
Decentralized Observability of Discrete Event Systems

with Synchronizations ?

Alessandro Giua a,b, Cristian Mahulea c, Carla Seatzu b

aAix-Marseille University, CNRS, ENSAM, University of Toulon, LSIS UMR 7296, Marseille 13397, France

bDepartment of Electrical and Electronic Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy

cAragón Institute of Engineering Research (I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain

Abstract

This paper deals with the problem of decentralized observability of discrete event systems. We consider a set of sites each
capable of observing a subset of the total event set. When a synchronization occurs, each site transmits its own observation to a
coordinator that decides if the word observed belongs to a reference language K or not. Two different properties are studied:
uniform q−observability and q−sync observability. It is proved that both properties are decidable for regular languages.
Finally, under the assumption that languages K and L are regular, and all the events are observable by at least one site, we
propose a procedure to determine the instants at which synchronization should occur to detect the occurrence of any word
not in K, as soon as it occurs. The advantage of the proposed approach is that most of the burdensome computations could
be moved off-line.

Key words: Discrete Event Systems, Decentralized Observability, Formal Languages

Published as:

A. Giua, C. Mahulea, C. Seatzu, ”Decentralized Observability of Discrete Event Systems with Synchronizations,”
Automatica, Vol. 85, pp. 468–477, 2017. DOI: 10.1016/j.automatica.2017.08.009.

? This work has been partially supported by the Ministry of Economy and Competitiveness of Spain and FEDER under
Grant DPI2014-57252-R.
The authors want to thank Maria Paola Cabasino, co-author of the conference paper on which is based this manuscript, for
all her help during the initial version.

Email addresses: alessandro.giua@univ-amu.fr, giua@diee.unica.it (Alessandro Giua), cmahulea@unizar.es
(Cristian Mahulea), seatzu@diee.unica.it (Carla Seatzu).

1 Introduction

Local observability is an important property of discrete event systems defined by Tripakis in [1]. The idea is the
following: n local sites observe, through their own projection masks Pi (with i = 1, . . . , n), a word w of symbols that
is known to belong to a language L. A language K ⊂ L is locally observable if, assuming all local sites send to a
coordinator all observed words Pi(w), the coordinator can decide for any w if the word belongs to K or to L \K.
Note that this property was shown in [1] to be undecidable even when languages L and K are regular: this is due to
the fact that the length of the observed words can be arbitrarily long and the information they contain cannot be
compacted in a finite number of states. Moreover, for prefix-closed languages and more than 3 sites the problem is
also undecidable. On the contrary, assuming the observed words have bounded length q, one can define the property
of q-observability that is decidable for arbitrary languages, since it must only be checked over a finite number of
words. This property is closely related to local diagnosability as defined by Sampath et al. [2]. In fact, language K
in this setting represents the set of all fault-free evolutions, while the larger set L also includes the faulty ones.

In this paper, which is an extended version of [3], the considered problem is the following. Assume w describes
the event driven evolution of a system. The coordinator can at any moment send a request to all local sites to
get the locally observed words since the previous request: such a mechanism is called synchronization. After each
synchronization (which in general is costly) a coordinator should be able to decide if, on the basis of the information
received so far from the local sites, the word w generated belongs to the reference language K. We assume that
the maximal number of events that can be generated by the system between two consecutive synchronizations is
bounded. The coordinator should request as few synchronizations as needed to solve the observability problem.
Also the distance between two consecutive synchronizations, expressed in terms of the number of events generated
between them, may opportunistically vary with the word generated so far.

In this setting, although the basic notion of local observability given by Tripakis is still fundamental, two major
extensions are needed. In fact the observability property defined in [1] makes two rather restrictive assumptions.

• The first assumption is that the observability property is defined only with respect to words in L. On the contrary,
in our setting synchronizations occur repeatedly. Thus if a synchronization occurs after a word w has been generated
we are interested in the observability of the residual language w−1K, i.e., the set of words that can be generated after
w, with respect to the residual language w−1L. Correspondingly, we introduce the notion of uniform observability.
• The second assumption in [1] is that when the observation starts, the word generated so far (that as discussed
in the previous paragraph is always the empty word) is perfectly known. On the contrary, in our setting when a
synchronization occurs the coordinator should be able to determine if the generated word belongs to the reference
language K or not, but may not be able to unambiguously estimate it. Thus when next observation starts the word
generated so far is only known to belong to a given set.

Combining the two extensions above, we introduce the notion of q-sync observability.

We point out a limitation of our approach: we assume that the coordinator at any time instant knows how many
events have occurred so far, although it cannot directly observe which events have occurred. This assumption does
not fit in a general asynchronous setting, where events may occur at arbitrary time instants. On the contrary, it
makes sense in a synchronous setting where events occur with a fixed timing. Furthermore, we point out that our
results can also be applied in those asynchronous cases in which any two consecutive events are spaced by a fixed
known time interval. In such a case the coordinator knows an upper bound on the number of events that have
occurred since last synchronization and can use this bound to determine when next synchronization should occur.

Literature review. Observability is a fundamental property that has received a lot of attention during the last
decades. Several contributions have been presented in the framework of automata since late eighties and nineties
[4–7]. Caines et al. [4] showed how it is possible to use the information contained in the past sequence of observations
(given as a sequence of observation states and control inputs) to compute the set of consistent states, while in [5] the
observer output is used to steer the state of the plant to a desired terminal state. A similar approach was used by
Kumar et al. [7] when defining observer based dynamic controllers in the framework of supervisory predicate control
problems.

Özveren and Willsky [6] proposed an approach for building observers that allows one to reconstruct the state of finite
automata after a word of bounded length has been observed, showing that an observer may have an exponential
number of states.

2

A very general approach for observability with communication has been presented by Barret and Lafortune in [8]
in the context of supervisory control, and several techniques for designing a possibly optimal communication policy
have also been discussed therein. By optimal we mean that the local sites communicate as late as possible, only
when strictly necessary to prevent the undesirable behavior. Our work is by large a special case of the architecture in
[8] because we allow communications only between the coordinator and the local observers — and not among local
observers — and we do not consider a control problem but simply an observation one. There are, however, a few
differences in our approach with respect to [8] that motivate the need for additional investigation. First, we frame
our results in the context of languages, rather than automata: this means that some of our definitions and results
apply to possibly non regular languages. Secondly, while in [8] communications are decided by the local observers
and are triggered by the observation of an event, in our case the communications are triggered by the coordinator.

