers the ”if”
condition at step 4 of Algorithm 2 which is executed because x5 = 0.4761 > x̂ave,5 + cmax

γmin
+ ε

2 = 0.4749. As a result,

one task is moved from node 5 to node 4 even if this leads to an increment in the maximum execution time that
becomes equal to x4 = 0.4807. This value remains unaltered until time t13 when edge (3, 4) is selected. In particular
at time t13 a task assignment inside set Yε is found. This shows the effectiveness of the proposed algorithm: it allows
to worsen the performance function in order to overcome local minima. Since the initial blocking condition is now
overcome, Algorithm 1 can now eventually further improve the maximum execution time, up to the optimal solution
but, since this is a greedy approach, optimality can not be guaranteed and indeed we see that at time t200, while the
execution time of some nodes has decreased, the maximum execution time remains the same.

4 Convergence Properties of local estimation variables

In this section we discuss the convergence properties of local estimation variables ĉave,i(t) and γ̂ave,i(t) updated
according to Algorithm 1.

Their evolution follows the gossip averaging algorithm in (5). Under Assumption 3.1 it has been proved that they
asymptotically converge to consensus on the average of the initial values, i.e., for i = 1, . . . , n:

lim
t→∞

ĉave,i(t) =
1

n

n∑
i=1

ĉave,i(0) =
1

n

K∑
j=1

cj = cave,

lim
t→∞

γ̂ave,i(t) =
1

n

n∑
i=1

γ̂ave,i(0) =
1

n

n∑
i=1

γi = γave.

It can be shown that the iterated pairwise averages in eq. (4) have the following monotonicity property: if at a given
time t it holds

max
i∈V
|ĉave,i(t)− cave| ≤ ∆

and
max
i∈V
|γ̂ave,i(t)− γave| ≤ ∆,

for some ∆ ∈ R+, then for all t′ ≥ t it holds

max
i∈V
|ĉave,i(t′)− cave| ≤ ∆

and
max
i∈V
|γ̂ave,i(t′)− γave| ≤ ∆.

A simple proof of these facts can be sketched as follows: First, notice that as shown in (5), the average value of
the full set of estimation variables, i.e., cave and γave, is constant for the considered gossip algorithm. Now consider
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the first quantity of interest maxi∈V |ĉave,i(t) − cave|. When an edge is selected and the estimation variables are
updated, the following cases may occur: 1) A node which holds the maximum value of the estimation in the network
is not selected for the update; 2) A node which holds the maximum value of the estimation is selected but it is not
unique; 3) A node which holds the maximum value is selected and it is unique. Cases 1 and 2 result in no change
in the quantity maxi∈V |ĉave,i(t) − cave| because at least one node which holds the maximum value did not update
its estimation. In case 3 it holds that the selected node has to average its estimation with a node with smaller value
and thus the quantity maxi∈V |ĉave,i(t)− cave| decreases. Furthermore, the maximum value in the network can not
be lower than the average, i.e., cave. This proves that the considered quantity is non-increasing.

The same reasoning applies to show the monotonicity of the estimated value of γave.

On the basis of the above results we can state the following monotonicity property for the variable x̂ave,i =
ĉave,i/γ̂ave,i.

Proposition 4.1 If at time t it holds

max
i∈V
|ĉave,i(t)− cave| ≤ ∆ and max

i∈V
|γ̂ave,i(t)− γave| ≤ ∆, (5)

for some ∆ ∈ R+, then for any t′ ≥ t it holds

max
i∈V

∣∣∣∣x̂ave,i(t′)− cave
γave

∣∣∣∣ ≤ ∆
γave + cave
γminγave

. (6)

Proof: Let cerr,i(t) = ĉave,i(t)− cave, γerr,i(t) = γ̂ave,i(t)− γave and xerr,i(t) = x̂ave,i(t)− cave

γave
. It follows that

xerr,i(t) =
cerr,i(t) + cave
γerr,i(t) + γave

− cave
γave

=
cerr,i(t)γave − γerr,i(t)cave

γerr,i(t)γave + γ2ave

By assumption, |cerr,i(t)| ≤ ∆ and |γerr,i(t)| ≤ ∆. Since γerr,i(t) ≥ γmin − γave, then

|xerr,i(t)| ≤ ∆
γave + cave
γminγave

.

