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1 Introduction

Opacity in discrete event systems (DESs) has been extensively investigated over the last decade. For a thorough and
comprehensive review on this topic, we refer the reader to (Jacob et al. 2016) and (Wu & Lafortune 2013). Consider
a system whose evolution can be observed by an external observer (usually called an intruder in this setting) through
a mask that partially hides the event occurrence and the state trajectory. A system is said to be opaque with respect
to a given secret behavior when the intruder cannot infer if the system’s evolution belongs to the secret based on
the available observation. It is typically assumed that the intruder has full knowledge of the system’s structure.

Several opacity properties have been defined for DESs, among which we focus on current-state opacity, initial-state
opacity and language-based opacity.

• When dealing with current-state opacity, the secret is defined as a set of states and the initial state is (partially)
known to the intruder. A system is current-state opaque if the intruder is never able to establish if the current
state of the system is within the set of secret states (Bryans et al. 2005, Saboori & Hadjicostis 2007, Tong et al.
2015a).
• When dealing with initial-state opacity, the secret is also defined as a set of states and the intruder has no

knowledge about the initial state. A system is initial-state opaque if the intruder cannot establish if the evolution
of the system has started from a secret state. Initial-state opacity (ISO) has been defined in the Petri net framework
by Bryans et al. (Bryans et al. 2005). Saboori and Hadjicostis (Saboori & Hadjicostis 2008) proposed a new ISO
definition in the automaton framework that we extended to Petri nets in (Tong et al. 2015b). In this paper we call
it reach-initial-state opacity (R-ISO). As discussed in detail in Section 4, R-ISO is a particular case of ISO and
may be meaningful in a variety of security problems.
• In the case of language-based opacity, the secret is defined as a language, i.e., a set of event sequences, and the

initial state is (partially) known to the intruder. A system is language-based opaque if the intruder cannot establish
if the evolution of the system belongs to the secret. Several types of language-based opacity properties have been
defined. For instance, language opacity, weak opacity (Lin 2011) and strict language opacity (Tong, Li, Seatzu &
Giua 2016b).

In the framework of automata two types of observation masks have been investigated in the literature: static and
dynamic (Cassez et al. 2012, Lin 2011). A mask is static if the set of events that the intruder can observe is fixed. It
is dynamic if the set of observable events changes with the state or the trace of the system. Obviously, the dynamic
mask is a generalization of the static one. In Petri nets, similar observation masks have been defined (Tong, Li &
Giua 2016). In this work we focus on the opacity problems in (unbounded) labeled Petri nets, i.e., Petri nets with
static observation masks.

Opacity verification (Lin 2011, Saboori & Hadjicostis 2011, 2013, Wu & Lafortune 2013, Tong, Li, Seatzu & Giua
2016b, Tong et al. 2017) consists in determining whether a system is opaque with respect to a given secret. When
opacity is violated, different approaches (Dubreil et al. 2010, Cassez et al. 2012, Wu & Lafortune 2014, Falcone &
Marchand 2015, Tong, Li, Seatzu & Giua 2016a) have been proposed to turn an unopaque system into an opaque
one. In this paper, we study the decidability of opacity verification problems in labeled Petri net systems, focusing
on current-state, reach-initial-state and language opacity. In the sequel of this paper we use “opacity problem” to
denote “opacity verification problem” for simplicity.

Many contributions related to the decidability of opacity problems in DESs have been proposed in (Bryans et al. 2005,
2008, Cassez 2009, Saboori & Hadjicostis 2010, Jacob et al. 2016). It has been shown that current-state, initial-state
and language opacity problems are decidable in finite automata (Bryans et al. 2008). Nonetheless, the current-state
opacity problem in probabilistic finite automata and the language-based opacity in timed automata are undecidable
(Cassez 2009, Saboori & Hadjicostis 2010). Bryans et al. (Bryans et al. 2005) have proven that for bounded Petri
nets current-state and initial-state opacity problems are decidable. Moreover, general opacity problems in transition
systems are undecidable, as well as the initial-state opacity problem in Petri nets (Bryans et al. 2008). Decidability
of opacity problems in different systems have been surveyed in (Jacob et al. 2016). However, the decidability of
current-state, reach-initial-state and language opacity problems in Petri nets still requires further investigation.