Preliminary results of this paper have been presented in [3]. The actual paper has been substantially improved
by adding new theoretical results and new examples in order to clarify the theoretical results while the structure
has been changed in order to improve the readability. Moreover, we are introducing a new notion called uniform
observability that permits us to establish new connections between our work and the work of Tripakis[1].

Other interesting contributions related to the problem considered in this paper have been recently published. Fabre
and Benveniste in [9] consider a distributed/modular system with several modules, each associated with a local
observer/supervisor that only has access to the local observations and the model of the local module. Giua and
Seatzu in [10] propose a procedure that produces an estimation of the state, while the special structure of Petri nets
allows one to determine, using linear algebraic tools, if a given marking is consistent with the observed behavior
without the explicit enumeration of the (possibly infinite) consistent set. Petri Nets with unobservable transitions,
i.e., transitions labeled with the empty word, were studied in [11]. Here the notion of basis marking has been
introduced. The idea is that under very general conditions, namely the acyclicity of the unobservable subnet, it is
possible to characterize the set of markings consistent with an observation in terms of sequences of minimal length.
The markings reached by these sequences are called basis markings and all other markings consistent with the
observation can be obtained from the knowledge of this smaller set. Li and Hadjicostis in [12] consider the problem
of state estimation in a Petri net framework assuming multiple observation sites with a partial order model of time.
Finally, Hadjicostis and Seatzu in [13] focus on the problem of decentralized state estimation where two or more
observation sites send information to a coordinator who aims to determine the set of possible current states of a
given discrete event system modeled as a nondeterministic finite automaton.

Finally the approaches we present in this paper may also be useful to address other related problems in the area
of discrete event systems, including (decentralized) diagnosis [14,15], prognosis [16,17], and recovery, distributed
supervisory control [18] and minimal sensor activation for communicating observers [19]. Summarizing, the proposed
results may be useful in all the applications where the state observation is done in a decentralized way, but it is
important to minimize the cost and the energy consumption resulting from synchronization. A typical example in
this context are sensor networks. Analogously, it may be important to minimize synchronizations in any application
where security and privacy requirements are pressing, and when intrusions may suddenly occur.

Structure of the paper. The paper is structured as follows. In Section 2 we introduce basic notations on finite
state automata and formal languages. In Section 3 we provide some language observability definitions and properties
and discuss relationships among them. Section 4 focusses on uniform q−observability and provides specific results
in the case of regular languages. A new property called q−sync observability is introduced and studied in Section 5.
Again, special results are proved in the case of regular languages. The problem of determining the instants at which
synchronize the observations from the different sites, so that a word not belonging to the reference language is
identified as soon as occurred, is studied in Section 6. Conclusions are finally drawn in Section 7 where our future
lines of research in this framework are pointed out.

2 Basic notations

Let Σ be a finite alphabet : Σ∗ denotes the set of all finite words or words over Σ, i.e., its Kleene star, including the
empty word ε. A language on Σ is a set of words L ⊆ Σ∗.

The concatenation of two words u and v is the word w = uv: in this case u is called a prefix of w. The set Pref(L)
contains all prefixes of words in L.

3

Given a word w ∈ Σ∗, and an alphabet Σi ⊆ Σ, we denote as Pi(w) the projection of w over Σi, that can be
recursively defined as follows:

Pi(w) =

ε if w = ε,

Pi(u) if w = ue, e 6∈ Σi,

Pi(u)e if w = ue, e ∈ Σi.

Given a word t ∈ Σ∗i , where Σi ⊆ Σ, we denote as P−1i (t) the inverse projection of t as: P−1i (t) = {w ∈ Σ∗ | Pi(w) = t}.
Projections and their inverses are extended to languages by applying them to all the words in the language.

A deterministic finite automaton (DFA) is a 5-tuple G = (X,Σ, δ, x0, Xm) where X is the finite set of states, Σ is
the finite set of events, a partial function δ : X × Σ→ X is the transition function, x0 ∈ X is the initial state, and
Xm ⊆ X is the set of marked states. The languages generated and accepted by G, denoted by L(G) and Lm(G),
respectively, are defined as L(G) = {w ∈ Σ∗|δ∗(x0, w) is defined} and Lm(G) = {w ∈ Σ∗|δ∗(x0, w) ∈ Xm}, where
δ∗ : X × Σ∗ → X is the reflexive and transitive closure of the transition function.

Given a language L and a word w ∈ Σ∗, the residual of L with respect to (wrt) w is the language w−1L = {z | wz ∈
L}. The language L is regular iff the set of its residuals as w ranges over Σ∗ is finite, i.e., iff the set {w−1L | w ∈ Σ∗}
is finite. The cardinality of the set {w−1L | w ∈ Σ∗} is called the index of L and, in the case of a regular language
L is equal to the number of states of the minimal automaton accepting L. In the paper we often represent a regular
language by the regular expression that describes it.

3 Language observability

Let us consider two languages K and L defined over an alphabet Σ, such that K ⊂ L ⊆ Σ∗, and a set of n sub-
alphabets Σi ⊆ Σ, i = 1, . . . n. The n sub-alphabets Σi’s are associated with n sites Si, i = 1, . . . , n. In particular,
Σi includes all the events that can be observed by Si.

The following definition of decentralized observability has been given by Tripakis in [1] for regular languages. We
consider here an extension to general languages.

Definition 1 Let us consider two languages L and K ⊂ L. The language K is jointly observable wrt L and
{Σi | i = 1, . . . , n}, if there exists a function f : Σ∗1 × . . .× Σ∗n → {0, 1}, such that ∀w ∈ L

w ∈ K ⇔ f(P1(w), . . . , Pn(w)) = 1. (1)

Note that if ε ∈ K and K is jointly observable wrt L and {Σi | i = 1, . . . , n}, then there exists no word w ∈ L \K
whose projection over all Σi’s is equal to the empty word ε.

It is proved in [1] that even for regular languages, checking the above property requires unbounded memory, and
hence it is undecidable because the word w may have arbitrary length. In this paper this definition will be revised
in three ways:

• by assuming bounded observation: this leads to the definition of q-observability that assumes that the length of
the word w in Def. 1 is upper bounded by a finite number q (see Def. 2);

• by assuming that before the observation, a word in K has been generated; this leads to the definition of uniform
observability (see Def. 3);

• by assuming both bounded observations and repeated synchronizations; this leads to the definition of uniform
q-observability (see Def. 6).