�

5 Convergence Properties of Algorithm 1

In this section we characterize the convergence properties of Algorithm 1. Our objective is to prove in Theorem 5.7
that almost surely, i.e., with unitary probability, there exists a finite time after which the task assignment computed
by our method belongs to the target set Yε in eq. (3). Set Yε characterizes the set of assignments which achieve the
proposed performance guarantee, i.e., a maximum execution time in the network which differs from the optimal one
by at most a small constant that does not depend on the size of the network or on its topology. To do so, we will
exploit the results of Section 4. We first compute a lower bound on the optimal execution time (Proposition 5.1) as
function of the average load and execution speed. Then, we show that Algorithm 1 is able to estimate the average
execution time with bounded error in finite time. In particular, we show in Corollary 5.5 that if the error in the
estimation variables is small enough, then a task assignment belonging to the target set Yε is reached in a finite
number of iterations. The invariance of the target Yε, proven by Proposition 5.6, completes the set of results needed
to prove Theorem 5.7.

Now, we provide a lower bound to the optimal value F (Y ∗) of the execution time.

Proposition 5.1 A lower bound on the optimal value of the objective function of Problem (2) is:

cave
γave

≤ F (Y ∗). (7)
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Proof: Consider a relaxed optimization problem where tasks are infinitely divisible so that each node has the

same execution time xopt. Then
∑
j∈Ki

cj = xoptγi for all i ∈ V. Therefore, summing up on all nodes it holds

∑
i∈V

∑
j∈Ki

cj =
∑
i∈V

xoptγi,

thus

xopt =

∑K
j=1 cj∑n
i=1 γi

.

By multiplying and dividing by n we can write equivalently xopt = cave

γave
. This proves the statement being obviously

xopt ≤ F (Y ∗) because of the discrete nature of tasks. �

By Proposition 5.1, it follows that the target set Yε in eq. (3) can rewritten as:

Yε =

{
Y | F (Y ) ≤ cave

γave
+
cmax
γmin

+ ε

}
. (8)

It is obvious that Yε ⊆ Yε′ for ε ≤ ε′.

In the following we first prove a series of results from which it derives that Algorithm 1 almost surely converges in
finite time to set Yε.

The next proposition shows that any improvement of the objective function F (Y ) is lower bounded by a positive
constant.

Proposition 5.2 Given a task assignment Y , let Y ′ be a new task assignment determined by Algorithm 1 in one
iteration. If F (Y ′) < F (Y ), then F (Y ′) ≤ F (Y ) − 1

% , where % is the least common multiplier (lcm) among γi for
i = 1, . . . , n.

Proof: Obviously the set of possible task assignments Y is finite, therefore the set of values taken by F (Y )
is finite as well. It follows that the minimum difference between different values of F (Y ) is lower bounded by a
constant.

To compute this constant, we first observe that %xi = %
γi

cTyi is an integer for all i = 1, . . . , n. Therefore, for any

i, j, if xi > xj , the following inequality holds

%cTyi
γi

− %cT yj
γj

≥ 1,

or equivalently, xj ≤ xi − 1
% .

�

Given a task assignment Y we now introduce a new performance index J(Y ) = (F (Y ), nmax(Y )) consisting of two
terms. The first term F (Y ) is the network execution time, while the second one nmax(Y ) denotes the cardinality of
the set of nodes that have maximal execution time given Y . We impose a lexicographic ordering on the performance
index, i.e., J(Y ′) < J(Y ) if either F (Y ′) < F (Y ) or F (Y ′) = F (Y ) and nmax(Y ′) < nmax(Y ). This lexicographic
ordering is exploited to prove that the maximum execution time is decreasing if a sufficient number of iterations of
Algorithm 1 is executed.

Proposition 5.3 Given a task assignment Y 6∈ Yε there exists a new assignment Y ′ with J(Y ′) < J(Y ) that is
identical to Y except for the transfer of one task from a node i with maximal execution time to another node k.
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Proof: If Y 6∈ Yε then by eq. (8)

max
i∈V

xi >
cave
γave

+
cmax
γmin

+ ε.