The main contribution of this work consists in proving that current-state, reach-initial-state and language opacity
problems are undecidable. All proofs are carried out using reduction.

The rest of the paper is organized as follows. In Section 2 basic notions of Petri nets are recalled. The decidability of
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the current-state, reach-initial-state and language opacity problems is discussed in Sections 3, 4, and 5, respectively.
Finally, conclusions are drawn in Section 6 where we also discuss our future work in this area.

2 Preliminaries

In this section we recall the basics of labeled Petri nets. For more details, we refer the reader to (Peterson 1981,
Seatzu et al. 2013).

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of places graphically represented by circles; T
is a set of transitions graphically represented by bars with P ∪ T 6= ∅ and P ∩ T = ∅; Pre : P × T → N, and
Post : P ×T → N are the pre- and post-incidence functions that specify the arcs directed from places to transitions,
and vice versa, where N = {0, 1, 2, . . .}. The incidence matrix of a net is denoted by C = Post − Pre. A transition
without any input place is called a source transition.

A marking is a vector M : P → N that assigns to each place of a Petri net a non-negative integer number of tokens,
graphically represented by black dots. The marking of place p is denoted by M(p). A marking can also sometimes
be represented as a multiset M =

∑
p∈P M(p) · p. A Petri net system 〈N,M0〉 is a net N with initial marking M0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M +C(·, t). We
write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote that
the firing of σ yields M ′. We denote L(N,M0) = {σ ∈ T ∗|M0[σ〉} the set of all transition sequences enabled at M0.

A marking M is reachable in 〈N,M0〉 if there exists a sequence σ ∈ T ∗ such that M0[σ〉M . The set of all markings
reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted by R(N,M0). A Petri net system is
bounded if there exists a non-negative integer k ∈ N such that for any place p ∈ P and for any reachable marking
M ∈ R(N,M0), M(p) ≤ k holds.

A labeled Petri net (LPN) system is a 4-tuple G = (N,M0, E, `), where 〈N,M0〉 is a Petri net system, E is an alphabet
(a set of labels) and ` : T → E ∪ {ε} is a labeling function that assigns to each transition t ∈ T either a symbol
from E or the empty word ε. A transition labeled with a symbol in E is said to be observable; a transition labeled
with the empty word is unobservable (or silent). The labeling function can be extended to sequences ` : T ∗ → E∗

as `(σt) = `(σ)`(t) with σ ∈ T ∗ and t ∈ T . Note that σ could be the empty sequence (i.e., a sequence of events with
length 0) and in this case, `(σ) = ε. The generated language of G is L(G) = {w ∈ E∗|∃σ ∈ L(N,M0) : w = `(σ)}.
The generated language from a marking M is L(N,M) = {w ∈ E∗|∃σ ∈ T ∗ : M [σ〉, w = `(σ)}. Therefore, L(G) =
L(N,M0). Given a set of markings M, L(N,M) =

⋃
M∈M L(N,M) is defined.

Finally, we generalize the notion of LPN systems to deal with the case where the net has a set (could be infinite) of
initial markings M0 ⊆ Nm. In such a case, the LPN system is denoted as G = (N,M0, E, `), its reachability set is
R(N,M0) =

⋃
M0∈M0

R(N,M0), and the generated language of G is L(G) = L(G,M0).

3 Current-State Opacity

In this section we discuss the decidability of the current-state opacity problem in LPN systems. First, we recall the
notion of current-state opacity 1 defined in (Bryans et al. 2005).

Definition 1 [Petri Net Current-State Opacity] Let G = (N,M0, E, `) be an LPN system and S ⊆ R(N,M0) be a
secret set. G is said to be current-state opaque (CSO) wrt S if for all M0 ∈ M0, M ∈ S and σ ∈ L(N,M0) such
that M0[σ〉M , there exists M ′0 ∈M0, σ

′ ∈ L(N,M ′0) such that `(σ′) = `(σ) and M ′0[σ′〉M ′ /∈ S.

An LPN system being current-state opaque means that for every transition sequence σ leading to a marking in
the secret set, there exists another transition sequence σ′ whose firing leads to a nonsecret marking, and the two
sequences produce the same observation `(σ) = `(σ′). As a consequence, when the intruder observes the behavior of
a current-state opaque LPN system, it cannot conclude whether the current state is contained or not in the secret.