Considering words of finite length q, Def. 1 can be rewritten as follows.

Definition 2 Let us consider two languages L and K ⊂ L. The language K is q-observable wrt L and {Σi | i =
1, . . . , n}, if there exists a function f : Σ∗1 × . . .× Σ∗n → {0, 1}, such that ∀w ∈ L with |w| ≤ q

w ∈ K ⇔ f(P1(w), . . . , Pn(w)) = 1. (2)

4

It is immediate to observe that, given two languages K and L, and an arbitrary value of q ∈ N, if K is jointly
observable wrt L and {Σi | i = 1, . . . , n} (Def. 1), then K is also q-observable wrt L and {Σi | i = 1, . . . , n}
(Def. 2). Obviously, the other implication is not true in general, namely, K could be q-observable for some given q
but not jointly observable.

Let us modify Def. 1 to keep into account the possibility that the observation starts after an arbitrary word in K
has occurred.

Definition 3 Let us consider two languages L and K ⊂ L. The language K is uniformly observable wrt L and
{Σi | i = 1, . . . , n}, if ∀u ∈ K there exists a function fu : Σ∗1 × . . .× Σ∗n → {0, 1}, such that ∀w ∈ u−1L it holds

w ∈ u−1K ⇔ fu(P1(w), . . . , Pn(w)) = 1. (3)

In simple words, uniform observability implies the possibility of establishing if the behavior of a given system is in
the reference language K after the occurrence of a word uw ∈ L, knowing its prefix u ∈ K. The following proposition
shows that Def. 3 is equivalent to Def. 1 if ε ∈ K.

Proposition 4 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two languages such that K ⊂ L ⊆ Σ∗. If language K is jointly observable wrt L and {Σi | i = 1, . . . , n}, then K is
uniformly observable wrt L and {Σi | i = 1, . . . , n}. If ε ∈ K the converse also holds.

PROOF. (=⇒) Assume that K is jointly observable wrt L and {Σi | i = 1, . . . , n}. In order to show that it is
also uniformly observable, let consider a word u ∈ K preceding the observation w. The function fu in Def. 3 can be
defined as follows

fu(P1(w), . . . , Pn(w)) = f(P1(uw), . . . , Pn(uw))

where f(P1(uw), . . . , Pn(uw)) is the function in Def. 1 which exists by assumption.

(⇐=) By simply taking u = ε in Def. 3, Def. 1 holds. �

The following example shows that if ε /∈ K, then uniform observability does not imply joint observability.

Example 5 Let us consider two languages K = {aci|i ≥ 0} and L = K ∪ {b} and one site Σ1 = {c}. Notice that
ε 6∈ K.
Language K is not jointly observable wrt L and Σ1 because there exist two words w1 = a ∈ K and w2 = b ∈ L \K
having the same projections P1(w1) = P1(w2) = ε. However, K is uniformly observable wrt L and Σ1. Indeed, since
u ∈ K, then u = acj , j ≥ 0 and u−1K = {ci|i ≥ 0}. Therefore, fu(P1(w)) = 1 for all w ∈ u−1K. �

An additional property we consider takes into account both bounded observations and uniform observability.

Definition 6 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two languages such that K ⊂ L ⊆ Σ∗.
Language K is uniformly q−observable wrt L and {Σi | i = 1, . . . , n}, if ∀ u ∈ K there exists a function fu :
Σ∗1 × . . .× Σ∗n → {0, 1} such that ∀ w ∈ u−1L with |w| ≤ q, it holds

w ∈ u−1K ⇐⇒ fu (P1(w), . . . , Pn(w)) = 1. (4)

In simple words, uniform q−observability implies the possibility of establishing if the behavior of a given system is
in the reference language K after the occurrence of a word w of length less or equal to q, knowing the word u in K
preceding w.

The following proposition clarifies the relationship between uniform q-observability and q-observability.

5

(joint)

observability

=⇒
(Prop. 4)

uniform

observability

(Tripakis [1])
⇐=

if ε ∈ K (Prop. 4)

⇓ (trivial) ⇓ (trivial)

q−observability ⇐= uniform

if ε ∈ K (Prop. 7) q−observability

Table 1
Relationships among different observability notions.

Proposition 7 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two languages such that K ⊂ L ⊆ Σ∗ and ε ∈ K. Given a number q ∈ N, if language K is uniformly q-observable
wrt L and {Σi | i = 1, . . . , n}, then K is also q-observable wrt L and {Σi | i = 1, . . . , n}.

PROOF. By taking u = ε in Def. 6, Def. 2 holds. �

The following example shows that q-observability does not imply uniform q-observability.

Example 8 Let Σ1 = {a, c} and Σ2 = {b} be two alphabets and let K = (a b c)∗ and L = (a b c)∗ + (a c b)∗,
where overline denotes prefix closure. Obviously, K ⊂ L. Language K is not uniformly 2−observable. Indeed, let us
consider w = a ∈ K in Def. 6. Let u1 = bc ∈ a−1K and u2 = cb ∈ a−1L. It can be checked immediately that u1 and
u2 have the same projection on both alphabets. However, au1 = abc ∈ K while au2 = acb ∈ L \K, thus function fa
cannot be defined. �

Table 1 summarizes the relationships among the observability properties defined above.

4 Uniform q−observability

4.1 General results

The following proposition shows that uniform q−observability implies uniform (q − 1)−observability.

Proposition 9 If K is uniformly q−observable wrt L and {Σi | i = 1, . . . , n}, then it is also uniformly (q − 1)-
observable wrt them.

PROOF. Follows from the fact that the same fu function used in the case of uniform q−observability can be used
in the case of uniform (q − 1)−observability, simply restricting its arguments to words of length q − 1. �

This implies that, if a language is uniformly q−observable for some finite q > 1, then it is also uniformly 1-observable.
The following proposition shows that any language is uniformly 1−observable if any event can be observed by at
least one site.

Proposition 10 Let us consider a set of alphabets Σi, i = 1, . . . , n, such that Σ1 ∪ . . . ∪ Σn = Σ. Any language
K ⊂ L ⊆ Σ∗ is uniformly 1−observable wrt to L and {Σi | i = 1, . . . , n}.

PROOF. Since Σ1 ∪ . . . ∪Σn = Σ, there exists at least one site that can detect any event e that has occurred, i.e.,
for each e ∈ Σ, there exists i such that Pi(e) = e. Let u ∈ K, then the function fu of Def. 6 is defined as follows:

fu(P1(e), . . . , Pn(e)) =

{
1, if ue ∈ K
0, otherwise

6

(a) (b)

Fig. 1. The DFA used in Example 14.