This implies that there exists at least one node k such that xk <
cave

γave
. Therefore, if the number of nodes with

maximum execution time is greater than one, we can move one task from one of such nodes and put it in node k
to lower this number by one. If only one node holds the maximum execution time then moving a task from such a
node to node k reduces the maximum execution time, thus proving the statement. �

Note that in Proposition 5.3 the new configuration Y ′ may not be reachable from Y in a single gossip iteration
because the node(s) with maximum load and node k with xk <

cave

γave
might not be connected by an edge. We can

finally state the following results.

Proposition 5.4 Consider at time t a task assignment Y 6∈ Yε and local estimation errors

max
i∈V
|ĉave,i(t)− cave| ≤

ε

2

γaveγmin
γave + cave

,

and
max
i∈V
|γ̂ave,i(t)− γave| ≤

ε

2

γaveγmin
γave + cave

.

Algorithm 1 can always reach an assignment Y ′ with J(Y ′) < J(Y ) in a finite number of iterations α < 2d, where
d is the network diameter.

Proof: We observe that by Proposition 4.1 the conditions on the local estimation errors imply that for all t′ ≥ t
it holds

max
i∈V
|x̂ave,i(t)− cave/γave| ≤ ε/2. (9)

Now, let node i be a node with maximal execution time xi = F (Y ). By Proposition 5.3 there exists in this node a
task δ that if transferred to another node k would reduce the performance index J . Consider now the shortest path
from i to k and let it be i, j, l, . . . , k. We now show that by a suitable edge selection, load δ is transferred to node k
and either for all other nodes along the path the maximum execution time is less than F (Y ) or we reach before an
assignment Y ′ with J(Y ′) < J(Y ).

Assume edge (i, j) is selected. Two cases are possible.
1a) If the Balancing Rule leads to a new assignment Y ′ with maximum local execution time smaller than F (Y ) then
J(Y ′) < J(Y ) and the statement holds.
1b) If no better balancing is reached, by the assumption that Y 6∈ Yε and the condition in eq. (9), it holds

max(xi, xj) = F (Y ) >
cave
γave

+
cmax
γmin

+ ε

≥ x̂ave,i +
cmax
γmin

+
ε

2

hence step 4 in Algorithm 2 will be executed and load δ may be transferred to node j thus reaching an assignment
Y ′ where: i) xi < F (Y ); ii) node j has maximal execution time xj = F (Y ′) ≥ F (Y ); iii) load δ is one step closer to
node k.

Assume edge (j, l) is selected. Three cases are possible.
2a) If the Balancing Rule leads to a new assignment Y ′′ with maximum local execution time smaller that F (Y ) then
J(Y ′′) < J(Y ) and the statement holds.
2b) If no better balancing is possible by the previous argument it is possible to reach a configuration Y ′′ where: i)
xi < F (Y ); ii) node l has maximal execution time xl = F (Y ′′) ≥ F (Y ); iii) load δ is assigned to node l.
2c) If the Balancing Rule leads to a new assignment Y ′′ with maximum local execution time greater than F (Y ),
then by reselecting edge (j, l) since no further balancing is possible we can show again that by transferring a load
from node j to l it is possible to reach a configuration Y ′′ where: i) xj < F (Y ); ii) node l has maximal execution
time xl = F (Y ′′) ≥ F (Y ); iii) load δ is assigned to node l.

By repeating the argument we can be sure to reach a new assignment with an improved performance index. The
bound on the number of iterations follows from the necessity in case 2c) to select twice the same edge. �
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Based on Proposition 5.3 and Proposition 5.2, the next result trivially follows.

Corollary 5.5 The task assignment set Yε is always reachable by executing a finite number of iterations of Algo-
rithm 1. �

Finally we prove that set Yε is invariant if the local estimate variables are sufficiently precise.

Proposition 5.6 Consider at time t a task assignment Y ∈ Yε and local estimation errors

max
i∈V
|ĉave,i(t)− cave| ≤

ε

2

γaveγmin
γave + cave

,

and

max
i∈V
|γ̂ave,i(t)− γave| ≤

ε

2

γaveγmin
γave + cave

.

Any new assignment Y ′ determined by Algorithm 1 is such that Y ′ ∈ Yε.

Proof: We first observe that due to Proposition 4.1 it holds

max
i∈V

∣∣∣∣x̂ave,i(t′)− cave
γave

∣∣∣∣ ≤ ε

2
.