1 In (Bryans et al. 2005) it is assumed that M0 is finite, and the property is called final opacity. However, “current-state
opacity” is used by most of the researchers.
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Fig. 1. The LPN system G constructed in the proof of Theorem 3.

We point out that an LPN system with a finite set of initial markings can always be converted into an equivalent LPN
system 2 with one initial marking. The procedure requires adding two new places, called p0 and p′0, and r = |M0| new
unobservable transitions, called tu1, . . . , tur. The initial marking of the new net assigns a single token to place p0. The
firing of a transition tui (with i = 1, . . . , r) moves the token from p0 to p′0 and produces in the other places a token
configuration that coincides with the i-th marking in M0. To prevent transitions (in particular source transitions)
from firing before one of the transitions tui does, self-loops are added between p′0 and all other transitions except tui
for i = 1, . . . , r (cf. the proof of Theorem 7). Therefore, current-state opacity defined in Definition 1 with a finite set
M0 is equivalent to the one defined in (Tong et al. 2015a).

Definition 2 [Petri Net Current-State Opacity Problem] Consider an LPN system G = (N,M0, E, `) and a secret
set S ⊆ R(N,M0). The Petri net current-state opacity problem consists in determining whether G is current-state
opaque wrt S or not.

In (Bryans et al. 2005) it has been proven that if G is bounded, which also implies that M0 is finite, the Petri net
current-state opacity problem is decidable. In the following, we show that in general such a problem is undecidable.

Theorem 3 The Petri net current-state opacity problem is undecidable.

PROOF. We preliminarily recall that the Petri net language containment problem, i.e., the problem of determining
whether the language generated by an LPN system is contained in the language generated by another LPN system,
is not decidable (Reutenauer 1990). We now prove the theorem by showing that the Petri net language containment
problem can be reduced to the Petri net current-state opacity problem for a singleton secret set and a single initial
marking.

Let L(G1) and L(G2) be the languages generated by two arbitrary LPN systems G1 = (N1,M01, E1, `1) and G2 =
(N2,M02, E2, `2), respectively. Let Pi (|Pi| = mi) and Ti (|Ti| = ni), respectively, be the set of places and transitions
of Gi, for i = 1, 2. We construct a new LPN system G = (N,M0, E, `) based on G1 and G2 by the following steps:

i) Duplicate the structures of G1 and G2 in G.
ii) Add to G places: p0, p1, p2, and p3, unobservable transitions: t1 and t2, and observable transitions: t3 and t4

such that `(t3) = `(t4) = z /∈ (E1 ∪ E2).
iii) Add new arcs: Pre(p0, ti) = 1 for i = 1, 2; Pre(p1, t3) = 1; Pre(p2, t4) = 1; ∀t ∈ T1, Pre(p1, t) = 1, Post(p1, t) =

1; ∀t ∈ T2, Pre(p2, t) = 1, Post(p2, t) = 1; Post(p1, t1) = 1; Post(p2, t2) = 1; Post(p3, t3) = 1; ∀p ∈ P such that
M01(p) 6= 0, Post(p, t1) = M01(p); ∀p ∈ P such that M02(p) 6= 0, Post(p, t2) = M02(p).

iv) M0 = p0.

As a result, the number of places and transitions in G are |P | = m1 +m2 +4 and |T | = n1 +n2 +4, respectively, and
E = E1 ∪E2 ∪ {z}. The LPN system G is depicted in Fig. 1. For i = 1, 2, the firing of ti initializes Gi. Namely, the

2 “Equivalent” refers to the fact that two nets have the same opacity property.
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markings reached after firing ti are M = pi + Σp∈Pi
M0i(p) · p. Self-loops between pi and transitions in Gi prevent

source transitions from firing before ti fires.

Let us consider the secret set S = {p3}. In the following we prove that

L(G1) ⊆ L(G2)⇔ G is current-state opaque wrt S.

We first prove that if G is current-state opaque wrt S, then L(G1) ⊆ L(G2) holds. Assume that G is current-state
opaque wrt S. Then for every σ leading to the secret marking, there exists σ′ ∈ L(N,M0) that does not lead
to the secret but produces the same observation, i.e., `(σ) = `(σ′). Based on the structure of G, the transition
sequences that lead to the secret marking take the form σ = t1σ1t3, where σ1 ∈ L(N1,M01) and produce observation
`(σ) = `(σ1)z, where `(σ1) ∈ L(G1). Moreover, it appears evident that σ′ should take the form σ′ = t2σ2t4, where
σ2 ∈ L(N2,M02). Indeed, these are the only sequences that produce an observation ending with z and not leading to
the secret marking. This implies that for any σ1 ∈ L(N1,M01), there exists σ2 ∈ L(N2,M02) such that `(σ1) = `(σ2),
i.e., L(G1) ⊆ L(G2).