Being possible to define the function for any observed event, the system is uniformly 1−observable. �

On the contrary, uniform 1−observability is no more ensured if one or more events in Σ are not observable by all
the sites.

4.2 Results for regular languages

If L and K are regular languages, uniform q-observability is decidable for any finite q.

Proposition 11 Let us consider a set of alphabets Σi, i = 1, . . . , n, such that Σ1 ∪ . . . ∪ Σn = Σ. Let K and L
be two regular languages such that K ⊂ L ⊆ Σ∗. Uniform q−observability of K wrt L and {Σi | i = 1, . . . , n} is
decidable for any finite q ∈ N.

PROOF. According to Myhill-Nerode Theorem [20], a regular language K has a finite index, i.e., the set of lan-
guages {u−1K | u ∈ K} is finite. This implies that it is sufficient to check for a finite number of words u the existence
of a function fu defined over a finite subset of Σ∗1 × · · ·Σ∗n, i.e., the set of projections on Σi’s, i = 1, . . . , n, of words
w ∈ u−1L of length less than or equal to q. Thus the problem is decidable. �

Let us now introduce an equivalence relationship among words that allows us to rephrase the definition of uniform
observability. This will be used later in Algorithm 1 to perform analysis of q-observability.

Definition 12 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ.
A word w ∈ Σ∗ is observation equivalent (or simply equivalent) to v ∈ Σ∗, denoted as w ≡ v, if Pi(w) = Pi(v) for
all i = 1, . . . , n. We say that two words that are not equivalent are distinguishable.

Note that the relation introduced in Def 12 is an equivalence relation which determines a unique minimal partition
of a set of words into equivalence classes. We denote [w] the set of words which are observation equivalent to word
w. Based on the above definition, an immediate condition to check uniform q−observability is given by the following
proposition.

Proposition 13 Let Σ be a finite alphabet, and Σi ⊆ Σ, for i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two regular languages such that K ⊂ L ⊆ Σ∗. Language K is uniformly q−observable wrt L and {Σi | i = 1, . . . , n},
if ∀ u ∈ K, and ∀ w ∈ u−1L with |w| ≤ q, [w] ∩ u−1K 6= ∅ ⇒ [w] ⊆ u−1K.

PROOF. We prove this by contradiction. Let us assume that [w] ∩ u−1K 6= ∅ but [w] 6⊆ u−1K. By Def. 6, there
must exist words v1, v2 ∈ [w] such that: v1 ∈ u−1K and thus fu(P1(v1), . . . , Pn(v1)) = 1 while v2 6∈ u−1K and thus
fu(P1(v2), . . . , Pn(v2)) = 0.
However, this leads to a contradiction because being v1, v2 ∈ [w], then v1 ≡ v2, i.e., Pi(v1) = Pi(v2) for all i =
1, . . . , n. �

7

Example 14 Given alphabets Σ = {a, b}, Σ1 = {a}, Σ2 = {b}, let K = a (a+ ba)
∗

and L = a (a+ b)
∗

+
b (a+ b) (a+ b)

∗
. Language L is accepted by the DFA in Fig. 1(a), while K is the language accepted by DFA in

Fig. 1(b).
First, we observe that K is 2−observable wrt L, Σ1 and Σ2. In fact, the set of words of length less than or equal
to 2 in L is {a, aa, ab, ba, bb} and this set can be partitioned as {a, aa} ⊆ K and {ab, ba, bb} ⊆ L \K. The function
f(P1(w), P2(w)) that takes value 1 if P2(w) = ε and value 0 otherwise recognizes words in K.
However, K is not uniformly 2− observable. To show this consider the word u = a ∈ K. The set of words of length
less than or equal to 2 in a−1L is {ε, a, b, aa, ab, ba, bb} and this set can be partitioned as {ε, a, aa, ba} ⊆ a−1K and
{b, ab, bb} ⊆ a−1L \ a−1K. Obviously, [ab] = {ab, ba} since (P1(ab), P2(ab)) = (P1(ba), P2(ba)) = (a, b), however
[ab] ∩ a−1K = {ba} 6= ∅ while [ab] 6⊆ a−1K. By Proposition 13 we conclude that K is not uniformly 2−observable
wrt L, Σ1 and Σ2.
Incidentally, we also note that by Proposition 10 it follows that K is uniformly 1−observable wrt L, Σ1 and Σ2 �

From the Myhill-Nerode Theorem [20], it follows that with each regular language can be uniquely associated a
minimal DFA accepting it. Now, let L and K be two regular languages, where K represents the reference behavior
and L represents a larger behavior. We define GL as the minimal DFA accepting Lm(GL) = L and generating
L(GL) = Pref(L). We also define GK as the minimal complete DFA accepting Lm(GK) = K; since this automaton
is complete is generates L(GK) = Σ∗. Starting from GL and GK , we construct a DFA H whose set of final states is
partitioned in two subsets: the set of states accepting words in K and the set of states accepting words in L \K.

Definition 15 Let GL = (X1,Σ, δ1, x0,1, Xm,1) with Lm(GL) = L and L(GL) = Pref(L), and GK = (X2,Σ, δ2,

x0,2, Xm,2) with Lm(GK) = K and L(GK) = Σ∗. Let H be the DFA defined as H = (X,Σ, δ, x0, Xm ∪ X̂m) where
• X = X1 ×X2,
• δ((x1, x2), e) = (δ1(x1, e), δ2(x2, e)), for all (x1, x2) ∈ X1 ×X2 and for all e ∈ Σ such that δ1(x1, e) is defined,
• x0 = x0,1 × x0,2,
• Xm = Xm,1 ×Xm,2,

• X̂m = Xm,1 × (X \Xm,2).

The automaton H is the parallel composition of GL and GK with a set of final states partitioned into two subsets
Xm and X̂m.

One can readily verify that L(H) = Pref(L) and the following implications hold for H:

w ∈ K ⇐⇒ δ∗(x0, w) ∈ Xm, (5)

and
w ∈ L \K ⇐⇒ δ∗(x0, w) ∈ X̂m. (6)

Algorithm 1 can be used to check q-observability. Its correctness is proved by the following proposition which provides
an explanation of the algorithm.