Thus, step 4 of the Balancing Rule is never executed. In fact for any two nodes i and j it holds:

max(xi, xj) = F (Y ) ≤ cave
γave

+
cmax
γmin

+ ε ≤ x̂ave,i +
cmax
γmin

+
ε

2

�

We can finally characterize the convergence property of Algorithm 1 as follows.

Theorem 5.7 The task assignment Y updated iteratively according to Algorithm 1 with a given ε > 0 converges
almost surely in finite time to set Yε defined in (3), i.e.,

Pr (∃τ : Y (τ ′) ∈ Yε), ∀τ ′ ≥ τ) = 1.

Proof: The claim follows from the following three facts.

1) Given the convergence property of the local estimated variables discussed in Section 4, starting from any task

configuration Y at time t, there exists a finite time t′ ≥ t such that maxi∈V

∣∣∣x̂ave,i(t′)− cave

γave

∣∣∣ ≤ ε
2 .

2) Starting from any task configuration Y , set Yε is reachable in a finite number of iterations by Corollary 5.5.

3) The target set Yε is invariant by Proposition 5.6. �

6 Edge selection process and self-triggered stop criterion

We point out that once set Yε is reached, task exchanges among nodes terminate. However the nodes are not aware
of this and continue to communicate to attempt local improvements. In this section we provide a distributed edge
selection process with an embedded self-triggered stop criterion which halts any inter-agent communication once the
convergence set has been reached.

Next, we recall a definition of edge selection process which can be found in (27).
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Definition 6.1 (Edge Selection Process) An edge selection process e : R+×E → {0, 1} maps each time instant
t ∈ R+ and each edge (i, j) ∈ E to a binary value: if e(t, (i, j)) = 1 then edge (i, j) is active at time t, not active
otherwise.

We consider the case, as in (5), that the probability of selection of each edge follows an exponential distribution
of parameter λ = 1 and thus the number of selections of the same edge in a given time interval is modeled by an
independent Poisson process. The expected rate of edge triggering is therefore equal to λ for each edge. This implies
that given an arbitrary time t, the probability of choosing a particular edge in the network among the others has
uniform distribution.

Such clocks can be easily implemented by associating a uniform edge triggering probability at each time measurement.

We now recall a result proposed in (5) regarding the convergence time of gossip based distributed averaging, which we
exploit in Algorithm 1 to estimate the parameters cave and γave. Such result holds under the above assumption on the
edge selection process. Let γ̂ave(t) ∈ Rn and ĉave(t) ∈ Rn be the vectors whose i-th elements are respectively γ̂ave,i(t)
and ĉave,i(t), and 1n be the n-th element vector with unitary entries. In (5) the authors defined the ξ-convergence
time, where ξ ∈ (0, 1) as:

Tave(ξ) = sup
γ̂ave(0)

inf

{
t : Pr

(
‖γ̂ave(t)− γave1n‖2

‖γ̂ave(0)‖2
≥ ξ
)
≤ ξ
}
. (10)

In simple words, Tave(ξ) is the smallest time it takes for γ̂ave(t) to get within ξ of γave1n with high probability,
regardless of the initial value of γ̂ave(0) (5). The same holds for vector ĉave(t). Let matrix W ∈ Rn×n be defined as

W = I − 1

2n
D +

P + PT

2n
,

where P ∈ Rn×n is a matrix whose Pij element represents the probability of selecting edge (i, j) at time t by the
gossip algorithm and D is a diagonal matrix whose elements are Di =

∑
j=1,...,n [Pij + Pji]. Finally, let λ2(W ) denote

the second largest eigenvalue of matrix W . In (5), it is proven that the convergence time in eq. (10) as function of
parameter ξ and W is upper bounded by

Tave(ξ) ≤
3log

(
ξ−1
)

log (λ2(W )−1)
, (11)

Thus, for a given graph G where edges are selected with uniform probability with corresponding matrix W , and the
probability of selection of each edge follows an exponential distribution of parameter λ = 1, Tave(ξ) represents the

time it takes to achieve a relative error on the estimation variables
‖γ̂ave(t)−γave1n‖2
‖γ̂ave(0)‖2

< ξ with probability greater

than 1− ξ. The same holds with ĉave(t).