Analogously, we can prove that if L(G1) ⊆ L(G2) then G is current-state opaque wrt S. Indeed, if L(G1) ⊆ L(G2),
then L(N1,M01) ⊆ L(N2,M02) and for any sequence σ = t1σ1t3 that leads to the secret marking, it corresponds a
sequence σ′ = t2σ2t4, where σ1 ∈ L(N1,M01) and σ2 ∈ L(N2,M02), that produces the same observation but leads
to a nonsecret marking, i.e., G is current-state opaque wrt S.

Therefore, for the general case where the secret is an arbitrary subset of R(N,M0) and the initial marking set may
not be a singleton, the Petri net current-state opacity problem is undecidable. 2

4 Initial-State Opacity

The notion of initial-state opacity was first defined for Petri nets by Bryans et al. in (Bryans et al. 2005). According
to the definition given by Bryans et al., when the intruder starts its observation it does not know in which marking
the system is, but simply knows that it belongs to a given setM0. The secret set S is a subset ofM0. If the system
is initial-state opaque, then the intruder cannot infer, based on its observation, whether the evolution has started
from a secret marking or a nonsecret one.

Definition 4 [Petri Net Initial-State Opacity] Let G = (N,M0, E, `) be an LPN system and S ⊆ M0 be a secret
set. G is said to be initial-state opaque (ISO) wrt S if for all M ∈ S and for all w ∈ L(N,M),

∃M ′ ∈M0 \ S : w ∈ L(N,M ′).

In simple words, a system is said to be initial-state opaque if for any observation generated from a secret marking,
there always exists a nonsecret marking in M0 from which the same observation can be generated.

Note that M0 ⊆ Nm in Definition 4 could be an infinite set. However, in the original definition of ISO in (Bryans
et al. 2005, 2008) M0 was assumed to be finite. The authors proved that if R(N,M0) is finite as well, the problem
of determining if G is ISO wrt S, is decidable; on the contrary, if R(N,M0) is infinite, the problem is undecidable.

In this paper we focus on a particular ISO definition for Petri nets proposed in (Tong et al. 2015b), herein called
reach-initial-state opacity.

Definition 5 [Petri Net Reach-Initial-State Opacity] Let G = (N,Mst, E, `) be an LPN system and S ⊆ R(N,Mst)
be a secret set. G is said to be reach-initial-state opaque (R-ISO) wrt S if for all M ∈ S, and for all w ∈ L(N,M),

∃M ′ ∈ R(N,Mst) \ S : w ∈ L(N,M ′).

According to Definition 5, a system G = (N,Mst, E, `) is said to be R-ISO if for any secret marking and any
observation generated from such a secret marking, there exists a nonsecret marking in R(N,Mst) from which the
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Fig. 2. The LPN system G′ constructed in the proof of Theorem 7.

same observation can be generated. Comparing Definition 5 with Definition 4, it is evident that R-ISO is a special
case of ISO where M0 is a subset of Nm such that M0 = R(N,Mst). Namely, R-ISO only considers a special class
of M0 instead of an arbitrary subset of Nm. However, as discussed in the following, it is still worth studying them
separately.

The ISO problem considered in the automaton setting (see Definition 1 in (Saboori & Hadjicostis 2008)) can be
summarized as follows: given the structure of an automaton whose initial state is unknown, determine if the intruder
can infer if such a state belongs to the secret by observing the system’s evolution. Note that the structure of the
automaton explicitly contains the full knowledge of the system’s state space and thus it is implicitly assumed that
the initial state must belong to such a space.

Consider on the contrary a Petri net. The structure of the net (N,E, `) is not a dynamical system and contains no
information on the state space. We need to associate to the net an initial marking so that the state space can be
determined by computing its reachability set. Therefore, the counterpart for Petri nets of the ISO problem defined
above can be stated as follows: given a Petri net system and its reachability set, assuming its initial marking is
unknown, determine if the intruder can infer whether such a marking belongs to the secret by observing the system’s
evolution. This is what we call R-ISO problem: it is not an artificial problem but the natural Petri net counterpart
of the ISO problem in automata.