Proposition 16 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K
be two regular languages such that K ⊂ L ⊆ Σ∗. The language K is uniformly q-observable with respect to L and
{Σi |i = 1, . . . , n} if Algorithm 1 returns true.

PROOF. Notice that the set of words δ∗(x, u) that can be generated by H starting from a state x ∈ Xm∪X̂m defines
the residual u−1L. Therefore, according to Def. 6, in order to check uniform q−observability we have to consider all
states in Xm as initial ones (Steps 2 and 3). For each initial state x ∈ Xm, all words of length less than or equal to

q that can be generated by H starting from x and reaching a state in Xm ∪ X̂m (namely, words in L), are computed
(Step 5) and partitioned into equivalence classes (Step 6). If all words in all equivalence classes are either in u−1K
or outside u−1K (where u ∈ K is such that δ∗(x0, u) = x), then the algorithm iterates considering a new initial
state. Otherwise, the language K is not uniformly q−observable according to Proposition 13. �

The complexity of Algorithm 1 is O(|X| · |Σ|q).

8

Algorithm 1 Analysis of uniform q-observability

Input: DFA H = (X,Σ, δ, x0, Xm ∪ X̂m) built according to Def. 15 from languages L and K; a positive integer q; a
set of alphabets {Σi | i = 1, . . . , n}
Output: A boolean variable UQO specifying if K is uniformly q−observable wrt L and {Σi |i =
1, . . . , n}
1: Let UQO = true.
2: Let X = Xm be the set of final states of H accepting words in K.
3: while UQO = true and X 6= ∅ do
4: Choose a state x ∈ X .
5: Compute the set of words of length less than or equal to q that can be generated by H starting from x and

reaching a state in Xm ∪ X̂m.
6: Partition this set into equivalence classes Π = {W1, . . . ,Wr} according to Def. 12.

7: if ∃ an equivalence class W ∈ Π such that v1, v2 ∈ W with δ∗(x, v1) ∈ Xm and δ∗(x, v2) ∈ X̂m then
8: let UQO = false
9: end if

10: Let X = X \ {x};
11: end while

Fig. 2. The DFA H in Example 17.

Example 17 Let us consider again the case of Example 14 where L is the language accepted by the DFA in Fig. 1(a),
while K is the language accepted by the DFA in Fig. 1(b). The DFA H built according to Def. 15 is shown in Fig. 2

where Xm = {(y1, x1)} and X̂m = {(y1, x0), (y1, x2)}. Note that in this figure, and in the following ones, final states

in X̂m are denoted by a gray shade.
Let us assume that Σ1 = {a} and Σ2 = {b}.
We want to study uniform 2-observability using Algorithm 1. In Step 2, X is initialized at Xm. In Step 4 we select
x = (y1, x1). The set of words of length less than or equal to 2 that can be generated by H starting from x and

reaching a state in Xm ∪ X̂m are: ε, a, b, aa, ab, ba and bb (Step 5). In Step 6 we partition this set into equivalence
classes: W1 = {ε}, W2 = {a}, W3 = {b}, W4 = {aa}, W5 = {ab, ba}, and W6 = {bb}. Obviously, the condition in

Step 7 is satisfied for W5: δ∗(x, ba) ∈ Xm and δ∗(x, ab) ∈ X̂m. Therefore, the algorithm concludes (Step 8) that the
language K is not uniformly 2-observable. �

5 q−sync observability

In this section we introduce a new property, strictly related to uniform q-observability, that we call q-sync observ-
ability. Subsection 5.1 provides general results while Subsection 5.2 considers regular languages.

5.1 General results

The main difference of q−sync observability with respect to joint observability is that, although we are still considering
words of arbitrary length, we assume that while they are generated there exist repeated communications from the
local sites to the coordinator (i.e., synchronizations). More precisely, at most q events can occur between any two
consecutive synchronizations.

9

Fig. 3. The DFA in Examples 22 and 25.

Definition 18 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two languages such that K ⊂ L ⊆ Σ∗. The language K is called q−sync observable wrt L and {Σi | i = 1, . . . , n}, if
there exists a function f : (Σ∗1 × Σ∗2 × . . .× Σ∗n)

∗ → {0, 1} such that for all m ∈ N and for all sequences of m words
(w1, w2, . . . , wm) such that wi ∈ L and |wi| ≤ q, ∀i = 1, . . . ,m, it holds

w1w2 . . . wm ∈ K ⇐⇒
f (P1(w1), . . . , Pn(w1), . . . , P1(wm), . . . , Pn(wm)) = 1.

(7)

The notion of observable equivalence can be easily extended to the case of sync observable equivalence.

Definition 19 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Consider two
sequences w1, w2, . . . , wm and v1, v2, . . . , vm, where (w1w2 · · ·wm) ∈ L and (v1v2 · · · vm) ∈ L. The two sequences are
sync observable equivalent, or simply equivalent when clear from the context, if Pi(wj) = Pi(vj) for all i = 1, . . . , n,
and all j = 1, . . . ,m. We denote this (w1, w2, . . . , wm) ≡ (v1, v2, · · · , vm). Finally, we say that two sequences that
are not equivalent are distinguishable.

Proposition 20 If K is q−sync observable wrt L and {Σi | i = 1, . . . , n}, then it is also (q − 1)-sync observable
wrt them.

PROOF. Follows by the fact that the same f function used in the case of q−sync observability can be used in the
case of (q − 1)−sync observability, simply restricting its arguments to words of length q − 1. �

Proposition 21 If a language K is q−sync observable wrt to a language L and a set of alphabets {Σi | i = 1, . . . , n},
then it is also uniformly q−observable wrt L and {Σi | i = 1, . . . , n}.

PROOF. It is a consequence of Def. 6 and 18. Indeed, consider any word u ∈ K and write it as u = w1w2 · wk

where |wi| ≤ q for all i. Then for any word w ∈ u−1L with |w| ≤ q, function fu can be defined as in Def. 6 in terms
of function f in Def. 18 as follows:

fu (P1(w), . . . , Pn(w)) =

= f (P1(w1), . . . , Pn(w1), . . . , P1(wk), . . . , Pn(wk), . . .

. . . P1(w), . . . , Pn(w))

10

showing that K is uniformly q−observable wrt L and {Σi | i = 1, . . . , n}. �

On the contrary, uniform q-observability does not imply q-sync observability as shown by the following example.