We are now ready to propose an edge selection process with an embedded self-triggered stop criterion for Algorithm 1.
We assume that each node has a clock which ticks as a Poisson process with rate λ = 1. The basic idea behind the
proposed stop criterion consists in exploiting an upper bound on the convergence time of the distributed estimation
process as performance certificate for the quality of the local estimation. Then, the proposed mechanism stops the
communications requests to neighbors of a given node i if node i is locally balanced with its neighbors and if its
own execution time is above a threshold computed by exploiting the upper bound to Tave(ξ). If a neighbor of node i
requests a state update to i, and this request leads to a state update, then node i resumes its communication requests
with the neighbors until the stop condition is triggered again. In Theorem 6.3 it is proven that the edge selections
in the whole network stop with a given probability which can be made arbitrarily high after a finite number of
iterations.

Definition 6.2 (Edge selection process with embedded stop criterion) Whenever the clock of node i ticks
at time t, it executes the next operations:

(1) If t ≤ Tave(ξ) or xi(t) > x̂ave,i(t) + cmax

γmin
+ ε

2 then choose uniformly at random a node from the set of neighbors

Ni and execute an iteration of Algorithm 1;

12



(2) Else stop the clock until a neighbor requests a state update;
(3) Endif.

�

We point out that an upper bound on Tave(ξ) used in the stop criterion can be computed by eq.(11) ((5)).

The next theorem characterizes the convergence properties of Algorithm 1 in the case in which the edge selection
process and stop criterion in Definition 6.2 is executed.

Theorem 6.3 Consider a network which executes Algorithm 1. Let

ξ < min

{
1

cmax
,

1

γmax

}
ε

2
√
n

γminγave
γave + cave

.

If edges are selected according to the strategy in Definition 6.2, then with probability 1− ξ there exists a finite time
such that no edges are selected anymore, interagent communications come to a halt and Y ∈ Yε.

Proof: For t ∈ (0, Tave(ξ)] the edge selection process in Definition 6.2 is such that Assumption 3.1 holds and
thus the convergence result of Theorem 5.7 holds.

Now, if t > Tave(ξ), with probability 1− ξ it holds that the relative errors on the estimation variables satisfy

‖γ̂ave(t)− γave1n‖2 ≤ ‖γ̂ave(0)‖2 ξ,

and
‖ĉave(t)− cave1n‖2 ≤ ‖ĉave(0)‖2 ξ.

Since ‖γ̂ave(0)‖2 ≤
√
nγmax and

max
i∈V
|γ̂ave,i(t)− γave| ≤ ‖γ̂ave(t)− γave1n‖2 ,

it holds
max
i∈V
|γ̂ave,i(t)− γave| ≤

√
nγmaxξ,

and analogously
max
i∈V
|ĉave,i(t)− cave| ≤

√
ncmaxξ.

Therefore, if √
nγmaxξ ≤

ε

2

γminγave
γave + cave

,

and √
ncmaxξ ≤

ε

2

γminγave
γave + cave

,

or equivalently

ξ < min

{
1

cmax
,

1

γmax

}
ε

2
√
n

γminγave
γave + cave

,

then for all t ≥ Tave(ξ) by Proposition 4.1

max
i∈V

∣∣∣∣x̂ave,i(t)− cave
γave

∣∣∣∣ ≤ ε

2
. (12)

Therefore, if

ξ < min

{
1

cmax
,

1

γmax

}
ε

2
√
n

γminγave
γave + cave

,

then with probability greater than 1− ξ, for all t ≥ Tave(ξ) the condition required by Propositions 5.4 holds.
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Thus, whenever the internal clock of an agent triggers the selection of an edge, according to Definition 6.2, if
t > Tave(ξ) and xi ≤ x̂ave,i + cmax

γmin
+ ε

2 then no edge is selected thus preventing any interagent communication.

As long as there exist a node with load xi > x̂ave,i + cmax

γmin
+ ε

2 , thus Y 6∈ Yε, edges incident on such node continue

to be selected with strictly positive probability.

Furthermore, we can repeat the reasoning in the proofs of Proposition 5.3, 5.4, 5.6 since the edge selection process in
Definition 6.2 does not violate the assumption that the probability of selecting edges incident on the nodes holding
the maximum value in the network is strictly positive.