Therefore, the new definition we propose of R-ISO not only formalizes an important property that so far has not
been discussed, but also clarifies the difference between ISO for Petri nets and ISO for automata, that, even if
having the same name, are different properties. From a practical point of view, if the R-ISO problem were decidable
(unfortunately, as we show later, it is undecidable) and a plant could be proven to enjoy this property, the system’s
operator could decide (possibly at some extra cost) to block for some time all observations so as to ensure opacity
when the observations are re-established.

Definition 6 [Petri Net Reach-Initial-State Opacity Problem] Consider an LPN system G = (N,Mst, E, `) and a
secret set S ⊆ R(N,Mst). The Petri net reach-initial-state opacity problem consists in determining whether G is
reach-initial-state opaque wrt S or not.

Based on the results in (Bryans et al. 2005), if the net is bounded, i.e., R(N,Mst) is finite, the Petri net R-ISO problem
is decidable. On the other hand, the undecidability of the Petri net ISO problem does not imply its undecidability
for a special class of M0. Therefore, it is necessary to investigate the decidability of the Petri net R-ISO problem.
In the following, we prove its undecidability.

Theorem 7 The Petri net reach-initial-state opacity problem is undecidable.

PROOF. It has been proven that the ISO problem in Petri nets is undecidable (Bryans et al. 2008), where M0 is
finite. We prove this theorem by showing that the ISO problem for finite secret sets, which is undecidable, can be
reduced into the Petri net R-ISO problem.
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Consider an LPN system G = (N,M0, E, `) with |P | = m and |T | = n, where M0 = {M1
0 ,M

2
0 , · · · ,Mk

0 } ⊆ Nm is
a finite set of initial markings, and a secret set S = {M1

0 ,M
2
0 , · · ·Mr

0 } ⊆ M0 with r ≤ k. Starting from G, let us
construct a new LPN system G′ = (N ′,M ′st, E

′, `′), where N ′ = (P ′, T ′, P re′, Post′), by the following steps:

i) Add toG places: p0, p1, . . . , pk+1, unobservable transitions tu1, tu2, . . . , tuk, and observable transitions: t1, t2, . . . , tk,
such that `(t1) = · · · = `(tk) = z /∈ E.

ii) Add arcs: for i = 1, 2, · · · , k, Pre(p0, tui) = 1, Pre(pi, ti) = 1, Post(pi, tui) = 1, Post(pk+1, ti) = 1; ∀p ∈ P such

that M i
0(p) 6= 0, Post(p, ti) = M i

0(p); ∀t ∈ T , Pre(pk+1, t) = 1, Post(pk+1, t) = 1.
iii) M ′st = p0.

The resulting G′ is depicted in Fig. 2. Obviously E′ = E ∪ {z}. Moreover, the number of places and transitions in
G′ are |P ′| = m + k + 2 and |T ′| = n + 2k, respectively. The firing of tuiti initializes G at M i

0 (for i = 1, 2, . . . , k).
Place pk+1 is added to prevent source transitions in G from firing before the firing of tuiti.

Let us consider the secret set S′ = {p0, p1, . . . , pr}. In the following we prove that

G is ISO wrt S⇔ G′ is R-ISO wrt S′.

First we prove that if G′ is R-ISO wrt S′, then G is ISO wrt S. Assume that G′ is R-ISO wrt S′. Then for any
observation w generated from markings in S′, there exists a marking M ′ ∈ R(N ′,M ′st) \ S′ from which the same
observation w can be generated, i.e.,

L(N ′, S′) ⊆ L(N ′, R(N ′,M ′st) \ S′). (1)

By the structure of G′,
L(N ′, S′) = {w′ ∈ E′∗|w′ = zw,w ∈ L(N,S)} (2)

holds. Moreover, the set of words in L(N ′, R(N ′,M ′st) \ S′) having z as the prefix is equal to L(N ′, {pr+1, . . . , pk}).
Therefore, by Eq. (1), we have

L(N ′, S′) ⊆ L(N ′, {pr+1, . . . , pk}). (3)

Again by the structure of G′, we have

L(N ′, {pr+1, . . . , pk}) = {w′ ∈ E′∗|w′ = zw,

w ∈ L(N,M0 \ S)} (4)

By Eqs. (2), (3) and (4), it follows that L(N,S) ⊆ L(N,M0 \ S). Namely, for all M ∈ S, w ∈ L(N,M), there exists
M ′ ∈M0 \ S such that w ∈ L(N,M ′), i.e., G is ISO wrt S.