Example 22 Let L be the language accepted by the DFA in Fig. 3, while K is the language accepted by the same
DFA but neglecting x7. Finally, assume three sites with alphabets Σ1 = {a}, Σ2 = {b} and Σ3 = {c}, respectively.
Using the approach discussed in the previous section one may prove that K is uniformly 3-observable.

However, it is not 3−sync observable. To show this, let us consider w1 = ab, w2 = bc, v1 = ba and v2 = cb. One can
verify that v1v2 ∈ K and we should define:

f(P1(v1), P2(v1), P3(v1), P1(v2), P2(v2), P3(v2)) =

f(a, b, ε, ε, b, c) = 1.

However, it holds w1w2 ∈ L \K, therefore we should also define

f(P1(w1), P2(w1), P3(w1), P1(w2), P2(w2), P3(w2)) =

f(a, b, ε, ε, b, c) = 0.

clearly a contradiction. We conclude that a function f as in Def. 18 does not exists. �

5.2 Results for regular languages

Interesting results can be proved if K and L are regular languages.

Proposition 23 Let us consider a set of alphabets Σi, i = 1, . . . , n, such that Σ1 ∪ . . . ∪ Σn = Σ. Let K and
L be two regular languages such that K ⊂ L ⊆ Σ∗. For any finite q ∈ N, q−sync observability of K wrt L and
{Σi | i = 1, . . . , n} is decidable.

PROOF. Since we are taking into account regular languages we can equivalently speak in terms of the DFA H =
(X,Σ, δ, x0, Xm∪X̂m) built according to Def. 15. To determine if the property holds for m = 1 (first synchronization)
we need to check all words w1 of length less than or equal to q that can be generated by H starting from the initial
state x0. Among them, we verify that no word which reaches Xm (a word in K) is equivalent to a word which reaches

X̂m (a word in L \K).
Consider the case m = 2. After the first synchronization is performed when the generated word is w1, we do not
know the current state of H but we know that it belongs to a given set S(w1) ⊆ X and the set Ξ1 = {S(w1) ⊆ X |
w1 ∈ Pref(L), |w1| ≤ q} is finite. Now, for all possible S ∈ Ξ1 we consider the language L(H | S) = ∪x∈SL(H | x)
where L(H | x) denotes the language generated by the automaton with initial state x and we need to check all words
of length less than or equal to q in this language. Again, among them we must verify that no word which reaches Xm

starting from a state in S is equivalent to a word which reaches X̂m starting from a state in S (possibly different
from the previous one). As m is increased, one may have different sets Ξk, k = 1, . . . ,m− 1, to check but eventually
Ξk+1 = ∪kj=1Ξj because for all k ≥ 1 it holds Ξk ⊆ 2X . Since there exist at most 2|X| languages L(H | S) to consider
the problem is decidable. �

Algorithm 2, which is a generalization of Algorithm 1, can be used to check q−sync observability. Its correctness is
proved by the following proposition which provides an explanation of the algorithm.

Proposition 24 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be
two regular languages such that K ⊂ L ⊆ Σ∗. The language K is q−sync observable wrt L and {Σi | i = 1, . . . , n}
if Algorithm 2 returns true.

11

Algorithm 2 Analysis of q−sync observability

Input: DFA H = (X,Σ, δ, x0, Xm ∪ X̂m) built according to Def. 15 from languages L and K; a positive integer q; a
set of alphabets {Σi | i = 1, . . . , n}
Output: A boolean variable QSO specifying if K is q−sync observable wrt L and {Σi |i =
1, . . . , n}
1: Let QSO = true.
2: Let S = {x0}, Ξ = {S} and label S new.
3: while QSO = true and ∃ a set S ∈ Ξ labeled new do
4: Select a set S ∈ Ξ labeled new and label it old.
5: Compute the set of words of length less than or equal to q that can be generated by H starting from states in

S.
6: Partition this set into equivalence classes Π = {W1, . . . ,Wr} according to Def. 12.
7: for each class Wg ∈ Π do
8: Let Sg = {δ∗(x,w) | x ∈ S, w ∈ Wg)}.
9: if Sg 6∈ Ξ then

10: if Sg ∩Xm 6= ∅ and Sg ∩ X̂m 6= ∅ then
11: let QSO = false.
12: end if
13: Let Ξ = Ξ ∪ Sg and label Sg as new.
14: end if
15: end for
16: end while

PROOF. The set Ξ contains subsets of states in which the system can be after an observation. Obviously, if one of
these sets contains states in Xm (reached by words in K) and states in X̂m (reached by words in L \K), the system
is not q−sync observable. Notice that the algorithm simply computes all possible states of the system starting from
the previous possible states and finishes when all possible sets are checked. �

The complexity of Algorithm 2 is 2|X| · |Σ|q.

Example 25 Consider again the DFA in Fig. 3. Let it be the DFA H built according to Definition 15 where Xm =
{x0, . . . , x6} and X̂m = {x7}. This means that L is the language accepted by such DFA, while K is the languages
accepted by the same DFA, neglecting x7. Again assume Σ1 = {a}, Σ2 = {b}, Σ3 = {c}. We want to apply Algorithm 2
to check 3−sync observability.
• Initially, S = {x0} and Ξ = {S}.
• In Step 5, all words of length less than or equal to 3 terminating in a state in Xm∪X̂m = {x0, . . . , x7} are computed
starting from x0, i.e., ε, a, b, ab, ba, abb and bac.
• For these words, the equivalence classes are: {ε}, {a}, {b}, {ab, ba}, {abb} and {bac}. All such words starting from
x0 lead to a state in Xm, i.e., they are contained in K, so the boolean variable is not updated.
• The corresponding sets of final states computed at Step 8 are: {x0}, {x1}, {x4}, {x2, x5}, {x3} and {x6}.
• All these sets minus {x0} are not in Ξ. Moreover, the condition in Step 10 is not satisfied hence are introduced in
Ξ and labeled them as new (Step 13).
• The while loop is iterated. Assume S = {x2, x5} is considered and thus labeled as old.
• The following words are computed in Step 5: ε, b, ba, bc, baa, bab, bca, bcb, bcc generated from state x2 and ε, c,
cb, cc, cba, cbb, cca, ccb, ccc generated from state x5.
• In the next step, these words are partitioned in equivalence classes: {ε}, {b}, {c}, {ba}, {bc, cb}, {cc}, {baa}, {bab},
{bca, cba}, {bcb, cbb}, {bcc, ccb}, {cca}, {ccc}.
• The corresponding sets of final states are: {x2, x5}, {x3}, {x6}, {x0}, {x7, x0}, {x7}, {x1}, {x4}, {x7, x1}, {x7, x4},
{x7}, {x7}, {x7}.
• Since some of the above sets simultaneously contain states in Xm and states in X̂m, e.g., {x7, x0} the algorithm
returns false. �

6 Computation of synchronizing time instants

In this section we focus on regular languages L and K and assume that all the events are observable by at least one
site, namely Σ = ∪ni=1Σi (see the following Remark 1 for a discussion on the requirement of this assumption).