Thus, in a finite time τ almost surely Y (τ) ∈ Yε. Then, for all t ≥ τ , Y ∈ Yε, and step 1 Definition 6.2 is never
executed. Therefore, no edges are selected anymore effectively halting the execution of Algorithm 1 and thus proving
the statement. �

Remark 6.4 If we wish to arbitrarily increase the probability that after a time at most equal to Tave(ξ) the inequality
(12) holds, we can choose T̄ave(ξ, k) = kTave(ξ), by keeping the bound on the desired error constant the probability

increases to (1− ξ)(1 +

k∑
s=1

ξs), which tends to 1 as k →∞.

7 Numerical simulations

In this section we corroborate the theoretical characterization of the convergence properties of Algorithm 1 with
numerical simulations. First, we compare the proposed algorithm with the algorithm proposed in (2). We considered
a network represented by a line graph composed by 30 nodes, each with an execution speed chosen uniformly at
random in the interval [1, 3]. We considered a set of K = 180 tasks to be distributed among the nodes, each with an
integer cost chosen uniformly at random in the interval [1, 10].

We simulated the Discrete Consensus Algorithm (DCA) in (2) and the Heterogeneous Discrete Consensus (HDC)
algorithm proposed in this paper with the same set of random initial conditions and with the same sequence of
random edge selections. In these simulations we chose parameter ε = 10−3.

In Figure 2 it is shown the evolution of the maximum execution time during the execution of the DCA. It can be
seen that the execution time is non-increasing but since the network does not satisfy the condition of fully connected
”swap domains” ((2)) it can not be guaranteed that the final task assignment is close to the optimal solution. On
the contrary, in the chosen example the worst case performance may differ from the optimal value of the execution
time by a quantity proportional to the number of nodes.

In Figure 3 it is shown the evolution of the maximum execution time during the execution of the HDC algorithm. It
can be seen that the execution time does not monotonically decrease because to overcome blocking configurations
of tasks some of them are moved at random. Once the estimation error is sufficiently small in each node then after
a sufficiently long time a task assignment in set Yε is reached and the local interactions stop.

In Figure 4 we show a direct comparison between the simulations of the evolution of the maximum execution time
during the execution of the DCA and HDC algorithm. It can be seen that Algorithm 1 outperforms the algorithm
proposed in (2).

In Figure 5 we show the evolution of variables x̂ave,i, which evolve according to the gossip algorithm presented in (5).
It can be noticed that despite Algorithm 1 involving quantized and randomized dynamics, its simulated convergence
rate does not appear to be significantly different from the simple averaging gossip algorithm in (5).

Finally, to corroborate our theoretical results in Section 5 we propose a set of numerical simulations to evaluate
the expected convergence time of the proposed algorithm. In particular, in Figure 6 it is shown how the average
convergence time of 10 simulations varies with respect to the number of nodes in a semi-logarithmic chart in line
graphs (continuous line) and random graphs (dashed line). To allow fair comparisons we kept the average number
of tasks constant and thus selected at each simulation a total number of tasks equal to K = 6n. It can be seen that
the convergence time grows polynomially with respect to the number of nodes. Random graphs are generated with
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Fig. 2. Evolution of the network maximum execution time according to the Discrete Consensus Algorithm in (2) in a line
network of 30 nodes.

0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

Number of iterations

M
ax

im
um

 e
xe

cu
tio

n 
tim

e

Fig. 3. Evolution of the network maximum execution time according to Algorithm 1 in a line network of 30 nodes. The dashed
line represents F (Y ) = cave

γave
+ cmax

γmin
while the continuous thin line represents the lower bound to the optimal execution time.

a probability of edge existence among pairs of nodes equal to p = log(n)
n . This probability of edge existence is chosen

to generate graphs that with high probability have similar diameter. Comparing the simulations in Figure 6 it can
be seen that the convergence time in random graphs is much smaller than in line graphs. A theoretical study of the
convergence time will be carried out in future work.
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Fig. 4. Comparison of the evolution of the network maximum execution time according to Algorithm 1 (thick black line) and the
Discrete Consensus Algorithm in (2) (blue line) in a line network of 30 nodes. The dashed line represents F (Y ) = cave

γave
+ cmax
γmin

while the continuous thin line represents the lower bound to the optimal execution time.
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Fig. 5. Evolution of the estimated lower bound on the optimal execution time F (Y ∗) computed as
ĉave,i

γ̂ave,i
by each node.