Following the same reasoning, we can prove that if G is ISO wrt S, then G′ is R-ISO wrt S′. In more detail, if G is
ISO wrt S, then L(N,S) ⊆ L(N,M0 \ S) holds. This implies the inclusion relationship in Eq. (3) and, taking into
account the structure of G′, the inclusion relationship in Eq. (1). Therefore, we conclude that G′ is R-ISO wrt S′.
2

5 Language-Based Opacity

Language opacity was first introduced in (Badouel et al. 2007) in the framework of finite automata and then extended
to Petri nets (Tong, Li, Seatzu & Giua 2016b). In the case of language opacity the secret is defined as a language. In
this section we first recall the notion of language opacity in LPN systems, then we formalize the language opacity
problem, and finally, we prove that such a problem is undecidable.

Definition 8 [Petri Net Language Opacity] Let G = (N,M0, E, `) be an LPN system and S ⊆ T ∗ be a secret
language. G is said to be language opaque (LO) wrt S if for all σ ∈ L(N,M0) ∩ S, there exists σ′ ∈ L(N,M0) \ S
such that `(σ) = `(σ′).

In other words, a system is language opaque wrt a given secret if for any observation that can be generated by a
sequence in the secret, there exists another nonsecret sequence generating the same observation.
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Definition 9 [Petri Net Language Opacity Problem] Consider an LPN system G = (N,M0, E, `) and a secret
language S ⊆ T ∗. The language opacity problem consists in determining whether G is language opaque wrt S or
not.

Theorem 10 The Petri net language opacity problem is undecidable.

PROOF. The proof is carried out by showing that the Petri net current-state opacity problem for finite secret sets,
which is proven undecidable by Theorem 3, can be reduced into the Petri net language opacity problem.

Consider an LPN system G = (N,M0, E, `) and a secret set S ⊆ R(N,M0). Let us prove that

G is CSO wrt S ⇔ G is LO wrt S′,

where S′ = {σ ∈ T ∗|∃M0 ∈M0,M ∈ S : M0[σ〉M}.

First we prove that if G is current-state opaque wrt S, then G is language opaque wrt S′. Assume that G is current-
state opaque wrt S. Then for any M0 ∈ M0, M ∈ S and σ ∈ T ∗ such that M0[σ〉M , there exist M ′0 ∈ M0,
M ′ ∈ R(N,M0) \ S and σ′ ∈ T ∗ such that M ′0[σ′〉M ′ and `(σ) = `(σ′). This implies that for all σ ∈ S′, there exists
σ′ ∈ L(N,M0) \ S′ with `(σ) = `(σ′). Therefore, G is language opaque wrt S′.

Now we prove that if G is language opaque wrt S′, then G is current-state opaque wrt S. Assume that G is language
opaque wrt S′. Then for any σ ∈ L(N,M0)∩S′, there exists at least a firing sequence σ′ ∈ L(N,M0) \S′ such that
`(σ′) = `(σ). Since σ′ /∈ S′, M ′ /∈ S, where M0[σ′〉M ′ and M0 ∈M0. Namely, for any transition sequence leading to
a marking in S, there exists a transition sequence producing the same observation but leading to a marking not in
S. Therefore, G is current-state opaque wrt S. 2

6 Conclusions and Future Work

In this paper, the decidability of current-state, reach-initial-state and language opacity problems in Petri nets is
addressed, where reach-initial-state opacity is a special case of initial-state opacity defined in (Bryans et al. 2005).
In particular, showing that all such problems are undecidable for special classes of secrets, we conclude that, in
general, Petri net current-state, reach-initial-state, and language opacity problems are undecidable since if a problem
is undecidable under special assumptions (e.g., the secret set is finite), the same problem under less restrictive
assumptions is obviously undecidable as well.

As a future work, we plan to characterize the classes of Petri nets whose opacity problems can be proven to be
decidable. For such classes, we will also try to develop efficient methods for opacity analysis.
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