12

We consider the following problem that may occur in several real applications. We want to determine a set of instants
of synchronization of the different sites, so that a word in L\K is identified exactly as soon as it occurs. In particular,
we propose a solution that is based on the idea of moving off-line most of the calculations. To this aim, as in the
previous sections, we associate minimal DFA to languages L and K, denoted as GL and GK , respectively, and build
the DFA H according to Def. 15. We provide an algorithm that, given an arbitrary state x of H, computes a set
of synchronization instants Ix to guarantee that the occurrence of any word in L \K generated starting from x, is
immediately detected. Clearly, if k is the length of the shortest word in L \K generated starting from x, then the
last synchronization should occur after k instants, namely after the occurrence of k events, being by assumption
Σ = ∪ni=1Σi. The proposed solution also guarantees (as formally proved later on) that, for any state x ∈ Xm ∪ X̂m,

where Xm ∪ X̂m is the set of final states of H, the state reached from x after the occurrence of k events is uniquely
identified. As a result, the computation of sets Ix, for all x ∈ Xm ∪ X̂m, can be executed off-line, and the resulting
outputs are used on-line (without further computations) to establish when synchronizations should occur.

Before formalizing the proposed solution, we provide a revised definition of sync equivalent sequences (Def. 19) in
order to keep into account synchronization instants.

Definition 26 Let Σ be a finite alphabet, and Σi ⊆ Σ, with i = 1, . . . , n, be n sub-alphabets of Σ. Consider two
words w, v ∈ Σ∗ having the same length k. Let I = {p1, p2, . . . , pI} ⊆ {1, 2, . . . , k} be a set of synchronizing instants,
where pI = k.
We say that w and v are I-sync observable equivalent, or simply I-equivalent where clear from the context, if
Pi(wj) = Pi(vj) for all i = 1, . . . , n, and all j = 1, . . . , I, where w1 = w(1 : p1), v1 = v(1 : p1), wj = w(pj−1 +1 : pj),
v = vj(pj−1 + 1 : pj) for all j = 2, . . . , I.

In simple words, two sequences w and v with the same length k, are I-equivalent if the subsequences resulting from
synchronizing at the set of instants I, generate the same projections over all alphabets Σi’s.

Finally note that, if I is a singleton, namely it is I = {k}, then two sequences w and v are I-equivalent if and only
if w and v are equivalent according to Def. 12.

Algorithm 3 formalizes the proposed solution.

Algorithm 3 Computation of synchronization instants

Input: DFA H = (X,Σ, δ, x0, Xm ∪ X̂m) built according to Def. 15, and a state x ∈ Xm ∪ X̂m

Output: The set of synchronization instants Ix
1: Let k be the length of the shortest word starting from x and leading to a state in X̂m.
2: Let Ix = {k}.
3: Compute the set of words L of length k that can be generated by H starting from x and reaching a state in
Xm ∪ X̂m.

4: Partition L into the set of Ix-equivalence classes according to Def. 26.
5: while there exists a class W ∈ Π such that w, v ∈ W and δ∗(x0, w) 6= δ∗(x0, v) do
6: Choose a set W̄ ∈ Π such that w, v ∈ W̄ and δ∗(x0, w) 6= δ∗(x0, v).
7: Compute an integer p < k such that w and v are not I-equivalent for I = Ik ∪ {p}.
8: Let Ix = Ix ∪ {p}.
9: Partition L into the set of Ix-equivalence classes according to Def. 26.

10: end while

Remark 1 The assumption Σ = ∪ni=1Σi guarantees that the algorithm terminates in a finite number of steps. In fact,
at Step 7, for any two words w and v that are Ix-equivalent (where clearly it is w 6= v), there always exists an integer
p such that, if a new synchronization is added at instant p, then the two words w and v become distinguishable.
Therefore, a solution at Step 7 always exists, which in turn guarantees that the algorithm terminates in a finite
number of steps. In the worst case, Ix contains all integers from 1 to k.

The following proposition proves that, after the last synchronization in Ix, the state of H is uniquely determined.
This is clearly not true after intermediate synchronizations.

Proposition 27 Let H be the DFA built according to Def. 15 and x ∈ Xm ∪ X̂m be one of its final states. Let Ix be
the set of synchronization instants computed using Algorithm 3, and k be its largest entry. The state reached from x
after k events is uniquely determined.

13

Fig. 4. The DFA H in Example 28.

PROOF. Follows from the fact that by repeatedly iterating Step 7, all words of length k that lead to different states
are distinguishable. �

The complexity of Algorithm 3 is O(n · |Σ|2|X| · |X|) where n is the number of sites. Indeed, k is bounded by |X| thus
the maximum number of words in L of length k computed at Step 3 is bounded by |Σ||X|. Thus, testing the condition
of the while loop (Steps 5) requires a number of operations bounded by |Σ|2|X| · n to compare the projections of all
pairs strings with respect to the n alphabets Σi’s. Finally, each time the while loop is executed the set Ix increases,
thus the loop is executed a number of times upper-bounded by k.