8 Conclusions

In this paper we proposed a novel algorithm, the Heterogeneous Discrete Consensus (HDC) algorithm, which opti-
mizes with guaranteed performance the execution time of a set of tasks by a network of nodes with heterogeneous
execution speed exploiting only asynchronous and pairwise local state updates, i.e., gossip-based. The proposed al-
gorithm extends the state of the art in that it guarantees the achievement of an assignment whose objective function
value differs from the optimal one only by a constant function of the maximum task cost and minimum task execu-
tion speed. Therefore, the proposed distributed algorithm scales well with network size and is suitable to solve task
assignment problems in large networks. We characterized the convergence properties of the algorithm and proved an
absolute performance guarantee on the final computed task assignment. We proposed a distributed edge selection
process with an embedded stop criterion which allows to halt also interagent communications once a task assignment

16



5 10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

10
5

Number of nodes

E
xp

ec
te

d 
co

nv
er

ge
nc

e 
tim

e

Fig. 6. Expected convergence time for line graphs (continuous line) and random graphs (dashed line) with increasing numbers
of nodes.

with desired performance has been achieved. We discussed numerical simulations to further validate the proposed
algorithm.

Future work will involve a theoretical characterization of the convergence time of the proposed algorithm.
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Table 1
Evolution of the task assignment in Example 3.2

Selected Node 1 Node 2 Node 3 Node 4 Node 5

edge γ1 = 101 γ2 = 102 γ3 = 103 γ4 = 104 γ5 = 105

t0 K1 = {10} K2 = {10, 10} K3 = {10, 10, 10} K4 = {10, 10, K5 = {10, 10,

10, 10} 10, 10, 10}

x1 = 0.0990 x2 = 0.1960 x3 = 0.2912 x4 = 0.3846 x5 = 0.4761

ĉave,1 = 10 ĉave,2 = 20 ĉave,3 = 30 ĉave,4 = 40 ĉave,5 = 50

γ̂ave,1 = 101 γ̂ave,2 = 102 γ̂ave,3 = 103 γ̂ave,4 = 104 γ̂ave,5 = 105

x̂ave,1 = 0.0099 x̂ave,2 = 0.0196 x̂ave,3 = 0.0291 x̂ave,4 = 0.0385 x̂ave,5 = 0.0476

t1 K1 = {10} K2 = {10, 10} K3 = {10, 10, 10} K4 = {10, 10, K5 = {10, 10,

(2, 3) 10, 10} 10, 10, 10}

x1 = 0.0990 x2 = 0.1960 x3 = 0.2912 x4 = 0.3846 x5 = 0.4761

ĉave,1 = 10 ĉave,2 = 25 ĉave,3 = 35 ĉave,4 = 40 ĉave,5 = 50

γ̂ave,1 = 101 γ̂ave,2 = 102.5 γ̂ave,3 = 102.5 γ̂ave,4 = 104 γ̂ave,5 = 105

x̂ave,1 = 0.0099 x̂ave,2 = 0.0244 x̂ave,3 = 0.0244 x̂ave,4 = 0.0385 x̂ave,5 = 0.0476

t2 K1 = {10} K2 = {10, 10} K3 = {10, 10, 10} K4 = {10, 10, K5 = {10, 10,

(4, 5) 10, 10} 10, 10, 10}

x1 = 0.0990 x2 = 0.1960 x3 = 0.2912 x4 = 0.3846 x5 = 0.4761

ĉave,1 = 10 ĉave,2 = 25 ĉave,3 = 35 ĉave,4 = 45 ĉave,5 = 45

γ̂ave,1 = 101 γ̂ave,2 = 102.5 γ̂ave,3 = 102.5 γ̂ave,4 = 104.5 γ̂ave,5 = 104.5

x̂ave,1 = 0.0099 x̂ave,2 = 0.0244 x̂ave,3 = 0.0244 x̂ave,4 = 0.0431 x̂ave,5 = 0.0431
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t10 K1 = {10} K2 = {10, 10} K3 = {10, 10, 10} K4 = {10, 10, K5 = {10, 10,