Example 28 Consider the DFA in Fig. 4. Let it be the DFA H built according to Definition 15 where Xm =
{x0, . . . , x11} and X̂m = {x12}. This means that L is the language accepted by such DFA, while K is the language
accepted by the same DFA, neglecting state x12. Assume Σ1 = {a}, Σ2 = {b} and focus on state x0. Let us apply
Algorithm 3 to compute the set Ix0 .
• The length of the shortest path from x0 to state x12 is k = 5. Hence, we initially take Ix0 = {5} (Step 2).
• The set of words of length k = 5 starting from x0 is {abbaa, abbab, bbaaa, bbaab, baaba} (Step 3). Therefore, we can
define two Ix0

-equivalence classes, i.e., Π = {W1,W2} where W1 = {abbaa, bbaaa, baaba} and W2 = {abbab, bbaab}
(Step 4).
• Condition in Step 5 is true, indeed the two words w = abbaa, v = bbaaa, both in W1 lead to different states, namely
it is δ∗(x0, w) = x0 6= δ∗(x0, v) = x12.
• We select an Ix0

-equivalence class, e.g., W̄ = W1 containing two words w = abbaa, v = bbaaa, which lead to
different states (Step 6).
• We compute an index p to distinguish w = abbaa from v = bbaaa (Step 7). One possible solution is p = 1. Indeed,
w = w1w2 with w1 = a, w2 = bbaa, v = v1v2 with v1 = b, v2 = baaa, and P1(w1) = a 6= P1(v1) = ε.
• We update the set of synchronization instants at Ix0 = {1, 5} (Step 8).
• The Ix0-equivalence classes now are: W ′1 = {abbaa}, W ′′1 = {bbaaa, baaba}, W ′2 = {abbab} and W ′′2 = {bbaab}.
• We select an Ix0

-equivalence class, e.g., W̄ = W ′′1 containing two words that lead to different states: w = bbaaa
and v = baaba (Step 6).
• We compute an index p to distinguish w = bbaaa from v = baaba (Step 7). One possible solution is p = 2.
• We update the set of synchronization instants at Ix0

= {1, 2, 5} (Step 8). Since now, the Ix0
-equivalence classes

are singleton, the algorithm stops. �

14

7 Conclusions and future work

This paper deals with the problem of establishing if a given behavior belongs to a reference language K, based on
decentralized observation, and a coordinator. Two different properties have been defined: uniform q−observability
and q−sync observability, that differ for the criterion used to synchronize the different sites. Finally, an algorithm
to compute the instants in which synchronizations should occur, has been given. It guarantees that the occurrence
of any word not in K is detected as soon as it has occurred.
Our future research will be devoted to provide a criterion for an optimal choice of synchronizing instants, and address
the problem of delays in the detection of words not in K. Investigating what happens in an asynchronous setting
will be another object of our future work, e.g., taking inspiration by [21].
We conclude with a final remark. In this work we have studied decentralized observability with synchronizations
from the point of view of a set of coordinated agents that locally observe a system with the goal of understanding if
its evolution belongs to a reference behavior. The evolution of the system cannot be modified and the only decision
variables are the synchronization instants in which the agents communicate with the coordinator. We believe that in
this same framework other meaningful problems may be addressed, including supervisory control with the objective
of enforcing (or enhancing) observability or, more generally, of enforcing an arbitrary given specification.

References

[1] S. Tripakis, Undecidable problems of decentralized observation and control on regular languages, Information Processing Letters
90 (1) (2004) 21–28 (2004).

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of Discrete-Event Systems, IEEE Trans.
on Automatic Control 40 (9) (1995) 1555–1575 (1995).

[3] M. Cabasino, A. Giua, C. Mahulea, C. Seatzu, On decentralized observability of discrete event systems, in: Proc. 50th IEEE
Conference on Decision and Control, 2011 (Dec. 2011).

[4] P. E. Caines, R. Greiner, S. Wang, Dynamical logic observers for finite automata, in: Proc. 27th IEEE Conference of Decision and
Control, 1988, pp. 226–233 (December 1988).

[5] P. E. Caines, S. Wang, Classical and logic based regulator design and its complexity for partially observed automata, in: Proc. of
28th Conference on Decision and Control, 1989, pp. 132–137 (1989).

[6] C. M. Özveren, A. S. Willsky, Observability of discrete event dynamic systems, IEEE Transactions on Automatic Control 35 (7)
(1990) 797–806 (1990).

[7] R. Kumar, V. Garg, S. I. Markus, Predicates and predicate transformers for supervisory control of discrete event dynamical systems,
IEEE Trans. on Automatic Control 38 (2) (1993) 232–247 (1993).

[8] G. Barrett, S. Lafortune, Decentralized supervisory control with communicating controllers, IEEE Trans. on Automatic Control
45 (9) (2000) 1620 –1638 (Sep. 2000). doi:10.1109/9.880613.

[9] E. Fabre, A. Benveniste, Partial order techniques for distributed discrete event systems: Why you cannot avoid using them, Discrete
Event Dynamic Systems 17 (3) (2007) 355–403 (2007).

[10] A. Giua, C. Seatzu, Observability of Place/Transition Nets, IEEE Trans. on Automatic Control 47 (9) (2002) 1424–1437 (2002).

[11] D. Corona, A. Giua, C. Seatzu, Marking estimation of Petri nets with silent transitions, IEEE Trans. on Automatic Control 52 (9)
(2007) 1695–1699 (2007).

[12] L. Li, C. N. Hadjicostis, Reconstruction of transition firing sequences based on asynchronous observations of place token changes,
in: 46th IEEE Conference on Decision and Control, 2007, pp. 1898–1903 (2007).

[13] C. N. Hadjicostis, C. Seatzu, Decentralized state estimation in discrete event systems under partially ordered observation sequences,
in: WODES 2016: Workshop on Discrete Event Systems, 2016, pp. 393–398 (2016).

[14] S. Yokota, T. Yamamoto, S. Takai, Computation of the delay bounds and synthesis of diagnosers for decentralized diagnosis with
conditional decisions, Discrete Event Dynamic Systems (2016) 1–40 (2016).

[15] L. K. Carvalho, M. V. Moreira, J. C. Basilio, S. Lafortune, Robust diagnosis of discrete-event systems against permanent loss of
observations, Automatica 49 (1) (2013) 223 – 231 (2013).

[16] X. Yin, Z. Li, Decentralized fault prognosis of discrete event systems with guaranteed performance bound, Automatica 69 (2016)
375 – 379 (2016).

[17] S. Takai, Robust prognosability for a set of partially observed discrete event systems, Automatica 51 (2015) 123 – 130 (2015).

[18] R. Zhang, K. Cai, Y. Gan, W. M. Wonham, Distributed supervisory control of discrete-event systems with communication delay,
Discrete Event Dynamic Systems 26 (2) (2016) 263–293 (2016).

[19] D. Sears, K. Rudie, Minimal sensor activation and minimal communication in discrete-event systems, Discrete Event Dynamic
Systems 26 (2) (2016) 295–349 (2016).

[20] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages and Computation (Third Edition), Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006 (2006).

[21] S. Tripakis, Decentralized control of discrete-event systems with bounded or unbounded delay communication, IEEE Transactions
on Automatic Control 49 (9) (2004) 1489–1501 (2004).

15