(4, 5) 10, 10} 10, 10, 10}

x1 = 0.0990 x2 = 0.196 x3 = 0.2912 x4 = 0.3846 x5 = 0.4761

ĉave,1 = 17.500 ĉave,2 = 21.250 ĉave,3 = 33.125 ĉave,4 = 39.063 ĉave,5 = 39.063

γ̂ave,1 = 101.750 γ̂ave,2 = 102.120 γ̂ave,3 = 103.312 γ̂ave,4 = 103.906 γ̂ave,5 = 103.906

x̂ave,1 = 0.0172 x̂ave,2 = 0.0208 x̂ave,3 = 0.0321 x̂ave,4 = 0.0376 x̂ave,5 = 0.0376

t11 K1 = {10} K2 = {10, 10} K3 = {10, 10, K4 = {10, 10, K5 = {10, 10,

(4, 5) 10} 10, 10, 10} 10, 10}

x1 = 0.099 x2 = 0.196 x3 = 0.2912 x4 = 0.4807 x5 = 0.3809

ĉave,1 = 17.500 ĉave,2 = 21.250 ĉave,3 = 33.125 ĉave,4 = 39.063 ĉave,5 = 39.063

γ̂ave,1 = 101.750 γ̂ave,2 = 102.125 γ̂ave,3 = 103.312 γ̂ave,4 = 103.906 γ̂ave,5 = 103.906

x̂ave,1 = 0.0172 x̂ave,2 = 0.0208 x̂ave,3 = 0.0321 x̂ave,4 = 0.0376 x̂ave,5 = 0.0376

t12 K1 = {10} K2 = {10, 10} K3 = {10, 10, K4 = {10, 10, K5 = {10, 10,

(1, 2) 10} 10, 10, 10} 10, 10}

x1 = 0.099 x2 = 0.1960 x3 = 0.2912 x4 = 0.4807 x5 = 0.3809

ĉave,1 = 19.375 ĉave,2 = 19.375 ĉave,3 = 33.125 ĉave,4 = 39.063 ĉave,5 = 39.063

γ̂ave,1 = 101.937 γ̂ave,2 = 101.937 γ̂ave,3 = 103.312 γ̂ave,4 = 103.906 γ̂ave,5 = 103.906

x̂ave,1 = 0.0190 x̂ave,2 = 0.0190 x̂ave,3 = 0.0321 x̂ave,4 = 0.0376 x̂ave,5 = 0.0376

t13 K1 = {10} K2 = {10, 10} K3 = {10, 10, K4 = {10, 10, K5 = {10, 10,

(3, 4) 10, 10} 10, 10} 10, 10}

x1 = 0.0990 x2 = 0.1960 x3 = 0.3883 x4 = 0.3846 x5 = 0.3809

ĉave,1 = 19.375 ĉave,2 = 19.375 ĉave,3 = 36.094 ĉave,4 = 36.094 ĉave,5 = 39.063

γ̂ave,1 = 101.937 γ̂ave,2 = 101.937 γ̂ave,3 = 103.609 γ̂ave,4 = 103.609 γ̂ave,5 = 103.906

x̂ave,1 = 0.0190 x̂ave,2 = 0.0190 x̂ave,3 = 0.0348 x̂ave,4 = 0.0348 x̂ave,5 = 0.0376
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t200 K1 = {10, 10} K2 = {10, 10} K3 = {10, 10, K4 = {10, 10, K5 = {10, 10,

(3, 4) 10} 10, 10} 10, 10}

x1 = 0.1980 x2 = 0.1960 x3 = 0.2913 x4 = 0.3846 x5 = 0.3809

ĉave,1 = 30 ĉave,2 = 30 ĉave,3 = 30 ĉave,4 = 30 ĉave,5 = 30

γ̂ave,1 = 103 γ̂ave,2 = 103 γ̂ave,3 = 103 γ̂ave,4 = 103 γ̂ave,5 = 103

x̂ave,1 = 0.2913 x̂ave,2 = 0.2913 x̂ave,3 = 0.2913 x̂ave,4 = 0.2913 x̂ave,5 = 0.2913
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